Acoustic simulation in architecture with parallel algorithm
NASA Astrophysics Data System (ADS)
Li, Xiaohong; Zhang, Xinrong; Li, Dan
2004-03-01
In allusion to complexity of architecture environment and Real-time simulation of architecture acoustics, a parallel radiosity algorithm was developed. The distribution of sound energy in scene is solved with this method. And then the impulse response between sources and receivers at frequency segment, which are calculated with multi-process, are combined into whole frequency response. The numerical experiment shows that parallel arithmetic can improve the acoustic simulating efficiency of complex scene.
Cortical Representations of Speech in a Multitalker Auditory Scene.
Puvvada, Krishna C; Simon, Jonathan Z
2017-09-20
The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.
Detection and Identification of Acoustic Signatures
2011-08-01
represent complex scenarios such as urban scenes with multiple sources in the soundscape and significant amount of reverberation and diffraction effects... soundscape . In either case it is necessary to understand that the probability of detection is a function of both the vehicle acoustic signature and...the acoustic masking component, or soundscape . And that both signals must be defined in greater depth than overall level, or average frequency
Auditory Scene Analysis: The Sweet Music of Ambiguity
Pressnitzer, Daniel; Suied, Clara; Shamma, Shihab A.
2011-01-01
In this review paper aimed at the non-specialist, we explore the use that neuroscientists and musicians have made of perceptual illusions based on ambiguity. The pivotal issue is auditory scene analysis (ASA), or what enables us to make sense of complex acoustic mixtures in order to follow, for instance, a single melody in the midst of an orchestra. In general, ASA uncovers the most likely physical causes that account for the waveform collected at the ears. However, the acoustical problem is ill-posed and it must be solved from noisy sensory input. Recently, the neural mechanisms implicated in the transformation of ambiguous sensory information into coherent auditory scenes have been investigated using so-called bistability illusions (where an unchanging ambiguous stimulus evokes a succession of distinct percepts in the mind of the listener). After reviewing some of those studies, we turn to music, which arguably provides some of the most complex acoustic scenes that a human listener will ever encounter. Interestingly, musicians will not always aim at making each physical source intelligible, but rather express one or more melodic lines with a small or large number of instruments. By means of a few musical illustrations and by using a computational model inspired by neuro-physiological principles, we suggest that this relies on a detailed (if perhaps implicit) knowledge of the rules of ASA and of its inherent ambiguity. We then put forward the opinion that some degree perceptual ambiguity may participate in our appreciation of music. PMID:22174701
Acoustical Awareness for Intelligent Robotic Action
2007-12-01
sound is desired or needed for some other purposes, but is interfering with the intended application, it is called noise. The Soundscape refers...to that which can be heard. Although often used interchangeably with the term Auditory Scene, the soundscape is a narrower definition, referring...difficult is the underlying complexity of the acoustical domain. The soundscape is always changing with time, more so than even the visual domain tends
Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence
Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria
2016-01-01
To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682
Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.
Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria
2016-09-01
To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.
Navigating the auditory scene: an expert role for the hippocampus.
Teki, Sundeep; Kumar, Sukhbinder; von Kriegstein, Katharina; Stewart, Lauren; Lyness, C Rebecca; Moore, Brian C J; Capleton, Brian; Griffiths, Timothy D
2012-08-29
Over a typical career piano tuners spend tens of thousands of hours exploring a specialized acoustic environment. Tuning requires accurate perception and adjustment of beats in two-note chords that serve as a navigational device to move between points in previously learned acoustic scenes. It is a two-stage process that depends on the following: first, selective listening to beats within frequency windows, and, second, the subsequent use of those beats to navigate through a complex soundscape. The neuroanatomical substrates underlying brain specialization for such fundamental organization of sound scenes are unknown. Here, we demonstrate that professional piano tuners are significantly better than controls matched for age and musical ability on a psychophysical task simulating active listening to beats within frequency windows that is based on amplitude modulation rate discrimination. Tuners show a categorical increase in gray matter volume in the right frontal operculum and right superior temporal lobe. Tuners also show a striking enhancement of gray matter volume in the anterior hippocampus, parahippocampal gyrus, and superior temporal gyrus, and an increase in white matter volume in the posterior hippocampus as a function of years of tuning experience. The relationship with gray matter volume is sensitive to years of tuning experience and starting age but not actual age or level of musicality. Our findings support a role for a core set of regions in the hippocampus and superior temporal cortex in skilled exploration of complex sound scenes in which precise sound "templates" are encoded and consolidated into memory over time in an experience-dependent manner.
Visually-guided attention enhances target identification in a complex auditory scene.
Best, Virginia; Ozmeral, Erol J; Shinn-Cunningham, Barbara G
2007-06-01
In auditory scenes containing many similar sound sources, sorting of acoustic information into streams becomes difficult, which can lead to disruptions in the identification of behaviorally relevant targets. This study investigated the benefit of providing simple visual cues for when and/or where a target would occur in a complex acoustic mixture. Importantly, the visual cues provided no information about the target content. In separate experiments, human subjects either identified learned birdsongs in the presence of a chorus of unlearned songs or recalled strings of spoken digits in the presence of speech maskers. A visual cue indicating which loudspeaker (from an array of five) would contain the target improved accuracy for both kinds of stimuli. A cue indicating which time segment (out of a possible five) would contain the target also improved accuracy, but much more for birdsong than for speech. These results suggest that in real world situations, information about where a target of interest is located can enhance its identification, while information about when to listen can also be helpful when targets are unfamiliar or extremely similar to their competitors.
Visually-guided Attention Enhances Target Identification in a Complex Auditory Scene
Ozmeral, Erol J.; Shinn-Cunningham, Barbara G.
2007-01-01
In auditory scenes containing many similar sound sources, sorting of acoustic information into streams becomes difficult, which can lead to disruptions in the identification of behaviorally relevant targets. This study investigated the benefit of providing simple visual cues for when and/or where a target would occur in a complex acoustic mixture. Importantly, the visual cues provided no information about the target content. In separate experiments, human subjects either identified learned birdsongs in the presence of a chorus of unlearned songs or recalled strings of spoken digits in the presence of speech maskers. A visual cue indicating which loudspeaker (from an array of five) would contain the target improved accuracy for both kinds of stimuli. A cue indicating which time segment (out of a possible five) would contain the target also improved accuracy, but much more for birdsong than for speech. These results suggest that in real world situations, information about where a target of interest is located can enhance its identification, while information about when to listen can also be helpful when targets are unfamiliar or extremely similar to their competitors. PMID:17453308
Xiang, Juanjuan; Simon, Jonathan; Elhilali, Mounya
2010-01-01
Processing of complex acoustic scenes depends critically on the temporal integration of sensory information as sounds evolve naturally over time. It has been previously speculated that this process is guided by both innate mechanisms of temporal processing in the auditory system, as well as top-down mechanisms of attention, and possibly other schema-based processes. In an effort to unravel the neural underpinnings of these processes and their role in scene analysis, we combine Magnetoencephalography (MEG) with behavioral measures in humans in the context of polyrhythmic tone sequences. While maintaining unchanged sensory input, we manipulate subjects’ attention to one of two competing rhythmic streams in the same sequence. The results reveal that the neural representation of the attended rhythm is significantly enhanced both in its steady-state power and spatial phase coherence relative to its unattended state, closely correlating with its perceptual detectability for each listener. Interestingly, the data reveals a differential efficiency of rhythmic rates of the order of few hertz during the streaming process, closely following known neural and behavioral measures of temporal modulation sensitivity in the auditory system. These findings establish a direct link between known temporal modulation tuning in the auditory system (particularly at the level of auditory cortex) and the temporal integration of perceptual features in a complex acoustic scene, while mediated by processes of attention. PMID:20826671
Scanning silence: mental imagery of complex sounds.
Bunzeck, Nico; Wuestenberg, Torsten; Lutz, Kai; Heinze, Hans-Jochen; Jancke, Lutz
2005-07-15
In this functional magnetic resonance imaging (fMRI) study, we investigated the neural basis of mental auditory imagery of familiar complex sounds that did not contain language or music. In the first condition (perception), the subjects watched familiar scenes and listened to the corresponding sounds that were presented simultaneously. In the second condition (imagery), the same scenes were presented silently and the subjects had to mentally imagine the appropriate sounds. During the third condition (control), the participants watched a scrambled version of the scenes without sound. To overcome the disadvantages of the stray acoustic scanner noise in auditory fMRI experiments, we applied sparse temporal sampling technique with five functional clusters that were acquired at the end of each movie presentation. Compared to the control condition, we found bilateral activations in the primary and secondary auditory cortices (including Heschl's gyrus and planum temporale) during perception of complex sounds. In contrast, the imagery condition elicited bilateral hemodynamic responses only in the secondary auditory cortex (including the planum temporale). No significant activity was observed in the primary auditory cortex. The results show that imagery and perception of complex sounds that do not contain language or music rely on overlapping neural correlates of the secondary but not primary auditory cortex.
Interactive physically-based sound simulation
NASA Astrophysics Data System (ADS)
Raghuvanshi, Nikunj
The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation behind obstructions, reverberation, scattering from complex geometry and sound focusing. This is enabled by a novel compact representation that takes a thousand times less memory than a direct scheme, thus reducing memory footprints to fit within available main memory. To the best of my knowledge, this is the only technique and system in existence to demonstrate auralization of physical wave-based effects in real-time on large, complex 3D scenes.
The Incongruency Advantage for Environmental Sounds Presented in Natural Auditory Scenes
Gygi, Brian; Shafiro, Valeriy
2011-01-01
The effect of context on the identification of common environmental sounds (e.g., dogs barking or cars honking) was tested by embedding them in familiar auditory background scenes (street ambience, restaurants). Initial results with subjects trained on both the scenes and the sounds to be identified showed a significant advantage of about 5 percentage points better accuracy for sounds that were contextually incongruous with the background scene (e.g., a rooster crowing in a hospital). Further studies with naïve (untrained) listeners showed that this Incongruency Advantage (IA) is level-dependent: there is no advantage for incongruent sounds lower than a Sound/Scene ratio (So/Sc) of −7.5 dB, but there is about 5 percentage points better accuracy for sounds with greater So/Sc. Testing a new group of trained listeners on a larger corpus of sounds and scenes showed that the effect is robust and not confined to specific stimulus set. Modeling using spectral-temporal measures showed that neither analyses based on acoustic features, nor semantic assessments of sound-scene congruency can account for this difference, indicating the Incongruency Advantage is a complex effect, possibly arising from the sensitivity of the auditory system to new and unexpected events, under particular listening conditions. PMID:21355664
Interactive Sound Propagation using Precomputation and Statistical Approximations
NASA Astrophysics Data System (ADS)
Antani, Lakulish
Acoustic phenomena such as early reflections, diffraction, and reverberation have been shown to improve the user experience in interactive virtual environments and video games. These effects arise due to repeated interactions between sound waves and objects in the environment. In interactive applications, these effects must be simulated within a prescribed time budget. We present two complementary approaches for computing such acoustic effects in real time, with plausible variation in the sound field throughout the scene. The first approach, Precomputed Acoustic Radiance Transfer, precomputes a matrix that accounts for multiple acoustic interactions between all scene objects. The matrix is used at run time to provide sound propagation effects that vary smoothly as sources and listeners move. The second approach couples two techniques---Ambient Reverberance, and Aural Proxies---to provide approximate sound propagation effects in real time, based on only the portion of the environment immediately visible to the listener. These approaches lie at different ends of a space of interactive sound propagation techniques for modeling sound propagation effects in interactive applications. The first approach emphasizes accuracy by modeling acoustic interactions between all parts of the scene; the second approach emphasizes efficiency by only taking the local environment of the listener into account. These methods have been used to efficiently generate acoustic walkthroughs of architectural models. They have also been integrated into a modern game engine, and can enable realistic, interactive sound propagation on commodity desktop PCs.
O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C
2015-05-06
The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.
Neural Correlates of Sound Localization in Complex Acoustic Environments
Zündorf, Ida C.; Lewald, Jörg; Karnath, Hans-Otto
2013-01-01
Listening to and understanding people in a “cocktail-party situation” is a remarkable feature of the human auditory system. Here we investigated the neural correlates of the ability to localize a particular sound among others in an acoustically cluttered environment with healthy subjects. In a sound localization task, five different natural sounds were presented from five virtual spatial locations during functional magnetic resonance imaging (fMRI). Activity related to auditory stream segregation was revealed in posterior superior temporal gyrus bilaterally, anterior insula, supplementary motor area, and frontoparietal network. Moreover, the results indicated critical roles of left planum temporale in extracting the sound of interest among acoustical distracters and the precuneus in orienting spatial attention to the target sound. We hypothesized that the left-sided lateralization of the planum temporale activation is related to the higher specialization of the left hemisphere for analysis of spectrotemporal sound features. Furthermore, the precuneus − a brain area known to be involved in the computation of spatial coordinates across diverse frames of reference for reaching to objects − seems to be also a crucial area for accurately determining locations of auditory targets in an acoustically complex scene of multiple sound sources. The precuneus thus may not only be involved in visuo-motor processes, but may also subserve related functions in the auditory modality. PMID:23691185
The what, where and how of auditory-object perception.
Bizley, Jennifer K; Cohen, Yale E
2013-10-01
The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.
The what, where and how of auditory-object perception
Bizley, Jennifer K.; Cohen, Yale E.
2014-01-01
The fundamental perceptual unit in hearing is the ‘auditory object’. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood. PMID:24052177
Auditory salience using natural soundscapes.
Huang, Nicholas; Elhilali, Mounya
2017-03-01
Salience describes the phenomenon by which an object stands out from a scene. While its underlying processes are extensively studied in vision, mechanisms of auditory salience remain largely unknown. Previous studies have used well-controlled auditory scenes to shed light on some of the acoustic attributes that drive the salience of sound events. Unfortunately, the use of constrained stimuli in addition to a lack of well-established benchmarks of salience judgments hampers the development of comprehensive theories of sensory-driven auditory attention. The present study explores auditory salience in a set of dynamic natural scenes. A behavioral measure of salience is collected by having human volunteers listen to two concurrent scenes and indicate continuously which one attracts their attention. By using natural scenes, the study takes a data-driven rather than experimenter-driven approach to exploring the parameters of auditory salience. The findings indicate that the space of auditory salience is multidimensional (spanning loudness, pitch, spectral shape, as well as other acoustic attributes), nonlinear and highly context-dependent. Importantly, the results indicate that contextual information about the entire scene over both short and long scales needs to be considered in order to properly account for perceptual judgments of salience.
Statistics of natural binaural sounds.
Młynarski, Wiktor; Jost, Jürgen
2014-01-01
Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.
Statistics of Natural Binaural Sounds
Młynarski, Wiktor; Jost, Jürgen
2014-01-01
Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction. PMID:25285658
Auditory scene analysis in school-aged children with developmental language disorders
Sussman, E.; Steinschneider, M.; Lee, W.; Lawson, K.
2014-01-01
Natural sound environments are dynamic, with overlapping acoustic input originating from simultaneously active sources. A key function of the auditory system is to integrate sensory inputs that belong together and segregate those that come from different sources. We hypothesized that this skill is impaired in individuals with phonological processing difficulties. There is considerable disagreement about whether phonological impairments observed in children with developmental language disorders can be attributed to specific linguistic deficits or to more general acoustic processing deficits. However, most tests of general auditory abilities have been conducted with a single set of sounds. We assessed the ability of school-aged children (7–15 years) to parse complex auditory non-speech input, and determined whether the presence of phonological processing impairments was associated with stream perception performance. A key finding was that children with language impairments did not show the same developmental trajectory for stream perception as typically developing children. In addition, children with language impairments required larger frequency separations between sounds to hear distinct streams compared to age-matched peers. Furthermore, phonological processing ability was a significant predictor of stream perception measures, but only in the older age groups. No such association was found in the youngest children. These results indicate that children with language impairments have difficulty parsing speech streams, or identifying individual sound events when there are competing sound sources. We conclude that language group differences may in part reflect fundamental maturational disparities in the analysis of complex auditory scenes. PMID:24548430
Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer
2016-09-22
Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.
The effect of distraction on change detection in crowded acoustic scenes.
Petsas, Theofilos; Harrison, Jemma; Kashino, Makio; Furukawa, Shigeto; Chait, Maria
2016-11-01
In this series of behavioural experiments we investigated the effect of distraction on the maintenance of acoustic scene information in short-term memory. Stimuli are artificial acoustic 'scenes' composed of several (up to twelve) concurrent tone-pip streams ('sources'). A gap (1000 ms) is inserted partway through the 'scene'; Changes in the form of an appearance of a new source or disappearance of an existing source, occur after the gap in 50% of the trials. Listeners were instructed to monitor the unfolding 'soundscapes' for these events. Distraction was measured by presenting distractor stimuli during the gap. Experiments 1 and 2 used a dual task design where listeners were required to perform a task with varying attentional demands ('High Demand' vs. 'Low Demand') on brief auditory (Experiment 1a) or visual (Experiment 1b) signals presented during the gap. Experiments 2 and 3 required participants to ignore distractor sounds and focus on the change detection task. Our results demonstrate that the maintenance of scene information in short-term memory is influenced by the availability of attentional and/or processing resources during the gap, and that this dependence appears to be modality specific. We also show that these processes are susceptible to bottom up driven distraction even in situations when the distractors are not novel, but occur on each trial. Change detection performance is systematically linked with the, independently determined, perceptual salience of the distractor sound. The findings also demonstrate that the present task may be a useful objective means for determining relative perceptual salience. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Sound Classification in Hearing Aids Inspired by Auditory Scene Analysis
NASA Astrophysics Data System (ADS)
Büchler, Michael; Allegro, Silvia; Launer, Stefan; Dillier, Norbert
2005-12-01
A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system distinguishes the four sound classes "clean speech," "speech in noise," "noise," and "music." A number of features that are inspired by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile, harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The achieved recognition rates are very high except for the class "speech in noise." Problems arise in the classification of compressed pop music, strongly reverberated speech, and tonal or fluctuating noises.
Irsik, Vanessa C; Vanden Bosch der Nederlanden, Christina M; Snyder, Joel S
2016-11-01
Attention and other processing constraints limit the perception of objects in complex scenes, which has been studied extensively in the visual sense. We used a change deafness paradigm to examine how attention to particular objects helps and hurts the ability to notice changes within complex auditory scenes. In a counterbalanced design, we examined how cueing attention to particular objects affected performance in an auditory change-detection task through the use of valid or invalid cues and trials without cues (Experiment 1). We further examined how successful encoding predicted change-detection performance using an object-encoding task and we addressed whether performing the object-encoding task along with the change-detection task affected performance overall (Experiment 2). Participants had more error for invalid compared to valid and uncued trials, but this effect was reduced in Experiment 2 compared to Experiment 1. When the object-encoding task was present, listeners who completed the uncued condition first had less overall error than those who completed the cued condition first. All participants showed less change deafness when they successfully encoded change-relevant compared to irrelevant objects during valid and uncued trials. However, only participants who completed the uncued condition first also showed this effect during invalid cue trials, suggesting a broader scope of attention. These findings provide converging evidence that attention to change-relevant objects is crucial for successful detection of acoustic changes and that encouraging broad attention to multiple objects is the best way to reduce change deafness. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Lee, Norman; Ward, Jessica L; Vélez, Alejandro; Micheyl, Christophe; Bee, Mark A
2017-03-06
Noise is a ubiquitous source of errors in all forms of communication [1]. Noise-induced errors in speech communication, for example, make it difficult for humans to converse in noisy social settings, a challenge aptly named the "cocktail party problem" [2]. Many nonhuman animals also communicate acoustically in noisy social groups and thus face biologically analogous problems [3]. However, we know little about how the perceptual systems of receivers are evolutionarily adapted to avoid the costs of noise-induced errors in communication. In this study of Cope's gray treefrog (Hyla chrysoscelis; Hylidae), we investigated whether receivers exploit a potential statistical regularity present in noisy acoustic scenes to reduce errors in signal recognition and discrimination. We developed an anatomical/physiological model of the peripheral auditory system to show that temporal correlation in amplitude fluctuations across the frequency spectrum ("comodulation") [4-6] is a feature of the noise generated by large breeding choruses of sexually advertising males. In four psychophysical experiments, we investigated whether females exploit comodulation in background noise to mitigate noise-induced errors in evolutionarily critical mate-choice decisions. Subjects experienced fewer errors in recognizing conspecific calls and in selecting the calls of high-quality mates in the presence of simulated chorus noise that was comodulated. These data show unequivocally, and for the first time, that exploiting statistical regularities present in noisy acoustic scenes is an important biological strategy for solving cocktail-party-like problems in nonhuman animal communication. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brain bases for auditory stimulus-driven figure-ground segregation.
Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D
2011-01-05
Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.
Amazon river dolphins (Inia geoffrensis) use a high-frequency short-range biosonar.
Ladegaard, Michael; Jensen, Frants Havmand; de Freitas, Mafalda; Ferreira da Silva, Vera Maria; Madsen, Peter Teglberg
2015-10-01
Toothed whales produce echolocation clicks with source parameters related to body size; however, it may be equally important to consider the influence of habitat, as suggested by studies on echolocating bats. A few toothed whale species have fully adapted to river systems, where sonar operation is likely to result in higher clutter and reverberation levels than those experienced by most toothed whales at sea because of the shallow water and dense vegetation. To test the hypothesis that habitat shapes the evolution of toothed whale biosonar parameters by promoting simpler auditory scenes to interpret in acoustically complex habitats, echolocation clicks of wild Amazon river dolphins were recorded using a vertical seven-hydrophone array. We identified 404 on-axis biosonar clicks having a mean SLpp of 190.3 ± 6.1 dB re. 1 µPa, mean SLEFD of 132.1 ± 6.0 dB re. 1 µPa(2)s, mean Fc of 101.2 ± 10.5 kHz, mean BWRMS of 29.3 ± 4.3 kHz and mean ICI of 35.1 ± 17.9 ms. Piston fit modelling resulted in an estimated half-power beamwidth of 10.2 deg (95% CI: 9.6-10.5 deg) and directivity index of 25.2 dB (95% CI: 24.9-25.7 dB). These results support the hypothesis that river-dwelling toothed whales operate their biosonars at lower amplitude and higher sampling rates than similar-sized marine species without sacrificing high directivity, in order to provide high update rates in acoustically complex habitats and simplify auditory scenes through reduced clutter and reverberation levels. We conclude that habitat, along with body size, is an important evolutionary driver of source parameters in toothed whale biosonars. © 2015. Published by The Company of Biologists Ltd.
Effects of capacity limits, memory loss, and sound type in change deafness.
Gregg, Melissa K; Irsik, Vanessa C; Snyder, Joel S
2017-11-01
Change deafness, the inability to notice changes to auditory scenes, has the potential to provide insights about sound perception in busy situations typical of everyday life. We determined the extent to which change deafness to sounds is due to the capacity of processing multiple sounds and the loss of memory for sounds over time. We also determined whether these processing limitations work differently for varying types of sounds within a scene. Auditory scenes composed of naturalistic sounds, spectrally dynamic unrecognizable sounds, tones, and noise rhythms were presented in a change-detection task. On each trial, two scenes were presented that were same or different. We manipulated the number of sounds within each scene to measure memory capacity and the silent interval between scenes to measure memory loss. For all sounds, change detection was worse as scene size increased, demonstrating the importance of capacity limits. Change detection to the natural sounds did not deteriorate much as the interval between scenes increased up to 2,000 ms, but it did deteriorate substantially with longer intervals. For artificial sounds, in contrast, change-detection performance suffered even for very short intervals. The results suggest that change detection is generally limited by capacity, regardless of sound type, but that auditory memory is more enduring for sounds with naturalistic acoustic structures.
Detecting temporal changes in acoustic scenes: The variable benefit of selective attention.
Demany, Laurent; Bayle, Yann; Puginier, Emilie; Semal, Catherine
2017-09-01
Four experiments investigated change detection in acoustic scenes consisting of a sum of five amplitude-modulated pure tones. As the tones were about 0.7 octave apart and were amplitude-modulated with different frequencies (in the range 2-32 Hz), they were perceived as separate streams. Listeners had to detect a change in the frequency (experiments 1 and 2) or the shape (experiments 3 and 4) of the modulation of one of the five tones, in the presence of an informative cue orienting selective attention either before the scene (pre-cue) or after it (post-cue). The changes left intensity unchanged and were not detectable in the spectral (tonotopic) domain. Performance was much better with pre-cues than with post-cues. Thus, change deafness was manifest in the absence of an appropriate focusing of attention when the change occurred, even though the streams and the changes to be detected were acoustically very simple (in contrast to the conditions used in previous demonstrations of change deafness). In one case, the results were consistent with a model based on the assumption that change detection was possible if and only if attention was endogenously focused on a single tone. However, it was also found that changes resulting in a steepening of amplitude rises were to some extent able to draw attention exogenously. Change detection was not markedly facilitated when the change produced a discontinuity in the modulation domain, contrary to what could be expected from the perspective of predictive coding. Copyright © 2017 Elsevier B.V. All rights reserved.
Exploration of Behavioral, Physiological, and Computational Approaches to Auditory Scene Analysis
2004-01-01
Bronkhorst and R. Plomp, "Effects of multiple speechlike maskers on binaural speech recognitions in normal and impaired listening". Journal of the Acoustical...of simultaneous vowels: cues arising from low frequency beating ". Journal of the Acoustical Society of America. 95: pp. 1559-1569. 1994. [41] C.J...and Hearing Research. 12: pp. 229-245. 1969. [44] T. Doll and T. Hanna, "Directional cueing effects in auditory recognition", in Binaural and
Isolating the Energetic Component of Speech-on-Speech Masking With Ideal Time-Frequency Segregation
2006-12-01
Auditory Scene Analysis MIT Press, Cambridge, MA. Bronkhorst, A., and Plomp, R. 1992. “Effects of multiple speechlike maskers on binaural speech...C. J. 1994. “Perception and computational sepa- ration of simultaneous vowels: Cues arising from low frequency beating ,” J. Acoust. Soc. Am. 95...Litovsky, R., and Culling, J. 2004. “The benefit of binaural hearing in a cocktail party: Effects of location and type of interferer,” J. Acoust. Soc
Towards a neural basis of music perception.
Koelsch, Stefan; Siebel, Walter A
2005-12-01
Music perception involves complex brain functions underlying acoustic analysis, auditory memory, auditory scene analysis, and processing of musical syntax and semantics. Moreover, music perception potentially affects emotion, influences the autonomic nervous system, the hormonal and immune systems, and activates (pre)motor representations. During the past few years, research activities on different aspects of music processing and their neural correlates have rapidly progressed. This article provides an overview of recent developments and a framework for the perceptual side of music processing. This framework lays out a model of the cognitive modules involved in music perception, and incorporates information about the time course of activity of some of these modules, as well as research findings about where in the brain these modules might be located.
Evaluation of Loudspeaker-Based Virtual Sound Environments for Testing Directional Hearing Aids.
Oreinos, Chris; Buchholz, Jörg M
2016-07-01
Assessments of hearing aid (HA) benefits in the laboratory often do not accurately reflect real-life experience. This may be improved by employing loudspeaker-based virtual sound environments (VSEs) that provide more realistic acoustic scenarios. It is unclear how far the limited accuracy of these VSEs influences measures of subjective performance. Verify two common methods for creating VSEs that are to be used for assessing HA outcomes. A cocktail-party scene was created inside a meeting room and then reproduced with a 41-channel loudspeaker array inside an anechoic chamber. The reproduced scenes were created either by using room acoustic modeling techniques or microphone array recordings. Participants were 18 listeners with a symmetrical, sloping, mild-to-moderate hearing loss, aged between 66 and 78 yr (mean = 73.8 yr). The accuracy of the two VSEs was assessed by comparing the subjective performance measured with two-directional HA algorithms inside all three acoustic environments. The performance was evaluated by using a speech intelligibility test and an acceptable noise level task. The general behavior of the subjective performance seen in the real environment was preserved in the two VSEs for both directional HA algorithms. However, the estimated directional benefits were slightly reduced in the model-based VSE, and further reduced in the recording-based VSE. It can be concluded that the considered VSEs can be used for testing directional HAs, but the provided sensitivity is reduced when compared to a real environment. This can result in an underestimation of the provided directional benefit. However, this minor limitation may be easily outweighed by the high realism of the acoustic scenes that these VSEs can generate, which may result in HA outcome measures with a significantly higher ecological relevance than provided by measures commonly performed in the laboratory or clinic. American Academy of Audiology.
Dimensionality of visual complexity in computer graphics scenes
NASA Astrophysics Data System (ADS)
Ramanarayanan, Ganesh; Bala, Kavita; Ferwerda, James A.; Walter, Bruce
2008-02-01
How do human observers perceive visual complexity in images? This problem is especially relevant for computer graphics, where a better understanding of visual complexity can aid in the development of more advanced rendering algorithms. In this paper, we describe a study of the dimensionality of visual complexity in computer graphics scenes. We conducted an experiment where subjects judged the relative complexity of 21 high-resolution scenes, rendered with photorealistic methods. Scenes were gathered from web archives and varied in theme, number and layout of objects, material properties, and lighting. We analyzed the subject responses using multidimensional scaling of pooled subject responses. This analysis embedded the stimulus images in a two-dimensional space, with axes that roughly corresponded to "numerosity" and "material / lighting complexity". In a follow-up analysis, we derived a one-dimensional complexity ordering of the stimulus images. We compared this ordering with several computable complexity metrics, such as scene polygon count and JPEG compression size, and did not find them to be very correlated. Understanding the differences between these measures can lead to the design of more efficient rendering algorithms in computer graphics.
A Method for Assessing Auditory Spatial Analysis in Reverberant Multitalker Environments.
Weller, Tobias; Best, Virginia; Buchholz, Jörg M; Young, Taegan
2016-07-01
Deficits in spatial hearing can have a negative impact on listeners' ability to orient in their environment and follow conversations in noisy backgrounds and may exacerbate the experience of hearing loss as a handicap. However, there are no good tools available for reliably capturing the spatial hearing abilities of listeners in complex acoustic environments containing multiple sounds of interest. The purpose of this study was to explore a new method to measure auditory spatial analysis in a reverberant multitalker scenario. This study was a descriptive case control study. Ten listeners with normal hearing (NH) aged 20-31 yr and 16 listeners with hearing impairment (HI) aged 52-85 yr participated in the study. The latter group had symmetrical sensorineural hearing losses with a four-frequency average hearing loss of 29.7 dB HL. A large reverberant room was simulated using a loudspeaker array in an anechoic chamber. In this simulated room, 96 scenes comprising between one and six concurrent talkers at different locations were generated. Listeners were presented with 45-sec samples of each scene, and were required to count, locate, and identify the gender of all talkers, using a graphical user interface on an iPad. Performance was evaluated in terms of correctly counting the sources and accuracy in localizing their direction. Listeners with NH were able to reliably analyze scenes with up to four simultaneous talkers, while most listeners with hearing loss demonstrated errors even with two talkers at a time. Localization performance decreased in both groups with increasing number of talkers and was significantly poorer in listeners with HI. Overall performance was significantly correlated with hearing loss. This new method appears to be useful for estimating spatial abilities in realistic multitalker scenes. The method is sensitive to the number of sources in the scene, and to effects of sensorineural hearing loss. Further work will be needed to compare this method to more traditional single-source localization tests. American Academy of Audiology.
A novel scene management technology for complex virtual battlefield environment
NASA Astrophysics Data System (ADS)
Sheng, Changchong; Jiang, Libing; Tang, Bo; Tang, Xiaoan
2018-04-01
The efficient scene management of virtual environment is an important research content of computer real-time visualization, which has a decisive influence on the efficiency of drawing. However, Traditional scene management methods do not suitable for complex virtual battlefield environments, this paper combines the advantages of traditional scene graph technology and spatial data structure method, using the idea of management and rendering separation, a loose object-oriented scene graph structure is established to manage the entity model data in the scene, and the performance-based quad-tree structure is created for traversing and rendering. In addition, the collaborative update relationship between the above two structural trees is designed to achieve efficient scene management. Compared with the previous scene management method, this method is more efficient and meets the needs of real-time visualization.
R&D 100 Winner 2010: Acoustic Wave Biosensors
Larson, Richard; Branch, Darren; Edwards, Thayne
2018-01-16
The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures â viruses, bacteria, proteins, and DNA â at clinically relevant levels. This detection occurs within minutes â not hours â at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.
Perceived Synchrony of Frog Multimodal Signal Components Is Influenced by Content and Order.
Taylor, Ryan C; Page, Rachel A; Klein, Barrett A; Ryan, Michael J; Hunter, Kimberly L
2017-10-01
Multimodal signaling is common in communication systems. Depending on the species, individual signal components may be produced synchronously as a result of physiological constraint (fixed) or each component may be produced independently (fluid) in time. For animals that rely on fixed signals, a basic prediction is that asynchrony between the components should degrade the perception of signal salience, reducing receiver response. Male túngara frogs, Physalaemus pustulosus, produce a fixed multisensory courtship signal by vocalizing with two call components (whines and chucks) and inflating a vocal sac (visual component). Using a robotic frog, we tested female responses to variation in the temporal arrangement between acoustic and visual components. When the visual component lagged a complex call (whine + chuck), females largely rejected this asynchronous multisensory signal in favor of the complex call absent the visual cue. When the chuck component was removed from one call, but the robofrog inflation lagged the complex call, females responded strongly to the asynchronous multimodal signal. When the chuck component was removed from both calls, females reversed preference and responded positively to the asynchronous multisensory signal. When the visual component preceded the call, females responded as often to the multimodal signal as to the call alone. These data show that asynchrony of a normally fixed signal does reduce receiver responsiveness. The magnitude and overall response, however, depend on specific temporal interactions between the acoustic and visual components. The sensitivity of túngara frogs to lagging visual cues, but not leading ones, and the influence of acoustic signal content on the perception of visual asynchrony is similar to those reported in human psychophysics literature. Virtually all acoustically communicating animals must conduct auditory scene analyses and identify the source of signals. Our data suggest that some basic audiovisual neural integration processes may be at work in the vertebrate brain. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in the public domain in the US.
Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues.
Kraft, James M; Maloney, Shannon I; Brainard, David H
2002-01-01
Two experiments were conducted to study how scene complexity and cues to depth affect human color constancy. Specifically, two levels of scene complexity were compared. The low-complexity scene contained two walls with the same surface reflectance and a test patch which provided no information about the illuminant. In addition to the surfaces visible in the low-complexity scene, the high-complexity scene contained two rectangular solid objects and 24 paper samples with diverse surface reflectances. Observers viewed illuminated objects in an experimental chamber and adjusted the test patch until it appeared achromatic. Achromatic settings made tinder two different illuminants were used to compute an index that quantified the degree of constancy. Two experiments were conducted: one in which observers viewed the stimuli directly, and one in which they viewed the scenes through an optical system that reduced cues to depth. In each experiment, constancy was assessed for two conditions. In the valid-cue condition, many cues provided valid information about the illuminant change. In the invalid-cue condition, some image cues provided invalid information. Four broad conclusions are drawn from the data: (a) constancy is generally better in the valid-cue condition than in the invalid-cue condition: (b) for the stimulus configuration used, increasing image complexity has little effect in the valid-cue condition but leads to increased constancy in the invalid-cue condition; (c) for the stimulus configuration used, reducing cues to depth has little effect for either constancy condition: and (d) there is moderate individual variation in the degree of constancy exhibited, particularly in the degree to which the complexity manipulation affects performance.
Psychophysical and Neural Correlates of Auditory Attraction and Aversion
NASA Astrophysics Data System (ADS)
Patten, Kristopher Jakob
This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids auditory parsing and functional representation of acoustic objects and was found to be a principal feature of pleasing auditory stimuli.
Cultural differences in the lateral occipital complex while viewing incongruent scenes
Yang, Yung-Jui; Goh, Joshua; Hong, Ying-Yi; Park, Denise C.
2010-01-01
Converging behavioral and neuroimaging evidence indicates that culture influences the processing of complex visual scenes. Whereas Westerners focus on central objects and tend to ignore context, East Asians process scenes more holistically, attending to the context in which objects are embedded. We investigated cultural differences in contextual processing by manipulating the congruence of visual scenes presented in an fMR-adaptation paradigm. We hypothesized that East Asians would show greater adaptation to incongruent scenes, consistent with their tendency to process contextual relationships more extensively than Westerners. Sixteen Americans and 16 native Chinese were scanned while viewing sets of pictures consisting of a focal object superimposed upon a background scene. In half of the pictures objects were paired with congruent backgrounds, and in the other half objects were paired with incongruent backgrounds. We found that within both the right and left lateral occipital complexes, Chinese participants showed significantly greater adaptation to incongruent scenes than to congruent scenes relative to American participants. These results suggest that Chinese were more sensitive to contextual incongruity than were Americans and that they reacted to incongruent object/background pairings by focusing greater attention on the object. PMID:20083532
Photo-acoustic and video-acoustic methods for sensing distant sound sources
NASA Astrophysics Data System (ADS)
Slater, Dan; Kozacik, Stephen; Kelmelis, Eric
2017-05-01
Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However, doing so requires overcoming significant limitations typically including much lower sample rates, reduced sensitivity and dynamic range, more expensive video hardware, and the need for sophisticated video processing. The ATCOM real time image processing software environment provides many of the needed capabilities for researching video-acoustic signal extraction. ATCOM currently is a powerful tool for the visual enhancement of atmospheric turbulence distorted telescopic views. In order to explore the potential of acoustic signal recovery from video imagery we modified ATCOM to extract audio waveforms from the same telescopic video sources. In this paper, we demonstrate and compare both readout techniques for several aerospace test scenarios to better show where each has advantages.
ERIC Educational Resources Information Center
Freeth, M.; Chapman, P.; Ropar, D.; Mitchell, P.
2010-01-01
Visual fixation patterns whilst viewing complex photographic scenes containing one person were studied in 24 high-functioning adolescents with Autism Spectrum Disorders (ASD) and 24 matched typically developing adolescents. Over two different scene presentation durations both groups spent a large, strikingly similar proportion of their viewing…
Electrocortical effects of MDMA are potentiated by acoustic stimulation in rats.
Iannone, Michelangelo; Bulotta, Stefania; Paolino, Donatella; Zito, Maria Cristina; Gratteri, Santo; Costanzo, Francesco S; Rotiroti, Domenicantonio
2006-02-16
3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is known for its toxicological, psychopathological and abuse potential. Some environmental conditions, e.g. acoustic stimulation typical of the "rave scene" can influence the toxicity of this drug. We investigated the effects of low doses of MDMA in vivo using Wistar rats in the absence of acoustic stimulation (white noise; 95 Db) demonstrating that ecstasy is able to induce a significant activation (reduction of Electrocortical total power) of the telencephalic cortex that spontaneously reverts in the absence of sensorial stimuli, whereas it persists for several days if, in addition to MDMA, the animals are exposed to acoustic stimulation. Our data demonstrate that low doses of MDMA are able to reduce electrocortical total power, and that this effect is potentiated by sensorial stimuli commonly present in certain environments, such as rave parties.
Acute stress influences the discrimination of complex scenes and complex faces in young healthy men.
Paul, M; Lech, R K; Scheil, J; Dierolf, A M; Suchan, B; Wolf, O T
2016-04-01
The stress-induced release of glucocorticoids has been demonstrated to influence hippocampal functions via the modulation of specific receptors. At the behavioral level stress is known to influence hippocampus dependent long-term memory. In recent years, studies have consistently associated the hippocampus with the non-mnemonic perception of scenes, while adjacent regions in the medial temporal lobe were associated with the perception of objects, and faces. So far it is not known whether and how stress influences non-mnemonic perceptual processes. In a behavioral study, fifty male participants were subjected either to the stressful socially evaluated cold-pressor test or to a non-stressful control procedure, before they completed a visual discrimination task, comprising scenes and faces. The complexity of the face and scene stimuli was manipulated in easy and difficult conditions. A significant three way interaction between stress, stimulus type and complexity was found. Stressed participants tended to commit more errors in the complex scenes condition. For complex faces a descriptive tendency in the opposite direction (fewer errors under stress) was observed. As a result the difference between the number of errors for scenes and errors for faces was significantly larger in the stress group. These results indicate that, beyond the effects of stress on long-term memory, stress influences the discrimination of spatial information, especially when the perception is characterized by a high complexity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.
2012-01-01
Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages of the auditory system appear to process or extract a number of quantifiable low-order signal attributes that are characteristic of action events perceived as being object-like, representing stages that may begin to dissociate different perceptual dimensions and categories of every-day, real-world action sounds. PMID:22582038
Vision-based Detection of Acoustic Timed Events: a Case Study on Clarinet Note Onsets
NASA Astrophysics Data System (ADS)
Bazzica, A.; van Gemert, J. C.; Liem, C. C. S.; Hanjalic, A.
2017-05-01
Acoustic events often have a visual counterpart. Knowledge of visual information can aid the understanding of complex auditory scenes, even when only a stereo mixdown is available in the audio domain, \\eg identifying which musicians are playing in large musical ensembles. In this paper, we consider a vision-based approach to note onset detection. As a case study we focus on challenging, real-world clarinetist videos and carry out preliminary experiments on a 3D convolutional neural network based on multiple streams and purposely avoiding temporal pooling. We release an audiovisual dataset with 4.5 hours of clarinetist videos together with cleaned annotations which include about 36,000 onsets and the coordinates for a number of salient points and regions of interest. By performing several training trials on our dataset, we learned that the problem is challenging. We found that the CNN model is highly sensitive to the optimization algorithm and hyper-parameters, and that treating the problem as binary classification may prevent the joint optimization of precision and recall. To encourage further research, we publicly share our dataset, annotations and all models and detail which issues we came across during our preliminary experiments.
Figure-Ground Organization in Visual Cortex for Natural Scenes
2016-01-01
Abstract Figure-ground organization and border-ownership assignment are essential for understanding natural scenes. It has been shown that many neurons in the macaque visual cortex signal border-ownership in displays of simple geometric shapes such as squares, but how well these neurons resolve border-ownership in natural scenes is not known. We studied area V2 neurons in behaving macaques with static images of complex natural scenes. We found that about half of the neurons were border-ownership selective for contours in natural scenes, and this selectivity originated from the image context. The border-ownership signals emerged within 70 ms after stimulus onset, only ∼30 ms after response onset. A substantial fraction of neurons were highly consistent across scenes. Thus, the cortical mechanisms of figure-ground organization are fast and efficient even in images of complex natural scenes. Understanding how the brain performs this task so fast remains a challenge. PMID:28058269
Virtual environment display for a 3D audio room simulation
NASA Technical Reports Server (NTRS)
Chapin, William L.; Foster, Scott H.
1992-01-01
The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.
Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.
Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed
2009-06-01
Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm.
Electrocortical effects of MDMA are potentiated by acoustic stimulation in rats
Iannone, Michelangelo; Bulotta, Stefania; Paolino, Donatella; Zito, Maria Cristina; Gratteri, Santo; Costanzo, Francesco S; Rotiroti, Domenicantonio
2006-01-01
Background 3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is known for its toxicological, psychopathological and abuse potential. Some environmental conditions, e.g. acoustic stimulation typical of the "rave scene" can influence the toxicity of this drug. Results We investigated the effects of low doses of MDMA in vivo using Wistar rats in the absence of acoustic stimulation (white noise; 95 Db) demonstrating that ecstasy is able to induce a significant activation (reduction of Electrocortical total power) of the telencephalic cortex that spontaneously reverts in the absence of sensorial stimuli, whereas it persists for several days if, in addition to MDMA, the animals are exposed to acoustic stimulation. Conclusion Our data demonstrate that low doses of MDMA are able to reduce electrocortical total power, and that this effect is potentiated by sensorial stimuli commonly present in certain environments, such as rave parties. PMID:16480519
Treefrogs as Animal Models for Research on Auditory Scene Analysis and the Cocktail Party Problem
Bee, Mark A.
2014-01-01
The perceptual analysis of acoustic scenes involves binding together sounds from the same source and separating them from other sounds in the environment. In large social groups, listeners experience increased difficulty performing these tasks due to high noise levels and interference from the concurrent signals of multiple individuals. While a substantial body of literature on these issues pertains to human hearing and speech communication, few studies have investigated how nonhuman animals may be evolutionarily adapted to solve biologically analogous communication problems. Here, I review recent and ongoing work aimed at testing hypotheses about perceptual mechanisms that enable treefrogs in the genus Hyla to communicate vocally in noisy, multi-source social environments. After briefly introducing the genus and the methods used to study hearing in frogs, I outline several functional constraints on communication posed by the acoustic environment of breeding “choruses”. Then, I review studies of sound source perception aimed at uncovering how treefrog listeners may be adapted to cope with these constraints. Specifically, this review covers research on the acoustic cues used in sequential and simultaneous auditory grouping, spatial release from masking, and dip listening. Throughout the paper, I attempt to illustrate how broad-scale, comparative studies of carefully considered animal models may ultimately reveal an evolutionary diversity of underlying mechanisms for solving cocktail-party-like problems in communication. PMID:24424243
Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M.
2015-01-01
The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once), in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation). Brainstem circuits help segregate these complex acoustic mixtures into “auditory objects.” Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0) modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous. We examine the ability of 129 single units in the ventral cochlear nucleus (VCN) of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels' spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels' spectral energy into two streams (corresponding to the two vowels), on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset) are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging listening conditions. PMID:25628545
Wagner, Dylan D; Kelley, William M; Heatherton, Todd F
2011-12-01
People are able to rapidly infer complex personality traits and mental states even from the most minimal person information. Research has shown that when observers view a natural scene containing people, they spend a disproportionate amount of their time looking at the social features (e.g., faces, bodies). Does this preference for social features merely reflect the biological salience of these features or are observers spontaneously attempting to make sense of complex social dynamics? Using functional neuroimaging, we investigated neural responses to social and nonsocial visual scenes in a large sample of participants (n = 48) who varied on an individual difference measure assessing empathy and mentalizing (i.e., empathizing). Compared with other scene categories, viewing natural social scenes activated regions associated with social cognition (e.g., dorsomedial prefrontal cortex and temporal poles). Moreover, activity in these regions during social scene viewing was strongly correlated with individual differences in empathizing. These findings offer neural evidence that observers spontaneously engage in social cognition when viewing complex social material but that the degree to which people do so is mediated by individual differences in trait empathizing.
Beck, Christoph; Garreau, Guillaume; Georgiou, Julius
2016-01-01
Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.
Three-dimensional scene encryption and display based on computer-generated holograms.
Kong, Dezhao; Cao, Liangcai; Jin, Guofan; Javidi, Bahram
2016-10-10
An optical encryption and display method for a three-dimensional (3D) scene is proposed based on computer-generated holograms (CGHs) using a single phase-only spatial light modulator. The 3D scene is encoded as one complex Fourier CGH. The Fourier CGH is then decomposed into two phase-only CGHs with random distributions by the vector stochastic decomposition algorithm. Two CGHs are interleaved as one final phase-only CGH for optical encryption and reconstruction. The proposed method can support high-level nonlinear optical 3D scene security and complex amplitude modulation of the optical field. The exclusive phase key offers strong resistances of decryption attacks. Experimental results demonstrate the validity of the novel method.
Deconstructing Visual Scenes in Cortex: Gradients of Object and Spatial Layout Information
Kravitz, Dwight J.; Baker, Chris I.
2013-01-01
Real-world visual scenes are complex cluttered, and heterogeneous stimuli engaging scene- and object-selective cortical regions including parahippocampal place area (PPA), retrosplenial complex (RSC), and lateral occipital complex (LOC). To understand the unique contribution of each region to distributed scene representations, we generated predictions based on a neuroanatomical framework adapted from monkey and tested them using minimal scenes in which we independently manipulated both spatial layout (open, closed, and gradient) and object content (furniture, e.g., bed, dresser). Commensurate with its strong connectivity with posterior parietal cortex, RSC evidenced strong spatial layout information but no object information, and its response was not even modulated by object presence. In contrast, LOC, which lies within the ventral visual pathway, contained strong object information but no background information. Finally, PPA, which is connected with both the dorsal and the ventral visual pathway, showed information about both objects and spatial backgrounds and was sensitive to the presence or absence of either. These results suggest that 1) LOC, PPA, and RSC have distinct representations, emphasizing different aspects of scenes, 2) the specific representations in each region are predictable from their patterns of connectivity, and 3) PPA combines both spatial layout and object information as predicted by connectivity. PMID:22473894
Gaze Control in Complex Scene Perception
2004-01-01
retained in memory from previously attended objects in natural scenes. Psychonomic Bulletin & Review , 8, 761-768. • The nature of the internal memory...scenes. Psychonomic Bulletin & Review , 8, 761-768. o Henderson, J. M., Falk, R. J., Minut, S., Dyer, F. C., & Mahadevan, S. (2001). Gaze control for face
Soundscapes and the sense of hearing of fishes.
Fay, Richard
2009-03-01
Underwater soundscapes have probably played an important role in the adaptation of ears and auditory systems of fishes throughout evolutionary time, and for all species. These sounds probably contain important information about the environment and about most objects and events that confront the receiving fish so that appropriate behavior is possible. For example, the sounds from reefs appear to be used by at least some fishes for their orientation and migration. These sorts of environmental sounds should be considered much like "acoustic daylight," that continuously bathes all environments and contain information that all organisms can potentially use to form a sort of image of the environment. At present, however, we are generally ignorant of the nature of ambient sound fields impinging on fishes, and the adaptive value of processing these fields to resolve the multiple sources of sound. Our field has focused almost exclusively on the adaptive value of processing species-specific communication sounds, and has not considered the informational value of ambient "noise." Since all fishes can detect and process acoustic particle motion, including the directional characteristics of this motion, underwater sound fields are potentially more complex and information-rich than terrestrial acoustic environments. The capacities of one fish species (goldfish) to receive and make use of such sound source information have been demonstrated (sound source segregation and auditory scene analysis), and it is suggested that all vertebrate species have this capacity. A call is made to better understand underwater soundscapes, and the associated behaviors they determine in fishes. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.
NASA Astrophysics Data System (ADS)
Graham, James; Ternovskiy, Igor V.
2013-06-01
We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.
Scene perception in posterior cortical atrophy: categorization, description and fixation patterns.
Shakespeare, Timothy J; Yong, Keir X X; Frost, Chris; Kim, Lois G; Warrington, Elizabeth K; Crutch, Sebastian J
2013-01-01
Partial or complete Balint's syndrome is a core feature of the clinico-radiological syndrome of posterior cortical atrophy (PCA), in which individuals experience a progressive deterioration of cortical vision. Although multi-object arrays are frequently used to detect simultanagnosia in the clinical assessment and diagnosis of PCA, to date there have been no group studies of scene perception in patients with the syndrome. The current study involved three linked experiments conducted in PCA patients and healthy controls. Experiment 1 evaluated the accuracy and latency of complex scene perception relative to individual faces and objects (color and grayscale) using a categorization paradigm. PCA patients were both less accurate (faces < scenes < objects) and slower (scenes < objects < faces) than controls on all categories, with performance strongly associated with their level of basic visual processing impairment; patients also showed a small advantage for color over grayscale stimuli. Experiment 2 involved free description of real world scenes. PCA patients generated fewer features and more misperceptions than controls, though perceptual errors were always consistent with the patient's global understanding of the scene (whether correct or not). Experiment 3 used eye tracking measures to compare patient and control eye movements over initial and subsequent fixations of scenes. Patients' fixation patterns were significantly different to those of young and age-matched controls, with comparable group differences for both initial and subsequent fixations. Overall, these findings describe the variability in everyday scene perception exhibited by individuals with PCA, and indicate the importance of exposure duration in the perception of complex scenes.
