Sample records for complex activator cdh1

  1. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition.

    PubMed

    Ondracka, Andrej; Robbins, Jonathan A; Cross, Frederick R

    2016-01-01

    B-type cyclin-dependent kinase activity must be turned off for mitotic exit and G1 stabilization. B-type cyclin degradation is mediated by the anaphase-promoting complex/cyclosome (APC/C); during and after mitotic exit, APC/C is dependent on Cdh1. Cdh1 is in turn phosphorylated and inactivated by cyclin-CDK at the Start transition of the new cell cycle. We developed a biosensor to assess the cell cycle dynamics of APC/C-Cdh1. Nuclear exit of the G1 transcriptional repressor Whi5 is a known marker of Start; APC/C-Cdh1 is inactivated 12 min after Whi5 nuclear exit with little measurable cell-to-cell timing variability. Multiple phosphorylation sites on Cdh1 act in a redundant manner to repress its activity. Reducing the number of phosphorylation sites on Cdh1 can to some extent be tolerated for cell viability, but it increases variability in timing of APC/C-Cdh1 inactivation. Mutants with minimal subsets of phosphorylation sites required for viability exhibit striking stochasticity in multiple responses including budding, nuclear division, and APC/C-Cdh1 activity itself. Multiple cyclin-CDK complexes, as well as the stoichiometric inhibitor Acm1, contribute to APC/C-Cdh1 inactivation; this redundant control is likely to promote rapid and reliable APC/C-Cdh1 inactivation immediately following the Start transition.

  2. Controlling the response to DNA damage by the APC/C-Cdh1.

    PubMed

    de Boer, H Rudolf; Guerrero Llobet, S; van Vugt, Marcel A T M

    2016-03-01

    Proper cell cycle progression is safeguarded by the oscillating activities of cyclin/cyclin-dependent kinase complexes. An important player in the regulation of mitotic cyclins is the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit E3 ubiquitin ligase. Prior to entry into mitosis, the APC/C remains inactive, which allows the accumulation of mitotic regulators. APC/C activation requires binding to either the Cdc20 or Cdh1 adaptor protein, which sequentially bind the APC/C and facilitate targeting of multiple mitotic regulators for proteasomal destruction, including Securin and Cyclin B, to ensure proper chromosome segregation and mitotic exit. Emerging data have indicated that the APC/C, particularly in association with Cdh1, also functions prior to mitotic entry. Specifically, the APC/C-Cdh1 is activated in response to DNA damage in G2 phase cells. These observations are in line with in vitro and in vivo genetic studies, in which cells lacking Cdh1 expression display various defects, including impaired DNA repair and aberrant cell cycle checkpoints. In this review, we summarize the current literature on APC/C regulation in response to DNA damage, the functions of APC/C-Cdh1 activation upon DNA damage, and speculate how APC/C-Cdh1 can control cell fate in the context of persistent DNA damage.

  3. Cellobiose dehydrogenase of Chaetomium sp. INBI 2-26(-): structural basis of enhanced activity toward glucose at neutral pH.

    PubMed

    Vasilchenko, Liliya G; Karapetyan, Karen N; Yershevich, Olga P; Ludwig, Roland; Zamocky, Marcel; Peterbauer, Clemens K; Haltrich, Dietmar; Rabinovich, Mikhail L

    2011-05-01

    Cellobiose dehydrogenase (CDH) is an extracellular fungal flavocytochrome specifically oxidizing cellooligosaccharides and lactose to corresponding (-lactones by a variety of electron acceptors. In contrast to basidiomycetous CDHs, CDHs of ascomycetes also display certain activity toward glucose. The objective of this study was to establish the structural reasons of such an activity of CDH from mesophilic ascomycete Chaetomium sp. INBI 2-26 (ChCDH). The complete amino acid sequence of ChCDH displayed high levels of similarity with the amino acid sequences of CDHs from the thermophilic fungi Thielavia heterotallica and Myriococcum thermophilum. Peptide mass fingerprinting of purified ChCDH provided evidence for the oxidation of methionine residues in the FAD-domain. Comparative homology modeling of the structure of the ChCDH FAD-domain in complex with the transition state analog based on the structure of the same complex of basidiomycetous CDH (1NAA) as template indicated possible structural reasons for the enhanced activity of ascomycetous CDHs toward glucose at neutral pH, which is a prerequisite for application of CDH in a variety of biocompatible biosensors and biofuel cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Epithelial-mesenchymal transition and nuclear β-catenin induced by conditional intestinal disruption of Cdh1 with Apc is E-cadherin EC1 domain dependent

    PubMed Central

    Carter, Emma J.; Barnes, David; Hoppe, Hans-Jürgen; Hughes, Jennifer; Cobbold, Stephen; Harper, James; Morreau, Hans; Surakhy, Mirvat; Hassan, A. Bassim

    2016-01-01

    Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear β-catenin localization, suggesting that E-cadherin inhibits β-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear β-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and β-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits β-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity. PMID:27566565

  5. Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset

    PubMed Central

    Listovsky, Tamar

    2013-01-01

    The switch from activation of the anaphase-promoting complex/cyclosome (APC/C) by CDC20 to CDH1 during anaphase is crucial for accurate mitosis. APC/CCDC20 ubiquitinates a limited set of substrates for subsequent degradation, including Cyclin B1 and Securin, whereas APC/CCDH1 has a broader specificity. This switch depends on dephosphorylation of CDH1 and the APC/C, and on the degradation of CDC20. Here we show, in human cells, that the APC/C inhibitor MAD2L2 also contributes to ensuring the sequential activation of the APC/C by CDC20 and CDH1. In prometaphase, MAD2L2 sequestered free CDH1 away from the APC/C. At the onset of anaphase, MAD2L2 was rapidly degraded by APC/CCDC20, releasing CDH1 to activate the dephosphorylated APC/C. Loss of MAD2L2 led to premature association of CDH1 with the APC/C, early destruction of APC/CCDH1 substrates, and accelerated mitosis with frequent mitotic aberrations. Thus, MAD2L2 helps to ensure a robustly bistable switch between APC/CCDC20 and APC/CCDH1 during the metaphase-to-anaphase transition, thereby contributing to mitotic fidelity. PMID:24100295

  6. Anaphase-Promoting Complex/Cyclosome-Cdh1-Mediated Proteolysis of the Forkhead Box M1 Transcription Factor Is Critical for Regulated Entry into S Phase▿

    PubMed Central

    Park, Hyun Jung; Costa, Robert H.; Lau, Lester F.; Tyner, Angela L.; Raychaudhuri, Pradip

    2008-01-01

    The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G1 phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G1 phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G1 phase and that its proteolysis is important for regulated entry into S phase. PMID:18573889

  7. Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase.

    PubMed

    Park, Hyun Jung; Costa, Robert H; Lau, Lester F; Tyner, Angela L; Raychaudhuri, Pradip

    2008-09-01

    The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G(1) phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G(1) phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G(1) phase and that its proteolysis is important for regulated entry into S phase.

  8. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation.

    PubMed

    Cuende, J; Moreno, S; Bolaños, J P; Almeida, A

    2008-05-22

    In neuroblastoma cells, retinoic acid induces cell cycle arrest and differentiation through degradation of the F-box protein, Skp2, and stabilization of cyclin-dependent kinase inhibitor, p27. However, the mechanism responsible for retinoic acid-mediated Skp2 destabilization is unknown. Since Skp2 is degraded by anaphase-promoting complex (APC)(Cdh1), here we studied whether retinoic acid promotes differentiation of human SH-SY5Y neuroblastoma cells by modulating Cdh1. We found that retinoic acid induced the nuclear accumulation of Cdh1 that paralleled Skp2 destabilization and p27 accumulation. The mRNA and protein abundance of Rae1-a nuclear export factor that limits APC(Cdh1) activity in mitosis-decreased upon retinoic acid-induced inhibition of neuroblastoma cell proliferation. Furthermore, either Rae1 overexpression or Cdh1 inhibition promoted Skp2 accumulation, p27 destabilization and prevented retinoic acid-induced cell cycle arrest and differentiation. Conversely, inhibition of Rae1 accelerated retinoic acid-induced differentiation. Thus, retinoic acid downregulates Rae1, hence facilitating APC(Cdh1)-mediated Skp2 degradation leading to the arrest of cell cycle progression and neuroblastoma differentiation.

  9. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1.

    PubMed

    Lee, Seung Baek; Kim, Jung Jin; Nam, Hyun-Ja; Gao, Bowen; Yin, Ping; Qin, Bo; Yi, Sang-Yeop; Ham, Hyoungjun; Evans, Debra; Kim, Sun-Hyun; Zhang, Jun; Deng, Min; Liu, Tongzheng; Zhang, Haoxing; Billadeau, Daniel D; Wang, Liewei; Giaime, Emilie; Shen, Jie; Pang, Yuan-Ping; Jen, Jin; van Deursen, Jan M; Lou, Zhenkun

    2015-10-01

    Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. APC/C-Cdh1 coordinates neurogenesis and cortical size during development

    NASA Astrophysics Data System (ADS)

    Delgado-Esteban, Maria; García-Higuera, Irene; Maestre, Carolina; Moreno, Sergio; Almeida, Angeles

    2013-12-01

    The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1—which regulates mitosis exit and G1-phase length in dividing cells—regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.

  11. Mechanisms of pseudosubstrate inhibition of the anaphase promoting complex by Acm1

    PubMed Central

    Burton, Janet L; Xiong, Yong; Solomon, Mark J

    2011-01-01

    The anaphase promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators by the 26S proteasome. Cdc20 and Cdh1 are WD40-containing APC co-activators that bind destruction boxes (DB) and KEN boxes within substrates to recruit them to the APC for ubiquitination. Acm1 is an APCCdh1 inhibitor that utilizes a DB and a KEN box to bind Cdh1 and prevent substrate binding, although Acm1 itself is not a substrate. We investigated what differentiates an APC substrate from an inhibitor. We identified the Acm1 A-motif that interacts with Cdh1 and together with the DB and KEN box is required for APCCdh1 inhibition. A genetic screen identified Cdh1 WD40 domain residues important for Acm1 A-motif interaction and inhibition that appears to reside near Cdh1 residues important for DB recognition. Specific lysine insertion mutations within Acm1 promoted its ubiquitination by APCCdh1 whereas lysine removal from the APC substrate Hsl1 converted it into a potent APCCdh1 inhibitor. These findings suggest that tight Cdh1 binding combined with the inaccessibility of ubiquitinatable lysines contributes to pseudosubstrate inhibition of APCCdh1. PMID:21460798

  12. Variants in members of the cadherin-catenin complex, CDH1 and CTNND1, cause blepharocheilodontic syndrome.

    PubMed

    Kievit, Anneke; Tessadori, Federico; Douben, Hannie; Jordens, Ingrid; Maurice, Madelon; Hoogeboom, Jeannette; Hennekam, Raoul; Nampoothiri, Sheela; Kayserili, Hülya; Castori, Marco; Whiteford, Margo; Motter, Connie; Melver, Catherine; Cunningham, Michael; Hing, Anne; Kokitsu-Nakata, Nancy M; Vendramini-Pittoli, Siulan; Richieri-Costa, Antonio; Baas, Annette F; Breugem, Corstiaan C; Duran, Karen; Massink, Maarten; Derksen, Patrick W B; van IJcken, Wilfred F J; van Unen, Leontine; Santos-Simarro, Fernando; Lapunzina, Pablo; Gil-da Silva Lopes, Vera L; Lustosa-Mendes, Elaine; Krall, Max; Slavotinek, Anne; Martinez-Glez, Victor; Bakkers, Jeroen; van Gassen, Koen L I; de Klein, Annelies; van den Boogaard, Marie-José H; van Haaften, Gijs

    2018-02-01

    Blepharocheilodontic syndrome (BCDS) consists of lagophthalmia, ectropion of the lower eyelids, distichiasis, euryblepharon, cleft lip/palate and dental anomalies and has autosomal dominant inheritance with variable expression. We identified heterozygous variants in two genes of the cadherin-catenin complex, CDH1, encoding E-cadherin, and CTNND1, encoding p120 catenin delta1 in 15 of 17 BCDS index patients, as was recently described in a different publication. CDH1 plays an essential role in epithelial cell adherence; CTNND1 binds to CDH1 and controls the stability of the complex. Functional experiments in zebrafish and human cells showed that the CDH1 variants impair the cell adhesion function of the cadherin-catenin complex in a dominant-negative manner. Variants in CDH1 have been linked to familial hereditary diffuse gastric cancer and invasive lobular breast cancer; however, no cases of gastric or breast cancer have been reported in our BCDS cases. Functional experiments reported here indicated the BCDS variants comprise a distinct class of CDH1 variants. Altogether, we identified the genetic cause of BCDS enabling DNA diagnostics and counseling, in addition we describe a novel class of dominant negative CDH1 variants.

  13. Congenital Diaphragmatic Hernia: The Side of Diaphragmatic Defect and Associated Nondiaphragmatic Malformations.

    PubMed

    Grizelj, Ruža; Bojanić, Katarina; Vuković, Jurica; Weingarten, Toby N; Schroeder, Darrell R; Sprung, Juraj

    2017-07-01

    Background  Congenital diaphragmatic hernia (CDH) has different clinical presentations depending on whether it is right sided (R-CDH) or left sided (L-CDH). Some have suggested that L-CDH and R-CDH may represent different syndromic phenotypes. This theory would be indirectly supported if different nondiaphragmatic anomalies were associated with laterality. We assessed whether CDH laterality is associated with specific types of nondiaphragmatic anomalies. Methods  Cases of CDH were retrospectively identified from five centers, and associated congenital anomalies, prenatal diagnosis, demographics, birth characteristics, and side of the CDH were analyzed. CDH characteristics were summarized according to the absence (isolated) or presence (complex) of nondiaphragmatic malformations. Results  Among 228 neonates with CDH, 140 (61%) had isolated CDH and 88 (39%) had complex CDH. Complex CDH was significantly associated with being small for gestational age (odds ratio [95% confidence interval, CI]: 8.3 [1.9-35.7]; p  = 0.005) and having L-CDH (odds ratio [95% CI]: 3.6 [1.5-8.9]; p  = 0.005). The overall proportion with anomalies differed by side (42% for L-CDH, 23% for R-CDH; p  = 0.02), but the rates of anomalies in specific organ systems did not differ. Conclusion  The rate of associated nondiaphragmatic anomalies by specific organ system did not differ between L-CDH and R-CDH, which suggests that they represent the same phenotypic entity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Alleviating neuropathic pain mechanical allodynia by increasing Cdh1 in the anterior cingulate cortex.

    PubMed

    Tan, Wei; Yao, Wen-Long; Hu, Rong; Lv, You-You; Wan, Li; Zhang, Chuan-Han; Zhu, Chang

    2015-09-12

    Plastic changes in the anterior cingulate cortex (ACC) are critical in the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. Cdh1, a co-activator subunit of anaphase-promoting complex/cyclosome (APC/C) regulates synaptic differentiation and transmission. Based on this, we hypothesised that the APC/C-Cdh1 played an important role in long-term plastic changes induced by neuropathic pain in ACC. We employed spared nerve injury (SNI) model in rat and found Cdh1 protein level in the ACC was down-regulated 3, 7 and 14 days after SNI surgery. We detected increase in c-Fos expression, numerical increase of organelles, swollen myelinated fibre and axon collapse of neuronal cells in the ACC of SNI rat. Additionally, AMPA receptor GluR1 subunit protein level was up-regulated on the membrane through a pathway that involves EphA4 mediated by APC/C-Cdh1, 3 and 7 days after SNI surgery. To confirm the effect of Cdh1 in neuropathic pain, Cdh1-expressing lentivirus was injected into the ACC of SNI rat. Intra-ACC treatment with Cdh1-expressing lentivirus vectors elevated Cdh1 levels, erased synaptic strengthening, as well as alleviating established mechanical allodynia in SNI rats. We also found Cdh1-expressing lentivirus normalised SNI-induced redistribution of AMPA receptor GluR1 subunit in ACC by regulating AMPA receptor trafficking. These results provide evidence that Cdh1 in ACC synapses may offer a novel therapeutic strategy for treating chronic neuropathic pain.

  15. Loss of Cdh1 and Pten Accelerates Cellular Invasiveness and Angiogenesis in the Mouse Uterus1

    PubMed Central

    Lindberg, Mallory E.; Stodden, Genna R.; King, Mandy L.; MacLean, James A.; Mann, Jordan L.; DeMayo, Francesco J.; Lydon, John P.; Hayashi, Kanako

    2013-01-01

    ABSTRACT E-cadherin (CDH1) is a cell adhesion molecule that coordinates key morphogenetic processes regulating cell growth, cell proliferation, and apoptosis. Loss of CDH1 is a trademark of the cellular event epithelial to mesenchymal transition, which increases the metastatic potential of malignant cells. PTEN is a tumor-suppressor gene commonly mutated in many human cancers, including endometrial cancer. In the mouse uterus, ablation of Pten induces epithelial hyperplasia, leading to endometrial carcinomas. However, loss of Pten alone does not affect longevity until around 5 mo. Similarly, conditional ablation of Cdh1 alone does not predispose mice to cancer. In this study, we characterized the impact of dual Cdh1 and Pten ablation (Cdh1d/d Ptend/d) in the mouse uterus. We observed that Cdh1d/d Ptend/d mice died at Postnatal Days 15–19 with massive blood loss. Their uteri were abnormally structured with curly horns, disorganized epithelial structure, and increased cell proliferation. Co-immunostaining of KRT8 and ACTA2 showed invasion of epithelial cells into the myometrium. Further, the uteri of Cdh1d/d Ptend/d mice had prevalent vascularization in both the endometrium and myometrium. We also observed reduced expression of estrogen and progesterone receptors, loss of cell adherens, and tight junction molecules (CTNNB1 and claudin), as well as activation of AKT in the uteri of Cdh1d/d Ptend/d mice. However, complex hyperplasia was not found in the uteri of Cdh1d/d Ptend/d mice. Collectively, these findings suggest that ablation of Pten with Cdh1 in the uterus accelerates cellular invasiveness and angiogenesis and causes early death. PMID:23740945

  16. Loss of CDH1 and Pten accelerates cellular invasiveness and angiogenesis in the mouse uterus.

    PubMed

    Lindberg, Mallory E; Stodden, Genna R; King, Mandy L; MacLean, James A; Mann, Jordan L; DeMayo, Francesco J; Lydon, John P; Hayashi, Kanako

    2013-07-01

    E-cadherin (CDH1) is a cell adhesion molecule that coordinates key morphogenetic processes regulating cell growth, cell proliferation, and apoptosis. Loss of CDH1 is a trademark of the cellular event epithelial to mesenchymal transition, which increases the metastatic potential of malignant cells. PTEN is a tumor-suppressor gene commonly mutated in many human cancers, including endometrial cancer. In the mouse uterus, ablation of Pten induces epithelial hyperplasia, leading to endometrial carcinomas. However, loss of Pten alone does not affect longevity until around 5 mo. Similarly, conditional ablation of Cdh1 alone does not predispose mice to cancer. In this study, we characterized the impact of dual Cdh1 and Pten ablation (Cdh1(d/d) Pten(d/d)) in the mouse uterus. We observed that Cdh1(d/d) Pten(d/d) mice died at Postnatal Days 15-19 with massive blood loss. Their uteri were abnormally structured with curly horns, disorganized epithelial structure, and increased cell proliferation. Co-immunostaining of KRT8 and ACTA2 showed invasion of epithelial cells into the myometrium. Further, the uteri of Cdh1(d/d) Pten(d/d) mice had prevalent vascularization in both the endometrium and myometrium. We also observed reduced expression of estrogen and progesterone receptors, loss of cell adherens, and tight junction molecules (CTNNB1 and claudin), as well as activation of AKT in the uteri of Cdh1(d/d) Pten(d/d) mice. However, complex hyperplasia was not found in the uteri of Cdh1(d/d) Pten(d/d) mice. Collectively, these findings suggest that ablation of Pten with Cdh1 in the uterus accelerates cellular invasiveness and angiogenesis and causes early death.

  17. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment.

    PubMed

    Stodden, G R; Lindberg, M E; King, M L; Paquet, M; MacLean, J A; Mann, J L; DeMayo, F J; Lydon, J P; Hayashi, K

    2015-05-07

    Type II endometrial carcinomas (ECs) are estrogen independent, poorly differentiated tumors that behave in an aggressive manner. As TP53 mutation and CDH1 inactivation occur in 80% of human endometrial type II carcinomas, we hypothesized that mouse uteri lacking both Trp53 and Cdh1 would exhibit a phenotype indicative of neoplastic transformation. Mice with conditional ablation of Cdh1 and Trp53 (Cdh1(d/d)Trp53(d/d)) clearly demonstrate architectural features characteristic of type II ECs, including focal areas of papillary differentiation, protruding cytoplasm into the lumen (hobnailing) and severe nuclear atypia at 6 months of age. Further, Cdh1(d/d)Trp53(d/d) tumors in 12-month-old mice were highly aggressive, and metastasized to nearby and distant organs within the peritoneal cavity, such as abdominal lymph nodes, mesentery and peri-intestinal adipose tissues, demonstrating that tumorigenesis in this model proceeds through the universally recognized morphological intermediates associated with type II endometrial neoplasia. We also observed abundant cell proliferation and complex angiogenesis in the uteri of Cdh1(d/d)Trp53(d/d) mice. Our microarray analysis found that most of the genes differentially regulated in the uteri of Cdh1(d/d)Trp53(d/d) mice were involved in inflammatory responses. CD163 and Arg1, markers for tumor-associated macrophages, were also detected and increased in the uteri of Cdh1(d/d)Trp53(d/d) mice, suggesting that an inflammatory tumor microenvironment with immune cell recruitment is augmenting tumor development in Cdh1(d/d)Trp53(d/d) uteri. Further, inflammatory mediators secreted from CDH1-negative, TP53 mutant endometrial cancer cells induced normal macrophages to express inflammatory-related genes through activation of nuclear factor-κB signaling. These results indicate that absence of CDH1 and TP53 in endometrial cells initiates chronic inflammation, promotes tumor microenvironment development following the recruitment of macrophages and promotes aggressive ECs.

  18. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment

    PubMed Central

    Stodden, Genna R.; Lindberg, Mallory E.; King, Mandy L.; Paquet, Marilène; MacLean, James A.; Mann, Jordan L.; DeMayo, Francesco J.; Lydon, John P.; Hayashi, Kanako

    2015-01-01

    Type II endometrial carcinomas are estrogen independent, poorly differentiated tumors that behave in an aggressive manner. Since TP53 mutation and CDH1 inactivation occur in 80% of human endometrial type II carcinomas, we hypothesized that mouse uteri lacking both Trp53 and Cdh1 would exhibit a phenotype indicative of neoplastic transformation. Mice with conditional ablation of Cdh1 and Trp53 (Cdh1d/dTrp53d/d) clearly demonstrate architectural features characteristic of type II endometrial carcinomas, including focal areas of papillary differentiation, protruding cytoplasm into the lumen (hobnailing) and severe nuclear atypia at 6-mo of age. Further, Cdh1d/dTrp53d/d tumors in 12-mo old mice were highly aggressive, and metastasized to nearby and distant organs within the peritoneal cavity, such as abdominal lymph nodes, mesentery and peri-intestinal adipose tissues, demonstrating that tumorigenesis in this model proceeds through the universally recognized morphologic intermediates associated with type II endometrial neoplasia. We also observed abundant cell proliferation and complex angiogenesis in the uteri of Cdh1d/dTrp53d/d mice. Our microarray analysis found that most of the genes differentially regulated in the uteri of Cdh1d/dTrp53d/d mice were involved in inflammatory responses. CD163 and Arg1, markers for tumor-associated macrophages, were also detected and increased in the uteri of Cdh1d/dTrp53d/d mice, suggesting that an inflammatory tumor microenvironment with immune cell recruitment is augmenting tumor development in Cdh1d/dTrp53d/d uteri. Further, inflammatory mediators secreted from CDH1 negative, TP53 mutant endometrial cancer cells induced normal macrophages to express inflammatory related genes through activation of NFκB signaling. These results indicate that absence of CDH1 and TP53 in endometrial cells initiates chronic inflammation, promotes tumor microenvironment development following the recruitment of macrophages, and promotes aggressive endometrial carcinomas. PMID:24998851

  19. The E3 Ligase APC/C-Cdh1 Is Required for Associative Fear Memory and Long-Term Potentiation in the Amygdala of Adult Mice

    ERIC Educational Resources Information Center

    Pick, Joseph E.; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating…

  20. Parkin New Cargos: a New ROS Independent Role for Parkin in Regulating Cell Division.

    PubMed

    Stieg, David C; Cooper, Katrina F

    2016-01-01

    Cell cycle progression requires the destruction of key cell cycle regulators by the multi-subunit E3 ligase called the anaphase promoting complex (APC/C). As the cell progresses through the cell cycle, the APC/C is sequentially activated by two highly conserved co-activators called Cdc20 and Cdh1. Importantly, APC/C Cdc20 is required to degrade substrates in G2/M whereas APC Cdh1 drives the cells into G1. Recently, Parkin, a monomeric E3 ligase that is required for ubiquitin-mediated mitophagy following mitochondrial stress, was shown to both bind and be activated by Cdc20 or Cdh1 during the cell cycle. This mitotic role for Parkin does not require an activating phosphorylation by its usual kinase partner PINK. Rather, mitotic Parkin activity requires phosphorylation on a different serine by the polo-like kinase Plk1. Interestingly, although Parkin Cdc20 and Parkin Cdh1 activity is independent of the APC/C, it mediates degradation of an overlapping subset of substrates. However, unlike the APC/C, Parkin is not necessary for cell cycle progression. Despite this, loss of Parkin activity accelerates genome instability and tumor growth in xenograft models. These findings provide a mechanism behind the previously described, but poorly understood, tumor suppressor role for Parkin. Taken together, studies suggest that the APC/C and Parkin have similar and unique roles to play in cell division, possibly being dependent upon the different subcellular address of these two ligases.

  1. Involvement of heme oxygenase-1 in β-cyclodextrin-hemin complex-induced cucumber adventitious rooting process.

    PubMed

    Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong

    2012-09-01

    Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.

  2. Phosphorylation and dephosphorylation regulate APC/CCdh1 substrate degradation

    PubMed Central

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation. PMID:26252546

  3. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1.

    PubMed

    Höckner, Sebastian; Neumann-Arnold, Lea; Seufert, Wolfgang

    2016-07-15

    The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1. © 2016 Höckner et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Drosophila-Cdh1 (Rap/Fzr) a regulatory subunit of APC/C is required for synaptic morphology, synaptic transmission and locomotion.

    PubMed

    Wise, Alexandria; Schatoff, Emma; Flores, Julian; Hua, Shao-Ying; Ueda, Atsushi; Wu, Chun-Fang; Venkatesh, Tadmiri

    2013-11-01

    The assembly of functional synapses requires the orchestration of the synthesis and degradation of a multitude of proteins. Protein degradation and modification by the conserved ubiquitination pathway has emerged as a key cellular regulatory mechanism during nervous system development and function (Kwabe and Brose, 2011). The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit ubiquitin ligase complex primarily characterized for its role in the regulation of mitosis (Peters, 2002). In recent years, a role for APC/C in nervous system development and function has been rapidly emerging (Stegmuller and Bonni, 2005; Li et al., 2008). In the mammalian central nervous system the activator subunit, APC/C-Cdh1, has been shown to be a regulator of axon growth and dendrite morphogenesis (Konishi et al., 2004). In the Drosophila peripheral nervous system (PNS), APC2, a ligase subunit of the APC/C complex has been shown to regulate synaptic bouton size and activity (van Roessel et al., 2004). To investigate the role of APC/C-Cdh1 at the synapse we examined loss-of-function mutants of Rap/Fzr (Retina aberrant in pattern/Fizzy related), a Drosophila homolog of the mammalian Cdh1 during the development of the larval neuromuscular junction in Drosophila. Our cell biological, ultrastructural, electrophysiological, and behavioral data showed that rap/fzr loss-of-function mutations lead to changes in synaptic structure and function as well as locomotion defects. Data presented here show changes in size and morphology of synaptic boutons, and, muscle tissue organization. Electrophysiological experiments show that loss-of-function mutants exhibit increased frequency of spontaneous miniature synaptic potentials, indicating a higher rate of spontaneous synaptic vesicle fusion events. In addition, larval locomotion and peristaltic movement were also impaired. These findings suggest a role for Drosophila APC/C-Cdh1 mediated ubiquitination in regulating synaptic morphology, function and integrity of muscle structure in the peripheral nervous system. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  5. Different modes of APC/C activation control growth and neuron-glia interaction in the developing Drosophila eye.

    PubMed

    Neuert, Helen; Yuva-Aydemir, Yeliz; Silies, Marion; Klämbt, Christian

    2017-12-15

    The development of the nervous system requires tight control of cell division, fate specification and migration. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that affects different steps of cell cycle progression, as well as having postmitotic functions in nervous system development. It can therefore link different developmental stages in one tissue. The two adaptor proteins, Fizzy/Cdc20 and Fizzy-related/Cdh1, confer APC/C substrate specificity. Here, we show that two distinct modes of APC/C function act during Drosophila eye development. Fizzy/Cdc20 controls the early growth of the eye disc anlage and the concomitant entry of glial cells onto the disc. In contrast, fzr/cdh1 acts during neuronal patterning and photoreceptor axon growth, and subsequently affects neuron-glia interaction. To further address the postmitotic role of Fzr/Cdh1 in controlling neuron-glia interaction, we identified a series of novel APC/C candidate substrates. Four of our candidate genes are required for fzr/cdh1 -dependent neuron-glia interaction, including the dynein light chain Dlc90F Taken together, our data show how different modes of APC/C activation can couple early growth and neuron-glia interaction during eye disc development. © 2017. Published by The Company of Biologists Ltd.

  6. APC/CCdh1-Rock2 pathway controls dendritic integrity and memory

    PubMed Central

    Bobo-Jiménez, Verónica; Delgado-Esteban, María; Angibaud, Julie; Sánchez-Morán, Irene; de la Fuente, Antonio; Yajeya, Javier; Nägerl, U. Valentin; Castillo, José; Bolaños, Juan P.

    2017-01-01

    Disruption of neuronal morphology contributes to the pathology of neurodegenerative disorders such as Alzheimer’s disease (AD). However, the underlying molecular mechanisms are unknown. Here, we show that postnatal deletion of Cdh1, a cofactor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase in neurons [Cdh1 conditional knockout (cKO)], disrupts dendrite arborization and causes dendritic spine and synapse loss in the cortex and hippocampus, concomitant with memory impairment and neurodegeneration, in adult mice. We found that the dendrite destabilizer Rho protein kinase 2 (Rock2), which accumulates in the brain of AD patients, is an APC/CCdh1 substrate in vivo and that Rock2 protein and activity increased in the cortex and hippocampus of Cdh1 cKO mice. In these animals, inhibition of Rock activity, using the clinically approved drug fasudil, prevented dendritic network disorganization, memory loss, and neurodegeneration. Thus, APC/CCdh1-mediated degradation of Rock2 maintains the dendritic network, memory formation, and neuronal survival, suggesting that pharmacological inhibition of aberrantly accumulated Rock2 may be a suitable therapeutic strategy against neurodegeneration. PMID:28396402

  7. Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases.

    PubMed

    Cui, Yongping; Cheng, Xiaolong; Zhang, Ce; Zhang, Yanyan; Li, Shujing; Wang, Chuangui; Guadagno, Thomas M

    2010-10-22

    Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.

  8. Molecular mechanism of APC/C activation by mitotic phosphorylation.

    PubMed

    Zhang, Suyang; Chang, Leifu; Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-05-12

    In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.

  9. Congenital diaphragmatic hernia (CDH) etiology as revealed by pathway genetics.

    PubMed

    Kantarci, Sibel; Donahoe, Patricia K

    2007-05-15

    Congenital diaphragmatic hernia (CDH) is a common birth defect with high mortality and morbidity. Two hundred seventy CDH patients were ascertained, carefully phenotyped, and classified as isolated (diaphragm defects alone) or complex (with additional anomalies) cases. We established different strategies to reveal CDH-critical chromosome loci and genes in humans. Candidate genes for sequencing analyses were selected from CDH animal models, genetic intervals of recurrent chromosomal aberration in humans, such as 15q26.1-q26.2 or 1q41-q42.12, as well as genes in the retinoic acid and related pathways and those known to be involved in embryonic lung development. For instance, FOG2, GATA4, and COUP-TFII are all needed for both normal diaphragm and lung development and are likely all in the same genetic and molecular pathway. Linkage analysis was applied first in a large inbred family and then in four multiplex families with Donnai-Barrow syndrome (DBS) associated with CDH. 10K SNP chip and microsatellite markers revealed a DBS locus on chromosome 2q23.3-q31.1. We applied array-based comparative genomic hybridization (aCGH) techniques to over 30, mostly complex, CDH patients and found a de novo microdeletion in a patient with Fryns syndrome related to CDH. Fluorescence in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA) techniques allowed us to further define the deletion interval. Our aim is to identify genetic intervals and, in those, to prioritize genes that might reveal molecular pathways, mutations in any step of which, might contribute to the same phenotype. More important, the elucidation of pathways may ultimately provide clues to treatment strategies. (c) 2007 Wiley-Liss, Inc.

  10. A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development.

    PubMed

    Guttery, David S; Ferguson, David J P; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M; Brady, Declan; Nieduszynski, Conrad A; Janse, Chris J; Holder, Anthony A; Tobin, Andrew B; Tewari, Rita

    2012-02-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis.

  11. A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development

    PubMed Central

    Guttery, David S.; Ferguson, David J. P.; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M.; Brady, Declan; Nieduszynski, Conrad A.; Janse, Chris J.; Holder, Anthony A.; Tobin, Andrew B.; Tewari, Rita

    2012-01-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis. PMID:22383885

  12. Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia

    PubMed Central

    Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.

    2012-01-01

    Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150

  13. Hypoxia and cell cycle regulation of the von Hippel-Lindau tumor suppressor

    PubMed Central

    Liu, Weijun; Xin, Hong; Eckert, David T.; Brown, Julie A.; Gnarra, James R.

    2010-01-01

    Inactivation of von Hippel-Lindau tumor suppressor protein (pVHL) is associated with von Hippel-Lindau disease, an inherited cancer syndrome, as well as the majority of patients with sporadic clear cell renal carcinoma (RCC). While the involvement of pVHL in oxygen sensing through targeting HIFα subunits to ubiquitin-dependent proteolysis has been well documented, less is known about pVHL regulation under both normoxic and hypoxic conditions. We found that pVHL levels decreased in hypoxia and that hypoxia-induced cell cycle arrest is associated with pVHL expression in RCC cells. pVHL levels fluctuate during the cell cycle, paralleling cyclin B1 levels, with decreased levels in mitosis and G1. pVHL contains consensus Destruction box sequences, and pVHL associates with Cdh1, an activator of the anaphase promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. We show that pVHL has a decreased half-life in G1, Cdh1 downregulation results in increased pVHL expression, while Cdh1 overexpression results in decreased pVHL expression. Taken together these results suggest that pVHL is a novel substrate of APC/CCdh1. Destruction box-independent pVHL degradation was also detected, indicating that other ubiquitin ligases are also activated for pVHL degradation. PMID:20802534

  14. High-throughput screening for cellobiose dehydrogenases by Prussian Blue in situ formation.

    PubMed

    Vasilchenko, Liliya G; Ludwig, Roland; Yershevich, Olga P; Haltrich, Dietmar; Rabinovich, Mikhail L

    2012-07-01

    Extracellular fungal flavocytochrome cellobiose dehydrogenase (CDH) is a promising enzyme for both bioelectronics and lignocellulose bioconversion. A selective high-throughput screening assay for CDH in the presence of various fungal oxidoreductases was developed. It is based on Prussian Blue (PB) in situ formation in the presence of cellobiose (<0.25 mM), ferric acetate, and ferricyanide. CDH induces PB formation via both reduction of ferricyanide to ferrocyanide reacting with an excess of Fe³⁺ (pathway 1) and reduction of ferric ions to Fe²⁺ reacting with the excess of ferricyanide (pathway 2). Basidiomycetous and ascomycetous CDH formed PB optimally at pH 3.5 and 4.5, respectively. In contrast to the holoenzyme CDH, its FAD-containing dehydrogenase domain lacking the cytochrome domain formed PB only via pathway 1 and was less active than the parent enzyme. The assay can be applied on active growing cultures on agar plates or on fungal culture supernatants in 96-well plates under aerobic conditions. Neither other carbohydrate oxidoreductases (pyranose dehydrogenase, FAD-dependent glucose dehydrogenase, glucose oxidase) nor laccase interfered with CDH activity in this assay. Applicability of the developed assay for the selection of new ascomycetous CDH producers as well as possibility of the controlled synthesis of new PB nanocomposites by CDH are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Transcriptomic profiling and quantitative high-throughput (qHTS) drug screening of CDH1 deficient hereditary diffuse gastric cancer (HDGC) cells identify treatment leads for familial gastric cancer.

    PubMed

    Chen, Ina; Mathews-Greiner, Lesley; Li, Dandan; Abisoye-Ogunniyan, Abisola; Ray, Satyajit; Bian, Yansong; Shukla, Vivek; Zhang, Xiaohu; Guha, Raj; Thomas, Craig; Gryder, Berkley; Zacharia, Athina; Beane, Joal D; Ravichandran, Sarangan; Ferrer, Marc; Rudloff, Udo

    2017-05-01

    Patients with hereditary diffuse gastric cancer (HDGC), a cancer predisposition syndrome associated with germline mutations of the CDH1 (E-cadherin) gene, have few effective treatment options. Despite marked differences in natural history, histopathology, and genetic profile to patients afflicted by sporadic gastric cancer, patients with HDGC receive, in large, identical systemic regimens. The lack of a robust preclinical in vitro system suitable for effective drug screening has been one of the obstacles to date which has hampered therapeutic advances in this rare disease. In order to identify therapeutic leads selective for the HDGC subtype of gastric cancer, we compared gene expression profiles and drug phenotype derived from an oncology library of 1912 compounds between gastric cancer cells established from a patient with metastatic HDGC harboring a c.1380delA CDH1 germline variant and sporadic gastric cancer cells. Unsupervised hierarchical cluster analysis shows select gene expression alterations in c.1380delA CDH1 SB.mhdgc-1 cells compared to a panel of sporadic gastric cancer cell lines with enrichment of ERK1-ERK2 (extracellular signal regulated kinase) and IP3 (inositol trisphosphate)/DAG (diacylglycerol) signaling as the top networks in c.1380delA SB.mhdgc-1 cells. Intracellular phosphatidylinositol intermediaries were increased upon direct measure in c.1380delA CDH1 SB.mhdgc-1 cells. Differential high-throughput drug screening of c.1380delA CDH1 SB.mhdgc-1 versus sporadic gastric cancer cells identified several compound classes with enriched activity in c.1380 CDH1 SB.mhdgc-1 cells including mTOR (Mammalian Target Of Rapamycin), MEK (Mitogen-Activated Protein Kinase), c-Src kinase, FAK (Focal Adhesion Kinase), PKC (Protein Kinase C), or TOPO2 (Topoisomerase II) inhibitors. Upon additional drug response testing, dual PI3K (Phosphatidylinositol 3-Kinase)/mTOR and topoisomerase 2A inhibitors displayed up to >100-fold increased activity in hereditary c.1380delA CDH1 gastric cancer cells inducing apoptosis most effectively in cells with deficient CDH1 function. Integrated pharmacological and transcriptomic profiling of hereditary diffuse gastric cancer cells with a loss-of-function c.1380delA CDH1 mutation implies various pharmacological vulnerabilities selective to CDH1-deficient familial gastric cancer cells and suggests novel treatment leads for future preclinical and clinical treatment studies of familial gastric cancer.

  16. New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer's Disease.

    PubMed

    Fuchsberger, Tanja; Lloret, Ana; Viña, Jose

    2017-05-14

    The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer's disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation of APC/C in AD. It has been shown that oligomers of the AD-related peptide, Aβ, induce degradation of the APC/C activator subunit cdh1, in vitro in neurons in culture and in vivo in the mouse hippocampus. Furthermore, in the AD mouse model APP/PS1, lower cdh1 levels were observed in pyramidal neurons in CA1 when compared to age-matched wildtype mice. In this review, we provide a complete list of APC/C substrates that are involved in the nervous system and we discuss their functions. We also summarize recent studies that show neurobiological effects in cdh1 knockout mouse models. Finally, we discuss the role of APC/C in the pathophysiology of AD.

  17. SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells.

    PubMed

    Liu, Hong; Ma, Yan; He, Hong-Wei; Zhao, Wu-Li; Shao, Rong-Guang

    2017-05-04

    SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we reported that SPHK1 induced the epithelial-mesenchymal transition (EMT) by accelerating CDH1/E-cadherin lysosomal degradation and facilitating the invasion and metastasis of HepG2 cells. Initially, we found that SPHK1 promoted cell migration and invasion and induced the EMT process through decreasing the expression of CDH1, which is an epithelial marker. Furthermore, SPHK1 accelerated the lysosomal degradation of CDH1 to induce EMT, which depended on TRAF2 (TNF receptor associated factor 2)-mediated macroautophagy/autophagy activation. In addition, the inhibition of autophagy recovered CDH1 expression and reduced cell migration and invasion through delaying the degradation of CDH1 in SPHK1-overexpressing cells. Moreover, the overexpression of SPHK1 produced intracellular sphingosine-1-phosphate (S1P). In response to S1P stimulation, TRAF2 bound to BECN1/Beclin 1 and catalyzed the lysine 63-linked ubiquitination of BECN1 for triggering autophagy. The deletion of the RING domain of TRAF2 inhibited autophagy and the interaction of BECN1 and TRAF2. Our findings define a novel mechanism responsible for the regulation of the EMT via SPHK1-TRAF2-BECN1-CDH1 signal cascades in HCC cells. Our work indicates that the blockage of SPHK1 activity to attenuate autophagy may be a promising strategy for the prevention and treatment of HCC.

  18. Increased expression of activated pSTAT3 and PIM-1 in the pulmonary vasculature of experimental congenital diaphragmatic hernia.

    PubMed

    Hofmann, Alejandro D; Takahashi, Toshiaki; Duess, Johannes; Gosemann, Jan-Hendrik; Puri, Prem

    2015-06-01

    Signal transducer and activator of transcription (STAT) protein family (STAT1-6) regulates diverse cellular processes. Recently, the isoform STAT3 has been implicated to play a central role in the pathogenesis of pulmonary hypertension (PH). In human PH activated STAT3 (pSTAT3) was shown to directly trigger expression of the provirus integration site for Moloney murine leukemia virus (Pim-1), which promotes proliferation and resistance to apoptosis in SMCs. We designed this study to investigate the hypothesis that pSTAT3 and Pim-1 pulmonary vascular expression is increased in nitrofen-induced CDH. Pregnant rats were exposed to nitrofen or vehicle on D9.5. Fetuses were sacrificed on D21 and divided into nitrofen (n=16) and control group (n=16). QRT-PCR, western blotting, and confocal-immunofluorescence were performed to determine pulmonary gene and protein expression levels of pSTAT3 and Pim-1. Pulmonary Pim-1 gene expression was significantly increased in the CDH group compared to controls. Western blotting and confocal-microscopy confirmed increased pulmonary protein expression of Pim-1 and increased activation of pSTAT3 in CDH lungs compared to controls. Markedly increased gene and protein expression of Pim-1 and activated pSTAT3 in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that pSTAT3 and Pim-1 are important mediators of PH in nitrofen-induced CDH. Copyright © 2015. Published by Elsevier Inc.

  19. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition.

    PubMed

    Rivero, O; Selten, M M; Sich, S; Popp, S; Bacmeister, L; Amendola, E; Negwer, M; Schubert, D; Proft, F; Kiser, D; Schmitt, A G; Gross, C; Kolk, S M; Strekalova, T; van den Hove, D; Resink, T J; Nadif Kasri, N; Lesch, K P

    2015-10-13

    Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.

  20. Characterization of the Chromosome 1q41q42.12 region, and the Candidate Gene DISP1, in Patients with CDH

    PubMed Central

    Kantarci, Sibel; Ackerman, Kate G; Russell, Meaghan N; Longoni, Mauro; Sougnez, Carrie; Noonan, Kristin M; Hatchwell, Eli; Zhang, Xiaoyun; Vanmarcke, Rafael Pieretti; Anyane-Yeboa, Kwame; Dickman, Paul; Wilson, Jay; Donahoe, Patricia K; Pober, Barbara R

    2010-01-01

    Cytogenetic and molecular cytogenetic studies demonstrate association between congenital diaphragmatic hernia (CDH) and chromosome 1q41q42 deletions. In this study, we screened a large CDH cohort (N=179) for microdeletions in this interval by the multiplex ligation-dependent probe amplification (MLPA) technique, and also sequenced two candidate genes located therein, dispatched 1 (DISP1) and homo sapiens H2.0-like homeobox (HLX). MLPA analysis verified deletions of this region in two cases, an unreported patient with a 46,XY,del(1)(q41q42.13) karyotype and a previously reported patient with a Fryns syndrome phenotype [Kantarci et al., 2006]. HLX sequencing showed a novel but maternally inherited single nucleotide variant (c.27C>G) in a patient with isolated CDH, while DISP1 sequencing revealed a mosaic de novo heterozygous substitution (c.4412C>G; p.Ala1471Gly) in a male with a left-sided Bochdalek hernia plus multiple other anomalies. Pyrosequencing demonstrated the mutant allele was present in 43%, 12%, and 4.5% of the patient’s lymphoblastoid, peripheral blood lymphocytes, and saliva cells, respectively. We examined Disp1 expression at day E11.5 of mouse diaphragm formation and confirmed its presence in the pleuroperitoneal fold, as well as the nearby lung which also expresses Sonic hedgehog (Shh). Our report describes the first de novo DISP1 point mutation in a patient with complex CDH. Combining this finding with Disp1 embryonic mouse diaphragm and lung tissue expression, as well as previously reported human chromosome 1q41q42 aberrations in patients with CDH, suggests that DISP1 may warrant further consideration as a CDH candidate gene. PMID:20799323

  1. Rare Variants in the Epithelial Cadherin Gene Underlying the Genetic Etiology of Nonsyndromic Cleft Lip with or without Cleft Palate.

    PubMed

    Brito, Luciano Abreu; Yamamoto, Guilherme Lopes; Melo, Soraia; Malcher, Carolina; Ferreira, Simone Gomes; Figueiredo, Joana; Alvizi, Lucas; Kobayashi, Gerson Shigeru; Naslavsky, Michel Satya; Alonso, Nivaldo; Felix, Temis Maria; Zatz, Mayana; Seruca, Raquel; Passos-Bueno, Maria Rita

    2015-11-01

    Nonsyndromic orofacial cleft (NSOFC) is a complex disease of still unclear genetic etiology. To investigate the contribution of rare epithelial cadherin (CDH1) gene variants to NSOFC, we target sequenced 221 probands. Candidate variants were evaluated via in vitro, in silico, or segregation analyses. Three probably pathogenic variants (c.760G>A [p.Asp254Asn], c.1023T>G [p.Tyr341*], and c.2351G>A [p.Arg784His]) segregated according to autosomal dominant inheritance in four nonsyndromic cleft lip with or without cleft palate (NSCL/P) families (Lod score: 5.8 at θ = 0; 47% penetrance). A fourth possibly pathogenic variant (c.387+5G>A) was also found, but further functional analyses are needed (overall prevalence of CDH1 candidate variants: 2%; 15.4% among familial cases). CDH1 mutational burden was higher among probands from familial cases when compared to that of controls (P = 0.002). We concluded that CDH1 contributes to NSCL/P with mainly rare, moderately penetrant variants, and CDH1 haploinsufficiency is the likely etiological mechanism. © 2015 WILEY PERIODICALS, INC.

  2. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes

    PubMed Central

    Singh, Randeep K.; Dagnino, Lina

    2017-01-01

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation. PMID:27903963

  3. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes.

    PubMed

    Singh, Randeep K; Dagnino, Lina

    2017-01-17

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation.

  4. Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    PubMed Central

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic

    2012-01-01

    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448

  5. P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions

    PubMed Central

    Rizzi, Yanina S.; Monteoliva, Mariela I.; Fabro, Georgina; Grosso, Carola L.; Laróvere, Laura E.; Alvarez, María E.

    2015-01-01

    Plants facing adverse conditions usually alter proline (Pro) metabolism, generating changes that help restore the cellular homeostasis. These organisms synthesize Pro from glutamate (Glu) or ornithine (Orn) by two-step reactions that share Δ1 pyrroline-5-carboxylate (P5C) as intermediate. In the catabolic process, Pro is converted back to Glu using a different pathway that involves Pro dehydrogenase (ProDH), P5C dehydrogenase (P5CDH), and P5C as intermediate. Little is known about the coordination of the catabolic and biosynthetic routes under stress. To address this issue, we analyzed how P5CDH affects the activation of Pro synthesis, in Arabidopsis tissues that increase ProDH activity by transient exposure to exogenous Pro, or infection with Pseudomonas syringae pv. tomato. Wild-type (Col-0) and p5cdh mutant plants subjected to these treatments were used to monitor the Pro, Glu, and Orn levels, as well as the expression of genes from Pro metabolism. Col-0 and p5cdh tissues consecutively activated ProDH and Pro biosynthetic genes under both conditions. However, they manifested a different coordination between these routes. When external Pro supply was interrupted, wild-type leaves degraded Pro to basal levels at which point Pro synthesis, mainly via Glu, became activated. Under the same condition, p5cdh leaves sustained ProDH induction without reducing the Pro content but rather increasing it, apparently by stimulating the Orn pathway. In response to pathogen infection, both genotypes showed similar trends. While Col-0 plants seemed to induce both Pro biosynthetic routes, p5cdh mutant plants may primarily activate the Orn route. Our study contributes to the functional characterization of P5CDH in biotic and abiotic stress conditions, by revealing its capacity to modulate the fate of P5C, and prevalence of Orn or Glu as Pro precursors in tissues that initially consumed Pro. PMID:26284090

  6. Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenase.

    PubMed

    Thallinger, Barbara; Argirova, Maya; Lesseva, Magdalena; Ludwig, Roland; Sygmund, Christoph; Schlick, Angelika; Nyanhongo, Gibson S; Guebitz, Georg M

    2014-11-01

    The ability of cellobiose dehydrogenase (CDH) to produce hydrogen peroxide (H(2)O(2)) for antimicrobial and antibiofilm functionalisation of urinary catheters was investigated. A recombinantly produced CDH from Myriococcum thermophilum was shown to completely inhibit the growth of Escherichia coli and Staphylococcus aureus both in liquid and solid media when supplemented with either 0.8 mM or 2 mM cellobiose as substrate. Biofilm formation on silicone films was prevented by CDH when supplemented with 1mM cellobiose. The CDH/cellobiose system also successfully inhibited many common urinary catheter-colonising micro-organisms, including multidrug-resistant S. aureus, Staphylococcus epidermidis, Proteus mirabilis, Stenotrophomonas maltophilia, Acinetobacter baumannii and Pseudomonas aeruginosa. Interestingly, CDH was also able to produce H(2)O(2) during oxidation of extracellular polysaccharides (exPS) formed by micro-organisms in the absence of cellobiose. The H(2)O(2) production and consequently antimicrobial and antibiofilm activities on these exPS were enhanced by incorporation of glycoside hydrolases such as amylases. Hydrolysis of polysaccharides by these enzymes increases the number of terminal reducing sugars as substrates for CDH as well as destabilises the biofilm. Furthermore, CDH suspended in catheter lubricants killed bacteria in biofilms colonising catheters. Incorporation of the CDH/cellobiose system in the lubricant therefore makes it an easy strategy for preventing microbial colonisation of catheters. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  7. Mesenchymal expression of the FRAS1/FREM2 gene unit is decreased in the developing fetal diaphragm of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-02-01

    Developmental mutations that inhibit normal formation of extracellular matrix (ECM) in fetal diaphragms have been identified in congenital diaphragmatic hernia (CDH). FRAS1 and FRAS1-related extracellular matrix 2 (FREM2), which encode important ECM proteins, are secreted by mesenchymal cells during diaphragmatic development. The FRAS1/FREM2 gene unit has been shown to form a ternary complex with FREM1, which plays a crucial role during formation of human and rodent diaphragms. Furthermore, it has been demonstrated that the diaphragmatic expression of FREM1 is decreased in the nitrofen-induced CDH model. We hypothesized that FRAS1 and FREM2 expression is decreased in the developing diaphragms of fetal rats with nitrofen-induced CDH. Pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9), and fetuses were harvested on D13, D15 and D18. Microdissected diaphragms were divided into nitrofen-exposed/CDH and control samples (n = 12 per time-point and experimental group, respectively). Diaphragmatic gene expression levels of FRAS1 and FREM2 were analyzed by qRT-PCR. Immunofluorescence double staining for FRAS1 and FREM2 was combined with the mesenchymal marker GATA4 in order to evaluate protein expression and localization in pleuroperitoneal folds (PPFs) and fetal diaphragmatic tissue. Relative mRNA expression of FRAS1 and FREM2 were significantly reduced in PPFs of nitrofen-exposed fetuses on D13 (1.76 ± 0.86 vs. 3.09 ± 1.15; p < 0.05 and 0.47 ± 0.26 vs. 0.82 ± 0.36; p < 0.05), developing diaphragms of nitrofen-exposed fetuses on D15 (1.45 ± 0.80 vs. 2.63 ± 0.84; p < 0.05 and 0.41 ± 0.16 vs. 1.02 ± 0.49; p < 0.05) and fully muscularized diaphragms of CDH fetuses on D18 (1.35 ± 0.75 vs. 2.32 ± 0.92; p < 0.05 and 0.37 ± 0.24 vs. 0.70 ± 0.32; p < 0.05) compared to controls. Confocal laser scanning microscopy revealed markedly diminished FRAS1 and FREM2 immunofluorescence in diaphragmatic mesenchyme, which was associated with reduced proliferation of mesenchymal cells in nitrofen-exposed PPFs and fetal CDH diaphragms on D13, D15 and D18 compared to controls. Decreased mesenchymal expression of FRAS1 and FREM2 in the nitrofen-induced CDH model may cause failure of the FRAS1/FREM2 gene unit to activate FREM1 signaling, disturbing the formation of diaphragmatic ECM and thus contributing to the development of diaphragmatic defects in CDH.

  8. Aminoacid N-substituted 1,4,7-triazacyclononane and 1,4,7,10-tetraazacyclododecane Zn2+, Cd2+ and Cu2+ complexes. A preparative, potentiometric titration and NMR spectroscopic study.

    PubMed

    Plush, Sally E; Lincoln, Stephen F; Wainwright, Kevin P

    2004-05-07

    The pK(a)s and Zn2+, Cd2+ and Cu2+ complexation constants (K) for 1,4,7-tris[(2''S)-acetamido-2''-(methyl-3''-phenylpropionate)]-1,4,7-triazacyclononane, 1, 1,4,7-tris[(2''S)-acetamido-2''-(1''-carboxy-3''-phenylpropane)]-1,4,7-triazacyclononane, H(3)2, 1,4,7-tris[(2''S)-acetamido-2''-(methyl-3''-(1H-3-indolyl)propionate)]-1,4,7-triazacyclononane, 3, and 1,4,7,10-tetrakis[(2''S)-acetamido-2''-(methyl-3''-phenylpropionate)]-1,4,7,10-tetraazacyclododecane, 4, 1,4,7,10-tetrakis[(2''S)-acetamido-2''-(1''-carboxy-3''-phenylpropane)]-1,4,7,10-tetraazacyclododecane, H(4)5, in 20 : 80 v/v water-methanol solution are reported. The pK(a)s within the potentiometric detection range for H(3)1(3+) = 8.69 and 3.59, for H(6)2(3+) = 9.06, 6.13, 4.93 and 4.52, H(3)3(3+) = 8.79 and 3.67, H(4)4(4+) = 8.50, 5.62 and 3.77 and for H(8)5(4+) = 9.89, 7.06, 5.53, 5.46, 4.44 and 4.26 where each tertiary amine nitrogen is protonated. The complexes of 1: [Zn(1)]2+(9.00), [Cd(1)]2+ (6.49), [Cd(H1)]3+ (4.54) and [Cu(1)]2+ (10.01) are characterized by the log(K/dm3 mol(-1)) values shown in parentheses. Analogous complexes are formed by 3 and 4: [Zn(3)]2+ (10.19), [Cd(3)]2+ (8.54), [Cu(3)]2+ (10.77), [Zn(4)]2+ (11.41) [Cd(4)]2+ (9.16), [Cd(H4)]3+ (6.16) and [Cu(4)]2+ (11.71). The tricarboxylic acid H(3)2 generates a greater variety of complexes as exemplified by: [Zn(2)-] (10.68) [Zn(H2)] (6.60) [Zn(H(2)2)+] (5.15), [Cd(2)](-) (4.99), [Cd(H2)] (4.64), [Cd(H2(2))]+ (3.99), [Cd(H(3)2)]2+ (3.55), [Cu(2)](-) (12.55) [Cu(H2)] (7.66), [Cu(H(2)2)]+ (5.54) and [Cu(2)2](4-) (3.23). The complexes of H(4)5 were insufficiently soluble to study in this way. The 1H and 13C NMR spectra of the ligands are consistent with formation of a predominant Zn2+ and Cd2+ Delta or Lambda diastereomer. The preparations of the new pendant arm macrocycles H(3)2, 3, 4 and H(4)5 are reported.

  9. Downregulation of KCNQ5 expression in the rat pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Zimmer, Julia; Takahashi, Toshiaki; Hofmann, Alejandro D; Puri, Prem

    2017-05-01

    Pulmonary hypertension (PH) is a common complication of congenital diaphragmatic hernia (CDH). Voltage-gated potassium channels KCNQ1, KCNQ4, and KCNQ5 are expressed by rodent pulmonary artery smooth muscle cells, contributing to their vascular tone. We hypothesized that KCNQ1, KCNQ4, and KCNQ5 expression is altered in the pulmonary vasculature of nitrofen-induced CDH rats. After ethical approval (REC913b), time-pregnant rats received nitrofen or vehicle on gestational day (D)9. D21 fetuses were divided into CDH and control group (n=22). QRT-PCR and western blotting were performed to determine gene and protein expression of KCNQ1, KCNQ4, and KCNQ5. Confocal microscopy was used to detect these proteins in the pulmonary vasculature. Relative mRNA level of KCNQ5 (p=0.025) was significantly downregulated in CDH lungs compared to controls. KCNQ1 (p=0.052) and KCNQ4 (p=0.574) expression was not altered. Western blotting confirmed the decreased pulmonary KCNQ5 protein expression in CDH lungs. Confocal-microscopy detected a markedly diminished KCNQ5 expression in pulmonary vasculature of CDH fetuses. Downregulated pulmonary expression of KCNQ5 in CDH lungs suggests that this potassium channel may play an important role in the development of PH in this model. KCNQ5 channel activator drugs may be a potential therapeutic target for the treatment of PH in CDH. 2b (Centre for Evidence-Based Medicine, Oxford). Copyright © 2017. Published by Elsevier Inc.

  10. CDH1 gene polymorphisms, plasma CDH1 levels and risk of gastric cancer in a Chinese population.

    PubMed

    Zhan, Zhen; Wu, Juan; Zhang, Jun-Feng; Yang, Ya-Ping; Tong, Shujuan; Zhang, Chun-Bing; Li, Jin; Yang, Xue-Wen; Dong, Wei

    2012-08-01

    The genetic polymorphisms in E-cadherin gene (CDH1) may affect invasive/metastatic development of gastric cancer by altering gene transcriptional activity of epithelial cell. Our study aims to explore the associations among CDH1 gene polymorphisms, and predisposition of gastric cancer. We genotyped four potentially functional polymorphisms (rs13689, rs1801552, rs16260 and rs17690554) of the CDH1 gene in a case-control study of 387 incident gastric cancer cases and 392 healthy controls by polymerase chain reaction-ligation detection reaction methods (PCR-LDR) and measured the plasma CDH1 levels using enzyme immunoassay among the subjects. The median and inter-quartile range were adopted for representing the mean level of non-normally distributed data, and we found the level of plasma CDH1 in gastric cancer patients (median: 171.00 pg/ml; inter-quartile range: 257.10 pg/ml) were significantly higher than that of controls (median: 137.40 pg/ml; inter-quartile range: 83.90 pg/ml, P = 0.003). However, none of the four polymorphisms or their haplotypes achieved significant differences in their distributions between gastric cancer cases and controls, and interestingly, in the subgroup analysis of gastric cancer, we found that CA genotype of rs26160 and CG genotype of rs17690554 were associated with the risk of diffuse gastric cancer, compared with their wild genotypes (OR = 2.98, 95 % CI: 1.60-5.53; OR = 2.10, 95 % CI: 1.14-3.85, respectively, P < 0.05). In conclusion, our results indicated that plasma CDH1 levels may serve as a risk marker against gastric cancer and variant genotypes of rs26160 and rs17690554 may contribute to the etiology of diffuse gastric cancer in this study. Further studies are warranted to verify these findings.

  11. Increased activation of NADPH oxidase 4 in the pulmonary vasculature in experimental diaphragmatic hernia.

    PubMed

    Gosemann, Jan-H; Friedmacher, Florian; Hunziker, Manuela; Alvarez, Luis; Corcionivoschi, Nicolae; Puri, Prem

    2013-01-01

    Persistent pulmonary hypertension remains a major cause of mortality and morbidity in congenital diaphragmatic hernia (CDH). NADPH oxidases (Nox) are the main source of superoxide production in vasculature. Nox4 is highly expressed in the smooth muscle and endothelial cells of the vascular wall and increased activity has been reported in the pulmonary vasculature of both experimental and human pulmonary hypertension. Peroxisome proliferator-activated receptor (PPARγ) is a key regulator of Nox4 expression. Targeted depletion of PPARγ results in pulmonary hypertension phenotype whereas activation of PPARγ attenuates pulmonary hypertension and reduces Nox4 production. The nitrofen-induced CDH model is an established model to study the pathogenesis of pulmonary hypertension in CDH. It has been previously reported that PPARγ-signaling is disrupted during late gestation and H(2)O(2) production is increased in nitrofen-induced CDH. We designed this study to investigate the hypothesis that Nox4 expression and activation is increased and vascular PPARγ is decreased in nitrofen-induced CDH. Pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D21 and divided into control and CDH. RT-PCR, western blotting and confocal-immunofluorescence-double-staining were performed to determine pulmonary expression levels of PPARγ, Nox4 and Nox4-activation (p22(phox)). There was a marked increase in medial and adventitial thickness in pulmonary arteries of all sizes in CDH compared to controls. Pulmonary Nox4 levels were significantly increased whereas PPARγ levels were decreased in nitrofen-induced CDH compared to controls. Western blotting revealed increased pulmonary protein expression of the Nox4-activating subunit p22(phox) and decreased protein expression of PPARγ in CDH compared to controls. Confocal-microscopy confirmed markedly increased pulmonary expression of the Nox4 activating subunit p22(phox) accompanied by decreased perivascular PPARγ expression in lungs of nitrofen-exposed fetuses compared to controls. To our knowledge, the present study is the first to report increased Nox4 production in the pulmonary vasculature of nitrofen-induced CDH. Down-regulation of the PPARγ-signaling pathway may lead to increased superoxide production, resulting in pulmonary vascular dysfunction and contributing to pulmonary hypertension in the nitrofen-induced CDH model. PPARγ-activation inhibiting Nox4 production may therefore represent a potential therapeutic approach for the treatment of pulmonary hypertension in CDH.

  12. IGFBP-4 gene overexpression in the nitrofen-induced hypoplastic lung.

    PubMed

    Ruttenstock, E M; Doi, T; Dingemann, J; Puri, P

    2011-01-01

    The precise mechanism of pulmonary hypoplasia (HP) associated with congenital diaphragmatic hernia (CDH) remains unclear. Insulin-like growth factors (IGFs) play an essential role in fetal lung development through IGF receptors (IGFRs) by regulating cellular proliferation, differentiation and survival. It has been reported that the expression of genes involved in IGF-IGFR signaling is altered in the nitrofen-induced hypoplastic lung during the later stages of lung development. IGF-binding proteins (IGFBPs) control bioavailability, activity and disruption of IGFs through the high affinity IGFBP/IGF complexes. IGFBP-4 is a key inhibitor of IGF-IGFR signaling-mediated cell proliferation. It has been revealed that cell proliferation in fetal lung fibroblasts is inhibited by increased IGFBP-4 production. We hypothesized that IGFBP-4 gene expression is increased during the later stages of lung development in the nitrofen-induced CDH lung. Pregnant Sprague-Dawley rats were exposed to either olive oil or nitrofen on day 9 (D9) of gestation. Fetuses were harvested by cesarean section on D18 and D21. Fetal lungs were divided into 3 groups: control, nitrofen without CDH [CDH(-)] and nitrofen with CDH [CDH(+)] (n=24 at each time point). Relative mRNA levels of IGFBP-4 were determined using real-time RT-PCR. Immunohistochemistry was performed to evaluate the protein expression of IGFBP-4. The relative expression levels of IGFBP-4 mRNA were significantly increased in CDH(-) and CDH(+) groups on D18 and D21 compared to controls. Immunohistochemistry showed increased IGFBP-4 expression in mesenchymal compartments on D18 and D21 in hypoplastic lungs compared to controls. Overexpression of pulmonary IGFBP-4 during the later stages of lung development may contribute to pulmonary hypoplasia in the nitrofen-induced CDH model by inhibiting IGF-mediated cell proliferation. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Makanga, Martine; Maruyama, Hidekazu; Dewachter, Celine; Da Costa, Agnès Mendes; Hupkens, Emeline; de Medina, Geoffrey; Naeije, Robert; Dewachter, Laurence

    2015-04-01

    Congenital diaphragmatic hernia (CDH) has a high mortality rate mainly due to lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). Simvastatin has been shown to prevent the development of pulmonary hypertension (PH) in experimental models of PH. We, therefore, hypothesized that antenatal simvastatin would attenuate PPHN in nitrofen-induced CDH in rats. The efficacy of antenatal simvastatin was compared with antenatal sildenafil, which has already been shown to improve pathological features of PPHN in nitrofen-induced CDH. On embryonic day (E) 9.5, nitrofen or vehicle was administered to pregnant Sprague-Dawley rats. On E11, nitrofen-treated rats were randomly assigned to antenatal simvastatin (20 mg·kg(-1)·day(-1) orally), antenatal sildenafil (100 mg·kg(-1)·day(-1) orally), or placebo administration from E11 to E21. On E21, fetuses were delivered by cesarean section, killed, and checked for left-sided CDH. Lung tissue was then harvested for further pathobiological evaluation. In nitrofen-induced CDH, simvastatin failed to reduce the incidence of nitrofen-induced CDH in the offspring and to increase the body weight, but improved the lung-to-body weight ratio and lung parenchyma structure. Antenatal simvastatin restored the pulmonary vessel density and external diameter, and reduced the pulmonary arteriolar remodeling compared with nitrofen-induced CDH. This was associated with decreased lung expression of endothelin precursor, endothelin type A and B receptors, endothelial and inducible nitric oxide synthase, together with restored lung activation of apoptotic processes mainly in the epithelium. Antenatal simvastatin presented similar effects as antenatal therapy with sildenafil on nitrofen-induced CDH. Antenatal simvastatin improves pathological features of lung hypoplasia and PPHN in experimental nitrofen-induced CDH. Copyright © 2015 the American Physiological Society.

  14. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia

    PubMed Central

    Makanga, Martine; Maruyama, Hidekazu; Dewachter, Celine; Da Costa, Agnès Mendes; Hupkens, Emeline; de Medina, Geoffrey; Naeije, Robert

    2015-01-01

    Congenital diaphragmatic hernia (CDH) has a high mortality rate mainly due to lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). Simvastatin has been shown to prevent the development of pulmonary hypertension (PH) in experimental models of PH. We, therefore, hypothesized that antenatal simvastatin would attenuate PPHN in nitrofen-induced CDH in rats. The efficacy of antenatal simvastatin was compared with antenatal sildenafil, which has already been shown to improve pathological features of PPHN in nitrofen-induced CDH. On embryonic day (E) 9.5, nitrofen or vehicle was administered to pregnant Sprague-Dawley rats. On E11, nitrofen-treated rats were randomly assigned to antenatal simvastatin (20 mg·kg−1·day−1 orally), antenatal sildenafil (100 mg·kg−1·day−1 orally), or placebo administration from E11 to E21. On E21, fetuses were delivered by cesarean section, killed, and checked for left-sided CDH. Lung tissue was then harvested for further pathobiological evaluation. In nitrofen-induced CDH, simvastatin failed to reduce the incidence of nitrofen-induced CDH in the offspring and to increase the body weight, but improved the lung-to-body weight ratio and lung parenchyma structure. Antenatal simvastatin restored the pulmonary vessel density and external diameter, and reduced the pulmonary arteriolar remodeling compared with nitrofen-induced CDH. This was associated with decreased lung expression of endothelin precursor, endothelin type A and B receptors, endothelial and inducible nitric oxide synthase, together with restored lung activation of apoptotic processes mainly in the epithelium. Antenatal simvastatin presented similar effects as antenatal therapy with sildenafil on nitrofen-induced CDH. Antenatal simvastatin improves pathological features of lung hypoplasia and PPHN in experimental nitrofen-induced CDH. PMID:25617377

  15. N-Cadherin Attenuates High Glucose-Induced Nucleus Pulposus Cell Senescence Through Regulation of the ROS/NF-κB Pathway.