Research in interactive scene analysis
NASA Technical Reports Server (NTRS)
Tenenbaum, J. M.; Garvey, T. D.; Weyl, S. A.; Wolf, H. C.
1975-01-01
An interactive scene interpretation system (ISIS) was developed as a tool for constructing and experimenting with man-machine and automatic scene analysis methods tailored for particular image domains. A recently developed region analysis subsystem based on the paradigm of Brice and Fennema is described. Using this subsystem a series of experiments was conducted to determine good criteria for initially partitioning a scene into atomic regions and for merging these regions into a final partition of the scene along object boundaries. Semantic (problem-dependent) knowledge is essential for complete, correct partitions of complex real-world scenes. An interactive approach to semantic scene segmentation was developed and demonstrated on both landscape and indoor scenes. This approach provides a reasonable methodology for segmenting scenes that cannot be processed completely automatically, and is a promising basis for a future automatic system. A program is described that can automatically generate strategies for finding specific objects in a scene based on manually designated pictorial examples.
Metabolic Mapping of the Brain's Response to Visual Stimulation: Studies in Humans.
ERIC Educational Resources Information Center
Phelps, Michael E.; Kuhl, David E.
1981-01-01
Studies demonstrate increasing glucose metabolic rates in human primary (PVC) and association (AVC) visual cortex as complexity of visual scenes increase. AVC increased more rapidly with scene complexity than PVC and increased local metabolic activities above control subject with eyes closed; indicates wide range and metabolic reserve of visual…
Neural correlates of auditory scene analysis and perception
Cohen, Yale E.
2014-01-01
The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex--specifically, the ventral auditory pathway--is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations. PMID:24681354
Scene perception in posterior cortical atrophy: categorization, description and fixation patterns
Shakespeare, Timothy J.; Yong, Keir X. X.; Frost, Chris; Kim, Lois G.; Warrington, Elizabeth K.; Crutch, Sebastian J.
2013-01-01
Partial or complete Balint's syndrome is a core feature of the clinico-radiological syndrome of posterior cortical atrophy (PCA), in which individuals experience a progressive deterioration of cortical vision. Although multi-object arrays are frequently used to detect simultanagnosia in the clinical assessment and diagnosis of PCA, to date there have been no group studies of scene perception in patients with the syndrome. The current study involved three linked experiments conducted in PCA patients and healthy controls. Experiment 1 evaluated the accuracy and latency of complex scene perception relative to individual faces and objects (color and grayscale) using a categorization paradigm. PCA patients were both less accurate (faces < scenes < objects) and slower (scenes < objects < faces) than controls on all categories, with performance strongly associated with their level of basic visual processing impairment; patients also showed a small advantage for color over grayscale stimuli. Experiment 2 involved free description of real world scenes. PCA patients generated fewer features and more misperceptions than controls, though perceptual errors were always consistent with the patient's global understanding of the scene (whether correct or not). Experiment 3 used eye tracking measures to compare patient and control eye movements over initial and subsequent fixations of scenes. Patients' fixation patterns were significantly different to those of young and age-matched controls, with comparable group differences for both initial and subsequent fixations. Overall, these findings describe the variability in everyday scene perception exhibited by individuals with PCA, and indicate the importance of exposure duration in the perception of complex scenes. PMID:24106469
Social relevance drives viewing behavior independent of low-level salience in rhesus macaques
Solyst, James A.; Buffalo, Elizabeth A.
2014-01-01
Quantifying attention to social stimuli during the viewing of complex social scenes with eye tracking has proven to be a sensitive method in the diagnosis of autism spectrum disorders years before average clinical diagnosis. Rhesus macaques provide an ideal model for understanding the mechanisms underlying social viewing behavior, but to date no comparable behavioral task has been developed for use in monkeys. Using a novel scene-viewing task, we monitored the gaze of three rhesus macaques while they freely viewed well-controlled composed social scenes and analyzed the time spent viewing objects and monkeys. In each of six behavioral sessions, monkeys viewed a set of 90 images (540 unique scenes) with each image presented twice. In two-thirds of the repeated scenes, either a monkey or an object was replaced with a novel item (manipulated scenes). When viewing a repeated scene, monkeys made longer fixations and shorter saccades, shifting from a rapid orienting to global scene contents to a more local analysis of fewer items. In addition to this repetition effect, in manipulated scenes, monkeys demonstrated robust memory by spending more time viewing the replaced items. By analyzing attention to specific scene content, we found that monkeys strongly preferred to view conspecifics and that this was not related to their salience in terms of low-level image features. A model-free analysis of viewing statistics found that monkeys that were viewed earlier and longer had direct gaze and redder sex skin around their face and rump, two important visual social cues. These data provide a quantification of viewing strategy, memory and social preferences in rhesus macaques viewing complex social scenes, and they provide an important baseline with which to compare to the effects of therapeutics aimed at enhancing social cognition. PMID:25414633
Finding the Cause: Verbal Framing Helps Children Extract Causal Evidence Embedded in a Complex Scene
ERIC Educational Resources Information Center
Butler, Lucas P.; Markman, Ellen M.
2012-01-01
In making causal inferences, children must both identify a causal problem and selectively attend to meaningful evidence. Four experiments demonstrate that verbally framing an event ("Which animals make Lion laugh?") helps 4-year-olds extract evidence from a complex scene to make accurate causal inferences. Whereas framing was unnecessary when…
Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)
NASA Technical Reports Server (NTRS)
Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.
Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature
NASA Astrophysics Data System (ADS)
Kwon, Minseok
While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system, the regulation of time constant update for filters in signal/control path as well as level-independent frequency glides with fixed frequency modulation. First, we scrutinized performance development in keyword recognition using the proposed methods in quiet and noise-corrupted environments. The results argue that multi-scale integration should be used along with CE in order to avoid ambiguous continuity in unvoiced segments. Moreover, the inclusion of the all modifications was observed to guarantee the noise-type-independent robustness particularly with severe interference. Moreover, the CASA with the auditory model was implemented into a single/dual-channel ASR using reference TIMIT corpus so as to get more general result. Hidden Markov model (HTK) toolkit was used for phone recognition in various environmental conditions. In a single-channel ASR, the results argue that unmasked acoustic features (unmasked GFCC) should combine with target estimates from the mask to compensate for missing information. From the observation of a dual-channel ASR, the combined GFCC guarantees the highest performance regardless of interferences within speech. Moreover, consistent improvement of noise robustness by GFCC (unmasked or combined) shows the validity of our proposed CASA implementation in dual microphone system. In conclusion, the proposed framework proves the robustness of the acoustic features in various background interferences via both direct distance evaluation and statistical assessment. In addition, the introduction of dual microphone system using the framework in this study shows the potential of the effective implementation of the auditory model-based CASA in ASR.
The Perception of Concurrent Sound Objects in Harmonic Complexes Impairs Gap Detection
ERIC Educational Resources Information Center
Leung, Ada W. S.; Jolicoeur, Pierre; Vachon, Francois; Alain, Claude
2011-01-01
Since the introduction of the concept of auditory scene analysis, there has been a paucity of work focusing on the theoretical explanation of how attention is allocated within a complex auditory scene. Here we examined signal detection in situations that promote either the fusion of tonal elements into a single sound object or the segregation of a…
Hausfeld, Lars; Riecke, Lars; Formisano, Elia
2018-06-01
Often, in everyday life, we encounter auditory scenes comprising multiple simultaneous sounds and succeed to selectively attend to only one sound, typically the most relevant for ongoing behavior. Studies using basic sounds and two-talker stimuli have shown that auditory selective attention aids this by enhancing the neural representations of the attended sound in auditory cortex. It remains unknown, however, whether and how this selective attention mechanism operates on representations of auditory scenes containing natural sounds of different categories. In this high-field fMRI study we presented participants with simultaneous voices and musical instruments while manipulating their focus of attention. We found an attentional enhancement of neural sound representations in temporal cortex - as defined by spatial activation patterns - at locations that depended on the attended category (i.e., voices or instruments). In contrast, we found that in frontal cortex the site of enhancement was independent of the attended category and the same regions could flexibly represent any attended sound regardless of its category. These results are relevant to elucidate the interacting mechanisms of bottom-up and top-down processing when listening to real-life scenes comprised of multiple sound categories. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Scan patterns when viewing natural scenes: Emotion, complexity, and repetition
Bradley, Margaret M.; Houbova, Petra; Miccoli, Laura; Costa, Vincent D.; Lang, Peter J.
2011-01-01
Eye movements were monitored during picture viewing and effects of hedonic content, perceptual composition, and repetition on scanning assessed. In Experiment 1, emotional and neutral pictures that were figure-ground compositions or more complex scenes were presented for a 6 s free viewing period. Viewing emotional pictures or complex scenes prompted more fixations and broader scanning of the visual array, compared to neutral pictures or simple figure-ground compositions. Effects of emotion and composition were independent, supporting the hypothesis that these oculomotor indices reflect enhanced information seeking. Experiment 2 tested an orienting hypothesis by repeatedly presenting the same pictures. Although repetition altered specific scan patterns, emotional, compared to neutral, picture viewing continued to prompt oculomotor differences, suggesting that motivationally relevant cues enhance information seeking in appetitive and defensive contexts. PMID:21649664
On validating remote sensing simulations using coincident real data
NASA Astrophysics Data System (ADS)
Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan
2016-05-01
The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Richard; Branch, Darren; Edwards, Thayne
The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.
Reliable data storage system design and implementation for acoustic logging while drilling
NASA Astrophysics Data System (ADS)
Hao, Xiaolong; Ju, Xiaodong; Wu, Xiling; Lu, Junqiang; Men, Baiyong; Yao, Yongchao; Liu, Dong
2016-12-01
Owing to the limitations of real-time transmission, reliable downhole data storage and fast ground reading have become key technologies in developing tools for acoustic logging while drilling (LWD). In order to improve the reliability of the downhole storage system in conditions of high temperature, intensive shake and periodic power supply, improvements were made in terms of hardware and software. In hardware, we integrated the storage system and data acquisition control module into one circuit board, to reduce the complexity of the storage process, by adopting the controller combination of digital signal processor and field programmable gate array. In software, we developed a systematic management strategy for reliable storage. Multiple-backup independent storage was employed to increase the data redundancy. A traditional error checking and correction (ECC) algorithm was improved and we embedded the calculated ECC code into all management data and waveform data. A real-time storage algorithm for arbitrary length data was designed to actively preserve the storage scene and ensure the independence of the stored data. The recovery procedure of management data was optimized to realize reliable self-recovery. A new bad block management idea of static block replacement and dynamic page mark was proposed to make the period of data acquisition and storage more balanced. In addition, we developed a portable ground data reading module based on a new reliable high speed bus to Ethernet interface to achieve fast reading of the logging data. Experiments have shown that this system can work stably below 155 °C with a periodic power supply. The effective ground data reading rate reaches 1.375 Mbps with 99.7% one-time success rate at room temperature. This work has high practical application significance in improving the reliability and field efficiency of acoustic LWD tools.
3D Reconstruction in the Presence of Glass and Mirrors by Acoustic and Visual Fusion.
Zhang, Yu; Ye, Mao; Manocha, Dinesh; Yang, Ruigang
2017-07-06
We present a practical and inexpensive method to reconstruct 3D scenes that include transparent and mirror objects. Our work is motivated by the need for automatically generating 3D models of interior scenes, which commonly include glass. These large structures are often invisible to cameras. Existing 3D reconstruction methods for transparent objects are usually not applicable in such a room-sized reconstruction setting. Our simple hardware setup augments a regular depth camera with a single ultrasonic sensor, which is able to measure the distance to any object, including transparent surfaces. The key technical challenge is the sparse sampling rate from the acoustic sensor, which only takes one point measurement per frame. To address this challenge, we take advantage of the fact that the large scale glass structures in indoor environments are usually either piece-wise planar or simple parametric surfaces. Based on these assumptions, we have developed a novel sensor fusion algorithm that first segments the (hybrid) depth map into different categories such as opaque/transparent/infinity (e.g., too far to measure) and then updates the depth map based on the segmentation outcome. We validated our algorithms with a number of challenging cases, including multiple panes of glass, mirrors, and even a curved glass cabinet.
Experiencing simultanagnosia through windowed viewing of complex social scenes.
Dalrymple, Kirsten A; Birmingham, Elina; Bischof, Walter F; Barton, Jason J S; Kingstone, Alan
2011-01-07
Simultanagnosia is a disorder of visual attention, defined as an inability to see more than one object at once. It has been conceived as being due to a constriction of the visual "window" of attention, a metaphor that we examine in the present article. A simultanagnosic patient (SL) and two non-simultanagnosic control patients (KC and ES) described social scenes while their eye movements were monitored. These data were compared to a group of healthy subjects who described the same scenes under the same conditions as the patients, or through an aperture that restricted their vision to a small portion of the scene. Experiment 1 demonstrated that SL showed unusually low proportions of fixations to the eyes in social scenes, which contrasted with all other participants who demonstrated the standard preferential bias toward eyes. Experiments 2 and 3 revealed that when healthy participants viewed scenes through a window that was contingent on where they looked (Experiment 2) or where they moved a computer mouse (Experiment 3), their behavior closely mirrored that of patient SL. These findings suggest that a constricted window of visual processing has important consequences for how simultanagnosic patients explore their world. Our paradigm's capacity to mimic simultanagnosic behaviors while viewing complex scenes implies that it may be a valid way of modeling simultanagnosia in healthy individuals, providing a useful tool for future research. More broadly, our results support the thesis that people fixate the eyes in social scenes because they are informative to the meaning of the scene. Copyright © 2010 Elsevier B.V. All rights reserved.
Improved disparity map analysis through the fusion of monocular image segmentations
NASA Technical Reports Server (NTRS)
Perlant, Frederic P.; Mckeown, David M.
1991-01-01
The focus is to examine how estimates of three dimensional scene structure, as encoded in a scene disparity map, can be improved by the analysis of the original monocular imagery. The utilization of surface illumination information is provided by the segmentation of the monocular image into fine surface patches of nearly homogeneous intensity to remove mismatches generated during stereo matching. These patches are used to guide a statistical analysis of the disparity map based on the assumption that such patches correspond closely with physical surfaces in the scene. Such a technique is quite independent of whether the initial disparity map was generated by automated area-based or feature-based stereo matching. Stereo analysis results are presented on a complex urban scene containing various man-made and natural features. This scene contains a variety of problems including low building height with respect to the stereo baseline, buildings and roads in complex terrain, and highly textured buildings and terrain. The improvements are demonstrated due to monocular fusion with a set of different region-based image segmentations. The generality of this approach to stereo analysis and its utility in the development of general three dimensional scene interpretation systems are also discussed.
Ryals, Anthony J.; Wang, Jane X.; Polnaszek, Kelly L.; Voss, Joel L.
2015-01-01
Although hippocampus unequivocally supports explicit/ declarative memory, fewer findings have demonstrated its role in implicit expressions of memory. We tested for hippocampal contributions to an implicit expression of configural/relational memory for complex scenes using eye-movement tracking during functional magnetic resonance imaging (fMRI) scanning. Participants studied scenes and were later tested using scenes that resembled study scenes in their overall feature configuration but comprised different elements. These configurally similar scenes were used to limit explicit memory, and were intermixed with new scenes that did not resemble studied scenes. Scene configuration memory was expressed through eye movements reflecting exploration overlap (EO), which is the viewing of the same scene locations at both study and test. EO reliably discriminated similar study-test scene pairs from study-new scene pairs, was reliably greater for similarity-based recognition hits than for misses, and correlated with hippocampal fMRI activity. In contrast, subjects could not reliably discriminate similar from new scenes by overt judgments, although ratings of familiarity were slightly higher for similar than new scenes. Hippocampal fMRI correlates of this weak explicit memory were distinct from EO-related activity. These findings collectively suggest that EO was an implicit expression of scene configuration memory associated with hippocampal activity. Visual exploration can therefore reflect implicit hippocampal-related memory processing that can be observed in eye-movement behavior during naturalistic scene viewing. PMID:25620526
Automatic acquisition of motion trajectories: tracking hockey players
NASA Astrophysics Data System (ADS)
Okuma, Kenji; Little, James J.; Lowe, David
2003-12-01
Computer systems that have the capability of analyzing complex and dynamic scenes play an essential role in video annotation. Scenes can be complex in such a way that there are many cluttered objects with different colors, shapes and sizes, and can be dynamic with multiple interacting moving objects and a constantly changing background. In reality, there are many scenes that are complex, dynamic, and challenging enough for computers to describe. These scenes include games of sports, air traffic, car traffic, street intersections, and cloud transformations. Our research is about the challenge of inventing a descriptive computer system that analyzes scenes of hockey games where multiple moving players interact with each other on a constantly moving background due to camera motions. Ultimately, such a computer system should be able to acquire reliable data by extracting the players" motion as their trajectories, querying them by analyzing the descriptive information of data, and predict the motions of some hockey players based on the result of the query. Among these three major aspects of the system, we primarily focus on visual information of the scenes, that is, how to automatically acquire motion trajectories of hockey players from video. More accurately, we automatically analyze the hockey scenes by estimating parameters (i.e., pan, tilt, and zoom) of the broadcast cameras, tracking hockey players in those scenes, and constructing a visual description of the data by displaying trajectories of those players. Many technical problems in vision such as fast and unpredictable players' motions and rapid camera motions make our challenge worth tackling. To the best of our knowledge, there have not been any automatic video annotation systems for hockey developed in the past. Although there are many obstacles to overcome, our efforts and accomplishments would hopefully establish the infrastructure of the automatic hockey annotation system and become a milestone for research in automatic video annotation in this domain.
ERIC Educational Resources Information Center
Sanocki, Thomas; Sulman, Noah
2013-01-01
Three experiments measured the efficiency of monitoring complex scenes composed of changing objects, or events. All events lasted about 4 s, but in a given block of trials, could be of a single type (single task) or of multiple types (multitask, with a total of four event types). Overall accuracy of detecting target events amid distractors was…
Selective entrainment of brain oscillations drives auditory perceptual organization.
Costa-Faidella, Jordi; Sussman, Elyse S; Escera, Carles
2017-10-01
Perceptual sound organization supports our ability to make sense of the complex acoustic environment, to understand speech and to enjoy music. However, the neuronal mechanisms underlying the subjective experience of perceiving univocal auditory patterns that can be listened to, despite hearing all sounds in a scene, are poorly understood. We hereby investigated the manner in which competing sound organizations are simultaneously represented by specific brain activity patterns and the way attention and task demands prime the internal model generating the current percept. Using a selective attention task on ambiguous auditory stimulation coupled with EEG recordings, we found that the phase of low-frequency oscillatory activity dynamically tracks multiple sound organizations concurrently. However, whereas the representation of ignored sound patterns is circumscribed to auditory regions, large-scale oscillatory entrainment in auditory, sensory-motor and executive-control network areas reflects the active perceptual organization, thereby giving rise to the subjective experience of a unitary percept. Copyright © 2017 Elsevier Inc. All rights reserved.
Psychophysical evidence for auditory motion parallax.
Genzel, Daria; Schutte, Michael; Brimijoin, W Owen; MacNeilage, Paul R; Wiegrebe, Lutz
2018-04-17
Distance is important: From an ecological perspective, knowledge about the distance to either prey or predator is vital. However, the distance of an unknown sound source is particularly difficult to assess, especially in anechoic environments. In vision, changes in perspective resulting from observer motion produce a reliable, consistent, and unambiguous impression of depth known as motion parallax. Here we demonstrate with formal psychophysics that humans can exploit auditory motion parallax, i.e., the change in the dynamic binaural cues elicited by self-motion, to assess the relative depths of two sound sources. Our data show that sensitivity to relative depth is best when subjects move actively; performance deteriorates when subjects are moved by a motion platform or when the sound sources themselves move. This is true even though the dynamic binaural cues elicited by these three types of motion are identical. Our data demonstrate a perceptual strategy to segregate intermittent sound sources in depth and highlight the tight interaction between self-motion and binaural processing that allows assessment of the spatial layout of complex acoustic scenes.
Mining Very High Resolution INSAR Data Based On Complex-GMRF Cues And Relevance Feedback
NASA Astrophysics Data System (ADS)
Singh, Jagmal; Popescu, Anca; Soccorsi, Matteo; Datcu, Mihai
2012-01-01
With the increase in number of remote sensing satellites, the number of image-data scenes in our repositories is also increasing and a large quantity of these scenes are never received and used. Thus automatic retrieval of de- sired image-data using query by image content to fully utilize the huge repository volume is becoming of great interest. Generally different users are interested in scenes containing different kind of objects and structures. So its important to analyze all the image information mining (IIM) methods so that its easier for user to select a method depending upon his/her requirement. We concentrate our study only on high-resolution SAR images and we propose to use InSAR observations instead of only one single look complex (SLC) images for mining scenes containing coherent objects such as high-rise buildings. However in case of objects with less coherence like areas with vegetation cover, SLC images exhibits better performance. We demonstrate IIM performance comparison using complex-Gauss Markov Random Fields as texture descriptor for image patches and SVM relevance- feedback.
Scan patterns when viewing natural scenes: emotion, complexity, and repetition.
Bradley, Margaret M; Houbova, Petra; Miccoli, Laura; Costa, Vincent D; Lang, Peter J
2011-11-01
Eye movements were monitored during picture viewing, and effects of hedonic content, perceptual composition, and repetition on scanning assessed. In Experiment 1, emotional and neutral pictures that were figure-ground compositions or more complex scenes were presented for a 6-s free viewing period. Viewing emotional pictures or complex scenes prompted more fixations and broader scanning of the visual array, compared to neutral pictures or simple figure-ground compositions. Effects of emotion and composition were independent, supporting the hypothesis that these oculomotor indices reflect enhanced information seeking. Experiment 2 tested an orienting hypothesis by repeatedly presenting the same pictures. Although repetition altered specific scan patterns, emotional, compared to neutral, picture viewing continued to prompt oculomotor differences, suggesting that motivationally relevant cues enhance information seeking in appetitive and defensive contexts. Copyright © 2011 Society for Psychophysiological Research.
Source Camera Identification and Blind Tamper Detections for Images
2007-04-24
measures and image quality measures in camera identification problem was studied using conjunction with a KNN classifier to identify the feature sets...shots varying from nature scenes .-.. motorala to close-ups of people. We experimented with the KNN *~. * ny classifier (K=5) as well SVM algorithm of...on Acoustic, Speech and Signal Processing (ICASSP), France, May 2006, vol. 5, pp. 401-404. [9] H. Farid and S. Lyu, "Higher-order wavelet statistics
Memory for sound, with an ear toward hearing in complex auditory scenes.
Snyder, Joel S; Gregg, Melissa K
2011-10-01
An area of research that has experienced recent growth is the study of memory during perception of simple and complex auditory scenes. These studies have provided important information about how well auditory objects are encoded in memory and how well listeners can notice changes in auditory scenes. These are significant developments because they present an opportunity to better understand how we hear in realistic situations, how higher-level aspects of hearing such as semantics and prior exposure affect perception, and the similarities and differences between auditory perception and perception in other modalities, such as vision and touch. The research also poses exciting challenges for behavioral and neural models of how auditory perception and memory work.
Automated synthetic scene generation
NASA Astrophysics Data System (ADS)
Givens, Ryan N.
Physics-based simulations generate synthetic imagery to help organizations anticipate system performance of proposed remote sensing systems. However, manually constructing synthetic scenes which are sophisticated enough to capture the complexity of real-world sites can take days to months depending on the size of the site and desired fidelity of the scene. This research, sponsored by the Air Force Research Laboratory's Sensors Directorate, successfully developed an automated approach to fuse high-resolution RGB imagery, lidar data, and hyperspectral imagery and then extract the necessary scene components. The method greatly reduces the time and money required to generate realistic synthetic scenes and developed new approaches to improve material identification using information from all three of the input datasets.
Issues in Humanoid Audition and Sound Source Localization by Active Audition
NASA Astrophysics Data System (ADS)
Nakadai, Kazuhiro; Okuno, Hiroshi G.; Kitano, Hiroaki
In this paper, we present an active audition system which is implemented on the humanoid robot "SIG the humanoid". The audition system for highly intelligent humanoids localizes sound sources and recognizes auditory events in the auditory scene. Active audition reported in this paper enables SIG to track sources by integrating audition, vision, and motor movements. Given the multiple sound sources in the auditory scene, SIG actively moves its head to improve localization by aligning microphones orthogonal to the sound source and by capturing the possible sound sources by vision. However, such an active head movement inevitably creates motor noises.The system adaptively cancels motor noises using motor control signals and the cover acoustics. The experimental result demonstrates that active audition by integration of audition, vision, and motor control attains sound source tracking in variety of conditions.onditions.
Zeremdini, Jihen; Ben Messaoud, Mohamed Anouar; Bouzid, Aicha
2015-09-01
Humans have the ability to easily separate a composed speech and to form perceptual representations of the constituent sources in an acoustic mixture thanks to their ears. Until recently, researchers attempt to build computer models of high-level functions of the auditory system. The problem of the composed speech segregation is still a very challenging problem for these researchers. In our case, we are interested in approaches that are addressed to the monaural speech segregation. For this purpose, we study in this paper the computational auditory scene analysis (CASA) to segregate speech from monaural mixtures. CASA is the reproduction of the source organization achieved by listeners. It is based on two main stages: segmentation and grouping. In this work, we have presented, and compared several studies that have used CASA for speech separation and recognition.
Visible-Infrared Hyperspectral Image Projector
NASA Technical Reports Server (NTRS)
Bolcar, Matthew
2013-01-01
The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.
Manhole Cover Detection Using Vehicle-Based Multi-Sensor Data
NASA Astrophysics Data System (ADS)
Ji, S.; Shi, Y.; Shi, Z.
2012-07-01
A new method combined wit multi-view matching and feature extraction technique is developed to detect manhole covers on the streets using close-range images combined with GPS/IMU and LINDAR data. The covers are an important target on the road traffic as same as transport signs, traffic lights and zebra crossing but with more unified shapes. However, the different shoot angle and distance, ground material, complex street scene especially its shadow, and cars in the road have a great impact on the cover detection rate. The paper introduces a new method in edge detection and feature extraction in order to overcome these difficulties and greatly improve the detection rate. The LIDAR data are used to do scene segmentation and the street scene and cars are excluded from the roads. And edge detection method base on canny which sensitive to arcs and ellipses is applied on the segmented road scene and the interesting areas contain arcs are extracted and fitted to ellipse. The ellipse are then resampled for invariance to shooting angle and distance and then are matched to adjacent images for further checking if covers and . More than 1000 images with different scenes are used in our tests and the detection rate is analyzed. The results verified our method have its advantages in correct covers detection in the complex street scene.
NASA Astrophysics Data System (ADS)
Guo, Wenjie; Li, Tianyun; Zhu, Xiang; Miao, Yuyue
2018-05-01
The sound-structure coupling problem of a cylindrical shell submerged in a quarter water domain is studied. A semi-analytical method based on the double wave reflection method and the Graf's addition theorem is proposed to solve the vibration and acoustic radiation of an infinite cylindrical shell excited by an axially uniform harmonic line force, in which the acoustic boundary conditions consist of a free surface and a vertical rigid surface. The influences of the complex acoustic boundary conditions on the vibration and acoustic radiation of the cylindrical shell are discussed. It is found that the complex acoustic boundary has crucial influence on the vibration of the cylindrical shell when the cylindrical shell approaches the boundary, and the influence tends to vanish when the distances between the cylindrical shell and the boundaries exceed certain values. However, the influence of the complex acoustic boundary on the far-field sound pressure of the cylindrical shell cannot be ignored. The far-field acoustic directivity of the cylindrical shell varies with the distances between the cylindrical shell and the boundaries, besides the driving frequency. The work provides more understanding on the vibration and acoustic radiation behaviors of cylindrical shells with complex acoustic boundary conditions.
Neuroscience-Enabled Complex Visual Scene Understanding
2012-04-12
some cases, it is hard to precisely say where or what we are looking at since a complex task governs eye fixations, for example in driving. While in...another objects ( say a door) can be resolved using the prior information about the scene. This knowledge can be provided from gist models, such as one...separation and combination of class-dependent features for handwriting recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 10, pp. 1089
A Corticothalamic Circuit Model for Sound Identification in Complex Scenes
Otazu, Gonzalo H.; Leibold, Christian
2011-01-01
The identification of the sound sources present in the environment is essential for the survival of many animals. However, these sounds are not presented in isolation, as natural scenes consist of a superposition of sounds originating from multiple sources. The identification of a source under these circumstances is a complex computational problem that is readily solved by most animals. We present a model of the thalamocortical circuit that performs level-invariant recognition of auditory objects in complex auditory scenes. The circuit identifies the objects present from a large dictionary of possible elements and operates reliably for real sound signals with multiple concurrently active sources. The key model assumption is that the activities of some cortical neurons encode the difference between the observed signal and an internal estimate. Reanalysis of awake auditory cortex recordings revealed neurons with patterns of activity corresponding to such an error signal. PMID:21931668
Rodríguez, Guillermo López; Weber, Joshua; Sandhu, Jaswinder Singh; Anastasio, Mark A.
2011-01-01
We propose and experimentally demonstrate a new method for complex-valued wavefield retrieval in off-axis acoustic holography. The method involves use of an intensity-sensitive acousto-optic (AO) sensor, optimized for use at 3.3 MHz, to record the acoustic hologram and a computational method for reconstruction of the object wavefield. The proposed method may circumvent limitations of conventional implementations of acoustic holography and may facilitate the development of acoustic-holography-based biomedical imaging methods. PMID:21669451
Some observations on value and greatness in drama.
Mandelbaum, George
2011-04-01
This paper argues that value in drama partly results from the nature of the resistance in a scene, resistance used in its common, everyday meaning. A playwright's ability to imagine and present such resistance rests on several factors, including his sublimation of the fantasies that underpin his work. Such sublimation is evident in Chekhov's continuing reworking in his plays of a fantasy that found its initial embodiment for him in one of the central scenes in Hamlet. The increasingly higher value of the scenes Chekhov wrote as he repeatedly reworked Shakespeare's scene resulted from his increasing sublimation of the initial fantasy and is reflected in the ever more complex nature of the resistance found in Chekhov's scenes, resistance that, in turn, created an ever more life-like, three-dimensional central character in the scenes. Copyright © 2011 Institute of Psychoanalysis.
Long-Term Memories Bias Sensitivity and Target Selection in Complex Scenes
Patai, Eva Zita; Doallo, Sonia; Nobre, Anna Christina
2014-01-01
In everyday situations we often rely on our memories to find what we are looking for in our cluttered environment. Recently, we developed a new experimental paradigm to investigate how long-term memory (LTM) can guide attention, and showed how the pre-exposure to a complex scene in which a target location had been learned facilitated the detection of the transient appearance of the target at the remembered location (Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 2006; Summerfield, Rao, Garside, & Nobre, 2011). The present study extends these findings by investigating whether and how LTM can enhance perceptual sensitivity to identify targets occurring within their complex scene context. Behavioral measures showed superior perceptual sensitivity (d′) for targets located in remembered spatial contexts. We used the N2pc event-related potential to test whether LTM modulated the process of selecting the target from its scene context. Surprisingly, in contrast to effects of visual spatial cues or implicit contextual cueing, LTM for target locations significantly attenuated the N2pc potential. We propose that the mechanism by which these explicitly available LTMs facilitate perceptual identification of targets may differ from mechanisms triggered by other types of top-down sources of information. PMID:23016670
Ogourtsova, Tatiana; Archambault, Philippe; Sangani, Samir; Lamontagne, Anouk
2018-01-01
Unilateral spatial neglect (USN) is a highly prevalent and disabling poststroke impairment. USN is traditionally assessed with paper-and-pencil tests that lack ecological validity, generalization to real-life situations and are easily compensated for in chronic stages. Virtual reality (VR) can, however, counteract these limitations. We aimed to examine the feasibility of a novel assessment of USN symptoms in a functional shopping activity, the Ecological VR-based Evaluation of Neglect Symptoms (EVENS). EVENS is immersive and consists of simple and complex 3-dimensional scenes depicting grocery shopping shelves, where joystick-based object detection and navigation tasks are performed while seated. Effects of virtual scene complexity on navigational and detection abilities in patients with (USN+, n = 12) and without (USN-, n = 15) USN following a right hemisphere stroke and in age-matched healthy controls (HC, n = 9) were determined. Longer detection times, larger mediolateral deviations from ideal paths and longer navigation times were found in USN+ versus USN- and HC groups, particularly in the complex scene. EVENS detected lateralized and nonlateralized USN-related deficits, performance alterations that were dependent or independent of USN severity, and performance alterations in 3 USN- subjects versus HC. EVENS' environmental changing complexity, along with the functional tasks of far space detection and navigation can potentially be clinically relevant and warrant further empirical investigation. Findings are discussed in terms of attentional models, lateralized versus nonlateralized deficits in USN, and tasks-specific mechanisms.
IR characteristic simulation of city scenes based on radiosity model
NASA Astrophysics Data System (ADS)
Xiong, Xixian; Zhou, Fugen; Bai, Xiangzhi; Yu, Xiyu
2013-09-01
Reliable modeling for thermal infrared (IR) signatures of real-world city scenes is required for signature management of civil and military platforms. Traditional modeling methods generally assume that scene objects are individual entities during the physical processes occurring in infrared range. However, in reality, the physical scene involves convective and conductive interactions between objects as well as the radiations interactions between objects. A method based on radiosity model describes these complex effects. It has been developed to enable an accurate simulation for the radiance distribution of the city scenes. Firstly, the physical processes affecting the IR characteristic of city scenes were described. Secondly, heat balance equations were formed on the basis of combining the atmospheric conditions, shadow maps and the geometry of scene. Finally, finite difference method was used to calculate the kinetic temperature of object surface. A radiosity model was introduced to describe the scattering effect of radiation between surface elements in the scene. By the synthesis of objects radiance distribution in infrared range, we could obtain the IR characteristic of scene. Real infrared images and model predictions were shown and compared. The results demonstrate that this method can realistically simulate the IR characteristic of city scenes. It effectively displays the infrared shadow effects and the radiation interactions between objects in city scenes.
Weakly Supervised Segmentation-Aided Classification of Urban Scenes from 3d LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Guinard, S.; Landrieu, L.
2017-05-01
We consider the problem of the semantic classification of 3D LiDAR point clouds obtained from urban scenes when the training set is limited. We propose a non-parametric segmentation model for urban scenes composed of anthropic objects of simple shapes, partionning the scene into geometrically-homogeneous segments which size is determined by the local complexity. This segmentation can be integrated into a conditional random field classifier (CRF) in order to capture the high-level structure of the scene. For each cluster, this allows us to aggregate the noisy predictions of a weakly-supervised classifier to produce a higher confidence data term. We demonstrate the improvement provided by our method over two publicly-available large-scale data sets.
Dynamic Target Acquisition: Empirical Models of Operator Performance.
1980-08-01
for 30,000 Ft Initial Slant Range VARIABLES MEAN Signature X Scene Complexity Low Medium High Active Target FLIR 22794 20162 20449 Inactive Target...Interactions for 30,000 Ft Initial Slant Range I Signature X Scene Complexity V * ORDERED MEANS 14867 18076 18079 18315 19105 19643 20162 20449 22794...14867 18076 1 183159 19105* 1 19643 20162* 20449 * 1 22794Signature X Speed I ORDERED MEANS 13429 15226 16604 17344 19033 20586 22641 24033 24491 1
Selective attention in normal and impaired hearing.
Shinn-Cunningham, Barbara G; Best, Virginia
2008-12-01
A common complaint among listeners with hearing loss (HL) is that they have difficulty communicating in common social settings. This article reviews how normal-hearing listeners cope in such settings, especially how they focus attention on a source of interest. Results of experiments with normal-hearing listeners suggest that the ability to selectively attend depends on the ability to analyze the acoustic scene and to form perceptual auditory objects properly. Unfortunately, sound features important for auditory object formation may not be robustly encoded in the auditory periphery of HL listeners. In turn, impaired auditory object formation may interfere with the ability to filter out competing sound sources. Peripheral degradations are also likely to reduce the salience of higher-order auditory cues such as location, pitch, and timbre, which enable normal-hearing listeners to select a desired sound source out of a sound mixture. Degraded peripheral processing is also likely to increase the time required to form auditory objects and focus selective attention so that listeners with HL lose the ability to switch attention rapidly (a skill that is particularly important when trying to participate in a lively conversation). Finally, peripheral deficits may interfere with strategies that normal-hearing listeners employ in complex acoustic settings, including the use of memory to fill in bits of the conversation that are missed. Thus, peripheral hearing deficits are likely to cause a number of interrelated problems that challenge the ability of HL listeners to communicate in social settings requiring selective attention.
Selective Attention in Normal and Impaired Hearing
Shinn-Cunningham, Barbara G.; Best, Virginia
2008-01-01
A common complaint among listeners with hearing loss (HL) is that they have difficulty communicating in common social settings. This article reviews how normal-hearing listeners cope in such settings, especially how they focus attention on a source of interest. Results of experiments with normal-hearing listeners suggest that the ability to selectively attend depends on the ability to analyze the acoustic scene and to form perceptual auditory objects properly. Unfortunately, sound features important for auditory object formation may not be robustly encoded in the auditory periphery of HL listeners. In turn, impaired auditory object formation may interfere with the ability to filter out competing sound sources. Peripheral degradations are also likely to reduce the salience of higher-order auditory cues such as location, pitch, and timbre, which enable normal-hearing listeners to select a desired sound source out of a sound mixture. Degraded peripheral processing is also likely to increase the time required to form auditory objects and focus selective attention so that listeners with HL lose the ability to switch attention rapidly (a skill that is particularly important when trying to participate in a lively conversation). Finally, peripheral deficits may interfere with strategies that normal-hearing listeners employ in complex acoustic settings, including the use of memory to fill in bits of the conversation that are missed. Thus, peripheral hearing deficits are likely to cause a number of interrelated problems that challenge the ability of HL listeners to communicate in social settings requiring selective attention. PMID:18974202
Hearing in cetaceans: from natural history to experimental biology.
Mooney, T Aran; Yamato, Maya; Branstetter, Brian K
2012-01-01
Sound is a primary sensory cue for most marine mammals, and this is especially true for cetaceans. To passively and actively acquire information about their environment, cetaceans have some of the most derived ears of all mammals, capable of sophisticated, sensitive hearing and auditory processing. These capabilities have developed for survival in an underwater world where sound travels five times faster than in air, and where light is quickly attenuated and often limited at depth, at night, and in murky waters. Cetacean auditory evolution has capitalized on the ubiquity of sound cues and the efficiency of underwater acoustic communication. The sense of hearing is central to cetacean sensory ecology, enabling vital behaviours such as locating prey, detecting predators, identifying conspecifics, and navigating. Increasing levels of anthropogenic ocean noise appears to influence many of these activities. Here, we describe the historical progress of investigations on cetacean hearing, with a particular focus on odontocetes and recent advancements. While this broad topic has been studied for several centuries, new technologies in the past two decades have been leveraged to improve our understanding of a wide range of taxa, including some of the most elusive species. This chapter addresses topics including how sounds are received, what sounds are detected, hearing mechanisms for complex acoustic scenes, recent anatomical and physiological studies, the potential impacts of noise, and mysticete hearing. We conclude by identifying emerging research topics and areas which require greater focus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of aging on neural connectivity underlying selective memory for emotional scenes
Waring, Jill D.; Addis, Donna Rose; Kensinger, Elizabeth A.
2012-01-01
Older adults show age-related reductions in memory for neutral items within complex visual scenes, but just like young adults, older adults exhibit a memory advantage for emotional items within scenes compared with the background scene information. The present study examined young and older adults’ encoding-stage effective connectivity for selective memory of emotional items versus memory for both the emotional item and its background. In a functional magnetic resonance imaging (fMRI) study, participants viewed scenes containing either positive or negative items within neutral backgrounds. Outside the scanner, participants completed a memory test for items and backgrounds. Irrespective of scene content being emotionally positive or negative, older adults had stronger positive connections among frontal regions and from frontal regions to medial temporal lobe structures than did young adults, especially when items and backgrounds were subsequently remembered. These results suggest there are differences between young and older adults’ connectivity accompanying the encoding of emotional scenes. Older adults may require more frontal connectivity to encode all elements of a scene rather than just encoding the emotional item. PMID:22542836
Effects of aging on neural connectivity underlying selective memory for emotional scenes.
Waring, Jill D; Addis, Donna Rose; Kensinger, Elizabeth A
2013-02-01
Older adults show age-related reductions in memory for neutral items within complex visual scenes, but just like young adults, older adults exhibit a memory advantage for emotional items within scenes compared with the background scene information. The present study examined young and older adults' encoding-stage effective connectivity for selective memory of emotional items versus memory for both the emotional item and its background. In a functional magnetic resonance imaging (fMRI) study, participants viewed scenes containing either positive or negative items within neutral backgrounds. Outside the scanner, participants completed a memory test for items and backgrounds. Irrespective of scene content being emotionally positive or negative, older adults had stronger positive connections among frontal regions and from frontal regions to medial temporal lobe structures than did young adults, especially when items and backgrounds were subsequently remembered. These results suggest there are differences between young and older adults' connectivity accompanying the encoding of emotional scenes. Older adults may require more frontal connectivity to encode all elements of a scene rather than just encoding the emotional item. Published by Elsevier Inc.
Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects
NASA Astrophysics Data System (ADS)
Kuster, Martin; de Vries, Diemer
2006-12-01
It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.
NASA Astrophysics Data System (ADS)
Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U.
2018-05-01
In this work, we propose a classification method designed for the labeling of MLS point clouds, with detrended geometric features extracted from the points of the supervoxel-based local context. To achieve the analysis of complex 3D urban scenes, acquired points of the scene should be tagged with individual labels of different classes. Thus, assigning a unique label to the points of an object that belong to the same category plays an essential role in the entire 3D scene analysis workflow. Although plenty of studies in this field have been reported, this work is still a challenging task. Specifically, in this work: 1) A novel geometric feature extraction method, detrending the redundant and in-salient information in the local context, is proposed, which is proved to be effective for extracting local geometric features from the 3D scene. 2) Instead of using individual point as basic element, the supervoxel-based local context is designed to encapsulate geometric characteristics of points, providing a flexible and robust solution for feature extraction. 3) Experiments using complex urban scene with manually labeled ground truth are conducted, and the performance of proposed method with respect to different methods is analyzed. With the testing dataset, we have obtained a result of 0.92 for overall accuracy for assigning eight semantic classes.
Bertucci, Frédéric; Parmentier, Eric; Lecellier, Gaël; Hawkins, Anthony D.; Lecchini, David
2016-01-01
Different marine habitats are characterised by different soundscapes. How or which differences may be representative of the habitat characteristics and/or community structure remains however to be explored. A growing project in passive acoustics is to find a way to use soundscapes to have information on the habitat and on its changes. In this study we have successfully tested the potential of two acoustic indices, i.e. the average sound pressure level and the acoustic complexity index based on the frequency spectrum. Inside and outside marine protected areas of Moorea Island (French Polynesia), sound pressure level was positively correlated with the characteristics of the substratum and acoustic complexity was positively correlated with fish diversity. It clearly shows soundscape can be used to evaluate the acoustic features of marine protected areas, which presented a significantly higher ambient sound pressure level and were more acoustically complex than non-protected areas. This study further emphasizes the importance of acoustics as a tool in the monitoring of marine environments and in the elaboration and management of future conservation plans. PMID:27629650
Bertucci, Frédéric; Parmentier, Eric; Lecellier, Gaël; Hawkins, Anthony D; Lecchini, David
2016-09-15
Different marine habitats are characterised by different soundscapes. How or which differences may be representative of the habitat characteristics and/or community structure remains however to be explored. A growing project in passive acoustics is to find a way to use soundscapes to have information on the habitat and on its changes. In this study we have successfully tested the potential of two acoustic indices, i.e. the average sound pressure level and the acoustic complexity index based on the frequency spectrum. Inside and outside marine protected areas of Moorea Island (French Polynesia), sound pressure level was positively correlated with the characteristics of the substratum and acoustic complexity was positively correlated with fish diversity. It clearly shows soundscape can be used to evaluate the acoustic features of marine protected areas, which presented a significantly higher ambient sound pressure level and were more acoustically complex than non-protected areas. This study further emphasizes the importance of acoustics as a tool in the monitoring of marine environments and in the elaboration and management of future conservation plans.
The occipital place area represents the local elements of scenes
Kamps, Frederik S.; Julian, Joshua B.; Kubilius, Jonas; Kanwisher, Nancy; Dilks, Daniel D.
2016-01-01
Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents in not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements – both in spatial boundary and scene content representation – while PPA and RSC represent global scene properties. PMID:26931815
The occipital place area represents the local elements of scenes.
Kamps, Frederik S; Julian, Joshua B; Kubilius, Jonas; Kanwisher, Nancy; Dilks, Daniel D
2016-05-15
Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents is not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found that OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements - both in spatial boundary and scene content representation - while PPA and RSC represent global scene properties. Copyright © 2016 Elsevier Inc. All rights reserved.
Comparison of algorithms for blood stain detection applied to forensic hyperspectral imagery
NASA Astrophysics Data System (ADS)
Yang, Jie; Messinger, David W.; Mathew, Jobin J.; Dube, Roger R.
2016-05-01
Blood stains are among the most important types of evidence for forensic investigation. They contain valuable DNA information, and the pattern of the stains can suggest specifics about the nature of the violence that transpired at the scene. Early detection of blood stains is particularly important since the blood reacts physically and chemically with air and materials over time. Accurate identification of blood remnants, including regions that might have been intentionally cleaned, is an important aspect of forensic investigation. Hyperspectral imaging might be a potential method to detect blood stains because it is non-contact and provides substantial spectral information that can be used to identify regions in a scene with trace amounts of blood. The potential complexity of scenes in which such vast violence occurs can be high when the range of scene material types and conditions containing blood stains at a crime scene are considered. Some stains are hard to detect by the unaided eye, especially if a conscious effort to clean the scene has occurred (we refer to these as "latent" blood stains). In this paper we present the initial results of a study of the use of hyperspectral imaging algorithms for blood detection in complex scenes. We describe a hyperspectral imaging system which generates images covering 400 nm - 700 nm visible range with a spectral resolution of 10 nm. Three image sets of 31 wavelength bands were generated using this camera for a simulated indoor crime scene in which blood stains were placed on a T-shirt and walls. To detect blood stains in the scene, Principal Component Analysis (PCA), Subspace Reed Xiaoli Detection (SRXD), and Topological Anomaly Detection (TAD) algorithms were used. Comparison of the three hyperspectral image analysis techniques shows that TAD is most suitable for detecting blood stains and discovering latent blood stains.
Neural correlates of contextual cueing are modulated by explicit learning.
Westerberg, Carmen E; Miller, Brennan B; Reber, Paul J; Cohen, Neal J; Paller, Ken A
2011-10-01
Contextual cueing refers to the facilitated ability to locate a particular visual element in a scene due to prior exposure to the same scene. This facilitation is thought to reflect implicit learning, as it typically occurs without the observer's knowledge that scenes repeat. Unlike most other implicit learning effects, contextual cueing can be impaired following damage to the medial temporal lobe. Here we investigated neural correlates of contextual cueing and explicit scene memory in two participant groups. Only one group was explicitly instructed about scene repetition. Participants viewed a sequence of complex scenes that depicted a landscape with five abstract geometric objects. Superimposed on each object was a letter T or L rotated left or right by 90°. Participants responded according to the target letter (T) orientation. Responses were highly accurate for all scenes. Response speeds were faster for repeated versus novel scenes. The magnitude of this contextual cueing did not differ between the two groups. Also, in both groups repeated scenes yielded reduced hemodynamic activation compared with novel scenes in several regions involved in visual perception and attention, and reductions in some of these areas were correlated with response-time facilitation. In the group given instructions about scene repetition, recognition memory for scenes was superior and was accompanied by medial temporal and more anterior activation. Thus, strategic factors can promote explicit memorization of visual scene information, which appears to engage additional neural processing beyond what is required for implicit learning of object configurations and target locations in a scene. Copyright © 2011 Elsevier Ltd. All rights reserved.
Neural correlates of contextual cueing are modulated by explicit learning
Westerberg, Carmen E.; Miller, Brennan B.; Reber, Paul J.; Cohen, Neal J.; Paller, Ken A.
2011-01-01
Contextual cueing refers to the facilitated ability to locate a particular visual element in a scene due to prior exposure to the same scene. This facilitation is thought to reflect implicit learning, as it typically occurs without the observer’s knowledge that scenes repeat. Unlike most other implicit learning effects, contextual cueing can be impaired following damage to the medial temporal lobe. Here we investigated neural correlates of contextual cueing and explicit scene memory in two participant groups. Only one group was explicitly instructed about scene repetition. Participants viewed a sequence of complex scenes that depicted a landscape with five abstract geometric objects. Superimposed on each object was a letter T or L rotated left or right by 90°. Participants responded according to the target letter (T) orientation. Responses were highly accurate for all scenes. Response speeds were faster for repeated versus novel scenes. The magnitude of this contextual cueing did not differ between the two groups. Also, in both groups repeated scenes yielded reduced hemodynamic activation compared with novel scenes in several regions involved in visual perception and attention, and reductions in some of these areas were correlated with response-time facilitation. In the group given instructions about scene repetition, recognition memory for scenes was superior and was accompanied by medial temporal and more anterior activation. Thus, strategic factors can promote explicit memorization of visual scene information, which appears to engage additional neural processing beyond what is required for implicit learning of object configurations and target locations in a scene. PMID:21889947
Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera
NASA Astrophysics Data System (ADS)
Endo, Yutaka; Wakunami, Koki; Shimobaba, Tomoyoshi; Kakue, Takashi; Arai, Daisuke; Ichihashi, Yasuyuki; Yamamoto, Kenji; Ito, Tomoyoshi
2015-12-01
This paper shows the process used to calculate a computer-generated hologram (CGH) for real scenes under natural light using a commercial portable plenoptic camera. In the CGH calculation, a light field captured with the commercial plenoptic camera is converted into a complex amplitude distribution. Then the converted complex amplitude is propagated to a CGH plane. We tested both numerical and optical reconstructions of the CGH and showed that the CGH calculation from captured data with the commercial plenoptic camera was successful.
Vehicle-network defensive aids suite
NASA Astrophysics Data System (ADS)
Rapanotti, John
2005-05-01
Defensive Aids Suites (DAS) developed for vehicles can be extended to the vehicle network level. The vehicle network, typically comprising four platoon vehicles, will benefit from improved communications and automation based on low latency response to threats from a flexible, dynamic, self-healing network environment. Improved DAS performance and reliability relies on four complementary sensor technologies including: acoustics, visible and infrared optics, laser detection and radar. Long-range passive threat detection and avoidance is based on dual-purpose optics, primarily designed for manoeuvring, targeting and surveillance, combined with dazzling, obscuration and countermanoeuvres. Short-range active armour is based on search and track radar and intercepting grenades to defeat the threat. Acoustic threat detection increases the overall robustness of the DAS and extends the detection range to include small calibers. Finally, detection of active targeting systems is carried out with laser and radar warning receivers. Synthetic scene generation will provide the integrated environment needed to investigate, develop and validate these new capabilities. Computer generated imagery, based on validated models and an acceptable set of benchmark vignettes, can be used to investigate and develop fieldable sensors driven by real-time algorithms and countermeasure strategies. The synthetic scene environment will be suitable for sensor and countermeasure development in hardware-in-the-loop simulation. The research effort focuses on two key technical areas: a) computing aspects of the synthetic scene generation and b) and development of adapted models and databases. OneSAF is being developed for research and development, in addition to the original requirement of Simulation and Modelling for Acquisition, Rehearsal, Requirements and Training (SMARRT), and is becoming useful as a means for transferring technology to other users, researchers and contractors. This procedure eliminates the need to construct ad hoc models and databases. The vehicle network can be modelled phenomenologically until more information is available. These concepts and approach will be discussed in the paper.