    PubMed

    Hou, Gang; Zhao, Huiqing; Teng, Haijun; Li, Pei; Xu, Wenbin; Zhang, Junbin; Lv, Lulu; Guo, Zhiliang; Wei, Li; Yao, Hui; Xu, Yichun

    2018-01-01

    Diabetes mellitus (DM) is a potential etiology of disc degeneration. N-cadherin (N-CDH) helps maintain the cell viability, cell phenotype and matrix biosynthesis of nucleus pulposus (NP) cells. Here, we mainly aimed to investigate whether N-CDH can attenuate high glucose-induced NP cell senescence and its potential mechanism. Rat NP cells were cultured in a base culture medium and base culture medium with a 0.2 M glucose concentration. Recombinant lentiviral vectors were used to enhance N-CDH expression in NP cells. Senescence-associated β-galactosidase (SA-β-Gal) activity was measured by SA-β-Gal staining. NP cell proliferation was evaluated by CCK-8 assay. Telomerase activity and intracellular reactive oxygen species (ROS) content were tested by specific chemical kits according to the manufacturer's instructions. G0/G1 cell cycle arrest was evaluated by flow cytometry. Real-time PCR and Western blotting were used to analyze mRNA and protein expressions of senescence markers (p16 and p53) and matrix macromolecules (aggrecan and collagen II). Additionally, p-NF-κB expression was also analyzed by Western blotting to evaluate NF-κB pathway activity. High glucose significantly decreased N-CDH expression, increased ROS generation and NF-κB pathway activity, and promoted NP cell senescence, which was reflected in the increase in SA-β-Gal activity and senescence marker (p16 and p53) expression, compared to the control group. High glucose decreased telomerase activity and cell proliferation potency. However, N-CDH overexpression partially attenuated NP cell senescence, decreased ROS content and inhibited the activation of the NF-κB pathway under the high glucose condition. High glucose decreases N-CDH expression and promotes NP cell senescence. N-CDH overexpression can attenuate high glucose-induced NP cell senescence through the regulation of the ROS/ NF-κB pathway. This study suggests that N-CDH is a potential therapeutic target to slow DM-mediated disc NP degeneration. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Cooperativity of E-cadherin and Smad4 loss to promote diffuse-type gastric adenocarcinoma and metastasis.

    PubMed

    Park, Jun Won; Jang, Seok Hoon; Park, Dong Min; Lim, Na Jung; Deng, Chuxia; Kim, Dae Yong; Green, Jeffrey E; Kim, Hark Kyun

    2014-08-01

    Loss of E-cadherin (CDH1), Smad4, and p53 has been shown to play an integral role in gastric, intestinal, and breast cancer formation. Compound conditional knockout mice for Smad4, p53, and E-cadherin were generated to define and compare the roles of these genes in gastric, intestinal, and breast cancer development by crossing with Pdx-1-Cre, Villin-Cre, and MMTV-Cre transgenic mice. Interestingly, gastric adenocarcinoma was significantly more frequent in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice than in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(+/+) mice, demonstrating that Cdh1 heterozygosity accelerates the development and progression of gastric adenocarcinoma, in combination with loss of Smad4 and p53. Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice developed gastric adenocarcinomas without E-cadherin expression. However, intestinal and mammary adenocarcinomas with the same genetic background retained E-cadherin expression and were phenotypically similar to mice with both wild-type Cdh1 alleles. Lung metastases were identified in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice, but not in the other genotypes. Nuclear β-catenin accumulation was identified at the invasive tumor front of gastric adenocarcinomas arising in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice. This phenotype was less prominent in mice with intact E-cadherin or Smad4, indicating that the inhibition of β-catenin signaling by E-cadherin or Smad4 downregulates signaling pathways involved in metastases in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice. Knockdown of β-catenin significantly inhibited the migratory activity of Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) cell lines. Thus, loss of E-cadherin and Smad4 cooperates with p53 loss to promote the development and metastatic progression of gastric adenocarcinomas, with similarities to human gastric adenocarcinoma. This study demonstrates that inhibition of β-catenin is a converging node for the antimetastatic signaling pathways driven by E-cadherin and Smad4 in Pdx-1-Cre;Smad4(F/F);Trp53(F/F);Cdh1(F) (/+) mice, providing novel insights into mechanisms for gastric cancer metastasis. ©2014 American Association for Cancer Research.

  17. Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61▿†

    PubMed Central

    Langston, James A.; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D.

    2011-01-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  18. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells.

    PubMed

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P; Cristobal, Alba; Prinsen, Martine B W; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J R; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-06

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/C(FZR1) activity as an important determinant in response to CDK4/6-inhibitors.

  19. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells

    PubMed Central

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P.; Cristobal, Alba; Prinsen, Martine B. W.; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J. R.; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-01

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/CFZR1 activity as an important determinant in response to CDK4/6-inhibitors. PMID:25562820

  20. STATs in Lung Development: Distinct Early and Late Expression, Growth Modulation and Signaling Dysregulation in Congenital Diaphragmatic Hernia.

    PubMed

    Piairo, Paulina; Moura, Rute S; Baptista, Maria João; Correia-Pinto, Jorge; Nogueira-Silva, Cristina

    2018-01-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening developmental anomaly, intrinsically combining severe pulmonary hypoplasia and hypertension. During development, signal transducers and activators of transcription (STAT) are utilized to elicit cell growth, differentiation, and survival. We used the nitrofen-induced CDH rat model. At selected gestational time points, lungs were divided into two experimental groups, i.e., control or CDH. We performed immunohistochemistry and western blotting analysis to investigate the developmental expression profile of the complete family of STATs (STAT1-6), plus specific STATs activation (p-STAT3, p-STAT6) and regulation by SOCS (SOCS3) in normal lungs against those of diseased lungs. The normal fetal lung explants were treated with piceatannol (STAT3 inhibitor) in vitro followed by morphometrical analysis. Molecular profiling of STATs during the lung development revealed distinct early and late expression signatures. Experimental CDH altered the STATs expression, activation, and regulation in the fetal lungs. In particular, STAT3 and STAT6 were persistently over-expressed and early over-activated. Piceatannol treatment dose-dependently stimulated the fetal lung growth. These findings suggest that STATs play an important role during normal fetal lung development and CDH pathogenesis. Moreover, functionally targeting STAT signaling modulates fetal lung growth, which highlights that STAT3 and STAT6 signaling might be promising therapeutic targets in reducing or preventing pulmonary hypoplasia in CDH. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Role of Δ1-Pyrroline-5-Carboxylate Dehydrogenase Supports Mitochondrial Metabolism and Host-Cell Invasion of Trypanosoma cruzi*

    PubMed Central

    Mantilla, Brian S.; Paes, Lisvane S.; Pral, Elizabeth M. F.; Martil, Daiana E.; Thiemann, Otavio H.; Fernández-Silva, Patricio; Bastos, Erick L.; Silber, Ariel M.

    2015-01-01

    Proline is crucial for energizing critical events throughout the life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease. The proline breakdown pathway consists of two oxidation steps, both of which produce reducing equivalents as follows: the conversion of proline to Δ1-pyrroline-5-carboxylate (P5C), and the subsequent conversion of P5C to glutamate. We have identified and characterized the Δ1-pyrroline-5-carboxylate dehydrogenase from T. cruzi (TcP5CDH) and report here on how this enzyme contributes to a central metabolic pathway in this parasite. Size-exclusion chromatography, two-dimensional gel electrophoresis, and small angle x-ray scattering analysis of TcP5CDH revealed an oligomeric state composed of two subunits of six protomers. TcP5CDH was found to complement a yeast strain deficient in PUT2 activity, confirming the enzyme's functional role; and the biochemical parameters (Km, kcat, and kcat/Km) of the recombinant TcP5CDH were determined, exhibiting values comparable with those from T. cruzi lysates. In addition, TcP5CDH exhibited mitochondrial staining during the main stages of the T. cruzi life cycle. mRNA and enzymatic activity levels indicated the up-regulation (6-fold change) of TcP5CDH during the infective stages of the parasite. The participation of P5C as an energy source was also demonstrated. Overall, we propose that this enzymatic step is crucial for the viability of both replicative and infective forms of T. cruzi. PMID:25623067

  2. RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex

    DOE PAGES

    Brown, Nicholas G.; VanderLinden, Ryan; Watson, Edmond R.; ...

    2015-03-30

    For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2~Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaboratesmore » with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING–E2~Ub catalytic modules such as APC11–UBCH10~Ub collide with distally tethered disordered substrates remains poorly understood. In this paper, we report structural mechanisms of UBCH10 recruitment to APC CDH1 and substrate ubiquitination. Unexpectedly, in addition to binding APC11’s RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APC CDH1–UBCH10~Ub–substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin–RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin–RING–E2 interactions establish APC’s specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. Finally, we propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3–E2~Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation.« less

  3. Cdh13 and AdipoQ gene knockout alter instrumental and Pavlovian drug conditioning.

    PubMed

    King, C P; Militello, L; Hart, A; St Pierre, C L; Leung, E; Versaggi, C L; Roberson, N; Catlin, J; Palmer, A A; Richards, J B; Meyer, P J

    2017-09-01

    Genome-wide association studies in humans have suggested that variants of the cadherin-13 (CDH13) gene are associated with substance use disorder, subjective response to amphetamine, and attention deficit hyperactivity disorder. To examine the role of the Cdh13 and its peptide ligand adiponectin (AdipoQ) in addiction-related behaviors, we assessed Cdh13 knockout (KO) rats and AdipoQ KO mice using intravenous cocaine self-administration and conditioned place preference (CPP) paradigms. During intravenous cocaine self-administration, male Cdh13 heterozygous (+/-) and KO (-/-) rats showed increased cue-induced reinstatement compared with wild-type (WT) rats when presented with a cocaine-paired stimulus, whereas female Cdh13 rats showed no differences across genotype. Cdh13 -/- rats showed higher responding for a saccharin reinforcer and learned the choice reaction time (RT) task more slowly than WTs. However, we found no differences between Cdh13 -/- and +/+ rats in responding for sensory reinforcement, number of premature responses in the RT task, tendency to approach a Pavlovian food cue, CPP and locomotor activation to cocaine (10 or 20 mg/kg). In AdipoQ -/- mice, there was a significant increase in CPP to methamphetamine (1 mg/kg) but not to a range of d-amphetamine doses (0.5, 1, 2 and 4 mg/kg). Taken together, these data suggest that Cdh13 and AdipoQ regulate sensitivity to psychomotor stimulants and palatable rewards without producing major changes in other behaviors. In humans, these two genes may regulate sensitivity to natural and drug rewards, thus influencing susceptibility to the conditioned drug effects and relapse. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. A modern era comparison of right versus left sided congenital diaphragmatic hernia outcomes.

    PubMed

    Collin, Michael; Trinder, Sarah; Minutillo, Corrado; Rao, Shripada; Dickinson, Jan; Samnakay, Naeem

    2016-09-01

    This study aims to retrospectively review outcomes, including neurodevelopmental outcomes, of neonatal right sided congenital diaphragmatic hernias (RCDH) compared with left sided congenital diaphragmatic hernias (L-CDH) treated surgically at our institute. A retrospective review was undertaken of all cases of congenital diaphragmatic hernia (CDH) treated at Princess Margaret Hospital for Children (PMH), Perth, born between 1st January 2002 and 1st August 2012. The outcomes of R-CDH cases were compared with L-CDH cases. We examined duration of ventilatory support, use of patch versus primary closure, the CDH recurrence rates, the number of reoperations and neurodevelopmental follow-up at one year of age. Forty-nine cases of CDH were operated on at PMH during the 10-year period. Of these, ten cases were R-CDH with 39 L-CDH cases. Of 49 cases, 34 were diagnosed antenatally, 5 R-CDH versus 29 L-CDH. Only 8/39 cases of L-CDH required patch repair for larger defects, while 5/10 R-CDH required patch repair. Postoperative mortality was 6/49 (1/10 right sided versus 5/39 left sided). Recurrence was observed in 5/10 R-CDH versus 6/39 L-CDH with p=0.03. Thirty-three of 43 surviving patients received one-year follow-up with Griffiths general quotient (GQ) assessment demonstrating a median score of 98 for L-CDH (IQR 86 to 104.25) and 91 for R-CDH (IQR 76.5 to 93). R-CDH required patch repair more commonly than L-CDH because of larger defect size or complete agenesis. The rate of recurrent herniation was the only morbidity significantly higher in the R-CDH group. Survivors of R-CDH did not have a significant difference in neurodevelopmental outcome compared to L-CDH cases, with both groups exhibiting normal median GQ scores at one year of age. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  5. Increased uptake of dietary retinoids at the maternal-fetal barrier in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Kutasy, Balazs; Friedmacher, Florian; Pes, Lara; Paradisi, Francesca; Puri, Prem

    2014-06-01

    The retinol signaling pathway is disrupted in congenital diaphragmatic hernia (CDH). Since there is no fetal retinol synthesis, maternal retinol has to cross the placenta. Nitrofen interferes with the retinol-binding protein (RBP) transfer pathway in CDH. However, in RBP knockout mice, retinol has been shown to be present. In this model, increased uptake of maternal dietary retinyl ester (RE) bounded in low-dense-lipoprotein (LDL) through low-density-lipoprotein-receptor 1 (LRP1) and increased activity of RE hydrolysis by lipoprotein-lipase (LPL) have been found. The aim of this study was to investigate the RE transfer pathway in the nitrofen CDH model. Pregnant rats were treated with nitrofen or vehicle on gestational day (D9) and sacrificed on D21. Immunohistochemistry was performed to evaluate LRP1 and LPL protein expression. Serum LDL levels were measured by ELISA. Pulmonary and serum retinoid levels were measured using HPLC. Markedly increased trophoblastic and pulmonary LRP1 and LPL immunoreactivity were observed in CDH compared to controls. Significantly increased serum LDL and RE levels were observed in CDH compared to controls. The increased uptake of dietary retinoids at the maternal-fetal barrier in the nitrofen CDH model suggests that the RE transfer pathway may be the main source of retinol in this model. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Atomic structure of the APC/C and its mechanism of protein ubiquitination

    PubMed Central

    Yang, Jing; McLaughlin, Stephen H.; Barford, David

    2015-01-01

    The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex, and interphase inhibitor Emi1 ensures the correct order and timing of distinct cell cycle transitions. Here, we used cryo-electron microscopy to determine atomic structures of APC/C-coactivator complexes with either Emi1 or a UbcH10-ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module, and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10-ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of experiments to further investigate APC/C functions in vivo. PMID:26083744

  7. The assembly, activation, and substrate specificity of Cyclin D1/Cdk2 complexes

    PubMed Central

    Jahn, Stephan C.; Law, Mary E.; Corsino, Patrick E.; Rowe, Thomas C.; Davis, Bradley J.; Law, Brian K.

    2013-01-01

    Previous studies have shown conflicting data regarding Cyclin D1/Cdk2 complexes and, considering the widespread overexpression of Cyclin D1 in cancer, it is important to fully understand their relevance. While many have shown Cyclin D1/Cdk2 complexes to form active complexes, others have failed to show activity or association. Here, using a novel p21-PCNA fusion protein as well as p21 mutant proteins, we show that p21 is a required scaffolding protein, with Cyclin D1 and Cdk2 failing to complex in its absence. These p21/Cyclin D1/Cdk2 complexes are active and also bind the trimeric PCNA complex, with each trimer capable of independently binding distinct Cyclin/Cdk complexes. We also show that increased p21 levels due to treatment with chemotherapeutic agents result in increased formation and kinase activity of Cyclin D1/Cdk2 complexes, and that Cyclin D1/Cdk2 complexes are able to phosphorylate a number of substrates in addition to Rb. Nucleophosmin and Cdh1, two proteins important for centrosome replication and implicated in the chromosomal instability of cancer are shown to be phosphorylated by Cyclin D1/Cdk2 complexes. Additionally, PSF is identified as a novel Cdk2 substrate, being phosphorylated by Cdk2 complexed with either Cyclin E or Cyclin D1, and given the many functions of PSF, it could have important implications on cellular activity. PMID:23627734

  8. Start-up of a Cardiology Day Hospital: Activity, Quality Care and Cost-effectiveness Analysis of the First Year of Operation.

    PubMed

    Gallego-Delgado, María; Villacorta, Eduardo; Valenzuela-Vicente, M Carmen; Walias-Sánchez, Ángela; Ávila, Carmen; Velasco-Cañedo, M Jesús; Cano-Mozo, M Teresa; Martín-García, Agustín; García-Sánchez, María Jesús; Sánchez, Argelina; Cascón, Manuel; Sánchez, Pedro L

    2018-05-21

    The cardiology day hospital (CDH) is an alternative to hospitalization for scheduled cardiological procedures. The aims of this study were to analyze the activity, quality of care and the cost-effectiveness of a CDH. An observational descriptive study was conducted of the health care activity during the first year of operation of DHHA. The quality of care was analyzed through the substitution rate (outpatient procedures), cancellation rates, complications, and a satisfaction survey. For cost-effectiveness, we calculated the economic savings of avoided hospital stays. A total of 1646 patients were attended (mean age 69 ± 15 years, 60% men); 2550 procedures were scheduled with a cancellation rate of 4%. The most frequently cancelled procedure was electrical cardioversion. The substitution rate for scheduled invasive procedures was 66%. Only 1 patient required readmission after discharge from the CDH due to heart failure. Most surveyed patients (95%) considered the care received in the CDH to be good or very good. The saving due to outpatient-converted procedures made possible by the CDH was € 219 199.55, higher than the cost of the first year of operation. In our center, the CDH allowed more than two thirds of the invasive procedures to be performed on an outpatient basis, while maintaining the quality of care. In the first year of operation, the expenses due to its implementation were offset by a significant reduction in hospital admissions. Copyright © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins.

    PubMed

    Larsen, Ida Signe Bohse; Narimatsu, Yoshiki; Joshi, Hiren Jitendra; Siukstaite, Lina; Harrison, Oliver J; Brasch, Julia; Goodman, Kerry M; Hansen, Lars; Shapiro, Lawrence; Honig, Barry; Vakhrushev, Sergey Y; Clausen, Henrik; Halim, Adnan

    2017-10-17

    The cadherin (cdh) superfamily of adhesion molecules carry O-linked mannose (O-Man) glycans at highly conserved sites localized to specific β-strands of their extracellular cdh (EC) domains. These O-Man glycans do not appear to be elongated like O-Man glycans found on α-dystroglycan (α-DG), and we recently demonstrated that initiation of cdh/protocadherin (pcdh) O-Man glycosylation is not dependent on the evolutionary conserved POMT1/POMT2 enzymes that initiate O-Man glycosylation on α-DG. Here, we used a CRISPR/Cas9 genetic dissection strategy combined with sensitive and quantitative O-Man glycoproteomics to identify a homologous family of four putative protein O-mannosyltransferases encoded by the TMTC1-4 genes, which were found to be imperative for cdh and pcdh O-Man glycosylation. KO of all four TMTC genes in HEK293 cells resulted in specific loss of cdh and pcdh O-Man glycosylation, whereas combined KO of TMTC1 and TMTC3 resulted in selective loss of O-Man glycans on specific β-strands of EC domains, suggesting that each isoenzyme serves a different function. In addition, O-Man glycosylation of IPT/TIG domains of plexins and hepatocyte growth factor receptor was not affected in TMTC KO cells, suggesting the existence of yet another O-Man glycosylation machinery. Our study demonstrates that regulation of O-mannosylation in higher eukaryotes is more complex than envisioned, and the discovery of the functions of TMTCs provide insight into cobblestone lissencephaly caused by deficiency in TMTC3.

  10. Imbalance of NFATc2 and KV1.5 Expression in Rat Pulmonary Vasculature of Nitrofen-Induced Congenital Diaphragmatic Hernia.

    PubMed

    Zimmer, Julia; Takahashi, Toshiaki; Hofmann, Alejandro Daniel; Puri, Prem

    2017-02-01

    Aim of the Study  Nuclear factor of activated T-cell (NFATc2), a Ca 2+ /calcineurin-dependent transcription factor, is reported to be activated in human and animal pulmonary hypertension (PH). KV1.5, a voltage-gated K + (KV) channel, is expressed in pulmonary artery smooth muscle cells (PASMC) and downregulated in PASMC in patients and animals with PH. Furthermore, activation of NFATc2 downregulates expression of KV1.5 channels, leading to excessive PASMC proliferation. The aim of this study was to investigate the pulmonary vascular expression of NFATc2 and KV1.5 in rats with nitrofen-induced congenital diaphragmatic hernia (CDH). Materials and Methods  After ethical approval, time-pregnant Sprague-Dawley rats received nitrofen or vehicle on gestational day 9 (D9). When sacrificed on D21, the fetuses ( n  = 22) were divided into CDH and control groups. Using quantitative real-time polymerase chain reaction and western blotting, we determined the gene and protein expression of NFATc2 and KV1.5. Confocal microscopy was used to detect both proteins in the pulmonary vasculature. Results  Relative mRNA levels of NFATc2 were significantly upregulated and KV1.5 levels were significantly downregulated in CDH lungs compared with controls ( p  < 0.05). Western blotting confirmed the imbalanced pulmonary protein expression of both proteins. An increased pulmonary vascular expression of NFATc2 and a diminished expression of KV1.5 in CDH lungs compared with controls were seen in confocal microscopy. Conclusions  This study demonstrates for the first time an altered gene and protein expression of NFATc2 and KV1.5 in the pulmonary vasculature of nitrofen-induced CDH. Upregulation of NFATc2 with concomitant downregulation of KV1.5 channels may contribute to abnormal vascular remodeling resulting in PH in this model. Georg Thieme Verlag KG Stuttgart · New York.

  11. Elastase and matrix metalloproteinase activities are associated with pulmonary vascular disease in the nitrofen rat model of congenital diaphragmatic hernia.

    PubMed

    Wild, Benjamin; St-Pierre, Marie-Eve; Langlois, Stéphanie; Cowan, Kyle N

    2017-05-01

    Pulmonary vascular disease (PVD) is a leading cause of congenital diaphragmatic hernia (CDH) mortality. Progression of PVD involves extracellular matrix remodeling by elastases and matrix metalloproteinases (MMP), concomitant with proliferation of smooth muscle cells in a growth factor-enriched environment. Blockade of this pathway reversed primary pulmonary hypertension and improved survival. This study was designed to determine whether a similar pathway is induced in PVD secondary to CDH. Fetal rats exposed to nitrofen at gestational day 9 developed left-sided CDH and were compared at term to their non-CDH littermates by assessing histologic and biochemical features of PVD. Rats with CDH displayed right ventricle hypertrophy, increased pulmonary artery medial wall thickness and muscularization, and decreased lumen size. As revealed by in situ zymography and immunohistochemistry, this was associated with an induction of elastolytic and MMP activities as well as an elevation of epidermal growth factor and osteopontin levels in the diseased lung vasculature. CDH-associated PVD involves an induction of elastase and MMP activities and increased osteopontin deposition in an epidermal growth factor-rich environment. Inhibition of this pathway may thus represent a novel therapeutic approach for the treatment of CDH-associated PVD. Level I (Basic Science Study). Copyright © 2017 Elsevier Inc. All rights reserved.

  12. An in vivo study of Cdh1/APC in breast cancer formation

    PubMed Central

    Fujita, Takeo; Liu, Weijun; Doihara, Hiroyoshi; Wan, Yong

    2017-01-01

    Dysregulation of the ubiquitin-proteasome system (UPS) has been implicated in several types of tumorigenesis. Our previous studies have shown the potential role of Cdh1/APC in regulating tumor formation via governing the Skp2-p27-cyclinE/CDK2 axis. In this work, we utilized a xenograft mouse breast cancer model to identify the mechanism by which Cdh1/APC potentially suppresses tumor growth in vivo. Here, we report that depletion of Cdh1 results in a significant enhancement of the breast tumor proliferation, while elevated Cdh1 leads to suppression of breast tumor growth. Analysis of breast tissue arrays has indicated that higher levels of Cdh1 are associated with normal breast epithelial tissues whereas lower Skp2 expression and elevated p27 levels are detected. Conversely, the percentage of breast cancer tissues stained positive for Cdh1 and p27 are significantly lower with higher Skp2 levels. Thus, the E3 ligase, Cdh1/APC, may inhibit breast tumor growth via regulating Skp2-p27 mediated cell cycle progression. PMID:19350629

  13. Aberrant pulmonary lymphatic development in the nitrofen mouse model of congenital diaphragmatic hernia

    PubMed Central

    Shue, Eveline; Wu, Jianfeng; Schecter, Samuel; Miniati, Doug

    2013-01-01

    Purpose Many infants develop a postsurgical chylothorax after diaphragmatic hernia repair. The pathogenesis remains elusive but may be due to dysfunctional lymphatic development. This study characterizes pulmonary lymphatic development in the nitrofen mouse model of CDH. Methods CD1 pregnant mice were fed nitrofen/bisdiamine (N/B) or olive oil at E8.5. At E14.5 and E15.5, lung buds were categorized by phenotype: normal, N/B without CDH (N/B−CDH), or N/B with CDH (N/B+CDH). Anti-CD31 was used to localize all endothelial cells, while anti-LYVE-1 was used to identify lymphatic endothelial cells in lung buds using immunofluorescence. Differential protein expression of lymphatic-specific markers was analyzed. Results Lymphatic endothelial cells localized to the mesenchyme surrounding the airway epithelium at E15.5. CD31 and LYVE-1 colocalization identified lymphatic endothelial cells. LYVE-1 expression was upregulated in N/B+CDH lung buds in comparison to N/B−CDH and normal lung buds by immunofluorescence. Western blotting shows that VEGF-D, LYVE-1, Prox-1, and VEGFR-3 expression was upregulated in N/B+CDH lung buds in comparison to N/B−CDH or control lung buds at E14.5. Conclusions Lung lymphatics are hyperplastic in N/B+CDH. Upregulation of lymphatic-specific genes suggest that lymphatic hyperplasia plays an important role in dysfunctional lung lymphatic development in the nitrofen mouse model of CDH. PMID:23845607

  14. Aberrant pulmonary lymphatic development in the nitrofen mouse model of congenital diaphragmatic hernia.

    PubMed

    Shue, Eveline; Wu, Jianfeng; Schecter, Samuel; Miniati, Doug

    2013-06-01

    Many infants develop a postsurgical chylothorax after diaphragmatic hernia repair. The pathogenesis remains elusive but may be owing to dysfunctional lymphatic development. This study characterizes pulmonary lymphatic development in the nitrofen mouse model of CDH. CD1 pregnant mice were fed nitrofen/bisdiamine (N/B) or olive oil at E8.5. At E14.5 and E15.5, lung buds were categorized by phenotype: normal, N/B without CDH (N/B - CDH), or N/B with CDH (N/B+CDH). Anti-CD31 was used to localize all endothelial cells, while anti-LYVE-1 was used to identify lymphatic endothelial cells in lung buds using immunofluorescence. Differential protein expression of lymphatic-specific markers was analyzed. Lymphatic endothelial cells localized to the mesenchyme surrounding the airway epithelium at E15.5. CD31 and LYVE-1 colocalization identified lymphatic endothelial cells. LYVE-1 expression was upregulated in N/B+CDH lung buds in comparison to N/B - CDH and normal lung buds by immunofluorescence. Western blotting shows that VEGF-D, LYVE-1, Prox-1, and VEGFR-3 expression was upregulated in N/B+CDH lung buds in comparison to N/B - CDH or control lung buds at E14.5. Lung lymphatics are hyperplastic in N/B+CDH. Upregulation of lymphatic-specific genes suggests that lymphatic hyperplasia plays an important role in dysfunctional lung lymphatic development in the nitrofen mouse model of CDH. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumour growth and lymph node metastasis.

    PubMed

    Kim, Sun A; Inamura, Kentaro; Yamauchi, Mai; Nishihara, Reiko; Mima, Kosuke; Sukawa, Yasutaka; Li, Tingting; Yasunari, Mika; Morikawa, Teppei; Fitzgerald, Kathryn C; Fuchs, Charles S; Wu, Kana; Chan, Andrew T; Zhang, Xuehong; Ogino, Shuji; Qian, Zhi Rong

    2016-01-19

    Loss of CDH1 (E-cadherin) expression in cancer cells may promote cell migration and invasion. Therefore, we hypothesised that loss of CDH1 expression in colorectal carcinoma might be associated with aggressive features and clinical outcome. Utilising molecular pathological epidemiology database of 689 rectal and colon cancer cases in the Nurses' Health Study and the Health Professionals Follow-up Study, we assessed tumour CDH1 expression by immunohistochemistry. Multivariate logistic regression analysis was conducted to assess association of CDH1 loss with tumour growth pattern (expansile-intermediate vs infiltrative) and lymph node metastasis and distant metastasis, controlling for potential confounders including microsatellite instability, CpG island methylator phenotype, LINE-1 methylation, and PIK3CA, BRAF and KRAS mutations. Mortality according to CDH1 status was assessed using Cox proportional hazards model. Loss of tumour CDH1 expression was observed in 356 cases (52%), and associated with infiltrative tumour growth pattern (odds ratio (OR), 2.02; 95% confidence interval (CI), 1.23-3.34; P=0.006) and higher pN stage (OR, 1.73; 95% CI, 1.23-2.43; P=0.001). Tumour CDH1 expression was not significantly associated with distant metastasis or prognosis. Loss of CDH1 expression in colorectal cancer is associated with infiltrative tumour growth pattern and lymph node metastasis.

  16. Increased trophoblastic apoptosis mediated by neutrophil gelatinase-associated lipocalin (NGAL) activation in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Kutasy, Balazs; Gosemann, Jan H; Duess, Johannes W; Puri, Prem

    2013-01-01

    Retinoids play a key role in fetal lung development. It has been suggested that the maternal-fetal retinol transport is disrupted by trophoblastic apoptosis. The mechanism underlying nitrofen-induced apoptosis in placenta is not fully understood. Neutrophil gelatinase-associated lipocalin (NGAL) is expressed in the fetal part of the maternal-fetal interface. NGAL is part of the immune barrier and serves primarily as a transport protein transferring biologically hazardous molecules in a safe and controlled way. It has been shown that over-activation of NGAL induces apoptosis. We hypothesized that increased placental NGAL expression induces trophoblastic apoptosis in the nitrofen model of CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Placenta harvested on D21 and divided into two groups: control and nitrofen with CDH. Immunohistochemistry was performed to evaluate trophoblasts (by cytokeratin expression), NGAL expression, and apoptotic trophoblastic cells (using TUNEL assay). Total RNA was extracted from each placenta and the relative mRNA expression levels of NGAL were analyzed using RT-PCR. Immunohistochemistry showed NGAL immunoreactivity both in control and CDH in the fetal part of the fetal-maternal interface of placenta. Markedly increased NGAL expression was detected in CDH group compared to controls. Relative mRNA expression levels of NGAL gene were significantly increased in the CDH group compared to control in the placenta (5.924 ± 0.93 vs. 1.895 ± 0.54, p < 0.001). Markedly increased numbers of apoptotic trophoblastic cells were seen in the maternal-fetal interface in the CDH group compared to controls. NGAL activation may lead to increased trophoblastic apoptosis in the maternal-fetal interface in the nitrofen model of CDH. These changes may therefore cause disturbance in maternal-fetal retinol transport affecting fetal lung morphogenesis.

  17. DFR1-Mediated Inhibition of Proline Degradation Pathway Regulates Drought and Freezing Tolerance in Arabidopsis.

    PubMed

    Ren, Yongbing; Miao, Min; Meng, Yun; Cao, Jiasheng; Fan, Tingting; Yue, Junyang; Xiao, Fangming; Liu, Yongsheng; Cao, Shuqing

    2018-06-26

    Proline accumulation is one of the most important adaptation mechanisms for plants to cope with environmental stresses, such as drought and freezing. However, the molecular mechanism of proline homeostasis under these stresses is largely unknown. Here, we identified a mitochondrial protein, DFR1, involved in the inhibition of proline degradation in Arabidopsis. DFR1 was strongly induced by drought and cold stresses. The dfr1 knockdown mutants showed hypersensitivity to drought and freezing stresses, whereas the DFR1 overexpression plants exhibited enhanced tolerance, which was positively correlated with proline levels. DFR1 interacts with proline degradation enzymes PDH1/2 and P5CDH and compromises their activities. Genetic analysis showed that DFR1 acts upstream of PDH1/2 and P5CDH to positively regulate proline accumulation. Our results demonstrate a regulatory mechanism by which, under drought and freezing stresses, DFR1 interacts with PDH1/2 and P5CDH to abrogate their activities to maintain proline homeostasis, thereby conferring drought and freezing tolerance. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Dynamic Compression Promotes the Matrix Synthesis of Nucleus Pulposus Cells Through Up-Regulating N-CDH Expression in a Perfusion Bioreactor Culture.

    PubMed

    Xu, Yichun; Yao, Hui; Li, Pei; Xu, Wenbin; Zhang, Junbin; Lv, Lulu; Teng, Haijun; Guo, Zhiliang; Zhao, Huiqing; Hou, Gang

    2018-01-01

    An adequate matrix production of nucleus pulposus (NP) cells is an important tissue engineering-based strategy to regenerate degenerative discs. Here, we mainly aimed to investigate the effects and mechanism of mechanical compression (i.e., static compression vs. dynamic compression) on the matrix synthesis of three-dimensional (3D) cultured NP cells in vitro. Rat NP cells seeded on small intestinal submucosa (SIS) cryogel scaffolds were cultured in the chambers of a self-developed, mechanically active bioreactor for 10 days. Meanwhile, the NP cells were subjected to compression (static compression or dynamic compression at a 10% scaffold deformation) for 6 hours once per day. Unloaded NP cells were used as controls. The cellular phenotype and matrix biosynthesis of NP cells were investigated by real-time PCR and Western blotting assays. Lentivirus-mediated N-cadherin (N-CDH) knockdown and an inhibitor, LY294002, were used to further investigate the role of N-CDH and the PI3K/Akt pathway in this process. Dynamic compression better maintained the expression of cell-specific markers (keratin-19, FOXF1 and PAX1) and matrix macromolecules (aggrecan and collagen II), as well as N-CDH expression and the activity of the PI3K/Akt pathway, in the 3D-cultured NP cells compared with those expression levels and activity in the cells grown under static compression. Further analysis showed that the N-CDH knockdown significantly down-regulated the expression of NP cell-specific markers and matrix macromolecules and inhibited the activation of the PI3K/Akt pathway under dynamic compression. However, inhibition of the PI3K/Akt pathway had no effects on N-CDH expression but down-regulated the expression of NP cell-specific markers and matrix macromolecules under dynamic compression. Dynamic compression increases the matrix synthesis of 3D-cultured NP cells compared with that of the cells under static compression, and the N-CDH-PI3K/Akt pathway is involved in this regulatory process. This study provides a promising strategy to promote the matrix deposition of tissue-engineered NP tissue in vitro prior to clinical transplantation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Molecular mechanism of APC/C activation by mitotic phosphorylation

    PubMed Central

    Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-01-01

    In eukaryotes, the anaphase-promoting complex/cyclosome (APC/C) regulates the ubiquitin-dependent proteolysis of specific cell cycle proteins to coordinate chromosome segregation in mitosis and entry into G1 (refs 1,2). The APC/C’s catalytic activity and ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits (Cdc20 and Cdh1). Coactivators recognize substrate degrons3, and enhance the APC/C’s affinity for its cognate E2 (refs 4–6). During mitosis, cyclin-dependent kinase and polo kinase control Cdc20 and Cdh1-mediated activation of the APC/C. Hyper-phosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C7–12, whereas phosphorylation of Cdh1 prevents its association with the APC/C9,13,14. Since both coactivators associate with the APC/C through their common C box15 and IR (Ile-Arg) tail motifs16,17, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy (cryo-EM) and biochemical analysis, we define the molecular basis of how APC/C phosphorylation allows for its control by Cdc20. An auto-inhibitory (AI) segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the AI segment displaces it from the C-box binding site. Efficient phosphorylation of the AI segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin-Cks to a hyper-phosphorylated loop of Apc3. We also find that the small molecule inhibitor, tosyl-L-arginine methyl ester (TAME), preferentially suppresses APC/CCdc20 rather than APC/CCdh1, and interacts with both the C-box and IR-tail binding sites. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state. PMID:27120157

  20. Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114).

    PubMed

    Hirako, Shima; Tsuda, Hiroyuki; Ito, Fumiya; Okazaki, Yasumasa; Hirayama, Tasuku; Nagasawa, Hideko; Nakano, Tomoko; Imai, Kenji; Kotani, Tomomi; Kikkawa, Fumitaka; Toyokuni, Shinya

    2017-11-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening neonatal disease that leads to lung hypoplasia and pulmonary hypertension. We recently found that maternal prenatal administration of Saireito (TJ-114) ameliorates fetal CDH in a nitrofen-induced rat model. Here, we studied the role of iron and oxidative stress in neonates of this model and in lung fibroblasts IMR90-SV in association with nitrofen and Saireito. We observed increased immunostaining of 8-hydroxy-2'-deoxyguanosine in the lungs of neonates with CDH, which was ameliorated by maternal Saireito intake. Pulmonary transferrin receptor expression was significantly decreased in both CDH and CDH after Saireito in comparison to normal controls, indicating functional lung immaturity, whereas catalytic Fe(II) and pulmonary DMT1/ferroportin expression remained constant among the three groups. Saireito revealed a dose-dependent scavenging capacity with electron spin resonance spin trapping in vitro against hydroxyl radicals but not against superoxide. Finally, nitrofen revealed dose-dependent cytotoxicity to IMR90-SV cells, accompanied by an increase in oxidative stress, as seen by 5(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and catalytic Fe(II). Saireito ameliorated all of these in IMR90-SV cells. In conclusion, catalytic Fe(II)-dependent oxidative stress by nitrofen may be the pathogenic cause of CDH, and the antioxidative activity of Saireito is at least partially responsible for improving nitrofen-induced CDH.

  1. Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114)

    PubMed Central

    Hirako, Shima; Tsuda, Hiroyuki; Ito, Fumiya; Okazaki, Yasumasa; Hirayama, Tasuku; Nagasawa, Hideko; Nakano, Tomoko; Imai, Kenji; Kotani, Tomomi; Kikkawa, Fumitaka; Toyokuni, Shinya

    2017-01-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening neonatal disease that leads to lung hypoplasia and pulmonary hypertension. We recently found that maternal prenatal administration of Saireito (TJ-114) ameliorates fetal CDH in a nitrofen-induced rat model. Here, we studied the role of iron and oxidative stress in neonates of this model and in lung fibroblasts IMR90-SV in association with nitrofen and Saireito. We observed increased immunostaining of 8-hydroxy-2'-deoxyguanosine in the lungs of neonates with CDH, which was ameliorated by maternal Saireito intake. Pulmonary transferrin receptor expression was significantly decreased in both CDH and CDH after Saireito in comparison to normal controls, indicating functional lung immaturity, whereas catalytic Fe(II) and pulmonary DMT1/ferroportin expression remained constant among the three groups. Saireito revealed a dose-dependent scavenging capacity with electron spin resonance spin trapping in vitro against hydroxyl radicals but not against superoxide. Finally, nitrofen revealed dose-dependent cytotoxicity to IMR90-SV cells, accompanied by an increase in oxidative stress, as seen by 5(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and catalytic Fe(II). Saireito ameliorated all of these in IMR90-SV cells. In conclusion, catalytic Fe(II)-dependent oxidative stress by nitrofen may be the pathogenic cause of CDH, and the antioxidative activity of Saireito is at least partially responsible for improving nitrofen-induced CDH. PMID:29203958

  2. Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development.

    PubMed

    Babb, S G; Barnett, J; Doedens, A L; Cobb, N; Liu, Q; Sorkin, B C; Yelick, P C; Raymond, P A; Marrs, J A

    2001-06-01

    Zebrafish E-cadherin (cdh1) cell adhesion molecule cDNAs were cloned. We investigated spatial and temporal expression of cdh1 during early embryogenesis. Expression was observed in blastomeres, the anterior mesoderm during gastrulation, and developing epithelial structures. In the developing nervous system, cdh1 was detected at the pharyngula stage (24 hpf) in the midbrain-hindbrain boundary (MHB). Developmental regulation of MHB formation involves wnt1 and pax2.1. wnt1 expression preceded cdh1 expression during MHB formation, and cdh1 expression in the MHB was dependent on normal development of this structure. Copyright 2001 Wiley-Liss, Inc.

  3. Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins

    PubMed Central

    Larsen, Ida Signe Bohse; Narimatsu, Yoshiki; Siukstaite, Lina; Harrison, Oliver J.; Brasch, Julia; Goodman, Kerry M.; Hansen, Lars; Shapiro, Lawrence; Honig, Barry; Vakhrushev, Sergey Y.; Clausen, Henrik

    2017-01-01

    The cadherin (cdh) superfamily of adhesion molecules carry O-linked mannose (O-Man) glycans at highly conserved sites localized to specific β-strands of their extracellular cdh (EC) domains. These O-Man glycans do not appear to be elongated like O-Man glycans found on α-dystroglycan (α-DG), and we recently demonstrated that initiation of cdh/protocadherin (pcdh) O-Man glycosylation is not dependent on the evolutionary conserved POMT1/POMT2 enzymes that initiate O-Man glycosylation on α-DG. Here, we used a CRISPR/Cas9 genetic dissection strategy combined with sensitive and quantitative O-Man glycoproteomics to identify a homologous family of four putative protein O-mannosyltransferases encoded by the TMTC1–4 genes, which were found to be imperative for cdh and pcdh O-Man glycosylation. KO of all four TMTC genes in HEK293 cells resulted in specific loss of cdh and pcdh O-Man glycosylation, whereas combined KO of TMTC1 and TMTC3 resulted in selective loss of O-Man glycans on specific β-strands of EC domains, suggesting that each isoenzyme serves a different function. In addition, O-Man glycosylation of IPT/TIG domains of plexins and hepatocyte growth factor receptor was not affected in TMTC KO cells, suggesting the existence of yet another O-Man glycosylation machinery. Our study demonstrates that regulation of O-mannosylation in higher eukaryotes is more complex than envisioned, and the discovery of the functions of TMTCs provide insight into cobblestone lissencephaly caused by deficiency in TMTC3. PMID:28973932

  4. Long non-coding RNA linc-cdh4-2 inhibits the migration and invasion of HCC cells by targeting R-cadherin pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yunzhen; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025; Wang, Gaoxiong

    Long non-coding RNAs (LncRNAs) have played very important roles in the malignancy behaviors of hepatocellular carcinoma (HCC). Linc-cdh4-2 (TCONS-00027978) is a novel LncRNA that has been identified in HCC tissues from our previous study. Overexpression of linc-cdh4-2 in HCC cell lines (SK-Hep-1 and Huh7) significantly decreases the migration and invasion abilities of these cells, while knockdown the expression of linc-cdh4-2 significantly increases the migration and invasion abilities. Interestingly, neither the over expression nor the knock down of linc-cdh4-2 could affect the viability and proliferation of HCC cells. Mechanistically, the linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct bindingmore » that might improve the protein stability. Over expression of linc-cdh4-2 could significantly increase the protein levels of R-cadherin and decrease the protein levels of small GTPase RAC1, and vice-versa. Further knockdown R-cadherin in linc-cdh4-2 stably overexpressed cells, could significantly upregulate the protein levels of RAC1 and improve the cell migration and invasion abilities. Taken together, the novel linc-cdh4-2 may negatively regulate the motility of the HCC cells through targeting R-cadherin-RAC1 signaling pathway. - Highlights: • Linc-cdh4-2 negatively related with the invasion and metastasis ability of HCC cells. • Linc-cdh4-2 could up-regulate the protein level of R-cadherin through direct binding. • Knockdown of R-cadherin increases the migration and invasion abilities of HCC cell. • Knockdown of R-cadherin could significantly upregulate the protein levels of RAC1.« less

  5. Expression of the Wilm's tumor gene WT1 during diaphragmatic development in the nitrofen model for congenital diaphragmatic hernia.

    PubMed

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2011-02-01

    The nitrofen model of congenital diaphragmatic hernia (CDH) reproduces a typical diaphragmatic defect. However, the exact pathomechanism of CDH is still unknown. The Wilm's tumor 1 gene (WT1) is crucial for diaphragmatic development. Mutations in WT1 associated with CDH have been described in humans. Additionally, WT1(-/-) mice display CDH. Furthermore, WT1 is involved in the retinoid signaling pathway, a candidate pathway for CDH. We hypothesized that diaphragmatic WT1 gene expression is downregulated during diaphragmatic development in the nitrofen CDH model. Pregnant rats received vehicle or nitrofen on gestational day 9 (D9). Embryos were delivered on D13, D18 and D21. The pleuroperitoneal folds (PPFs) were dissected using laser capture microdissection (D13). Diaphragms of D18 and D21 were manually dissected. RNA was extracted and relative mRNA expression of WT1 was determined using real-time PCR. Immunofluorescence was performed to evaluate protein expression of WT1. Statistical significance was considered p < 0.05. Diaphragmatic mRNA expression of WT1 was significantly decreased in the nitrofen group on D13, D18 and D21. Intensity of immunofluorescencence of WT1 was markedly decreased in the CDH diaphragms on D13, D18 and D21. Downregulation of diaphragmatic WT1 gene expression may impair diaphragmatic development in the nitrofen CDH model.

  6. [Effect of genetics, epigenetics and variations in the transcriptional expression of cadherin-E in breast cancer susceptibility].

    PubMed

    Aristizábal-Pachón, Andrés Felipe; Takahashi, Catarina Satie

    2016-12-01

    Cadherin-E (CDH1) is an important regulator of epithelial-mesenchymal transition, invasion and metastasis in many carcinomas. However, germinal epimutations and mutations effect in breast cancer susceptibility is not clear. To evaluate rs334558 polymorphism, promoter methylation status and CDH1 expression profile in breast cancer patients. We collected peripheral blood samples from 102 breast cancer patients and 102 healthy subjects. The identification of rs334558 polymorphism was performed using PCR-RFLP, while methylation-specific PCR (MSP) and methylation-sensitive high-resolution melting (MS-HRM) were used to explore CDH1 methylation status; finally, CDH1 transcriptional expression profile was evaluated using RT-qPCR. We found no association between rs334558 polymorphism and breast cancer. Aberrant promoter methylation profile was found in breast cancer patients and it was related with early cancer stages. CDH1 down-regulation was significantly associated with metastasis and promoter methylation. CDH1 alterations were associated with invasion and metastasis in breast cancer. Our results offer further evidence of CDH1 relevance in breast cancer development and progression.

  7. The histone acetyltransferase component TRRAP is targeted for destruction during the cell cycle.

    PubMed

    Ichim, G; Mola, M; Finkbeiner, M G; Cros, M-P; Herceg, Z; Hernandez-Vargas, H

    2014-01-09

    Chromosomes are dynamic structures that must be reversibly condensed and unfolded to accommodate mitotic division and chromosome segregation. Histone modifications are involved in the striking chromatin reconfiguration taking place during mitosis. However, the mechanisms that regulate activity and function of histone-modifying factors as cells enter and exit mitosis are poorly understood. Here, we show that the anaphase-promoting complex or cyclosome (APC/C) is involved in the mitotic turnover of TRRAP (TRansformation/tRanscription domain-Associated Protein), a common component of histone acetyltransferase (HAT) complexes, and that the pre-mitotic degradation of TRRAP is mediated by the APC/C ubiquitin ligase activators Cdc20 and Cdh1. Ectopic expression of both Cdh1 and Cdc20 reduced the levels of coexpressed TRRAP protein and induced its ubiquitination. TRRAP overexpression or stabilization induces multiple mitotic defects, including lagging chromosomes, chromosome bridges and multipolar spindles. In addition, lack of sister chromatid cohesion and impaired chromosome condensation were found after TRRAP overexpression or stabilization. By using a truncated form of TRRAP, we show that mitotic delay is associated with a global histone H4 hyperacetylation induced by TRRAP overexpression. These results demonstrate that the chromatin modifier TRRAP is targeted for destruction in a cell cycle-dependent fashion. They also suggest that degradation of TRRAP by the APC/C is necessary for a proper condensation of chromatin and proper chromosome segregation. Chromatin compaction mediated by histone modifiers may represent a fundamental arm for APC/C orchestration of the mitotic machinery.

  8. Antenatal vitamin A administration attenuates lung hypoplasia by interfering with early instead of late determinants of lung underdevelopment in congenital diaphragmatic hernia.

    PubMed

    Baptista, Maria J; Melo-Rocha, Gustavo; Pedrosa, Carla; Gonzaga, Sílvia; Teles, Antónia; Estevão-Costa, José; Areias, José C; Flake, Alan W; Leite-Moreira, Adelino F; Correia-Pinto, Jorge

    2005-04-01

    Early and late lung underdevelopment in congenital diaphragmatic hernia (CDH) is likely caused by nonmechanical (directly mediated by nitrofen) and mechanical (mediated by thoracic herniation) factors, respectively. The authors investigated if vitamin A enhances lung growth because of effects on both early and late determinants of lung hypoplasia. Twenty-seven pregnant Wistar rats were exposed on embryonic day (E)9.5 to 100 mg of nitrofen or just olive oil. From nitrofen-exposed pregnant rats, 12 were treated at day 9.5 or 18.5 with 15,000 IU of vitamin A. Lungs were harvested at E18, E20, and E22, weighed, and analyzed for DNA and protein contents. Left and/or right lung hypoplasia was estimated by assessment of the ratios of lung to body weight and left to right lung weight. Fetuses were assigned to 5 experimental groups: baseline (exposed neither to nitrofen nor vitamin A), nitrofen (exposed to nitrofen without CDH), CDH (exposed to nitrofen with CDH), nitr+vitA (exposed to nitrofen without CDH and treated with vitamin A), and CDH+vitA (exposed to nitrofen with CDH and treated with vitamin A). Incidence of hernia was significantly reduced in fetuses treated with vitamin A. When vitamin A was administered at E9.5, the authors observed similar effect on lung hypoplasia measured through ratio of lung to body weight at E18 in the nitrofen and CDH groups (nitrofen 1.92% +/- 0.05%, CDH 1.92% +/- 0.04%), whereas lung hypoplasia was attenuated relative to baseline (2.45% +/- 0.05%) in 5% and 4% in nitrofen (nitr+vitA 2.05% +/- 0.03%) and CDH (CDH+vitA 2.08% +/- 0.04%) groups, respectively. At E20, lung hypoplasia was increased in CDH compared with nitrofen groups (nitrofen 2.52% +/- 0.1%, CDH 2.39% +/- 0.05%), whereas vitamin A attenuated lung hypoplasia, in relation to baseline (3.20% +/- 0.07%), 14% in both nitrofen-exposed groups (nitr+vitA 2.96% +/- 0.03%, CDH+vitA 2.83% +/- 0.03%). At E22, lung hypoplasia was significantly higher in CDH group than nitrofen group (nitrofen 2.13% +/- 0.06%, CDH 1.48% +/- 0.03%), whereas lung hypoplasia was attenuated in 9% of both nitrofen-exposed groups (nitr+vitA 2.35% +/- 0.06%, CDH+vitA 1.69% +/- 0.05%) in relation to baseline group (2.38% +/- 0.04%). Administration of vitamin A at E18.5 produced no significant effects on lung growth. The authors conclude from these results that antenatal administration of vitamin A attenuates lung hypoplasia in CDH by interfering with early determinants of lung underdevelopment. This finding may have clinical implications because prenatal diagnosis of human CDH commonly occurs after 16 weeks' gestation when late determinants of lung hypoplasia likely predominate.

  9. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression.

    PubMed

    Jeong, Ho-Chang; Gil, Na-Yeon; Lee, Ho-Soo; Cho, Seung-Ju; Kim, Kyungtae; Chun, Kwang-Hoon; Cho, Hyeseong; Cha, Hyuk-Jin

    2015-08-01

    Wip1 belongs to the protein phosphatase C (PP2C) family, of which expression is up-regulated by a number of external stresses, and serves as a stress modulator in normal physiological conditions. When overexpressed, premature dephosphorylation of stress-mediators by Wip1 results in abrogation of tumor surveillance, thus Wip1 acts as an oncogene. Previously, the functional regulation of Wip1 in cell-cycle progression by counteracting cellular G1 and G2/M checkpoint activity in response to DNA damage was reported. However, other than in stress conditions, the function and regulatory mechanism of Wip1 has not been fully determined. Herein, we demonstrated that protein regulation of Wip1 occurs in a cell cycle-dependent manner, which is directly governed by APC/C(Cdh1) at the end of mitosis. In particular, we also showed evidence that Wip1 phosphatase activity is closely associated with its own protein stability, suggesting that reduced phosphatase activity of Wip1 during mitosis could trigger its degradation. Furthermore, to verify the physiological role of its phosphatase activity during mitosis, we established doxycycline-inducible cell models, including a Wip1 wild type (WT) and phosphatase dead mutant (Wip1 DA). When ectopically expressing Wip1 WT, we observed a delay in the transition from metaphase to anaphase. In conclusion, these studies show that mitotic degradation of Wip1 by APC/C(Cdh1) is important for normal mitotic progression. © 2015 Wiley Periodicals, Inc.

  10. Hereditary diffuse gastric cancer: surgery, surveillance and unanswered questions.

    PubMed

    Cisco, Robin M; Norton, Jeffrey A

    2008-08-01

    Hereditary diffuse gastric cancer (HDGC) is an inherited cancer-susceptibility syndrome characterized by autosomal dominance and high penetrance. In 30-50% of cases, a causative germline mutation in CDH1, the E-cadherin gene, may be identified. Female carriers of CDH1 mutations also have an increased (20-40%) risk of lobular breast cancer. Endoscopic surveillance of patients with CDH1 mutations is ineffective because early foci of HDGC are typically small and underlie normal mucosa. CDH1 mutation carriers are therefore offered the option of prophylactic gastrectomy, which commonly reveals early foci of invasive signet-ring cell cancer. We review recommendations for genetic testing, surveillance and prophylactic surgery in HDGC. Areas for future research are discussed, including development of new screening modalities, optimal timing of prophylactic gastrectomy, identification of additional causative mutations in HDGC, management of patients with CDH1 missense mutations and prevention/early detection of lobular breast cancer in CDH1 mutation carriers.

  11. Higher risk of progressing breast cancer in Kurdish population associated to CDH1 -160 C/A polymorphism

    PubMed Central

    Zarei, Farzaneh; Menbari, Mohammad Nazir; Ghaderi, Bayazid; Abdi, Mohammad; Vahabzadeh, Zakaria

    2017-01-01

    There is an increasing interest about studying possible effects of genetic polymorphisms and risk of cancer progression. E-cadherin (CDH1) involves in many important cellular processes including cell-cell interactions, cell development and genetic changes of this molecule has been associated with greater tumor metastasis. The present study was aimed to evaluate the possible role of CDH1 -160 C/A polymorphism as a potential risk factor for breast cancer in Kurdish population. This case-control study consisted of 100 breast cancer patients and 200 healthy controls. Clinicopathological findings of all individuals were reported and immunohistochemistry staining was carried out on tissue samples. The CDH1 -160 C/A genotype was determined by polymerase chain reaction- restriction fragment length polymorphism method (PCR-RFLP). CDH1 -160 C/A polymorphism was differently distributed between patient and control groups. The A allele of CDH1 -160 C/A polymorphism significantly increased in patients compared to controls. In addition we found that the A allele of this polymorphism might be a potential risk factor for progression of breast cancer in our studied population. Patients with A allele of CDH1 -160 C/A was in higher risk to progress invasive ductal carcinoma. The A allele was also correlated with high grade and stage IV and also with metastatic tumors in studied subjects. The CDH1 -160 C/A polymorphism is correlated with clinicopathologial findings of breast cancer patients. The A allele of CDH1 -160 C/A may be a risk factor for progression of breast cancer in Kurdish patients. PMID:29285016

  12. Higher risk of progressing breast cancer in Kurdish population associated to CDH1 -160 C/A polymorphism.

    PubMed

    Zarei, Farzaneh; Menbari, Mohammad Nazir; Ghaderi, Bayazid; Abdi, Mohammad; Vahabzadeh, Zakaria

    2017-01-01

    There is an increasing interest about studying possible effects of genetic polymorphisms and risk of cancer progression. E-cadherin (CDH1) involves in many important cellular processes including cell-cell interactions, cell development and genetic changes of this molecule has been associated with greater tumor metastasis. The present study was aimed to evaluate the possible role of CDH1 -160 C/A polymorphism as a potential risk factor for breast cancer in Kurdish population. This case-control study consisted of 100 breast cancer patients and 200 healthy controls. Clinicopathological findings of all individuals were reported and immunohistochemistry staining was carried out on tissue samples. The CDH1 -160 C/A genotype was determined by polymerase chain reaction- restriction fragment length polymorphism method (PCR-RFLP). CDH1 -160 C/A polymorphism was differently distributed between patient and control groups. The A allele of CDH1 -160 C/A polymorphism significantly increased in patients compared to controls. In addition we found that the A allele of this polymorphism might be a potential risk factor for progression of breast cancer in our studied population. Patients with A allele of CDH1 -160 C/A was in higher risk to progress invasive ductal carcinoma. The A allele was also correlated with high grade and stage IV and also with metastatic tumors in studied subjects. The CDH1 -160 C/A polymorphism is correlated with clinicopathologial findings of breast cancer patients. The A allele of CDH1 -160 C/A may be a risk factor for progression of breast cancer in Kurdish patients.

  13. Prenatal administration of neuropeptide bombesin promotes lung development in a rat model of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Sakai, Kohei; Kimura, Osamu; Furukawa, Taizo; Fumino, Shigehisa; Higuchi, Koji; Wakao, Junko; Kimura, Koseki; Aoi, Shigeyoshi; Masumoto, Kouji; Tajiri, Tatsuro

    2014-12-01

    Fetal medical treatment to improve lung hypoplasia in congenital diaphragmatic hernia (CDH) has yet to be established. The neuropeptide bombesin (BBS) might play an important role in lung development. The present study aims to determine whether prenatally administered BBS could be useful to promote fetal lung development in a rat model of nitrofen-induced CDH. Pregnant rats were administered with nitrofen (100mg) on gestation day 9.5 (E9.5). BBS (50mg/kg/day) was then daily infused intraperitoneally from E14, and fetal lungs were harvested on E21. The expression of PCNA was assessed by both immunohistochemical staining and RT-PCR to determine the amount of cell proliferation. Lung maturity was assessed as the expression of TTF-1, a marker of alveolar epithelial cell type II. The lung-body-weight ratio was significantly increased in CDH/BBS(+) compared with CDH/BBS(-) (p<0.05). The number of cells stained positive for PCNA and TTF-1 was significantly decreased in CDH/BBS(+) compared with CDH/BBS(-) (p<0.01). The TTF-1 mRNA expression levels were significantly decreased in CDH/BBS(+) compared with CDH/BBS(-) (p<0.05). Prenatally administered BBS promotes lung development in a rat model of nitrofen-induced CDH. Neuropeptide BBS could help to rescue lung hypoplasia in fetal CDH. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A forskolin derivative, colforsin daropate hydrochloride, inhibits rat mesangial cell mitogenesis via the cyclic AMP pathway.

    PubMed

    Ogata, Junichi; Minami, Kouichiro; Segawa, Kayoko; Yamamoto, Chieko; Kim, Sung-Teh; Shigematsu, Akio

    2003-11-01

    A forskolin derivative, colforsin daropate hydrochloride (CDH), has been introduced as an inotropic agent that acts directly on adenylate cyclase to increase intracellular cyclic AMP (cAMP) levels and ventricular contractility, resulting in positive inotropic activity. We investigated the effects of CDH on rat mesangial cell (MC) proliferation. CDH (10(-7)-10(-5) mol/l) inhibited [(3)H]thymidine incorporation into cultured rat MCs in a concentration-dependent manner. CDH (10(-7)-10(-5) mol/l) also decreased cell numbers in a similar manner, and stimulated cAMP accumulation in MCs in a concentration-dependent manner. A protein kinase A inhibitor, H-89, abolished the inhibitory effects of CDH on MC mitogenesis. These findings suggest that CDH would inhibit the proliferation of rat MCs via the cAMP pathway. Copyright 2003 S. Karger AG, Basel

  15. Creative Activities in Music--A Genome-Wide Linkage Analysis.

    PubMed

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4.

  16. Antenatal retinoic acid administration increases trophoblastic retinol-binding protein dependent retinol transport in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Kutasy, Balazs; Friedmacher, Florian; Pes, Lara; Coyle, David; Doi, Takashi; Paradisi, Francesca; Puri, Prem

    2016-04-01

    Low pulmonary retinol levels and disrupted retinoid signaling pathway (RSP) have been implicated in the pathogenesis of congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH). It has been demonstrated that nitrofen disturbs the main retinol-binding protein (RBP)-dependent trophoblastic retinol transport. Several studies have demonstrated that prenatal treatment with retinoic acid (RA) can reverse PH in the nitrofen-induced CDH model. We hypothesized that maternal administration of RA can increase trophoblastic RBP-dependent retinol transport in a nitrofen model of CDH. Pregnant rats were treated with nitrofen or vehicle on gestational day 9 (D9) and sacrificed on D21. RA was given i.p. on D18, D19, and D20. Retinol and RA levels were measured using high-performance liquid chromatography. Immunohistochemistry was performed to evaluate trophoblastic expression of RBP. Expression levels of the primary RSP genes were determined using quantitative real-time PCR and immunohistochemistry. Markedly increased trophoblastic RBP immunoreactivity was observed in CDH+RA compared to CDH. Significantly increased serum and pulmonary retinol and RA levels were detected in CDH+RA compared to CDH. Pulmonary expression of RSP genes and proteins were increased in CDH+RA compared to CDH. Increased trophoblastic RBP expression and retinol transport after antenatal administration of RA suggest that retinol-triggered RSP activation may attenuate CDH-associated PH by elevating serum and pulmonary retinol levels.

  17. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    PubMed Central

    Sbragia, L.; Nassr, A.C.C.; Gonçalves, F.L.L.; Schmidt, A.F.; Zuliani, C.C.; Garcia, P.V.; Gallindo, R.M.; Pereira, L.A.V.

    2014-01-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression. PMID:24519134

  18. Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes.

    PubMed

    Schultz, Julie M; Bhatti, Rashid; Madeo, Anne C; Turriff, Amy; Muskett, Julie A; Zalewski, Christopher K; King, Kelly A; Ahmed, Zubair M; Riazuddin, Saima; Ahmad, Nazir; Hussain, Zawar; Qasim, Muhammad; Kahn, Shaheen N; Meltzer, Meira R; Liu, Xue Z; Munisamy, Murali; Ghosh, Manju; Rehm, Heidi L; Tsilou, Ekaterini T; Griffith, Andrew J; Zein, Wadih M; Brewer, Carmen C; Riazuddin, Sheikh; Friedman, Thomas B

    2011-11-01

    Recessive mutant alleles of MYO7A, USH1C, CDH23, and PCDH15 cause non-syndromic deafness or type 1 Usher syndrome (USH1) characterised by deafness, vestibular areflexia, and vision loss due to retinitis pigmentosa. For CDH23, encoding cadherin 23, non-syndromic DFNB12 deafness is associated primarily with missense mutations hypothesised to have residual function. In contrast, homozygous nonsense, frame shift, splice site, and some missense mutations of CDH23, all of which are presumably functional null alleles, cause USH1D. The phenotype of a CDH23 compound heterozygote for a DFNB12 allele in trans configuration to an USH1D allele is not known and cannot be predicted from current understanding of cadherin 23 function in the retina and vestibular labyrinth. To address this issue, this study sought CDH23 compound heterozygotes by sequencing this gene in USH1 probands, and families segregating USH1D or DFNB12. Five non-syndromic deaf individuals were identified with normal retinal and vestibular phenotypes that segregate compound heterozygous mutations of CDH23, where one mutation is a known or predicted USH1 allele. One DFNB12 allele in trans configuration to an USH1D allele of CDH23 preserves vision and balance in deaf individuals, indicating that the DFNB12 allele is phenotypically dominant to an USH1D allele. This finding has implications for genetic counselling and the development of therapies for retinitis pigmentosa in Usher syndrome. ACCESSION NUMBERS: The cDNA and protein Genbank accession numbers for CDH23 and cadherin 23 used in this paper are AY010111.2 and AAG27034.2, respectively.

  19. Malformations associated with congenital diaphragmatic hernia: Impact on survival.

    PubMed

    Bojanić, Katarina; Pritišanac, Ena; Luetić, Tomislav; Vuković, Jurica; Sprung, Juraj; Weingarten, Toby N; Schroeder, Darrell R; Grizelj, Ruža

    2015-11-01

    Congenital diaphragmatic hernia (CDH) is associated with high mortality. Survival is influenced by the extent of pulmonary hypoplasia and additional congenital defects. The purpose of this study was to assess the association of congenital anomalies and admission capillary carbon dioxide levels (PcCO2), as a measure of extent of pulmonary hypoplasia, on survival in neonates with CDH. This is a retrospective review of neonates with CDH admitted to a tertiary neonatal intensive care unit between 1990 and 2014. Logistic regression was used to assess whether hospital survival was associated with admission PcCO2 or associated anomalies (isolated CDH, CDH with cardiovascular anomalies, and CDH with noncardiac anomalies). The probabilities of survival (POS) score, based on birth weight and 5-min Apgar as defined by the Congenital Diaphragmatic Hernia Study Group were included as a covariate. Of 97 patients, 55 had additional malformations (cardiovascular n=12, noncardiac anomalies n=43). POS was lower in CDH with other anomalies compared to isolated CDH. Survival rate was 61.9%, 53.5% and 41.7% in isolated CDH, CDH with noncardiac anomalies and CDH with cardiovascular anomalies, respectively. After adjusting for POS score the likelihood of survival in CDH groups with additional anomalies was similar to isolated CDH (OR 0.95, 95% CI 0.22-4.15, and 1.10, 0.39-3.08, for CDH with and without cardiovascular anomalies, respectively). After adjusting for POS score, lower PcCO2 levels (OR=1.25 per 5mmHg decrease, P=0.003) were associated with better survival. Neonates with CDH have a high prevalence of congenital malformations. However, after adjusting for POS score the presence of additional anomalies was not associated with survival. The POS score and admission PcCO2 were important prognosticating factors for survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Predicting the Functional Impact of CDH1 Missense Mutations in Hereditary Diffuse Gastric Cancer

    PubMed Central

    Melo, Soraia; Fernandes, Maria Sofia; Gonçalves, Margarida; Morais-de-Sá, Eurico; Sanches, João Miguel; Seruca, Raquel

    2017-01-01

    The role of E-cadherin in Hereditary Diffuse Gastric Cancer (HDGC) is unequivocal. Germline alterations in its encoding gene (CDH1) are causative of HDGC and occur in about 40% of patients. Importantly, while in most cases CDH1 alterations result in the complete loss of E-cadherin associated with a well-established clinical impact, in about 20% of cases the mutations are of the missense type. The latter are of particular concern in terms of genetic counselling and clinical management, as the effect of the sequence variants in E-cadherin function is not predictable. If a deleterious variant is identified, prophylactic surgery could be recommended. Therefore, over the last few years, intensive research has focused on evaluating the functional consequences of CDH1 missense variants and in assessing E-cadherin pathogenicity. In that context, our group has contributed to better characterize CDH1 germline missense variants and is now considered a worldwide reference centre. In this review, we highlight the state of the art methodologies to categorize CDH1 variants, as neutral or deleterious. This information is subsequently integrated with clinical data for genetic counseling and management of CDH1 variant carriers. PMID:29231860

  1. Expression of hepatic lipid droplets is decreased in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Takahashi, Hiromizu; Kutasy, Balazs; Friedmacher, Florian; Takahashi, Toshiaki; Puri, Prem

    2016-02-01

    Prenatal mortality in newborn infants with congenital diaphragmatic hernia (CDH) has been attributed to increased amounts of liver hernia ion through the diaphragmatic defect. Antenatal studies in human and rodent fetus with CDH further demonstrated a contribution of the developing liver in the pathogenesis of CDH. The abnormal hepatic growth in experimental animal models, therefore, indicates a disruption of normal liver development in CDH. However, the underlying structural, histological and functional changes in the liver of animals with CDH remain unclear. We design this study to test the hypothesis that the morphological and cellular liver development is altered in the nitrogen-induced CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Livers and chest were harvested on D21 and divided into two groups: control (n = 8), nitrofen with CDH (CDH, n = 8). Haematoxylin-eosin (Straub et al. Histopathology 68:617-631, 2013) staining was performed to evaluate underlying morphological changes. Apoptosis was checked by using TUNEL staining and apoptotic cell number was counted on 16-16 slides in 25 fields by two independent viewers. Hepatic lipid droplet expressions were evaluated by hepatic adipose differentiation-related protein (ARDP) expression. Compared to controls markedly increased hypertrophy was seen in CDH group. Significantly increased apoptotic cell numbers were detected in CDH group compared to controls (5.1 ± 1.5 vs 2.1 ± 0.6) (p < 0.05). The relative mRNA expression levels of ARDP were significantly reduced in CDH group compared to controls. Immunohistochemistry showed markedly decreased hepatic ADRP immunoreactivity in CDH fetuses compared to controls. Our findings provide strong evidence of hepatic hypertrophy and increased cell apoptosis in the liver of nitrofen-induced CDH. These morphological changes may affect liver lipid droplet expression function.