Teng, Santani
2017-01-01
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044019
Cichy, Radoslaw Martin; Teng, Santani
2017-02-19
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.
A category adjustment approach to memory for spatial location in natural scenes.
Holden, Mark P; Curby, Kim M; Newcombe, Nora S; Shipley, Thomas F
2010-05-01
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in simple geometric shapes. Use of this paradigm raises 2 issues. First, do results generalize to the complex natural world? Second, what types of information might be used to segment complex spaces into constituent categories? Experiment 1 addressed the 1st question by showing a bias toward prototypical values in memory for spatial locations in complex natural scenes. Experiment 2 addressed the 2nd question by manipulating the availability of basic visual cues (using color negatives) or of semantic information about the scene (using inverted images). Error patterns suggest that both perceptual and conceptual information are involved in segmentation. The possible neurological foundations of location memory of this kind are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Heinemann, M; Larraza, A; Smith, K B
2003-06-01
The most difficult problem in shallow underwater acoustic communications is considered to be the time-varying multipath propagation because it impacts negatively on data rates. At high data rates the intersymbol interference requires adaptive algorithms on the receiver side that lead to computationally intensive and complex signal processing. A novel technique called time-reversal acoustics (TRA) can environmentally adapt the acoustic propagation effects of a complex medium in order to focus energy at a particular target range and depth. Using TRA, the multipath structure is reduced because all the propagation paths add coherently at the intended target location. This property of time-reversal acoustics suggests a potential application in the field of noncoherent acoustic communications. This work presents results of a tank scale experiment using an algorithm for rapid transmission of binary data in a complex underwater environment with the TRA approach. A simple 15-symbol code provides an example of the simplicity and feasibility of the approach. Covert coding due to the inherent scrambling induced by the environment at points other than the intended receiver is also investigated. The experiments described suggest a high potential in data rate for the time-reversal approach in underwater acoustic communications while keeping the computational complexity low.
2012-01-01
Background In research on event-related potentials (ERP) to emotional pictures, greater attention to emotional than neutral stimuli (i.e., motivated attention) is commonly indexed by two difference waves between emotional and neutral stimuli: the early posterior negativity (EPN) and the late positive potential (LPP). Evidence suggests that if attention is directed away from the pictures, then the emotional effects on EPN and LPP are eliminated. However, a few studies have found residual, emotional effects on EPN and LPP. In these studies, pictures were shown at fixation, and picture composition was that of simple figures rather than that of complex scenes. Because figures elicit larger LPP than do scenes, figures might capture and hold attention more strongly than do scenes. Here, we showed negative and neutral pictures of figures and scenes and tested first, whether emotional effects are larger to figures than scenes for both EPN and LPP, and second, whether emotional effects on EPN and LPP are reduced less for unattended figures than scenes. Results Emotional effects on EPN and LPP were larger for figures than scenes. When pictures were unattended, emotional effects on EPN increased for scenes but tended to decrease for figures, whereas emotional effects on LPP decreased similarly for figures and scenes. Conclusions Emotional effects on EPN and LPP were larger for figures than scenes, but these effects did not resist manipulations of attention more strongly for figures than scenes. These findings imply that the emotional content captures attention more strongly for figures than scenes, but that the emotional content does not hold attention more strongly for figures than scenes. PMID:22607397
Change deafness for real spatialized environmental scenes.
Gaston, Jeremy; Dickerson, Kelly; Hipp, Daniel; Gerhardstein, Peter
2017-01-01
The everyday auditory environment is complex and dynamic; often, multiple sounds co-occur and compete for a listener's cognitive resources. 'Change deafness', framed as the auditory analog to the well-documented phenomenon of 'change blindness', describes the finding that changes presented within complex environments are often missed. The present study examines a number of stimulus factors that may influence change deafness under real-world listening conditions. Specifically, an AX (same-different) discrimination task was used to examine the effects of both spatial separation over a loudspeaker array and the type of change (sound source additions and removals) on discrimination of changes embedded in complex backgrounds. Results using signal detection theory and accuracy analyses indicated that, under most conditions, errors were significantly reduced for spatially distributed relative to non-spatial scenes. A second goal of the present study was to evaluate a possible link between memory for scene contents and change discrimination. Memory was evaluated by presenting a cued recall test following each trial of the discrimination task. Results using signal detection theory and accuracy analyses indicated that recall ability was similar in terms of accuracy, but there were reductions in sensitivity compared to previous reports. Finally, the present study used a large and representative sample of outdoor, urban, and environmental sounds, presented in unique combinations of nearly 1000 trials per participant. This enabled the exploration of the relationship between change perception and the perceptual similarity between change targets and background scene sounds. These (post hoc) analyses suggest both a categorical and a stimulus-level relationship between scene similarity and the magnitude of change errors.
Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters
Zhang, Sirou; Qiao, Xiaoya
2017-01-01
In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311
The Identification and Modeling of Visual Cue Usage in Manual Control Task Experiments
NASA Technical Reports Server (NTRS)
Sweet, Barbara Townsend; Trejo, Leonard J. (Technical Monitor)
1999-01-01
Many fields of endeavor require humans to conduct manual control tasks while viewing a perspective scene. Manual control refers to tasks in which continuous, or nearly continuous, control adjustments are required. Examples include flying an aircraft, driving a car, and riding a bicycle. Perspective scenes can arise through natural viewing of the world, simulation of a scene (as in flight simulators), or through imaging devices (such as the cameras on an unmanned aerospace vehicle). Designers frequently have some degree of control over the content and characteristics of a perspective scene; airport designers can choose runway markings, vehicle designers can influence the size and shape of windows, as well as the location of the pilot, and simulator database designers can choose scene complexity and content. Little theoretical framework exists to help designers determine the answers to questions related to perspective scene content. An empirical approach is most commonly used to determine optimum perspective scene configurations. The goal of the research effort described in this dissertation has been to provide a tool for modeling the characteristics of human operators conducting manual control tasks with perspective-scene viewing. This is done for the purpose of providing an algorithmic, as opposed to empirical, method for analyzing the effects of changing perspective scene content for closed-loop manual control tasks.
The new generation of OpenGL support in ROOT
NASA Astrophysics Data System (ADS)
Tadel, M.
2008-07-01
OpenGL has been promoted to become the main 3D rendering engine of the ROOT framework. This required a major re-modularization of OpenGL support on all levels, from basic window-system specific interface to medium-level object-representation and top-level scene management. This new architecture allows seamless integration of external scene-graph libraries into the ROOT OpenGL viewer as well as inclusion of ROOT 3D scenes into external GUI and OpenGL-based 3D-rendering frameworks. Scene representation was removed from inside of the viewer, allowing scene-data to be shared among several viewers and providing for a natural implementation of multi-view canvas layouts. The object-graph traversal infrastructure allows free mixing of 3D and 2D-pad graphics and makes implementation of ROOT canvas in pure OpenGL possible. Scene-elements representing ROOT objects trigger automatic instantiation of user-provided rendering-objects based on the dictionary information and class-naming convention. Additionally, a finer, per-object control over scene-updates is available to the user, allowing overhead-free maintenance of dynamic 3D scenes and creation of complex real-time animations. User-input handling was modularized as well, making it easy to support application-specific scene navigation, selection handling and tool management.
Real-time scene and signature generation for ladar and imaging sensors
NASA Astrophysics Data System (ADS)
Swierkowski, Leszek; Christie, Chad L.; Antanovskii, Leonid; Gouthas, Efthimios
2014-05-01
This paper describes development of two key functionalities within the VIRSuite scene simulation program, broadening its scene generation capabilities and increasing accuracy of thermal signatures. Firstly, a new LADAR scene generation module has been designed. It is capable of simulating range imagery for Geiger mode LADAR, in addition to the already existing functionality for linear mode systems. Furthermore, a new 3D heat diffusion solver has been developed within the VIRSuite signature prediction module. It is capable of calculating the temperature distribution in complex three-dimensional objects for enhanced dynamic prediction of thermal signatures. With these enhancements, VIRSuite is now a robust tool for conducting dynamic simulation for missiles with multi-mode seekers.
Research on the generation of the background with sea and sky in infrared scene
NASA Astrophysics Data System (ADS)
Dong, Yan-zhi; Han, Yan-li; Lou, Shu-li
2008-03-01
It is important for scene generation to keep the texture of infrared images in simulation of anti-ship infrared imaging guidance. We studied the fractal method and applied it to the infrared scene generation. We adopted the method of horizontal-vertical (HV) partition to encode the original image. Basing on the properties of infrared image with sea-sky background, we took advantage of Local Iteration Function System (LIFS) to decrease the complexity of computation and enhance the processing rate. Some results were listed. The results show that the fractal method can keep the texture of infrared image better and can be used in the infrared scene generation widely in future.
Scene analysis in the natural environment
Lewicki, Michael S.; Olshausen, Bruno A.; Surlykke, Annemarie; Moss, Cynthia F.
2014-01-01
The problem of scene analysis has been studied in a number of different fields over the past decades. These studies have led to important insights into problems of scene analysis, but not all of these insights are widely appreciated, and there remain critical shortcomings in current approaches that hinder further progress. Here we take the view that scene analysis is a universal problem solved by all animals, and that we can gain new insight by studying the problems that animals face in complex natural environments. In particular, the jumping spider, songbird, echolocating bat, and electric fish, all exhibit behaviors that require robust solutions to scene analysis problems encountered in the natural environment. By examining the behaviors of these seemingly disparate animals, we emerge with a framework for studying scene analysis comprising four essential properties: (1) the ability to solve ill-posed problems, (2) the ability to integrate and store information across time and modality, (3) efficient recovery and representation of 3D scene structure, and (4) the use of optimal motor actions for acquiring information to progress toward behavioral goals. PMID:24744740
NASA Astrophysics Data System (ADS)
Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.
2009-04-01
θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.
Changing scenes: memory for naturalistic events following change blindness.
Mäntylä, Timo; Sundström, Anna
2004-11-01
Research on scene perception indicates that viewers often fail to detect large changes to scene regions when these changes occur during a visual disruption such as a saccade or a movie cut. In two experiments, we examined whether this relative inability to detect changes would produce systematic biases in event memory. In Experiment 1, participants decided whether two successively presented images were the same or different, followed by a memory task, in which they recalled the content of the viewed scene. In Experiment 2, participants viewed a short video, in which an actor carried out a series of daily activities, and central scenes' attributes were changed during a movie cut. A high degree of change blindness was observed in both experiments, and these effects were related to scene complexity (Experiment 1) and level of retrieval support (Experiment 2). Most important, participants reported the changed, rather than the initial, event attributes following a failure in change detection. These findings suggest that attentional limitations during encoding contribute to biases in episodic memory.
Attentional modulation of informational masking on early cortical representations of speech signals.
Zhang, Changxin; Arnott, Stephen R; Rabaglia, Cristina; Avivi-Reich, Meital; Qi, James; Wu, Xihong; Li, Liang; Schneider, Bruce A
2016-01-01
To recognize speech in a noisy auditory scene, listeners need to perceptually segregate the target talker's voice from other competing sounds (stream segregation). A number of studies have suggested that the attentional demands placed on listeners increase as the acoustic properties and informational content of the competing sounds become more similar to that of the target voice. Hence we would expect attentional demands to be considerably greater when speech is masked by speech than when it is masked by steady-state noise. To investigate the role of attentional mechanisms in the unmasking of speech sounds, event-related potentials (ERPs) were recorded to a syllable masked by noise or competing speech under both active (the participant was asked to respond when the syllable was presented) or passive (no response was required) listening conditions. The results showed that the long-latency auditory response to a syllable (/bi/), presented at different signal-to-masker ratios (SMRs), was similar in both passive and active listening conditions, when the masker was a steady-state noise. In contrast, a switch from the passive listening condition to the active one, when the masker was two-talker speech, significantly enhanced the ERPs to the syllable. These results support the hypothesis that the need to engage attentional mechanisms in aid of scene analysis increases as the similarity (both acoustic and informational) between the target speech and the competing background sounds increases. Copyright © 2015 Elsevier B.V. All rights reserved.
EEG signatures accompanying auditory figure-ground segregation
Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P.; Szerafin, Ágnes; Shinn-Cunningham, Barbara; Winkler, István
2017-01-01
In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased – i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. PMID:27421185
NASA Technical Reports Server (NTRS)
Koepf, D.; Frost, W.
1981-01-01
A qualitative interpretation of the records from a monostatic acoustic radar is presented. This is achieved with the aid of airplane, helicopter, and rawinsonde temperature soundings. The diurnal structure of a mountain valley circulation pattern is studied with the use of two acoustic radars, one located in the valley and one on the downwind ridge. The monostatic acoustic radar was found to be sufficiently accurate in locating the heights of the inversions and the mixed layer depth to warrant use by industry even in complex terrain.
Coding of navigational affordances in the human visual system
Epstein, Russell A.
2017-01-01
A central component of spatial navigation is determining where one can and cannot go in the immediate environment. We used fMRI to test the hypothesis that the human visual system solves this problem by automatically identifying the navigational affordances of the local scene. Multivoxel pattern analyses showed that a scene-selective region of dorsal occipitoparietal cortex, known as the occipital place area, represents pathways for movement in scenes in a manner that is tolerant to variability in other visual features. These effects were found in two experiments: One using tightly controlled artificial environments as stimuli, the other using a diverse set of complex, natural scenes. A reconstruction analysis demonstrated that the population codes of the occipital place area could be used to predict the affordances of novel scenes. Taken together, these results reveal a previously unknown mechanism for perceiving the affordance structure of navigable space. PMID:28416669
NASA Astrophysics Data System (ADS)
Qi, K.; Qingfeng, G.
2017-12-01
With the popular use of High-Resolution Satellite (HRS) images, more and more research efforts have been placed on land-use scene classification. However, it makes the task difficult with HRS images for the complex background and multiple land-cover classes or objects. This article presents a multiscale deeply described correlaton model for land-use scene classification. Specifically, the convolutional neural network is introduced to learn and characterize the local features at different scales. Then, learnt multiscale deep features are explored to generate visual words. The spatial arrangement of visual words is achieved through the introduction of adaptive vector quantized correlograms at different scales. Experiments on two publicly available land-use scene datasets demonstrate that the proposed model is compact and yet discriminative for efficient representation of land-use scene images, and achieves competitive classification results with the state-of-art methods.
The Nature and Timing of Tele-Pseudoscopic Experiences
Hill, Harold; Allison, Robert S
2016-01-01
Interchanging the left and right eye views of a scene (pseudoscopic viewing) has been reported to produce vivid stereoscopic effects under certain conditions. In two separate field studies, we examined the experiences of 124 observers (76 in Study 1 and 48 in Study 2) while pseudoscopically viewing a distant natural outdoor scene. We found large individual differences in both the nature and the timing of their pseudoscopic experiences. While some observers failed to notice anything unusual about the pseudoscopic scene, most experienced multiple pseudoscopic phenomena, including apparent scene depth reversals, apparent object shape reversals, apparent size and flatness changes, apparent reversals of border ownership, and even complex illusory foreground surfaces. When multiple effects were experienced, patterns of co-occurrence suggested possible causal relationships between apparent scene depth reversals and several other pseudoscopic phenomena. The latency for experiencing pseudoscopic phenomena was found to correlate significantly with observer visual acuity, but not stereoacuity, in both studies. PMID:27482368
Kaya, Emine Merve
2017-01-01
Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information—a phenomenon referred to as the ‘cocktail party problem’. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by ‘bottom-up’ sensory-driven factors, as well as ‘top-down’ task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044012
Multistability in auditory stream segregation: a predictive coding view
Winkler, István; Denham, Susan; Mill, Robert; Bőhm, Tamás M.; Bendixen, Alexandra
2012-01-01
Auditory stream segregation involves linking temporally separate acoustic events into one or more coherent sequences. For any non-trivial sequence of sounds, many alternative descriptions can be formed, only one or very few of which emerge in awareness at any time. Evidence from studies showing bi-/multistability in auditory streaming suggest that some, perhaps many of the alternative descriptions are represented in the brain in parallel and that they continuously vie for conscious perception. Here, based on a predictive coding view, we consider the nature of these sound representations and how they compete with each other. Predictive processing helps to maintain perceptual stability by signalling the continuation of previously established patterns as well as the emergence of new sound sources. It also provides a measure of how well each of the competing representations describes the current acoustic scene. This account of auditory stream segregation has been tested on perceptual data obtained in the auditory streaming paradigm. PMID:22371621
Separating pitch chroma and pitch height in the human brain
Warren, J. D.; Uppenkamp, S.; Patterson, R. D.; Griffiths, T. D.
2003-01-01
Musicians recognize pitch as having two dimensions. On the keyboard, these are illustrated by the octave and the cycle of notes within the octave. In perception, these dimensions are referred to as pitch height and pitch chroma, respectively. Pitch chroma provides a basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In contrast, pitch height provides a basis for segregation of notes into streams to separate sound sources. This paper reports a functional magnetic resonance experiment designed to search for distinct mappings of these two types of pitch change in the human brain. The results show that chroma change is specifically represented anterior to primary auditory cortex, whereas height change is specifically represented posterior to primary auditory cortex. We propose that tracking of acoustic information streams occurs in anterior auditory areas, whereas the segregation of sound objects (a crucial aspect of auditory scene analysis) depends on posterior areas. PMID:12909719
Separating pitch chroma and pitch height in the human brain.
Warren, J D; Uppenkamp, S; Patterson, R D; Griffiths, T D
2003-08-19
Musicians recognize pitch as having two dimensions. On the keyboard, these are illustrated by the octave and the cycle of notes within the octave. In perception, these dimensions are referred to as pitch height and pitch chroma, respectively. Pitch chroma provides a basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In contrast, pitch height provides a basis for segregation of notes into streams to separate sound sources. This paper reports a functional magnetic resonance experiment designed to search for distinct mappings of these two types of pitch change in the human brain. The results show that chroma change is specifically represented anterior to primary auditory cortex, whereas height change is specifically represented posterior to primary auditory cortex. We propose that tracking of acoustic information streams occurs in anterior auditory areas, whereas the segregation of sound objects (a crucial aspect of auditory scene analysis) depends on posterior areas.
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Jianguo; Greenhalgh, Stewart
2018-04-01
We present methods for obtaining numerical and analytic solutions of the complex eikonal equation in inhomogeneous acoustic VTI media (transversely isotropic media with a vertical symmetry axis). The key and novel point of the method for obtaining numerical solutions is to transform the problem of solving the highly nonlinear acoustic VTI eikonal equation into one of solving the relatively simple eikonal equation for the background (isotropic) medium and a system of linear partial differential equations. Specifically, to obtain the real and imaginary parts of the complex traveltime in inhomogeneous acoustic VTI media, we generalize a perturbation theory, which was developed earlier for solving the conventional real eikonal equation in inhomogeneous anisotropic media, to the complex eikonal equation in such media. After the perturbation analysis, we obtain two types of equations. One is the complex eikonal equation for the background medium and the other is a system of linearized partial differential equations for the coefficients of the corresponding complex traveltime formulas. To solve the complex eikonal equation for the background medium, we employ an optimization scheme that we developed for solving the complex eikonal equation in isotropic media. Then, to solve the system of linearized partial differential equations for the coefficients of the complex traveltime formulas, we use the finite difference method based on the fast marching strategy. Furthermore, by applying the complex source point method and the paraxial approximation, we develop the analytic solutions of the complex eikonal equation in acoustic VTI media, both for the isotropic and elliptical anisotropic background medium. Our numerical results demonstrate the effectiveness of our derivations and illustrate the influence of the beam widths and the anisotropic parameters on the complex traveltimes.
Bölte, Jens; Hofmann, Reinhild; Meier, Claudine C.; Dobel, Christian
2018-01-01
At the interface between scene perception and speech production, we investigated how rapidly action scenes can activate semantic and lexical information. Experiment 1 examined how complex action-scene primes, presented for 150 ms, 100 ms, or 50 ms and subsequently masked, influenced the speed with which immediately following action-picture targets are named. Prime and target actions were either identical, showed the same action with different actors and environments, or were unrelated. Relative to unrelated primes, identical and same-action primes facilitated naming the target action, even when presented for 50 ms. In Experiment 2, neutral primes assessed the direction of effects. Identical and same-action scenes induced facilitation but unrelated actions induced interference. In Experiment 3, written verbs were used as targets for naming, preceded by action primes. When target verbs denoted the prime action, clear facilitation was obtained. In contrast, interference was observed when target verbs were phonologically similar, but otherwise unrelated, to the names of prime actions. This is clear evidence for word-form activation by masked action scenes. Masked action pictures thus provide conceptual information that is detailed enough to facilitate apprehension and naming of immediately following scenes. Masked actions even activate their word-form information–as is evident when targets are words. We thus show how language production can be primed with briefly flashed masked action scenes, in answer to long-standing questions in scene processing. PMID:29652939
Using articulated scene models for dynamic 3d scene analysis in vista spaces
NASA Astrophysics Data System (ADS)
Beuter, Niklas; Swadzba, Agnes; Kummert, Franz; Wachsmuth, Sven
2010-09-01
In this paper we describe an efficient but detailed new approach to analyze complex dynamic scenes directly in 3D. The arising information is important for mobile robots to solve tasks in the area of household robotics. In our work a mobile robot builds an articulated scene model by observing the environment in the visual field or rather in the so-called vista space. The articulated scene model consists of essential knowledge about the static background, about autonomously moving entities like humans or robots and finally, in contrast to existing approaches, information about articulated parts. These parts describe movable objects like chairs, doors or other tangible entities, which could be moved by an agent. The combination of the static scene, the self-moving entities and the movable objects in one articulated scene model enhances the calculation of each single part. The reconstruction process for parts of the static scene benefits from removal of the dynamic parts and in turn, the moving parts can be extracted more easily through the knowledge about the background. In our experiments we show, that the system delivers simultaneously an accurate static background model, moving persons and movable objects. This information of the articulated scene model enables a mobile robot to detect and keep track of interaction partners, to navigate safely through the environment and finally, to strengthen the interaction with the user through the knowledge about the 3D articulated objects and 3D scene analysis. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Tsifouti, A.; Triantaphillidou, S.; Larabi, M. C.; Doré, G.; Bilissi, E.; Psarrou, A.
2015-01-01
In this investigation we study the effects of compression and frame rate reduction on the performance of four video analytics (VA) systems utilizing a low complexity scenario, such as the Sterile Zone (SZ). Additionally, we identify the most influential scene parameters affecting the performance of these systems. The SZ scenario is a scene consisting of a fence, not to be trespassed, and an area with grass. The VA system needs to alarm when there is an intruder (attack) entering the scene. The work includes testing of the systems with uncompressed and compressed (using H.264/MPEG-4 AVC at 25 and 5 frames per second) footage, consisting of quantified scene parameters. The scene parameters include descriptions of scene contrast, camera to subject distance, and attack portrayal. Additional footage, including only distractions (no attacks) is also investigated. Results have shown that every system has performed differently for each compression/frame rate level, whilst overall, compression has not adversely affected the performance of the systems. Frame rate reduction has decreased performance and scene parameters have influenced the behavior of the systems differently. Most false alarms were triggered with a distraction clip, including abrupt shadows through the fence. Findings could contribute to the improvement of VA systems.
How affective information from faces and scenes interacts in the brain
Vandenbulcke, Mathieu; Sinke, Charlotte B. A.; Goebel, Rainer; de Gelder, Beatrice
2014-01-01
Facial expression perception can be influenced by the natural visual context in which the face is perceived. We performed an fMRI experiment presenting participants with fearful or neutral faces against threatening or neutral background scenes. Triangles and scrambled scenes served as control stimuli. The results showed that the valence of the background influences face selective activity in the right anterior parahippocampal place area (PPA) and subgenual anterior cingulate cortex (sgACC) with higher activation for neutral backgrounds compared to threatening backgrounds (controlled for isolated background effects) and that this effect correlated with trait empathy in the sgACC. In addition, the left fusiform gyrus (FG) responds to the affective congruence between face and background scene. The results show that valence of the background modulates face processing and support the hypothesis that empathic processing in sgACC is inhibited when affective information is present in the background. In addition, the findings reveal a pattern of complex scene perception showing a gradient of functional specialization along the posterior–anterior axis: from sensitivity to the affective content of scenes (extrastriate body area: EBA and posterior PPA), over scene emotion–face emotion interaction (left FG) via category–scene interaction (anterior PPA) to scene–category–personality interaction (sgACC). PMID:23956081
GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases
NASA Astrophysics Data System (ADS)
Jasiewicz, Jarosław; Netzel, Paweł; Stepinski, Tomasz
2015-07-01
Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters contain rich spatial information either because of their very high resolution or their very large spatial extent. Elementary units of pattern-based analysis are scenes - patches of surface consisting of a complex arrangement of individual pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures - compact numerical descriptors of patterns, and a library of distance functions - providing numerical means of assessing dissimilarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all modules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of NLCD is given. Performance evaluation is included to highlight GeoPAT's applicability to very large datasets. The GeoPAT toolbox is available for download from
Denham, Susan; Bõhm, Tamás M.; Bendixen, Alexandra; Szalárdy, Orsolya; Kocsis, Zsuzsanna; Mill, Robert; Winkler, István
2014-01-01
The ability of the auditory system to parse complex scenes into component objects in order to extract information from the environment is very robust, yet the processing principles underlying this ability are still not well understood. This study was designed to investigate the proposal that the auditory system constructs multiple interpretations of the acoustic scene in parallel, based on the finding that when listening to a long repetitive sequence listeners report switching between different perceptual organizations. Using the “ABA-” auditory streaming paradigm we trained listeners until they could reliably recognize all possible embedded patterns of length four which could in principle be extracted from the sequence, and in a series of test sessions investigated their spontaneous reports of those patterns. With the training allowing them to identify and mark a wider variety of possible patterns, participants spontaneously reported many more patterns than the ones traditionally assumed (Integrated vs. Segregated). Despite receiving consistent training and despite the apparent randomness of perceptual switching, we found individual switching patterns were idiosyncratic; i.e., the perceptual switching patterns of each participant were more similar to their own switching patterns in different sessions than to those of other participants. These individual differences were found to be preserved even between test sessions held a year after the initial experiment. Our results support the idea that the auditory system attempts to extract an exhaustive set of embedded patterns which can be used to generate expectations of future events and which by competing for dominance give rise to (changing) perceptual awareness, with the characteristics of pattern discovery and perceptual competition having a strong idiosyncratic component. Perceptual multistability thus provides a means for characterizing both general mechanisms and individual differences in human perception. PMID:24616656
Denham, Susan; Bõhm, Tamás M; Bendixen, Alexandra; Szalárdy, Orsolya; Kocsis, Zsuzsanna; Mill, Robert; Winkler, István
2014-01-01
The ability of the auditory system to parse complex scenes into component objects in order to extract information from the environment is very robust, yet the processing principles underlying this ability are still not well understood. This study was designed to investigate the proposal that the auditory system constructs multiple interpretations of the acoustic scene in parallel, based on the finding that when listening to a long repetitive sequence listeners report switching between different perceptual organizations. Using the "ABA-" auditory streaming paradigm we trained listeners until they could reliably recognize all possible embedded patterns of length four which could in principle be extracted from the sequence, and in a series of test sessions investigated their spontaneous reports of those patterns. With the training allowing them to identify and mark a wider variety of possible patterns, participants spontaneously reported many more patterns than the ones traditionally assumed (Integrated vs. Segregated). Despite receiving consistent training and despite the apparent randomness of perceptual switching, we found individual switching patterns were idiosyncratic; i.e., the perceptual switching patterns of each participant were more similar to their own switching patterns in different sessions than to those of other participants. These individual differences were found to be preserved even between test sessions held a year after the initial experiment. Our results support the idea that the auditory system attempts to extract an exhaustive set of embedded patterns which can be used to generate expectations of future events and which by competing for dominance give rise to (changing) perceptual awareness, with the characteristics of pattern discovery and perceptual competition having a strong idiosyncratic component. Perceptual multistability thus provides a means for characterizing both general mechanisms and individual differences in human perception.
Rapid detection of person information in a naturalistic scene.
Fletcher-Watson, Sue; Findlay, John M; Leekam, Susan R; Benson, Valerie
2008-01-01
A preferential-looking paradigm was used to investigate how gaze is distributed in naturalistic scenes. Two scenes were presented side by side: one contained a single person (person-present) and one did not (person-absent). Eye movements were recorded, the principal measures being the time spent looking at each region of the scenes, and the latency and location of the first fixation within each trial. We studied gaze patterns during free viewing, and also in a task requiring gender discrimination of the human figure depicted. Results indicated a strong bias towards looking to the person-present scene. This bias was present on the first fixation after image presentation, confirming previous findings of ultra-rapid processing of complex information. Faces attracted disproportionately many fixations, the preference emerging in the first fixation and becoming stronger in the following ones. These biases were exaggerated in the gender-discrimination task. A tendency to look at the object being fixated by the person in the scene was shown to be strongest at a slightly later point in the gaze sequence. We conclude that human bodies and faces are subject to special perceptual processing when presented as part of a naturalistic scene.
Technique for measurement of characteristic impedance and propagation constant for porous materials
NASA Astrophysics Data System (ADS)
Jung, Ki Won; Atchley, Anthony A.
2005-09-01
Knowledge of acoustic properties such as characteristic impedance and complex propagation constant is useful to characterize the acoustic behaviors of porous materials. Song and Bolton's four-microphone method [J. Acoust. Soc. Am. 107, 1131-1152 (2000)] is one of the most widely employed techniques. In this method two microphones are used to determine the complex pressure amplitudes for each side of a sample. Muehleisen and Beamer [J. Acoust. Soc. Am. 117, 536-544 (2005)] improved upon a four-microphone method by interchanging microphones to reduce errors due to uncertainties in microphone response. In this paper, a multiple microphone technique is investigated to reconstruct the pressure field inside an impedance tube. Measurements of the acoustic properties of a material having square cross-section pores is used to check the validity of the technique. The values of characteristic impedance and complex propagation constant extracted from the reconstruction agree well with predicted values. Furthermore, this technique is used in investigating the acoustic properties of reticulated vitreous carbon (RVC) in the range of 250-1100 Hz.
Object Classification in Semi Structured Enviroment Using Forward-Looking Sonar
dos Santos, Matheus; Ribeiro, Pedro Otávio; Núñez, Pedro; Botelho, Silvia
2017-01-01
The submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS) are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper. PMID:28961163
In-situ acoustic signature monitoring in additive manufacturing processes
NASA Astrophysics Data System (ADS)
Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.
2018-04-01
Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.
Scene-based nonuniformity correction with video sequences and registration.
Hardie, R C; Hayat, M M; Armstrong, E; Yasuda, B
2000-03-10
We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity.
NASA Technical Reports Server (NTRS)
Franks, Shannon; Masek, Jeffrey G.; Headley, Rachel M.; Gasch, John; Arvidson, Terry
2009-01-01
The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004-2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat 7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005.
Correlated Topic Vector for Scene Classification.
Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang
2017-07-01
Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.
Acoustophoretic particle motion in a square glass capillary
NASA Astrophysics Data System (ADS)
Barnkob, Rune; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.
2014-11-01
Acoustofluidics applications often use complex resonator geometries and complex acoustic actuation, which complicates the prediction of the acoustic resonances and the induced forces from the acoustic radiation and the acoustic streaming. Recently, it was shown that simultaneous actuation of two perpendicular half-wave resonances in a square channel can lead to acoustic streaming that will spiral small particles towards the pressure nodal center (Antfolk, Anal. Chem. 84, 2012). This we investigate in details experimentally by examining a square glass capillary with a 400- μm microchannel acoustically actuated around its 2-MHz half-wave transverse resonance. The acoustic actuation leads to the formation of a half-wave resonance in both the vertical and horizontal direction of the microchannel. Due to viscous and dissipative losses both resonances have finite widths, but are shifted in frequency due to asymmetric actuation and fabrication tolerances making the channel not perfectly square. We determine the resonance widths and shift by measuring the 3D3C trajectories of large particles whose motion is fully dominated by acoustic radiation forces, while the induced acoustic streaming is determined by measuring smaller particles weakly influenced by the acoustic radiation force. DFG KA 1808/16-1.
High frequency vibration analysis by the complex envelope vectorization.
Giannini, O; Carcaterra, A; Sestieri, A
2007-06-01
The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.
Assessing Multiple Object Tracking in Young Children Using a Game
ERIC Educational Resources Information Center
Ryokai, Kimiko; Farzin, Faraz; Kaltman, Eric; Niemeyer, Greg
2013-01-01
Visual tracking of multiple objects in a complex scene is a critical survival skill. When we attempt to safely cross a busy street, follow a ball's position during a sporting event, or monitor children in a busy playground, we rely on our brain's capacity to selectively attend to and track the position of specific objects in a dynamic scene. This…
Psychophysical Criteria for Visual Simulation Systems.
1980-05-01
definitive data were found to estab- lish detection thresholds; therefore, this is one area where a psycho- physical study was recommended. Differential size...The specific functional relationships needinq quantification were the following: 1. The effect of Horizontal Aniseikonia on Target Detection and...Transition Technique 6. The Effects of Scene Complexity and Separation on the Detection of Scene Misalignment 7. Absolute Brightness Levels in
ERIC Educational Resources Information Center
Wilkinson, Krista M.; Light, Janice
2011-01-01
Purpose: Many individuals with complex communication needs may benefit from visual aided augmentative and alternative communication systems. In visual scene displays (VSDs), language concepts are embedded into a photograph of a naturalistic event. Humans play a central role in communication development and might be important elements in VSDs.…
Children Use Object-Level Category Knowledge to Detect Changes in Complex Auditory Scenes
ERIC Educational Resources Information Center
Vanden Bosch der Nederlanden, Christina M.; Snyder, Joel S.; Hannon, Erin E.
2016-01-01
Children interact with and learn about all types of sound sources, including dogs, bells, trains, and human beings. Although it is clear that knowledge of semantic categories for everyday sights and sounds develops during childhood, there are very few studies examining how children use this knowledge to make sense of auditory scenes. We used a…
High Resolution Ultrasonic Method for 3D Fingerprint Representation in Biometrics
NASA Astrophysics Data System (ADS)
Maev, R. Gr.; Bakulin, E. Y.; Maeva, E. Y.; Severin, F. M.
Biometrics is an important field which studies different possible ways of personal identification. Among a number of existing biometric techniques fingerprint recognition stands alone - because very large database of fingerprints has already been acquired. Also, fingerprints are an important evidence that can be collected at a crime scene. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. Ultrasonic method of fingerprint imaging was originally introduced over a decade as the mapping of the reflection coefficient at the interface between the finger and a covering plate and has shown very good reliability and free from imperfections of previous two methods. This work introduces a newer development of the ultrasonic fingerprint imaging, focusing on the imaging of the internal structures of fingerprints (including sweat pores) with raw acoustic resolution of about 500 dpi (0.05 mm) using a scanning acoustic microscope to obtain images and acoustic data in the form of 3D data array. C-scans from different depths inside the fingerprint area of fingers of several volunteers were obtained and showed good contrast of ridges-and-valleys patterns and practically exact correspondence to the standard ink-and-paper prints of the same areas. Important feature reveled on the acoustic images was the clear appearance of the sweat pores, which could provide additional means of identification.
Ultrasonic and spectral studies on charge transfer complexes of anisole and certain aromatic amines
NASA Astrophysics Data System (ADS)
Rajesh, R.; Raj Muhamed, R.; Justin Adaikala Baskar, A.; Kannappan, V.
2016-10-01
Stability constants of two complexes of anisole with aniline and N-methylaniline (NMA) are determined from the measured ultrasonic velocity in n-hexane medium at four different temperatures. Acoustic and excess thermo acoustic parameters [excess ultrasonic velocity (uE), excess molar volume (VE), excess internal pressure (πiE)] are reported for these systems at four different temperatures. The trend in acoustic and excess parameters with concentration in the two systems establishes the formation of hydrogen bonded complexes between anisole and the two amines. Thermodynamic properties are computed for the two complexes from the variation in K with temperature. The formation of these complexes is also established by UV spectral method and their spectral characteristics and stability constants are determined. K values of these complexes obtained by ultrasonic and UV spectroscopic techniques agree well. Aniline forms more stable complex than N-methylaniline with anisole in n-hexane medium.
Multi- and hyperspectral scene modeling
NASA Astrophysics Data System (ADS)
Borel, Christoph C.; Tuttle, Ronald F.
2011-06-01
This paper shows how to use a public domain raytracer POV-Ray (Persistence Of Vision Raytracer) to render multiand hyper-spectral scenes. The scripting environment allows automatic changing of the reflectance and transmittance parameters. The radiosity rendering mode allows accurate simulation of multiple-reflections between surfaces and also allows semi-transparent surfaces such as plant leaves. We show that POV-Ray computes occlusion accurately using a test scene with two blocks under a uniform sky. A complex scene representing a plant canopy is generated using a few lines of script. With appropriate rendering settings, shadows cast by leaves are rendered in many bands. Comparing single and multiple reflection renderings, the effect of multiple reflections is clearly visible and accounts for 25% of the overall apparent canopy reflectance in the near infrared.
Vocal complexity and sociality in spotted paca (Cuniculus paca).
Lima, Stella G C; Sousa-Lima, Renata S; Tokumaru, Rosana S; Nogueira-Filho, Sérgio L G; Nogueira, Selene S C
2018-01-01
The evolution of sociality is related to many ecological factors that act on animals as selective forces, thus driving the formation of groups. Group size will depend on the payoffs of group living. The Social Complexity Hypothesis for Communication (SCHC) predicts that increases in group size will be related to increases in the complexity of the communication among individuals. This hypothesis, which was confirmed in some mammal societies, may be useful to trace sociality in the spotted paca (Cuniculus paca), a Neotropical caviomorph rodent reported as solitary. There are, however, sightings of groups in the wild, and farmers easily form groups of spotted paca in captivity. Thus, we aimed to describe the acoustic repertoire of captive spotted paca to test the SCHC and to obtain insights about the sociability of this species. Moreover, we aimed to verify the relationship between group size and acoustic repertoire size of caviomorph rodents, to better understand the evolution of sociality in this taxon. We predicted that spotted paca should display a complex acoustic repertoire, given their social behavior in captivity and group sightings in the wild. We also predicted that in caviomorph species the group size would increase with acoustic repertoire, supporting the SCHC. We performed a Linear Discriminant Analysis (LDA) based on acoustic parameters of the vocalizations recorded. In addition, we applied an independent contrasts approach to investigate sociality in spotted paca following the social complexity hypothesis, independent of phylogeny. Our analysis showed that the spotted paca's acoustic repertoire contains seven vocal types and one mechanical signal. The broad acoustic repertoire of the spotted paca might have evolved given the species' ability to live in groups. The relationship between group size and the size of the acoustic repertoires of caviomorph species was confirmed, providing additional support for the SCHC in yet another group of diverse mammals-caviomorph rodents.
Vocal complexity and sociality in spotted paca (Cuniculus paca)
2018-01-01
The evolution of sociality is related to many ecological factors that act on animals as selective forces, thus driving the formation of groups. Group size will depend on the payoffs of group living. The Social Complexity Hypothesis for Communication (SCHC) predicts that increases in group size will be related to increases in the complexity of the communication among individuals. This hypothesis, which was confirmed in some mammal societies, may be useful to trace sociality in the spotted paca (Cuniculus paca), a Neotropical caviomorph rodent reported as solitary. There are, however, sightings of groups in the wild, and farmers easily form groups of spotted paca in captivity. Thus, we aimed to describe the acoustic repertoire of captive spotted paca to test the SCHC and to obtain insights about the sociability of this species. Moreover, we aimed to verify the relationship between group size and acoustic repertoire size of caviomorph rodents, to better understand the evolution of sociality in this taxon. We predicted that spotted paca should display a complex acoustic repertoire, given their social behavior in captivity and group sightings in the wild. We also predicted that in caviomorph species the group size would increase with acoustic repertoire, supporting the SCHC. We performed a Linear Discriminant Analysis (LDA) based on acoustic parameters of the vocalizations recorded. In addition, we applied an independent contrasts approach to investigate sociality in spotted paca following the social complexity hypothesis, independent of phylogeny. Our analysis showed that the spotted paca’s acoustic repertoire contains seven vocal types and one mechanical signal. The broad acoustic repertoire of the spotted paca might have evolved given the species’ ability to live in groups. The relationship between group size and the size of the acoustic repertoires of caviomorph species was confirmed, providing additional support for the SCHC in yet another group of diverse mammals–caviomorph rodents. PMID:29364898
Environmental variability and acoustic signals: a multi-level approach in songbirds.
Medina, Iliana; Francis, Clinton D
2012-12-23
Among songbirds, growing evidence suggests that acoustic adaptation of song traits occurs in response to habitat features. Despite extensive study, most research supporting acoustic adaptation has only considered acoustic traits averaged for species or populations, overlooking intraindividual variation of song traits, which may facilitate effective communication in heterogeneous and variable environments. Fewer studies have explicitly incorporated sexual selection, which, if strong, may favour variation across environments. Here, we evaluate the prevalence of acoustic adaptation among 44 species of songbirds by determining how environmental variability and sexual selection intensity are associated with song variability (intraindividual and intraspecific) and short-term song complexity. We show that variability in precipitation can explain short-term song complexity among taxonomically diverse songbirds, and that precipitation seasonality and the intensity of sexual selection are related to intraindividual song variation. Our results link song complexity to environmental variability, something previously found for mockingbirds (Family Mimidae). Perhaps more importantly, our results illustrate that individual variation in song traits may be shaped by both environmental variability and strength of sexual selection.
Scene construction in schizophrenia.
Raffard, Stéphane; D'Argembeau, Arnaud; Bayard, Sophie; Boulenger, Jean-Philippe; Van der Linden, Martial
2010-09-01
Recent research has revealed that schizophrenia patients are impaired in remembering the past and imagining the future. In this study, we examined patients' ability to engage in scene construction (i.e., the process of mentally generating and maintaining a complex and coherent scene), which is a key part of retrieving past experiences and episodic future thinking. 24 participants with schizophrenia and 25 healthy controls were asked to imagine new fictitious experiences and described their mental representations of the scenes in as much detail as possible. Descriptions were scored according to various dimensions (e.g., sensory details, spatial reference), and participants also provided ratings of their subjective experience when imagining the scenes (e.g., their sense of presence, the perceived similarity of imagined events to past experiences). Imagined scenes contained less phenomenological details (d = 1.11) and were more fragmented (d = 2.81) in schizophrenia patients compared to controls. Furthermore, positive symptoms were positively correlated to the sense of presence (r = .43) and the perceived similarity of imagined events to past episodes (r = .47), whereas negative symptoms were negatively related to the overall richness of the imagined scenes (r = -.43). The results suggest that schizophrenic patients' impairments in remembering the past and imagining the future are, at least in part, due to deficits in the process of scene construction. The relationships between the characteristics of imagined scenes and positive and negative symptoms could be related to reality monitoring deficits and difficulties in strategic retrieval processes, respectively. Copyright 2010 APA, all rights reserved.
Developmental changes in attention to faces and bodies in static and dynamic scenes.
Stoesz, Brenda M; Jakobson, Lorna S
2014-01-01
Typically developing individuals show a strong visual preference for faces and face-like stimuli; however, this may come at the expense of attending to bodies or to other aspects of a scene. The primary goal of the present study was to provide additional insight into the development of attentional mechanisms that underlie perception of real people in naturalistic scenes. We examined the looking behaviors of typical children, adolescents, and young adults as they viewed static and dynamic scenes depicting one or more people. Overall, participants showed a bias to attend to faces more than on other parts of the scenes. Adding motion cues led to a reduction in the number, but an increase in the average duration of face fixations in single-character scenes. When multiple characters appeared in a scene, motion-related effects were attenuated and participants shifted their gaze from faces to bodies, or made off-screen glances. Children showed the largest effects related to the introduction of motion cues or additional characters, suggesting that they find dynamic faces difficult to process, and are especially prone to look away from faces when viewing complex social scenes-a strategy that could reduce the cognitive and the affective load imposed by having to divide one's attention between multiple faces. Our findings provide new insights into the typical development of social attention during natural scene viewing, and lay the foundation for future work examining gaze behaviors in typical and atypical development.
Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics
Bian, Yusheng; Guo, Feng; Yang, Shujie; Mao, Zhangming; Bachman, Hunter; Tang, Shi-Yang; Ren, Liqiang; Zhang, Bin; Gong, Jianying; Guo, Xiasheng
2017-01-01
The precise manipulation of acoustic fields in microfluidics is of critical importance for the realization of many biomedical applications. Despite the tremendous efforts devoted to the field of acoustofluidics during recent years, dexterous control, with an arbitrary and complex acoustic wavefront, in a prescribed, microscale region is still out of reach. Here, we introduce the concept of acoustofluidic waveguide, a three-dimensional compact configuration that is capable of locally guiding acoustic waves into a fluidic environment. Through comprehensive numerical simulations, we revealed the possibility of forming complex field patterns with defined pressure nodes within a highly localized, pre-determined region inside the microfluidic chamber. We also demonstrated the tunability of the acoustic field profile through controlling the size and shape of the waveguide geometry, as well as the operational frequency of the acoustic wave. The feasibility of the waveguide concept was experimentally verified via microparticle trapping and patterning. Our acoustofluidic waveguiding structures can be readily integrated with other microfluidic configurations and can be further designed into more complex types of passive acoustofluidic devices. The waveguide platform provides a promising alternative to current acoustic manipulation techniques and is useful in many applications such as single-cell analysis, point-of-care diagnostics, and studies of cell–cell interactions. PMID:29358901
Neural representations of contextual guidance in visual search of real-world scenes.
Preston, Tim J; Guo, Fei; Das, Koel; Giesbrecht, Barry; Eckstein, Miguel P
2013-05-01
Exploiting scene context and object-object co-occurrence is critical in guiding eye movements and facilitating visual search, yet the mediating neural mechanisms are unknown. We used functional magnetic resonance imaging while observers searched for target objects in scenes and used multivariate pattern analyses (MVPA) to show that the lateral occipital complex (LOC) can predict the coarse spatial location of observers' expectations about the likely location of 213 different targets absent from the scenes. In addition, we found weaker but significant representations of context location in an area related to the orienting of attention (intraparietal sulcus, IPS) as well as a region related to scene processing (retrosplenial cortex, RSC). Importantly, the degree of agreement among 100 independent raters about the likely location to contain a target object in a scene correlated with LOC's ability to predict the contextual location while weaker but significant effects were found in IPS, RSC, the human motion area, and early visual areas (V1, V3v). When contextual information was made irrelevant to observers' behavioral task, the MVPA analysis of LOC and the other areas' activity ceased to predict the location of context. Thus, our findings suggest that the likely locations of targets in scenes are represented in various visual areas with LOC playing a key role in contextual guidance during visual search of objects in real scenes.
Automatic 3D virtual scenes modeling for multisensors simulation
NASA Astrophysics Data System (ADS)
Latger, Jean; Le Goff, Alain; Cathala, Thierry; Larive, Mathieu
2006-05-01
SEDRIS that stands for Synthetic Environment Data Representation and Interchange Specification is a DoD/DMSO initiative in order to federate and make interoperable 3D mocks up in the frame of virtual reality and simulation. This paper shows an original application of SEDRIS concept for research physical multi sensors simulation, when SEDRIS is more classically known for training simulation. CHORALE (simulated Optronic Acoustic Radar battlefield) is used by the French DGA/DCE (Directorate for Test and Evaluation of the French Ministry of Defense) to perform multi-sensors simulations. CHORALE enables the user to create virtual and realistic multi spectral 3D scenes, and generate the physical signal received by a sensor, typically an IR sensor. In the scope of this CHORALE workshop, French DGA has decided to introduce a SEDRIS based new 3D terrain modeling tool that enables to create automatically 3D databases, directly usable by the physical sensor simulation CHORALE renderers. This AGETIM tool turns geographical source data (including GIS facilities) into meshed geometry enhanced with the sensor physical extensions, fitted to the ray tracing rendering of CHORALE, both for the infrared, electromagnetic and acoustic spectrum. The basic idea is to enhance directly the 2D source level with the physical data, rather than enhancing the 3D meshed level, which is more efficient (rapid database generation) and more reliable (can be generated many times, changing some parameters only). The paper concludes with the last current evolution of AGETIM in the scope mission rehearsal for urban war using sensors. This evolution includes indoor modeling for automatic generation of inner parts of buildings.
Azzopardi, George; Petkov, Nicolai
2014-01-01
The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms. PMID:25126068
Scene-based nonuniformity correction technique for infrared focal-plane arrays.
Liu, Yong-Jin; Zhu, Hong; Zhao, Yi-Gong
2009-04-20
A scene-based nonuniformity correction algorithm is presented to compensate for the gain and bias nonuniformity in infrared focal-plane array sensors, which can be separated into three parts. First, an interframe-prediction method is used to estimate the true scene, since nonuniformity correction is a typical blind-estimation problem and both scene values and detector parameters are unavailable. Second, the estimated scene, along with its corresponding observed data obtained by detectors, is employed to update the gain and the bias by means of a line-fitting technique. Finally, with these nonuniformity parameters, the compensated output of each detector is obtained by computing a very simple formula. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of every module is demonstrated with simulated and real infrared image sequences. Experimental results indicate that the proposed algorithm exhibits a superior correction effect.
The role of memory for visual search in scenes
Võ, Melissa Le-Hoa; Wolfe, Jeremy M.
2014-01-01
Many daily activities involve looking for something. The ease with which these searches are performed often allows one to forget that searching represents complex interactions between visual attention and memory. While a clear understanding exists of how search efficiency will be influenced by visual features of targets and their surrounding distractors or by the number of items in the display, the role of memory in search is less well understood. Contextual cueing studies have shown that implicit memory for repeated item configurations can facilitate search in artificial displays. When searching more naturalistic environments, other forms of memory come into play. For instance, semantic memory provides useful information about which objects are typically found where within a scene, and episodic scene memory provides information about where a particular object was seen the last time a particular scene was viewed. In this paper, we will review work on these topics, with special emphasis on the role of memory in guiding search in organized, real-world scenes. PMID:25684693
The role of memory for visual search in scenes.
Le-Hoa Võ, Melissa; Wolfe, Jeremy M
2015-03-01
Many daily activities involve looking for something. The ease with which these searches are performed often allows one to forget that searching represents complex interactions between visual attention and memory. Although a clear understanding exists of how search efficiency will be influenced by visual features of targets and their surrounding distractors or by the number of items in the display, the role of memory in search is less well understood. Contextual cueing studies have shown that implicit memory for repeated item configurations can facilitate search in artificial displays. When searching more naturalistic environments, other forms of memory come into play. For instance, semantic memory provides useful information about which objects are typically found where within a scene, and episodic scene memory provides information about where a particular object was seen the last time a particular scene was viewed. In this paper, we will review work on these topics, with special emphasis on the role of memory in guiding search in organized, real-world scenes. © 2015 New York Academy of Sciences.
Traffic Signs in Complex Visual Environments
DOT National Transportation Integrated Search
1982-11-01
The effects of sign luminance on detection and recognition of traffic control devices is mediated through contrast with the immediate surround. Additionally, complex visual scenes are known to degrade visual performance with targets well above visual...
Efficient Geometric Sound Propagation Using Visibility Culling
NASA Astrophysics Data System (ADS)
Chandak, Anish
2011-07-01
Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying efficient audio-processing algorithms. We also present the first efficient audio-processing algorithm for scenarios with simultaneously moving source and moving receiver (MS-MR) which incurs less than 25% overhead compared to static source and moving receiver (SS-MR) or moving source and static receiver (MS-SR) scenario.