  2. Myocardium expression of connexin 43, SERCA2a, and myosin heavy chain isoforms are preserved in nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Baptista, Maria João; Recamán, Mónica; Melo-Rocha, Gustavo; Nogueira-Silva, Cristina; Roriz, José-Mário; Soares-Fernandes, João; Gonzaga, Silvia; Santos, Marta; Leite-Moreira, Adelino; Areias, José Carlos; Correia-Pinto, Jorge

    2006-09-01

    Previous morphological studies had produced controversial results with regard to heart development in congenital diaphragmatic hernia (CDH), whereas a few publications investigated cardiac function and myocardial maturation. Myocardium maturation is associated with age-dependent increasing of gene expression of gap junction protein connexin 43 (Cx43), adenosine triphosphatase of the sarcoplasmic reticulum (SERCA2a), as well as switching of myosin heavy chains (MHCs) from beta to alpha isoforms. Our aim was to evaluate myocardium maturity in nitrofen-induced CDH rat model. Fetuses from dated pregnant Sprague-Dawley rats were assigned to 3 experimental groups: control, nitrofen (exposed to nitrofen, without CDH), and CDH (exposed to nitrofen, with CDH). Myocardial samples collected from left ventricle free wall were processed to (i) quantification of messenger RNA (mRNA) of Cx43, SERCA2a, alpha and beta MHC isoforms, as well as beta-actin (housekeeping gene); and (ii) separation of MHC isoforms (alpha and beta isoforms) by sodium dodecyl sulfate polyacrylamide gel electrophoresis silver stained. We demonstrated that there is no difference in myocardial gene expression of Cx43 (control, 1.0 +/- 0.1; nitrofen, 1.1 +/- 0.2; CDH, 1.3 +/- 0.2) and SERCA2a (control, 1.0 +/- 0.1; nitrofen, 0.9 +/- 0.1; CDH, 1.0 +/- 0.2). Myocardial gene expressions of alpha and beta mRNA of MHC isoforms were slightly decreased both in nitrofen and CDH fetuses when compared with control fetuses, but evaluation of the alpha-to-beta ratios of MHC isoforms at protein level revealed no significant differences between CDH and control (control, 16.9 +/- 2.5; CDH, 17.0 +/- 2.0). Myocardial quantification of Cx43 and SERCA2a mRNA, as well as the expression pattern of MHC isoforms at protein levels, was similar in all studied groups. We predict, therefore, that acute heart failure commonly observed in CDH infants might be attributed predominantly to cardiac overload secondary to severe pulmonary hypertension rather than to myocardial immaturity.

  3. Mutation analysis of the MYO7A and CDH23 genes in Japanese patients with Usher syndrome type 1.

    PubMed

    Nakanishi, Hiroshi; Ohtsubo, Masafumi; Iwasaki, Satoshi; Hotta, Yoshihiro; Takizawa, Yoshinori; Hosono, Katsuhiro; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei

    2010-12-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 1 (USH1), the second common type of USH, is frequently caused by MYO7A and CDH23 mutations, accounting for 70-80% of the cases among various ethnicities, including Caucasians, Africans and Asians. However, there have been no reports of mutation analysis for any responsible genes for USH1 in Japanese patients. This study describes the first mutation analysis of MYO7A and CDH23 in Japanese USH1 patients. Five mutations (three in MYO7A and two in CDH23) were identified in four of five unrelated patients. Of these mutations, two were novel. One of them, p.Tyr1942SerfsX23 in CDH23, was a large deletion causing the loss of 3 exons. This is the first large deletion to be found in CDH23. The incidence of the MYO7A and CDH23 mutations in the study population was 80%, which is consistent with previous findings. Therefore, mutation screening for these genes is expected to be a highly sensitive method for diagnosing USH1 among the Japanese.

  4. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina.

    PubMed

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D; Silar, Philippe; Berrin, Jean-Guy

    2017-01-15

    Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. Copyright © 2016 American Society for Microbiology.

  5. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina

    PubMed Central

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D.

    2016-01-01

    ABSTRACT Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. PMID:27836848

  6. Epidemiology of chronic daily headache.

    PubMed

    Pascual, J; Colás, R; Castillo, J

    2001-12-01

    Daily or near-daily headache is a widespread problem in clinical practice. The general term of chronic daily headache (CDH) encompasses those primary headaches presenting more than 15 days per month and lasting more than 4 hours per day. CDH includes transformed migraine (TM), chronic tension-type headache (CTTH), new daily persistent headache (NDPH), and hemicrania continua (HC). Around 40% of patients attending a specialized headache clinic meet CDH diagnostic criteria, of which 80% are women. In these clinics about 60% of patients suffer from TM, 20% from CTTH, and 20% meet NDPH criteria. Most, some 80%, overuse symptomatic medications. One should be very cautious on extrapolating these numbers to the general population. CDH prevalence in the general population seems to be around 4% to 5% (up to 8% to 9% for women). Regarding the prevalence of CDH subtypes, NDPH is rare (0.1%), whereas the prevalence of TM (1.5% to 2%) and CTTH (2.5% to 3%) is clearly higher. In contrast to data from specialized clinics, only around a quarter of CDH subjects in the general population overuse analgesics; the prevalence of CDH subjects with analgesic overuse being 1.1% to 1.9% of the general population. Most of these patients with analgesic overuse are TM patients.

  7. [Isolation of wood-decaying fungi and evaluation of their enzymatic activity (Quindío, Colombia)].

    PubMed

    Chaparro, Deisy Fernanda; Rosas, Diana Carolina; Varela, Amanda

    2009-12-31

    White rot fungi (Ascomycota and Basidiomycota) were collected on fallen trunks with different decay stages, in a subandean forest (La Montaña del Ocaso nature reserve), and it was evaluated their ligninolitic activity. They were cultured on malt extract agar. Then it was performed semiquantitative tests for laccase and cellobiose dehydrogenase (CDH) activity using ABTS and DCPIP as enzymatic inducers. Based on the results of these tests, the fungi with higher activities from trunks with different decay stages were selected: Cookeina sulcipes (for stage 1), a fungus from the family Corticiaceae (for stage 2), Xylaria polymorpha (for stage 3) and Earliella sp. (for stage 4). A fermentation was performed at 28 degrees C, during 11 days, in a rotatory shaker at 150 rpm. Biomass, glucose, proteins and enzyme activities measurements were performed daily. The fungi that were in the trunks with decay states from 1 to 3, showed higher laccase activity as the state of decay increased. A higher DCH activity was also associated with a higher. Also, there was a positive relationship between both enzymes' activities. Erliella was the fungus which presented the highest biomass production (1140,19 g/l), laccase activity (157 UL(-1)) and CDH activity (43,50 UL(-1)). This work is the first report of laccase and CDH activity for Cookeina sulcipes and Earliella sp. Moreover, it gives basis for the use of these native fungi in biotechnological applications and the acknowledgment of their function in the wood decay process in native forest.

  8. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture.

    PubMed

    Li, Pei; Zhang, Ruijie; Wang, Liyuan; Gan, Yibo; Xu, Yuan; Song, Lei; Luo, Lei; Zhao, Chen; Zhang, Chengmin; Ouyang, Bin; Tu, Bing; Zhou, Qiang

    2017-04-30

    Long-term exposure to a mechanical load causes degenerative changes in the disc nucleus pulposus (NP) tissue. A previous study demonstrated that N-cadherin (N-CDH)-mediated signalling can preserve the NP cell phenotype. However, N-CDH expression and the resulting phenotype alteration in NP cells under mechanical compression remain unclear. The present study investigated the effects of the compressive duration on N-CDH expression and on the phenotype of NP cells in an ex vivo disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days. The discs were subjected to different dynamic compression durations (1 and 8 h at a magnitude of 0.4 MPa and frequency of 1.0 Hz) once per day. Discs that were not compressed were used as controls. The results showed that long-term compression duration (8 h) significantly down-regulated the expression of N-CDH and NP-specific molecule markers (Brachyury, Laminin, Glypican-3 and Keratin 19), attenuated Alcian Blue staining intensity, decreased glycosaminoglycan (GAG) and hydroxyproline (HYP) contents and decreased matrix macromolecule (aggrecan and collagen II) expression compared with the short-term compression duration (1 h). Taken together, these findings demonstrate that long-term load duration can induce N-CDH down-regulation, loss of normal cell phenotype and result in attenuation of NP-related matrix synthesis in NP cells. © 2017 The Author(s).

  9. Downregulation of Forkhead box F1 gene expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Zimmer, J; Takahashi, T; Hofmann, A D; Puri, Prem

    2016-12-01

    High mortality and morbidity in infants born with congenital diaphragmatic hernia (CDH) are attributed to pulmonary hypoplasia and pulmonary hypertension (PH). Forkhead box (Fox) transcription factors are known to be crucial for cell proliferation and homeostasis. FoxF1 is essential for lung morphogenesis, vascular development, and endothelial proliferation. Mutations in FoxF1 and also the Fox family member FoxC2 have been identified in neonates with PH. In human and experimental models of arterial PH, the Fox protein FoxO1 was found to be downregulated. We hypothesized that Fox expression is altered in the lungs of the nitrofen-induced CDH rat model and investigated the expression of FoxF1, FoxC2, and FoxO1. Following ethical approval (Rec 913b), time-pregnant Sprague-Dawley rats received nitrofen or vehicle on gestational day (D9). Fetuses were sacrificed on D21, inspected for CDH and divided into CDH (n = 11) and control group (n = 11). Gene expression of FoxF1, FoxC2, and FoxO1 was evaluated with qRT-PCR. Detected alterations of mRNA levels were subsequently assessed on the protein level by performing western blot analysis and laser scanning confocal microscopy. The relative mRNA level of FoxF1 was significantly downregulated in CDH lungs compared to controls (FoxF1 CDH 1.047 ± 0.108, FoxF1 Ctrl 1.419 ± 0.01, p = 0.014). Relative mRNA levels of FoxC2 and FoxO1 were not found to be altered between the experimental groups (FoxC2 CDH 30.74 ± 8.925, FoxC2 Ctrl 27.408 ± 7.487, p = 0.776; FoxO1 CDH 0.011 ± 0.002, FoxO1 Ctrl 0.011 ± 0.001, p = 0.809). On the protein level, western blotting demonstrated a reduced pulmonary protein expression of FoxF1 in CDH lungs. Confocal microscopy showed a markedly diminished expression of FoxF1 in the pulmonary vasculature of CDH lungs compared to controls. Our study demonstrates a strikingly reduced expression of FoxF1 in the pulmonary vasculature of nitrofen-induced CDH. Altered FoxF1 gene expression during embryogenesis may participate in vascular maldevelopment resulting in PH in this animal model.

  10. [Effects of Tetrandrine Prenatal Intervention on Alveolar Epithelial Cells Type I Differentiation in Rat Model of Nitrofen-induced Congenital Diaphragmatic Hernia].

    PubMed

    Xiao, Bin; Xu, Chang; Liu, Min; Ji, Yi; Yang Li-xun; Li, Tai-ming; Jiang, Jun; He, Tao-zhen

    2016-03-01

    To investigate the effects of Tetrandrine (TET) prenatal intervention on the differentiation of alveolar epithelial cells type I (AEC I) in rat model of Nitrofen-induced congenital diaphragmatic hernia (CDH). Timed-pregnant Sprague-Dawley rats were divided into three groups, namely control, CDH and TET group on day 9.5 of gestation. The rats in TET group and CDH group were given 125 mg of Nitrofen by gavage one time, while the rats in control group were given the same dose of seed fat. After that, the rats in TET group was given 30 mg/kg of TET by gavage once a day for three days from day 18.5 of gestation, while the rats in CDH and control group were given the same dose of normal saline. On day 21.5 of gestation, all fetuses were delivered by cesarean, the lungs of fetuses were histologically evaluated by microscope and electron microscope. The expressions of type I cell-specific protein (RT140) and thyroid transcription factor 1 (TTF1) in alveolar fluid content were analyzed by RT-PCR and immunohistochemistry staining. To detect the number of AEC I and AEC II of each group by transmission electron microscopy and calculate the percentage of AEC I and AEC II (I/II%). The microscope and electron microscope study found the lungs of fetuses in CDH group showed marked hypoplasia, in contrast to the improvement of hypoplasia in TET fetuses. The pulmonary alveolar area had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. I/II% had significant difference statistically (P < 0.01) in each group, which present as control > TET > CDH. The expression level of TTF1 was up-regulated in both CDH and TET groups, and it was higher in CDH group (P < 0.01). The expression level of RT140 were down-regulated in CDH and TET groups, which was lower in CDH group (P < 0.01). The development of AEC I was interfered in CDH rat model, TET prenatal treatment could improve the lung development of CDH.

  11. Decreased Rac1 Cardiac Expression in Nitrofen-Induced Diaphragmatic Hernia.

    PubMed

    Nakamura, Hiroki; Zimmer, Julia; Puri, Prem

    2018-02-01

     The high incidence of cardiac malformations in humans and animal models with congenital diaphragmatic hernia (CDH) is well known. The hypoplasia of left heart is common among fetuses with CDH and has been identified as a poor prognostic factor. However, the precise mechanisms underlying cardiac maldevelopment in CDH are not fully understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) plays a key role in cardiomyocyte polarity and embryonic heart development. Deficiency of Rac1 is reported to impair elongation and cytoskeletal organization of cardiomyocytes, resulting in congenital cardiac defects. We designed this study to test the hypothesis that Rac1 expression is downregulated in the developing hearts of rats with nitrofen-induced CDH.  Following ethical approval (REC1103), time-pregnant Sprague Dawley rats received nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D18 and D21 and divided into CDH and control (CTRL) ( n  = 6 for each group and time point). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and confocal-immunofluorescence microscopy were performed to detect cardiac gene and protein expression of Rac1.  qRT-PCR and Western blot analysis revealed that Rac1 expression was significantly decreased in the CDH group compared with controls ( p  < 0.05). Confocal-immunofluorescence microscopy revealed that Rac1 cardiac expression was markedly decreased in the CDH group compared with controls.  Decreased cardiac Rac1 expression in the nitrofen-induced CDH suggests that Rac1 deficiency during morphogenesis may impair structural cardiac remodeling, resulting in congenital cardiac defects. Georg Thieme Verlag KG Stuttgart · New York.

  12. Decreased pulmonary c-Cbl expression and tyrosine phosphorylation in the nitrofen-induced rat model of congenital diaphragmatic hernia.

    PubMed

    Friedmacher, Florian; Gosemann, Jan-Hendrik; Takahashi, Hiromizu; Corcionivoschi, Nicolae; Puri, Prem

    2013-01-01

    The high morbidity of newborn infants with congenital diaphragmatic hernia (CDH) is attributed to pulmonary hypoplasia (PH), which is characterized by a failure of alveolar development. The nitrofen-induced CDH model has been widely used to investigate the pathogenesis of PH in CDH. It has previously been shown that the fibroblast growth factor receptor (FGFR) pathway, which is essential for a proper lung development, is disrupted during late gestation of nitrofen-induced CDH. Casitas B-lineage lymphoma (c-Cbl) proteins are known regulators of signal transduction through FGFRs, indicating their important role during alveolarization in developing lungs. Furthermore, it has been demonstrated that tyrosine phosphorylation of c-Cbl proteins has a pivotal role for their physiological function and activity during fetal lung development. We designed this study to test the hypothesis that pulmonary c-Cbl expression and tyrosine phosphorylation status are decreased in the nitrofen-induced CDH model. Timed-pregnant rats received either 100 mg nitrofen or vehicle on gestation day 9 (D9). Fetuses were harvested on D18 and D21, and lungs were divided into two groups: control and hypoplastic lungs with CDH (CDH(+)) (n = 10 at each time-point, respectively). Pulmonary gene expression levels of c-Cbl were analyzed by quantitative real-time polymerase chain reaction. Western blotting combined with densitometry analysis was used for semi-quantification of protein levels of pulmonary c-Cbl and tyrosine phosphorylation status. Confocal-immunofluorescence staining was performed to evaluate c-Cbl protein expression and distribution. Relative mRNA expression levels of pulmonary c-Cbl were significantly decreased in CDH(+) on D18 and D21 compared to controls. Western blotting showed markedly decreased protein levels of pulmonary c-Cbl and tyrosine phosphorylation status in CDH(+) on D18 and D21. Confocal-immunofluorescence analysis confirmed decreased c-Cbl expression in CDH(+) on D18 and D21 mainly in the distal alveolar epithelium compared to controls. Decreased pulmonary c-Cbl gene and protein expression accompanied by a decreased tyrosine phosphorylation status during the late stages of fetal lung development may result in reduced c-Cbl activity, and thus interfere with the FGFR-mediated alveolarization in the nitrofen-induced CDH model.

  13. RNA binding protein RNPC1 inhibits breast cancer cells metastasis via activating STARD13-correlated ceRNA network.

    PubMed

    Zhang, Zhiting; Guo, Qianqian; Zhang, Shufang; Xiang, Chenxi; Guo, Xinwei; Zhang, Feng; Gao, Lanlan; Ni, Haiwei; Xi, Tao; Zheng, Lufeng

    2018-05-07

    RNA binding proteins (RBPs) are pivotal post-transcriptional regulators. RNPC1, an RBP, acts as a tumor suppressor through binding and regulating the expression of target genes in cancer cells. This study disclosed that RNPC1 expression was positively correlated with breast cancer patients' relapse free and overall survival, and RNPC1suppressed breast cancer cells metastasis. Mechanistically, RNPC1 promoting a competing endogenous network (ceRNA) crosstalk between STARD13, CDH5, HOXD10, and HOXD1 (STARD13-correlated ceRNA network) that we previously confirmed in breast cancer cells through stabilizing the transcripts and thus facilitating the expression of these four genes in breast cancer cells. Furthermore, RNPC1 overexpression restrained the promotion of STARD13, CDH5, HOXD10, and HOXD1 knockdown on cell metastasis. Notably, RNPC1 expression was positively correlated with CDH5, HOXD1 and HOXD10 expression in breast cancer tissues, and attenuated adriamycin resistance. Taken together, these results identified that RNPC1 could inhibit breast cancer cells metastasis via promoting STARD13-correlated ceRNA network.

  14. Cd(II) and Zn(II) complexes of two new hexadentate Schiff base ligands derived from different aldehydes and ethanol amine; X-ray crystal structure, IR and NMR spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Rezaeivala, Majid; Albeheshti, Leila

    2014-11-01

    Four new [Cd(H2L1)(NO3)]ClO4 (1), [Zn(H2L1)](ClO4)2 (2), [Cd(H2L2)(NO3)]ClO4 (3), and [Zn(H2L2)](ClO4)2 (4), complexes were prepared by the reaction of two new Schiff base ligands and Cd(II) and Zn(II) metal ions in equimolar ratios. The ligands H2L1 and H2L2 were synthesized by reaction of 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde and/or 2-[2-(3-formyl phenoxy)propoxy]benzaldehyde and ethanol amine and characterized by IR, 1H and 13C NMR spectroscopy. All complexes were characterized by IR, 1H and 13C NMR, COSY, and elemental analysis. Also, the complex 1 was characterized by X-ray in addition to the above methods. The X-ray crystal structure of compound 1 showed that all nitrogen and oxygen atoms of ligand (N2O4) and a molecule of nitrate with two donor oxygen atom have been coordinated to the metal ion and the Cd(II) ion is in an eight-coordinate environment that is best described as a distorted dodecahedron geometry.

  15. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers.

    PubMed

    van der Post, Rachel S; Vogelaar, Ingrid P; Carneiro, Fátima; Guilford, Parry; Huntsman, David; Hoogerbrugge, Nicoline; Caldas, Carlos; Schreiber, Karen E Chelcun; Hardwick, Richard H; Ausems, Margreet G E M; Bardram, Linda; Benusiglio, Patrick R; Bisseling, Tanya M; Blair, Vanessa; Bleiker, Eveline; Boussioutas, Alex; Cats, Annemieke; Coit, Daniel; DeGregorio, Lynn; Figueiredo, Joana; Ford, James M; Heijkoop, Esther; Hermens, Rosella; Humar, Bostjan; Kaurah, Pardeep; Keller, Gisella; Lai, Jennifer; Ligtenberg, Marjolijn J L; O'Donovan, Maria; Oliveira, Carla; Pinheiro, Hugo; Ragunath, Krish; Rasenberg, Esther; Richardson, Susan; Roviello, Franco; Schackert, Hans; Seruca, Raquel; Taylor, Amy; Ter Huurne, Anouk; Tischkowitz, Marc; Joe, Sheena Tjon A; van Dijck, Benjamin; van Grieken, Nicole C T; van Hillegersberg, Richard; van Sandick, Johanna W; Vehof, Rianne; van Krieken, J Han; Fitzgerald, Rebecca C

    2015-06-01

    Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic surveillance in experienced centres is recommended for those opting not to have gastrectomy at the current time, those with CDH1 variants of uncertain significance and those that fulfil hereditary DGC criteria without germline CDH1 mutations. Expert histopathological confirmation of (early) signet ring cell carcinoma is recommended. The impact of gastrectomy and mastectomy should not be underestimated; these can have severe consequences on a psychological, physiological and metabolic level. Nutritional problems should be carefully monitored. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers

    PubMed Central

    van der Post, Rachel S; Vogelaar, Ingrid P; Carneiro, Fátima; Guilford, Parry; Huntsman, David; Hoogerbrugge, Nicoline; Caldas, Carlos; Schreiber, Karen E Chelcun; Hardwick, Richard H; Ausems, Margreet G E M; Bardram, Linda; Benusiglio, Patrick R; Bisseling, Tanya M; Blair, Vanessa; Bleiker, Eveline; Boussioutas, Alex; Cats, Annemieke; Coit, Daniel; DeGregorio, Lynn; Figueiredo, Joana; Ford, James M; Heijkoop, Esther; Hermens, Rosella; Humar, Bostjan; Kaurah, Pardeep; Keller, Gisella; Lai, Jennifer; Ligtenberg, Marjolijn J L; O'Donovan, Maria; Oliveira, Carla; Ragunath, Krish; Rasenberg, Esther; Richardson, Susan; Roviello, Franco; Schackert, Hans; Seruca, Raquel; Taylor, Amy; ter Huurne, Anouk; Tischkowitz, Marc; Joe, Sheena Tjon A; van Dijck, Benjamin; van Grieken, Nicole C T; van Hillegersberg, Richard; van Sandick, Johanna W; Vehof, Rianne; van Krieken, J Han; Fitzgerald, Rebecca C

    2015-01-01

    Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic surveillance in experienced centres is recommended for those opting not to have gastrectomy at the current time, those with CDH1 variants of uncertain significance and those that fulfil hereditary DGC criteria without germline CDH1 mutations. Expert histopathological confirmation of (early) signet ring cell carcinoma is recommended. The impact of gastrectomy and mastectomy should not be underestimated; these can have severe consequences on a psychological, physiological and metabolic level. Nutritional problems should be carefully monitored. PMID:25979631

  17. Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice.

    PubMed

    Miyasaka, Yuki; Suzuki, Sari; Ohshiba, Yasuhiro; Watanabe, Kei; Sagara, Yoshihiko; Yasuda, Shumpei P; Matsuoka, Kunie; Shitara, Hiroshi; Yonekawa, Hiromichi; Kominami, Ryo; Kikkawa, Yoshiaki

    2013-01-01

    The waltzer (v) mouse mutant harbors a mutation in Cadherin 23 (Cdh23) and is a model for Usher syndrome type 1D, which is characterized by congenital deafness, vestibular dysfunction, and prepubertal onset of progressive retinitis pigmentosa. In mice, functionally null Cdh23 mutations affect stereociliary morphogenesis and the polarity of both cochlear and vestibular hair cells. In contrast, the murine Cdh23(ahl) allele, which harbors a hypomorphic mutation, causes an increase in susceptibility to age-related hearing loss in many inbred strains. We produced congenic mice by crossing mice carrying the v niigata (Cdh23(v-ngt)) null allele with mice carrying the hypomorphic Cdh23(ahl) allele on the C57BL/6J background, and we then analyzed the animals' balance and hearing phenotypes. Although the Cdh23(v-ngt/ahl) compound heterozygous mice exhibited normal vestibular function, their hearing ability was abnormal: the mice exhibited higher thresholds of auditory brainstem response (ABR) and rapid age-dependent elevation of ABR thresholds compared with Cdh23(ahl/ahl) homozygous mice. We found that the stereocilia developed normally but were progressively disrupted in Cdh23(v-ngt/ahl) mice. In hair cells, CDH23 localizes to the tip links of stereocilia, which are thought to gate the mechanoelectrical transduction channels in hair cells. We hypothesize that the reduction of Cdh23 gene dosage in Cdh23(v-ngt/ahl) mice leads to the degeneration of stereocilia, which consequently reduces tip link tension. These findings indicate that CDH23 plays an important role in the maintenance of tip links during the aging process.

  18. Targeting CDH17 Suppresses Tumor Progression in Gastric Cancer by Downregulating Wnt/β-Catenin Signaling

    PubMed Central

    Ren, Chao; Zeng, Zhao-lei; Wu, Wen-jing; Luo, Hui-yan; Zhou, Zhi-wei; Xu, Rui-hua

    2013-01-01

    Purpose Gastric cancer remains one of the leading causes of cancer death worldwide. Patients usually present late with local invasion or metastasis, for which there are no effective therapies available. Following previous studies that identified the adhesion molecule Cadherin-17(CDH17) as a potential marker for gastric carcinoma, we performed proof-of-principle studies to develop rational therapeutic approaches targeting CDH17 for treating this disease. Methods Immunohistochemistry was used to study the expression of CDH17 in 156 gastric carcinomas, and the relationship between survival and CDH17 expression was studied by multivariate analyses. The effect of RNA interference–mediated knockdown of CDH17 on proliferation of gastric carcinoma cell lines was examined in vitro and in vivo, as well as the effects on downstream signaling by immunoblotting. Results CDH17 was consistently up-regulated in human gastric cancers, and overall survival in patients with CDH17 upregulation was poorer than in those without expression of this gene (5 yrs overall survival rate 29.0% vs. 45.0%, P<0.01). Functional assays demonstrated that CDH17 knockdown inhibited cell proliferation, adhesion, migration, invasion, clonogenicity and induce G0/G1 arrest. In mice, shRNA-mediated CDH17 knockdown markedly inhibits tumor growth; intratumoral injection of CDH17 shRNAs results in significant antitumor effects on transplanted tumor models. The antitumor mechanisms underlying CDH17 inhibition involve inactivation of Wnt/β-catenin signaling. Conclusion Our results identify CDH17 as a biomarker of gastric carcinoma and attractive therapeutic target for this aggressive malignancy. PMID:23554857

  19. Perturbations in Endothelial Dysfunction-Associated Pathways in the Nitrofen-Induced Congenital Diaphragmatic Hernia Model.

    PubMed

    Zhaorigetu, Siqin; Bair, Henry; Lu, Jonathan; Jin, Di; Olson, Scott D; Harting, Matthew T

    2018-01-01

    Although it is well known that nitrofen induces congenital diaphragmatic hernia (CDH), including CDH-associated lung hypoplasia and pulmonary hypertension (PH) in rodents, the mechanism of pathogenesis remains largely unclear. It has been reported that pulmonary artery (PA) endothelial cell (EC) dysfunction contributes to the development of PH in CDH. Thus, we hypothesized that there is significant alteration of endothelial dysfunction-associated proteins in nitrofen-induced CDH PAs. Pregnant SD rats received either nitrofen or olive oil on gestational day 9.5. The newborn rats were sacrificed and divided into a CDH (n = 81) and a control (n = 23) group. After PA isolation, the expression of PA endothelial dysfunction-associated proteins was assessed on Western blot and immunostaining. We demonstrate that the expression of C-reactive protein and endothelin-1 and its receptors, ETA and ETB, were significantly increased in the CDH PAs. Levels of phosphorylated myosin light chain were significantly elevated, but those of phosphorylated endothelial nitric oxide synthase, caveolin-1, and mechanistic target of rapamycin were significantly decreased in the CDH PAs. In this work, we elucidate alterations in the expression of endothelial dysfunction-associated proteins specific to nitrofen-induced CDH rodent PAs, thereby advancing our understanding of the critical role of endothelial dysfunction-associated pathways in the pathogenesis of nitrofen-induced CDH. © 2017 S. Karger AG, Basel.

  20. Direct electron transfer of Phanerochaete chrysosporium cellobiose dehydrogenase at platinum and palladium nanoparticles decorated carbon nanotubes modified electrodes.

    PubMed

    Bozorgzadeh, Somayyeh; Hamidi, Hassan; Ortiz, Roberto; Ludwig, Roland; Gorton, Lo

    2015-10-07

    In the present work, platinum and palladium nanoparticles (PtNPs and PdNPs) were decorated on the surface of multi-walled carbon nanotubes (MWCNTs) by a simple thermal decomposition method. The prepared nanohybrids, PtNPs-MWCNTs and PdNPs-MWCNTs, were cast on the surface of spectrographic graphite electrodes and then Phanerochaete chrysosporium cellobiose dehydrogenase (PcCDH) was adsorbed on the modified layer. Direct electron transfer between PcCDH and the nanostructured modified electrodes was studied using flow injection amperometry and cyclic voltammetry. The maximum current responses (Imax) and the apparent Michaelis-Menten constants (K) for the different PcCDH modified electrodes were calculated by fitting the data to the Michaelis-Menten equation and compared. The sensitivity towards lactose was 3.07 and 3.28 μA mM(-1) at the PcCDH/PtNPs-MWCNTs/SPGE and PcCDH/PdNPs-MWCNTs/SPGE electrodes, respectively, which were higher than those measured at the PcCDH/MWCNTs/SPGE (2.60 μA mM(-1)) and PcCDH/SPGE (0.92 μA mM(-1)). The modified electrodes were additionally tested as bioanodes for biofuel cell applications.

  1. ICI 182,780 induces P-cadherin overexpression in breast cancer cells through chromatin remodelling at the promoter level: a role for C/EBPbeta in CDH3 gene activation.

    PubMed

    Albergaria, André; Ribeiro, Ana Sofia; Pinho, Sandra; Milanezi, Fernanda; Carneiro, Vítor; Sousa, Bárbara; Sousa, Sónia; Oliveira, Carla; Machado, José Carlos; Seruca, Raquel; Paredes, Joana; Schmitt, Fernando

    2010-07-01

    CDH3/P-cadherin is a classical cadherin. Overexpression of which has been associated with proliferative lesions of high histological grade, decreased cell polarity and poor survival of patients with breast cancer. In vitro studies showed that it can be up-regulated by ICI 182,780, suggesting that the lack of ERalpha signalling is responsible for the aberrant P-cadherin overexpression and for its role in inducing breast cancer cell invasion and migration. However, the mechanism by which ER-signalling inhibition leads to P-cadherin expression is still unknown. The aim of this study was to explore the molecular mechanism linking the ERalpha-signalling and P-cadherin-regulated expression in breast cancer cell lines. This study showed that ICI 182,780 is able to increase CDH3 promoter activity, inducing high levels of the active chromatin mark H3 lysine 4 dimethylation. We also observed, for the first time, that the transcription factor C/EBPbeta is able to up-regulate CDH3 promoter activity in breast cancer cells. Moreover, we showed that the expression of P-cadherin and C/EBPbeta are highly associated in human breast carcinomas and linked with a worse prognosis of breast cancer patients. This study demonstrates the existence of an epigenetic regulation by which ICI 182,780 up-regulates P-cadherin expression in MCF-7/AZ breast cancer cells through chromatin remodelling at CDH3 promoter, bringing forward the growing evidence that ERalpha signalling-abrogation by anti-oestrogens is able to induce the expression of ERalpha-repressed genes which, in the appropriate cell biology context, may contribute to a breast cancer cell invasion phenotype.CDH3 GenBank accession no. NT_010498.

  2. Kurdistan

    PubMed

    Menbari, Mohammad Nazir; Nasseri, Sherko; Menbari, Neda; Mehdiabadi, Ramin; Alipur, Yousef; Roshani, Daem

    2017-06-25

    Introduction: Gastric cancer (GC) is the fourth most common type of neoplasm and the second cause of malignancy-related death across much of the world. Complex multi-factorial processes are involved in its genesis, classified in two determinant clusters: non-genetic and genetic . Variation in CDH1 gene expression may play an important role in increasing risk of diffuse and intestinal subtypes of GC. This tumor suppressor gene, located on chromosome 16q22.1, encodes a trans membrane glycoprotein called epithelial cadherin (E-cadherin). Materials and Methods: In this historical cohort study, from June 2004 to Journey 2005 we collected 50 samples from Kurdish patients with stage II pathologically diagnosed gastric cancer that underwent surgery. Tumor tissues were paraffin-embedded along with 54 control samples from non-ulcer dyspepsia (NUD) cases undergoing upper gastrointestinal endoscopy. Three biopsies were captured by endoscopy from each individual’s gastric antrum. Result: The mean age of the patients was 59.5±2 years. Some 23 cases (53.4%) had the CC genotype, 19 AC and 1 AA. H.pylori infection was noted in 30 patients (69%). Survival rates of gastric cancer patients were 90.7% in the first year, 39.5% in the second year and 6.9% in the third year. Female patients had higher survival rates (P=0.004). Conclusion: In this study we found that frequencies of -160(C>A) CDH1 genotypes were not comparable in H.pylori-infected and H.pylori-uninfected subjects in both case and control groups. These findings suggest that -160 (C>A) CDH1 polymorphism is not related with H.pylori infection susceptibility. In addition we found no significant relationship between the CDH1 -160(C/A) promoter polymorphism with predisposition to gastric cancer. Creative Commons Attribution License

  3. Gene expression analysis in hypoplastic lungs in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Burgos, Carmen Mesas; Uggla, Andreas Ringman; Fagerström-Billai, Fredrik; Eklöf, Ann-Christine; Frenckner, Björn; Nord, Magnus

    2010-07-01

    Pulmonary hypoplasia and persistent pulmonary hypertension are the main causes of mortality and morbidity in newborns with congenital diaphragmatic hernia (CDH). Nitrofen is well known to induce CDH and lung hypoplasia in a rat model, but the mechanism remains unknown. To increase the understanding of the underlying pathogenesis of CDH, we performed a global gene expression analysis using microarray technology. Pregnant rats were given 100 mg nitrofen on gestational day 9.5 to create CDH. On day 21, fetuses after nitrofen administration and control fetuses were removed; and lungs were harvested. Global gene expression analysis was performed using Affymetrix Platform and the RAE 230 set arrays. For validation of microarray data, we performed real-time polymerase chain reaction and Western blot analysis. Significantly decreased genes after nitrofen administration included several growth factors and growth factors receptors involved in lung development, transcription factors, water and ion channels, and genes involved in angiogenesis and extracellular matrix. These results could be confirmed with real-time polymerase chain reaction and protein expression studies. The pathogenesis of lung hypoplasia and CDH in the nitrofen model includes alteration at a molecular level of several pathways involved in lung development. The complexity of the nitrofen mechanism of action reminds of human CDH; and the picture is consistent with lung hypoplasia and vascular disease, both important contributors to the high mortality and morbidity in CDH. Increased understanding of the molecular mechanisms that control lung growth may be the key to develop novel therapeutic techniques to stimulate pre- and postnatal lung growth. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Conditional deletion of Cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors.

    PubMed

    Tantra, M; Guo, L; Kim, J; Zainolabidin, N; Eulenburg, V; Augustine, G J; Chen, A I

    2018-02-15

    Inhibitory interneurons mediate the gating of synaptic transmission and modulate the activities of neural circuits. Disruption of the function of inhibitory networks in the forebrain is linked to impairment of social and cognitive behaviors, but the involvement of inhibitory interneurons in the cerebellum has not been assessed. We found that Cadherin 13 (Cdh13), a gene implicated in autism spectrum disorder and attention-deficit hyperactivity disorder, is specifically expressed in Golgi cells within the cerebellar cortex. To assess the function of Cdh13 and utilize the manipulation of Cdh13 expression in Golgi cells as an entry point to examine cerebellar-mediated function, we generated mice carrying Cdh13-floxed alleles and conditionally deleted Cdh13 with GlyT2::Cre mice. Loss of Cdh13 results in a decrease in the expression/localization of GAD67 and reduces spontaneous inhibitory postsynaptic current (IPSC) in cerebellar Golgi cells without disrupting spontaneous excitatory postsynaptic current (EPSC). At the behavioral level, loss of Cdh13 in the cerebellum, piriform cortex and endopiriform claustrum have no impact on gross motor coordination or general locomotor behaviors, but leads to deficits in cognitive and social abilities. Mice lacking Cdh13 exhibit reduced cognitive flexibility and loss of preference for contact region concomitant with increased reciprocal social interactions. Together, our findings show that Cdh13 is critical for inhibitory function of Golgi cells, and that GlyT2::Cre-mediated deletion of Cdh13 in non-executive centers of the brain, such as the cerebellum, may contribute to cognitive and social behavioral deficits linked to neurological disorders. © 2018 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  5. BMP4 and LGL1 are Down Regulated in an Ovine Model of Congenital Diaphragmatic Hernia

    PubMed Central

    Emmerton-Coughlin, Heather M. A.; Martin, K. Kathryn; Chiu, Jacky S. S.; Zhao, Lin; Scott, Leslie A.; Regnault, Timothy R. H.; Bütter, Andreana

    2014-01-01

    Background/Purpose: The molecular pathophysiology of lung hypoplasia in congenital diaphragmatic hernia (CDH) remains poorly understood. The Wnt signaling pathway and downstream targets, such as bone morphogenetic proteins (BMP) 4 and other factors such as late gestation lung protein 1 (LGL1), are essential to normal lung development. Nitrofen-induced hypoplastic CDH rodent lungs demonstrate down regulation of the Wnt pathway including BMP4 and reduced LGL1 expression. The aim of the current study was to examine the molecular pathophysiology associated with a surgically induced CDH in an ovine model. Methods: Left thoracotomy was performed at 80 days in 14 fetal sheep; CDH was created in seven experimental animals. Lungs were harvested at 136 days (term = 145 days). Lung weight (LW) and mean terminal bronchiole density (MTBD) were measured to determine the degree of pulmonary hypoplasia. Quantitative real time PCR was undertaken to analyze Wnt2, Wnt7b, BMP4, and LGL1 mRNA expression. Results: Total LW was decreased while MTBD was increased in the CDH group (p < 0.05), confirming pulmonary hypoplasia. BMP4 and LGL1 mRNA was significantly reduced in CDH lungs (p < 0.05). Wnt2 mRNA was decreased, although not significantly (p < 0.06). Conclusion: For the first time, down regulation of BMP4 and LGL1 are reported in an ovine CDH model. In contrast to other animal models, these changes are persistent to near term. These findings suggest that mechanical compression from herniated viscera may play a more important role in causing pulmonary hypoplasia in CDH, rather than a primary defect in lung organogenesis. PMID:25593968

  6. Decreased Endoglin expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Zimmer, Julia; Takahashi, Toshiaki; Hofmann, Alejandro D; Puri, Prem

    2017-02-01

    Pulmonary hypertension (PH) remains a therapeutical challenge in neonates born with congenital diaphragmatic hernia (CDH). Endoglin (Eng), an auxiliary receptor component of the transforming growth factor β (TGFβ) signalling pathway, is expressed mainly by endothelial cells and has been found to be involved in angiogenesis and vascular remodelling. Genetic studies have linked TGFβ and Eng mutations to human arterial PH and other cardiovascular syndromes. Eng interacts with the TGFβ receptors 1 and 2 (Tgfβr1, Tgfβr2). We designed this study to investigate the hypothesis that Eng is altered in the pulmonary vasculature of rats with nitrofen-induced CDH subjected to its interdependency with Tgfβr1 and Tgfβr2. After ethical approval (Rec 913b), time-pregnant Sprague-Dawley rats received either nitrofen or olive oil on gestational day (D9). The foetuses (n = 22) were sacrificed and divided into CDH and control group on D21. Gene and protein expressions of Eng, Tgfβr1 and Tgfβr2 were assessed via qRT-PCR and western blotting. Immunofluorescence staining for Eng was combined with CD34 to evaluate Eng expression in the pulmonary vasculature. Relative mRNA levels of Eng, Tgfβr1 and Tgfβr2 were significantly downregulated in CDH lungs compared to controls (Eng CDH 0.341 ± 0.022, Eng Ctrl 0.471 ± 0.031, p = 0.0015; Tgfβr1 CDH 0.161 ± 0.008, Tgfβr1 Ctrl 0.194 ± 0.01, p = 0.0114; Tgfβr2 CDH 0.896 ± 0.099, Tgfβr2 Ctrl 1.379 ± 0.081, p = 0.0006) Western blotting confirmed the reduced pulmonary protein expression of these three proteins in the CDH lungs. A markedly diminished endothelial expression of Eng in the pulmonary vasculature of nitrofen-exposed foetuses compared to controls was seen in laser scanning confocal-microscopy. This study demonstrates for the first time a reduced expression of Endoglin in the pulmonary vasculature of nitrofen-induced CDH. Abnormal Eng/Tgfβr1/Tgfβr2 signalling may contribute to impaired vascular remodelling and development of PH in this CDH animal model.

  7. Computer simulation analysis of normal and abnormal development of the mammalian diaphragm

    PubMed Central

    Fisher, Jason C; Bodenstein, Lawrence

    2006-01-01

    Background Congenital diaphragmatic hernia (CDH) is a birth defect with significant morbidity and mortality. Knowledge of diaphragm morphogenesis and the aberrations leading to CDH is limited. Although classical embryologists described the diaphragm as arising from the septum transversum, pleuroperitoneal folds (PPF), esophageal mesentery and body wall, animal studies suggest that the PPF is the major, if not sole, contributor to the muscular diaphragm. Recently, a posterior defect in the PPF has been identified when the teratogen nitrofen is used to induce CDH in fetal rodents. We describe use of a cell-based computer modeling system (Nudge++™) to study diaphragm morphogenesis. Methods and results Key diaphragmatic structures were digitized from transverse serial sections of paraffin-embedded mouse embryos at embryonic days 11.5 and 13. Structure boundaries and simulated cells were combined in the Nudge++™ software. Model cells were assigned putative behavioral programs, and these programs were progressively modified to produce a diaphragm consistent with the observed anatomy in rodents. Homology between our model and recent anatomical observations occurred under the following simulation conditions: (1) cell mitoses are restricted to the edge of growing tissue; (2) cells near the chest wall remain mitotically active; (3) mitotically active non-edge cells migrate toward the chest wall; and (4) movement direction depends on clonal differentiation between anterior and posterior PPF cells. Conclusion With the PPF as the sole source of mitotic cells, an early defect in the PPF evolves into a posteromedial diaphragm defect, similar to that of the rodent nitrofen CDH model. A posterolateral defect, as occurs in human CDH, would be more readily recreated by invoking other cellular contributions. Our results suggest that recent reports of PPF-dominated diaphragm morphogenesis in the rodent may not be strictly applicable to man. The ability to recreate a CDH defect using a combination of experimental data and testable hypotheses gives impetus to simulation modeling as an adjunct to experimental analysis of diaphragm morphogenesis. PMID:16483386

  8. Computer simulation analysis of normal and abnormal development of the mammalian diaphragm.

    PubMed

    Fisher, Jason C; Bodenstein, Lawrence

    2006-02-17

    Congenital diaphragmatic hernia (CDH) is a birth defect with significant morbidity and mortality. Knowledge of diaphragm morphogenesis and the aberrations leading to CDH is limited. Although classical embryologists described the diaphragm as arising from the septum transversum, pleuroperitoneal folds (PPF), esophageal mesentery and body wall, animal studies suggest that the PPF is the major, if not sole, contributor to the muscular diaphragm. Recently, a posterior defect in the PPF has been identified when the teratogen nitrofen is used to induce CDH in fetal rodents. We describe use of a cell-based computer modeling system (Nudge++) to study diaphragm morphogenesis. Key diaphragmatic structures were digitized from transverse serial sections of paraffin-embedded mouse embryos at embryonic days 11.5 and 13. Structure boundaries and simulated cells were combined in the Nudge++ software. Model cells were assigned putative behavioral programs, and these programs were progressively modified to produce a diaphragm consistent with the observed anatomy in rodents. Homology between our model and recent anatomical observations occurred under the following simulation conditions: (1) cell mitoses are restricted to the edge of growing tissue; (2) cells near the chest wall remain mitotically active; (3) mitotically active non-edge cells migrate toward the chest wall; and (4) movement direction depends on clonal differentiation between anterior and posterior PPF cells. With the PPF as the sole source of mitotic cells, an early defect in the PPF evolves into a posteromedial diaphragm defect, similar to that of the rodent nitrofen CDH model. A posterolateral defect, as occurs in human CDH, would be more readily recreated by invoking other cellular contributions. Our results suggest that recent reports of PPF-dominated diaphragm morphogenesis in the rodent may not be strictly applicable to man. The ability to recreate a CDH defect using a combination of experimental data and testable hypotheses gives impetus to simulation modeling as an adjunct to experimental analysis of diaphragm morphogenesis.

  9. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    NASA Astrophysics Data System (ADS)

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B. Martin; Ludwig, Roland; Divne, Christina

    2015-07-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.

  10. Incidence, predictors and outcomes of congenital diaphragmatic hernia: a population-based study of 32 million births in the United States.

    PubMed

    Balayla, Jacques; Abenhaim, Haim A

    2014-09-01

    To evaluate the incidence, risk factors and neonatal outcomes associated with a congenital diaphragmatic hernia (CDH). We conducted a population-based cohort study using the CDC's Linked Birth-Infant Death and Fetal Death data files on all births and foetal deaths in USA between 1995 and 2002. We estimated the yearly incidence of CDH and measured its adjusted effect on various outcomes using unconditional logistic regression analysis. About 32,145,448 births during the 8-year study period met the study's inclusion criteria. The incidence of CDH was 1.93/10,000 births. Risk factors for the development of CDH included foetal male gender [OR 1.12, 95% CI: 1.06, 1.17], maternal age beyond 40 [OR 1.51, 95% CI: 1.26, 1.80], Caucasian ethnicity [OR 1.15, 95% CI: 1.10, 1.21], smoking [OR 1.34, 95% CI: 1.22, 1.46] and alcohol use during pregnancy [OR 1.37, 95% CI: 1.05, 1.79]. As compared to foetuses with no CDH, foetuses with CDH were at an increased risk of preterm birth [OR 2.90, 95% CI: 2.72, 3.11], intrauterine growth restriction [OR 3.84, 95% CI: 3.51, 4.18], stillbirth [OR 9.65, 95% CI: 8.20, 11.37] and overall infant death [OR: 94.80, 95% CI: 88.78, 101.23]. The 1-year mortality was 45.89%. Congenital diaphragmatic hernia is strongly associated with an increased risk of adverse pregnancy, foetal and neonatal outcomes. These findings may be helpful in counselling pregnancies affected by CDH, and may aid in the understanding of the burden of this condition at the public health level.

  11. Creative Activities in Music – A Genome-Wide Linkage Analysis

    PubMed Central

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4. PMID:26909693

  12. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  13. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  14. Imbalance of caveolin-1 and eNOS expression in the pulmonary vasculature of experimental diaphragmatic hernia.

    PubMed

    Hofmann, Alejandro; Gosemann, Jan-Hendrik; Takahashi, Toshiaki; Friedmacher, Florian; Duess, Johannes W; Puri, Prem

    2014-08-01

    Caveolin-1 (Cav-1) exerts major regulatory functions on intracellular signaling pathways originating at the plasma membrane. Cav-1 is a key regulator in adverse lung remodeling and the development of pulmonary hypertension (PH) regulating vasomotor tone through its ability to reduce nitric oxide (NO) production. This low-output endothelial NO synthase (eNOS) derived NO maintains normal pulmonary vascular homeostasis. Cav-1 deficiency leads to increased bioavailability of NO, which has been linked to increased nitrosative stress. Inhibition of eNOS reduced oxidant production and reversed PH, supporting the concept that Cav-1 regulation of eNOS activity is crucial to endothelial homeostasis in lungs. We designed this study to investigate the hypothesis that expression of Cav-1 is downregulated while eNOS expression is upregulated by the pulmonary endothelium in the nitrofen-induced congenital diaphragmatic hernia (CDH). Pregnant rats were exposed to nitrofen or vehicle on day 9.5 (D9.5). Fetuses were sacrificed on D21 and divided into nitrofen and control groups. Quantitative real-time polymerase chain reaction, Western blotting, and confocal immunofluorescence were performed to determine pulmonary gene expression levels and protein expression of Cav-1 and eNOS. Pulmonary Cav-1 gene expression levels were significantly decreased, while eNOS gene expression was significantly increased in nitrofen-induced CDH(+). Western blotting and confocal microscopy revealed decreased pulmonary Cav-1 protein expression, while eNOS protein expression was increased in CDH(+) compared to controls. The striking evidence of markedly decreased gene and protein expression of Cav-1 with concurrently increased eNOS gene and protein expression in the pulmonary vasculature suggests that activation of eNOS secondary to Cav-1 deficiency may play an important role in the pathogenesis of PH in the nitrofen-induced CDH. © 2014 Wiley Periodicals, Inc.

  15. Risk factors for congenital diaphragmatic hernia in the Bogota birth defects surveillance and follow-up program, Colombia.

    PubMed

    García, Ana M; Machicado, S; Gracia, G; Zarante, I M

    2016-03-01

    The mortality rate for congenital diaphragmatic hernia (CDH) remains high and prevention efforts are limited by the lack of known risk factors. The aim of this study was to determine prevalence, risk factors, and neonatal results associated with CDH on a surveillance system hospital-based in Bogotá, Colombia. The data used in this study were obtained from The Bogota Birth Defects Surveillance and Follow-up Program (BBDSFP), between January 2001 and December 2013. With 386,419 births, there were 81 cases of CDH. A case-control methodology was conducted with 48 of the total cases of CDH and 192 controls for association analysis. The prevalence of CDH was 2.1 per 10,000 births. In the case-control analysis, risk factors found were maternal age ≥35 years (OR, 33.53; 95 % CI, 7.02-160.11), infants with CDH were more likely to be born before 37 weeks of gestation (OR, 5.57; 95 % CI, 2.05-15.14), to weigh less than 2500 g at birth (OR, 9.05; 95 % CI, 3.51-23.32), and be small for gestational age (OR, 5.72; 95 % CI, 2.18-14.99) with a high rate of death before hospital discharge in the CDH population (CDH: 38 % vs BBDSFP: <1 %; p < 0.001). The prevalence of CDH calculated was similar to the one reported in the literature. CDH is strongly associated with a high rate of death before hospital discharge and the risk factors found were maternal age ≥35 years, preterm birth, be small for gestational age, and have low weight at birth. These neonatal characteristics in developing countries would help to identify early CDH. Prevention efforts have been limited by the lack of known risk factors and established epidemiological profiles, especially in developing countries.

  16. Prenatal diagnosis of two fetuses with deletions of 8p23.1, critical region for congenital diaphragmatic hernia and heart defects.

    PubMed

    Keitges, Elisabeth A; Pasion, Romela; Burnside, Rachel D; Mason, Carla; Gonzalez-Ruiz, Antonio; Dunn, Teresa; Masiello, Meredith; Gebbia, Joseph A; Fernandez, Carlos O; Risheg, Hiba

    2013-07-01

    Microdeletions of 8p23.1 are mediated by low copy repeats and can cause congenital diaphragmatic hernia (CDH) and cardiac defects. Within this region, point mutations of the GATA4 gene have been shown to cause cardiac defects. However, the cause of CDH in these deletions has been difficult to determine due to the paucity of mutations that result in CDH, the lack of smaller deletions to refine the region and the reduced penetrance of CDH in these large deletions. Mice deficient for one copy of the Gata4 gene have been described with CDH and heart defects suggesting mutations in Gata4 can cause the phenotype in mice. We report on the SNP microarray analysis on two fetuses with deletions of 8p23.1. The first had CDH and a ventricular septal defect (VSD) on ultrasonography and a family history of a maternal VSD. Microarray analysis detected a 127-kb deletion which included the GATA4 and NEIL2 genes which was inherited from the mother. The second fetus had an incomplete atrioventricular canal defect on ultrasonography. Microarray analysis showed a 315-kb deletion that included seven genes, GATA4, NEIL2, FDFT1, CTSB, DEFB136, DEFB135, and DEFB134. These results suggest that haploinsufficiency of the two genes in common within 8p23.1; GATA4 and NEIL2 can cause CDH and cardiac defects in humans. Copyright © 2013 Wiley Periodicals, Inc.

  17. Up-regulation of Wnt5a gene expression in the nitrofen-induced hypoplastic lung.

    PubMed

    Doi, Takashi; Puri, Prem

    2009-12-01

    The pathogenesis of pulmonary hypoplasia in nitrofen-induced congenital diaphragmatic hernia (CDH) still remains unclear. Wnt signaling pathways play a critical role in lung development. Whereas canonical Wnt signaling regulates branching morphogenesis during early lung development, the noncanonical Wnt5a controls late lung morphogenesis, including patterning of distal airway and vascular tubulogenesis (alveolarization). Overexpression of Wnt5a in transgenic mice and in the chick has been reported to result in severe pulmonary hypoplasia. We designed this study to test the hypothesis that the pulmonary Wnt5a gene expression is up-regulated in late stages of lung morphogenesis in CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15, D18, and D21 and divided into 3 groups: control; nitrofen without CDH, CDH(-); and nitrofen with CDH, CDH(+) (n = 8 at each time-point, respectively). Wnt5a pulmonary gene expression was analyzed by real-time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to evaluate Wnt5a protein expression at each time-point. Pulmonary relative mRNA expression levels of Wnt5a were significantly increased in CDH(-) and CDH(+) at D18 (1.61 +/- 0.92 and 1.81 +/- 1.20, respectively) and D21 (2.40 +/- 0.74* and 2.65 +/- 0.35*, respectively) compared to controls at D18 and D21 (0.90 +/- 0.17* and 1.69 +/- 0.53**, respectively) (*P < .05, **P < .001 vs control ). Strong Wnt5a immunoreactivity was seen in the distal epithelium at D18 and D21 in nitrofen-induced hypoplastic lung compared to controls. Up-regulation of pulmonary Wnt5a gene expression in the late lung morphogenesis may interfere with patterning of alveolarization, causing pulmonary hypoplasia in the nitrofen-induced CDH.

  18. Stomach position in prediction of survival in left-sided congenital diaphragmatic hernia with or without fetoscopic endoluminal tracheal occlusion.

    PubMed

    Cordier, A-G; Jani, J C; Cannie, M M; Rodó, C; Fabietti, I; Persico, N; Saada, J; Carreras, E; Senat, M-V; Benachi, A

    2015-08-01

    To investigate the value of fetal stomach position in predicting postnatal outcome in left-sided congenital diaphragmatic hernia (CDH) with and without fetoscopic endoluminal tracheal occlusion (FETO). This was a retrospective review of CDH cases that were expectantly managed or treated with FETO, assessed from May 2008 to October 2013, in which we graded, on a scale of 1-4, stomach position on the four-chamber view of the heart with respect to thoracic structures. Logistic regression analysis was used to investigate the effect of management center (Paris, Brussels, Barcelona, Milan), stomach grading, observed-to-expected lung area-to-head circumference ratio (O/E-LHR), gestational age at delivery, birth weight in expectantly managed CDH, gestational ages at FETO and at removal and period of tracheal occlusion, on postnatal survival in CDH cases treated with FETO. We identified 67 expectantly managed CDH cases and 47 CDH cases that were treated with FETO. In expectantly managed CDH, stomach position and O/E-LHR predicted postnatal survival independently. In CDH treated with FETO, stomach position and gestational age at delivery predicted postnatal survival independently. In left-sided CDH with or without FETO, stomach position is predictive of postnatal survival. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  19. Mutation Profile of the CDH23 Gene in 56 Probands with Usher Syndrome Type I

    PubMed Central

    Oshima, A.; Jaijo, T.; Aller, E.; Millan, J.M.; Carney, C.; Usami, S.; Moller, C.; Kimberling, W.J.

    2008-01-01

    Mutations in the human gene encoding cadherin 23 (CDH23) cause Usher syndrome type 1D (USH1D) and nonsyndromic hearing loss. Individuals with Usher syndrome type I have profound congenital deafness, vestibular areflexia and usually begin to exhibit signs of RP in early adolescence. In the present study, we carried out the mutation analysis in all 69 exons of the CDH23 gene in 56 Usher type 1 probands already screened for mutations in MYO7A. A total of 18 of 56 subjects (32.1%) were observed to have one or two CDH23 variants that are presumed to be pathologic. Twenty one different pathologic genome variants were observed of which 15 were novel. Out of a total of 112 alleles, 31 (27.7%) were considered pathologic. Based on our results it is estimated that about 20% of patients with Usher syndrome type I have CDH23 mutations. PMID:18429043

  20. Combined overexpression of cadherin 6, cadherin 11 and cluster of differentiation 44 is associated with lymph node metastasis and poor prognosis in oral squamous cell carcinoma.

    PubMed

    Ma, Chao; Zhao, Ji-Zhi; Lin, Run-Tai; Zhou, Lian; Chen, Yong-Ning; Yu, Li-Jiang; Shi, Tian-Yin; Wang, Mu; Liu, Man-Man; Liu, Yao-Ran; Zhang, Tao

    2018-06-01

    Oral squamous cell carcinoma (OSCC) is a highly invasive lesion that frequently metastasizes to the cervical lymph nodes and is associated with a poor prognosis. Several adhesion factors, including cadherin 6 (CDH6), cadherin 11 (CDH11) and cluster of differentiation 44 (CD44), have been reported to be involved in the invasion and metastasis of multiple types of cancer. Therefore, the aim of the present study was to determine the expression of CDH6, CDH11 and CD44 in tumor tissues from patients with OSCC, and whether this was associated with the metastasis and survival of OSCC. The mRNA expression of the human tumor metastasis-related cytokines was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in OSCC tumors with or without lymph node metastasis (n=10/group). The expression of CDH6, CDH11 and CD44 in 101 OSCC and 10 normal oral mucosa samples was examined by immunohistochemical staining. The association between overall and disease-specific survival times of patients with OSCC and the expression of these three proteins was evaluated using Kaplan-Meier curves and the log-rank test. RT-qPCR results indicated that the mRNA expression of CDH6, CDH11 and CD44 was increased in OSCC patients with lymph node metastasis (2.93-, 2.01- and 1.92-fold; P<0.05). Overexpression of CDH6, CDH11 and CD44 was observed in 31/35 (89%), 25/35 (71%) and 31/35 (89%) patients, respectively. The number of OSCC patients with lymph node metastasis exhibiting CDH6, CDH11 and CD44 overexpression was significantly higher than the number of patients without lymph node metastasis exhibiting overexpression of these proteins (P=0.017, P=0.038 and P=0.007, respectively). OSCC patients with high co-expression of CDH6, CDH11 and CD44 exhibited lower disease-specific survival times (P=0.047; χ 2 =3.933) when compared with OSCC patients with low co-expression of these adhesion factors. CDH6, CDH11 and CD44 serve important roles in OSCC metastasis and the combined use of these factors as biomarkers may improve the accuracy of the prediction of cancer metastases and prognosis.

  1. [Management of chronic daily headache in children and adolescents].

    PubMed

    Cuvellier, J-C

    2009-01-01

    Chronic daily headache (CDH) affects 2 to 4% of adolescent females and 0,8 to 2% of adolescent males. CDH is diagnosed when headaches occur more than 4 hours a day, for greater than or equal to 15 headache days per month, over a period of 3 consecutive months, without an underlying pathology. It is manifested by severe intermittent headaches, that are migraine-like, as well as a chronic baseline headache. Silberstein and Lipton divided patients into four diagnostic categories: transformed migraine, chronic tension-type headache, new daily-persistent headache, and hemicrania continua. The second edition of the International Classification of Headache Disorders did not comprise any CDH category as such, but provided criteria for all four types of CDH: chronic migraine, chronic tension-type headache, new daily-persistent headache, and hemicrania continua. Evaluation of CDH needs to include a complete history and physical examination to identify any possibility of the headache representing secondary headaches. Children and adolescents with CDH frequently have sleep disturbance, pain at other sites, dizziness, medication-overuse headache and a psychiatric comorbidity (anxiety and mood disorders). CDH frequently results in school absence. CDH management plan is dictated by CDH subtype, the presence or absence of medication overuse, functional disability and presence of attacks of full-migraine superimposed. Reassuring, explaining, and educating the patient and family, starting prophylactic therapy and limiting aborting medications are the mainstay of treatment. It includes pharmacologic (acute and prophylactic therapy) and nonpharmacologic measures (biobehavioral management, biofeedback-assisted relaxation therapy, and psychologic or psychiatric intervention). Part of the teaching process must incorporate life-style changes, such as regulation of sleep and eating habits, regular exercise, avoidance of identified triggering factors and stress management. Emphasis must be placed on preventive measures rather than on analgesic or abortive strategies. Stressing the reintegration of the patient into school and family activities and assessing prognosis are other issues to address during the first visit. There are limited data evaluating the outcome of CDH in children and adolescents.

  2. Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw.

    PubMed

    Turbe-Doan, Annick; Arfi, Yonathan; Record, Eric; Estrada-Alvarado, Isabel; Levasseur, Anthony

    2013-06-01

    Cellobiose dehydrogenases (CDHs) are extracellular glycosylated haemoflavoenzymes produced by many different wood-degrading and phytopathogenic fungi. Putative cellobiose dehydrogenase genes are recurrently discovered by genome sequencing projects in various phylogenetically distinct fungi. The genomes from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina were screened for candidate cdh genes, and one and three putative gene models were evidenced, respectively. Two putative cdh genes were selected and successfully expressed for the first time in Aspergillus niger. CDH activity was measured for both constructions (CDHcc and CDHpa), and both recombinant CDHs were purified to homogeneity and subsequently characterised. Kinetic constants were determined for several carbohydrates including β-1,4-linked di- and oligosaccharides. Optimal temperature and pH were 60 °C and 5 for CDHcc and 65-70 °C and 6 for CDHpa. Both CDHs showed a broad range of pH stability between 4 and 8. The effect of both CDHs on saccharification of micronized wheat straw by an industrial Trichoderma reesei secretome was determined. The addition of each CDH systematically decreased the release of total reducing sugars, but to different extents and according to the CDH concentration. Analytical methods were carried out to quantify the release of glucose, xylose and gluconic acid. An increase of glucose and xylose was measured at a low CDHcc concentration. At moderated and high CDHcc and CDHpa concentrations, glucose was severely reduced with a concomitant increase of gluconic acid. In conclusion, these results give new insights into the physical and chemical parameters and diversity of basidiomycetous and ascomycetous CDHs. These findings also demonstrated that CDH drastically influenced the saccharification on a natural substrate, and thus, CDH origin, concentration and potential enzymatic partners should be carefully considered in future artificial secretomes for biofuel applications.

  3. Sera DNA Methylation of CDH1, DNMT3b and ESR1 Promoters as Biomarker for the Early Diagnosis of Hepatitis B Virus-Related Hepatocellular Carcinoma.

    PubMed

    Dou, Cheng-Yun; Fan, Yu-Chen; Cao, Chuang-Jie; Yang, Yang; Wang, Kai

    2016-04-01

    DNA methylation mainly affects tumor suppressor genes in the development of hepatocellular carcinoma (HCC). However, sera methylation of specific genes in hepatitis B virus (HBV)-related HCC remains unknown. The purpose of this study was to identify methylation frequencies of sera E-cadherin (CDH1), DNA methyltransferase 3b (DNMT3b) and estrogen receptor 1 (ESR1) promoter in HBV-related HCC and analyze the associated clinical significance. Methylation-specific PCR was used to determine the frequencies of DNA methylation for CDH1, DNMT3b and ESR1 genes in sera from 183 patients with HCC, 47 liver cirrhosis (LC), 126 chronic hepatitis B (CHB), and 50 normal controls (NCs). Significantly higher frequencies of methylation of CDH1, DNMT3b and ESR1 were found in HBV-related HCC compared with LC, CHB and NCs. Nodule numbers, tumor size and the presence of liver cirrhosis were significantly associated with gene methylation status in HBV-related HCC. Moreover, HBV may have a strong and enhanced effect on the concurrent methylation of CDH1, DNMT3b and ESR1 in HBV-related HCC. More importantly, combined methylation as a biomarker displayed significantly higher diagnostic value than AFP to discriminate HCC from CHB and LC. Aberrant sera DNA methylation of CDH1, DNMT3b and ESR1 gene promoters could be a biomarker in the early diagnosis of HBV-related HCC.

  4. Growth Patterns of Fetal Lung Volumes in Healthy Fetuses and Fetuses With Isolated Left-Sided Congenital Diaphragmatic Hernia.

    PubMed

    Ruano, Rodrigo; Britto, Ingrid Schwach Werneck; Sananes, Nicolas; Lee, Wesley; Sangi-Haghpeykar, Haleh; Deter, Russell L

    2016-06-01

    To evaluate fetal lung growth using 3-dimensional sonography in healthy fetuses and those with congenital diaphragmatic hernia (CDH). Right and total lung volumes were serially evaluated by 3-dimensional sonography in 66 healthy fetuses and 52 fetuses with left-sided CDH between 20 and 37 weeks' menstrual age. Functions fitted to these parameters were compared for 2 groups: (1) healthy versus those with CDH; and (2) fetuses with CHD who survived versus those who died. Fetal right and total lung volumes as well as fetal observed-to-expected right and total lung volume ratios were significantly lower in fetuses with CDH than healthy fetuses (P< .001) and in those fetuses with CDH who died (P< .001). The observed-to-expected right and total lung volume ratios did not vary with menstrual age in healthy fetuses or in those with CDH (independent of outcome). Lung volume rates were lower in fetuses with left-sided CDH compared to healthy fetuses, as well as in fetuses with CDH who died compared to those who survived. The observed-to-expected right and total lung volume ratios were relatively constant throughout menstrual age in fetuses with left-sided CDH, suggesting that the origin of their lung growth abnormalities occurred before 20 weeks and did not progress. The observed-to-expected ratios may be useful in predicting the outcome in fetuses with CDH independent of menstrual age. © 2016 by the American Institute of Ultrasound in Medicine.

  5. CDH4 suppresses the progression of salivary adenoid cystic carcinoma via E-cadherin co-expression.

    PubMed

    Xie, Jian; Feng, Yan; Lin, Ting; Huang, Xiao-Yu; Gan, Rui-Huan; Zhao, Yong; Su, Bo-Hua; Ding, Lin-Can; She, Lin; Chen, Jiang; Lin, Li-Song; Lin, Xu; Zheng, Da-Li; Lu, You-Guang

    2016-12-13

    The cadherin-4 gene (CDH4) of the cadherin family encodes non-epithelial R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. In this study, we found higher expression of CDH4 mRNA in a salivary adenoid cystic carcinoma (SACC) cell line with low metastatic potential (SACC-83) than in a cell line with high metastatic potential (SACC-LM). By analyzing 67 samples of SACC tissues and 40 samples of paraneoplastic normal tissues, we found R-cad highly expressed in 100% of normal paraneoplastic tissue but only expressed in 64% of SACC tumor tissues (P<0.001). Knockdown of CDH4 expression in vitro promoted the growth, mobility and invasion of SACC cells, and in vivo experiments showed that decreased CDH4 expression enhanced SACC tumorigenicity. Furthermore, CDH4 suppression resulted in down-regulation of E-cadherin (E-cad), which is encoded by CDH1 gene and is a well-known tumor suppressor gene by inhibition of cell proliferation and migration. These results indicate that CDH4 may play a negative role in the growth and metastasis of SACC via co-expression with E-cadherin.