Acoustic richness modulates the neural networks supporting intelligible speech processing.
Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E
2016-03-01
The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier B.V. All rights reserved.
Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array
Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.
2016-01-01
Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging. PMID:27739472
NASA Technical Reports Server (NTRS)
Olsen, W. A.; Boldman, D.
1978-01-01
Fundamental theories for noise generated by flow over surfaces exist for only a few simple configurations. The role of turbulence in noise generation by complex surfaces should be essentially the same as for simple configurations. Examination of simple-surface theories indicates that the spatial distributions of the mean velocity and turbulence properties are sufficient to define the noise emission. Measurements of these flow properties were made for a number of simple and complex surfaces. The configurations were selected because of their acoustic characteristics are quite different. The spatial distribution of the turbulent flow properties around the complex surfaces and approximate theory are used to locate and describe the noise sources, and to qualitatively explain the varied acoustic characteristics.
Two Distinct Scene-Processing Networks Connecting Vision and Memory.
Baldassano, Christopher; Esteva, Andre; Fei-Fei, Li; Beck, Diane M
2016-01-01
A number of regions in the human brain are known to be involved in processing natural scenes, but the field has lacked a unifying framework for understanding how these different regions are organized and interact. We provide evidence from functional connectivity and meta-analyses for a new organizational principle, in which scene processing relies upon two distinct networks that split the classically defined parahippocampal place area (PPA). The first network of strongly connected regions consists of the occipital place area/transverse occipital sulcus and posterior PPA, which contain retinotopic maps and are not strongly coupled to the hippocampus at rest. The second network consists of the caudal inferior parietal lobule, retrosplenial complex, and anterior PPA, which connect to the hippocampus (especially anterior hippocampus), and are implicated in both visual and nonvisual tasks, including episodic memory and navigation. We propose that these two distinct networks capture the primary functional division among scene-processing regions, between those that process visual features from the current view of a scene and those that connect information from a current scene view with a much broader temporal and spatial context. This new framework for understanding the neural substrates of scene-processing bridges results from many lines of research, and makes specific functional predictions.
NASA Astrophysics Data System (ADS)
Kumar, Jagadish; Ananthakrishna, G.
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.
Kumar, Jagadish; Ananthakrishna, G
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.
Marin, Manuela M.; Leder, Helmut
2013-01-01
Subjective complexity has been found to be related to hedonic measures of preference, pleasantness and beauty, but there is no consensus about the nature of this relationship in the visual and musical domains. Moreover, the affective content of stimuli has been largely neglected so far in the study of complexity but is crucial in many everyday contexts and in aesthetic experiences. We thus propose a cross-domain approach that acknowledges the multidimensional nature of complexity and that uses a wide range of objective complexity measures combined with subjective ratings. In four experiments, we employed pictures of affective environmental scenes, representational paintings, and Romantic solo and chamber music excerpts. Stimuli were pre-selected to vary in emotional content (pleasantness and arousal) and complexity (low versus high number of elements). For each set of stimuli, in a between-subjects design, ratings of familiarity, complexity, pleasantness and arousal were obtained for a presentation time of 25 s from 152 participants. In line with Berlyne’s collative-motivation model, statistical analyses controlling for familiarity revealed a positive relationship between subjective complexity and arousal, and the highest correlations were observed for musical stimuli. Evidence for a mediating role of arousal in the complexity-pleasantness relationship was demonstrated in all experiments, but was only significant for females with regard to music. The direction and strength of the linear relationship between complexity and pleasantness depended on the stimulus type and gender. For environmental scenes, the root mean square contrast measures and measures of compressed file size correlated best with subjective complexity, whereas only edge detection based on phase congruency yielded equivalent results for representational paintings. Measures of compressed file size and event density also showed positive correlations with complexity and arousal in music, which is relevant for the discussion on which aspects of complexity are domain-specific and which are domain-general. PMID:23977295
Marin, Manuela M; Leder, Helmut
2013-01-01
Subjective complexity has been found to be related to hedonic measures of preference, pleasantness and beauty, but there is no consensus about the nature of this relationship in the visual and musical domains. Moreover, the affective content of stimuli has been largely neglected so far in the study of complexity but is crucial in many everyday contexts and in aesthetic experiences. We thus propose a cross-domain approach that acknowledges the multidimensional nature of complexity and that uses a wide range of objective complexity measures combined with subjective ratings. In four experiments, we employed pictures of affective environmental scenes, representational paintings, and Romantic solo and chamber music excerpts. Stimuli were pre-selected to vary in emotional content (pleasantness and arousal) and complexity (low versus high number of elements). For each set of stimuli, in a between-subjects design, ratings of familiarity, complexity, pleasantness and arousal were obtained for a presentation time of 25 s from 152 participants. In line with Berlyne's collative-motivation model, statistical analyses controlling for familiarity revealed a positive relationship between subjective complexity and arousal, and the highest correlations were observed for musical stimuli. Evidence for a mediating role of arousal in the complexity-pleasantness relationship was demonstrated in all experiments, but was only significant for females with regard to music. The direction and strength of the linear relationship between complexity and pleasantness depended on the stimulus type and gender. For environmental scenes, the root mean square contrast measures and measures of compressed file size correlated best with subjective complexity, whereas only edge detection based on phase congruency yielded equivalent results for representational paintings. Measures of compressed file size and event density also showed positive correlations with complexity and arousal in music, which is relevant for the discussion on which aspects of complexity are domain-specific and which are domain-general.
EEG signatures accompanying auditory figure-ground segregation.
Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P; Szerafin, Ágnes; Shinn-Cunningham, Barbara G; Winkler, István
2016-11-01
In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased - i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. Copyright © 2016. Published by Elsevier Inc.
Perfect Undetectable Acoustic Device from Fabry-Pérot Resonances
NASA Astrophysics Data System (ADS)
Chen, Huanyang; Zhou, Yangyang; Zhou, Mengying; Xu, Lin; Liu, Qing Huo
2018-02-01
Transformation acoustics is a method to design novel acoustic devices, while the complexity of the material parameters hinders its progress. In this paper, we analytically present a three-dimensional perfect undetectable acoustic device from Fabry-Pérot resonances and confirm its functionality from Mie theory. Such a mechanism goes beyond the traditional transformation acoustics. In addition, such a reduced version can be realized by holey-structured metamaterials. Our theory paves a way to the implementation of three-dimensional transformation acoustic devices.
Virtual environments for scene of crime reconstruction and analysis
NASA Astrophysics Data System (ADS)
Howard, Toby L. J.; Murta, Alan D.; Gibson, Simon
2000-02-01
This paper describes research conducted in collaboration with Greater Manchester Police (UK), to evalute the utility of Virtual Environments for scene of crime analysis, forensic investigation, and law enforcement briefing and training. We present an illustrated case study of the construction of a high-fidelity virtual environment, intended to match a particular real-life crime scene as closely as possible. We describe and evaluate the combination of several approaches including: the use of the Manchester Scene Description Language for constructing complex geometrical models; the application of a radiosity rendering algorithm with several novel features based on human perceptual consideration; texture extraction from forensic photography; and experiments with interactive walkthroughs and large-screen stereoscopic display of the virtual environment implemented using the MAVERIK system. We also discuss the potential applications of Virtual Environment techniques in the Law Enforcement and Forensic communities.
Using 3D range cameras for crime scene documentation and legal medicine
NASA Astrophysics Data System (ADS)
Cavagnini, Gianluca; Sansoni, Giovanna; Trebeschi, Marco
2009-01-01
Crime scene documentation and legal medicine analysis are part of a very complex process which is aimed at identifying the offender starting from the collection of the evidences on the scene. This part of the investigation is very critical, since the crime scene is extremely volatile, and once it is removed, it can not be precisely created again. For this reason, the documentation process should be as complete as possible, with minimum invasiveness. The use of optical 3D imaging sensors has been considered as a possible aid to perform the documentation step, since (i) the measurement is contactless and (ii) the process required to editing and modeling the 3D data is quite similar to the reverse engineering procedures originally developed for the manufacturing field. In this paper we show the most important results obtained in the experimentation.
An Improved Text Localization Method for Natural Scene Images
NASA Astrophysics Data System (ADS)
Jiang, Mengdi; Cheng, Jianghua; Chen, Minghui; Ku, Xishu
2018-01-01
In order to extract text information effectively from natural scene image with complex background, multi-orientation perspective and multilingual languages, we present a new method based on the improved Stroke Feature Transform (SWT). Firstly, The Maximally Stable Extremal Region (MSER) method is used to detect text candidate regions. Secondly, the SWT algorithm is used in the candidate regions, which can improve the edge detection compared with tradition SWT method. Finally, the Frequency-tuned (FT) visual saliency is introduced to remove non-text candidate regions. The experiment results show that, the method can achieve good robustness for complex background with multi-orientation perspective, various characters and font sizes.
Auditory attention strategy depends on target linguistic properties and spatial configurationa)
McCloy, Daniel R.; Lee, Adrian K. C.
2015-01-01
Whether crossing a busy intersection or attending a large dinner party, listeners sometimes need to attend to multiple spatially distributed sound sources or streams concurrently. How they achieve this is not clear—some studies suggest that listeners cannot truly simultaneously attend to separate streams, but instead combine attention switching with short-term memory to achieve something resembling divided attention. This paper presents two oddball detection experiments designed to investigate whether directing attention to phonetic versus semantic properties of the attended speech impacts listeners' ability to divide their auditory attention across spatial locations. Each experiment uses four spatially distinct streams of monosyllabic words, variation in cue type (providing phonetic or semantic information), and requiring attention to one or two locations. A rapid button-press response paradigm is employed to minimize the role of short-term memory in performing the task. Results show that differences in the spatial configuration of attended and unattended streams interact with linguistic properties of the speech streams to impact performance. Additionally, listeners may leverage phonetic information to make oddball detection judgments even when oddballs are semantically defined. Both of these effects appear to be mediated by the overall complexity of the acoustic scene. PMID:26233011
Xia, Jing; Xu, Buye; Pentony, Shareka; Xu, Jingjing; Swaminathan, Jayaganesh
2018-03-01
Many hearing-aid wearers have difficulties understanding speech in reverberant noisy environments. This study evaluated the effects of reverberation and noise on speech recognition in normal-hearing listeners and hearing-impaired listeners wearing hearing aids. Sixteen typical acoustic scenes with different amounts of reverberation and various types of noise maskers were simulated using a loudspeaker array in an anechoic chamber. Results showed that, across all listening conditions, speech intelligibility of aided hearing-impaired listeners was poorer than normal-hearing counterparts. Once corrected for ceiling effects, the differences in the effects of reverberation on speech intelligibility between the two groups were much smaller. This suggests that, at least, part of the difference in susceptibility to reverberation between normal-hearing and hearing-impaired listeners was due to ceiling effects. Across both groups, a complex interaction between the noise characteristics and reverberation was observed on the speech intelligibility scores. Further fine-grained analyses of the perception of consonants showed that, for both listener groups, final consonants were more susceptible to reverberation than initial consonants. However, differences in the perception of specific consonant features were observed between the groups.
Unplanned Complex Suicide-A Consideration of Multiple Methods.
Ateriya, Navneet; Kanchan, Tanuj; Shekhawat, Raghvendra Singh; Setia, Puneet; Saraf, Ashish
2018-05-01
Detailed death investigations are mandatory to find out the exact cause and manner in non-natural deaths. In this reference, use of multiple methods in suicide poses a challenge for the investigators especially when the choice of methods to cause death is unplanned. There is an increased likelihood that doubts of homicide are raised in cases of unplanned complex suicides. A case of complex suicide is reported where the victim resorted to multiple methods to end his life, and what appeared to be an unplanned variant based on the death scene investigations. A meticulous crime scene examination, interviews of the victim's relatives and other witnesses, and a thorough autopsy are warranted to conclude on the cause and manner of death in all such cases. © 2017 American Academy of Forensic Sciences.
Reconstruction and simplification of urban scene models based on oblique images
NASA Astrophysics Data System (ADS)
Liu, J.; Guo, B.
2014-08-01
We describe a multi-view stereo reconstruction and simplification algorithms for urban scene models based on oblique images. The complexity, diversity, and density within the urban scene, it increases the difficulty to build the city models using the oblique images. But there are a lot of flat surfaces existing in the urban scene. One of our key contributions is that a dense matching algorithm based on Self-Adaptive Patch in view of the urban scene is proposed. The basic idea of matching propagating based on Self-Adaptive Patch is to build patches centred by seed points which are already matched. The extent and shape of the patches can adapt to the objects of urban scene automatically: when the surface is flat, the extent of the patch would become bigger; while the surface is very rough, the extent of the patch would become smaller. The other contribution is that the mesh generated by Graph Cuts is 2-manifold surface satisfied the half edge data structure. It is solved by clustering and re-marking tetrahedrons in s-t graph. The purpose of getting 2- manifold surface is to simply the mesh by edge collapse algorithm which can preserve and stand out the features of buildings.
Is moral beauty different from facial beauty? Evidence from an fMRI study
Wang, Tingting; Mo, Ce; Tan, Li Hai; Cant, Jonathan S.; Zhong, Luojin; Cupchik, Gerald
2015-01-01
Is moral beauty different from facial beauty? Two functional magnetic resonance imaging experiments were performed to answer this question. Experiment 1 investigated the network of moral aesthetic judgments and facial aesthetic judgments. Participants performed aesthetic judgments and gender judgments on both faces and scenes containing moral acts. The conjunction analysis of the contrasts ‘facial aesthetic judgment > facial gender judgment’ and ‘scene moral aesthetic judgment > scene gender judgment’ identified the common involvement of the orbitofrontal cortex (OFC), inferior temporal gyrus and medial superior frontal gyrus, suggesting that both types of aesthetic judgments are based on the orchestration of perceptual, emotional and cognitive components. Experiment 2 examined the network of facial beauty and moral beauty during implicit perception. Participants performed a non-aesthetic judgment task on both faces (beautiful vs common) and scenes (containing morally beautiful vs neutral information). We observed that facial beauty (beautiful faces > common faces) involved both the cortical reward region OFC and the subcortical reward region putamen, whereas moral beauty (moral beauty scenes > moral neutral scenes) only involved the OFC. Moreover, compared with facial beauty, moral beauty spanned a larger-scale cortical network, indicating more advanced and complex cerebral representations characterizing moral beauty. PMID:25298010
ERIC Educational Resources Information Center
Golding, Barry; Campbell, Coral
2009-01-01
In this article, the authors set the scene for this research volume. They sought to emphasize and broaden their interest and concern about their "Learning to be drier" theme in this edition to the 77 per cent of Australians who live within 50 km of the Australian coast, the majority of whom also live in major cities and urban complexes.…
Bednar, Adam; Boland, Francis M; Lalor, Edmund C
2017-03-01
The human ability to localize sound is essential for monitoring our environment and helps us to analyse complex auditory scenes. Although the acoustic cues mediating sound localization have been established, it remains unknown how these cues are represented in human cortex. In particular, it is still a point of contention whether binaural and monaural cues are processed by the same or distinct cortical networks. In this study, participants listened to a sequence of auditory stimuli from different spatial locations while we recorded their neural activity using electroencephalography (EEG). The stimuli were presented over a loudspeaker array, which allowed us to deliver realistic, free-field stimuli in both the horizontal and vertical planes. Using a multivariate classification approach, we showed that it is possible to decode sound source location from scalp-recorded EEG. Robust and consistent decoding was shown for stimuli that provide binaural cues (i.e. Left vs. Right stimuli). Decoding location when only monaural cues were available (i.e. Front vs. Rear and elevational stimuli) was successful for a subset of subjects and showed less consistency. Notably, the spatio-temporal pattern of EEG features that facilitated decoding differed based on the availability of binaural and monaural cues. In particular, we identified neural processing of binaural cues at around 120 ms post-stimulus and found that monaural cues are processed later between 150 and 200 ms. Furthermore, different spatial activation patterns emerged for binaural and monaural cue processing. These spatio-temporal dissimilarities suggest the involvement of separate cortical mechanisms in monaural and binaural acoustic cue processing. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Where's Wally: the influence of visual salience on referring expression generation.
Clarke, Alasdair D F; Elsner, Micha; Rohde, Hannah
2013-01-01
REFERRING EXPRESSION GENERATION (REG) PRESENTS THE CONVERSE PROBLEM TO VISUAL SEARCH: given a scene and a specified target, how does one generate a description which would allow somebody else to quickly and accurately locate the target?Previous work in psycholinguistics and natural language processing has failed to find an important and integrated role for vision in this task. That previous work, which relies largely on simple scenes, tends to treat vision as a pre-process for extracting feature categories that are relevant to disambiguation. However, the visual search literature suggests that some descriptions are better than others at enabling listeners to search efficiently within complex stimuli. This paper presents a study testing whether participants are sensitive to visual features that allow them to compose such "good" descriptions. Our results show that visual properties (salience, clutter, area, and distance) influence REG for targets embedded in images from the Where's Wally? books. Referring expressions for large targets are shorter than those for smaller targets, and expressions about targets in highly cluttered scenes use more words. We also find that participants are more likely to mention non-target landmarks that are large, salient, and in close proximity to the target. These findings identify a key role for visual salience in language production decisions and highlight the importance of scene complexity for REG.
Rolls, Edmund T.; Webb, Tristan J.
2014-01-01
Searching for and recognizing objects in complex natural scenes is implemented by multiple saccades until the eyes reach within the reduced receptive field sizes of inferior temporal cortex (IT) neurons. We analyze and model how the dorsal and ventral visual streams both contribute to this. Saliency detection in the dorsal visual system including area LIP is modeled by graph-based visual saliency, and allows the eyes to fixate potential objects within several degrees. Visual information at the fixated location subtending approximately 9° corresponding to the receptive fields of IT neurons is then passed through a four layer hierarchical model of the ventral cortical visual system, VisNet. We show that VisNet can be trained using a synaptic modification rule with a short-term memory trace of recent neuronal activity to capture both the required view and translation invariances to allow in the model approximately 90% correct object recognition for 4 objects shown in any view across a range of 135° anywhere in a scene. The model was able to generalize correctly within the four trained views and the 25 trained translations. This approach analyses the principles by which complementary computations in the dorsal and ventral visual cortical streams enable objects to be located and recognized in complex natural scenes. PMID:25161619
Subramanian, Ramanathan; Shankar, Divya; Sebe, Nicu; Melcher, David
2014-03-26
A basic question in vision research regards where people look in complex scenes and how this influences their performance in various tasks. Previous studies with static images have demonstrated a close link between where people look and what they remember. Here, we examined the pattern of eye movements when participants watched neutral and emotional clips from Hollywood-style movies. Participants answered multiple-choice memory questions concerning visual and auditory scene details immediately upon viewing 1-min-long neutral or emotional movie clips. Fixations were more narrowly focused for emotional clips, and immediate memory for object details was worse compared to matched neutral scenes, implying preferential attention to emotional events. Although we found the expected correlation between where people looked and what they remembered for neutral clips, this relationship broke down for emotional clips. When participants were subsequently presented with key frames (static images) extracted from the movie clips such that presentation duration of the target objects (TOs) corresponding to the multiple-choice questions was matched and the earlier questions were repeated, more fixations were observed on the TOs, and memory performance also improved significantly, confirming that emotion modulates the relationship between gaze position and memory performance. Finally, in a long-term memory test, old/new recognition performance was significantly better for emotional scenes as compared to neutral scenes. Overall, these results are consistent with the hypothesis that emotional content draws eye fixations and strengthens memory for the scene gist while weakening encoding of peripheral scene details.
Acoustic invisibility cloaks of arbitrary shapes for complex background media
NASA Astrophysics Data System (ADS)
Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping
2016-04-01
We report on the theoretical investigation of the acoustic cloaks working in complex background media in this paper. The constitutive parameters of arbitrary-shape cloaks are derived based on the transformation acoustic theory and coordinate transformation technique. The detailed analysis of boundaries conditions and potential applications of the cloaks are also presented in our work. To overcome the difficulty of achieving the materials with ideal parameters in nature, concentric alternating layered isotropic materials is adopted to approximate the required properties of the cloak. Theoretical design and excellent invisibility are demonstrated by numerical simulations. The inhomogeneous medium and arbitrary-shape acoustic cloaks grow closer to real application and may be a new hot spot in future.
Viewing the dynamics and control of visual attention through the lens of electrophysiology
Woodman, Geoffrey F.
2013-01-01
How we find what we are looking for in complex visual scenes is a seemingly simple ability that has taken half a century to unravel. The first study to use the term visual search showed that as the number of objects in a complex scene increases, observers’ reaction times increase proportionally (Green and Anderson, 1956). This observation suggests that our ability to process the objects in the scenes is limited in capacity. However, if it is known that the target will have a certain feature attribute, for example, that it will be red, then only an increase in the number of red items increases reaction time. This observation suggests that we can control which visual inputs receive the benefit of our limited capacity to recognize the objects, such as those defined by the color red, as the items we seek. The nature of the mechanisms that underlie these basic phenomena in the literature on visual search have been more difficult to definitively determine. In this paper, I discuss how electrophysiological methods have provided us with the necessary tools to understand the nature of the mechanisms that give rise to the effects observed in the first visual search paper. I begin by describing how recordings of event-related potentials from humans and nonhuman primates have shown us how attention is deployed to possible target items in complex visual scenes. Then, I will discuss how event-related potential experiments have allowed us to directly measure the memory representations that are used to guide these deployments of attention to items with target-defining features. PMID:23357579
Sayer, James R; Buonarosa, Mary Lynn
2008-01-01
This study examines the effects of high-visibility garment design on daytime pedestrian conspicuity in work zones. Factors assessed were garment color, amount of background material, pedestrian arm motion, scene complexity, and driver age. The study was conducted in naturalistic conditions on public roads in real traffic. Drivers drove two passes on a 31-km route and indicated when they detected pedestrians outfitted in the fluorescent garments. The locations of the vehicle and the pedestrian were recorded. Detection distances between fluorescent yellow-green and fluorescent red-orange garments were not significantly different, nor were there any significant two-way interactions involving garment color. Pedestrians were detected at longer distances in lower complexity scenes. Arm motion significantly increased detection distances for pedestrians wearing a Class 2 vest, but had little added benefit on detection distances for pedestrians wearing a Class 2 jacket. Daytime detection distances for pedestrians wearing Class 2 or Class 3 garments are longest when the complexity of the surround is low. The more background information a driver has to search through, the longer it is likely to take the driver to locate a pedestrian--even when wearing a high-visibility garment. These findings will provide information to safety garment manufacturers about characteristics of high-visibility safety garments which make them effective for daytime use.
Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas
2014-09-26
pipe at the flange attached to the inner Dewar bottle. The temperature of the gas in the glass tube is controlled by the cryogenic liquid , liquid ...dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is characterized by a sound speed of a few cm...through the illumination of laser light on dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is
Assisting the visually impaired: obstacle detection and warning system by acoustic feedback.
Rodríguez, Alberto; Yebes, J Javier; Alcantarilla, Pablo F; Bergasa, Luis M; Almazán, Javier; Cela, Andrés
2012-12-17
The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system.
Emergent selectivity for task-relevant stimuli in higher-order auditory cortex
Atiani, Serin; David, Stephen V.; Elgueda, Diego; Locastro, Michael; Radtke-Schuller, Susanne; Shamma, Shihab A.; Fritz, Jonathan B.
2014-01-01
A variety of attention-related effects have been demonstrated in primary auditory cortex (A1). However, an understanding of the functional role of higher auditory cortical areas in guiding attention to acoustic stimuli has been elusive. We recorded from neurons in two tonotopic cortical belt areas in the dorsal posterior ectosylvian gyrus (dPEG) of ferrets trained on a simple auditory discrimination task. Neurons in dPEG showed similar basic auditory tuning properties to A1, but during behavior we observed marked differences between these areas. In the belt areas, changes in neuronal firing rate and response dynamics greatly enhanced responses to target stimuli relative to distractors, allowing for greater attentional selection during active listening. Consistent with existing anatomical evidence, the pattern of sensory tuning and behavioral modulation in auditory belt cortex links the spectro-temporal representation of the whole acoustic scene in A1 to a more abstracted representation of task-relevant stimuli observed in frontal cortex. PMID:24742467
Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback
Rodríguez, Alberto; Yebes, J. Javier; Alcantarilla, Pablo F.; Bergasa, Luis M.; Almazán, Javier; Cela, Andrés
2012-01-01
The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system. PMID:23247413
Acoustic Levitation With One Driver
NASA Technical Reports Server (NTRS)
Wang, T. G.; Rudnick, I.; Elleman, D. D.; Stoneburner, J. D.
1985-01-01
Report discusses acoustic levitation in rectangular chamber using one driver mounted at corner. Placement of driver at corner enables it to couple effectively to acoustic modes along all three axes. Use of single driver reduces cost, complexity and weight of levitation system below those of three driver system.
A Stratified Acoustic Model Accounting for Phase Shifts for Underwater Acoustic Networks
Wang, Ping; Zhang, Lin; Li, Victor O. K.
2013-01-01
Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated. PMID:23669708
A stratified acoustic model accounting for phase shifts for underwater acoustic networks.
Wang, Ping; Zhang, Lin; Li, Victor O K
2013-05-13
Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated.
Knight, Rod; Fast, Danya; DeBeck, Kora; Shoveller, Jean; Small, Will
2017-05-02
Urban drug "scenes" have been identified as important risk environments that shape the health of street-entrenched youth. New knowledge is needed to inform policy and programing interventions to help reduce youths' drug scene involvement and related health risks. The aim of this study was to identify how young people envisioned exiting a local, inner-city drug scene in Vancouver, Canada, as well as the individual, social and structural factors that shaped their experiences. Between 2008 and 2016, we draw on 150 semi-structured interviews with 75 street-entrenched youth. We also draw on data generated through ethnographic fieldwork conducted with a subgroup of 25 of these youth between. Youth described that, in order to successfully exit Vancouver's inner city drug scene, they would need to: (a) secure legitimate employment and/or obtain education or occupational training; (b) distance themselves - both physically and socially - from the urban drug scene; and (c) reduce their drug consumption. As youth attempted to leave the scene, most experienced substantial social and structural barriers (e.g., cycling in and out of jail, the need to access services that are centralized within a place that they are trying to avoid), in addition to managing complex individual health issues (e.g., substance dependence). Factors that increased youth's capacity to successfully exit the drug scene included access to various forms of social and cultural capital operating outside of the scene, including supportive networks of friends and/or family, as well as engagement with addiction treatment services (e.g., low-threshold access to methadone) to support cessation or reduction of harmful forms of drug consumption. Policies and programming interventions that can facilitate young people's efforts to reduce engagement with Vancouver's inner-city drug scene are critically needed, including meaningful educational and/or occupational training opportunities, 'low threshold' addiction treatment services, as well as access to supportive housing outside of the scene.
Flies and humans share a motion estimation strategy that exploits natural scene statistics
Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.
2014-01-01
Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225
Scene analysis for effective visual search in rough three-dimensional-modeling scenes
NASA Astrophysics Data System (ADS)
Wang, Qi; Hu, Xiaopeng
2016-11-01
Visual search is a fundamental technology in the computer vision community. It is difficult to find an object in complex scenes when there exist similar distracters in the background. We propose a target search method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging model. We give the definition of salience of objects (or features) and explain the way that salience measurements of objects are calculated. Also, we present one type of search path that guides to the target through salience objects. Along the search path, when the previous objects are localized, the search region of each subsequent object decreases, which is calculated through imaging model and an optimization method. The experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from distracters containing similar visual features with the target, leading to an improvement of search speed by over 50%.
2015-09-30
Clark (2014), "Using High Performance Computing to Explore Large Complex Bioacoustic Soundscapes : Case Study for Right Whale Acoustics," Procedia...34Using High Performance Computing to Explore Large Complex Bioacoustic Soundscapes : Case Study for Right Whale Acoustics," Procedia Computer Science 20
Speech Perception in Complex Acoustic Environments: Developmental Effects
ERIC Educational Resources Information Center
Leibold, Lori J.
2017-01-01
Purpose: The ability to hear and understand speech in complex acoustic environments follows a prolonged time course of development. The purpose of this article is to provide a general overview of the literature describing age effects in susceptibility to auditory masking in the context of speech recognition, including a summary of findings related…
Flight of the bumble bee: Buzzes predict pollination services.
Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace
2017-01-01
Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines.
Autonomous UAV-Based Mapping of Large-Scale Urban Firefights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snarski, S; Scheibner, K F; Shaw, S
2006-03-09
This paper describes experimental results from a live-fire data collect designed to demonstrate the ability of IR and acoustic sensing systems to detect and map high-volume gunfire events from tactical UAVs. The data collect supports an exploratory study of the FightSight concept in which an autonomous UAV-based sensor exploitation and decision support capability is being proposed to provide dynamic situational awareness for large-scale battalion-level firefights in cluttered urban environments. FightSight integrates IR imagery, acoustic data, and 3D scene context data with prior time information in a multi-level, multi-step probabilistic-based fusion process to reliably locate and map the array of urbanmore » firing events and firepower movements and trends associated with the evolving urban battlefield situation. Described here are sensor results from live-fire experiments involving simultaneous firing of multiple sub/super-sonic weapons (2-AK47, 2-M16, 1 Beretta, 1 Mortar, 1 rocket) with high optical and acoustic clutter at ranges up to 400m. Sensor-shooter-target configurations and clutter were designed to simulate UAV sensing conditions for a high-intensity firefight in an urban environment. Sensor systems evaluated were an IR bullet tracking system by Lawrence Livermore National Laboratory (LLNL) and an acoustic gunshot detection system by Planning Systems, Inc. (PSI). The results demonstrate convincingly the ability for the LLNL and PSI sensor systems to accurately detect, separate, and localize multiple shooters and the associated shot directions during a high-intensity firefight (77 rounds in 5 sec) in a high acoustic and optical clutter environment with no false alarms. Preliminary fusion processing was also examined that demonstrated an ability to distinguish co-located shooters (shooter density), range to <0.5 m accuracy at 400m, and weapon type.« less
Flight of the bumble bee: Buzzes predict pollination services
Heise, David; Schul, Johannes; Geib, Jennifer C.; Galen, Candace
2017-01-01
Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30–52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines. PMID:28591213
Parahippocampal and retrosplenial contributions to human spatial navigation
Epstein, Russell A.
2010-01-01
Spatial navigation is a core cognitive ability in humans and animals. Neuroimaging studies have identified two functionally-defined brain regions that activate during navigational tasks and also during passive viewing of navigationally-relevant stimuli such as environmental scenes: the parahippocampal place area (PPA) and the retrosplenial complex (RSC). Recent findings indicate that the PPA and RSC play distinct and complementary roles in spatial navigation, with the PPA more concerned with representation of the local visual scene and RSC more concerned with situating the scene within the broader spatial environment. These findings are a first step towards understanding the separate components of the cortical network that mediates spatial navigation in humans. PMID:18760955
How emotion leads to selective memory: neuroimaging evidence.
Waring, Jill D; Kensinger, Elizabeth A
2011-06-01
Often memory for emotionally arousing items is enhanced relative to neutral items within complex visual scenes, but this enhancement can come at the expense of memory for peripheral background information. This 'trade-off' effect has been elicited by a range of stimulus valence and arousal levels, yet the magnitude of the effect has been shown to vary with these factors. Using fMRI, this study investigated the neural mechanisms underlying this selective memory for emotional scenes. Further, we examined how these processes are affected by stimulus dimensions of arousal and valence. The trade-off effect in memory occurred for low to high arousal positive and negative scenes. There was a core emotional memory network associated with the trade-off among all the emotional scene types, however, there were additional regions that were uniquely associated with the trade-off for each individual scene type. These results suggest that there is a common network of regions associated with the emotional memory trade-off effect, but that valence and arousal also independently affect the neural activity underlying the effect. Copyright © 2011 Elsevier Ltd. All rights reserved.
How emotion leads to selective memory: Neuroimaging evidence
Waring, Jill D.; Kensinger, Elizabeth A.
2011-01-01
Often memory for emotionally arousing items is enhanced relative to neutral items within complex visual scenes, but this enhancement can come at the expense of memory for peripheral background information. This ‘trade-off’ effect has been elicited by a range of stimulus valence and arousal levels, yet the magnitude of the effect has been shown to vary with these factors. Using fMRI, this study investigated the neural mechanisms underlying this selective memory for emotional scenes. Further, we examined how these processes are affected by stimulus dimensions of arousal and valence. The trade-off effect in memory occurred for low to high arousal positive and negative scenes. There was a core emotional memory network associated with the trade-off among all the emotional scene types, however there were additional regions that were uniquely associated with the trade-off for each individual scene type. These results suggest that there is a common network of regions associated with the emotional memory tradeoff effect, but that valence and arousal also independently affect the neural activity underlying the effect. PMID:21414333
LivePhantom: Retrieving Virtual World Light Data to Real Environments.
Kolivand, Hoshang; Billinghurst, Mark; Sunar, Mohd Shahrizal
2016-01-01
To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems.
LivePhantom: Retrieving Virtual World Light Data to Real Environments
2016-01-01
To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera’s position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems. PMID:27930663
Sensor-Topology Based Simplicial Complex Reconstruction from Mobile Laser Scanning
NASA Astrophysics Data System (ADS)
Guinard, S.; Vallet, B.
2018-05-01
We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D point clouds from Mobile Laser Scanning (MLS). Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.
Intrinsic dimensionality predicts the saliency of natural dynamic scenes.
Vig, Eleonora; Dorr, Michael; Martinetz, Thomas; Barth, Erhardt
2012-06-01
Since visual attention-based computer vision applications have gained popularity, ever more complex, biologically inspired models seem to be needed to predict salient locations (or interest points) in naturalistic scenes. In this paper, we explore how far one can go in predicting eye movements by using only basic signal processing, such as image representations derived from efficient coding principles, and machine learning. To this end, we gradually increase the complexity of a model from simple single-scale saliency maps computed on grayscale videos to spatiotemporal multiscale and multispectral representations. Using a large collection of eye movements on high-resolution videos, supervised learning techniques fine-tune the free parameters whose addition is inevitable with increasing complexity. The proposed model, although very simple, demonstrates significant improvement in predicting salient locations in naturalistic videos over four selected baseline models and two distinct data labeling scenarios.
Panel acoustic contribution analysis.
Wu, Sean F; Natarajan, Logesh Kumar
2013-02-01
Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.
Air Force Laboratory’s 2005 Technology Milestones
2006-01-01
Computational materials science methods can benefit the design and property prediction of complex real-world materials. With these models , scientists and...Warfighter Page Air High - Frequency Acoustic System...800) 203-6451 High - Frequency Acoustic System Payoff Scientists created the High - Frequency Acoustic Suppression Technology (HiFAST) airflow control
Santangelo, Valerio; Di Francesco, Simona Arianna; Mastroberardino, Serena; Macaluso, Emiliano
2015-12-01
The Brief presentation of a complex scene entails that only a few objects can be selected, processed indepth, and stored in memory. Both low-level sensory salience and high-level context-related factors (e.g., the conceptual match/mismatch between objects and scene context) contribute to this selection process, but how the interplay between these factors affects memory encoding is largely unexplored. Here, during fMRI we presented participants with pictures of everyday scenes. After a short retention interval, participants judged the position of a target object extracted from the initial scene. The target object could be either congruent or incongruent with the context of the scene, and could be located in a region of the image with maximal or minimal salience. Behaviourally, we found a reduced impact of saliency on visuospatial working memory performance when the target was out-of-context. Encoding-related fMRI results showed that context-congruent targets activated dorsoparietal regions, while context-incongruent targets de-activated the ventroparietal cortex. Saliency modulated activity both in dorsal and ventral regions, with larger context-related effects for salient targets. These findings demonstrate the joint contribution of knowledge-based and saliency-driven attention for memory encoding, highlighting a dissociation between dorsal and ventral parietal regions. © 2015 Wiley Periodicals, Inc.
Is moral beauty different from facial beauty? Evidence from an fMRI study.
Wang, Tingting; Mo, Lei; Mo, Ce; Tan, Li Hai; Cant, Jonathan S; Zhong, Luojin; Cupchik, Gerald
2015-06-01
Is moral beauty different from facial beauty? Two functional magnetic resonance imaging experiments were performed to answer this question. Experiment 1 investigated the network of moral aesthetic judgments and facial aesthetic judgments. Participants performed aesthetic judgments and gender judgments on both faces and scenes containing moral acts. The conjunction analysis of the contrasts 'facial aesthetic judgment > facial gender judgment' and 'scene moral aesthetic judgment > scene gender judgment' identified the common involvement of the orbitofrontal cortex (OFC), inferior temporal gyrus and medial superior frontal gyrus, suggesting that both types of aesthetic judgments are based on the orchestration of perceptual, emotional and cognitive components. Experiment 2 examined the network of facial beauty and moral beauty during implicit perception. Participants performed a non-aesthetic judgment task on both faces (beautiful vs common) and scenes (containing morally beautiful vs neutral information). We observed that facial beauty (beautiful faces > common faces) involved both the cortical reward region OFC and the subcortical reward region putamen, whereas moral beauty (moral beauty scenes > moral neutral scenes) only involved the OFC. Moreover, compared with facial beauty, moral beauty spanned a larger-scale cortical network, indicating more advanced and complex cerebral representations characterizing moral beauty. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Integrating mechanisms of visual guidance in naturalistic language production.
Coco, Moreno I; Keller, Frank
2015-05-01
Situated language production requires the integration of visual attention and linguistic processing. Previous work has not conclusively disentangled the role of perceptual scene information and structural sentence information in guiding visual attention. In this paper, we present an eye-tracking study that demonstrates that three types of guidance, perceptual, conceptual, and structural, interact to control visual attention. In a cued language production experiment, we manipulate perceptual (scene clutter) and conceptual guidance (cue animacy) and measure structural guidance (syntactic complexity of the utterance). Analysis of the time course of language production, before and during speech, reveals that all three forms of guidance affect the complexity of visual responses, quantified in terms of the entropy of attentional landscapes and the turbulence of scan patterns, especially during speech. We find that perceptual and conceptual guidance mediate the distribution of attention in the scene, whereas structural guidance closely relates to scan pattern complexity. Furthermore, the eye-voice span of the cued object and its perceptual competitor are similar; its latency mediated by both perceptual and structural guidance. These results rule out a strict interpretation of structural guidance as the single dominant form of visual guidance in situated language production. Rather, the phase of the task and the associated demands of cross-modal cognitive processing determine the mechanisms that guide attention.
Two behavioral tests, locomotor activity and the acoustic startle response (ASR), were utilized to test for dose-addition of cismethrin, a Type I, or deltamethrin, a Type II pyrethroid, with compounds active to the gamma-aminobutryic acid (GABA) receptor complex (picrotoxin, musc...
Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan
2017-02-20
In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur Bleeker, PNNL
2015-03-11
SVF is a full featured OpenGL 3d framework that allows for rapid creation of complex visualizations. The SVF framework handles much of the lifecycle and complex tasks required for a 3d visualization. Unlike a game framework SVF was designed to use fewer resources, work well in a windowed environment, and only render when necessary. The scene also takes advantage of multiple threads to free up the UI thread as much as possible. Shapes (actors) in the scene are created by adding or removing functionality (through support objects) during runtime. This allows a highly flexible and dynamic means of creating highlymore » complex actors without the code complexity (it also helps overcome the lack of multiple inheritance in Java.) All classes are highly customizable and there are abstract classes which are intended to be subclassed to allow a developer to create more complex and highly performant actors. There are multiple demos included in the framework to help the developer get started and shows off nearly all of the functionality. Some simple shapes (actors) are already created for you such as text, bordered text, radial text, text area, complex paths, NURBS paths, cube, disk, grid, plane, geometric shapes, and volumetric area. It also comes with various camera types for viewing that can be dragged, zoomed, and rotated. Picking or selecting items in the scene can be accomplished in various ways depending on your needs (raycasting or color picking.) The framework currently has functionality for tooltips, animation, actor pools, color gradients, 2d physics, text, 1d/2d/3d textures, children, blending, clipping planes, view frustum culling, custom shaders, and custom actor states« less
Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.
Andrews, T J; Coppola, D M
1999-08-01
Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.
NASA Astrophysics Data System (ADS)
Keane, Tommy P.; Saber, Eli; Rhody, Harvey; Savakis, Andreas; Raj, Jeffrey
2012-04-01
Contemporary research in automated panorama creation utilizes camera calibration or extensive knowledge of camera locations and relations to each other to achieve successful results. Research in image registration attempts to restrict these same camera parameters or apply complex point-matching schemes to overcome the complications found in real-world scenarios. This paper presents a novel automated panorama creation algorithm by developing an affine transformation search based on maximized mutual information (MMI) for region-based registration. Standard MMI techniques have been limited to applications with airborne/satellite imagery or medical images. We show that a novel MMI algorithm can approximate an accurate registration between views of realistic scenes of varying depth distortion. The proposed algorithm has been developed using stationary, color, surveillance video data for a scenario with no a priori camera-to-camera parameters. This algorithm is robust for strict- and nearly-affine-related scenes, while providing a useful approximation for the overlap regions in scenes related by a projective homography or a more complex transformation, allowing for a set of efficient and accurate initial conditions for pixel-based registration.
Salient contour extraction from complex natural scene in night vision image
NASA Astrophysics Data System (ADS)
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lian-fa
2014-03-01
The theory of center-surround interaction in non-classical receptive field can be applied in night vision information processing. In this work, an optimized compound receptive field modulation method is proposed to extract salient contour from complex natural scene in low-light-level (LLL) and infrared images. The kernel idea is that multi-feature analysis can recognize the inhomogeneity in modulatory coverage more accurately and that center and surround with the grouping structure satisfying Gestalt rule deserves high connection-probability. Computationally, a multi-feature contrast weighted inhibition model is presented to suppress background and lower mutual inhibition among contour elements; a fuzzy connection facilitation model is proposed to achieve the enhancement of contour response, the connection of discontinuous contour and the further elimination of randomly distributed noise and texture; a multi-scale iterative attention method is designed to accomplish dynamic modulation process and extract contours of targets in multi-size. This work provides a series of biologically motivated computational visual models with high-performance for contour detection from cluttered scene in night vision images.
Complexity matching in dyadic conversation.
Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T
2014-12-01
Recent studies of dyadic interaction have examined phenomena of synchronization, entrainment, alignment, and convergence. All these forms of behavioral matching have been hypothesized to play a supportive role in establishing coordination and common ground between interlocutors. In the present study, evidence is found for a new kind of coordination termed complexity matching. Temporal dynamics in conversational speech signals were analyzed through time series of acoustic onset events. Timing in periods of acoustic energy was found to exhibit behavioral matching that reflects complementary timing in turn-taking. In addition, acoustic onset times were found to exhibit power law clustering across a range of timescales, and these power law functions were found to exhibit complexity matching that is distinct from behavioral matching. Complexity matching is discussed in terms of interactive alignment and other theoretical principles that lead to new hypotheses about information exchange in dyadic conversation and interaction in general. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Listeners' expectation of room acoustical parameters based on visual cues
NASA Astrophysics Data System (ADS)
Valente, Daniel L.
Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audio-visual study, in which participants are instructed to make spatial congruency and quantity judgments in dynamic cross-modal environments. The results of these psychophysical tests suggest the importance of consilient audio-visual presentation to the legibility of an auditory scene. Several studies have looked into audio-visual interaction in room perception in recent years, but these studies rely on static images, speech signals, or photographs alone to represent the visual scene. Building on these studies, the aim is to propose a testing method that uses monochromatic compositing (blue-screen technique) to position a studio recording of a musical performance in a number of virtual acoustical environments and ask subjects to assess these environments. In the first experiment of the study, video footage was taken from five rooms varying in physical size from a small studio to a small performance hall. Participants were asked to perceptually align two distinct acoustical parameters---early-to-late reverberant energy ratio and reverberation time---of two solo musical performances in five contrasting visual environments according to their expectations of how the room should sound given its visual appearance. In the second experiment in the study, video footage shot from four different listening positions within a general-purpose space was coupled with sounds derived from measured binaural impulse responses (IRs). The relationship between the presented image, sound, and virtual receiver position was examined. It was found that many visual cues caused different perceived events of the acoustic environment. This included the visual attributes of the space in which the performance was located as well as the visual attributes of the performer. The addressed visual makeup of the performer included: (1) an actual video of the performance, (2) a surrogate image of the performance, for example a loudspeaker's image reproducing the performance, (3) no visual image of the performance (empty room), or (4) a multi-source visual stimulus (actual video of the performance coupled with two images of loudspeakers positioned to the left and right of the performer). For this experiment, perceived auditory events of sound were measured in terms of two subjective spatial metrics: Listener Envelopment (LEV) and Apparent Source Width (ASW) These metrics were hypothesized to be dependent on the visual imagery of the presented performance. Data was also collected by participants matching direct and reverberant sound levels for the presented audio-visual scenes. In the final experiment, participants judged spatial expectations of an ensemble of musicians presented in the five physical spaces from Experiment 1. Supporting data was accumulated in two stages. First, participants were given an audio-visual matching test, in which they were instructed to align the auditory width of a performing ensemble to a varying set of audio and visual cues. In the second stage, a conjoint analysis design paradigm was explored to extrapolate the relative magnitude of explored audio-visual factors in affecting three assessed response criteria: Congruency (the perceived match-up of the auditory and visual cues in the assessed performance), ASW and LEV. Results show that both auditory and visual factors affect the collected responses, and that the two sensory modalities coincide in distinct interactions. This study reveals participant resiliency in the presence of forced auditory-visual mismatch: Participants are able to adjust the acoustic component of the cross-modal environment in a statistically similar way despite randomized starting values for the monitored parameters. Subjective results of the experiments are presented along with objective measurements for verification.
Multispectral Terrain Background Simulation Techniques For Use In Airborne Sensor Evaluation
NASA Astrophysics Data System (ADS)
Weinberg, Michael; Wohlers, Ronald; Conant, John; Powers, Edward
1988-08-01
A background simulation code developed at Aerodyne Research, Inc., called AERIE is designed to reflect the major sources of clutter that are of concern to staring and scanning sensors of the type being considered for various airborne threat warning (both aircraft and missiles) sensors. The code is a first principles model that could be used to produce a consistent image of the terrain for various spectral bands, i.e., provide the proper scene correlation both spectrally and spatially. The code utilizes both topographic and cultural features to model terrain, typically from DMA data, with a statistical overlay of the critical underlying surface properties (reflectance, emittance, and thermal factors) to simulate the resulting texture in the scene. Strong solar scattering from water surfaces is included with allowance for wind driven surface roughness. Clouds can be superimposed on the scene using physical cloud models and an analytical representation of the reflectivity obtained from scattering off spherical particles. The scene generator is augmented by collateral codes that allow for the generation of images at finer resolution. These codes provide interpolation of the basic DMA databases using fractal procedures that preserve the high frequency power spectral density behavior of the original scene. Scenes are presented illustrating variations in altitude, radiance, resolution, material, thermal factors, and emissivities. The basic models utilized for simulation of the various scene components and various "engineering level" approximations are incorporated to reduce the computational complexity of the simulation.
Generation of binary holograms for deep scenes captured with a camera and a depth sensor
NASA Astrophysics Data System (ADS)
Leportier, Thibault; Park, Min-Chul
2017-01-01
This work presents binary hologram generation from images of a real object acquired from a Kinect sensor. Since hologram calculation from a point-cloud or polygon model presents a heavy computational burden, we adopted a depth-layer approach to generate the holograms. This method enables us to obtain holographic data of large scenes quickly. Our investigations focus on the performance of different methods, iterative and noniterative, to convert complex holograms into binary format. Comparisons were performed to examine the reconstruction of the binary holograms at different depths. We also propose to modify the direct binary search algorithm to take into account several reference image planes. Then, deep scenes featuring multiple planes of interest can be reconstructed with better efficiency.
Text String Detection from Natural Scenes by Structure-based Partition and Grouping
Yi, Chucai; Tian, YingLi
2012-01-01
Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) Image partition to find text character candidates based on local gradient features and color uniformity of character components. 2) Character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method, and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in non-horizontal orientations. PMID:21411405
Text string detection from natural scenes by structure-based partition and grouping.
Yi, Chucai; Tian, YingLi
2011-09-01
Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from a complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) image partition to find text character candidates based on local gradient features and color uniformity of character components and 2) character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset, which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in nonhorizontal orientations.
Video-assisted segmentation of speech and audio track
NASA Astrophysics Data System (ADS)
Pandit, Medha; Yusoff, Yusseri; Kittler, Josef; Christmas, William J.; Chilton, E. H. S.
1999-08-01
Video database research is commonly concerned with the storage and retrieval of visual information invovling sequence segmentation, shot representation and video clip retrieval. In multimedia applications, video sequences are usually accompanied by a sound track. The sound track contains potential cues to aid shot segmentation such as different speakers, background music, singing and distinctive sounds. These different acoustic categories can be modeled to allow for an effective database retrieval. In this paper, we address the problem of automatic segmentation of audio track of multimedia material. This audio based segmentation can be combined with video scene shot detection in order to achieve partitioning of the multimedia material into semantically significant segments.
Generation of binary holograms with a Kinect sensor for a high speed color holographic display
NASA Astrophysics Data System (ADS)
Leportier, Thibault; Park, Min-Chul; Yano, Sumio; Son, Jung-Young
2017-05-01
The Kinect sensor is a device that enables to capture a real scene with a camera and a depth sensor. A virtual model of the scene can then be obtained with a point cloud representation. A complex hologram can then be computed. However, complex data cannot be used directly because display devices cannot handle amplitude and phase modulation at the same time. Binary holograms are commonly used since they present several advantages. Among the methods that were proposed to convert holograms into a binary format, the direct-binary search (DBS) not only gives the best performance, it also offers the possibility to choose the display parameters of the binary hologram differently than the original complex hologram. Since wavelength and reconstruction distance can be modified, compensation of chromatic aberrations can be handled. In this study, we examine the potential of DBS for RGB holographic display.
Acoustic reciprocity: An extension to spherical harmonics domain.
Samarasinghe, Prasanga; Abhayapala, Thushara D; Kellermann, Walter
2017-10-01
Acoustic reciprocity is a fundamental property of acoustic wavefields that is commonly used to simplify the measurement process of many practical applications. Traditionally, the reciprocity theorem is defined between a monopole point source and a point receiver. Intuitively, it must apply to more complex transducers than monopoles. In this paper, the authors formulate the acoustic reciprocity theory in the spherical harmonics domain for directional sources and directional receivers with higher order directivity patterns.
Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan
2017-01-01
In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequency-domain and achieves computational complexity reduction. PMID:28230763
Fusion of monocular cues to detect man-made structures in aerial imagery
NASA Technical Reports Server (NTRS)
Shufelt, Jefferey; Mckeown, David M.
1991-01-01
The extraction of buildings from aerial imagery is a complex problem for automated computer vision. It requires locating regions in a scene that possess properties distinguishing them as man-made objects as opposed to naturally occurring terrain features. It is reasonable to assume that no single detection method can correctly delineate or verify buildings in every scene. A cooperative-methods paradigm is useful in approaching the building extraction problem. Using this paradigm, each extraction technique provides information which can be added or assimilated into an overall interpretation of the scene. Thus, the main objective is to explore the development of computer vision system that integrates the results of various scene analysis techniques into an accurate and robust interpretation of the underlying three dimensional scene. The problem of building hypothesis fusion in aerial imagery is discussed. Building extraction techniques are briefly surveyed, including four building extraction, verification, and clustering systems. A method for fusing the symbolic data generated by these systems is described, and applied to monocular image and stereo image data sets. Evaluation methods for the fusion results are described, and the fusion results are analyzed using these methods.
Wiltshire, Patricia E J; Hawksworth, David L; Webb, Judy A; Edwards, Kevin J
2015-09-01
The body of a murdered woman was found on the planted periphery of a busy roundabout in Dundee, United Kingdom. A suspect was apprehended and his footwear yielded a similar palynological (botanical and mycological) profile to that obtained from the ground and vegetation of the crime scene, and to that of the victim's clothing. The sources of palynomorphs at the roundabout were the in situ vegetation, and macerated woody mulch which had been laid on the ground surface. The degree of rarity of individual forensic markers, the complexity of the overall profile, and the application of both botanical and mycological expertise, led to a high level of resolution in the results, enabling the exhibits to be linked to the crime scene. The suspect was convicted of murder. The interpretation of the results allowed conclusions which added to the list of essential protocols for crime scene sampling as well the requirement for advanced expertise in identification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Compressed digital holography: from micro towards macro
NASA Astrophysics Data System (ADS)
Schretter, Colas; Bettens, Stijn; Blinder, David; Pesquet-Popescu, Béatrice; Cagnazzo, Marco; Dufaux, Frédéric; Schelkens, Peter
2016-09-01
signal processing methods from software-driven computer engineering and applied mathematics. The compressed sensing theory in particular established a practical framework for reconstructing the scene content using few linear combinations of complex measurements and a sparse prior for regularizing the solution. Compressed sensing found direct applications in digital holography for microscopy. Indeed, the wave propagation phenomenon in free space mixes in a natural way the spatial distribution of point sources from the 3-dimensional scene. As the 3-dimensional scene is mapped to a 2-dimensional hologram, the hologram samples form a compressed representation of the scene as well. This overview paper discusses contributions in the field of compressed digital holography at the micro scale. Then, an outreach on future extensions towards the real-size macro scale is discussed. Thanks to advances in sensor technologies, increasing computing power and the recent improvements in sparse digital signal processing, holographic modalities are on the verge of practical high-quality visualization at a macroscopic scale where much higher resolution holograms must be acquired and processed on the computer.
Navigable points estimation for mobile robots using binary image skeletonization
NASA Astrophysics Data System (ADS)
Martinez S., Fernando; Jacinto G., Edwar; Montiel A., Holman
2017-02-01
This paper describes the use of image skeletonization for the estimation of all the navigable points, inside a scene of mobile robots navigation. Those points are used for computing a valid navigation path, using standard methods. The main idea is to find the middle and the extreme points of the obstacles in the scene, taking into account the robot size, and create a map of navigable points, in order to reduce the amount of information for the planning algorithm. Those points are located by means of the skeletonization of a binary image of the obstacles and the scene background, along with some other digital image processing algorithms. The proposed algorithm automatically gives a variable number of navigable points per obstacle, depending on the complexity of its shape. As well as, the way how the algorithm can change some of their parameters in order to change the final number of the resultant key points is shown. The results shown here were obtained applying different kinds of digital image processing algorithms on static scenes.
The lawful imprecision of human surface tilt estimation in natural scenes
2018-01-01
Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. PMID:29384477
The lawful imprecision of human surface tilt estimation in natural scenes.
Kim, Seha; Burge, Johannes
2018-01-31
Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. © 2018, Kim et al.
Development of High Data Rate Acoustic Multiple-Input/Multiple-Output Modems
2015-09-30
communication capabilities of underwater platforms and facilitate real-time adaptive operations in the ocean. OBJECTIVES The ...signaling at the transmitter and low-complexity time reversal processing at the receiver. APPROACH Underwater acoustic (UWA) communication is useful...digital communications in shallow water environments. The advancement has direct impacts on defense appliations since underwater acoustic modems
3D Reasoning from Blocks to Stability.
Zhaoyin Jia; Gallagher, Andrew C; Saxena, Ashutosh; Chen, Tsuhan
2015-05-01
Objects occupy physical space and obey physical laws. To truly understand a scene, we must reason about the space that objects in it occupy, and how each objects is supported stably by each other. In other words, we seek to understand which objects would, if moved, cause other objects to fall. This 3D volumetric reasoning is important for many scene understanding tasks, ranging from segmentation of objects to perception of a rich 3D, physically well-founded, interpretations of the scene. In this paper, we propose a new algorithm to parse a single RGB-D image with 3D block units while jointly reasoning about the segments, volumes, supporting relationships, and object stability. Our algorithm is based on the intuition that a good 3D representation of the scene is one that fits the depth data well, and is a stable, self-supporting arrangement of objects (i.e., one that does not topple). We design an energy function for representing the quality of the block representation based on these properties. Our algorithm fits 3D blocks to the depth values corresponding to image segments, and iteratively optimizes the energy function. Our proposed algorithm is the first to consider stability of objects in complex arrangements for reasoning about the underlying structure of the scene. Experimental results show that our stability-reasoning framework improves RGB-D segmentation and scene volumetric representation.
Moving through a multiplex holographic scene
NASA Astrophysics Data System (ADS)
Mrongovius, Martina
2013-02-01
This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.
Collet, Anne-Claire; Fize, Denis; VanRullen, Rufin
2015-01-01
Rapid visual categorization is a crucial ability for survival of many animal species, including monkeys and humans. In real conditions, objects (either animate or inanimate) are never isolated but embedded in a complex background made of multiple elements. It has been shown in humans and monkeys that the contextual background can either enhance or impair object categorization, depending on context/object congruency (for example, an animal in a natural vs. man-made environment). Moreover, a scene is not only a collection of objects; it also has global physical features (i.e phase and amplitude of Fourier spatial frequencies) which help define its gist. In our experiment, we aimed to explore and compare the contribution of the amplitude spectrum of scenes in the context-object congruency effect in monkeys and humans. We designed a rapid visual categorization task, Animal versus Non-Animal, using as contexts both real scenes photographs and noisy backgrounds built from the amplitude spectrum of real scenes but with randomized phase spectrum. We showed that even if the contextual congruency effect was comparable in both species when the context was a real scene, it differed when the foreground object was surrounded by a noisy background: in monkeys we found a similar congruency effect in both conditions, but in humans the congruency effect was absent (or even reversed) when the context was a noisy background. PMID:26207915
Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval.
Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano
2012-10-01
Episodic memory provides information about the "when" of events as well as "what" and "where" they happened. Using functional imaging, we investigated the domain specificity of retrieval-related processes following encoding of complex, naturalistic events. Subjects watched a 42-min TV episode, and 24h later, made discriminative choices of scenes from the clip during fMRI. Subjects were presented with two scenes and required to either choose the scene that happened earlier in the film (Temporal), or the scene with a correct spatial arrangement (Spatial), or the scene that had been shown (Object). We identified a retrieval network comprising the precuneus, lateral and dorsal parietal cortex, middle frontal and medial temporal areas. The precuneus and angular gyrus are associated with temporal retrieval, with precuneal activity correlating negatively with temporal distance between two happenings at encoding. A dorsal fronto-parietal network engages during spatial retrieval, while antero-medial temporal regions activate during object-related retrieval. We propose that access to episodic memory traces involves different processes depending on task requirements. These include memory-searching within an organised knowledge structure in the precuneus (Temporal task), online maintenance of spatial information in dorsal fronto-parietal cortices (Spatial task) and combining scene-related spatial and non-spatial information in the hippocampus (Object task). Our findings support the proposal of process-specific dissociations of retrieval. Copyright © 2012 Elsevier Ltd. All rights reserved.
Functional anatomy of temporal organisation and domain-specificity of episodic memory retrieval
Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano
2013-01-01
Episodic memory provides information about the “when” of events as well as “what” and “where” they happened. Using functional imaging, we investigated the domain specificity of retrieval-related processes following encoding of complex, naturalistic events. Subjects watched a 42-min TV episode, and 24 h later, made discriminative choices of scenes from the clip during fMRI. Subjects were presented with two scenes and required to either choose the scene that happened earlier in the film (Temporal), or the scene with a correct spatial arrangement (Spatial), or the scene that had been shown (Object). We identified a retrieval network comprising the precuneus, lateral and dorsal parietal cortex, middle frontal and medial temporal areas. The precuneus and angular gyrus are associated with temporal retrieval, with precuneal activity correlating negatively with temporal distance between two happenings at encoding. A dorsal fronto-parietal network engages during spatial retrieval, while antero-medial temporal regions activate during object-related retrieval. We propose that access to episodic memory traces involves different processes depending on task requirements. These include memory-searching within an organised knowledge structure in the precuneus (Temporal task), online maintenance of spatial information in dorsal fronto-parietal cortices (Spatial task) and combining scene-related spatial and non-spatial information in the hippocampus (Object task). Our findings support the proposal of process-specific dissociations of retrieval. PMID:22877840
Acoustic surface perception from naturally occurring step sounds of a dexterous hexapod robot
NASA Astrophysics Data System (ADS)
Cuneyitoglu Ozkul, Mine; Saranli, Afsar; Yazicioglu, Yigit
2013-10-01
Legged robots that exhibit dynamic dexterity naturally interact with the surface to generate complex acoustic signals carrying rich information on the surface as well as the robot platform itself. However, the nature of a legged robot, which is a complex, hybrid dynamic system, renders the more common approach of model-based system identification impractical. The present paper focuses on acoustic surface identification and proposes a non-model-based analysis and classification approach adopted from the speech processing literature. A novel feature set composed of spectral band energies augmented by their vector time derivatives and time-domain averaged zero crossing rate is proposed. Using a multi-dimensional vector classifier, these features carry enough information to accurately classify a range of commonly occurring indoor and outdoor surfaces without using of any mechanical system model. A comparative experimental study is carried out and classification performance and computational complexity are characterized. Different feature combinations, classifiers and changes in critical design parameters are investigated. A realistic and representative acoustic data set is collected with the robot moving at different speeds on a number of surfaces. The study demonstrates promising performance of this non-model-based approach, even in an acoustically uncontrolled environment. The approach also has good chance of performing in real-time.
Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs
Amézquita, Adolfo; Flechas, Sandra Victoria; Lima, Albertina Pimentel; Gasser, Herbert; Hödl, Walter
2011-01-01
In species-rich assemblages of acoustically communicating animals, heterospecific sounds may constrain not only the evolution of signal traits but also the much less-studied signal-processing mechanisms that define the recognition space of a signal. To test the hypothesis that the recognition space is optimally designed, i.e., that it is narrower toward the species that represent the higher potential for acoustic interference, we studied an acoustic assemblage of 10 diurnally active frog species. We characterized their calls, estimated pairwise correlations in calling activity, and, to model the recognition spaces of five species, conducted playback experiments with 577 synthetic signals on 531 males. Acoustic co-occurrence was not related to multivariate distance in call parameters, suggesting a minor role for spectral or temporal segregation among species uttering similar calls. In most cases, the recognition space overlapped but was greater than the signal space, indicating that signal-processing traits do not act as strictly matched filters against sounds other than homospecific calls. Indeed, the range of the recognition space was strongly predicted by the acoustic distance to neighboring species in the signal space. Thus, our data provide compelling evidence of a role of heterospecific calls in evolutionarily shaping the frogs' recognition space within a complex acoustic assemblage without obvious concomitant effects on the signal. PMID:21969562
Acoustical stability of a sonoluminescing bubble
NASA Astrophysics Data System (ADS)
Holzfuss, Joachim; Rüggeberg, Matthias; Holt, R. Glynn
2002-10-01
In the parameter region for sonoluminescence of a single levitated bubble in a water-filled resonator it is observed that the bubble may have an enormous spatial stability leaving it ``pinned'' in the fluid and allowing it to emit light pulses of picosecond accuracy. We report here observations of a complex harmonic structure in the acoustic field surrounding a sonoluminescing bubble. We show that this complex sound field determines the position of the bubble and may either increase or decrease its spatial stability. The acoustic environment of the bubble is the result of the excitation of high-order normal modes of the resonator by the outgoing shock wave generated by the bubble collapse.
High-fidelity simulation capability for virtual testing of seismic and acoustic sensors
NASA Astrophysics Data System (ADS)
Wilson, D. Keith; Moran, Mark L.; Ketcham, Stephen A.; Lacombe, James; Anderson, Thomas S.; Symons, Neill P.; Aldridge, David F.; Marlin, David H.; Collier, Sandra L.; Ostashev, Vladimir E.
2005-05-01
This paper describes development and application of a high-fidelity, seismic/acoustic simulation capability for battlefield sensors. The purpose is to provide simulated sensor data so realistic that they cannot be distinguished by experts from actual field data. This emerging capability provides rapid, low-cost trade studies of unattended ground sensor network configurations, data processing and fusion strategies, and signatures emitted by prototype vehicles. There are three essential components to the modeling: (1) detailed mechanical signature models for vehicles and walkers, (2) high-resolution characterization of the subsurface and atmospheric environments, and (3) state-of-the-art seismic/acoustic models for propagating moving-vehicle signatures through realistic, complex environments. With regard to the first of these components, dynamic models of wheeled and tracked vehicles have been developed to generate ground force inputs to seismic propagation models. Vehicle models range from simple, 2D representations to highly detailed, 3D representations of entire linked-track suspension systems. Similarly detailed models of acoustic emissions from vehicle engines are under development. The propagation calculations for both the seismics and acoustics are based on finite-difference, time-domain (FDTD) methodologies capable of handling complex environmental features such as heterogeneous geologies, urban structures, surface vegetation, and dynamic atmospheric turbulence. Any number of dynamic sources and virtual sensors may be incorporated into the FDTD model. The computational demands of 3D FDTD simulation over tactical distances require massively parallel computers. Several example calculations of seismic/acoustic wave propagation through complex atmospheric and terrain environments are shown.
Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.
2015-01-01
Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164
Out of Mind, Out of Sight: Unexpected Scene Elements Frequently Go Unnoticed Until Primed.
Slavich, George M; Zimbardo, Philip G
2013-12-01
The human visual system employs a sophisticated set of strategies for scanning the environment and directing attention to stimuli that can be expected given the context and a person's past experience. Although these strategies enable us to navigate a very complex physical and social environment, they can also cause highly salient, but unexpected stimuli to go completely unnoticed. To examine the generality of this phenomenon, we conducted eight studies that included 15 different experimental conditions and 1,577 participants in all. These studies revealed that a large majority of participants do not report having seen a woman in the center of an urban scene who was photographed in midair as she was committing suicide. Despite seeing the scene repeatedly, 46 % of all participants failed to report seeing a central figure and only 4.8 % reported seeing a falling person. Frequency of noticing the suicidal woman was highest for participants who read a narrative priming story that increased the extent to which she was schematically congruent with the scene. In contrast to this robust effect of inattentional blindness , a majority of participants reported seeing other peripheral objects in the visual scene that were equally difficult to detect, yet more consistent with the scene. Follow-up qualitative analyses revealed that participants reported seeing many elements that were not actually present, but which could have been expected given the overall context of the scene. Together, these findings demonstrate the robustness of inattentional blindness and highlight the specificity with which different visual primes may increase noticing behavior.
Rapid discrimination of visual scene content in the human brain.
Anokhin, Andrey P; Golosheykin, Simon; Sirevaag, Erik; Kristjansson, Sean; Rohrbaugh, John W; Heath, Andrew C
2006-06-06
The rapid evaluation of complex visual environments is critical for an organism's adaptation and survival. Previous studies have shown that emotionally significant visual scenes, both pleasant and unpleasant, elicit a larger late positive wave in the event-related brain potential (ERP) than emotionally neutral pictures. The purpose of the present study was to examine whether neuroelectric responses elicited by complex pictures discriminate between specific, biologically relevant contents of the visual scene and to determine how early in the picture processing this discrimination occurs. Subjects (n = 264) viewed 55 color slides differing in both scene content and emotional significance. No categorical judgments or responses were required. Consistent with previous studies, we found that emotionally arousing pictures, regardless of their content, produce a larger late positive wave than neutral pictures. However, when pictures were further categorized by content, anterior ERP components in a time window between 200 and 600 ms following stimulus onset showed a high selectivity for pictures with erotic content compared to other pictures regardless of their emotional valence (pleasant, neutral, and unpleasant) or emotional arousal. The divergence of ERPs elicited by erotic and non-erotic contents started at 185 ms post-stimulus in the fronto-central midline region, with a later onset in parietal regions. This rapid, selective, and content-specific processing of erotic materials and its dissociation from other pictures (including emotionally positive pictures) suggests the existence of a specialized neural network for prioritized processing of a distinct category of biologically relevant stimuli with high adaptive and evolutionary significance.
Rapid discrimination of visual scene content in the human brain
Anokhin, Andrey P.; Golosheykin, Simon; Sirevaag, Erik; Kristjansson, Sean; Rohrbaugh, John W.; Heath, Andrew C.
2007-01-01
The rapid evaluation of complex visual environments is critical for an organism's adaptation and survival. Previous studies have shown that emotionally significant visual scenes, both pleasant and unpleasant, elicit a larger late positive wave in the event-related brain potential (ERP) than emotionally neutral pictures. The purpose of the present study was to examine whether neuroelectric responses elicited by complex pictures discriminate between specific, biologically relevant contents of the visual scene and to determine how early in the picture processing this discrimination occurs. Subjects (n=264) viewed 55 color slides differing in both scene content and emotional significance. No categorical judgments or responses were required. Consistent with previous studies, we found that emotionally arousing pictures, regardless of their content, produce a larger late positive wave than neutral pictures. However, when pictures were further categorized by content, anterior ERP components in a time window between 200−600 ms following stimulus onset showed a high selectivity for pictures with erotic content compared to other pictures regardless of their emotional valence (pleasant, neutral, and unpleasant) or emotional arousal. The divergence of ERPs elicited by erotic and non-erotic contents started at 185 ms post-stimulus in the fronto-central midline regions, with a later onset in parietal regions. This rapid, selective, and content-specific processing of erotic materials and its dissociation from other pictures (including emotionally positive pictures) suggests the existence of a specialized neural network for prioritized processing of a distinct category of biologically relevant stimuli with high adaptive and evolutionary significance. PMID:16712815
The auditory scene: an fMRI study on melody and accompaniment in professional pianists.
Spada, Danilo; Verga, Laura; Iadanza, Antonella; Tettamanti, Marco; Perani, Daniela
2014-11-15
The auditory scene is a mental representation of individual sounds extracted from the summed sound waveform reaching the ears of the listeners. Musical contexts represent particularly complex cases of auditory scenes. In such a scenario, melody may be seen as the main object moving on a background represented by the accompaniment. Both melody and accompaniment vary in time according to harmonic rules, forming a typical texture with melody in the most prominent, salient voice. In the present sparse acquisition functional magnetic resonance imaging study, we investigated the interplay between melody and accompaniment in trained pianists, by observing the activation responses elicited by processing: (1) melody placed in the upper and lower texture voices, leading to, respectively, a higher and lower auditory salience; (2) harmonic violations occurring in either the melody, the accompaniment, or both. The results indicated that the neural activation elicited by the processing of polyphonic compositions in expert musicians depends upon the upper versus lower position of the melodic line in the texture, and showed an overall greater activation for the harmonic processing of melody over accompaniment. Both these two predominant effects were characterized by the involvement of the posterior cingulate cortex and precuneus, among other associative brain regions. We discuss the prominent role of the posterior medial cortex in the processing of melodic and harmonic information in the auditory stream, and propose to frame this processing in relation to the cognitive construction of complex multimodal sensory imagery scenes. Copyright © 2014 Elsevier Inc. All rights reserved.
Cortical mechanisms for the segregation and representation of acoustic textures.
Overath, Tobias; Kumar, Sukhbinder; Stewart, Lauren; von Kriegstein, Katharina; Cusack, Rhodri; Rees, Adrian; Griffiths, Timothy D
2010-02-10
Auditory object analysis requires two fundamental perceptual processes: the definition of the boundaries between objects, and the abstraction and maintenance of an object's characteristic features. Although it is intuitive to assume that the detection of the discontinuities at an object's boundaries precedes the subsequent precise representation of the object, the specific underlying cortical mechanisms for segregating and representing auditory objects within the auditory scene are unknown. We investigated the cortical bases of these two processes for one type of auditory object, an "acoustic texture," composed of multiple frequency-modulated ramps. In these stimuli, we independently manipulated the statistical rules governing (1) the frequency-time space within individual textures (comprising ramps with a given spectrotemporal coherence) and (2) the boundaries between textures (adjacent textures with different spectrotemporal coherences). Using functional magnetic resonance imaging, we show mechanisms defining boundaries between textures with different coherences in primary and association auditory cortices, whereas texture coherence is represented only in association cortex. Furthermore, participants' superior detection of boundaries across which texture coherence increased (as opposed to decreased) was reflected in a greater neural response in auditory association cortex at these boundaries. The results suggest a hierarchical mechanism for processing acoustic textures that is relevant to auditory object analysis: boundaries between objects are first detected as a change in statistical rules over frequency-time space, before a representation that corresponds to the characteristics of the perceived object is formed.
Experimental Study of Sound Waves in Sandy Sediment
2003-05-01
parameter model ) and measurements (using a reflection ratio technique) includes derivations and measurements of acoustic imped- ances, effective densities...22 2.9 Model Used to Find Acoustic Impedance of Biot Medium . . . . . . . . . . . . . . 24 2.10 Free Body Diagram of...38] derived the complex reflection coefficient of plane acoustic waves from a poro-elastic sediment half-space. The boundary condition model is
Measurements and empirical model of the acoustic properties of reticulated vitreous carbon.
Muehleisena, Ralph T; Beamer, C Walter; Tinianov, Brandon D
2005-02-01
Reticulated vitreous carbon (RVC) is a highly porous, rigid, open cell carbon foam structure with a high melting point, good chemical inertness, and low bulk thermal conductivity. For the proper design of acoustic devices such as acoustic absorbers and thermoacoustic stacks and regenerators utilizing RVC, the acoustic properties of RVC must be known. From knowledge of the complex characteristic impedance and wave number most other acoustic properties can be computed. In this investigation, the four-microphone transfer matrix measurement method is used to measure the complex characteristic impedance and wave number for 60 to 300 pore-per-inch RVC foams with flow resistivities from 1759 to 10,782 Pa s m(-2) in the frequency range of 330 Hz-2 kHz. The data are found to be poorly predicted by the fibrous material empirical model developed by Delany and Bazley, the open cell plastic foam empirical model developed by Qunli, or the Johnson-Allard microstructural model. A new empirical power law model is developed and is shown to provide good predictions of the acoustic properties over the frequency range of measurement. Uncertainty estimates for the constants of the model are also computed.
Measurements and empirical model of the acoustic properties of reticulated vitreous carbon
NASA Astrophysics Data System (ADS)
Muehleisen, Ralph T.; Beamer, C. Walter; Tinianov, Brandon D.
2005-02-01
Reticulated vitreous carbon (RVC) is a highly porous, rigid, open cell carbon foam structure with a high melting point, good chemical inertness, and low bulk thermal conductivity. For the proper design of acoustic devices such as acoustic absorbers and thermoacoustic stacks and regenerators utilizing RVC, the acoustic properties of RVC must be known. From knowledge of the complex characteristic impedance and wave number most other acoustic properties can be computed. In this investigation, the four-microphone transfer matrix measurement method is used to measure the complex characteristic impedance and wave number for 60 to 300 pore-per-inch RVC foams with flow resistivities from 1759 to 10 782 Pa s m-2 in the frequency range of 330 Hz-2 kHz. The data are found to be poorly predicted by the fibrous material empirical model developed by Delany and Bazley, the open cell plastic foam empirical model developed by Qunli, or the Johnson-Allard microstructural model. A new empirical power law model is developed and is shown to provide good predictions of the acoustic properties over the frequency range of measurement. Uncertainty estimates for the constants of the model are also computed. .
San Francisco Bay, California as seen from STS-59
1994-04-14
STS059-213-009 (9-20 April 1994) --- San Francisco Bay. Orient with the sea up. The delta of the combined Sacramento and San Joaquin Rivers occupies the foreground, San Francisco Bay the middle distance, and the Pacific Ocean the rest. Variations in water color caused both by sediment load and by wind streaking strike the eye. Man-made features dominate this scene. The Lafayette/Concord complex is left of the bay head, Vallejo is to the right, the Berkeley/Oakland complex rims the shoreline of the main bay, and San Francisco fills the peninsula beyond. Salt-evaporation ponds contain differently-colored algae depending on salinity. The low altitude (less than 120 nautical miles) and unusually-clear air combine to provide unusually-strong green colors in this Spring scene. Hasselblad camera.
San Francisco Bay, California as seen from STS-59
NASA Technical Reports Server (NTRS)
1994-01-01
San Francisco Bay as seen from STS-59. View is oriented with the sea up. The delta of the combined Sacramento and San Joaquin Rivers occupies the foreground with San Francisco Bay in the middle distance, then the Pacific Ocean. Variations in water color caused both by sediment load and by wind streaking strike the eye. Man-made features dominate this scene. The Lafayette/Concord complex is left of the bay head, Vallejo is to the right, the Berkeley/Oakland complex rims the shoreline of the main bay, and San Francisco fills the peninsula beyond. Salt-evaporation ponds contain differently-colored algae depending on salinity. The low altitude (less than 120 nautical miles) and unusually-clear air combine to provide unusually-strong green colors in this Spring scene.
Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion
NASA Astrophysics Data System (ADS)
Milton, Graeme W.
2017-09-01
Here, we obtain explicit formulas for bounds on the complex electrical polarizability at a given frequency of an inclusion with known volume that follow directly from the quasistatic bounds of Bergman and Milton on the effective complex dielectric constant of a two-phase medium. We also describe how analogous bounds on the orientationally averaged bulk and shear polarizabilities at a given frequency can be obtained from bounds on the effective complex bulk and shear moduli of a two-phase medium obtained by Milton, Gibiansky, and Berryman, using the quasistatic variational principles of Cherkaev and Gibiansky. We also show how the polarizability problem and the acoustic scattering problem can both be reformulated in an abstract setting as "Y problems." In the acoustic scattering context, to avoid explicit introduction of the Sommerfeld radiation condition, we introduce auxiliary fields at infinity and an appropriate "constitutive law" there, which forces the Sommerfeld radiation condition to hold. As a consequence, we obtain minimization variational principles for acoustic scattering that can be used to obtain bounds on the complex backwards scattering amplitude. Some explicit elementary bounds are given.
Seo, Jung Hee; Mittal, Rajat
2010-01-01
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129
Differential Visual Processing of Animal Images, with and without Conscious Awareness
Zhu, Weina; Drewes, Jan; Peatfield, Nicholas A.; Melcher, David
2016-01-01
The human visual system can quickly and efficiently extract categorical information from a complex natural scene. The rapid detection of animals in a scene is one compelling example of this phenomenon, and it suggests the automatic processing of at least some types of categories with little or no attentional requirements (Li et al., 2002, 2005). The aim of this study is to investigate whether the remarkable capability to categorize complex natural scenes exist in the absence of awareness, based on recent reports that “invisible” stimuli, which do not reach conscious awareness, can still be processed by the human visual system (Pasley et al., 2004; Williams et al., 2004; Fang and He, 2005; Jiang et al., 2006, 2007; Kaunitz et al., 2011a). In two experiments, we recorded event-related potentials (ERPs) in response to animal and non-animal/vehicle stimuli in both aware and unaware conditions in a continuous flash suppression (CFS) paradigm. Our results indicate that even in the “unseen” condition, the brain responds differently to animal and non-animal/vehicle images, consistent with rapid activation of animal-selective feature detectors prior to, or outside of, suppression by the CFS mask. PMID:27790106
Differential Visual Processing of Animal Images, with and without Conscious Awareness.
Zhu, Weina; Drewes, Jan; Peatfield, Nicholas A; Melcher, David
2016-01-01
The human visual system can quickly and efficiently extract categorical information from a complex natural scene. The rapid detection of animals in a scene is one compelling example of this phenomenon, and it suggests the automatic processing of at least some types of categories with little or no attentional requirements (Li et al., 2002, 2005). The aim of this study is to investigate whether the remarkable capability to categorize complex natural scenes exist in the absence of awareness, based on recent reports that "invisible" stimuli, which do not reach conscious awareness, can still be processed by the human visual system (Pasley et al., 2004; Williams et al., 2004; Fang and He, 2005; Jiang et al., 2006, 2007; Kaunitz et al., 2011a). In two experiments, we recorded event-related potentials (ERPs) in response to animal and non-animal/vehicle stimuli in both aware and unaware conditions in a continuous flash suppression (CFS) paradigm. Our results indicate that even in the "unseen" condition, the brain responds differently to animal and non-animal/vehicle images, consistent with rapid activation of animal-selective feature detectors prior to, or outside of, suppression by the CFS mask.
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
2003-01-01
A simulation study was conducted in 1994 at Langley Research Center that used 12 commercial airline pilots repeatedly flying complex Microwave Landing System (MLS)-type approaches to parallel runways under Category IIIc weather conditions. Two sensor insert concepts of 'Synthetic Vision Systems' (SVS) were used in the simulated flights, with a more conventional electro-optical display (similar to a Head-Up Display with raster capability for sensor imagery), flown under less restrictive visibility conditions, used as a control condition. The SVS concepts combined the sensor imagery with a computer-generated image (CGI) of an out-the-window scene based on an onboard airport database. Various scenarios involving runway traffic incursions (taxiing aircraft and parked fuel trucks) and navigational system position errors (both static and dynamic) were used to assess the pilots' ability to manage the approach task with the display concepts. The two SVS sensor insert concepts contrasted the simple overlay of sensor imagery on the CGI scene without additional image processing (the SV display) to the complex integration (the AV display) of the CGI scene with pilot-decision aiding using both object and edge detection techniques for detection of obstacle conflicts and runway alignment errors.
Acoustic Tactile Representation of Visual Information
NASA Astrophysics Data System (ADS)
Silva, Pubudu Madhawa
Our goal is to explore the use of hearing and touch to convey graphical and pictorial information to visually impaired people. Our focus is on dynamic, interactive display of visual information using existing, widely available devices, such as smart phones and tablets with touch sensitive screens. We propose a new approach for acoustic-tactile representation of visual signals that can be implemented on a touch screen and allows the user to actively explore a two-dimensional layout consisting of one or more objects with a finger or a stylus while listening to auditory feedback via stereo headphones. The proposed approach is acoustic-tactile because sound is used as the primary source of information for object localization and identification, while touch is used for pointing and kinesthetic feedback. A static overlay of raised-dot tactile patterns can also be added. A key distinguishing feature of the proposed approach is the use of spatial sound (directional and distance cues) to facilitate the active exploration of the layout. We consider a variety of configurations for acoustic-tactile rendering of object size, shape, identity, and location, as well as for the overall perception of simple layouts and scenes. While our primary goal is to explore the fundamental capabilities and limitations of representing visual information in acoustic-tactile form, we also consider a number of relatively simple configurations that can be tied to specific applications. In particular, we consider a simple scene layout consisting of objects in a linear arrangement, each with a distinct tapping sound, which we compare to a ''virtual cane.'' We will also present a configuration that can convey a ''Venn diagram.'' We present systematic subjective experiments to evaluate the effectiveness of the proposed display for shape perception, object identification and localization, and 2-D layout perception, as well as the applications. Our experiments were conducted with visually blocked subjects. The results are evaluated in terms of accuracy and speed, and they demonstrate the advantages of spatial sound for guiding the scanning finger or pointer in shape perception, object localization, and layout exploration. We show that these advantages increase with the amount of detail (smaller object size) in the display. Our experimental results show that the proposed system outperforms the state of the art in shape perception, including variable friction displays. We also demonstrate that, even though they are currently available only as static overlays, raised dot patterns provide the best shape rendition in terms of both the accuracy and speed. Our experiments with layout rendering and perception demonstrate that simultaneous representation of objects, using the most effective approaches for directionality and distance rendering, approaches the optimal performance level provided by visual layout perception. Finally, experiments with the virtual cane and Venn diagram configurations demonstrate that the proposed techniques can be used effectively in simple but nontrivial real-world applications. One of the most important conclusions of our experiments is that there is a clear performance gap between experienced and inexperienced subjects, which indicates that there is a lot of room for improvement with appropriate and extensive training. By exploring a wide variety of design alternatives and focusing on different aspects of the acoustic-tactile interfaces, our results offer many valuable insights and great promise for the design of future systematic tests visually impaired and visually blocked subjects, utilizing the most effective configurations.
Using the structure of natural scenes and sounds to predict neural response properties in the brain
NASA Astrophysics Data System (ADS)
Deweese, Michael
2014-03-01
The natural scenes and sounds we encounter in the world are highly structured. The fact that animals and humans are so efficient at processing these sensory signals compared with the latest algorithms running on the fastest modern computers suggests that our brains can exploit this structure. We have developed a sparse mathematical representation of speech that minimizes the number of active model neurons needed to represent typical speech sounds. The model learns several well-known acoustic features of speech such as harmonic stacks, formants, onsets and terminations, but we also find more exotic structures in the spectrogra representation of sound such as localized checkerboard patterns and frequency-modulated excitatory subregions flanked by suppressive sidebands. Moreover, several of these novel features resemble neuronal receptive fields reported in the Inferior Colliculus (IC), as well as auditory thalamus (MGBv) and primary auditory cortex (A1), and our model neurons exhibit the same tradeoff in spectrotemporal resolution as has been observed in IC. To our knowledge, this is the first demonstration that receptive fields of neurons in the ascending mammalian auditory pathway beyond the auditory nerve can be predicted based on coding principles and the statistical properties of recorded sounds. We have also developed a biologically-inspired neural network model of primary visual cortex (V1) that can learn a sparse representation of natural scenes using spiking neurons and strictly local plasticity rules. The representation learned by our model is in good agreement with measured receptive fields in V1, demonstrating that sparse sensory coding can be achieved in a realistic biological setting.
NASA Astrophysics Data System (ADS)
Wei, Qi; Tian, Ye; Zuo, Shu-Yu; Cheng, Ying; Liu, Xiao-Jun
2017-03-01
Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.
Hydrodynamic Controls on Acoustical and Optical Water Properties in Tropical Reefs
2012-09-30
scattering, absorption, and backscattering , shows more complex variations, with a strong diel signal , but with a tidal influence reflecting asymmetry in...Relative acoustic backscatter (ABS) profiles were derived from individual ADCP beam echo intensity correcting for range and absorption using the sonar...REFERENCES Deines K. L., 1999, Backscatter estimation using Broadband acoustic Doppler current profilers. Proceedings of the IEEE Sixth Working
Plenoptic layer-based modeling for image based rendering.
Pearson, James; Brookes, Mike; Dragotti, Pier Luigi
2013-09-01
Image based rendering is an attractive alternative to model based rendering for generating novel views because of its lower complexity and potential for photo-realistic results. To reduce the number of images necessary for alias-free rendering, some geometric information for the 3D scene is normally necessary. In this paper, we present a fast automatic layer-based method for synthesizing an arbitrary new view of a scene from a set of existing views. Our algorithm takes advantage of the knowledge of the typical structure of multiview data to perform occlusion-aware layer extraction. In addition, the number of depth layers used to approximate the geometry of the scene is chosen based on plenoptic sampling theory with the layers placed non-uniformly to account for the scene distribution. The rendering is achieved using a probabilistic interpolation approach and by extracting the depth layer information on a small number of key images. Numerical results demonstrate that the algorithm is fast and yet is only 0.25 dB away from the ideal performance achieved with the ground-truth knowledge of the 3D geometry of the scene of interest. This indicates that there are measurable benefits from following the predictions of plenoptic theory and that they remain true when translated into a practical system for real world data.
Autonomous UAV-based mapping of large-scale urban firefights
NASA Astrophysics Data System (ADS)
Snarski, Stephen; Scheibner, Karl; Shaw, Scott; Roberts, Randy; LaRow, Andy; Breitfeller, Eric; Lupo, Jasper; Nielson, Darron; Judge, Bill; Forren, Jim
2006-05-01
This paper describes experimental results from a live-fire data collect designed to demonstrate the ability of IR and acoustic sensing systems to detect and map high-volume gunfire events from tactical UAVs. The data collect supports an exploratory study of the FightSight concept in which an autonomous UAV-based sensor exploitation and decision support capability is being proposed to provide dynamic situational awareness for large-scale battalion-level firefights in cluttered urban environments. FightSight integrates IR imagery, acoustic data, and 3D scene context data with prior time information in a multi-level, multi-step probabilistic-based fusion process to reliably locate and map the array of urban firing events and firepower movements and trends associated with the evolving urban battlefield situation. Described here are sensor results from live-fire experiments involving simultaneous firing of multiple sub/super-sonic weapons (2-AK47, 2-M16, 1 Beretta, 1 Mortar, 1 rocket) with high optical and acoustic clutter at ranges up to 400m. Sensor-shooter-target configurations and clutter were designed to simulate UAV sensing conditions for a high-intensity firefight in an urban environment. Sensor systems evaluated were an IR bullet tracking system by Lawrence Livermore National Laboratory (LLNL) and an acoustic gunshot detection system by Planning Systems, Inc. (PSI). The results demonstrate convincingly the ability for the LLNL and PSI sensor systems to accurately detect, separate, and localize multiple shooters and the associated shot directions during a high-intensity firefight (77 rounds in 5 sec) in a high acoustic and optical clutter environment with very low false alarms. Preliminary fusion processing was also examined that demonstrated an ability to distinguish co-located shooters (shooter density), range to <0.5 m accuracy at 400m, and weapon type. The combined results of the high-intensity firefight data collect and a detailed systems study demonstrate the readiness of the FightSight concept for full system development and integration.
Vieira, Manuel; Fonseca, Paulo J; Amorim, M Clara P; Teixeira, Carlos J C
2015-12-01
The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.
Experimental Investigation of the Formation of Complex Craters
NASA Astrophysics Data System (ADS)
Martellato, E.; Dörfler, M. A.; Schuster, B.; Wünnemman, K.; Kenkmann, T.
2017-09-01
The formation of complex impact craters is still poorly understood, because standard material models fail to explain the gravity-driven collapse at the observed size-range of a bowl-shaped transient crater into a flat-floored crater structure with a central peak or ring and terraced rim. To explain such a collapse the so-called Acoustic Fluidization (AF) model has been proposed. The AF assumes that heavily fractured target rocks surrounding the transient crater are temporarily softened by an acoustic field in the wake of an expanding shock wave generated upon impact. The AF has been successfully employed in numerous modeling studies of complex crater formation; however, there is no clear relationship between model parameters and observables. In this study, we present preliminary results of laboratory experiments aiming at relating the AF parameters to observables such as the grain size, average wave length of the acoustic field and its decay time τ relative to the crater formation time.
Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection
Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei
2013-01-01
We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717
Wear, Keith; Liu, Yunbo; Gammell, Paul M; Maruvada, Subha; Harris, Gerald R
2015-01-01
Nonlinear acoustic signals contain significant energy at many harmonic frequencies. For many applications, the sensitivity (frequency response) of a hydrophone will not be uniform over such a broad spectrum. In a continuation of a previous investigation involving deconvolution methodology, deconvolution (implemented in the frequency domain as an inverse filter computed from frequency-dependent hydrophone sensitivity) was investigated for improvement of accuracy and precision of nonlinear acoustic output measurements. Timedelay spectrometry was used to measure complex sensitivities for 6 fiber-optic hydrophones. The hydrophones were then used to measure a pressure wave with rich harmonic content. Spectral asymmetry between compressional and rarefactional segments was exploited to design filters used in conjunction with deconvolution. Complex deconvolution reduced mean bias (for 6 fiber-optic hydrophones) from 163% to 24% for peak compressional pressure (p+), from 113% to 15% for peak rarefactional pressure (p-), and from 126% to 29% for pulse intensity integral (PII). Complex deconvolution reduced mean coefficient of variation (COV) (for 6 fiber optic hydrophones) from 18% to 11% (p+), 53% to 11% (p-), and 20% to 16% (PII). Deconvolution based on sensitivity magnitude or the minimum phase model also resulted in significant reductions in mean bias and COV of acoustic output parameters but was less effective than direct complex deconvolution for p+ and p-. Therefore, deconvolution with appropriate filtering facilitates reliable nonlinear acoustic output measurements using hydrophones with frequency-dependent sensitivity.
Ponnath, Abhilash; Farris, Hamilton E.
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437
Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging
NASA Astrophysics Data System (ADS)
Haynes, Mark Spencer
Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self-consistent characterization formalism, and has made headway in the same area for ultrasound.
NASA Astrophysics Data System (ADS)
Loncich, Kristen Teczar
Bat echolocation strategies and neural processing of acoustic information, with a focus on cluttered environments, is investigated in this study. How a bat processes the dense field of echoes received while navigating and foraging in the dark is not well understood. While several models have been developed to describe the mechanisms behind bat echolocation, most are based in mathematics rather than biology, and focus on either peripheral or neural processing---not exploring how these two levels of processing are vitally connected. Current echolocation models also do not use habitat specific acoustic input, or account for field observations of echolocation strategies. Here, a new approach to echolocation modeling is described capturing the full picture of echolocation from signal generation to a neural picture of the acoustic scene. A biologically inspired echolocation model is developed using field research measurements of the interpulse interval timing used by a frequency modulating (FM) bat in the wild, with a whole method approach to modeling echolocation including habitat specific acoustic inputs, a biologically accurate peripheral model of sound processing by the outer, middle, and inner ear, and finally a neural model incorporating established auditory pathways and neuron types with echolocation adaptations. Field recordings analyzed underscore bat sonar design differences observed in the laboratory and wild, and suggest a correlation between interpulse interval groupings and increased clutter. The scenario model provides habitat and behavior specific echoes and is a useful tool for both modeling and behavioral studies, and the peripheral and neural model show that spike-time information and echolocation specific neuron types can produce target localization in the midbrain.
Ponnath, Abhilash; Farris, Hamilton E
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.
Pedale, Tiziana; Santangelo, Valerio
2015-01-01
One of the most important issues in the study of cognition is to understand which are the factors determining internal representation of the external world. Previous literature has started to highlight the impact of low-level sensory features (indexed by saliency-maps) in driving attention selection, hence increasing the probability for objects presented in complex and natural scenes to be successfully encoded into working memory (WM) and then correctly remembered. Here we asked whether the probability of retrieving high-saliency objects modulates the overall contents of WM, by decreasing the probability of retrieving other, lower-saliency objects. We presented pictures of natural scenes for 4 s. After a retention period of 8 s, we asked participants to verbally report as many objects/details as possible of the previous scenes. We then computed how many times the objects located at either the peak of maximal or minimal saliency in the scene (as indexed by a saliency-map; Itti et al., 1998) were recollected by participants. Results showed that maximal-saliency objects were recollected more often and earlier in the stream of successfully reported items than minimal-saliency objects. This indicates that bottom-up sensory salience increases the recollection probability and facilitates the access to memory representation at retrieval, respectively. Moreover, recollection of the maximal- (but not the minimal-) saliency objects predicted the overall amount of successfully recollected objects: The higher the probability of having successfully reported the most-salient object in the scene, the lower the amount of recollected objects. These findings highlight that bottom-up sensory saliency modulates the current contents of WM during recollection of objects from natural scenes, most likely by reducing available resources to encode and then retrieve other (lower saliency) objects. PMID:25741266
Programmable personality interface for the dynamic infrared scene generator (IRSG2)
NASA Astrophysics Data System (ADS)
Buford, James A., Jr.; Mobley, Scott B.; Mayhall, Anthony J.; Braselton, William J.
1998-07-01
As scene generator platforms begin to rely specifically on commercial off-the-shelf (COTS) hardware and software components, the need for high speed programmable personality interfaces (PPIs) are required for interfacing to Infrared (IR) flight computer/processors and complex IR projectors in the hardware-in-the-loop (HWIL) simulation facilities. Recent technological advances and innovative applications of established technologies are beginning to allow development of cost effective PPIs to interface to COTS scene generators. At the U.S. Army Aviation and Missile Command (AMCOM) Missile Research, Development, and Engineering Center (MRDEC) researchers have developed such a PPI to reside between the AMCOM MRDEC IR Scene Generator (IRSG) and either a missile flight computer or the dynamic Laser Diode Array Projector (LDAP). AMCOM MRDEC has developed several PPIs for the first and second generation IRSGs (IRSG1 and IRSG2), which are based on Silicon Graphics Incorporated (SGI) Onyx and Onyx2 computers with Reality Engine 2 (RE2) and Infinite Reality (IR/IR2) graphics engines. This paper provides an overview of PPIs designed, integrated, tested, and verified at AMCOM MRDEC, specifically the IRSG2's PPI.
Recent advances in exploring the neural underpinnings of auditory scene perception
Snyder, Joel S.; Elhilali, Mounya
2017-01-01
Studies of auditory scene analysis have traditionally relied on paradigms using artificial sounds—and conventional behavioral techniques—to elucidate how we perceptually segregate auditory objects or streams from each other. In the past few decades, however, there has been growing interest in uncovering the neural underpinnings of auditory segregation using human and animal neuroscience techniques, as well as computational modeling. This largely reflects the growth in the fields of cognitive neuroscience and computational neuroscience and has led to new theories of how the auditory system segregates sounds in complex arrays. The current review focuses on neural and computational studies of auditory scene perception published in the past few years. Following the progress that has been made in these studies, we describe (1) theoretical advances in our understanding of the most well-studied aspects of auditory scene perception, namely segregation of sequential patterns of sounds and concurrently presented sounds; (2) the diversification of topics and paradigms that have been investigated; and (3) how new neuroscience techniques (including invasive neurophysiology in awake humans, genotyping, and brain stimulation) have been used in this field. PMID:28199022
Chemical analysis of acoustically levitated drops by Raman spectroscopy.
Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don
2009-07-01
An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.
Turbofan Duct Propagation Model
NASA Technical Reports Server (NTRS)
Lan, Justin H.; Posey, Joe W. (Technical Monitor)
2001-01-01
The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.
The L-Z complexity of exercise-induced muscle fatigue based on acoustic myographye
NASA Astrophysics Data System (ADS)
Yijian, Min; Xinyuan, Liu; Tingting, Wang
2014-01-01
The mechanism of exercise fatigue was investigated during exercise using L-Z complexity of non-linear analysis. Muscle fatigue was induced in the sitting position by lifting the heel under a load. An acoustic myogram of the gastrocnemius was obtained until exhaustion. The different modes of the speed responses were calculated using the L-Z complexity method, which analyzes muscle fibers participation, while the exercise is in progress. The L-Z complexity decreased incrementally with decreases in muscle strength, reaching a minimum value when the muscle was exhausted. Our data indicate that the L-Z complexity method is easy to use and effective at revealing the dynamic characteristics and variations of exercise fatigue. This method could be used to monitor sports training.
NASA Astrophysics Data System (ADS)
Rengarajan, Rajagopalan; Goodenough, Adam A.; Schott, John R.
2016-10-01
Many remote sensing applications rely on simulated scenes to perform complex interaction and sensitivity studies that are not possible with real-world scenes. These applications include the development and validation of new and existing algorithms, understanding of the sensor's performance prior to launch, and trade studies to determine ideal sensor configurations. The accuracy of these applications is dependent on the realism of the modeled scenes and sensors. The Digital Image and Remote Sensing Image Generation (DIRSIG) tool has been used extensively to model the complex spectral and spatial texture variation expected in large city-scale scenes and natural biomes. In the past, material properties that were used to represent targets in the simulated scenes were often assumed to be Lambertian in the absence of hand-measured directional data. However, this assumption presents a limitation for new algorithms that need to recognize the anisotropic behavior of targets. We have developed a new method to model and simulate large-scale high-resolution terrestrial scenes by combining bi-directional reflectance distribution function (BRDF) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data, high spatial resolution data, and hyperspectral data. The high spatial resolution data is used to separate materials and add textural variations to the scene, and the directional hemispherical reflectance from the hyperspectral data is used to adjust the magnitude of the MODIS BRDF. In this method, the shape of the BRDF is preserved since it changes very slowly, but its magnitude is varied based on the high resolution texture and hyperspectral data. In addition to the MODIS derived BRDF, target/class specific BRDF values or functions can also be applied to features of specific interest. The purpose of this paper is to discuss the techniques and the methodology used to model a forest region at a high resolution. The simulated scenes using this method for varying view angles show the expected variations in the reflectance due to the BRDF effects of the Harvard forest. The effectiveness of this technique to simulate real sensor data is evaluated by comparing the simulated data with the Landsat 8 Operational Land Image (OLI) data over the Harvard forest. Regions of interest were selected from the simulated and the real data for different targets and their Top-of-Atmospheric (TOA) radiance were compared. After adjusting for scaling correction due to the difference in atmospheric conditions between the simulated and the real data, the TOA radiance is found to agree within 5 % in the NIR band and 10 % in the visible bands for forest targets under similar illumination conditions. The technique presented in this paper can be extended for other biomes (e.g. desert regions and agricultural regions) by using the appropriate geographic regions. Since the entire scene is constructed in a simulated environment, parameters such as BRDF or its effects can be analyzed for general or target specific algorithm improvements. Also, the modeling and simulation techniques can be used as a baseline for the development and comparison of new sensor designs and to investigate the operational and environmental factors that affects the sensor constellations such as Sentinel and Landsat missions.
NASA Astrophysics Data System (ADS)
den Hollander, Richard J. M.; Bouma, Henri; van Rest, Jeroen H. C.; ten Hove, Johan-Martijn; ter Haar, Frank B.; Burghouts, Gertjan J.
2017-10-01
Video analytics is essential for managing large quantities of raw data that are produced by video surveillance systems (VSS) for the prevention, repression and investigation of crime and terrorism. Analytics is highly sensitive to changes in the scene, and for changes in the optical chain so a VSS with analytics needs careful configuration and prompt maintenance to avoid false alarms. However, there is a trend from static VSS consisting of fixed CCTV cameras towards more dynamic VSS deployments over public/private multi-organization networks, consisting of a wider variety of visual sensors, including pan-tilt-zoom (PTZ) cameras, body-worn cameras and cameras on moving platforms. This trend will lead to more dynamic scenes and more frequent changes in the optical chain, creating structural problems for analytics. If these problems are not adequately addressed, analytics will not be able to continue to meet end users' developing needs. In this paper, we present a three-part solution for managing the performance of complex analytics deployments. The first part is a register containing meta data describing relevant properties of the optical chain, such as intrinsic and extrinsic calibration, and parameters of the scene such as lighting conditions or measures for scene complexity (e.g. number of people). A second part frequently assesses these parameters in the deployed VSS, stores changes in the register, and signals relevant changes in the setup to the VSS administrator. A third part uses the information in the register to dynamically configure analytics tasks based on VSS operator input. In order to support the feasibility of this solution, we give an overview of related state-of-the-art technologies for autocalibration (self-calibration), scene recognition and lighting estimation in relation to person detection. The presented solution allows for rapid and robust deployment of Video Content Analysis (VCA) tasks in large scale ad-hoc networks.
A Parallel Rendering Algorithm for MIMD Architectures
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.; Orloff, Tobias
1991-01-01
Applications such as animation and scientific visualization demand high performance rendering of complex three dimensional scenes. To deliver the necessary rendering rates, highly parallel hardware architectures are required. The challenge is then to design algorithms and software which effectively use the hardware parallelism. A rendering algorithm targeted to distributed memory MIMD architectures is described. For maximum performance, the algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is examined both analytically and experimentally. Its performance for large numbers of processors is found to be limited primarily by communication overheads. An experimental implementation for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide range of scene complexities. It is shown that minimal modifications to the algorithm will adapt it for use on shared memory architectures as well.
Saliency Detection on Light Field.