  6. Disruption of the bone morphogenetic protein receptor 2 pathway in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Gosemann, Jan-Hendrik; Friedmacher, Florian; Fujiwara, Naho; Alvarez, Luis A J; Corcionivoschi, Nicolae; Puri, Prem

    2013-08-01

    Congenital diaphragmatic hernia (CDH) remains a major therapeutic challenge despite advances in neonatal resuscitation and intensive care. The high mortality and morbidity in CDH has been attributed to pulmonary hypoplasia and persistent pulmonary hypertension (PH). Bone morphogenetic protein receptor 2 (BMPR2) plays a key role in pulmonary vasculogenesis during the late stages of fetal lung development. BMPR2 is essential for control of endothelial and smooth muscle cell proliferation. Dysfunction of BMPR2 and downstream signaling have been shown to disturb the crucial balance of proliferation of smooth muscle cells contributing to the pathogenesis of human and experimental PH. We designed this study to investigate the hypothesis that BMPR2 signaling is disrupted in nitrofen-induced CDH. Pregnant rats were treated with nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D21 and divided into CDH and control. Quantitative real-time polymerase chain reaction, Western blotting, and confocal-immunofluorescence were performed to determine pulmonary gene expression levels and protein expression of BMPR2 and related proteins. Pulmonary Bmpr2 gene expression levels were significantly decreased in nitrofen-induced CDH compared to controls. Western blotting and confocal microscopy revealed decreased pulmonary BMPR2 protein expression and increased activation of p38(MAPK) in CDH compared to controls. The observed disruption of the BMPR2 signaling pathway may lead to extensive vascular remodeling and contribute to PH in the nitrofen-induced CDH model. BMPR2 may therefore represent a potential target for the treatment of PH in CDH. © 2013 Wiley Periodicals, Inc.

  7. Nuclear translocation of Skp2 facilitates its destruction in response to TGFβ signaling

    PubMed Central

    Wu, George

    2011-01-01

    Skp2, a F-box protein that determines the substrate specificity for SCF ubiquitin ligase, has recently been demonstrated to be degraded by Cdh1/APC in response to TGFβ signaling. The TGFβ-induced Skp2 proteolysis results in the stabilization of p27 that is necessary to facilitate TGFβ cytostatic effect. Previous observation from immunocytochemistry indicates that Cdh1 principally localizes in the nucleus while Skp2 mainly localizes in the cytosol, which leaves us a puzzle on how Skp2 is recognized and then ubiquitylated by Cdh1/APC in response to TGFβ stimulation. Here, we report that Skp2 is rapidly translocated from the cytosol to the nucleus upon the cellular stimulation with TGFβ. Using a combinatorial approach of immunocytochemistry, biochemical-fraction-coupled immunoprecipitation, mutagenesis as well as protein degradation assay, we have demonstrated that the TGFβ-induced Skp2 nucleus translocation is critical for TGFβ cytostatic effect that allows physical interaction between Cdh1 and Skp2 and in turn facilitates the Skp2 ubquitylation by Cdh1/APC. Disruption of nuclear localization motifs on Skp2 stabilizes Skp2 in the presence of TGFβ signaling, which attenuates TGFβ-induced p27 accumulation and antagonizes TGFβ-induced growth inhibition. Our finding reveals a cellular mechanism that facilitates Skp2 ubiquitylation by Cdh1/APC in response to TGFβ. PMID:21212736

  8. CDH1 mutations in gastric cancer patients from northern Brazil identified by Next- Generation Sequencing (NGS)

    PubMed Central

    El-Husny, Antonette; Raiol-Moraes, Milene; Amador, Marcos; Ribeiro-dos-Santos, André M.; Montagnini, André; Barbosa, Silvanira; Silva, Artur; Assumpção, Paulo; Ishak, Geraldo; Santos, Sidney; Pinto, Pablo; Cruz, Aline; Ribeiro-dos-Santos, Ândrea

    2016-01-01

    Abstract Gastric cancer is considered to be the fifth highest incident tumor worldwide and the third leading cause of cancer deaths. Developing regions report a higher number of sporadic cases, but there are only a few local studies related to hereditary cases of gastric cancer in Brazil to confirm this fact. CDH1 germline mutations have been described both in familial and sporadic cases, but there is only one recent molecular description of individuals from Brazil. In this study we performed Next Generation Sequencing (NGS) to assess CDH1 germline mutations in individuals who match the clinical criteria for Hereditary Diffuse Gastric Cancer (HDGC), or who exhibit very early diagnosis of gastric cancer. Among five probands we detected CDH1 germline mutations in two cases (40%). The mutation c.1023T > G was found in a HDGC family and the mutation c.1849G > A, which is nearly exclusive to African populations, was found in an early-onset case of gastric adenocarcinoma. The mutations described highlight the existence of gastric cancer cases caused by CDH1 germline mutations in northern Brazil, although such information is frequently ignored due to the existence of a large number of environmental factors locally. Our report represent the first CDH1 mutations in HDGC described from Brazil by an NGS platform. PMID:27192129

  9. Hereditary diffuse gastric cancer: implications of genetic testing for screening and prophylactic surgery.

    PubMed

    Cisco, Robin M; Ford, James M; Norton, Jeffrey A

    2008-10-01

    Approximately 10% of patients with gastric cancer show familial clustering, and 3% show autosomal dominance and high penetrance. Hereditary diffuse gastric cancer (HDGC) is an autosomal-dominant, inherited cancer syndrome in which affected individuals develop diffuse-type gastric cancer at a young age. Inactivating mutations in the E-cadherin gene CDH1 have been identified in 30% to 50% of patients. CDH1 mutation carriers have an approximately 70% lifetime risk of developing DGC, and affected women carry an additional 20% to 40% risk of developing lobular breast cancer. Because endoscopic surveillance is ineffective in identifying early HDGC, gene-directed prophylactic total gastrectomy currently is offered for CDH1 mutation carriers. In series of asymptomatic individuals undergoing total gastrectomy for CDH1 mutations, the removed stomachs usually contain small foci of early DGC, making surgery not prophylactic but curative. The authors of this review recommend consideration of total gastrectomy in CDH1 mutation carriers at an age 5 years younger than the youngest family member who developed gastric cancer. Individuals who choose not to undergo prophylactic gastrectomy should be followed with biannual chromoendoscopy, and women with CDH1 mutations also should undergo regular surveillance with magnetic resonance imaging studies of the breast. Because of the emergence of gene-directed gastrectomy for HDGC, today, a previously lethal disease is detected by molecular techniques, allowing curative surgery at an early stage.

  10. Association of CDH13 Genotypes/Haplotypes with Circulating Adiponectin Levels, Metabolic Syndrome, and Related Metabolic Phenotypes: The Role of the Suppression Effect

    PubMed Central

    Teng, Ming-Sheng; Hsu, Lung-An; Wu, Semon; Sun, Yu-Chen; Juan, Shu-Hui; Ko, Yu-Lin

    2015-01-01

    Objective Previous genome-wide association studies have indicated an association between CDH13 genotypes and adiponectin levels. In this study, we used mediation analysis to assess the statistical association between CDH13 locus variants and adiponectin levels, metabolic syndrome, and related metabolic phenotypes. Methods and results A sample population of 530 Taiwanese participants was enrolled. Four CDH13 gene variants in the promoter and intron 1 regions were genotyped. After adjustment for clinical covariates, the CDH13 genotypes/haplotypes exhibited an association with the adiponectin levels (lowest P = 1.95 × 10−11 for rs4783244 and lowest P = 3.78 × 10−13 for haplotype ATTT). Significant correlations were observed between the adiponectin levels and the various metabolic syndrome-related phenotypes (all P ≤ 0.005). After further adjustment for the adiponectin levels, participants with a minor allele of rs12051272 revealed a considerable association with a more favorable metabolic profile, including higher insulin sensitivity, high-density lipoprotein cholesterol levels, lower diastolic blood pressure, circulating levels of fasting plasma glucose, and triglycerides, and as a lower risk of metabolic syndrome (all P < 0.05). The mediation analysis further revealed a suppression effect of the adiponectin levels on the association between CDH13 genotypes and metabolic syndrome and its related phenotypes (Sobel test; all P < 0.001). Conclusion The genetic polymorphisms at the CDH13 locus independently affect the adiponectin levels, whereas the adiponectin levels exhibit a suppressive effect on the association between CDH13 locus variants and various metabolic phenotypes and metabolic syndrome. In addition, these results provide further evidence of the association between the CDH13 gene variants and the risks of metabolic syndrome and atherosclerotic cardiovascular disease. PMID:25875811

  11. E-cadherin germline mutation carriers: clinical management and genetic implications.

    PubMed

    Corso, Giovanni; Figueiredo, Joana; Biffi, Roberto; Trentin, Chiara; Bonanni, Bernardo; Feroce, Irene; Serrano, Davide; Cassano, Enrico; Annibale, Bruno; Melo, Soraia; Seruca, Raquel; De Lorenzi, Francesca; Ferrara, Francesco; Piagnerelli, Riccardo; Roviello, Franco; Galimberti, Viviana

    2014-12-01

    Hereditary diffuse gastric cancer is an autosomic dominant syndrome associated with E-cadherin protein (CDH1) gene germline mutations. Clinical criteria for genetic screening were revised in 2010 by the International Gastric Cancer Linkage Consortium at the Cambridge meeting. About 40 % of families fulfilling clinical criteria for this inherited disease present deleterious CDH1 germline mutations. Lobular breast cancer is a neoplastic condition associated with hereditary diffuse gastric cancer syndrome. E-cadherin constitutional mutations have been described in both settings, in gastric and breast cancers. The management of CDH1 asymptomatic mutation carriers requires a multidisciplinary approach; the only life-saving procedure is the prophylactic total gastrectomy after thorough genetic counselling. Several prophylactic gastrectomies have been performed to date; conversely, no prophylactic mastectomies have been described in CDH1 mutant carriers. However, the recent discovery of novel germline alterations in pedigree clustering only for lobular breast cancer opens up a new debate in the management of these individuals. In this critical review, we describe the clinical management of CDH1 germline mutant carriers providing specific recommendations for genetic counselling, clinical criteria, surveillance and/ or prophylactic surgery.

  12. A forskolin derivative, colforsin daropate hydrochloride, inhibits the decrease in cortical renal blood flow induced by noradrenaline or angiotensin II in anesthetized rats.

    PubMed

    Ogata, Junichi; Minami, Kouichiro; Segawa, Kayoko; Uezono, Yasuhito; Shiraishi, Munehiro; Yamamoto, Chikako; Sata, Takeyoshi; Sung-Teh, Kim; Shigematsu, Akio

    2004-01-01

    A forskolin derivative, colforsin daropate hydrochloride (CDH), acts directly on adenylate cyclase to increase the intracellular cyclic adenosine monophosphate levels which produce a positive inotropic effect and a lower blood pressure. However, little is known about the effects of CDH on the renal function. We used laser Doppler flowmetry to measure the cortical renal blood flow (RBF) in male Wistar rats given a continuous intravenous infusion of CDH and evaluated the effects of CDH on the noradrenaline (NA) and angiotensin II (AngII) induced increases in blood pressure and reductions in RBF. Continuous intravenous administration of CDH at 0.25 microg/kg/min did not affect the mean arterial pressure (MAP), but increased heart rate and RBF. Continuous intravenous administration of CDH at high doses (0.5-0.75 microg/kg/min) decreased the MAP, with little effect on the RBF. The administration of exogenous NA (1.7 microg/kg) increased the MAP and decreased the RBF. However, a bolus injection of NA did not decrease the RBF during continuous intravenous administration of CDH, and CDH did not affect the NA-induced increase in MAP. The administration of exogenous AngII (100 ng/kg) increased MAP and decreased RBF and heart rate, but a bolus injection of AngII did not decrease RBF during continuous intravenous administration of CDH. These results suggest that CDH plays a protective role against the pressor effects and the decrease in RBF induced by NA or AngII. Copyright 2004 S. Karger AG, Basel

  13. Sal-like 4 (SALL4) suppresses CDH1 expression and maintains cell dispersion in basal-like breast cancer.

    PubMed

    Itou, Junji; Matsumoto, Yoshiaki; Yoshikawa, Kiyotsugu; Toi, Masakazu

    2013-09-17

    In cell cultures, the dispersed phenotype is indicative of the migratory ability. Here we characterized Sal-like 4 (SALL4) as a dispersion factor in basal-like breast cancer. Our shRNA-mediated SALL4 knockdown system and SALL4 overexpression system revealed that SALL4 suppresses the expression of adhesion gene CDH1, and positively regulates the CDH1 suppressor ZEB1. Cell behavior analyses showed that SALL4 suppresses intercellular adhesion and maintains cell motility after cell-cell interaction and cell division, which results in the dispersed phenotype. Our findings indicate that SALL4 functions to suppress CDH1 expression and to maintain cell dispersion in basal-like breast cancer. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Cellobiose Dehydrogenase Inhibition of Polymerization of Phenolic Compounds and Enhancing Lignin Degradation by Lignina.

    PubMed

    Fang, Jing; Liu, Wen; Gao, Pei-Ji

    1999-01-01

    The kinetic behavior of cellobiose dehydrogenase (CDH) was investigated by steady-state initial velocity studies. Variation in the concentration of one substrate led to changes in K(m) and V(max) of the other substrate. The results were consistent with a ping-pong mechanism. In the presence of cellobiose, CDH could reduce many oxidized products catalyzed by soybean hull peroxidase (SHP). The oxidation product of 1-hydroxybenzotriazole (HBT) catalyzed by SHP inactivated the enzyme itself however, CDH could prevent SHP from inactivation by reducing the oxidation product of HBT. CDH could also inhibit the polymerization of phenolic compounds catalyzed by SHP. It was found that the addition of CDH could enhance kraft pulp lignin degradation by ligninases.

  15. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    PubMed

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  16. Expression of Sproutys and SPREDs is decreased during lung branching morphogenesis in nitrofen-induced pulmonary hypoplasia.

    PubMed

    Friedmacher, Florian; Gosemann, Jan-Hendrik; Fujiwara, Naho; Takahashi, Hiromizu; Hofmann, Alejandro; Puri, Prem

    2013-11-01

    Pulmonary hypoplasia (PH) is a life-threatening condition associated with congenital diaphragmatic hernia (CDH), characterized by defective lung development. Sproutys and Sprouty-related proteins (SPREDs) play a key role in lung branching morphogenesis through modification of epithelial-mesenchymal interactions. During the pseudoglandular stage, Sproutys are highly expressed in distal airway epithelium, while SPREDs within the surrounding mesenchyme. Sprouty2/4 knockouts show severe defects in branching morphogenesis with reduced number of distal airways. SPRED-1 and SPRED-2 are strongly expressed in regions of new airway formation, highlighting their important function in branching pattern. We hypothesized that expression of Sprouty2, Sprouty4, SPRED-1 and SPRED-2 is decreased during lung branching morphogenesis in nitrofen-induced PH. Timed-pregnant rats received either nitrofen or vehicle on E9.5. On E15.5 (n = 16), fetal lungs were micro-dissected and divided into controls and PH, while on E18.5 (n = 24) groups were: control, PH without CDH [CDH(-)], and PH with CDH [CDH(+)]. Pulmonary gene expression levels of Sprouty2, Sprouty4, SPRED-1 and SPRED-2 were analyzed by qRT-PCR. Immunohistochemistry was performed to evaluate protein expression/distribution. On E18.5, relative mRNA expression levels of Sprouty2, Sprouty4, SPRED-1 and SPRED-2 were significantly decreased in CDH(-) and CDH(+) groups compared to controls (P < 0.05). Immunoreactivity of Sprouty2, Sprouty4, SPRED-1 and SPRED-2 was markedly diminished on E18.5 in nitrofen-induced PH. Decreased expression of Sproutys and SPREDs during the terminal pseudoglandular stage may disrupt lung branching morphogenesis by interfering with epithelial-mesenchymal interactions contributing to PH.

  17. Systematic analysis of copy number variation associated with congenital diaphragmatic hernia.

    PubMed

    Zhu, Qihui; High, Frances A; Zhang, Chengsheng; Cerveira, Eliza; Russell, Meaghan K; Longoni, Mauro; Joy, Maliackal P; Ryan, Mallory; Mil-Homens, Adam; Bellfy, Lauren; Coletti, Caroline M; Bhayani, Pooja; Hila, Regis; Wilson, Jay M; Donahoe, Patricia K; Lee, Charles

    2018-05-15

    Congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and hypoplasia of the lungs, is one of the most common and severe birth defects, and is associated with high morbidity and mortality rates. There is growing evidence demonstrating that genetic factors contribute to CDH, although the pathogenesis remains largely elusive. Single-nucleotide polymorphisms have been studied in recent whole-exome sequencing efforts, but larger copy number variants (CNVs) have not yet been studied on a large scale in a case control study. To capture CNVs within CDH candidate regions, we developed and tested a targeted array comparative genomic hybridization platform to identify CNVs within 140 regions in 196 patients and 987 healthy controls, and identified six significant CNVs that were either unique to patients or enriched in patients compared with controls. These CDH-associated CNVs reveal high-priority candidate genes including HLX , LHX1 , and HNF1B We also discuss CNVs that are present in only one patient in the cohort but have additional evidence of pathogenicity, including extremely rare large and/or de novo CNVs. The candidate genes within these predicted disease-causing CNVs form functional networks with other known CDH genes and play putative roles in DNA binding/transcription regulation and embryonic development. These data substantiate the importance of CNVs in the etiology of CDH, identify CDH candidate genes and pathways, and highlight the importance of ongoing analysis of CNVs in the study of CDH and other structural birth defects. Copyright © 2018 the Author(s). Published by PNAS.

  18. Decreased sleep stage transition pattern complexity in narcolepsy type 1.

    PubMed

    Ferri, Raffaele; Pizza, Fabio; Vandi, Stefano; Iloti, Martina; Plazzi, Giuseppe

    2016-08-01

    To analyze the complexity of the nocturnal sleep stage sequence in central disorders of hypersomnolence (CDH), with the hypothesis that narcolepsy type 1 (NT1) might exhibit distinctive sleep stage sequence organization and complexity. Seventy-nine NT1 patients, 22 narcolepsy type 2 (NT2), 22 idiopathic hypersomnia (IH), and 52 patients with subjective hypersomnolence (sHS) were recruited and their nocturnal sleep was polysomnographically recorded and scored. Group between-stage transition probability matrices were obtained and compared. Patients with NT1 differed significantly from all the other patient groups, the latter, in turn, were not different between each other. The individual probability of the R-to-N2 transition was found to be the parameter showing the difference of highest significance between the groups (lowest in NT1) and classified patients with or without NT1 with an accuracy of 78.9% (sensitivity 78.5% and specificity 79.2%), by applying a cut-off value of 0.15. The main result of this study is that the structure of the sleep stage transition pattern of hypocretin-deficient NT1 patients is significantly different from that of other forms of CDH and sHS, with normal hypocretin levels. The lower probability of R-to-N2 transition occurrence in NT1 appears to be a reliable polysomnographic feature with potential application at the individual level, for supportive diagnostic purposes. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. The Molecular Chaperone Hsp90 Is Required for Cell Cycle Exit in Drosophila melanogaster

    PubMed Central

    Bandura, Jennifer L.; Jiang, Huaqi; Nickerson, Derek W.; Edgar, Bruce A.

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite+ reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis. PMID:24086162

  20. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    PubMed

    Bandura, Jennifer L; Jiang, Huaqi; Nickerson, Derek W; Edgar, Bruce A

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  1. Disruption of THY-1 signaling in alveolar lipofibroblasts in experimentally induced congenital diaphragmatic hernia.

    PubMed

    Friedmacher, Florian; Hofmann, Alejandro Daniel; Takahashi, Hiromizu; Takahashi, Toshiaki; Gosemann, Jan-Hendrik; Puri, Prem

    2014-02-01

    Pulmonary hypoplasia (PH), characterized by alveolar immaturity, remains the main cause of neonatal mortality and long-term morbidity in infants with congenital diaphragmatic hernia (CDH). Lipid-containing interstitial fibroblasts (LIFs) are critically important for normal alveolar development. Thymocyte antigen 1 (Thy-1) is a highly expressed cell-surface protein in this specific subset of lung fibroblasts, which plays a key role in fetal alveolarization by coordinating the differentiation and lipid homeostasis of alveolar LIFs. Thy-1 increases the lipid content of LIFs by upregulation of adipocyte differentiation-related protein (ADRP), a lipogenic molecular marker characterizing pulmonary LIFs. Thy-1 (-/-) mice further show impaired alveolar development with reduced proliferation of pulmonary LIFs, resulting in a PH-similar phenotype. We hypothesized that pulmonary Thy-1 signaling is disrupted in experimentally induced CDH, which may has an adverse effect on the lipid content of alveolar LIFs. Timed-pregnant Sprague-Dawley rats were treated with either 100 mg nitrofen or vehicle on embryonic day 9.5 (E9.5). Fetuses were killed on E21.5, and lungs were divided into controls (n = 14) and CDH-associated PH (n = 14). Pulmonary gene expression levels of Thy-1 and ADRP were assessed by quantitative real-time PCR. ADRP immunohistochemistry and oil-red-O staining were used to localize alveolar LIF expression and lipid droplets. Immunofluorescence double staining for Thy-1 and oil-red-O was performed to evaluate Thy-1 expression and lipid content in alveolar LIFs. Radial alveolar count was significantly reduced in CDH-associated PH with significant downregulation of pulmonary Thy-1 and ADRP mRNA expression compared to controls. ADRP immunoreactivity and lipid droplets were markedly diminished in alveolar interstitial cells, which coincided with decreased alveolar LIF expression in CDH-associated PH compared to controls. Confocal laser scanning microscopy confirmed markedly decreased Thy-1 expression and lipid content in alveolar LIFs of CDH-associated PH compared to controls. Our study provides strong evidence that disruption of pulmonary Thy-1 signaling results in reduced lipid droplets in alveolar LIFs and may thus contribute to PH in the nitrofen-induced CDH model. Treatment modalities aimed at increasing lipid content in alveolar LIFs may therefore have a therapeutic potential in attenuating CDH-associated PH.

  2. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    PubMed

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  3. Prenatal retinoic acid treatment upregulates late gestation lung protein 1 in the nitrofen-induced hypoplastic lung in late gestation.

    PubMed

    Ruttenstock, Elke Maria; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2011-02-01

    Pulmonary hypoplasia (PH), the leading cause of mortality in congenital diaphragmatic hernia (CDH), is associated with arrested alveolarization. Late gestation lung protein 1 (LGL1) plays a crucial role in the regulation of alveolarization. Inhibition of LGL1 impairs alveolar maturation in fetal rat lungs. LGL1 heterozygotus knockout mice display delayed lung maturation. It is well known that prenatal administration of retinoic acid (RA) stimulates alveologenesis in nitrofen-induced PH. In vitro studies have reported that RA is a key modulator of LGL1 during alveologenesis. We hypothesized, that pulmonary gene expression of LGL1 is downregulated in the late stage of lung development, and that prenatal administration of RA upregulates pulmonary LGL1 expression in the nitrofen CDH model. Pregnant rats were exposed to nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on D18, D19 and D20. Fetal lungs were dissected on D21 and divided into control, control + RA, CDH and CDH + RA group. Expression levels of LGL1 were determined using RT-PCR and immunohistochemistry. On D21, LGL1 relative mRNA expression levels were significantly downregulated in CDH group compared to controls. After RA treatment, gene expression levels of LGL1 were significantly upregulated in CDH + RA and control + RA compared to CDH group. Immunohistochemical studies confirmed these results. Downregulation of pulmonary LGL1 gene expression in the late stage of lung development may interfere with normal alveologenesis. Upregulation of LGL1 pulmonary gene expression after RA treatment may promote lung growth by stimulating alveologenesis in the nitrofen CDH model.

  4. Sector Retinitis Pigmentosa Associated With Novel Compound Heterozygous Mutations of CDH23.

    PubMed

    Branson, Sara V; McClintic, Jedediah I; Stamper, Tara H; Haldeman-Englert, Chad R; John, Vishak J

    2016-02-01

    Usher syndrome is an autosomal recessive condition characterized by retinitis pigmentosa (RP) and congenital hearing loss, with or without vestibular dysfunction. Allelic variants of CDH23 cause both Usher syndrome type 1D (USH1D) and a form of nonsyndromic hearing loss (DFNB12). The authors describe here a 34-year-old patient with congenital hearing loss and a new diagnosis of sector RP who was found to have two novel compound heterozygous mutations in CDH23, including one missense (c.8530C > A; p.Pro2844Thr) and one splice-site (c.5820 + 5G > A) mutation. This is the first report of sector RP associated with these types of mutations in CDH23. Copyright 2016, SLACK Incorporated.

  5. Psychiatric Comorbidities and Environmental Triggers in Patients with Chronic Daily Headache: A Lifestyle Study

    PubMed Central

    Faizi, Fakhrudin; Tavallaee, Abbas; Rahimi, Aboulfazl; Saghafinia, Masoud

    2017-01-01

    Objective: Patients with chronic daily headache (CDH) suffer from several significant psychiatric comorbidities and have unhealthy lifestyle. We aimed at studying psychiatric comorbidities, environmental triggers, lifestyle factors, and intensity of CDH in patients referred by the department of neurology from 2011 to 2014. Method: Through medical and psychiatric interviews and using 0 to 10 visual analogue scale (VAS), we assessed patients with CDH, using a checklist, to elicit psychiatric comorbidities, intensity of CDH, environmental factors, and lifestyle derangement. Results: We interviewed 413 (age 16-80 years, mean 40 +/- 14.0) out of 548 patients; 312 (75.5%) were married, and 282 (68.1%) were female. Environmental triggers (374, 90.6%) were the most common cause of CDH, while 214 (51.8%) had no compliance to recommended nutrition. Exercise avoidance (201, 48.7%) was the less prevalent lifestyle factor. Of the patients, 372 (90.1%) were stressed and 162 (39.2%) had obsessive-compulsive disorder (OCD), which were the most and less prevalent psychiatric comorbidities, respectively. Intensity of pain was moderate to severe (mean score = 7.1+/- 1.9), while females reported higher VAS scores (p<0.02). Patients with previous history of psychotherapy reported higher score of VAS (p<0.001). Those patients living with a person suffering from head pain reported more VAS score (p<0.003). Conclusion: Notable psychiatric comorbidities were found in patients with CDH, many of which are modifiable such as environmental triggers and unhealthy lifestyle. In heavily populated cities, these factors may double the burden of the CDH by precipitating new or exacerbating previous psychiatric comorbidities. We, thus, suggest conducting more studies on this subject. PMID:28496499

  6. Chronic daily headache in U.S. soldiers after concussion.

    PubMed

    Theeler, Brett J; Flynn, Frederick G; Erickson, Jay C

    2012-05-01

    To determine the prevalence and characteristics of, and factors associated with, chronic daily headache (CDH) in U.S. soldiers after a deployment-related concussion. A cross-sectional, questionnaire-based study was conducted with a cohort of 978 U.S. soldiers who screened positive for a deployment-related concussion upon returning from Iraq or Afghanistan. All soldiers underwent a clinical evaluation at the Madigan Traumatic Brain Injury Program that included a history, physical examination, 13-item self-administered headache questionnaire, and a battery of cognitive and psychological assessments. Soldiers with CDH, defined as headaches occurring on 15 or more days per month for the previous 3 months, were compared to soldiers with episodic headaches occurring less than 15 days per month. One hundred ninety-six of 978 soldiers (20%) with a history of deployment-related concussion met criteria for CDH and 761 (78%) had episodic headache. Soldiers with CDH had a median of 27 headache days per month, and 46/196 (23%) reported headaches occurring every day. One hundred seven out of 196 (55%) soldiers with CDH had onset of headaches within 1 week of head trauma and thereby met the time criterion for posttraumatic headache (PTHA) compared to 253/761 (33%) soldiers with episodic headache. Ninety-seven out of 196 (49%) soldiers with CDH used abortive medications to treat headache on 15 or more days per month for the previous 3 months. One hundred thirty out of 196 (66%) soldiers with CDH had headaches meeting criteria for migraine compared to 49% of soldiers with episodic headache. The number of concussions, blast exposures, and concussions with loss of consciousness was not significantly different between soldiers with and without CDH. Cognitive performance was also similar for soldiers with and without CDH. Soldiers with CDH had significantly higher average scores on the posttraumatic stress disorder (PTSD) checklist compared to soldiers with episodic headaches. Forty-one percent of soldiers with CDH screened positive for PTSD compared to only 18% of soldiers with episodic headache. The prevalence of CDH in returning U.S. soldiers after a deployment-related concussion is 20%, or 4- to 5-fold higher than that seen in the general U.S. population. CDH following a concussion usually resembles chronic migraine and is associated with onset of headaches within the first week after concussion. The mechanism and number of concussions are not specifically associated with CDH as compared to episodic headache. In contrast, PTSD symptoms are strongly associated with CDH, suggesting that traumatic stress may be an important mediator of headache chronification. These findings justify future studies examining strategies to prevent and treat CDH in military service members following a concussive injury. © 2012 American Headache Society.

  7. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk

    PubMed Central

    Wen, Guohong; Wang, Huadong; Zhong, Zhaohui

    2018-01-01

    Abstract Background: Oral tumor is a heterogeneous group of tumors, in which it has several different histopathological and molecular features. Recently, genetic and epigenetic alterations are often detected in the development of oral cancer. Gene promoter hypermethylation leads to the silencing of cancer related genes without changes of genes sequence. To clarify the effect of RAS association domain family protein 1a (RASSF1A), retinoic acid receptor beta (RARβ), and E-cadherin (CDH1) promoter hypermethylation on the risk of oral cancer, we performed this meta-analysis. Methods: PubMed, Web of Science, Embase, and Chinese National Knowledge Infrastructure (CNKI) databases were retrieved to identify eligible articles. Stata 12.0 software was used to analyze extracted data of the included articles. Odds ratios (ORs) with the corresponding 95% confidence interval (95% CI) were calculated to evaluate the associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk. Results: Around 23 literatures with 29 studies were included in the final meta-analysis, in which 12 studies were about RASSF1A promoter methylation, 4 studies were about RARβ promoter methylation, and 13 studies were about CDH1 promoter methylation. Overall, the results of this meta-analysis showed that there were significant associations between RASSF1A, RARβ, and CDH1 promoter hypermethylation and oral cancer risk (RASSF1A, OR = 11.8, 95% CI = 6.14–22.66; RARβ, OR = 20.35, 95% CI = 5.64–73.39; CDH1, OR = 13.46, 95% CI = 5.31–34.17). In addition, we found that RASSF1A promoter hypermethylation exerted higher frequency in the tongue tumor than other site tumor in mouth (RASSF1A, tongue tumor vs other site tumor in mouth, unmethylation vs methylation, OR = 0.65, 95%CI = 0.44–0.98). Conclusion: RASSF1A, RARβ, and CDH1 promoter hypermethylation might significantly increase the risk of oral cancer. PMID:29538221

  8. Downregulation of FGFRL1 contributes to the development of the diaphragmatic defect in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Dingemann, J; Doi, T; Ruttenstock, E M; Puri, P

    2011-01-01

    The nitrofen model of Congenital Diaphragmatic Hernia (CDH) displays a diaphragmatic defect of the Bochdalek-type and has been widely used to investigate the pathogenesis of CDH. However, the exact pathomechanism of the diaphragmatic defect is still poorly understood. Fibroblast growth factor (FGF) receptor-like 1 (FGFRL1), a member of the FGF receptor family, plays a key role in physiological diaphragmatic development. FGFRL1 is expressed in the fetal diaphragm at low levels in early gestation and its expression steadily increases, becoming most pronounced in later gestational stages. It has been reported that FGFRL1 homozygous null mice have thin, partially amuscular diaphragms and die at birth due to respiratory failure. The aim of this study was to investigate the hypothesis that FGFRL1 gene expression in the diaphragm is downregulated during the later gestational stages in the nitrofen CDH model. Timed pregnant rats were exposed to either olive oil or 100 mg nitrofen on day 9 of gestation (D9). Cesarean section was performed on D18 or D21. Fetal diaphragms (n=40) were micro-dissected and divided into CDH group and controls. Total RNA was extracted from the diaphragms and the mRNA levels of FGFRL1 were determined using real-time PCR. Immunohistochemistry was performed to evaluate diaphragmatic protein expression of FGFRL1. Student's t-test and Mann-Whitney test were used, where appropriate. Statistical significance was considered for p<0.05. Relative mRNA expression levels of FGFRL1 were significantly decreased in the CDH group compared to controls on D18 (3.63 ± 1.65 vs. 6.04 ± 3.12, p<0.05) and D21 (1.36 ± 1.01 vs. 2.57 ± 1.34, p<0.05). Immunoreactivity of FGFRL1 was markedly decreased in the diaphragms of the CDH group compared to controls on D18 and D21. Our data provide strong evidence that downregulation of the FGFRL1 gene during the late stages of gestation may contribute to the development of the diaphragmatic defect in nitrofen-induced CDH. © Georg Thieme Verlag KG Stuttgart · New York.

  9. ATP depletion during mitotic arrest induces mitotic slippage and APC/CCdh1-dependent cyclin B1 degradation.

    PubMed

    Park, Yun Yeon; Ahn, Ju-Hyun; Cho, Min-Guk; Lee, Jae-Ho

    2018-04-27

    ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN 3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/C Cdc20 , we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/C Cdh1 , but not APC/C Cdc20 , facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/C Cdh1 -dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins.

  10. Anxiety, depression and school absenteeism in youth with chronic or episodic headache

    PubMed Central

    Rousseau-Salvador, Céline; Amouroux, Rémy; Annequin, Daniel; Salvador, Alexandre; Tourniaire, Barbara; Rusinek, Stéphane

    2014-01-01

    BACKGROUND: Chronic daily headache (CDH) in children has been documented in general and clinical populations. Comorbid psychological conditions, risk factors and functional outcomes of CDH in children are not well understood. OBJECTIVES: To examine anxiety and depression, associated risk factors and school outcomes in a clinical population of youth with CDH compared with youth with episodic headache (EH). METHODS: Data regarding headache characteristics, anxiety, depression and missed school days were collected from 368 consecutive patients eight to 17 years of age, who presented with primary headache at a specialized pediatric headache centre. RESULTS: A total of 297 patients (81%) were diagnosed with EH and 71 were diagnosed with CDH. Among those with CDH, 78.9% presented with chronic tension-type headache and 21.1% with chronic migraine (CM). Children with CDH had a higher depression score than the standardized reference population. No difference was observed for anxiety or depression scores between children with CDH and those with EH. However, children with CM were more anxious and more depressed than those with chronic tension-type headache. Youth experiencing migraine with aura were three times as likely to have clinically significant anxiety scores. Headache frequency and history were not associated with psychopathological symptoms. Children with CDH missed school more often and for longer periods of time. CONCLUSIONS: These findings document the prevalence of anxiety, depression and school absenteeism in youth with CDH or EH. The present research also extends recent studies examining the impact of aura on psychiatric comorbidity and the debate on CM criteria. PMID:24911174

  11. Trans-suppression of host CDH3 and LOXL4 genes during Cryptosporidium parvum infection involves nuclear delivery of parasite Cdg7_FLc_1000 RNA.