Li, Nianyi; Ye, Jinwei; Ji, Yu; Ling, Haibin; Yu, Jingyi
2017-08-01
Existing saliency detection approaches use images as inputs and are sensitive to foreground/background similarities, complex background textures, and occlusions. We explore the problem of using light fields as input for saliency detection. Our technique is enabled by the availability of commercial plenoptic cameras that capture the light field of a scene in a single shot. We show that the unique refocusing capability of light fields provides useful focusness, depths, and objectness cues. We further develop a new saliency detection algorithm tailored for light fields. To validate our approach, we acquire a light field database of a range of indoor and outdoor scenes and generate the ground truth saliency map. Experiments show that our saliency detection scheme can robustly handle challenging scenarios such as similar foreground and background, cluttered background, complex occlusions, etc., and achieve high accuracy and robustness.
Three-dimensional tracking for efficient fire fighting in complex situations
NASA Astrophysics Data System (ADS)
Akhloufi, Moulay; Rossi, Lucile
2009-05-01
Each year, hundred millions hectares of forests burn causing human and economic losses. For efficient fire fighting, the personnel in the ground need tools permitting the prediction of fire front propagation. In this work, we present a new technique for automatically tracking fire spread in three-dimensional space. The proposed approach uses a stereo system to extract a 3D shape from fire images. A new segmentation technique is proposed and permits the extraction of fire regions in complex unstructured scenes. It works in the visible spectrum and combines information extracted from YUV and RGB color spaces. Unlike other techniques, our algorithm does not require previous knowledge about the scene. The resulting fire regions are classified into different homogenous zones using clustering techniques. Contours are then extracted and a feature detection algorithm is used to detect interest points like local maxima and corners. Extracted points from stereo images are then used to compute the 3D shape of the fire front. The resulting data permits to build the fire volume. The final model is used to compute important spatial and temporal fire characteristics like: spread dynamics, local orientation, heading direction, etc. Tests conducted on the ground show the efficiency of the proposed scheme. This scheme is being integrated with a fire spread mathematical model in order to predict and anticipate the fire behaviour during fire fighting. Also of interest to fire-fighters, is the proposed automatic segmentation technique that can be used in early detection of fire in complex scenes.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members work with acoustic cable during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Visual wetness perception based on image color statistics.
Sawayama, Masataka; Adelson, Edward H; Nishida, Shin'ya
2017-05-01
Color vision provides humans and animals with the abilities to discriminate colors based on the wavelength composition of light and to determine the location and identity of objects of interest in cluttered scenes (e.g., ripe fruit among foliage). However, we argue that color vision can inform us about much more than color alone. Since a trichromatic image carries more information about the optical properties of a scene than a monochromatic image does, color can help us recognize complex material qualities. Here we show that human vision uses color statistics of an image for the perception of an ecologically important surface condition (i.e., wetness). Psychophysical experiments showed that overall enhancement of chromatic saturation, combined with a luminance tone change that increases the darkness and glossiness of the image, tended to make dry scenes look wetter. Theoretical analysis along with image analysis of real objects indicated that our image transformation, which we call the wetness enhancing transformation, is consistent with actual optical changes produced by surface wetting. Furthermore, we found that the wetness enhancing transformation operator was more effective for the images with many colors (large hue entropy) than for those with few colors (small hue entropy). The hue entropy may be used to separate surface wetness from other surface states having similar optical properties. While surface wetness and surface color might seem to be independent, there are higher order color statistics that can influence wetness judgments, in accord with the ecological statistics. The present findings indicate that the visual system uses color image statistics in an elegant way to help estimate the complex physical status of a scene.
NASA Astrophysics Data System (ADS)
Huang, Xin; Chen, Huijun; Gong, Jianya
2018-01-01
Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed ADF features can effectively improve the accuracy of urban scene classification, with a significant increase in overall accuracy (3.8-11.7%) compared to using the spectral bands alone. Furthermore, the results indicated the superiority of the proposed ADFs in distinguishing between the spectrally similar and complex man-made classes, including roads and various types of buildings (e.g., high buildings, urban villages, and residential apartments).
Sun, Keping; Kimball, Rebecca T.; Liu, Tong; Wei, Xuewen; Jin, Longru; Jiang, Tinglei; Lin, Aiqing; Feng, Jiang
2016-01-01
Palaeoclimatic oscillations and different landscapes frequently result in complex population-level structure or the evolution of cryptic species. Elucidating the potential mechanisms is vital to understanding speciation events. However, such complex evolutionary patterns have rarely been reported in bats. In China, the Rhinolophus macrotis complex contains a large form and a small form, suggesting the existence of a cryptic bat species. Our field surveys found these two sibling species have a continuous and widespread distribution with partial sympatry. However, their evolutionary history has received little attention. Here, we used extensive sampling, morphological and acoustic data, as well as different genetic markers to investigate their evolutionary history. Genetic analyses revealed discordance between the mitochondrial and nuclear data. Mitochondrial data identified three reciprocally monophyletic lineages: one representing all small forms from Southwest China, and the other two containing all large forms from Central and Southeast China, respectively. The large form showed paraphyly with respect to the small form. However, clustering analyses of microsatellite and Chd1 gene sequences support two divergent clusters separating the large form and the small form. Moreover, morphological and acoustic analyses were consistent with nuclear data. This unusual pattern in the R. macrotis complex might be accounted for by palaeoclimatic oscillations, shared ancestral polymorphism and/or interspecific hybridization. PMID:27748429
NASA Astrophysics Data System (ADS)
Ulagendran, V.; Balu, P.; Kannappan, V.; Kumar, R.; Jayakumar, S.
2017-08-01
The charge transfer (CT) interaction between two fused heterocyclic compounds with basic pyrrole group as donors, viz., indole (IND) and carbazole (CAR), and iodine (acceptor) in DMSO medium is investigated by ultrasonic and UV-visible spectral methods at 303 K. The formation of CT complex in these systems is established from the trend in acoustical and excess thermo acoustical properties with molar concentration. The frequency acoustic spectra (FAS) is also carried out on these two systems for two fixed concentrations 0.002 M and 0.02 M, and in the frequency range 1 MHz-10 MHz to justify the frequency chosen for ultrasonic study. The absorption coefficient values in solution are computed and discussed. The formation constants of these complexes are determined using Kannappan equation in ultrasonic method. The formation of 1:1 complexes between iodine and IND, CAR was established by the theory of Benesi - Hildebrand in the UV-visible spectroscopic method. The stability constants of the CT complexes determined by spectroscopic and ultrasonic methods show a similar trend. These values also indicate that the presence of fused aromatic ring influences significantly when compared with K values of similar CT complexes of parent five membered heterocyclic compound (pyrrole) reported by us earlier.
Broadband acoustic phased array with subwavelength active tube array
NASA Astrophysics Data System (ADS)
Li, Xiao-Yan; Yang, Zhang-Zhao; Zhu, Yi-Fan; Zou, Xin-Ye; Cheng, Jian-Chun
2018-02-01
Acoustic metasurfaces provide a way to manipulate wavefronts at anomalous reflection or refraction angles through subwavelength structures. Here, based on the generalized Snell's refraction law for acoustic metasurfaces and the classical acoustic phased array (PA) theory, a broadband acoustic PA with a subwavelength active tube array has been proposed to form a special acoustic beam and to determine the directivity characteristics of the acoustic source. Theoretical analysis shows that the dispersionless wavefront manipulation can be realized by the gradient model of the active tube array, and a wide working frequency band can be obtained in practical applications from the simulated and experimental results. The numerical results of forming a special acoustic beam and establishing an acoustic focus model with an arbitrary focal position are consistent with the theoretical predictions. The experimental results agree well with the simulated results in the model of forming the acoustic beam of 45 ° . By combining acoustic metamaterials and conventional acoustic PA, the model of the active tube array paves a way to design a composite acoustic PA with high radiation efficiency and system robustness without the need for any complex circuit control system. This design concept is expected to be used in the design of ultrasonic therapy devices and high-efficiency transducers.
Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach.
Liu, Mengyun; Chen, Ruizhi; Li, Deren; Chen, Yujin; Guo, Guangyi; Cao, Zhipeng; Pan, Yuanjin
2017-12-08
After decades of research, there is still no solution for indoor localization like the GNSS (Global Navigation Satellite System) solution for outdoor environments. The major reasons for this phenomenon are the complex spatial topology and RF transmission environment. To deal with these problems, an indoor scene constrained method for localization is proposed in this paper, which is inspired by the visual cognition ability of the human brain and the progress in the computer vision field regarding high-level image understanding. Furthermore, a multi-sensor fusion method is implemented on a commercial smartphone including cameras, WiFi and inertial sensors. Compared to former research, the camera on a smartphone is used to "see" which scene the user is in. With this information, a particle filter algorithm constrained by scene information is adopted to determine the final location. For indoor scene recognition, we take advantage of deep learning that has been proven to be highly effective in the computer vision community. For particle filter, both WiFi and magnetic field signals are used to update the weights of particles. Similar to other fingerprinting localization methods, there are two stages in the proposed system, offline training and online localization. In the offline stage, an indoor scene model is trained by Caffe (one of the most popular open source frameworks for deep learning) and a fingerprint database is constructed by user trajectories in different scenes. To reduce the volume requirement of training data for deep learning, a fine-tuned method is adopted for model training. In the online stage, a camera in a smartphone is used to recognize the initial scene. Then a particle filter algorithm is used to fuse the sensor data and determine the final location. To prove the effectiveness of the proposed method, an Android client and a web server are implemented. The Android client is used to collect data and locate a user. The web server is developed for indoor scene model training and communication with an Android client. To evaluate the performance, comparison experiments are conducted and the results demonstrate that a positioning accuracy of 1.32 m at 95% is achievable with the proposed solution. Both positioning accuracy and robustness are enhanced compared to approaches without scene constraint including commercial products such as IndoorAtlas.
Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach
Chen, Ruizhi; Li, Deren; Chen, Yujin; Guo, Guangyi; Cao, Zhipeng
2017-01-01
After decades of research, there is still no solution for indoor localization like the GNSS (Global Navigation Satellite System) solution for outdoor environments. The major reasons for this phenomenon are the complex spatial topology and RF transmission environment. To deal with these problems, an indoor scene constrained method for localization is proposed in this paper, which is inspired by the visual cognition ability of the human brain and the progress in the computer vision field regarding high-level image understanding. Furthermore, a multi-sensor fusion method is implemented on a commercial smartphone including cameras, WiFi and inertial sensors. Compared to former research, the camera on a smartphone is used to “see” which scene the user is in. With this information, a particle filter algorithm constrained by scene information is adopted to determine the final location. For indoor scene recognition, we take advantage of deep learning that has been proven to be highly effective in the computer vision community. For particle filter, both WiFi and magnetic field signals are used to update the weights of particles. Similar to other fingerprinting localization methods, there are two stages in the proposed system, offline training and online localization. In the offline stage, an indoor scene model is trained by Caffe (one of the most popular open source frameworks for deep learning) and a fingerprint database is constructed by user trajectories in different scenes. To reduce the volume requirement of training data for deep learning, a fine-tuned method is adopted for model training. In the online stage, a camera in a smartphone is used to recognize the initial scene. Then a particle filter algorithm is used to fuse the sensor data and determine the final location. To prove the effectiveness of the proposed method, an Android client and a web server are implemented. The Android client is used to collect data and locate a user. The web server is developed for indoor scene model training and communication with an Android client. To evaluate the performance, comparison experiments are conducted and the results demonstrate that a positioning accuracy of 1.32 m at 95% is achievable with the proposed solution. Both positioning accuracy and robustness are enhanced compared to approaches without scene constraint including commercial products such as IndoorAtlas. PMID:29292761
Seismic Acoustic Ratio Estimates Using a Moving Vehicle Source
1999-08-01
airwave coupling. Thus, it is likely that the high SAR values are due to acoustic to seismic coupling in a shallow air filled poroelastic layer (e.g...Sabatier et al., 1986b). More complex models for the earth, such as incorporating layering and poroelastic material (e.g., Albert, 1993; Attenborough...groundwater and bedrock in an area .of discontinuous permafrost,” Geophysics 63(5), 1573-1584. Attenborough, K. (1985). “ Acoustical impedance models for
Scene-based nonuniformity correction algorithm based on interframe registration.
Zuo, Chao; Chen, Qian; Gu, Guohua; Sui, Xiubao
2011-06-01
In this paper, we present a simple and effective scene-based nonuniformity correction (NUC) method for infrared focal plane arrays based on interframe registration. This method estimates the global translation between two adjacent frames and minimizes the mean square error between the two properly registered images to make any two detectors with the same scene produce the same output value. In this way, the accumulation of the registration error can be avoided and the NUC can be achieved. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of the proposed technique is thoroughly studied with infrared image sequences with simulated nonuniformity and infrared imagery with real nonuniformity. It shows a significantly fast and reliable fixed-pattern noise reduction and obtains an effective frame-by-frame adaptive estimation of each detector's gain and offset.
How high is visual short-term memory capacity for object layout?
Sanocki, Thomas; Sellers, Eric; Mittelstadt, Jeff; Sulman, Noah
2010-05-01
Previous research measuring visual short-term memory (VSTM) suggests that the capacity for representing the layout of objects is fairly high. In four experiments, we further explored the capacity of VSTM for layout of objects, using the change detection method. In Experiment 1, participants retained most of the elements in displays of 4 to 8 elements. In Experiments 2 and 3, with up to 20 elements, participants retained many of them, reaching a capacity of 13.4 stimulus elements. In Experiment 4, participants retained much of a complex naturalistic scene. In most cases, increasing display size caused only modest reductions in performance, consistent with the idea of configural, variable-resolution grouping. The results indicate that participants can retain a substantial amount of scene layout information (objects and locations) in short-term memory. We propose that this is a case of remote visual understanding, where observers' ability to integrate information from a scene is paramount.
Coordinate references for the indoor/outdoor seamless positioning
NASA Astrophysics Data System (ADS)
Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei
2018-05-01
Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.
The functional consequences of social distraction: Attention and memory for complex scenes.
Doherty, Brianna Ruth; Patai, Eva Zita; Duta, Mihaela; Nobre, Anna Christina; Scerif, Gaia
2017-01-01
Cognitive scientists have long proposed that social stimuli attract visual attention even when task irrelevant, but the consequences of this privileged status for memory are unknown. To address this, we combined computational approaches, eye-tracking methodology, and individual-differences measures. Participants searched for targets in scenes containing social or non-social distractors equated for low-level visual salience. Subsequent memory precision for target locations was tested. Individual differences in autistic traits and social anxiety were also measured. Eye-tracking revealed significantly more attentional capture to social compared to non-social distractors. Critically, memory precision for target locations was poorer for social scenes. This effect was moderated by social anxiety, with anxious individuals remembering target locations better under conditions of social distraction. These findings shed further light onto the privileged attentional status of social stimuli and its functional consequences on memory across individuals. Copyright © 2016. Published by Elsevier B.V.
Steerable sound transport in a 3D acoustic network
NASA Astrophysics Data System (ADS)
Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie
2017-10-01
Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.
Material fabrication using acoustic radiation forces
Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ
2015-12-01
Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.
Three-dimensional manipulation of single cells using surface acoustic waves.
Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2016-02-09
The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.
Hannula, Deborah E.; Tranel, Daniel; Allen, John S.; Kirchhoff, Brenda A.; Nickel, Allison E.; Cohen, Neal J.
2014-01-01
Objective The objective of this study was to examine the dependence of item memory and relational memory on medial temporal lobe (MTL) structures. Patients with amnesia, who either had extensive MTL damage or damage that was relatively restricted to the hippocampus, were tested, as was a matched comparison group. Disproportionate relational memory impairments were predicted for both patient groups, and those with extensive MTL damage were also expected to have impaired item memory. Method Participants studied scenes, and were tested with interleaved two-alternative forced-choice probe trials. Probe trials were either presented immediately after the corresponding study trial (lag 1), five trials later (lag 5), or nine trials later (lag 9) and consisted of the studied scene along with a manipulated version of that scene in which one item was replaced with a different exemplar (item memory test) or was moved to a new location (relational memory test). Participants were to identify the exact match of the studied scene. Results As predicted, patients were disproportionately impaired on the test of relational memory. Item memory performance was marginally poorer among patients with extensive MTL damage, but both groups were impaired relative to matched comparison participants. Impaired performance was evident at all lags, including the shortest possible lag (lag 1). Conclusions The results are consistent with the proposed role of the hippocampus in relational memory binding and representation, even at short delays, and suggest that the hippocampus may also contribute to successful item memory when items are embedded in complex scenes. PMID:25068665
An optical systems analysis approach to image resampling
NASA Technical Reports Server (NTRS)
Lyon, Richard G.
1997-01-01
All types of image registration require some type of resampling, either during the registration or as a final step in the registration process. Thus the image(s) must be regridded into a spatially uniform, or angularly uniform, coordinate system with some pre-defined resolution. Frequently the ending resolution is not the resolution at which the data was observed with. The registration algorithm designer and end product user are presented with a multitude of possible resampling methods each of which modify the spatial frequency content of the data in some way. The purpose of this paper is threefold: (1) to show how an imaging system modifies the scene from an end to end optical systems analysis approach, (2) to develop a generalized resampling model, and (3) empirically apply the model to simulated radiometric scene data and tabulate the results. A Hanning windowed sinc interpolator method will be developed based upon the optical characterization of the system. It will be discussed in terms of the effects and limitations of sampling, aliasing, spectral leakage, and computational complexity. Simulated radiometric scene data will be used to demonstrate each of the algorithms. A high resolution scene will be "grown" using a fractal growth algorithm based on mid-point recursion techniques. The result scene data will be convolved with a point spread function representing the optical response. The resultant scene will be convolved with the detection systems response and subsampled to the desired resolution. The resultant data product will be subsequently resampled to the correct grid using the Hanning windowed sinc interpolator and the results and errors tabulated and discussed.
Brain mechanisms underlying cue-based memorizing during free viewing of movie Memento.
Kauttonen, Janne; Hlushchuk, Yevhen; Jääskeläinen, Iiro P; Tikka, Pia
2018-05-15
How does the human brain recall and connect relevant memories with unfolding events? To study this, we presented 25 healthy subjects, during functional magnetic resonance imaging, the movie 'Memento' (director C. Nolan). In this movie, scenes are presented in chronologically reverse order with certain scenes briefly overlapping previously presented scenes. Such overlapping "key-frames" serve as effective memory cues for the viewers, prompting recall of relevant memories of the previously seen scene and connecting them with the concurrent scene. We hypothesized that these repeating key-frames serve as immediate recall cues and would facilitate reconstruction of the story piece-by-piece. The chronological version of Memento, shown in a separate experiment for another group of subjects, served as a control condition. Using multivariate event-related pattern analysis method and representational similarity analysis, focal fingerprint patterns of hemodynamic activity were found to emerge during presentation of key-frame scenes. This effect was present in higher-order cortical network with regions including precuneus, angular gyrus, cingulate gyrus, as well as lateral, superior, and middle frontal gyri within frontal poles. This network was right hemispheric dominant. These distributed patterns of brain activity appear to underlie ability to recall relevant memories and connect them with ongoing events, i.e., "what goes with what" in a complex story. Given the real-life likeness of cinematic experience, these results provide new insight into how the human brain recalls, given proper cues, relevant memories to facilitate understanding and prediction of everyday life events. Copyright © 2018 Elsevier Inc. All rights reserved.
Grimm, Giso; Hohmann, Volker; Laugesen, Søren; Neher, Tobias
2017-01-01
In contrast to static sounds, spatially dynamic sounds have received little attention in psychoacoustic research so far. This holds true especially for acoustically complex (reverberant, multisource) conditions and impaired hearing. The current study therefore investigated the influence of reverberation and the number of concurrent sound sources on source movement detection in young normal-hearing (YNH) and elderly hearing-impaired (EHI) listeners. A listening environment based on natural environmental sounds was simulated using virtual acoustics and rendered over headphones. Both near-far (‘radial’) and left-right (‘angular’) movements of a frontal target source were considered. The acoustic complexity was varied by adding static lateral distractor sound sources as well as reverberation. Acoustic analyses confirmed the expected changes in stimulus features that are thought to underlie radial and angular source movements under anechoic conditions and suggested a special role of monaural spectral changes under reverberant conditions. Analyses of the detection thresholds showed that, with the exception of the single-source scenarios, the EHI group was less sensitive to source movements than the YNH group, despite adequate stimulus audibility. Adding static sound sources clearly impaired the detectability of angular source movements for the EHI (but not the YNH) group. Reverberation, on the other hand, clearly impaired radial source movement detection for the EHI (but not the YNH) listeners. These results illustrate the feasibility of studying factors related to auditory movement perception with the help of the developed test setup. PMID:28675088
Lundbeck, Micha; Grimm, Giso; Hohmann, Volker; Laugesen, Søren; Neher, Tobias
2017-01-01
In contrast to static sounds, spatially dynamic sounds have received little attention in psychoacoustic research so far. This holds true especially for acoustically complex (reverberant, multisource) conditions and impaired hearing. The current study therefore investigated the influence of reverberation and the number of concurrent sound sources on source movement detection in young normal-hearing (YNH) and elderly hearing-impaired (EHI) listeners. A listening environment based on natural environmental sounds was simulated using virtual acoustics and rendered over headphones. Both near-far ('radial') and left-right ('angular') movements of a frontal target source were considered. The acoustic complexity was varied by adding static lateral distractor sound sources as well as reverberation. Acoustic analyses confirmed the expected changes in stimulus features that are thought to underlie radial and angular source movements under anechoic conditions and suggested a special role of monaural spectral changes under reverberant conditions. Analyses of the detection thresholds showed that, with the exception of the single-source scenarios, the EHI group was less sensitive to source movements than the YNH group, despite adequate stimulus audibility. Adding static sound sources clearly impaired the detectability of angular source movements for the EHI (but not the YNH) group. Reverberation, on the other hand, clearly impaired radial source movement detection for the EHI (but not the YNH) listeners. These results illustrate the feasibility of studying factors related to auditory movement perception with the help of the developed test setup.
See Josephus: viewing first-century sexual drama with Victorian eyes.
Goldhill, Simon
2009-01-01
This article looks first at how the art of J.W. Waterhouse responds to the classical world: how complex the scene of reception is, triangulated between artist, the ancient past, and his audiences, and extended over time. Second, it looks at how this scene of reception engages with a specific Victorian problematic about male sexuality and self-control. This is not just a question of Waterhouse using classics as an alibi for thinking about desire, but also of the interference of different models of desire and different knowledges of the classical world in the reception of the painting's narrative semantics.
Selected topics from the structural acoustics program for the B-1 aircraft
NASA Technical Reports Server (NTRS)
Belcher, P. M.
1979-01-01
The major elements of the structural acoustics program for the B-1 aircraft are considered. Acoustic pressures measured at 280 sites on the surface of the vehicle were used to develop pressure models for a resizing of airframe components for aircraft No. 4 (A/C4). Acoustical fatigue design data for two dynamically complex structural configurations were acquired in laboratory programs, the conceptions for and executions of which detailed significant departures from the conventional. Design requirements for mechanical fasteners for configurations other than these two made use of analytical extensions of regrettably limited available information.
Effects of atmospheric variations on acoustic system performance
NASA Technical Reports Server (NTRS)
Nation, Robert; Lang, Stephen; Olsen, Robert; Chintawongvanich, Prasan
1993-01-01
Acoustic propagation over medium to long ranges in the atmosphere is subject to many complex, interacting effects. Of particular interest at this point is modeling low frequency (less than 500 Hz) propagation for the purpose of predicting ranges and bearing accuracies at which acoustic sources can be detected. A simple means of estimating how much of the received signal power propagated directly from the source to the receiver and how much was received by turbulent scattering was developed. The correlations between the propagation mechanism and detection thresholds, beamformer bearing estimation accuracies, and beamformer processing gain of passive acoustic signal detection systems were explored.
Mouterde, Solveig C; Elie, Julie E; Mathevon, Nicolas; Theunissen, Frédéric E
2017-03-29
One of the most complex tasks performed by sensory systems is "scene analysis": the interpretation of complex signals as behaviorally relevant objects. The study of this problem, universal to species and sensory modalities, is particularly challenging in audition, where sounds from various sources and localizations, degraded by propagation through the environment, sum to form a single acoustical signal. Here we investigated in a songbird model, the zebra finch, the neural substrate for ranging and identifying a single source. We relied on ecologically and behaviorally relevant stimuli, contact calls, to investigate the neural discrimination of individual vocal signature as well as sound source distance when calls have been degraded through propagation in a natural environment. Performing electrophysiological recordings in anesthetized birds, we found neurons in the auditory forebrain that discriminate individual vocal signatures despite long-range degradation, as well as neurons discriminating propagation distance, with varying degrees of multiplexing between both information types. Moreover, the neural discrimination performance of individual identity was not affected by propagation-induced degradation beyond what was induced by the decreased intensity. For the first time, neurons with distance-invariant identity discrimination properties as well as distance-discriminant neurons are revealed in the avian auditory cortex. Because these neurons were recorded in animals that had prior experience neither with the vocalizers of the stimuli nor with long-range propagation of calls, we suggest that this neural population is part of a general-purpose system for vocalizer discrimination and ranging. SIGNIFICANCE STATEMENT Understanding how the brain makes sense of the multitude of stimuli that it continually receives in natural conditions is a challenge for scientists. Here we provide a new understanding of how the auditory system extracts behaviorally relevant information, the vocalizer identity and its distance to the listener, from acoustic signals that have been degraded by long-range propagation in natural conditions. We show, for the first time, that single neurons, in the auditory cortex of zebra finches, are capable of discriminating the individual identity and sound source distance in conspecific communication calls. The discrimination of identity in propagated calls relies on a neural coding that is robust to intensity changes, signals' quality, and decreases in the signal-to-noise ratio. Copyright © 2017 Mouterde et al.
Hyperspectral imaging simulation of object under sea-sky background
NASA Astrophysics Data System (ADS)
Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui
2016-10-01
Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.
Top-down control of visual perception: attention in natural vision.
Rolls, Edmund T
2008-01-01
Top-down perceptual influences can bias (or pre-empt) perception. In natural scenes, the receptive fields of neurons in the inferior temporal visual cortex (IT) shrink to become close to the size of objects. This facilitates the read-out of information from the ventral visual system, because the information is primarily about the object at the fovea. Top-down attentional influences are much less evident in natural scenes than when objects are shown against blank backgrounds, though are still present. It is suggested that the reduced receptive-field size in natural scenes, and the effects of top-down attention contribute to change blindness. The receptive fields of IT neurons in complex scenes, though including the fovea, are frequently asymmetric around the fovea, and it is proposed that this is the solution the IT uses to represent multiple objects and their relative spatial positions in a scene. Networks that implement probabilistic decision-making are described, and it is suggested that, when in perceptual systems they take decisions (or 'test hypotheses'), they influence lower-level networks to bias visual perception. Finally, it is shown that similar processes extend to systems involved in the processing of emotion-provoking sensory stimuli, in that word-level cognitive states provide top-down biasing that reaches as far down as the orbitofrontal cortex, where, at the first stage of affective representations, olfactory, taste, flavour, and touch processing is biased (or pre-empted) in humans.
NASA Astrophysics Data System (ADS)
Appel, Marius; Lahn, Florian; Buytaert, Wouter; Pebesma, Edzer
2018-04-01
Earth observation (EO) datasets are commonly provided as collection of scenes, where individual scenes represent a temporal snapshot and cover a particular region on the Earth's surface. Using these data in complex spatiotemporal modeling becomes difficult as soon as data volumes exceed a certain capacity or analyses include many scenes, which may spatially overlap and may have been recorded at different dates. In order to facilitate analytics on large EO datasets, we combine and extend the geospatial data abstraction library (GDAL) and the array-based data management and analytics system SciDB. We present an approach to automatically convert collections of scenes to multidimensional arrays and use SciDB to scale computationally intensive analytics. We evaluate the approach in three study cases on national scale land use change monitoring with Landsat imagery, global empirical orthogonal function analysis of daily precipitation, and combining historical climate model projections with satellite-based observations. Results indicate that the approach can be used to represent various EO datasets and that analyses in SciDB scale well with available computational resources. To simplify analyses of higher-dimensional datasets as from climate model output, however, a generalization of the GDAL data model might be needed. All parts of this work have been implemented as open-source software and we discuss how this may facilitate open and reproducible EO analyses.
The acoustic characteristics of turbomachinery cavities
NASA Technical Reports Server (NTRS)
Lucas, M. J.; Noreen, R.; Southerland, L. D.; Cole, J., III; Junger, M.
1995-01-01
Internal fluid flows are subject not only to self-sustained oscillations of the purely hydrodynamic type but also to the coupling of the instability with the acoustic mode of the surrounding cavity. This situation is common to turbomachinery, since flow instabilities are confined within a flow path where the acoustic wavelength is typically smaller than the dimensions of the cavity and flow speeds are low enough to allow resonances. When acoustic coupling occurs, the fluctuations can become so severe in amplitude that it may induce structural failure of engine components. The potential for catastrophic failure makes identifying flow-induced noise and vibration sources a priority. In view of the complexity of these types of flows, this report was written with the purpose of presenting many of the methods used to compute frequencies for self-sustained oscillations. The report also presents the engineering formulae needed to calculate the acoustic resonant modes for ducts and cavities. Although the report is not a replacement for more complex numerical or experimental modeling techniques, it is intended to be used on general types of flow configurations that are known to produce self-sustained oscillations. This report provides a complete collection of these models under one cover.
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Mojahed, Alireza
2016-11-01
In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.
Development of Moire machine vision
NASA Technical Reports Server (NTRS)
Harding, Kevin G.
1987-01-01
Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.
The Effects of Similarity on High-Level Visual Working Memory Processing.
Yang, Li; Mo, Lei
2017-01-01
Similarity has been observed to have opposite effects on visual working memory (VWM) for complex images. How can these discrepant results be reconciled? To answer this question, we used a change-detection paradigm to test visual working memory performance for multiple real-world objects. We found that working memory for moderate similarity items was worse than that for either high or low similarity items. This pattern was unaffected by manipulations of stimulus type (faces vs. scenes), encoding duration (limited vs. self-paced), and presentation format (simultaneous vs. sequential). We also found that the similarity effects differed in strength in different categories (scenes vs. faces). These results suggest that complex real-world objects are represented using a centre-surround inhibition organization . These results support the category-specific cortical resource theory and further suggest that centre-surround inhibition organization may differ by category.
Robust position estimation of a mobile vehicle
NASA Astrophysics Data System (ADS)
Conan, Vania; Boulanger, Pierre; Elgazzar, Shadia
1994-11-01
The ability to estimate the position of a mobile vehicle is a key task for navigation over large distances in complex indoor environments such as nuclear power plants. Schematics of the plants are available, but they are incomplete, as real settings contain many objects, such as pipes, cables or furniture, that mask part of the model. The position estimation method described in this paper matches 3-D data with a simple schematic of a plant. It is basically independent of odometry information and viewpoint, robust to noisy data and spurious points and largely insensitive to occlusions. The method is based on a hypothesis/verification paradigm and its complexity is polynomial; it runs in (Omicron) (m4n4), where m represents the number of model patches and n the number of scene patches. Heuristics are presented to speed up the algorithm. Results on real 3-D data show good behavior even when the scene is very occluded.
Development of Moire machine vision
NASA Astrophysics Data System (ADS)
Harding, Kevin G.
1987-10-01
Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.
Display system employing acousto-optic tunable filter
NASA Technical Reports Server (NTRS)
Lambert, James L. (Inventor)
1995-01-01
An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.
Display system employing acousto-optic tunable filter
NASA Technical Reports Server (NTRS)
Lambert, James L. (Inventor)
1993-01-01
An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.
Toward a Neural Basis of Music Perception – A Review and Updated Model
Koelsch, Stefan
2011-01-01
Music perception involves acoustic analysis, auditory memory, auditory scene analysis, processing of interval relations, of musical syntax and semantics, and activation of (pre)motor representations of actions. Moreover, music perception potentially elicits emotions, thus giving rise to the modulation of emotional effector systems such as the subjective feeling system, the autonomic nervous system, the hormonal, and the immune system. Building on a previous article (Koelsch and Siebel, 2005), this review presents an updated model of music perception and its neural correlates. The article describes processes involved in music perception, and reports EEG and fMRI studies that inform about the time course of these processes, as well as about where in the brain these processes might be located. PMID:21713060
Pinniped Hearing in Complex Acoustic Environments
2012-09-30
Piedras Blancas, is located just north of Cambria, California and is quickly expanding as one of the largest northern elephant seal colonies along the...acoustically sampled at the Año Nuevo breeding colony, and 46 individuals were similarly studied at the Piedras Blancas breeding colony during the 2011-12
Acoustic facilitation of object movement detection during self-motion
Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.
2011-01-01
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050
Gerber, Stephan M; Jeitziner, Marie-Madlen; Wyss, Patric; Chesham, Alvin; Urwyler, Prabitha; Müri, René M; Jakob, Stephan M; Nef, Tobias
2017-10-16
After prolonged stay in an intensive care unit (ICU) patients often complain about cognitive impairments that affect health-related quality of life after discharge. The aim of this proof-of-concept study was to test the feasibility and effects of controlled visual and acoustic stimulation in a virtual reality (VR) setup in the ICU. The VR setup consisted of a head-mounted display in combination with an eye tracker and sensors to assess vital signs. The stimulation consisted of videos featuring natural scenes and was tested in 37 healthy participants in the ICU. The VR stimulation led to a reduction of heart rate (p = 0. 049) and blood pressure (p = 0.044). Fixation/saccade ratio (p < 0.001) was increased when a visual target was presented superimposed on the videos (reduced search activity), reflecting enhanced visual processing. Overall, the VR stimulation had a relaxing effect as shown in vital markers of physical stress and participants explored less when attending the target. Our study indicates that VR stimulation in ICU settings is feasible and beneficial for critically ill patients.
Auditory Environment Across the Life Span of Cochlear Implant Users: Insights From Data Logging.
Busch, Tobias; Vanpoucke, Filiep; van Wieringen, Astrid
2017-05-24
We describe the natural auditory environment of people with cochlear implants (CIs), how it changes across the life span, and how it varies between individuals. We performed a retrospective cross-sectional analysis of Cochlear Nucleus 6 CI sound-processor data logs. The logs were obtained from 1,501 people with CIs (ages 0-96 years). They covered over 2.4 million hr of implant use and indicated how much time the CI users had spent in various acoustical environments. We investigated exposure to spoken language, noise, music, and quiet, and analyzed variation between age groups, users, and countries. CI users spent a substantial part of their daily life in noisy environments. As a consequence, most speech was presented in background noise. We found significant differences between age groups for all auditory scenes. Yet even within the same age group and country, variability between individuals was substantial. Regardless of their age, people with CIs face challenging acoustical environments in their daily life. Our results underline the importance of supporting them with assistive listening technology. Moreover, we found large differences between individuals' auditory diets that might contribute to differences in rehabilitation outcomes. Their causes and effects should be investigated further.
Acoustic emission monitoring of polymer composite materials
NASA Technical Reports Server (NTRS)
Bardenheier, R.
1981-01-01
The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.
Morphological basis for the evolution of acoustic diversity in oscine songbirds.
Riede, Tobias; Goller, Franz
2014-03-22
Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires.
Horoshenkov, Kirill V; Khan, Amir; Bécot, François-Xavier; Jaouen, Luc; Sgard, Franck; Renault, Amélie; Amirouche, Nesrine; Pompoli, Francesco; Prodi, Nicola; Bonfiglio, Paolo; Pispola, Giulio; Asdrubali, Francesco; Hübelt, Jörn; Atalla, Noureddine; Amédin, Celse K; Lauriks, Walter; Boeckx, Laurens
2007-07-01
This paper reports the results of reproducibility experiments on the interlaboratory characterization of the acoustical properties of three types of consolidated porous media: granulated porous rubber, reticulated foam, and fiberglass. The measurements are conducted in several independent laboratories in Europe and North America. The studied acoustical characteristics are the surface complex acoustic impedance at normal incidence and plane wave absorption coefficient which are determined using the standard impedance tube method. The paper provides detailed procedures related to sample preparation and installation and it discusses the dispersion in the acoustical material property observed between individual material samples and laboratories. The importance of the boundary conditions, homogeneity of the porous material structure, and stability of the adopted signal processing method are highlighted.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
PHOG analysis of self-similarity in aesthetic images
NASA Astrophysics Data System (ADS)
Amirshahi, Seyed Ali; Koch, Michael; Denzler, Joachim; Redies, Christoph
2012-03-01
In recent years, there have been efforts in defining the statistical properties of aesthetic photographs and artworks using computer vision techniques. However, it is still an open question how to distinguish aesthetic from non-aesthetic images with a high recognition rate. This is possibly because aesthetic perception is influenced also by a large number of cultural variables. Nevertheless, the search for statistical properties of aesthetic images has not been futile. For example, we have shown that the radially averaged power spectrum of monochrome artworks of Western and Eastern provenance falls off according to a power law with increasing spatial frequency (1/f2 characteristics). This finding implies that this particular subset of artworks possesses a Fourier power spectrum that is self-similar across different scales of spatial resolution. Other types of aesthetic images, such as cartoons, comics and mangas also display this type of self-similarity, as do photographs of complex natural scenes. Since the human visual system is adapted to encode images of natural scenes in a particular efficient way, we have argued that artists imitate these statistics in their artworks. In support of this notion, we presented results that artists portrait human faces with the self-similar Fourier statistics of complex natural scenes although real-world photographs of faces are not self-similar. In view of these previous findings, we investigated other statistical measures of self-similarity to characterize aesthetic and non-aesthetic images. In the present work, we propose a novel measure of self-similarity that is based on the Pyramid Histogram of Oriented Gradients (PHOG). For every image, we first calculate PHOG up to pyramid level 3. The similarity between the histograms of each section at a particular level is then calculated to the parent section at the previous level (or to the histogram at the ground level). The proposed approach is tested on datasets of aesthetic and non-aesthetic categories of monochrome images. The aesthetic image datasets comprise a large variety of artworks of Western provenance. Other man-made aesthetically pleasing images, such as comics, cartoons and mangas, were also studied. For comparison, a database of natural scene photographs is used, as well as datasets of photographs of plants, simple objects and faces that are in general of low aesthetic value. As expected, natural scenes exhibit the highest degree of PHOG self-similarity. Images of artworks also show high selfsimilarity values, followed by cartoons, comics and mangas. On average, other (non-aesthetic) image categories are less self-similar in the PHOG analysis. A measure of scale-invariant self-similarity (PHOG) allows a good separation of the different aesthetic and non-aesthetic image categories. Our results provide further support for the notion that, like complex natural scenes, images of artworks display a higher degree of self-similarity across different scales of resolution than other image categories. Whether the high degree of self-similarity is the basis for the perception of beauty in both complex natural scenery and artworks remains to be investigated.
Sensorimotor Model of Obstacle Avoidance in Echolocating Bats
Vanderelst, Dieter; Holderied, Marc W.; Peremans, Herbert
2015-01-01
Bat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified. However, while a number of possible cues have been suggested, little is known about the minimal cues supporting obstacle avoidance in echolocating bats. In this paper, we propose that the Interaural Intensity Difference (IID) and travel time of the first millisecond of the echo train are sufficient cues for obstacle avoidance. We describe a simple control algorithm based on the use of these cues in combination with alternating ear positions modeled after the constant frequency bat Rhinolophus rouxii. Using spatial simulations (2D and 3D), we show that simple phonotaxis can steer a bat clear from obstacles without performing a reconstruction of the 3D layout of the scene. As such, this paper presents the first computationally explicit explanation for obstacle avoidance validated in complex simulated environments. Based on additional simulations modelling the FM bat Phyllostomus discolor, we conjecture that the proposed cues can be exploited by constant frequency (CF) bats and frequency modulated (FM) bats alike. We hypothesize that using a low level yet robust cue for obstacle avoidance allows bats to comply with the hard real-time constraints of this basic behaviour. PMID:26502063
Effects of Bifurcations on Aft-Fan Engine Nacelle Noise
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Farassat, Fereidoun; Pope, D. Stuart; Vatsa, Veer N.
2004-01-01
Aft-fan engine nacelle noise is a significant factor in the increasingly important issue of aircraft community noise. The ability to predict such noise within complex duct geometries is a valuable tool in studying possible noise attenuation methods. A recent example of code development for such predictions is the ducted fan noise propagation and radiation code CDUCT-LaRC. This work focuses on predicting the effects of geometry changes (i.e. bifurcations, pylons) on aft fan noise propagation. Beginning with simplified geometries, calculations show that bifurcations lead to scattering of acoustic energy into higher order modes. In addition, when circumferential mode number and the number of bifurcations are properly commensurate, bifurcations increase the relative importance of the plane wave mode near the exhaust plane of the bypass duct. This is particularly evident when the bypass duct surfaces include acoustic treatment. Calculations involving more complex geometries further illustrate that bifurcations and pylons clearly affect modal content, in both propagation and radiation calculations. Additionally, results show that consideration of acoustic radiation results may provide further insight into acoustic treatment effectiveness for situations in which modal decomposition may not be straightforward. The ability of CDUCT-LaRC to handle complex (non-axisymmetric) multi-block geometries, as well as axially and circumferentially segmented liners, allows investigation into the effects of geometric elements (bifurcations, pylons).
Zhao, Hui-Jie; Jiang, Cheng; Jia, Guo-Rui
2014-01-01
Adjacency effects may introduce errors in the quantitative applications of hyperspectral remote sensing, of which the significant item is the earth-atmosphere coupling radiance. However, the surrounding relief and shadow induce strong changes in hyperspectral images acquired from rugged terrain, which is not accurate to describe the spectral characteristics. Furthermore, the radiative coupling process between the earth and the atmosphere is more complex over the rugged scenes. In order to meet the requirements of real-time processing in data simulation, an equivalent reflectance of background was developed by taking into account the topography and the geometry between surroundings and targets based on the radiative transfer process. The contributions of the coupling to the signal at sensor level were then evaluated. This approach was integrated to the sensor-level radiance simulation model and then validated through simulating a set of actual radiance data. The results show that the visual effect of simulated images is consistent with that of observed images. It was also shown that the spectral similarity is improved over rugged scenes. In addition, the model precision is maintained at the same level over flat scenes.
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias J; Petro, Nathan M; Bradley, Margaret M; Keil, Andreas
2015-03-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene's physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. Copyright © 2015 Elsevier B.V. All rights reserved.
[Application of virtual reality in surgical treatment of complex head and neck carcinoma].
Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J
2018-01-07
Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.
Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload
NASA Technical Reports Server (NTRS)
Welsh, David; Smith, Holly; Wang, Shuo
2010-01-01
Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.
Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E
2013-10-01
A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.
Reduced modulation of scanpaths in response to task demands in posterior cortical atrophy.
Shakespeare, Timothy J; Pertzov, Yoni; Yong, Keir X X; Nicholas, Jennifer; Crutch, Sebastian J
2015-02-01
A difficulty in perceiving visual scenes is one of the most striking impairments experienced by patients with the clinico-radiological syndrome posterior cortical atrophy (PCA). However whilst a number of studies have investigated perception of relatively simple experimental stimuli in these individuals, little is known about multiple object and complex scene perception and the role of eye movements in posterior cortical atrophy. We embrace the distinction between high-level (top-down) and low-level (bottom-up) influences upon scanning eye movements when looking at scenes. This distinction was inspired by Yarbus (1967), who demonstrated how the location of our fixations is affected by task instructions and not only the stimulus' low level properties. We therefore examined how scanning patterns are influenced by task instructions and low-level visual properties in 7 patients with posterior cortical atrophy, 8 patients with typical Alzheimer's disease, and 19 healthy age-matched controls. Each participant viewed 10 scenes under four task conditions (encoding, recognition, search and description) whilst eye movements were recorded. The results reveal significant differences between groups in the impact of test instructions upon scanpaths. Across tasks without a search component, posterior cortical atrophy patients were significantly less consistent than typical Alzheimer's disease patients and controls in where they were looking. By contrast, when comparing search and non-search tasks, it was controls who exhibited lowest between-task similarity ratings, suggesting they were better able than posterior cortical atrophy or typical Alzheimer's disease patients to respond appropriately to high-level needs by looking at task-relevant regions of a scene. Posterior cortical atrophy patients had a significant tendency to fixate upon more low-level salient parts of the scenes than controls irrespective of the viewing task. The study provides a detailed characterisation of scene perception abilities in posterior cortical atrophy and offers insights into the mechanisms by which high-level cognitive schemes interact with low-level perception. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metamaterial bricks and quantization of meta-surfaces
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-01-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators. PMID:28240283
Metamaterial bricks and quantization of meta-surfaces
NASA Astrophysics Data System (ADS)
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-02-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units--which we call metamaterial bricks--each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
Metamaterial bricks and quantization of meta-surfaces.
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R; Drinkwater, Bruce W; Subramanian, Sriram
2017-02-27
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units-which we call metamaterial bricks-each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
Acoustic emission evolution during sliding friction of Hadfield steel single crystal
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.
2017-12-01
Friction is a complex dynamic process. Direct observation of processes occurring in the friction zone is impossible due to a small size of a real contact area and, as a consequence, requires various additional methods applicable to monitor a tribological contact state. One of such methods consists in the analysis of acoustic emission data of a tribological contact. The use of acoustic emission entails the problem of interpreting physical sources of signals. In this paper, we analyze the evolution of acoustic emission signal frames in friction of Hadfield steel single crystals. The chosen crystallographic orientation of single crystals enables to identify four stages related to friction development as well as acoustic emission signals inherent in these stages. Acoustic emission signal parameters are studied in more detail by the short-time Fourier transform used to determine the time variation of the median frequency and its power spectrum. The results obtained will facilitate the development of a more precise method to monitor the tribological contact based on the acoustic emission method.
Acoustic logic gates and Boolean operation based on self-collimating acoustic beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ting; Xu, Jian-yi; Cheng, Ying, E-mail: chengying@nju.edu.cn
2015-03-16
The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logicmore » and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.« less
Self-motion facilitates echo-acoustic orientation in humans
Wallmeier, Ludwig; Wiegrebe, Lutz
2014-01-01
The ability of blind humans to navigate complex environments through echolocation has received rapidly increasing scientific interest. However, technical limitations have precluded a formal quantification of the interplay between echolocation and self-motion. Here, we use a novel virtual echo-acoustic space technique to formally quantify the influence of self-motion on echo-acoustic orientation. We show that both the vestibular and proprioceptive components of self-motion contribute significantly to successful echo-acoustic orientation in humans: specifically, our results show that vestibular input induced by whole-body self-motion resolves orientation-dependent biases in echo-acoustic cues. Fast head motions, relative to the body, provide additional proprioceptive cues which allow subjects to effectively assess echo-acoustic space referenced against the body orientation. These psychophysical findings clearly demonstrate that human echolocation is well suited to drive precise locomotor adjustments. Our data shed new light on the sensory–motor interactions, and on possible optimization strategies underlying echolocation in humans. PMID:26064556
NASA Astrophysics Data System (ADS)
Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun
2017-03-01
Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.
2014-12-01
We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside infrasonic radiation, our multiparametric dataset also allowed us to investigate other acoustic processes relevant for explosive eruptions, including shock-wave generation and audible sound radiation, and to link them to the starting conditions and evolution of the blasts.
Bekhtereva, Valeria; Müller, Matthias M
2017-10-01
Is color a critical feature in emotional content extraction and involuntary attentional orienting toward affective stimuli? Here we used briefly presented emotional distractors to investigate the extent to which color information can influence the time course of attentional bias in early visual cortex. While participants performed a demanding visual foreground task, complex unpleasant and neutral background images were displayed in color or grayscale format for a short period of 133 ms and were immediately masked. Such a short presentation poses a challenge for visual processing. In the visual detection task, participants attended to flickering squares that elicited the steady-state visual evoked potential (SSVEP), allowing us to analyze the temporal dynamics of the competition for processing resources in early visual cortex. Concurrently we measured the visual event-related potentials (ERPs) evoked by the unpleasant and neutral background scenes. The results showed (a) that the distraction effect was greater with color than with grayscale images and (b) that it lasted longer with colored unpleasant distractor images. Furthermore, classical and mass-univariate ERP analyses indicated that, when presented in color, emotional scenes elicited more pronounced early negativities (N1-EPN) relative to neutral scenes, than when the scenes were presented in grayscale. Consistent with neural data, unpleasant scenes were rated as being more emotionally negative and received slightly higher arousal values when they were shown in color than when they were presented in grayscale. Taken together, these findings provide evidence for the modulatory role of picture color on a cascade of coordinated perceptual processes: by facilitating the higher-level extraction of emotional content, color influences the duration of the attentional bias to briefly presented affective scenes in lower-tier visual areas.
Hayes, Scott M; Nadel, Lynn; Ryan, Lee
2007-01-01
Previous research has investigated intentional retrieval of contextual information and contextual influences on object identification and word recognition, yet few studies have investigated context effects in episodic memory for objects. To address this issue, unique objects embedded in a visually rich scene or on a white background were presented to participants. At test, objects were presented either in the original scene or on a white background. A series of behavioral studies with young adults demonstrated a context shift decrement (CSD)-decreased recognition performance when context is changed between encoding and retrieval. The CSD was not attenuated by encoding or retrieval manipulations, suggesting that binding of object and context may be automatic. A final experiment explored the neural correlates of the CSD, using functional Magnetic Resonance Imaging. Parahippocampal cortex (PHC) activation (right greater than left) during incidental encoding was associated with subsequent memory of objects in the context shift condition. Greater activity in right PHC was also observed during successful recognition of objects previously presented in a scene. Finally, a subset of regions activated during scene encoding, such as bilateral PHC, was reactivated when the object was presented on a white background at retrieval. Although participants were not required to intentionally retrieve contextual information, the results suggest that PHC may reinstate visual context to mediate successful episodic memory retrieval. The CSD is attributed to automatic and obligatory binding of object and context. The results suggest that PHC is important not only for processing of scene information, but also plays a role in successful episodic memory encoding and retrieval. These findings are consistent with the view that spatial information is stored in the hippocampal complex, one of the central tenets of Multiple Trace Theory. (c) 2007 Wiley-Liss, Inc.
Anticipatory scene representation in preschool children's recall and recognition memory.
Kreindel, Erica; Intraub, Helene
2017-09-01
Behavioral and neuroscience research on boundary extension (false memory beyond the edges of a view of a scene) has provided new insights into the constructive nature of scene representation, and motivates questions about development. Early research with children (as young as 6-7 years) was consistent with boundary extension, but relied on an analysis of spatial errors in drawings which are open to alternative explanations (e.g. drawing ability). Experiment 1 replicated and extended prior drawing results with 4-5-year-olds and adults. In Experiment 2, a new, forced-choice immediate recognition memory test was implemented with the same children. On each trial, a card (photograph of a simple scene) was immediately replaced by a test card (identical view and either a closer or more wide-angle view) and participants indicated which one matched the original view. Error patterns supported boundary extension; identical photographs were more frequently rejected when the closer view was the original view, than vice versa. This asymmetry was not attributable to a selection bias (guessing tasks; Experiments 3-5). In Experiment 4, working memory load was increased by presenting more expansive views of more complex scenes. Again, children exhibited boundary extension, but now adults did not, unless stimulus duration was reduced to 5 s (limiting time to implement strategies; Experiment 5). We propose that like adults, children interpret photographs as views of places in the world; they extrapolate the anticipated continuation of the scene beyond the view and misattribute it to having been seen. Developmental differences in source attribution decision processes provide an explanation for the age-related differences observed. © 2016 John Wiley & Sons Ltd.
Three-dimensional manipulation of single cells using surface acoustic waves
Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2016-01-01
The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444
Sexual spanking, the self, and the construction of deviance.
Plante, Rebecca F
2006-01-01
Using interview and observation data from a group of consensual, heterosexual adults interested in sexual spanking, I describe members' sexual stories and stigma neutralization techniques. Sexual stories are situated within broader cultural contexts that help individuals construct meaning and identities. I describe group members' stories about their initial interest in sexualized spankings. Focusing on a specific event at one party, I show how these stories help to create scene-specific stigma neutralization techniques. Participants strive to differentiate themselves from sadomasochistic activities and to create normative behavioral expectations within their scenes. I conclude that all of this can ultimately be viewed as part of the complex sexual adaptations that people make.
DspaceOgre 3D Graphics Visualization Tool
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.
2011-01-01
This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Jiangye
Up-to-date maps of installed solar photovoltaic panels are a critical input for policy and financial assessment of solar distributed generation. However, such maps for large areas are not available. With high coverage and low cost, aerial images enable large-scale mapping, bit it is highly difficult to automatically identify solar panels from images, which are small objects with varying appearances dispersed in complex scenes. We introduce a new approach based on deep convolutional networks, which effectively learns to delineate solar panels in aerial scenes. The approach has successfully mapped solar panels in imagery covering 200 square kilometers in two cities, usingmore » only 12 square kilometers of training data that are manually labeled.« less
Morphological basis for the evolution of acoustic diversity in oscine songbirds
Riede, Tobias; Goller, Franz
2014-01-01
Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires. PMID:24500163
NASA Astrophysics Data System (ADS)
Zhao, Bei; Zhong, Yanfei; Zhang, Liangpei
2016-06-01
Land-use classification of very high spatial resolution remote sensing (VHSR) imagery is one of the most challenging tasks in the field of remote sensing image processing. However, the land-use classification is hard to be addressed by the land-cover classification techniques, due to the complexity of the land-use scenes. Scene classification is considered to be one of the expected ways to address the land-use classification issue. The commonly used scene classification methods of VHSR imagery are all derived from the computer vision community that mainly deal with terrestrial image recognition. Differing from terrestrial images, VHSR images are taken by looking down with airborne and spaceborne sensors, which leads to the distinct light conditions and spatial configuration of land cover in VHSR imagery. Considering the distinct characteristics, two questions should be answered: (1) Which type or combination of information is suitable for the VHSR imagery scene classification? (2) Which scene classification algorithm is best for VHSR imagery? In this paper, an efficient spectral-structural bag-of-features scene classifier (SSBFC) is proposed to combine the spectral and structural information of VHSR imagery. SSBFC utilizes the first- and second-order statistics (the mean and standard deviation values, MeanStd) as the statistical spectral descriptor for the spectral information of the VHSR imagery, and uses dense scale-invariant feature transform (SIFT) as the structural feature descriptor. From the experimental results, the spectral information works better than the structural information, while the combination of the spectral and structural information is better than any single type of information. Taking the characteristic of the spatial configuration into consideration, SSBFC uses the whole image scene as the scope of the pooling operator, instead of the scope generated by a spatial pyramid (SP) commonly used in terrestrial image classification. The experimental results show that the whole image as the scope of the pooling operator performs better than the scope generated by SP. In addition, SSBFC codes and pools the spectral and structural features separately to avoid mutual interruption between the spectral and structural features. The coding vectors of spectral and structural features are then concatenated into a final coding vector. Finally, SSBFC classifies the final coding vector by support vector machine (SVM) with a histogram intersection kernel (HIK). Compared with the latest scene classification methods, the experimental results with three VHSR datasets demonstrate that the proposed SSBFC performs better than the other classification methods for VHSR image scenes.
Microbial soil community analyses for forensic science: Application to a blind test.
Demanèche, Sandrine; Schauser, Leif; Dawson, Lorna; Franqueville, Laure; Simonet, Pascal
2017-01-01
Soil complexity, heterogeneity and transferability make it valuable in forensic investigations to help obtain clues as to the origin of an unknown sample, or to compare samples from a suspect or object with samples collected at a crime scene. In a few countries, soil analysis is used in matters from site verification to estimates of time after death. However, up to date the application or use of soil information in criminal investigations has been limited. In particular, comparing bacterial communities in soil samples could be a useful tool for forensic science. To evaluate the relevance of this approach, a blind test was performed to determine the origin of two questioned samples (one from the mock crime scene and the other from a 50:50 mixture of the crime scene and the alibi site) compared to three control samples (soil samples from the crime scene, from a context site 25m away from the crime scene and from the alibi site which was the suspect's home). Two biological methods were used, Ribosomal Intergenic Spacer Analysis (RISA), and 16S rRNA gene sequencing with Illumina Miseq, to evaluate the discriminating power of soil bacterial communities. Both techniques discriminated well between soils from a single source, but a combination of both techniques was necessary to show that the origin was a mixture of soils. This study illustrates the potential of applying microbial ecology methodologies in soil as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The effect of buildings on acoustic pulse propagation in an urban environment.
Albert, Donald G; Liu, Lanbo
2010-03-01
Experimental measurements were conducted using acoustic pulse sources in a full-scale artificial village to investigate the reverberation, scattering, and diffraction produced as acoustic waves interact with buildings. These measurements show that a simple acoustic source pulse is transformed into a complex signature when propagating through this environment, and that diffraction acts as a low-pass filter on the acoustic pulse. Sensors located in non-line-of-sight (NLOS) positions usually recorded lower positive pressure maxima than sensors in line-of-sight positions. Often, the first arrival on a NLOS sensor located around a corner was not the largest arrival, as later reflection arrivals that traveled longer distances without diffraction had higher amplitudes. The waveforms are of such complexity that human listeners have difficulty identifying replays of the signatures generated by a single pulse, and the usual methods of source location based on the direction of arrivals may fail in many cases. Theoretical calculations were performed using a two-dimensional finite difference time domain (FDTD) method and compared to the measurements. The predicted peak positive pressure agreed well with the measured amplitudes for all but two sensor locations directly behind buildings, where the omission of rooftop ray paths caused the discrepancy. The FDTD method also produced good agreement with many of the measured waveform characteristics.
NASA Technical Reports Server (NTRS)
Rimskiy-Korsakov, A. V.; Belousov, Y. I.
1973-01-01
A program was compiled for calculating acoustical pressure levels, which might be created by vibrations of complex structures (an assembly of shells and rods), under the influence of a given force, for cases when these fields cannot be measured directly. The acoustical field is determined according to transition frequency and pulse characteristics of the structure in the projection mode. Projection characteristics are equal to the reception characteristics, for vibrating systems in which the reciprocity principle holds true. Characteristics in the receiving mode are calculated on the basis of experimental data on a point pulse space velocity source (input signal) and vibration response of the structure (output signal). The space velocity of a pulse source, set at a point in space r, where it is necessary to calculate the sound field of the structure p(r,t), is determined by measurements of acoustic pressure, created by a point source at a distance R. The vibration response is measured at the point where the forces F and f exciting the system should act.
Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data
NASA Technical Reports Server (NTRS)
Lalime, Aimee L.; Johnson, Marty E.; Rizzi, Stephen A. (Technical Monitor)
2002-01-01
Binaural or "virtual acoustic" representation has been proposed as a method of analyzing acoustic and vibroacoustic data. Unfortunately, this binaural representation can require extensive computer power to apply the Head Related Transfer Functions (HRTFs) to a large number of sources, as with a vibrating structure. This work focuses on reducing the number of real-time computations required in this binaural analysis through the use of Singular Value Decomposition (SVD) and Equivalent Source Reduction (ESR). The SVD method reduces the complexity of the HRTF computations by breaking the HRTFs into dominant singular values (and vectors). The ESR method reduces the number of sources to be analyzed in real-time computation by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. It is shown that the effectiveness of the SVD and ESR methods improves as the complexity of the source increases. In addition, preliminary auralization tests have shown that the results from both the SVD and ESR methods are indistinguishable from the results found with the exhaustive method.
Coding Strategies and Implementations of Compressive Sensing
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Han
This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.
NASA Astrophysics Data System (ADS)
Cho, Y.; Kumar, A.; Xu, S.; Zou, J.
2016-10-01
Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.
Stridulations Reveal Cryptic Speciation in Neotropical Sympatric Ants
Ferreira, Ronara Souza; Poteaux, Chantal; Delabie, Jacques Hubert Charles; Fresneau, Dominique; Rybak, Fanny
2010-01-01
The taxonomic challenge posed by cryptic species underlines the importance of using multiple criteria in species delimitation. In the current paper we tested the use of acoustic analysis as a tool to assess the real diversity in a cryptic species complex of Neotropical ants. In order to understand the potential of acoustics and to improve consistency in the conclusions by comparing different approaches, phylogenetic relationships of all the morphs considered were assessed by the analysis of a fragment of the mitochondrial DNA cytochrome b. We observed that each of the cryptic morph studied presents a morphologically distinct stridulatory organ and that all sympatric morphs produce distinctive stridulations. This is the first evidence of such a degree of specialization in the acoustic organ and signals in ants, which suggests that stridulations may be among the cues used by these ants during inter-specific interactions. Mitochondrial DNA variation corroborated the acoustic differences observed, confirming acoustics as a helpful tool to determine cryptic species in this group of ants, and possibly in stridulating ants in general. Congruent morphological, acoustic and genetic results constitute sufficient evidence to propose each morph studied here as a valid new species, suggesting that P. apicalis is a complex of at least 6 to 9 species, even if they present different levels of divergence. Finally, our results highlight that ant stridulations may be much more informative than hitherto thought, as much for ant communication as for integrative taxonomists. PMID:21203529
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge as others stand by in a watercraft during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Cushing, Kevin; Undvall, Eva; Ceder, Yvonne; Lilja, Hans; Laurell, Thomas
2018-02-13
Cancer cells display acoustic properties enabling acoustophoretic separation from white blood cells (WBCs) with 2-3 log suppression of the WBC background. However, a subset of WBCs has overlapping acoustic properties with cancer cells, which is why label-free acoustophoretic cancer cell isolation needs additional purification prior to analysis. This paper reports for the first time a proof of concept for continuous flow acoustophoretic negative selection of WBCs from cancer cells using negative acoustic contrast elastomeric particles (EPs) activated with CD45-antibodies that specifically bind to WBCs. The EP/WBC complexes align at the acoustic pressure anti-nodes along the channel walls while unbound cancer cells focus to the pressure node in the channel center, enabling continuous flow based depletion of WBC background in a cancer cell product. The method does not provide a single process solution for the CTC separation challenge, but provides an elegant part to a multi-step process by further reducing the WBC background in cancer cell separation products derived from an initial step of label-free acoustophoresis. We report the recorded performance of the negative selection immuno-acoustophoretic WBC depletion and cancer cell recovery. To eliminate the negative impact of the separation due to the known problems of aggregation of negative acoustic contrast particles along the sidewalls of the acoustophoresis channel and to enable continuous separation of EP/WBC complexes from cancer cells, a new acoustic actuation method has been implemented where the ultrasound frequency is scanned (1.991MHz ± 100 kHz, scan rate 200 kHz ms -1 ). Using this frequency scanning strategy EP/WBC complexes were acoustophoretically separated from mixtures of WBCs spiked with breast and prostate cancer cells (DU145 and MCF-7). An 86-fold (MCF-7) and 52-fold (DU145) reduction of WBCs in the cancer cell fractions were recorded with separation efficiencies of 98.6% (MCF-7) and 99.7% (DU145) and cancer cell recoveries of 89.8% (MCF-7) and 85.0% (DU145). Copyright © 2017 Elsevier B.V. All rights reserved.
Investigation of laser Doppler anemometry in developing a velocity-based measurement technique
NASA Astrophysics Data System (ADS)
Jung, Ki Won
2009-12-01
Acoustic properties, such as the characteristic impedance and the complex propagation constant, of porous materials have been traditionally characterized based on pressure-based measurement techniques using microphones. Although the microphone techniques have evolved since their introduction, the most general form of the microphone technique employs two microphones in characterizing the acoustic field for one continuous medium. The shortcomings of determining the acoustic field based on only two microphones can be overcome by using numerous microphones. However, the use of a number of microphones requires a careful and intricate calibration procedure. This dissertation uses laser Doppler anemometry (LDA) to establish a new measurement technique which can resolve issues that microphone techniques have: First, it is based on a single sensor, thus the calibration is unnecessary when only overall ratio of the acoustic field is required for the characterization of a system. This includes the measurements of the characteristic impedance and the complex propagation constant of a system. Second, it can handle multiple positional measurements without calibrating the signal at each position. Third, it can measure three dimensional components of velocity even in a system with a complex geometry. Fourth, it has a flexible adaptability which is not restricted to a certain type of apparatus only if the apparatus is transparent. LDA is known to possess several disadvantages, such as the requirement of a transparent apparatus, high cost, and necessity of seeding particles. The technique based on LDA combined with a curvefitting algorithm is validated through measurements on three systems. First, the complex propagation constant of the air is measured in a rigidly terminated cylindrical pipe which has very low dissipation. Second, the radiation impedance of an open-ended pipe is measured. These two parameters can be characterized by the ratio of acoustic field measured at multiple locations. Third, the power dissipated in a variable RLC load is measured. The three experiments validate the LDA technique proposed. The utility of the LDA method is then extended to the measurement of the complex propagation constant of the air inside a 100 ppi reticulated vitreous carbon (RVC) sample. Compared to measurements in the available studies, the measurement with the 100 ppi RVC sample supports the LDA technique in that it can achieve a low uncertainty in the determined quantity. This dissertation concludes with using the LDA technique for modal decomposition of the plane wave mode and the (1,1) mode that are driven simultaneously. This modal decomposition suggests that the LDA technique surpasses microphone-based techniques, because they are unable to determine the acoustic field based on an acoustic model with unconfined propagation constants for each modal component.
Bloodstain pattern analysis--casework experience.
Karger, B; Rand, S; Fracasso, T; Pfeiffer, H
2008-10-25
The morphology of bloodstain distribution patterns at the crime scene carries vital information for a reconstruction of the events. Contrary to experimental work, case reports where the reconstruction has been verified have rarely been published. This is the reason why a series of four illustrative cases is presented where bloodstain pattern analysis at the crime scene made a reconstruction of the events possible and where this reconstruction was later verified by a confession of the offender. The cases include various types of bloodstains such as contact and smear stains, drop stains, arterial blood spatter and splash stains from both impact and cast-off pattern. Problems frequently encountered in practical casework are addressed, such as unfavourable environmental conditions or combinations of different bloodstain patterns. It is also demonstrated that the analysis of bloodstain morphology can support individualisation of stains by directing the selection of a limited number of stains from a complex pattern for DNA analysis. The complexity of real situations suggests a step-by-step approach starting with a comprehensive view of the overall picture. This is followed by a differentiation and analysis of single bloodstain patterns and a search for informative details. It is ideal when the expert inspecting the crime scene has also performed the autopsy, but he definitely must have detailed knowledge of the injuries of the deceased/injured and of the possible mechanisms of production.
Brain Metabolic Changes in Rats following Acoustic Trauma
He, Jun; Zhu, Yejin; Aa, Jiye; Smith, Paul F.; De Ridder, Dirk; Wang, Guangji; Zheng, Yiwen
2017-01-01
Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive “tinnitus-causing” network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine metabolic pathway. Our results provide the first metabolomics evidence that acoustic trauma can induce changes in multiple metabolic pathways. This pilot study also suggests that the metabolomic approach has the potential to identify acoustic trauma-specific metabolic shifts in future studies where metabolic changes are correlated with the animal's tinnitus status. PMID:28392756
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2014-01-01
Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The present study employs the COMSOL Multphysics framework to solve the coupled eigenvalue problem using the finite element approach. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluated the gas flow inside of a solid rocket motor using St. Robert's law modeling solid propellant burn rate, slip boundary conditions, and the supersonic outflow condition. Results from the HMNF model are used by the coefficient form of the mathematics module to determine the eigenvalues of the AVPE. The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. Pertinent results from these analyses are the complex valued eigenvalue and eigenvectors. Comparisons are made to the French results to evaluate the modeling approach. A comparison of the French results with that of the present analysis is displayed in figures 1 and 2, respectively. The graphic shows the first tangential eigenvector's real (a) and imaginary (b) values.
NASA Astrophysics Data System (ADS)
Gulistan, Aamir; Rahman, M. M.; Ghosh, Souvik; Rahman, B. M. A.
2018-03-01
A full-vectorial numerically efficient Finite Element Method (FEM) based computer code is developed to study complex light-sound interactions in a single mode fiber (SMF). The SBS gain or SBS threshold in a fiber is highly related to the overlap between the optical and acoustic modes. For a typical SMF the acoustic-optic overlap strongly depends on the optical and acoustic mode profiles and it is observed that the acoustic mode is more confined in the core than the optical mode and reported overlap is around 94 % between these fundamental optical and acoustic modes. However, it is shown here that selective co-doping of Aluminum and Germanium in core reduces the acoustic index while keeping the optical index of the same value and thus results in increased acoustic- optic overlap of 99.7%. On the other hand, a design of acoustic anti-guide fiber for high-power transmission systems is also proposed, where the overlap between acoustic and optical modes is reduced. Here, we show that by keeping the optical properties same as a standard SMF and introducing a Boron doped 2nd layer in the cladding, a very low value of 2.7% overlap is achieved. Boron doping in cladding 2nd layer results in a high acoustic index and acoustic modes shifts in the cladding from the core, allowing much high power delivery through this SMF.
Cultural differences in attention: Eye movement evidence from a comparative visual search task.
Alotaibi, Albandri; Underwood, Geoffrey; Smith, Alastair D
2017-10-01
Individual differences in visual attention have been linked to thinking style: analytic thinking (common in individualistic cultures) is thought to promote attention to detail and focus on the most important part of a scene, whereas holistic thinking (common in collectivist cultures) promotes attention to the global structure of a scene and the relationship between its parts. However, this theory is primarily based on relatively simple judgement tasks. We compared groups from Great Britain (an individualist culture) and Saudi Arabia (a collectivist culture) on a more complex comparative visual search task, using simple natural scenes. A higher overall number of fixations for Saudi participants, along with longer search times, indicated less efficient search behaviour than British participants. Furthermore, intra-group comparisons of scan-path for Saudi participants revealed less similarity than within the British group. Together, these findings suggest that there is a positive relationship between an analytic cognitive style and controlled attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Some of the thousand words a picture is worth.
Mandler, J M; Johnson, N S
1976-09-01
The effects of real-world schemata on recognition of complex pictures were studied. Two kinds of pictures were used: pictures of objects forming real-world scenes and unorganized collections of the same objects. The recognition test employed distractors that varied four types of information: inventory, spatial location, descriptive and spatial composition. Results emphasized the selective nature of schemata since superior recognition of one kind of information was offset by loss of another. Spatial location information was better recognized in real-world scenes and spatial composition information was better recognized in unorganized scenes. Organized and unorganized pictures did not differ with respect of inventory and descriptive information. The longer the pictures were studied, the longer subjects took to recognize them. Reaction time for hits, misses, and false alarms increased dramatically as presentation time increased from 5 to 60 sec. It was suggested that detection of a difference in a distractor terminated search, but that when no difference was detected, an exhaustive search of the available information took place.
Tung, Nicole D; Barr, Jason; Sheppard, Dion J; Elliot, Douglas A; Tottey, Leah S; Walsh, Kevan A J
2015-05-01
The delivery of forensic science evidence in a clear and understandable manner is an important aspect of a forensic scientist's role during expert witness delivery in a courtroom trial. This article describes an Integrated Evidence Platform (IEP) system based on spherical photography which allows the audience to view the crime scene via a virtual tour and view the forensic scientist's evidence and results in context. Equipment and software programmes used in the creation of the IEP include a Nikon DSLR camera, a Seitz Roundshot VR Drive, PTGui Pro, and Tourweaver Professional Edition. The IEP enables a clear visualization of the crime scene, with embedded information such as photographs of items of interest, complex forensic evidence, the results of laboratory analyses, and scientific opinion evidence presented in context. The IEP has resulted in significant improvements to the pretrial disclosure of forensic results, enhanced the delivery of evidence in court, and improved the jury's understanding of the spatial relationship between results. © 2015 American Academy of Forensic Sciences.
Hdr Imaging for Feature Detection on Detailed Architectural Scenes
NASA Astrophysics Data System (ADS)
Kontogianni, G.; Stathopoulou, E. K.; Georgopoulos, A.; Doulamis, A.
2015-02-01
3D reconstruction relies on accurate detection, extraction, description and matching of image features. This is even truer for complex architectural scenes that pose needs for 3D models of high quality, without any loss of detail in geometry or color. Illumination conditions influence the radiometric quality of images, as standard sensors cannot depict properly a wide range of intensities in the same scene. Indeed, overexposed or underexposed pixels cause irreplaceable information loss and degrade digital representation. Images taken under extreme lighting environments may be thus prohibitive for feature detection/extraction and consequently for matching and 3D reconstruction. High Dynamic Range (HDR) images could be helpful for these operators because they broaden the limits of illumination range that Standard or Low Dynamic Range (SDR/LDR) images can capture and increase in this way the amount of details contained in the image. Experimental results of this study prove this assumption as they examine state of the art feature detectors applied both on standard dynamic range and HDR images.
A hybrid multiview stereo algorithm for modeling urban scenes.
Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep
2013-01-01
We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.
Heterogeneity Measurement Based on Distance Measure for Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Xing, Xiaoli; Chen, Qihao; Liu, Xiuguo
2018-04-01
To effectively test the scene heterogeneity for polarimetric synthetic aperture radar (PolSAR) data, in this paper, the distance measure is introduced by utilizing the similarity between the sample and pixels. Moreover, given the influence of the distribution and modeling texture, the K distance measure is deduced according to the Wishart distance measure. Specifically, the average of the pixels in the local window replaces the class center coherency or covariance matrix. The Wishart and K distance measure are calculated between the average matrix and the pixels. Then, the ratio of the standard deviation to the mean is established for the Wishart and K distance measure, and the two features are defined and applied to reflect the complexity of the scene. The proposed heterogeneity measure is proceeded by integrating the two features using the Pauli basis. The experiments conducted on the single-look and multilook PolSAR data demonstrate the effectiveness of the proposed method for the detection of the scene heterogeneity.
Effects of inflow distortion profiles on fan tone noise calculated using a 3-D theory
NASA Technical Reports Server (NTRS)
Kobayashi, H.; Groeneweg, J. F.
1979-01-01
Calculations of the fan tone acoustic power and modal structure generated by complex distortions in axial inflow velocity are presented. The model used treats the motor as a rotating three-dimensional cascade and calculates the acoustic field from the distortion-produced dipole distribution on the blades including noncompact source effects. Radial and circumferential distortion shapes are synthesized from Fourier-Bessel components representing individual distortion modes. The relation between individual distortion modes and the generated acoustic modes is examined for particular distortion cases. Comparisons between theoretical and experimental results for distortions produced by wakes from upstream radial rods show that the analysis is a good predictor of acoustic power dependence on disturbance strength.
NASA Technical Reports Server (NTRS)
Olsen, W. A.; Boldman, D.
1978-01-01
Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.
Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.
2001-01-01
Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.
How visual attention is modified by disparities and textures changes?
NASA Astrophysics Data System (ADS)
Khaustova, Dar'ya; Fournier, Jérome; Wyckens, Emmanuel; Le Meur, Olivier
2013-03-01
The 3D image/video quality of experience is a multidimensional concept that depends on 2D image quality, depth quantity and visual comfort. The relationship between these parameters is not yet clearly defined. From this perspective, we aim to understand how texture complexity, depth quantity and visual comfort influence the way people observe 3D content in comparison with 2D. Six scenes with different structural parameters were generated using Blender software. For these six scenes, the following parameters were modified: texture complexity and the amount of depth changing the camera baseline and the convergence distance at the shooting side. Our study was conducted using an eye-tracker and a 3DTV display. During the eye-tracking experiment, each observer freely examined images with different depth levels and texture complexities. To avoid memory bias, we ensured that each observer had only seen scene content once. Collected fixation data were used to build saliency maps and to analyze differences between 2D and 3D conditions. Our results show that the introduction of disparity shortened saccade length; however fixation durations remained unaffected. An analysis of the saliency maps did not reveal any differences between 2D and 3D conditions for the viewing duration of 20 s. When the whole period was divided into smaller intervals, we found that for the first 4 s the introduced disparity was conducive to the section of saliency regions. However, this contribution is quite minimal if the correlation between saliency maps is analyzed. Nevertheless, we did not find that discomfort (comfort) had any influence on visual attention. We believe that existing metrics and methods are depth insensitive and do not reveal such differences. Based on the analysis of heat maps and paired t-tests of inter-observer visual congruency values we deduced that the selected areas of interest depend on texture complexities.
Redies, Christoph; Groß, Franziska
2013-01-01
Frames provide a visual link between artworks and their surround. We asked how image properties change as an observer zooms out from viewing a painting alone, to viewing the painting with its frame and, finally, the framed painting in its museum environment (museum scene). To address this question, we determined three higher-order image properties that are based on histograms of oriented luminance gradients. First, complexity was measured as the sum of the strengths of all gradients in the image. Second, we determined the self-similarity of histograms of the orientated gradients at different levels of spatial analysis. Third, we analyzed how much gradient strength varied across orientations (anisotropy). Results were obtained for three art museums that exhibited paintings from three major periods of Western art. In all three museums, the mean complexity of the frames was higher than that of the paintings or the museum scenes. Frames thus provide a barrier of complexity between the paintings and their exterior. By contrast, self-similarity and anisotropy values of images of framed paintings were intermediate between the images of the paintings and the museum scenes, i.e., the frames provided a transition between the paintings and their surround. We also observed differences between the three museums that may reflect modified frame usage in different art periods. For example, frames in the museum for 20th century art tended to be smaller and less complex than in the two other two museums that exhibit paintings from earlier art periods (13th–18th century and 19th century, respectively). Finally, we found that the three properties did not depend on the type of reproduction of the paintings (photographs in museums, scans from books or images from the Google Art Project). To the best of our knowledge, this study is the first to investigate the relation between frames and paintings by measuring physically defined, higher-order image properties. PMID:24265625
An interactive display system for large-scale 3D models
NASA Astrophysics Data System (ADS)
Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman
2018-04-01
With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.
Steering and positioning targets for HWIL IR testing at cryogenic conditions
NASA Astrophysics Data System (ADS)
Perkes, D. W.; Jensen, G. L.; Higham, D. L.; Lowry, H. S.; Simpson, W. R.
2006-05-01
In order to increase the fidelity of hardware-in-the-loop ground-truth testing, it is desirable to create a dynamic scene of multiple, independently controlled IR point sources. ATK-Mission Research has developed and supplied the steering mirror systems for the 7V and 10V Space Simulation Test Chambers at the Arnold Engineering Development Center (AEDC), Air Force Materiel Command (AFMC). A portion of the 10V system incorporates multiple target sources beam-combined at the focal point of a 20K cryogenic collimator. Each IR source consists of a precision blackbody with cryogenic aperture and filter wheels mounted on a cryogenic two-axis translation stage. This point source target scene is steered by a high-speed steering mirror to produce further complex motion. The scene changes dynamically in order to simulate an actual operational scene as viewed by the System Under Test (SUT) as it executes various dynamic look-direction changes during its flight to a target. Synchronization and real-time hardware-in-the-loop control is accomplished using reflective memory for each subsystem control and feedback loop. This paper focuses on the steering mirror system and the required tradeoffs of optical performance, precision, repeatability and high-speed motion as well as the complications of encoder feedback calibration and operation at 20K.
Bradley, Margaret M.; Lang, Peter J.
2013-01-01
During rapid serial visual presentation (RSVP), the perceptual system is confronted with a rapidly changing array of sensory information demanding resolution. At rapid rates of presentation, previous studies have found an early (e.g., 150–280 ms) negativity over occipital sensors that is enhanced when emotional, as compared with neutral, pictures are viewed, suggesting facilitated perception. In the present study, we explored how picture composition and the presence of people in the image affect perceptual processing of pictures of natural scenes. Using RSVP, pictures that differed in perceptual composition (figure–ground or scenes), content (presence of people or not), and emotional content (emotionally arousing or neutral) were presented in a continuous stream for 330 ms each with no intertrial interval. In both subject and picture analyses, all three variables affected the amplitude of occipital negativity, with the greatest enhancement for figure–ground compositions (as compared with scenes), irrespective of content and emotional arousal, supporting an interpretation that ease of perceptual processing is associated with enhanced occipital negativity. Viewing emotional pictures prompted enhanced negativity only for pictures that depicted people, suggesting that specific features of emotionally arousing images are associated with facilitated perceptual processing, rather than all emotional content. PMID:23780520
Kahn, Itamar; Wig, Gagan S.; Schacter, Daniel L.
2012-01-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes. PMID:21968568
Wilkinson, Krista M; Light, Janice
2011-12-01
Many individuals with complex communication needs may benefit from visual aided augmentative and alternative communication systems. In visual scene displays (VSDs), language concepts are embedded into a photograph of a naturalistic event. Humans play a central role in communication development and might be important elements in VSDs. However, many VSDs omit human figures. In this study, the authors sought to describe the distribution of visual attention to humans in naturalistic scenes as compared with other elements. Nineteen college students observed 8 photographs in which a human figure appeared near 1 or more items that might be expected to compete for visual attention (such as a Christmas tree or a table loaded with food). Eye-tracking technology allowed precise recording of participants' gaze. The fixation duration over a 7-s viewing period and latency to view elements in the photograph were measured. Participants fixated on the human figures more rapidly and for longer than expected based on the size of these figures, regardless of the other elements in the scene. Human figures attract attention in a photograph even when presented alongside other attractive distracters. Results suggest that humans may be a powerful means to attract visual attention to key elements in VSDs.
Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L
2012-08-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.
High-frequency modulation of ion-acoustic waves.
NASA Technical Reports Server (NTRS)
Albright, N. W.
1972-01-01
A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.
Spontaneous tempo and rhythmic entrainment in a bonobo (Pan paniscus).
Large, Edward W; Gray, Patricia M
2015-11-01
The emergence of speech and music in the human species represent major evolutionary transitions that enabled the use of complex, temporally structured acoustic signals to coordinate social interaction. While the fundamental capacity for temporal coordination with complex acoustic signals has been shown in a few distantly related species, the extent to which nonhuman primates exhibit sensitivity to auditory rhythms remains controversial. In Experiment 1, we assessed spontaneous motor tempo and tempo matching in a bonobo (Pan paniscus), in the context of a social drumming interaction. In Experiment 2, the bonobo spontaneously entrained and synchronized her drum strikes within a range around her spontaneous motor tempo. Our results are consistent with the hypothesis that the evolution of acoustic communication builds upon fundamental neurodynamic mechanisms that can be found in a wide range of species, and are recruited for social interactions. (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Perez de Arce, Jose
2002-11-01
Studies of ritual celebrations in central Chile conducted in the past 15 years show that the spatial component of sound is a crucial component of the whole. The sonic compositions of these rituals generate complex musical structures that the author has termed ''multi-orchestral polyphonies.'' Their origins have been documented from archaeological remains in a vast region of southern Andes (southern Peru, Bolivia, northern Argentina, north-central Chile). It consists of a combination of dance, space walk-through, spatial extension, multiple movements between listener and orchestra, and multiple relations between ritual and ambient sounds. The characteristics of these observables reveal a complex schematic relation between space and sound. This schema can be used as a valid hypothesis for the study of pre-Hispanic uses of acoustic ritual space. The acoustic features observed in this study are common in Andean ritual and, to some extent are seen in Mesoamerica as well.
NASA Astrophysics Data System (ADS)
Balaji, P. A.
1999-07-01
A cricket's ear is a directional acoustic sensor. It has a remarkable level of sensitivity to the direction of sound propagation in a narrow frequency bandwidth of 4-5 KHz. Because of its complexity, the directional sensitivity has long intrigued researchers. The cricket's ear is a four-acoustic-inputs/two-vibration-outputs system. In this dissertation, this system is examined in depth, both experimentally and theoretically, with a primary goal to understand the mechanics involved in directional hearing. Experimental identification of the system is done by using random signal processing techniques. Theoretical identification of the system is accomplished by analyzing sound transmission through complex trachea of the ear. Finally, a description of how the cricket achieves directional hearing sensitivity is proposed. The fundamental principle involved in directional heating of the cricket has been utilized to design a device to obtain a directional signal from non- directional inputs.
Observation of frequency cutoff for self-excited dust acoustic waves
NASA Astrophysics Data System (ADS)
Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.
2009-11-01
Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.
Wilkes, Daniel R; Duncan, Alec J
2015-04-01
This paper presents a numerical model for the acoustic coupled fluid-structure interaction (FSI) of a submerged finite elastic body using the fast multipole boundary element method (FMBEM). The Helmholtz and elastodynamic boundary integral equations (BIEs) are, respectively, employed to model the exterior fluid and interior solid domains, and the pressure and displacement unknowns are coupled between conforming meshes at the shared boundary interface to achieve the acoustic FSI. The low frequency FMBEM is applied to both BIEs to reduce the algorithmic complexity of the iterative solution from O(N(2)) to O(N(1.5)) operations per matrix-vector product for N boundary unknowns. Numerical examples are presented to demonstrate the algorithmic and memory complexity of the method, which are shown to be in good agreement with the theoretical estimates, while the solution accuracy is comparable to that achieved by a conventional finite element-boundary element FSI model.
Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maharaj, S. K., E-mail: smaharaj@sansa.org.za; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in
2015-03-15
A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found formore » fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.« less
Neural coding strategies in auditory cortex.
Wang, Xiaoqin
2007-07-01
In contrast to the visual system, the auditory system has longer subcortical pathways and more spiking synapses between the peripheral receptors and the cortex. This unique organization reflects the needs of the auditory system to extract behaviorally relevant information from a complex acoustic environment using strategies different from those used by other sensory systems. The neural representations of acoustic information in auditory cortex can be characterized by three types: (1) isomorphic (faithful) representations of acoustic structures; (2) non-isomorphic transformations of acoustic features and (3) transformations from acoustical to perceptual dimensions. The challenge facing auditory neurophysiologists is to understand the nature of the latter two transformations. In this article, I will review recent studies from our laboratory regarding temporal discharge patterns in auditory cortex of awake marmosets and cortical representations of time-varying signals. Findings from these studies show that (1) firing patterns of neurons in auditory cortex are dependent on stimulus optimality and context and (2) the auditory cortex forms internal representations of sounds that are no longer faithful replicas of their acoustic structures.
NASA Astrophysics Data System (ADS)
Zhang, Zhiwang; Wei, Qi; Cheng, Ying; Zhang, Ting; Wu, Dajian; Liu, Xiaojun
2017-02-01
The discovery of topological acoustics has revolutionized fundamental concepts of sound propagation, giving rise to strikingly unconventional acoustic edge modes immune to scattering. Because of the spinless nature of sound, the "spinlike" degree of freedom crucial to topological states in acoustic systems is commonly realized with circulating background flow or preset coupled resonator ring waveguides, which drastically increases the engineering complexity. Here we realize the acoustic pseudospin multipolar states in a simple flow-free symmetry-broken metamaterial lattice, where the clockwise (anticlockwise) sound propagation within each metamolecule emulates pseudospin down (pseudospin up). We demonstrate that tuning the strength of intermolecular coupling by simply contracting or expanding the metamolecule can induce the band inversion effect between the pseudospin dipole and quadrupole, which leads to a topological phase transition. Topologically protected edge states and reconfigurable topological one-way transmission for sound are further demonstrated. These results provide diverse routes to construct novel acoustic topological insulators with versatile applications.
Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.
El-Shamy, E F
2015-03-01
The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.
Acoustic emission testing on an F/A-18 E/F titanium bulkhead
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Van Way, Craig B.; Lockyer, Allen J.; Kudva, Jayanth N.; Ziola, Steve M.
1995-04-01
An important opportunity recently transpired at Northrop Grumman Corporation to instrument an F/A - 18 E/F titanium bulkhead with broad band acoustic emission sensors during a scheduled structural fatigue test. The overall intention of this effort was to investigate the potential for detecting crack propagation using acoustic transmission signals for a large structural component. Key areas of experimentation and experience included (1) acoustic noise characterization, (2) separation of crack signals from extraneous noise, (3) source location accuracy, and (4) methods of acoustic transducer attachment. Fatigue cracking was observed and monitored by strategically placed acoustic emission sensors. The outcome of the testing indicated that accurate source location still remains enigmatic for non-specialist engineering personnel especially at this level of structural complexity. However, contrary to preconceived expectations, crack events could be readily separated from extraneous noise. A further dividend from the investigation materialized in the form of close correspondence between frequency domain waveforms of the bulkhead test specimen tested and earlier work with thick plates.
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Rizzi, Stephen A.
1995-01-01
Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.
NASA Astrophysics Data System (ADS)
Maksimov, German A.; Radchenko, Aleksei V.
2006-05-01
Acoustical stimulation (AS) of oil production rate from a well is perspective technology for oil industry but physical mechanisms of acoustical action are not understood clear due to complex character of the phenomena. In practice the role of these mechanisms is appeared non-directly in the form of additional oil output. Thus the validity examination of any physical model has to be carried out as with account of mechanism of acoustic action by itself as well with account of previous and consequent stages dealt with fluid filtration into a well. The advanced model of physical processes taking place at acoustical stimulation is considered in the framework of heating mechanism of acoustical action, but for two-component fluid in porous permeable media. The porous fluid is considered as consisted of light and heavy hydrocarbonaceous phases, which are in a thermodynamic equilibrium. Filtration or acoustical stimulation can change equilibrium balance between phases so the heavy phase can be precipitated on pores walls or dissolved. The set of acoustical, heat and filtration tasks were solved numerically to describe oil output from a well — the final result of acoustical action, which can be compared with experimental data. It is shown that the suggested numerical model allows us to reproduce the basic features of fluid filtration in a well before during and after acoustical stimulation.
Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment
NASA Astrophysics Data System (ADS)
Scanlon, Michael V.
2008-04-01
The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.
Neurotoxic lesions of ventrolateral prefrontal cortex impair object-in-place scene memory
Wilson, Charles R E; Gaffan, David; Mitchell, Anna S; Baxter, Mark G
2007-01-01
Disconnection of the frontal lobe from the inferotemporal cortex produces deficits in a number of cognitive tasks that require the application of memory-dependent rules to visual stimuli. The specific regions of frontal cortex that interact with the temporal lobe in performance of these tasks remain undefined. One capacity that is impaired by frontal–temporal disconnection is rapid learning of new object-in-place scene problems, in which visual discriminations between two small typographic characters are learned in the context of different visually complex scenes. In the present study, we examined whether neurotoxic lesions of ventrolateral prefrontal cortex in one hemisphere, combined with ablation of inferior temporal cortex in the contralateral hemisphere, would impair learning of new object-in-place scene problems. Male macaque monkeys learned 10 or 20 new object-in-place problems in each daily test session. Unilateral neurotoxic lesions of ventrolateral prefrontal cortex produced by multiple injections of a mixture of ibotenate and N-methyl-d-aspartate did not affect performance. However, when disconnection from inferotemporal cortex was completed by ablating this region contralateral to the neurotoxic prefrontal lesion, new learning was substantially impaired. Sham disconnection (injecting saline instead of neurotoxin contralateral to the inferotemporal lesion) did not affect performance. These findings support two conclusions: first, that the ventrolateral prefrontal cortex is a critical area within the frontal lobe for scene memory; and second, the effects of ablations of prefrontal cortex can be confidently attributed to the loss of cell bodies within the prefrontal cortex rather than to interruption of fibres of passage through the lesioned area. PMID:17445247
Acoustic Propagation Modeling for Marine Hydro-Kinetic Applications
NASA Astrophysics Data System (ADS)
Johnson, C. N.; Johnson, E.
2014-12-01
The combination of riverine, tidal, and wave energy have the potential to supply over one third of the United States' annual electricity demand. However, in order to deploy and test prototypes, and commercial installations, marine hydrokinetic (MHK) devices must meet strict regulatory guidelines that determine the maximum amount of noise that can be generated and sets particular thresholds for determining disturbance and injury caused by noise. An accurate model for predicting the propagation of a MHK source in a real-life hydro-acoustic environment has been established. This model will help promote the growth and viability of marine, water, and hydrokinetic energy by confidently assuring federal regulations are meet and harmful impacts to marine fish and wildlife are minimal. Paracousti, a finite difference solution to the acoustic equations, was originally developed for sound propagation in atmospheric environments and has been successfully validated for a number of different geophysical activities. The three-dimensional numerical implementation is advantageous over other acoustic propagation techniques for a MHK application where the domains of interest have complex 3D interactions from the seabed, banks, and other shallow water effects. A number of different cases for hydro-acoustic environments have been validated by both analytical and numerical results from canonical and benchmark problems. This includes a variety of hydrodynamic and physical environments that may be present in a potential MHK application including shallow and deep water, sloping, and canyon type bottoms, with varying sound speed and density profiles. With the model successfully validated for hydro-acoustic environments more complex and realistic MHK sources from turbines and/or arrays can be modeled.
Syllable timing and pausing: evidence from Cantonese.
Perry, Conrad; Wong, Richard Kwok-Shing; Matthews, Stephen
2009-01-01
We examined the relationship between the acoustic duration of syllables and the silent pauses that follow them in Cantonese. The results showed that at major syntactic junctures, acoustic plus silent pause durations were quite similar for a number of different syllable types whose acoustic durations differed substantially. In addition, it appeared that CV: syllables, which had the longest acoustic duration of all syllable types that were examined, were also the least likely to have silent pauses after them. These results suggest that cross-language differences between the probability that silent pauses are used at major syntactic junctures might potentially be explained by the accuracy at which timing slots can be assigned for syllables, rather than more complex explanations that have been proposed.
Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons
NASA Astrophysics Data System (ADS)
Ahmadi, Abrishami S.; Nouri, Kadijani M.
2014-06-01
In this work, the effects of superthermal and trapped electrons on the oblique propagation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.
Numerical Investigations of High Pressure Acoustic Waves in Resonators
NASA Technical Reports Server (NTRS)
Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.
2004-01-01
This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.
Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces
Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung
2016-01-01
Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634
Reconfigurable origami-inspired acoustic waveguides
Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia
2016-01-01
We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527
A numerical study of active structural acoustic control in a stiffened, double wall cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Coats, T. J.; Lester, H. C.; Silcox, R. J.
1994-01-01
It is demonstrated that active structural acoustic control of complex structural/acoustic coupling can be numerically modeled using finite element and boundary element techniques in conjunction with an optimization procedure to calculate control force amplitudes. Appreciable noise reduction is obtained when the structure is excited at a structural resonance of the outer shell or an acoustic resonance of the inner cavity. Adding ring stiffeners as a connection between the inner and outer shells provides an additional structural transmission path to the interior cavity and coupled the modal behavior of the inner and outer shells. For the case of excitation at the structural resonance of the unstiffened outer shell, adding the stiffeners raises the structural resonance frequencies. The effectiveness of the control forces is reduced due to the off resonance structural response. For excitation at an acoustic cavity resonance, the controller effectiveness is enhanced.
Numerical noise prediction in fluid machinery
NASA Astrophysics Data System (ADS)
Pantle, Iris; Magagnato, Franco; Gabi, Martin
2005-09-01
Numerical methods successively became important in the design and optimization of fluid machinery. However, as noise emission is considered, one can hardly find standardized prediction methods combining flow and acoustical optimization. Several numerical field methods for sound calculations have been developed. Due to the complexity of the considered flow, approaches must be chosen to avoid exhaustive computing. In this contribution the noise of a simple propeller is investigated. The configurations of the calculations comply with an existing experimental setup chosen for evaluation. The used in-house CFD solver SPARC contains an acoustic module based on Ffowcs Williams-Hawkings Acoustic Analogy. From the flow results of the time dependent Large Eddy Simulation the time dependent acoustic sources are extracted and given to the acoustic module where relevant sound pressure levels are calculated. The difficulties, which arise while proceeding from open to closed rotors and from gas to liquid are discussed.
NASTRAN application for the prediction of aircraft interior noise
NASA Technical Reports Server (NTRS)
Marulo, Francesco; Beyer, Todd B.
1987-01-01
The application of a structural-acoustic analogy within the NASTRAN finite element program for the prediction of aircraft interior noise is presented. Some refinements of the method, which reduce the amount of computation required for large, complex structures, are discussed. Also, further improvements are proposed and preliminary comparisons with structural and acoustic modal data obtained for a large, composite cylinder are presented.
1999-09-30
saturated poroelastic medium. The transition matrix scattering formalism was used to develop the scattered acoustic field(s) such that appropriate...sediment increases from a fluid model (simplest) to a fluid-saturated poroelastic model (most complex). Laboratory experiments in carefully quantified...of a linear acoustic field from a bubble, collection of bubbles, or other targets embedded in a fluid-saturated sediment are not well known. This
Acoustic source signal and directivity for explosive sources in complex environments
NASA Astrophysics Data System (ADS)
Waxler, R.; Bonner, J. L.; Reinke, R.; Talmadge, C. L.; Kleinert, D. E.; Alberts, W.; Lennox, E.
2012-12-01
Much work has gone into characterizing the blast wave, and ultimate acoustic pulse, produced by an explosion in flat, open land. Recently, an experiment was performed to study signals produced by explosions in more complex environments, both above and below ground. Explosive charges, ranging in weight from 200 to 2000 lbs., were detonated in a variety of configurations in and around tubes and culverts as well as buried in alluvium and limestone. A large number of acoustic sensors were deployed to capture the signals from the explosions. The deployment included two concentric rings of eighteen sensors each, spaced roughly every twenty degrees at radii of 300 and 1000 meters and surrounding the explosions. These captured the acoustic source function and directivity. In addition, a network of sensors, including sensors mounted on an aerostat and elevated to 300 meters altitude, were deployed throughout the area to capture the signals as they propagated. The meteorological state was monitored with a variety of instruments including a tethersonde, radiosonde and sodar. Significant directivity was observed in the signals from many of the shots, including those from charges that were detonated underground, but not near any structure. Results from the experiment will be presented.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Researchers conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Directional Acoustic Wave Manipulation by a Porpoise via Multiphase Forehead Structure
NASA Astrophysics Data System (ADS)
Zhang, Yu; Song, Zhongchang; Wang, Xianyan; Cao, Wenwu; Au, Whitlow W. L.
2017-12-01
Porpoises are small-toothed whales, and they can produce directional acoustic waves to detect and track prey with high resolution and a wide field of view. Their sound-source sizes are rather small in comparison with the wavelength so that beam control should be difficult according to textbook sonar theories. Here, we demonstrate that the multiphase material structure in a porpoise's forehead is the key to manipulating the directional acoustic field. Computed tomography (CT) derives the multiphase (bone-air-tissue) complex, tissue experiments obtain the density and sound-velocity multiphase gradient distributions, and acoustic fields and beam formation are numerically simulated. The results suggest the control of wave propagations and sound-beam formations is realized by cooperation of the whole forehead's tissues and structures. The melon size significantly impacts the side lobes of the beam and slightly influences the main beams, while the orientation of the vestibular sac mainly adjusts the main beams. By compressing the forehead complex, the sound beam can be expanded for near view. The porpoise's biosonar allows effective wave manipulations for its omnidirectional sound source, which can help the future development of miniaturized biomimetic projectors in underwater sonar, medical ultrasonography, and other ultrasonic imaging applications.
Balcazar, Naysa E; Tripovich, Joy S; Klinck, Holger; Nieukirk, Sharon L; Mellinger, David K; Dziak, Robert P; Rogers, Tracey L
2015-11-24
For effective species management, understanding population structure and distribution is critical. However, quantifying population structure is not always straightforward. Within the Southern Hemisphere, the blue whale ( Balaenoptera musculus ) complex is extremely diverse but difficult to study. Using automated detector methods, we identified "acoustic populations" of whales producing region-specific call types. We examined blue whale call types in passive acoustic data at sites spanning over 7,370 km across the southeast Indian Ocean and southwest Pacific Ocean (SWPO) from 2009 to 2012. In the absence of genetic resolution, these acoustic populations offer unique information about the blue whale population complex. We found that the Australian continent acts as a geographic boundary, separating Australia and New Zealand blue whale acoustic populations at the junction of the Indian and Pacific Ocean basins. We located blue whales in previously undocumented locations, including the far SWPO, in the Tasman Sea off the east coast of Australia, and along the Lau Basin near Tonga. Our understanding of population dynamics across this broad scale has significant implications to recovery and conservation management for this endangered species, at a regional and global scale.
Sound source localization and segregation with internally coupled ears: the treefrog model
Christensen-Dalsgaard, Jakob
2016-01-01
Acoustic signaling plays key roles in mediating many of the reproductive and social behaviors of anurans (frogs and toads). Moreover, acoustic signaling often occurs at night, in structurally complex habitats, such as densely vegetated ponds, and in dense breeding choruses characterized by high levels of background noise and acoustic clutter. Fundamental to anuran behavior is the ability of the auditory system to determine accurately the location from where sounds originate in space (sound source localization) and to assign specific sounds in the complex acoustic milieu of a chorus to their correct sources (sound source segregation). Here, we review anatomical, biophysical, neurophysiological, and behavioral studies aimed at identifying how the internally coupled ears of frogs contribute to sound source localization and segregation. Our review focuses on treefrogs in the genus Hyla, as they are the most thoroughly studied frogs in terms of sound source localization and segregation. They also represent promising model systems for future work aimed at understanding better how internally coupled ears contribute to sound source localization and segregation. We conclude our review by enumerating directions for future research on these animals that will require the collaborative efforts of biologists, physicists, and roboticists. PMID:27730384
Ultrasonic emissions during ice nucleation and propagation in plant xylem.
Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan
2015-08-01
Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The PAC-MAN model: Benchmark case for linear acoustics in computational physics
NASA Astrophysics Data System (ADS)
Ziegelwanger, Harald; Reiter, Paul
2017-10-01
Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.
An Overview of Computational Aeroacoustic Modeling at NASA Langley
NASA Technical Reports Server (NTRS)
Lockard, David P.
2001-01-01
The use of computational techniques in the area of acoustics is known as computational aeroacoustics and has shown great promise in recent years. Although an ultimate goal is to use computational simulations as a virtual wind tunnel, the problem is so complex that blind applications of traditional algorithms are typically unable to produce acceptable results. The phenomena of interest are inherently unsteady and cover a wide range of frequencies and amplitudes. Nonetheless, with appropriate simplifications and special care to resolve specific phenomena, currently available methods can be used to solve important acoustic problems. These simulations can be used to complement experiments, and often give much more detailed information than can be obtained in a wind tunnel. The use of acoustic analogy methods to inexpensively determine far-field acoustics from near-field unsteadiness has greatly reduced the computational requirements. A few examples of current applications of computational aeroacoustics at NASA Langley are given. There remains a large class of problems that require more accurate and efficient methods. Research to develop more advanced methods that are able to handle the geometric complexity of realistic problems using block-structured and unstructured grids are highlighted.
Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles
Srivastava, Kyle H.; Elemans, Coen P.H.
2015-01-01
The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859
Beckers, Gabriël J L; Gahr, Manfred
2012-08-01
Auditory systems bias responses to sounds that are unexpected on the basis of recent stimulus history, a phenomenon that has been widely studied using sequences of unmodulated tones (mismatch negativity; stimulus-specific adaptation). Such a paradigm, however, does not directly reflect problems that neural systems normally solve for adaptive behavior. We recorded multiunit responses in the caudomedial auditory forebrain of anesthetized zebra finches (Taeniopygia guttata) at 32 sites simultaneously, to contact calls that recur probabilistically at a rate that is used in communication. Neurons in secondary, but not primary, auditory areas respond preferentially to calls when they are unexpected (deviant) compared with the same calls when they are expected (standard). This response bias is predominantly due to sites more often not responding to standard events than to deviant events. When two call stimuli alternate between standard and deviant roles, most sites exhibit a response bias to deviant events of both stimuli. This suggests that biases are not based on a use-dependent decrease in response strength but involve a more complex mechanism that is sensitive to auditory deviance per se. Furthermore, between many secondary sites, responses are tightly synchronized, a phenomenon that is driven by internal neuronal interactions rather than by the timing of stimulus acoustic features. We hypothesize that this deviance-sensitive, internally synchronized network of neurons is involved in the involuntary capturing of attention by unexpected and behaviorally potentially relevant events in natural auditory scenes.
An Accurate Direction Finding Scheme Using Virtual Antenna Array via Smartphones.
Wang, Xiaopu; Xiong, Yan; Huang, Wenchao
2016-10-29
With the development of localization technologies, researchers solve the indoor localization problems using diverse methods and equipment. Most localization techniques require either specialized devices or fingerprints, which are inconvenient for daily use. Therefore, we propose and implement an accurate, efficient and lightweight system for indoor direction finding using common smartphones and loudspeakers. Our method is derived from a key insight: By moving a smartphone in regular patterns, we can effectively emulate the sensitivity and functionality of a Uniform Antenna Array to estimate the angle of arrival of the target signal. Specifically, a user only needs to hold his smartphone still in front of him, and then rotate his body around 360 ∘ duration with the smartphone at an approximate constant velocity. Then, our system can provide accurate directional guidance and lead the user to their destinations (normal loudspeakers we preset in the indoor environment transmitting high frequency acoustic signals) after a few measurements. Major challenges in implementing our system are not only imitating a virtual antenna array by ordinary smartphones but also overcoming the detection difficulties caused by the complex indoor environment. In addition, we leverage the gyroscope of the smartphone to reduce the impact of a user's motion pattern change to the accuracy of our system. In order to get rid of the multipath effect, we leverage multiple signal classification to calculate the direction of the target signal, and then design and deploy our system in various indoor scenes. Extensive comparative experiments show that our system is reliable under various circumstances.
Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes
NASA Astrophysics Data System (ADS)
Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio
2017-12-01
A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of the band misalignments were less than the pixel size. Furthermore, it was shown that the performance of the band alignment was dependent on the spatial distance from the reference band.
Getzmann, Stephan; Lewald, Jörg; Falkenstein, Michael
2014-01-01
Speech understanding in complex and dynamic listening environments requires (a) auditory scene analysis, namely auditory object formation and segregation, and (b) allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called "cocktail-party" problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values) from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments.
Getzmann, Stephan; Lewald, Jörg; Falkenstein, Michael
2014-01-01
Speech understanding in complex and dynamic listening environments requires (a) auditory scene analysis, namely auditory object formation and segregation, and (b) allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called “cocktail-party” problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values) from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments. PMID:25540608
An investigation of reasoning by analogy in schizophrenia and autism spectrum disorder
Krawczyk, Daniel C.; Kandalaft, Michelle R.; Didehbani, Nyaz; Allen, Tandra T.; McClelland, M. Michelle; Tamminga, Carol A.; Chapman, Sandra B.
2014-01-01
Relational reasoning ability relies upon by both cognitive and social factors. We compared analogical reasoning performance in healthy controls (HC) to performance in individuals with Autism Spectrum Disorder (ASD), and individuals with schizophrenia (SZ). The experimental task required participants to find correspondences between drawings of scenes. Participants were asked to infer which item within one scene best matched a relational item within the second scene. We varied relational complexity, presence of distraction, and type of objects in the analogies (living or non-living items). We hypothesized that the cognitive differences present in SZ would reduce relational inferences relative to ASD and HC. We also hypothesized that both SZ and ASD would show lower performance on living item problems relative to HC due to lower social function scores. Overall accuracy was higher for HC relative to SZ, consistent with prior research. Across groups, higher relational complexity reduced analogical responding, as did the presence of non-living items. Separate group analyses revealed that the ASD group was less accurate at making relational inferences in problems that involved mainly non-living items and when distractors were present. The SZ group showed differences in problem type similar to the ASD group. Additionally, we found significant correlations between social cognitive ability and analogical reasoning, particularly for the SZ group. These results indicate that differences in cognitive and social abilities impact the ability to infer analogical correspondences along with numbers of relational elements and types of objects present in the problems. PMID:25191240
Pickwell, Andrew J; Dorey, Robert A; Mba, David
2011-09-01
Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.
The acoustic features of human laughter
NASA Astrophysics Data System (ADS)
Bachorowski, Jo-Anne; Owren, Michael J.
2002-05-01
Remarkably little is known about the acoustic features of laughter, despite laughter's ubiquitous role in human vocal communication. Outcomes are described for 1024 naturally produced laugh bouts recorded from 97 young adults. Acoustic analysis focused on temporal characteristics, production modes, source- and filter-related effects, and indexical cues to laugher sex and individual identity. The results indicate that laughter is a remarkably complex vocal signal, with evident diversity in both production modes and fundamental frequency characteristics. Also of interest was finding a consistent lack of articulation effects in supralaryngeal filtering. Outcomes are compared to previously advanced hypotheses and conjectures about this species-typical vocal signal.
Measurement of Complex Sensitivity of Data Channels in Hydrophone Line Array at Very Low Frequency
2015-03-25
minimum frequency at which the acoustic projectors commonly used for acoustic calibrations can transmit a useful acoustic signal. Dkt . No. 300041...Crane Water Surface 10 inch move Dkt . No. 300041 Application No. ?? REPLACEMENT SHEET? 1st DRAFT FIG. 2 62 60 66 64 70 12 66 68 2 1 11 1 12 12 2 Dkt . No...5-5 0.6 0.8 1.0 = 51ms = 0.86 Dkt . No. 300041 Application No. ?? REPLACEMENT SHEET? 1st DRAFT FIG. 4 0 1 210 10 10 -10 -5 0 5 M ag ni tu de ( dB
Mohr, Robert A; Chang, Yiran; Bhandiwad, Ashwin A; Forlano, Paul M; Sisneros, Joseph A
2018-01-01
While the peripheral auditory system of fish has been well studied, less is known about how the fish's brain and central auditory system process complex social acoustic signals. The plainfin midshipman fish, Porichthys notatus, has become a good species for investigating the neural basis of acoustic communication because the production and reception of acoustic signals is paramount for this species' reproductive success. Nesting males produce long-duration advertisement calls that females detect and localize among the noise in the intertidal zone to successfully find mates and spawn. How female midshipman are able to discriminate male advertisement calls from environmental noise and other acoustic stimuli is unknown. Using the immediate early gene product cFos as a marker for neural activity, we quantified neural activation of the ascending auditory pathway in female midshipman exposed to conspecific advertisement calls, heterospecific white seabass calls, or ambient environment noise. We hypothesized that auditory hindbrain nuclei would be activated by general acoustic stimuli (ambient noise and other biotic acoustic stimuli) whereas auditory neurons in the midbrain and forebrain would be selectively activated by conspecific advertisement calls. We show that neural activation in two regions of the auditory hindbrain, i.e., the rostral intermediate division of the descending octaval nucleus and the ventral division of the secondary octaval nucleus, did not differ via cFos immunoreactive (cFos-ir) activity when exposed to different acoustic stimuli. In contrast, female midshipman exposed to conspecific advertisement calls showed greater cFos-ir in the nucleus centralis of the midbrain torus semicircularis compared to fish exposed only to ambient noise. No difference in cFos-ir was observed in the torus semicircularis of animals exposed to conspecific versus heterospecific calls. However, cFos-ir was greater in two forebrain structures that receive auditory input, i.e., the central posterior nucleus of the thalamus and the anterior tuberal hypothalamus, when exposed to conspecific calls versus either ambient noise or heterospecific calls. Our results suggest that higher-order neurons in the female midshipman midbrain torus semicircularis, thalamic central posterior nucleus, and hypothalamic anterior tuberal nucleus may be necessary for the discrimination of complex social acoustic signals. Furthermore, neurons in the central posterior and anterior tuberal nuclei are differentially activated by exposure to conspecific versus other acoustic stimuli. © 2018 S. Karger AG, Basel.
The 'F-complex' and MMN tap different aspects of deviance.
Laufer, Ilan; Pratt, Hillel
2005-02-01
To compare the 'F(fusion)-complex' with the Mismatch negativity (MMN), both components associated with automatic detection of changes in the acoustic stimulus flow. Ten right-handed adult native Hebrew speakers discriminated vowel-consonant-vowel (V-C-V) sequences /ada/ (deviant) and /aga/ (standard) in an active auditory 'Oddball' task, and the brain potentials associated with performance of the task were recorded from 21 electrodes. Stimuli were generated by fusing the acoustic elements of the V-C-V sequences as follows: base was always presented in front of the subject, and formant transitions were presented to the front, left or right in a virtual reality room. An illusion of a lateralized echo (duplex sensation) accompanied base fusion with the lateralized formant locations. Source current density estimates were derived for the net response to the fusion of the speech elements (F-complex) and for the MMN, using low-resolution electromagnetic tomography (LORETA). Statistical non-parametric mapping was used to estimate the current density differences between the brain sources of the F-complex and the MMN. Occipito-parietal regions and prefrontal regions were associated with the F-complex in all formant locations, whereas the vicinity of the supratemporal plane was bilaterally associated with the MMN, but only in case of front-fusion (no duplex effect). MMN is sensitive to the novelty of the auditory object in relation to other stimuli in a sequence, whereas the F-complex is sensitive to the acoustic features of the auditory object and reflects a process of matching them with target categories. The F-complex and MMN reflect different aspects of auditory processing in a stimulus-rich and changing environment: content analysis of the stimulus and novelty detection, respectively.
Segmentation of nuclear images in automated cervical cancer screening
NASA Astrophysics Data System (ADS)
Dadeshidze, Vladimir; Olsson, Lars J.; Domanik, Richard A.
1995-08-01
This paper describes an efficient method of segmenting cell nuclei from complex scenes based upon the use of adaptive region growing in conjuction with nucleus-specific filters. Results of segmenting potentially abnormal (cancer or neoplastic) cell nuclei in Papanicolaou smears from 0.8 square micrometers resolution images are also presented.
Straussian Grounded-Theory Method: An Illustration
ERIC Educational Resources Information Center
Thai, Mai Thi Thanh; Chong, Li Choy; Agrawal, Narendra M.
2012-01-01
This paper demonstrates the benefits and application of Straussian Grounded Theory method in conducting research in complex settings where parameters are poorly defined. It provides a detailed illustration on how this method can be used to build an internationalization theory. To be specific, this paper exposes readers to the behind-the-scene work…
Forces and Motion: How Young Children Understand Causal Events
ERIC Educational Resources Information Center
Goksun, Tilbe; George, Nathan R.; Hirsh-Pasek, Kathy; Golinkoff, Roberta M.
2013-01-01
How do children evaluate complex causal events? This study investigates preschoolers' representation of "force dynamics" in causal scenes, asking whether (a) children understand how single and dual forces impact an object's movement and (b) this understanding varies across cause types (Cause, Enable, Prevent). Three-and-a half- to…
Candor Chasm in Valles Marineris
NASA Technical Reports Server (NTRS)
1994-01-01
Part of Candor Chasm in Valles Marineris, Mars, from about latitude -9 degrees to -3 degrees and longitude 69 degrees to 75 degrees. Layered terrain is visible in the scene, perhaps due to a huge ancient lake. The geomorphology is complex, shaped by tectonics, mass wasting, and wind, and perhaps by water and volcanism.
Facing and Transforming Hauntings of Race through the Arts
ERIC Educational Resources Information Center
Roberts, Rosemarie A.
2011-01-01
This article examines the pedagogical processes through which dance choreography and performance embody issues of social injustices. The author draws on ethnographic data of prominent black choreographers/dancers/educators, Katherine Dunham and Ronald K. Brown, to consider the behind the scene complex, interdependent practices of embodiment and to…
L. Linsen; B.J. Karis; E.G. McPherson; B. Hamann
2005-01-01
In computer graphics, models describing the fractal branching structure of trees typically exploit the modularity of tree structures. The models are based on local production rules, which are applied iteratively and simultaneously to create a complex branching system. The objective is to generate three-dimensional scenes of often many realistic- looking and non-...
Teacher Vision: Expert and Novice Teachers' Perception of Problematic Classroom Management Scenes
ERIC Educational Resources Information Center
Wolff, Charlotte E.; Jarodzka, Halszka; van den Bogert, Niek; Boshuizen, Henny P. A.
2016-01-01
Visual expertise has been explored in numerous professions, but research on teachers' vision remains limited. Teachers' visual expertise is an important professional skill, particularly the ability to simultaneously perceive and interpret classroom situations for effective classroom management. This skill is complex and relies on an awareness of…
Shaping reverberating sound fields with an actively tunable metasurface.
Ma, Guancong; Fan, Xiying; Sheng, Ping; Fink, Mathias
2018-06-26
A reverberating environment is a common complex medium for airborne sound, with familiar examples such as music halls and lecture theaters. The complexity of reverberating sound fields has hindered their meaningful control. Here, by combining acoustic metasurface and adaptive wavefield shaping, we demonstrate the versatile control of reverberating sound fields in a room. This is achieved through the design and the realization of a binary phase-modulating spatial sound modulator that is based on an actively reconfigurable acoustic metasurface. We demonstrate useful functionalities including the creation of quiet zones and hotspots in a typical reverberating environment. Copyright © 2018 the Author(s). Published by PNAS.
Chrono: A Parallel Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics
2013-08-01
big data. Chrono::Render is capable of using 320 cores and is built around Pixar’s RenderMan. All these components combine to produce Chrono, a multi...rather small collection of rigid and/or deformable bodies of complex geometry (hourglass wall, wheel, track shoe, excava- tor blade, dipper ), and a...motivated by the scope of arbitrary data sets and the potentially immense scene complexity that results from big data; REYES, the underlying architecture
NASA Astrophysics Data System (ADS)
Tripathi, Bharat B.; Marchiano, Régis; Baskar, Sambandam; Coulouvrat, François
2015-10-01
Propagation of acoustical shock waves in complex geometry is a topic of interest in the field of nonlinear acoustics. For instance, simulation of Buzz Saw Noice requires the treatment of shock waves generated by the turbofan through the engines of aeroplanes with complex geometries and wall liners. Nevertheless, from a numerical point of view it remains a challenge. The two main hurdles are to take into account the complex geometry of the domain and to deal with the spurious oscillations (Gibbs phenomenon) near the discontinuities. In this work, first we derive the conservative hyperbolic system of nonlinear acoustics (up to quadratic nonlinear terms) using the fundamental equations of fluid dynamics. Then, we propose to adapt the classical nodal discontinuous Galerkin method to develop a high fidelity solver for nonlinear acoustics. The discontinuous Galerkin method is a hybrid of finite element and finite volume method and is very versatile to handle complex geometry. In order to obtain better performance, the method is parallelized on Graphical Processing Units. Like other numerical methods, discontinuous Galerkin method suffers with the problem of Gibbs phenomenon near the shock, which is a numerical artifact. Among the various ways to manage these spurious oscillations, we choose the method of parabolic regularization. Although, the introduction of artificial viscosity into the system is a popular way of managing shocks, we propose a new approach of introducing smooth artificial viscosity locally in each element, wherever needed. Firstly, a shock sensor using the linear coefficients of the spectral solution is used to locate the position of the discontinuities. Then, a viscosity coefficient depending on the shock sensor is introduced into the hyperbolic system of equations, only in the elements near the shock. The viscosity is applied as a two-dimensional Gaussian patch with its shape parameters depending on the element dimensions, referred here as Element Centered Smooth Artificial Viscosity. Using this numerical solver, various numerical experiments are presented for one and two-dimensional test cases in homogeneous and quiescent medium. This work is funded by CEFIPRA (Indo-French Centre for the Promotion of Advance Research) and partially aided by EGIDE (Campus France).
Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept
NASA Astrophysics Data System (ADS)
Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.
2016-10-01
This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.
Visual supports for shared reading with young children: the effect of static overlay design.
Wood Jackson, Carla; Wahlquist, Jordan; Marquis, Cassandra
2011-06-01
This study examined the effects of two types of static overlay design (visual scene display and grid display) on 39 children's use of a speech-generating device during shared storybook reading with an adult. This pilot project included two groups: preschool children with typical communication skills (n = 26) and with complex communication needs (n = 13). All participants engaged in shared reading with two books using each visual layout on a speech-generating device (SGD). The children averaged a greater number of activations when presented with a grid display during introductory exploration and free play. There was a large effect of the static overlay design on the number of silent hits, evidencing more silent hits with visual scene displays. On average, the children demonstrated relatively few spontaneous activations of the speech-generating device while the adult was reading, regardless of overlay design. When responding to questions, children with communication needs appeared to perform better when using visual scene displays, but the effect of display condition on the accuracy of responses to wh-questions was not statistically significant. In response to an open ended question, children with communication disorders demonstrated more frequent activations of the SGD using a grid display than a visual scene. Suggestions for future research as well as potential implications for designing AAC systems for shared reading with young children are discussed.
Herbort, Maike C.; Iseev, Jenny; Stolz, Christopher; Roeser, Benedict; Großkopf, Nora; Wüstenberg, Torsten; Hellweg, Rainer; Walter, Henrik; Dziobek, Isabel; Schott, Björn H.
2016-01-01
We present the ToMenovela, a stimulus set that has been developed to provide a set of normatively rated socio-emotional stimuli showing varying amount of characters in emotionally laden interactions for experimental investigations of (i) cognitive and (ii) affective Theory of Mind (ToM), (iii) emotional reactivity, and (iv) complex emotion judgment with respect to Ekman’s basic emotions (happiness, anger, disgust, fear, sadness, surprise, Ekman and Friesen, 1975). Stimuli were generated with focus on ecological validity and consist of 190 scenes depicting daily-life situations. Two or more of eight main characters with distinct biographies and personalities are depicted on each scene picture. To obtain an initial evaluation of the stimulus set and to pave the way for future studies in clinical populations, normative data on each stimulus of the set was obtained from a sample of 61 neurologically and psychiatrically healthy participants (31 female, 30 male; mean age 26.74 ± 5.84), including a visual analog scale rating of Ekman’s basic emotions (happiness, anger, disgust, fear, sadness, surprise) and free-text descriptions of the content of each scene. The ToMenovela is being developed to provide standardized material of social scenes that are available to researchers in the study of social cognition. It should facilitate experimental control while keeping ecological validity high. PMID:27994562
The evolution of cerebellum structure correlates with nest complexity.
Hall, Zachary J; Street, Sally E; Healy, Susan D
2013-01-01
Across the brains of different bird species, the cerebellum varies greatly in the amount of surface folding (foliation). The degree of cerebellar foliation is thought to correlate positively with the processing capacity of the cerebellum, supporting complex motor abilities, particularly manipulative skills. Here, we tested this hypothesis by investigating the relationship between cerebellar foliation and species-typical nest structure in birds. Increasing complexity of nest structure is a measure of a bird's ability to manipulate nesting material into the required shape. Consistent with our hypothesis, avian cerebellar foliation increases as the complexity of the nest built increases, setting the scene for the exploration of nest building at the neural level.
A new theoretical basis for numerical simulations of nonlinear acoustic fields
NASA Astrophysics Data System (ADS)
Wójcik, Janusz
2000-07-01
Nonlinear acoustic equations can be considerably simplified. The presented model retains the accuracy of a more complex description of nonlinearity and a uniform description of near and far fields (in contrast to the KZK equation). A method has been presented for obtaining solutions of Kuznetsov's equation from the solutions of the model under consideration. Results of numerical calculations, including comparative ones, are presented.
NASA Technical Reports Server (NTRS)
Alexander, June; Corwin, Edward; Lloyd, David; Logar, Antonette; Welch, Ronald
1996-01-01
This research focuses on a new neural network scene classification technique. The task is to identify scene elements in Advanced Very High Resolution Radiometry (AVHRR) data from three scene types: polar, desert and smoke from biomass burning in South America (smoke). The ultimate goal of this research is to design and implement a computer system which will identify the clouds present on a whole-Earth satellite view as a means of tracking global climate changes. Previous research has reported results for rule-based systems (Tovinkere et at 1992, 1993) for standard back propagation (Watters et at. 1993) and for a hierarchical approach (Corwin et al 1994) for polar data. This research uses a hierarchical neural network with don't care conditions and applies this technique to complex scenes. A hierarchical neural network consists of a switching network and a collection of leaf networks. The idea of the hierarchical neural network is that it is a simpler task to classify a certain pattern from a subset of patterns than it is to classify a pattern from the entire set. Therefore, the first task is to cluster the classes into groups. The switching, or decision network, performs an initial classification by selecting a leaf network. The leaf networks contain a reduced set of similar classes, and it is in the various leaf networks that the actual classification takes place. The grouping of classes in the various leaf networks is determined by applying an iterative clustering algorithm. Several clustering algorithms were investigated, but due to the size of the data sets, the exhaustive search algorithms were eliminated. A heuristic approach using a confusion matrix from a lightly trained neural network provided the basis for the clustering algorithm. Once the clusters have been identified, the hierarchical network can be trained. The approach of using don't care nodes results from the difficulty in generating extremely complex surfaces in order to separate one class from all of the others. This approach finds pairwise separating surfaces and forms the more complex separating surface from combinations of simpler surfaces. This technique both reduces training time and improves accuracy over the previously reported results. Accuracies of 97.47%, 95.70%, and 99.05% were achieved for the polar, desert and smoke data sets.
Mencio, Caitlin; Kuberan, Balagurunathan; Goller, Franz
2017-02-01
Neural control of complex vocal behaviors, such as birdsong and speech, requires integration of biomechanical nonlinearities through muscular output. Although control of airflow and tension of vibrating tissues are known functions of vocal muscles, it remains unclear how specific muscle characteristics contribute to specific acoustic parameters. To address this gap, we removed heparan sulfate chains using heparitinases to perturb neuromuscular transmission subtly in the syrinx of adult male zebra finches (Taeniopygia guttata). Infusion of heparitinases into ventral syringeal muscles altered their excitation threshold and reduced neuromuscular transmission changing their ability to modulate airflow. The changes in muscle activation dynamics caused a reduction in frequency modulation rates and elimination of many high-frequency syllables but did not alter the fundamental frequency of syllables. Sound amplitude was reduced and sound onset pressure was increased, suggesting a role of muscles in the induction of self-sustained oscillations under low-airflow conditions, thus enhancing vocal efficiency. These changes were reversed to preinfusion levels by 7 days after infusion. These results illustrate complex interactions between the control of airflow and tension and further define the importance of syringeal muscle in the control of a variety of acoustic song characteristics. In summary, the findings reported here show that altering neuromuscular transmission can lead to reversible changes to the acoustic structure of song. Understanding the full extent of muscle involvement in song production is critical in decoding the motor program for the production of complex vocal behavior, including our search for parallels between birdsong and human speech motor control. It is largely unknown how fine motor control of acoustic parameters is achieved in vocal organs. Subtle manipulation of syringeal muscle function was used to test how active motor control influences acoustic parameters. Slowed activation kinetics of muscles reduced frequency modulation and, unexpectedly, caused a distinct decrease in sound amplitude and increase in phonation onset pressure. These results show that active control enhances the efficiency of energy conversion in the syrinx. Copyright © 2017 the American Physiological Society.
Analyses of radiation impedances of finite cylindrical ducts
NASA Astrophysics Data System (ADS)
Shao, W.; Mechefske, C. K.
2005-08-01
To aid in understanding the characteristics of acoustic radiation from finite cylindrical ducts with infinite flanges, mathematical expressions of generalized radiation impedances at the open ends have been developed. Newton's method is used to find the complex wavenumbers of radial modes for the absorption boundary condition. The self-radiation impedances and mutual impedances for some acoustic modes are calculated for the ducts with rigid and absorption walls. The results show that the acoustical conditions of the duct walls have a significant influence on the radiation impedance. The acoustical interaction between the two open ends of the ducts cannot be neglected, especially for plane waves. To increase the wall admittance will reduce this interference effect. This study creates the possibility for simulating the sound field inside finite ducts in future work.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
Three-dimensional broadband omnidirectional acoustic ground cloak
NASA Astrophysics Data System (ADS)
Zigoneanu, Lucian; Popa, Bogdan-Ioan; Cummer, Steven A.
2014-04-01
The control of sound propagation and reflection has always been the goal of engineers involved in the design of acoustic systems. A recent design approach based on coordinate transformations, which is applicable to many physical systems, together with the development of a new class of engineered materials called metamaterials, has opened the road to the unconstrained control of sound. However, the ideal material parameters prescribed by this methodology are complex and challenging to obtain experimentally, even using metamaterial design approaches. Not surprisingly, experimental demonstration of devices obtained using transformation acoustics is difficult, and has been implemented only in two-dimensional configurations. Here, we demonstrate the design and experimental characterization of an almost perfect three-dimensional, broadband, and, most importantly, omnidirectional acoustic device that renders a region of space three wavelengths in diameter invisible to sound.
NASA Astrophysics Data System (ADS)
Kutulakos, Kyros N.; O'Toole, Matthew
2015-03-01
Conventional cameras record all light falling on their sensor regardless of the path that light followed to get there. In this paper we give an overview of a new family of computational cameras that offers many more degrees of freedom. These cameras record just a fraction of the light coming from a controllable source, based on the actual 3D light path followed. Photos and live video captured this way offer an unconventional view of everyday scenes in which the effects of scattering, refraction and other phenomena can be selectively blocked or enhanced, visual structures that are too subtle to notice with the naked eye can become apparent, and object appearance can depend on depth. We give an overview of the basic theory behind these cameras and their DMD-based implementation, and discuss three applications: (1) live indirect-only imaging of complex everyday scenes, (2) reconstructing the 3D shape of scenes whose geometry or material properties make them hard or impossible to scan with conventional methods, and (3) acquiring time-of-flight images that are free of multi-path interference.
Scene-based nonuniformity correction for airborne point target detection systems.
Zhou, Dabiao; Wang, Dejiang; Huo, Lijun; Liu, Rang; Jia, Ping
2017-06-26
Images acquired by airborne infrared search and track (IRST) systems are often characterized by nonuniform noise. In this paper, a scene-based nonuniformity correction method for infrared focal-plane arrays (FPAs) is proposed based on the constant statistics of the received radiation ratios of adjacent pixels. The gain of each pixel is computed recursively based on the ratios between adjacent pixels, which are estimated through a median operation. Then, an elaborate mathematical model describing the error propagation, derived from random noise and the recursive calculation procedure, is established. The proposed method maintains the characteristics of traditional methods in calibrating the whole electro-optics chain, in compensating for temporal drifts, and in not preserving the radiometric accuracy of the system. Moreover, the proposed method is robust since the frame number is the only variant, and is suitable for real-time applications owing to its low computational complexity and simplicity of implementation. The experimental results, on different scenes from a proof-of-concept point target detection system with a long-wave Sofradir FPA, demonstrate the compelling performance of the proposed method.
Torres, Sergio N; Pezoa, Jorge E; Hayat, Majeed M
2003-10-10
What is to our knowledge a new scene-based algorithm for nonuniformity correction in infrared focal-plane array sensors has been developed. The technique is based on the inverse covariance form of the Kalman filter (KF), which has been reported previously and used in estimating the gain and bias of each detector in the array from scene data. The gain and the bias of each detector in the focal-plane array are assumed constant within a given sequence of frames, corresponding to a certain time and operational conditions, but they are allowed to randomly drift from one sequence to another following a discrete-time Gauss-Markov process. The inverse covariance form filter estimates the gain and the bias of each detector in the focal-plane array and optimally updates them as they drift in time. The estimation is performed with considerably higher computational efficiency than the equivalent KF. The ability of the algorithm in compensating for fixed-pattern noise in infrared imagery and in reducing the computational complexity is demonstrated by use of both simulated and real data.
Phase information contained in meter-scale SAR images
NASA Astrophysics Data System (ADS)
Datcu, Mihai; Schwarz, Gottfried; Soccorsi, Matteo; Chaabouni, Houda
2007-10-01
The properties of single look complex SAR satellite images have already been analyzed by many investigators. A common belief is that, apart from inverse SAR methods or polarimetric applications, no information can be gained from the phase of each pixel. This belief is based on the assumption that we obtain uniformly distributed random phases when a sufficient number of small-scale scatterers are mixed in each image pixel. However, the random phase assumption does no longer hold for typical high resolution urban remote sensing scenes, when a limited number of prominent human-made scatterers with near-regular shape and sub-meter size lead to correlated phase patterns. If the pixel size shrinks to a critical threshold of about 1 meter, the reflectance of built-up urban scenes becomes dominated by typical metal reflectors, corner-like structures, and multiple scattering. The resulting phases are hard to model, but one can try to classify a scene based on the phase characteristics of neighboring image pixels. We provide a "cooking recipe" of how to analyze existing phase patterns that extend over neighboring pixels.
Yi, Chucai; Tian, Yingli
2012-09-01
In this paper, we propose a novel framework to extract text regions from scene images with complex backgrounds and multiple text appearances. This framework consists of three main steps: boundary clustering (BC), stroke segmentation, and string fragment classification. In BC, we propose a new bigram-color-uniformity-based method to model both text and attachment surface, and cluster edge pixels based on color pairs and spatial positions into boundary layers. Then, stroke segmentation is performed at each boundary layer by color assignment to extract character candidates. We propose two algorithms to combine the structural analysis of text stroke with color assignment and filter out background interferences. Further, we design a robust string fragment classification based on Gabor-based text features. The features are obtained from feature maps of gradient, stroke distribution, and stroke width. The proposed framework of text localization is evaluated on scene images, born-digital images, broadcast video images, and images of handheld objects captured by blind persons. Experimental results on respective datasets demonstrate that the framework outperforms state-of-the-art localization algorithms.
Texture metric that predicts target detection performance
NASA Astrophysics Data System (ADS)
Culpepper, Joanne B.
2015-12-01
Two texture metrics based on gray level co-occurrence error (GLCE) are used to predict probability of detection and mean search time. The two texture metrics are local clutter metrics and are based on the statistics of GLCE probability distributions. The degree of correlation between various clutter metrics and the target detection performance of the nine military vehicles in complex natural scenes found in the Search_2 dataset are presented. Comparison is also made between four other common clutter metrics found in the literature: root sum of squares, Doyle, statistical variance, and target structure similarity. The experimental results show that the GLCE energy metric is a better predictor of target detection performance when searching for targets in natural scenes than the other clutter metrics studied.
The Nature of Exhibits About Acoustics in Science and Technology Centres
NASA Astrophysics Data System (ADS)
Afonso, Ana S.; Gilbert, John K.
2008-11-01
This is a study of the opportunities currently provided by interactive science and technology centres for visitors’ engagement in the field of acoustics. E-mails, requesting a description of exhibits on acoustics (sound and hearing) in use, were sent to members of staff of interactive science and technology centres around the world as well as to companies that design and sell exhibits. Eighty-seven descriptions of distinctive interactive exhibits were received and analysed. Results show that: there are few analogy-based exhibits concerning the more complex aspects of acoustics; narratives involving visitors’ everyday lives, that might provide continuity between and beyond the situations presented by exhibits, are not generally provided; science is emphasised at the expense of technology; the risks, benefits and ethical implications of relevant technological artefacts are rarely mentioned; the majority of the exhibits are concerned with the fields of fundamental acoustics, hearing, and psychoacoustics. It is suggested that interactive science and technology centres need to rethink the design of exhibits about acoustics if their mission includes some appreciation of this important branch of science and technology.
Understanding the acoustics of Papal Basilicas in Rome by means of a coupled-volumes approach
NASA Astrophysics Data System (ADS)
Martellotta, Francesco
2016-11-01
The paper investigates the acoustics of the four World-famous Papal Basilicas in Rome, namely Saint Peter's, St. John Lateran's, St. Paul's outside the Walls, and Saint Mary's Major. They are characterized by different dimensions, materials, and architectural features, as well as by a certain number of similarities. In addition, their complexity determines significant variation in their acoustics depending on the relative position of source and receivers. A detailed set of acoustic measurements was carried out in each church, using both spatial (B-format) and binaural microphones, and determining the standard ISO 3382 descriptors. The results are analyzed in relation to the architectural features, pointing out the differences observed in terms of listening experience. Finally, in order to explain some of the results found in energy-based parameters, the churches were analyzed as a system of acoustically coupled volumes. The latter explained most of the anomalies observed in the distribution of acoustic parameters, while showing at the same time that secondary spaces (aisles, chapels) play a different role depending on the amount of sound absorption located in the main nave.
A study on locating the sonic source of sinusoidal magneto-acoustic signals using a vector method.
Zhang, Shunqi; Zhou, Xiaoqing; Ma, Ren; Yin, Tao; Liu, Zhipeng
2015-01-01
Methods based on the magnetic-acoustic effect are of great significance in studying the electrical imaging properties of biological tissues and currents. The continuous wave method, which is commonly used, can only detect the current amplitude without the sound source position. Although the pulse mode adopted in magneto-acoustic imaging can locate the sonic source, the low measuring accuracy and low SNR has limited its application. In this study, a vector method was used to solve and analyze the magnetic-acoustic signal based on the continuous sine wave mode. This study includes theory modeling of the vector method, simulations to the line model, and experiments with wire samples to analyze magneto-acoustic (MA) signal characteristics. The results showed that the amplitude and phase of the MA signal contained the location information of the sonic source. The amplitude and phase obeyed the vector theory in the complex plane. This study sets a foundation for a new technique to locate sonic sources for biomedical imaging of tissue conductivity. It also aids in studying biological current detecting and reconstruction based on the magneto-acoustic effect.
Tiltrotor Acoustic Flight Test: Terminal Area Operations
NASA Technical Reports Server (NTRS)
SantaMaria, O. L.; Wellman, J. B.; Conner, D. A.; Rutledge, C. K.
1991-01-01
This paper provides a comprehensive description of an acoustic flight test of the XV- 15 Tiltrotor Aircraft with Advanced Technology Blades (ATB) conducted in August and September 1991 at Crows Landing, California. The purpose of this cooperative research effort of the NASA Langley and Ames Research Centers was to obtain a preliminary, high quality database of far-field acoustics for terminal area operations of the XV-15 at a takeoff gross weight of approximately 14,000 lbs for various glide slopes, airspeeds, rotor tip speeds, and nacelle tilt angles. The test also was used to assess the suitability of the Crows Landing complex for full scale far-field acoustic testing. This was the first acoustic flight test of the XV-15 aircraft equipped with ATB involving approach and level flyover operations. The test involved coordination of numerous personnel, facilities and equipment. Considerable effort was made to minimize potential extraneous noise sources unique to the region during the test. Acoustic data from the level flyovers were analyzed, then compared with data from a previous test of the XV-15 equipped with Standard Metal Blades
Code of Federal Regulations, 2011 CFR
2011-10-01
... Complex shall be promulgated, and sightings shall be entered into the Range Operating System and forwarded... Naval Sea System Command (NAVSEA) Naval Undersea Warfare Center (NUWC) Keyport Range Complex and the... active sonar transmissions when passive acoustic monitoring capabilities are being operated during the...
Perceptual Fidelity vs. Engineering Compromises In Virtual Acoustic Displays
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Ahumada, Albert (Technical Monitor)
1997-01-01
Immersive, three-dimensional displays are increasingly becoming a goal of advanced human-machine interfaces. While the technology for achieving truly useful multisensory environments is still being developed, techniques for generating three-dimensional sound are now both sophisticated and practical enough to be applied to acoustic displays. The ultimate goal of virtual acoustics is to simulate the complex acoustic field experienced by a listener freely moving around within an environment. Of course, such complexity, freedom of movement and interactively is not always possible in a "true" virtual environment, much less in lower-fidelity multimedia systems. However, many of the perceptual and engineering constraints (and frustrations) that researchers, engineers and listeners have experienced in virtual audio are relevant to multimedia. In fact, some of the problems that have been studied will be even more of an issue for lower fidelity systems that are attempting to address the requirements of a huge, diverse and ultimately unknown audience. Examples include individual differences in head-related transfer functions, a lack of real interactively (head-tracking) in many multimedia displays, and perceptual degradation due to low sampling rates and/or low-bit compression. This paper discusses some of the engineering Constraints faced during implementation of virtual acoustic environments and the perceptual consequences of these constraints. Specific examples are given for NASA applications such as telerobotic control, aeronautical displays, and shuttle launch communications. An attempt will also be made to relate these issues to low-fidelity implementations such as the internet.
Perceptual Fidelity Versus Engineering Compromises in Virtual Acoustic Displays
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Ellis, Stephen R. (Technical Monitor); Frey, Mary Anne (Technical Monitor); Schneider, Victor S. (Technical Monitor)
1997-01-01
Immersive, three-dimensional displays are increasingly becoming a goal of advanced human-machine interfaces. While the technology for achieving truly useful multisensory environments is still being developed, techniques for generating three-dimensional sound are now both sophisticated and practical enough to be applied to acoustic displays. The ultimate goal of virtual acoustics is to simulate the complex acoustic field experienced by a listener freely moving around within an environment. Of course, such complexity, freedom of movement and interactivity is not always possible in a 'true' virtual environment, much less in lower-fidelity multimedia systems. However, many of the perceptual and engineering constraints (and frustrations) that researchers, engineers and listeners have experienced in virtual audio are relevant to multimedia. In fact, some of the problems that have been studied will be even more of an issue for lower fidelity systems that are attempting to address the requirements of a huge, diverse and ultimately unknown audience. Examples include individual differences in head-related transfer functions, A lack of real interactively (head-tracking) in many multimedia displays, and perceptual degradation due to low sampling rates and/or low-bit compression. This paper discusses some of the engineering constraints faced during implementation of virtual acoustic environments and the perceptual consequences of these constraints. Specific examples are given for NASA applications such as telerobotic control, aeronautical displays, and shuttle launch communications. An attempt will also be made to relate these issues to low-fidelity implementations such as the internet.
Temporal and spatial adaptation of transient responses to local features
O'Carroll, David C.; Barnett, Paul D.; Nordström, Karin
2012-01-01
Interpreting visual motion within the natural environment is a challenging task, particularly considering that natural scenes vary enormously in brightness, contrast and spatial structure. The performance of current models for the detection of self-generated optic flow depends critically on these very parameters, but despite this, animals manage to successfully navigate within a broad range of scenes. Within global scenes local areas with more salient features are common. Recent work has highlighted the influence that local, salient features have on the encoding of optic flow, but it has been difficult to quantify how local transient responses affect responses to subsequent features and thus contribute to the global neural response. To investigate this in more detail we used experimenter-designed stimuli and recorded intracellularly from motion-sensitive neurons. We limited the stimulus to a small vertically elongated strip, to investigate local and global neural responses to pairs of local “doublet” features that were designed to interact with each other in the temporal and spatial domain. We show that the passage of a high-contrast doublet feature produces a complex transient response from local motion detectors consistent with predictions of a simple computational model. In the neuron, the passage of a high-contrast feature induces a local reduction in responses to subsequent low-contrast features. However, this neural contrast gain reduction appears to be recruited only when features stretch vertically (i.e., orthogonal to the direction of motion) across at least several aligned neighboring ommatidia. Horizontal displacement of the components of elongated features abolishes the local adaptation effect. It is thus likely that features in natural scenes with vertically aligned edges, such as tree trunks, recruit the greatest amount of response suppression. This property could emphasize the local responses to such features vs. those in nearby texture within the scene. PMID:23087617
Vertical gaze angle: absolute height-in-scene information for the programming of prehension.
Gardner, P L; Mon-Williams, M
2001-02-01
One possible source of information regarding the distance of a fixated target is provided by the height of the object within the visual scene. It is accepted that this cue can provide ordinal information, but generally it has been assumed that the nervous system cannot extract "absolute" information from height-in-scene. In order to use height-in-scene, the nervous system would need to be sensitive to ocular position with respect to the head and to head orientation with respect to the shoulders (i.e. vertical gaze angle or VGA). We used a perturbation technique to establish whether the nervous system uses vertical gaze angle as a distance cue. Vertical gaze angle was perturbed using ophthalmic prisms with the base oriented either up or down. In experiment 1, participants were required to carry out an open-loop pointing task whilst wearing: (1) no prisms; (2) a base-up prism; or (3) a base-down prism. In experiment 2, the participants reached to grasp an object under closed-loop viewing conditions whilst wearing: (1) no prisms; (2) a base-up prism; or (3) a base-down prism. Experiment 1 and 2 provided clear evidence that the human nervous system uses vertical gaze angle as a distance cue. It was found that the weighting attached to VGA decreased with increasing target distance. The weighting attached to VGA was also affected by the discrepancy between the height of the target, as specified by all other distance cues, and the height indicated by the initial estimate of the position of the supporting surface. We conclude by considering the use of height-in-scene information in the perception of surface slant and highlight some of the complexities that must be involved in the computation of environmental layout.
Brayfield, Brad P.
2016-01-01
The navigation of bees and ants from hive to food and back has captivated people for more than a century. Recently, the Navigation by Scene Familiarity Hypothesis (NSFH) has been proposed as a parsimonious approach that is congruent with the limited neural elements of these insects’ brains. In the NSFH approach, an agent completes an initial training excursion, storing images along the way. To retrace the path, the agent scans the area and compares the current scenes to those previously experienced. By turning and moving to minimize the pixel-by-pixel differences between encountered and stored scenes, the agent is guided along the path without having memorized the sequence. An important premise of the NSFH is that the visual information of the environment is adequate to guide navigation without aliasing. Here we demonstrate that an image landscape of an indoor setting possesses ample navigational information. We produced a visual landscape of our laboratory and part of the adjoining corridor consisting of 2816 panoramic snapshots arranged in a grid at 12.7-cm centers. We show that pixel-by-pixel comparisons of these images yield robust translational and rotational visual information. We also produced a simple algorithm that tracks previously experienced routes within our lab based on an insect-inspired scene familiarity approach and demonstrate that adequate visual information exists for an agent to retrace complex training routes, including those where the path’s end is not visible from its origin. We used this landscape to systematically test the interplay of sensor morphology, angles of inspection, and similarity threshold with the recapitulation performance of the agent. Finally, we compared the relative information content and chance of aliasing within our visually rich laboratory landscape to scenes acquired from indoor corridors with more repetitive scenery. PMID:27119720
NASA Astrophysics Data System (ADS)
Olson, Richard F.
2013-05-01
Rendering of point scatterer based radar scenes for millimeter wave (mmW) seeker tests in real-time hardware-in-the-loop (HWIL) scene generation requires efficient algorithms and vector-friendly computer architectures for complex signal synthesis. New processor technology from Intel implements an extended 256-bit vector SIMD instruction set (AVX, AVX2) in a multi-core CPU design providing peak execution rates of hundreds of GigaFLOPS (GFLOPS) on one chip. Real world mmW scene generation code can approach peak SIMD execution rates only after careful algorithm and source code design. An effective software design will maintain high computing intensity emphasizing register-to-register SIMD arithmetic operations over data movement between CPU caches or off-chip memories. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) applied two basic parallel coding methods to assess new 256-bit SIMD multi-core architectures for mmW scene generation in HWIL. These include use of POSIX threads built on vector library functions and more portable, highlevel parallel code based on compiler technology (e.g. OpenMP pragmas and SIMD autovectorization). Since CPU technology is rapidly advancing toward high processor core counts and TeraFLOPS peak SIMD execution rates, it is imperative that coding methods be identified which produce efficient and maintainable parallel code. This paper describes the algorithms used in point scatterer target model rendering, the parallelization of those algorithms, and the execution performance achieved on an AVX multi-core machine using the two basic parallel coding methods. The paper concludes with estimates for scale-up performance on upcoming multi-core technology.
Kim, Keonwook
2013-08-23
The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.
Overview of the EarthCARE simulator and its applications
NASA Astrophysics Data System (ADS)
van Zadelhoff, G.; Donovan, D. P.; Lajas, D.
2011-12-01
The EarthCARE Simulator (ECSIM) was initially developed in 2004 as a scientific tool to simulate atmospheric scenes, radiative transfer and instrument models for the four instruments of the EarthCARE mission. ECSIM has subsequently been significantly further enhanced and is evolving into a tool for both mission performance assessment and L2 retrieval development. It is an ESA requirement that all L2 retrieval algorithms foreseen for the ground segment will be integrated and tested in ECSIM. It is furthermore envisaged, that the (retrieval part of) ECSIM will be the tool for scientists to work with on updates and new L2 algorithms during the EarthCARE Commissioning phase and beyond. ECSIM is capable of performing 'end to end' simulations of single, or any combination of the EarthCARE instruments. That is, ECSIM starts with an input atmospheric ``scene'', then uses various radiative transfer and instrument models in order to generate synthetic observations which can be subsequently inverted. The results of the inversions may then be compared to the input "truth". ECSIM consists of a modular general framework populated by various models. The models within ECSIM are grouped according to the following scheme: 1) Scene creation models (3D atmospheric scene definition) 2) Orbit models (orbit and orientation of the platform as it overflies the scene) 3) Forward models (calculate the signal impinging on the telescope/antenna of the instrument(s) in question) 4) Instrument models (calculate the instrument response to the signals calculated by the Forward models) 5) Retrieval models (invert the instrument signals to recover relevant geophysical information) Within the default ECSIM models crude instrument specific parameterizations (i.e. empirically based radar reflectivity vs. IWC relationships) are avoided. Instead, the radiative transfer forward models are kept separate (as possible) from the instrument models. In order to accomplish this, the atmospheric scenes are specified in high detail (i.e. bin resolved [cloud] size distributions) and the relevant wavelength dependent optical properties are specified in a separate database. This helps insure that all the instruments involved in the simulation are treated consistently and that the physical relationships between the various measurements are realistically captured. ECSIM is mainly used as an algorithm development platform for EarthCARE. However, it has also been used for simulating Calipso, CloudSAT, future multi-wavelength HSRL satellite missions and airborne HSRL data, showing the versatility of the tool. Validating L2 retrieval algorithms require the creation of atmospheric scenes ranging in complexity from very simple (blocky) to 'realistic' (high resolution) scenes. Recent work on the evaluation of aerosol retrieval algorithms from satellite lidar data (e.g. ATLID) required these latter scenes, which were created based on HSRL and in-situ measurements from the DLR FALCON aircraft. The synthetic signals were subsequently evaluated by comparing to the original measured signals. In this presentation an overview of the EarthCARE Simulator, its philosophy and the construction of realistic "scenes'' based on actual campaign observations is presented.
Gasc, Amandine; Sueur, Jérôme; Pavoine, Sandrine; Pellens, Roseli; Grandcolas, Philippe
2013-01-01
New Caledonia is a Pacific island with a unique biodiversity showing an extreme microendemism. Many species distributions observed on this island are extremely restricted, localized to mountains or rivers making biodiversity evaluation and conservation a difficult task. A rapid biodiversity assessment method based on acoustics was recently proposed. This method could help to document the unique spatial structure observed in New Caledonia. Here, this method was applied in an attempt to reveal differences among three mountain sites (Mandjélia, Koghis and Aoupinié) with similar ecological features and species richness level, but with high beta diversity according to different microendemic assemblages. In each site, several local acoustic communities were sampled with audio recorders. An automatic acoustic sampling was run on these three sites for a period of 82 successive days. Acoustic properties of animal communities were analysed without any species identification. A frequency spectral complexity index (NP) was used as an estimate of the level of acoustic activity and a frequency spectral dissimilarity index (Df) assessed acoustic differences between pairs of recordings. As expected, the index NP did not reveal significant differences in the acoustic activity level between the three sites. However, the acoustic variability estimated by the index Df, could first be explained by changes in the acoustic communities along the 24-hour cycle and second by acoustic dissimilarities between the three sites. The results support the hypothesis that global acoustic analyses can detect acoustic differences between sites with similar species richness and similar ecological context, but with different species assemblages. This study also demonstrates that global acoustic methods applied at broad spatial and temporal scales could help to assess local biodiversity in the challenging context of microendemism. The method could be deployed over large areas, and could help to compare different sites and determine conservation priorities. PMID:23734245
Gasc, Amandine; Sueur, Jérôme; Pavoine, Sandrine; Pellens, Roseli; Grandcolas, Philippe
2013-01-01
New Caledonia is a Pacific island with a unique biodiversity showing an extreme microendemism. Many species distributions observed on this island are extremely restricted, localized to mountains or rivers making biodiversity evaluation and conservation a difficult task. A rapid biodiversity assessment method based on acoustics was recently proposed. This method could help to document the unique spatial structure observed in New Caledonia. Here, this method was applied in an attempt to reveal differences among three mountain sites (Mandjélia, Koghis and Aoupinié) with similar ecological features and species richness level, but with high beta diversity according to different microendemic assemblages. In each site, several local acoustic communities were sampled with audio recorders. An automatic acoustic sampling was run on these three sites for a period of 82 successive days. Acoustic properties of animal communities were analysed without any species identification. A frequency spectral complexity index (NP) was used as an estimate of the level of acoustic activity and a frequency spectral dissimilarity index (Df ) assessed acoustic differences between pairs of recordings. As expected, the index NP did not reveal significant differences in the acoustic activity level between the three sites. However, the acoustic variability estimated by the index Df , could first be explained by changes in the acoustic communities along the 24-hour cycle and second by acoustic dissimilarities between the three sites. The results support the hypothesis that global acoustic analyses can detect acoustic differences between sites with similar species richness and similar ecological context, but with different species assemblages. This study also demonstrates that global acoustic methods applied at broad spatial and temporal scales could help to assess local biodiversity in the challenging context of microendemism. The method could be deployed over large areas, and could help to compare different sites and determine conservation priorities.
Music-induced emotions can be predicted from a combination of brain activity and acoustic features.
Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J
2015-12-01
It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,p<0.001. This regression fit suggests that over 20% of the variance of the participant's music induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01). Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yang; D'Angelo, Ralph M.; Choi, Gloria; Zhu, Lingchen; Bose, Sandip; Zeroug, Smaine
2018-04-01
Once an oil and gas wellbore has been drilled, steel casings and cement slurry are placed to ensure structural support, protection from fluid invasion, and most importantly to provide zonal isolation. The actual wellbore and string structure is rarely concentric but rather is often an eccentric one, especially in deviated boreholes. The term "eccentricity" is used to describe how off-center a casing string is within another pipe or the open-hole. In a typical double-string configuration, the inner casing is eccentered with respect to the outer string which itself is also eccentered within the cylindrical hole. The annuli may or may not be filled with solid cement, and the cement may have liquid-filled channels or be disbonded over localized azimuthal ranges. The complexity of wave propagation along axial intervals is significant in that multiple modes can be excited and detected with characteristics that are affected by the various parameters, including eccentering, in a non-linear fashion. A successful diagnosis of cement flaws largely relies on a thorough understanding of the complex acoustic modal information. The present study employs both modeling and experiments to fully understand the acoustic wave propagation in the complex, fluid-solid nested, cylindrically layered structures, with geometric eccentricities. The experimental results show excellent agreement with the theoretical predictions from newly developed, borehole acoustic modeling approaches. As such, it provides the basis for better understanding the operative wave physics and providing the means for effective inspection methodologies to assess well integrity and zonal isolation of oil wells.
Scene recognition following locomotion around a scene.
Motes, Michael A; Finlay, Cory A; Kozhevnikov, Maria
2006-01-01
Effects of locomotion on scene-recognition reaction time (RT) and accuracy were studied. In experiment 1, observers memorized an 11-object scene and made scene-recognition judgments on subsequently presented scenes from the encoded view or different views (ie scenes were rotated or observers moved around the scene, both from 40 degrees to 360 degrees). In experiment 2, observers viewed different 5-object scenes on each trial and made scene-recognition judgments from the encoded view or after moving around the scene, from 36 degrees to 180 degrees. Across experiments, scene-recognition RT increased (in experiment 2 accuracy decreased) with angular distance between encoded and judged views, regardless of how the viewpoint changes occurred. The findings raise questions about conditions in which locomotion produces spatially updated representations of scenes.