    PubMed

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Li, Yao; Pang, Jing; Dong, Stephanie; Strauss-Soukup, Juliane K; Chen, Xian-Ming

    2018-05-01

    Intestinal infection by Cryptosporidium parvum causes significant alterations in the gene expression profile in host epithelial cells. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of human intestinal cryptosporidiosis, we report here that trans-suppression of the cadherin 3 (CDH3) and lysyl oxidase like 4 (LOXL4) genes in human intestinal epithelial cells following C. parvum infection involves host delivery of the Cdg7_FLc_1000 RNA, a C. parvum RNA that has been previously demonstrated to be delivered into the nuclei of infected host cells. Downregulation of CDH3 and LOXL4 genes was detected in host epithelial cells following C. parvum infection or in cells expressing the parasite Cdg7_FLc_1000 RNA. Knockdown of Cdg7_FLc_1000 attenuated the trans-suppression of CDH3 and LOXL4 genes in host cells induced by infection. Interestingly, Cdg7_FLc_1000 was detected to be recruited to the promoter regions of both CDH3 and LOXL4 gene loci in host cells following C. parvum infection. Host delivery of Cdg7_FLc_1000 promoted the PH domain zinc finger protein 1 (PRDM1)-mediated H3K9 methylation associated with trans-suppression in the CDH3 gene locus, but not the LOXL4 gene. Therefore, our data suggest that host delivery of Cdg7_FLc_1000 causes CDH3 trans-suppression in human intestinal epithelial cells following C. parvum infection through PRDM1-mediated H3K9 methylation in the CDH3 gene locus, whereas Cdg7_FLc_1000 induces trans-suppression of the host LOXL4 gene through H3K9/H3K27 methylation-independent mechanisms. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  12. Upregulation of fibroblast growth factor receptor 2 and 3 in the late stages of fetal lung development in the nitrofen rat model.

    PubMed

    Friedmacher, Florian; Doi, Takashi; Gosemann, Jan-Hendrik; Fujiwara, Naho; Kutasy, Balazs; Puri, Prem

    2012-02-01

    Nitrofen model of congenital diaphragmatic hernia (CDH) has been widely used to investigate the pathogenesis of pulmonary hypoplasia (PH). Fibroblast growth factor (FGF) signaling pathway plays a fundamental role in fetal lung development. FGF7 and FGF10, which are critical for lung morphogenesis, have been reported to be downregulated in nitrofen-induced PH. FGF signaling is mediated by a family of four single transmembrane receptors, FGFR1-4. FGFR2 and FGFR3 have been shown to be expressed predominantly in the late stages of developing lungs. In addition, the upregulation of FGFR2 gene expression has been associated with severe defects in lung development and resulted in arrested alveologenesis similar to PH seen in the nitrofen model. Furthermore, FGFR3(-/-)FGFR4(-/-) double mutants showed thinner mesenchyme and larger air spaces. We designed this study to test the hypothesis that FGFR gene expression is upregulated in the late stages of lung development in the nitrofen CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Cesarean section was performed and fetuses were harvested on D18 and D21. Fetal lungs were divided into three groups: control, nitrofen without CDH [CDH(-)], and nitrofen with CDH [CDH(+)] (n = 24 at each time-point). Pulmonary gene expression levels of FGFR1-4 were analyzed by real-time RT-PCR. Immunohistochemistry was also performed to evaluate protein expression/distribution at each time-point. The relative messenger RNA expression levels of pulmonary FGFR2 and FGFR3 on D21 were significantly increased in CDH(-) (6.38 ± 1.93 and 7.84 ± 2.86, respectively) and CDH(+) (7.09 ± 2.50 and 7.25 ± 3.43, respectively) compared to controls (P < 0.05 and P < 0.01, respectively), whereas no significant alteration was observed on D18. There were no differences in FGFR1 and FGFR4 expression at both time-points. Increased immunoreactivity of FGFR2 and FGFR3, mainly in the distal epithelium and mesenchyme, was observed in the nitrofen-induced hypoplastic lungs on D21 compared to controls. Upregulation of FGFR2 and FGFR3 pulmonary gene expression in the late stages of fetal lung development may disrupt FGFR-mediated alveologenesis resulting in PH in the CDH model.

  13. Ama1p-activated anaphase-promoting complex regulates the destruction of Cdc20p during meiosis II

    PubMed Central

    Tan, Grace S.; Magurno, Jennifer; Cooper, Katrina F.

    2011-01-01

    The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)–mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/CAma1 mediates Cdc20p destruction. APC/CAma1 recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/CAma1. Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Δ strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/CCdc20 activity as the cells complete meiosis II and form spores. PMID:21118994

  14. Decidual β-carotene-15,15'-oxygenase-1 and 2 (BCMO1,2) expression is increased in nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Takahashi, Hiromizu; Kutasy, Balazs; Pes, Lara; Paradisi, Francesca; Puri, Prem

    2015-01-01

    Retinoids are essential for fetal and lung development. Beta-carotene(BC) is the main dietary retinoid source and beta-carotene-15,15'-oxygenase-1 and 2 (Bcmo1,2) is the primary enzyme generating retinoid from BC in adult mammalian tissues. Placenta has a major role in the retinol homeostasis in fetal life: Since there is no fetal retinol synthesis, maternal retinol has to cross the placenta. It has been recently shown that BC can be converted to retinol by Bcmo1,2 in placenta for retinol transfer and moreover, BC can cross the placenta intact. The placental Bcmo1,2 expression is tightly controlled by placental retinol level. In severe retinol deficiency it has been shown that placental Bcmo1,2 expression are increased for generating retinol from dietary maternal BC even when the main retinol transfer is blocked. In recent years, low pulmonary retinol levels and disrupted retinoid signaling pathway have been implicated in the pathogenesis of pulmonary hypoplasia and congenital diaphragmatic hernia (CDH) in the nitrofen model of CDH. Recently, it has been demonstrated that the main retinol transfer in the placenta is blocked in the nitrofen model of CDH causing increased placental and decreased serum retinol level. The aim of our study was to determine maternal and fetal β-carotene levels and to investigate the hypothesis that placental expression of BCMO1 and BCMO2 is altered in nitrofen-exposed rat fetuses with CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Maternal and fetal serum, placenta, liver and left lungs were harvested on D21 and divided into two groups: control (n = 8) and nitrofen with CDH (n = 8). Immunochistochemistry was performed to evaluate trophoblasts by cytokeratin expression and placental Bcmo1,2 expression. Expression levels of Bcmo1,2 genes in fetal lungs and liver were determined using RT-PCR and immunohistochemistry. BC level was measured using HPLC. Markedly increased decidual Bcmo1,2 immunoreactivity was observed in CDH group compared to controls. There was no difference neither in the trophoblastic Bcmo1,2 immunoreactivity nor in the pulmonary and liver Bcmo1,2 expression compared to controls. There was no significant difference in maternal serum BC levels between control and CDH mothers (2.14 ± 0.55 vs 2.56 ± 1.6 μM/g, p = 0.8). BC was not detectable neither in the fetal serum nor liver or lungs. Our data show that nitrofen increases maternal but not fetal Bcmo1,2 expression in the placenta in nitrofen-induced CDH group. The markedly increased decidual Bcmo1,2 expression suggests that nitrofen may trigger local, decidual retinol synthesis in the nitrofen model of CDH.

  15. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture.

    PubMed

    Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei

    2018-02-28

    Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).

  16. Insulin receptor is downregulated in the nitrofen-induced hypoplastic lung.

    PubMed

    Ruttenstock, Elke; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2010-05-01

    The pathogenesis of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH) is still poorly understood. During fetal lung development, the insulin receptor (IR) plays an important role by mediating the cellular uptake of glucose, which is a major substrate for the biosynthesis of surfactant phospholipids. In fetal rat lung, IR gene expression has been revealed on type II pneumocytes. Recent studies have demonstrated that downregulation of pulmonary IR in late gestation causes pulmonary hypoplasia by inhibition of surfactant synthesis. We hypothesized that pulmonary gene expression of IR is downregulated during the late stages of lung development in the nitrofen-induced CDH model. Timed pregnant Sprague-Dawley rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Cesarean deliveries were performed on D15, D18, and D21. Fetal lungs were divided into 3 groups: control, nitrofen without CDH (CDH[-]), and nitrofen with CDH (CDH[+]) (n = 8 at each time-point, respectively). Relative messenger RNA (mRNA) levels of IR were determined by using real time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression of IR. Relative expression levels of IR mRNA on D21 were significantly decreased in CDH(-) and CDH(+) group (3.99 +/- 1.50 and 5.14 +/- 0.99, respectively) compared to control (7.45 +/- 3.95; P < .05). Immunohistochemistry showed decreased IR expression in the proximal alveolar epithelium on D21 in hypoplastic lungs compared to control lungs. Downregulation of IR gene and protein expression in hypoplastic lung during late stages of lung development may interfere with normal surfactant synthesis, causing pulmonary hypoplasia in the nitrofen-induced CDH model. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Nucleolar asymmetry and the importance of septin integrity upon cell cycle arrest

    PubMed Central

    Rai, Urvashi; Najm, Fadi

    2017-01-01

    Cell cycle arrest can be imposed by inactivating the anaphase promoting complex (APC). In S. cerevisiae this arrest has been reported to stabilize a metaphase-like intermediate in which the nuclear envelope spans the bud neck, while chromatin repeatedly translocates between the mother and bud domains. The present investigation was undertaken to learn how other features of nuclear organization are affected upon depletion of the APC activator, Cdc20. We observe that the spindle pole bodies and the spindle repeatedly translocate across the narrow orifice at the level of the neck. Nevertheless, we find that the nucleolus (organized around rDNA repeats on the long right arm of chromosome XII) remains in the mother domain, marking the polarity of the nucleus. Accordingly, chromosome XII is polarized: TelXIIR remains in the mother domain and its centromere is predominantly located in the bud domain. In order to learn why the nucleolus remains in the mother domain, we studied the impact of inhibiting rRNA synthesis in arrested cells. We observed that this fragments the nucleolus and that these fragments entered the bud domain. Taken together with earlier observations, the restriction of the nucleolus to the mother domain therefore can be attributed to its massive structure. We also observed that inactivation of septins allowed arrested cells to complete the cell cycle, that the alternative APC activator, Cdh1, was required for completion of the cell cycle and that induction of Cdh1 itself caused arrested cells to progress to the end of the cell cycle. PMID:28339487

  18. Clinical significance of CDH13 promoter methylation as a biomarker for bladder cancer: a meta-analysis.

    PubMed

    Chen, Feng; Huang, Tao; Ren, Yu; Wei, Junjun; Lou, Zhongguan; Wang, Xue; Fan, Xiaoxiao; Chen, Yirun; Weng, Guobin; Yao, Xuping

    2016-08-30

    Methylation of the tumor suppressor gene H-cadherin (CDH13) has been reported in many cancers. However, the clinical effect of the CDH13 methylation status of patients with bladder cancer remains to be clarified. A systematic literature search was performed to identify eligible studies in the PubMed, Embase, EBSCO, CKNI and Wanfang databases. The pooled odds ratio (OR) and the corresponding 95 % confidence interval (95 % CI) was calculated and summarized. Nine eligible studies were included in the present meta-analysis consisting of a total of 1017 bladder cancer patients and 265 non-tumor controls. A significant association was found between CDH13 methylation levels and bladder cancer (OR = 21.71, P < 0.001). The results of subgroup analyses based on sample type suggested that CDH13 methylation was significantly associated with bladder cancer risk in both the tissue and the urine (OR = 53.94, P < 0.001; OR = 7.71, P < 0.001; respectively). A subgroup analysis based on ethnic population showed that the OR value of methylated CDH13 was higher in Asians than in Caucasians (OR = 35.18, P < 0.001; OR = 8.86, P < 0.001; respectively). The relationships between CDH13 methylation and clinicopathological features were also analyzed. A significant association was not observed between CDH13 methylation status and gender (P = 0.053). Our results revealed that CDH13 methylation was significantly associated with high-grade bladder cancer, multiple bladder cancer and muscle invasive bladder cancer (OR = 2.22, P < 0.001; OR = 1.45, P = 0.032; OR = 3.42, P < 0.001; respectively). Our study indicates that CDH13 methylation may play an important role in the carcinogenesis, development and progression of bladder cancer. In addition, CDH13 methylation has the potential to be a useful biomarker for bladder cancer screening in urine samples and to be a prognostic biomarker in the clinic.

  19. Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metanalysis and systematic review of the literature

    PubMed Central

    2012-01-01

    Background The frequency of E-cadherin germline mutations in countries with different incidence rates for gastric carcinoma has not been well established. The goal of this study was to assess the worldwide frequency of CDH1 germline mutations in gastric cancers coming from low- and high-risk areas. Methods English articles using MEDLINE access (from 1998 to 2011). Search terms included CDH1, E-cadherin, germline mutation, gastric cancer, hereditary, familial and diffuse histotype. The study included all E-cadherin germline mutations identified in gastric cancer patients; somatic mutations and germline mutations reported in other tumors were excluded. The method of this study was scheduled in accordance with the "PRISMA statement for reporting systematic reviews and meta-analyses". Countries were classified as low- or middle/high risk-areas for gastric carcinoma incidence. Statistical analysis was performed to correlate the CDH1 mutation frequency with gastric cancer incidence areas. Results A total of 122 E-cadherin germline mutations have been identified; the majority (87.5%) occurred in gastric cancers coming from low-risk areas. In high-risk areas, we identified 16 mutations in which missense mutations were predominant. (68.8%). We verified a significant association between the mutation frequency and the gastric cancer risk area (p < 0.001: overall identified mutations in low- vs. middle/high-risk areas). Conclusions E-cadherin genetic screenings performed in low-risk areas for gastric cancer identified a higher frequency of CDH1 germline mutations. This data could open new approaches in the gastric cancer prevention test; before proposing a proband candidate for the CDH1 genetic screening, geographic variability, alongside the family history should be considered. PMID:22225527

  20. Increased pulmonary RhoA expression in the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Takayasu, Hajime; Masumoto, Kouji; Hagiwara, Koki; Sasaki, Takato; Ono, Kentaro; Jimbo, Takahiro; Uesugi, Toru; Gotoh, Chikashi; Urita, Yasuhisa; Shinkai, Toko; Tanaka, Hideaki

    2015-09-01

    Persistent pulmonary hypertension remains a major cause of mortality and morbidity in cases of congenital diaphragmatic hernia (CDH). Recently, RhoA/Rho-kinase-mediated vasoconstriction has been reported to be important in the pathogenesis of pulmonary hypertension (PH). Several recent reports have described that fasudil, a potent Rho-kinase inhibitor and vasodilator, could represent a potential therapeutic option for PH. We designed this study to investigate the hypothesis that the expression level of RhoA is increased in the nitrofen-induced CDH rat model. The expression level of Wnt11, an activator of RhoA, was also evaluated. Pregnant rats were treated with or without nitrofen on gestational day 9 (D9). Fetuses were sacrificed on D17, D19 and D21 and were divided into control and CDH groups. Quantitative real-time polymerase chain reaction was performed to determine the pulmonary gene expression levels of both Wnt11 and RhoA. An immunofluorescence study was also performed to evaluate the expression and localization of RhoA. The relative mRNA expression levels of pulmonary Wnt11 and RhoA on D21 were significantly increased in the CDH group compared with the control group (p=0.016 and p=0.008, respectively). The immunofluorescence study confirmed the overexpression of RhoA in the pulmonary vessels of CDH rats on D21. Our results provide evidence that the RhoA/Rho-kinase-mediated pathway is involved in the pathogenesis of PH in the nitrofen-induced CDH rat model. Our data also suggest that the fasudil, a Rho-kinase inhibitor, could represent a therapeutic option for the treatment of PH in CDH. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Carbon repression of cellobiose dehydrogenase production in the white rot fungus Trametes versicolor is mediated at the level of gene transcription.

    PubMed

    Stapleton, P C; Dobson, A D W

    2003-04-25

    Cellobiose dehydrogenase (CDH) production in Trametes versicolor is induced in the presence of cellulose, but decreases when additional carbon sources such as glucose and maltose are added to the fungal cultures. Using T. versicolor-specific cdh primers in a reverse transcription-polymerase chain reaction-based approach, it appears that this repression in CDH production is being mediated at the level of gene transcription. When a 1.6-kb upstream region of the T. versicolor cdh gene was cloned and sequenced, a number of putative CreA-like binding sites were observed. We propose that these sites may be involved in mediating this repressive effect, based on their similarity to the consensus [5'-SYGGRGG-3'] site for binding of the CreA and Cre1 repressor proteins.

  2. Does the Level of Cervical Disc Herniation Surgery Affect Performance-based Outcomes in National Football League Athletes?

    PubMed

    Mai, Harry T; Burgmeier, Robert J; Mitchell, Sean M; Hecht, Andrew C; Maroon, Joseph C; Nuber, Gordon W; Hsu, Wellington K

    2016-12-01

    Retrospective cohort study. The aim of this study was to determine whether the level of a cervical disc herniation (CDH) procedure will uniquely impact performance-based outcomes in elite athletes of the National Football League (NFL). Comparative assessments of postsurgical outcomes in NFL athletes with CDH at different levels are unknown. Further, the surgical decision-making for these types of injuries in professional football athletes remains controversial. NFL players with a CDH injury at a definitive cervical level were identified through a review of publicly available archives. Injuries were divided into upper- (C2-C4) and lower-level (C4-T1) CDH. The impact on player outcomes was determined by comparing return to play statistics and calculating a "Performance Score" for each player on the basis of pertinent statistical data, both before and after surgery. A total of 40 NFL athletes met inclusion criteria. In the upper-level group, 10 of 15 (66.6%) players successfully returned to play an average of 44.6 games over 2.6 years. The lower-level cohort had 18 of 25 (72%) players return to play with an average of 44.1 games over 3.1 years. There was no significant difference in the rate of return to play (P = 0.71). Postsurgical performance scores of the upper and lower-level groups were 1.47 vs. 0.69 respectively, with no significant difference between these groups (P = 0.06). Adjacent segment disease requiring reoperation occurred in 10% of anterior cervical discectomy and fusion patients. In 50% of foraminotomy patients, a subsequent fusion was required. A uniquely high percentage of upper-level disc herniations develop in NFL athletes, and although CDH injuries present career threatening implications, an upper-level CDH does not preclude a player from successfully returning to play at a competitive level. In fact, these athletes showed comparable postsurgical performance to those athletes who underwent CDH procedures at lower cervical levels. 4.

  3. Lung to head ratio in infants with congenital diaphragmatic hernia does not predict long term pulmonary hypertension.

    PubMed

    Garcia, Alejandro V; Fingeret, Abbey L; Thirumoorthi, Arul S; Hahn, Eunice; Leskowitz, Matthew J; Aspelund, Gudrun; Krishnan, Usha S; Stolar, Charles J H

    2013-01-01

    Lung-to-head ratio (LHR) has been used for antenatal evaluation of infants with congenital diaphragmatic hernia (CDH). We hypothesized that LHR was predictive of acute and chronic pulmonary hypertension in infants with CDH. Echocardiograms on all inborn infants with CDH (December 2001-March 2011) were reviewed. Echocardiograms at 1 and 3 months post-repair and most recent follow-up were assessed for presence of pulmonary hypertension (PAH). LHR, gestational age, birth weight, extracorporeal membrane oxygenation (ECMO), and death rate were obtained. Bivariate and multivariate analyses were performed. 106 infants with CDH had LHR obtained at median 28 weeks gestation (median LHR=1.25 [range 0.4-5.3]). Median follow-up was 26.6 months (range 4.6-97.5). The long-term incidence of pulmonary hypertension was 16%. LHR was significantly associated with pulmonary hypertension at one month (p=0.0001) but not at 3 months (p=0.22) or long-term (p=0.54). LHR was predictive of ECMO use (p=0.01) and death (p=0.001). The overall incidence of PAH in infants with CDH decreases over time. Prenatal LHR predicts PAH at one month but not long-term in infants with CDH. The ability for LHR to predict PAH at one month but not long term may suggest remodeling of the pulmonary vasculature over time. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development.

    PubMed

    Horsfield, Julia; Ramachandran, Anassuya; Reuter, Katja; LaVallie, Edward; Collins-Racie, Lisa; Crosier, Kathryn; Crosier, Philip

    2002-07-01

    We have isolated a zebrafish cadherin that is orthologous to human LI-cadherin (CDH17). Zebrafish cdh17 is expressed exclusively in the pronephric ducts during embryogenesis, and in the mesonephros during larval development and adulthood. Like its mammalian ortholog, cdh17 is also expressed in liver and intestine in adult zebrafish. We show that cdh17-positive mesodermal cells do not contribute to the hematopoietic system. Consistent with a cell adhesion role for Cdh17, depletion of Cdh17 function using antisense morpholino oligonucleotides compromised cell cohesion during pronephric duct formation. Our results indicate that Cdh17 is necessary for maintaining the integrity of the pronephric ducts during zebrafish embryogenesis. This finding contrasts with the role of mammalian CDH17, which does not appear to be involved in nephric development.

  5. TAUROURSODEOXYCHOLIC ACID PREVENTS HEARING LOSS AND HAIR CELL DEATH IN Cdh23erl/erl MICE

    PubMed Central

    HU, J.; XU, M.; YUAN, J.; LI, B.; Entenman, S.; YU, H.; ZHENG, Q.Y.

    2016-01-01

    Sensorineural hearing loss has long been the subject of experimental and clinical research for many years. The recently identified novel mutation of the Cdh23 gene, Cdh23erl/erl, was proven to be a mouse model of human autosomal recessive nonsyndromic deafness (DFNB12). Tauroursodeoxycholic acid (TUDCA), a taurine-conjugated bile acid, has been used in experimental research and clinical applications related to liver disease, diabetes, neurodegenerative diseases, and other diseases associated with apoptosis. Because hair cell apoptosis was implied to be the cellular mechanism leading to hearing loss in Cdh23erl/erl mice (erl mice), this study investigated TUDCA’s otoprotective effects in erl mice: preventing hearing impairment and protecting against hair cell death. Our results showed that systemic treatment with TUDCA significantly alleviated hearing loss and suppressed hair cell death in erl mice. Additionally, TUDCA inhibited apoptotic genes and caspase-3 activation in erl mouse cochleae. The data suggest that TUDCA could be a potential therapeutic agent for human DFNB12. PMID:26748055

  6. The role of primary myogenic regulatory factors in the developing diaphragmatic muscle in the nitrofen-induced diaphragmatic hernia.

    PubMed

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2011-06-01

    The nitrofen model of congenital diaphragmatic hernia (CDH) is widely used to investigate the pathogenesis of CDH. However, the exact pathomechanism of the diaphragmatic defect is still unclear. Diaphragmatic muscularization represents the last stage of diaphragmatic development. Myogenic differentiation 1 (MyoD) and myogenic factor 5 (Myf5) play a crucial role in muscularization. MyoD(-/-) : Myf5(+/-) mutant mice show reduced diaphragmatic size, whereas MyoD(+/-) : Myf5(-/-) mutants have normal diaphragms. We designed this study to investigate diaphragmatic gene expression of MyoD and Myf5 in the nitrofen CDH model. Pregnant rats received nitrofen or vehicle on day 9 of gestation (D9), followed by cesarean section on D18 and D21. Fetal diaphragms (n = 40) were micro-dissected and divided into CDH group and controls. MyoD and Myf5 mRNA-expression were determined using Real-time PCR. Immunohistochemistry was performed to evaluate protein expression of MyoD and Myf5. Relative diaphragmatic mRNA expression levels and immunoreactivity of MyoD were decreased in the CDH group on D18 and D21. Myf 5 mRNA and protein expression were not altered in the CDH group. This is the first study showing that MyoD expression is selectively decreased in the diaphragm muscle in the nitrofen model of CDH.

  7. Conditional deletion of WT1 in the septum transversum mesenchyme causes congenital diaphragmatic hernia in mice

    PubMed Central

    Carmona, Rita; Cañete, Ana; Cano, Elena; Ariza, Laura; Rojas, Anabel; Muñoz-Chápuli, Ramon

    2016-01-01

    Congenital diaphragmatic hernia (CDH) is a severe birth defect. Wt1-null mouse embryos develop CDH but the mechanisms regulated by WT1 are unknown. We have generated a murine model with conditional deletion of WT1 in the lateral plate mesoderm, using the G2 enhancer of the Gata4 gene as a driver. 80% of G2-Gata4Cre;Wt1fl/fl embryos developed typical Bochdalek-type CDH. We show that the posthepatic mesenchymal plate coelomic epithelium gives rise to a mesenchyme that populates the pleuroperitoneal folds isolating the pleural cavities before the migration of the somitic myoblasts. This process fails when Wt1 is deleted from this area. Mutant embryos show Raldh2 downregulation in the lateral mesoderm, but not in the intermediate mesoderm. The mutant phenotype was partially rescued by retinoic acid treatment of the pregnant females. Replacement of intermediate by lateral mesoderm recapitulates the evolutionary origin of the diaphragm in mammals. CDH might thus be viewed as an evolutionary atavism. DOI: http://dx.doi.org/10.7554/eLife.16009.001 PMID:27642710

  8. Cadherin-11 in poor prognosis malignancies and rheumatoid arthritis: common target, common therapies

    PubMed Central

    Hampel, Constanze; Anastasiadis, Panos Z.; Kallakury, Bhaskar; Uren, Aykut; Foley, David W; Brown, Milton L.; Shapiro, Lawrence; Brenner, Michael; Haigh, David; Byers, Stephen W.

    2014-01-01

    Cadherin-11 (CDH11), associated with epithelial to mesenchymal transformation in development, poor prognosis malignancies and cancer stem cells, is also a major therapeutic target in rheumatoid arthritis (RA). CDH11 expressing basal-like breast carcinomas and other CDH11 expressing malignancies exhibit poor prognosis. We show that CDH11 is increased early in breast cancer and ductal carcinoma in-situ. CDH11 knockdown and antibodies effective in RA slowed the growth of basal-like breast tumors and decreased proliferation and colony formation of breast, glioblastoma and prostate cancer cells. The repurposed arthritis drug celecoxib, which binds to CDH11, and other small molecules designed to bind CDH11 without inhibiting COX-2 preferentially affect the growth of CDH11 positive cancer cells in vitro and in animals. These data suggest that CDH11 is important for malignant progression, and is a therapeutic target in arthritis and cancer with the potential for rapid clinical translation PMID:24681547

  9. Study on expression of CDH4 in lung cancer.

    PubMed

    Li, Zhupeng; Su, Dan; Ying, Lisha; Yu, Guangmao; Mao, Weimin

    2017-01-17

    The human CDH4 gene, which encodes the R-cadherin protein, has an important role in cell migration and cell adhesion, sorting, tissue morphogenesis, and tumor genesis. This study analyzed the relationship of CDH4 mRNA expression with lung cancer. Real time PCR was applied to detect CDH4 mRNA transcription in 142 paired cases of lung cancer and noncancerous regions. No correlation was identified between CDH4 mRNA expression and gender, age, lymphnode metastasis, TNM stage, family history, smoking state, drinking state (P > 0.05), but grade and histotype (P < 0.05). The relative CDH4 mRNA value was remarkably decreased in lung cancer tissues compared with noncancerous tissues (P = 0.001). We found that CDH4 mRNA expression was associated with grade and histotype. What is more, the relative CDH4 mRNA value was decreased in the lung cancer tissues. Our results suggested that CDH4 might be a putative tumor suppressor gene (TSG) in lung cancer.

  10. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions.

    PubMed

    Sehgal, Poonam; Kong, Xinyu; Wu, Jun; Sunyer, Raimon; Trepat, Xavier; Leckband, Deborah

    2018-03-20

    This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  11. Decreased expression of GATA4 in the diaphragm of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Dingemann, Jens; Doi, Takashi; Gosemann, Jan-Hendrik; Ruttenstock, Elke Maria; Nakazawa, Nana; Puri, Prem

    2013-04-01

    The molecular mechanisms underlying the diaphragmatic defect in congenital diaphragmatic hernia (CDH) are still poorly understood. The transcription factor GATA4 is essential for normal development of the diaphragm. Recently, mutations in the GATA4 gene have been linked to human and rodent CDH. We hypothesized that diaphragmatic GATA4 expression is downregulated in the nitrofen CDH model. Pregnant rats received Nitrofen or vehicle on day 9 of gestation (D9). Fetuses were sacrificed on D13, D18, or D21. Pleuroperitoneal folds (n=20) and fetal diaphragms (n=40) were (micro) dissected and divided into CDH group and controls. RNA and protein were extracted. GATA4 mRNA levels were determined by real-time PCR. Protein levels were determined by ELISA and Immunohistochemistry. mRNA levels and Protein levels were significantly decreased in the CDH group compared to controls on D13 (mRNA 15.96±6.99 vs. 38.10±5.01, p<0.05), D18 (mRNA 10.45±1.84 vs. 17.68±2.11, Protein 2.59±0.06 vs. 4.58±0.35 p<0.05) and D21 (mRNA 4.31±0.83 vs. 6.87±0.88, Protein 0.16±0.08 vs. 1.26±0.49, p<0.05). Immunoreactivity of GATA4 was markedly decreased in CDH-diaphragms on D13, D18, and D21. We provide evidence for the first time that diaphragmatic expression of GATA4 is downregulated in the nitrofen model, suggesting that decreased expression of GATA4 may impair diaphragmatic development in nitrofen-induced CDH. © 2013 Wiley Periodicals, Inc.

  12. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    PubMed

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon carcinogenesis.

  13. Characterizing cardiac dysfunction in fetuses with left congenital diaphragmatic hernia.

    PubMed

    Cruz-Lemini, Mónica; Valenzuela-Alcaraz, Brenda; Granados-Montiel, Julio; Martínez, Josep M; Crispi, Fátima; Gratacós, Eduard; Cruz-Martínez, Rogelio

    2018-03-23

    To evaluate cardiac function by conventional echocardiography and tissue Doppler imaging in fetuses with left congenital diaphragmatic hernia (CDH). Conventional echocardiography (myocardial performance index, ventricular filling velocities, and E/A ratios) and tissue Doppler imaging (annular myocardial peak velocities, E/E' and E'/A' ratios) in mitral, septal, and tricuspid annulus were evaluated in a cohort of 31 left-sided CDH fetuses and compared with 75 controls matched for gestational age 2:1. In comparison to controls, CDH fetuses had prolonged isovolumetric time periods (isovolumetric contraction time 35 ms vs 28 ms, P < .001), with higher myocardial performance index (0.49 vs 0.42, P < .001) and tricuspid E/A ratios (0.77 vs 0.72, P = .033). Longitudinal function assessed by tissue Doppler showed signs of impaired relaxation (mitral lateral A' 8.0 vs 10.1 cm/s, P < .001 and an increased mitral lateral E'/A' ratio 0.93 vs 0.78, P < .001) in the CDH fetuses as compared with controls, with preserved systolic function. Left CDH fetuses show echocardiographic signs of diastolic dysfunction, probably secondary to fetal heart compression, maintaining a preserved systolic function. © 2018 John Wiley & Sons, Ltd.

  14. Evaluation of Carbohydrate-Derived Fulvic Acid (CHD-FA) as a Topical Broad-Spectrum Antimicrobial for Drug-Resistant Wound Infections

    DTIC Science & Technology

    2014-10-01

    in extracellular matrix component (COL14a1, COL1a1 , and COL1a2) and cellular adhesion (CDH1 and ITGB6), indicating a more profound tissue damage...Gene name Untreated 4.6% CHD-FA Ccl12 71.95 49.15 Cdh1 -199.60 -382.95 Ccl7 44.76 31.43 Col14a1 -37.69 -197.54 Csf2 200.02 1462.28 Col1a1 -49.56 -115.44...11.95 37.09 Cdh1 -170.19 -77.01 Ccl7 37.12 23.72 Col14a1 -4.78 -1.67 Csf2 254.94 56.41 Col1a1 -6.92 -2.05 Csf3 1277.40 176.44 Col1a2 -4.04 -2.79 Cxcl1

  15. Acute gastrointestinal compromise in neonates with congenital diaphragmatic hernia prior to repair.

    PubMed

    Fox, Catherine; Stewart, Michael; King, Sebastian K; Patel, Neil

    2016-12-01

    Congenital diaphragmatic hernia (CDH) affects 1 in 3000 live births. Modern management strategies include delayed repair of the diaphragm to permit pre-operative optimization of cardiorespiratory status. We describe a cohort of neonates in whom early emergency operative intervention was required for potentially fatal intestinal compromise. A retrospective review was performed of all neonatal CDH patients managed at a tertiary center in an 8-year period (2005-2012). A total of 126 CDH patients were managed during the 8-year period. Five neonates (male - 1; gestation 37+4-39+7; birth weight 2.9-3.7kg; left CDH - 5) required emergency operative intervention for presumed gastrointestinal compromise. All five neonates demonstrated systemic hypotension despite inotropic support, raised serum lactate (>2mmol/L), and abnormal radiographic findings. Operative intervention occurred within 3days of birth (1-3days). Findings included gastric volvulus, jejunal volvulus, and perforated caecum. All patients underwent primary diaphragmatic repair without a patch. Temporary ileostomy was required in 1 patient. All patients remain alive. Gastrointestinal compromise is a rare, but potentially catastrophic, complication of CDH. Emergency operative intervention may be required in a select cohort of patients. Early deterioration following birth should alert clinicians to the possibility of significant intestinal pathology. Level IV case series with no comparison group. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Thyroid C cells are decreased in experimental CDH].

    PubMed

    Martínez, L; De Ceano-Vivas, M; González-Reyes, S; Fernández-Dumont, V; Calonge, W M; Ruiz, E; Rodríguez, J I; Tovar, J A

    2006-04-01

    Experimental CDH is often associated with malformations of neural crest origin. Several of these features are present in human CDH and therefore likely similar pathogenic mechanisms should be explored. The aim of the present study is to examine whether thyroid C-cells, another neural crest derivative, are abnormal in this rat model. Pregnant rats were exposed either to 100 mg of 2-4-dichlorophenyl-p-nitrophenyl ether (nitrofén) or vehicle (controls) on 9.5 day of gestation. Fetuses were recovered on day 21st and the thyroids of those with CDH (68%) were immuno-histochemically stained with anti-calcitonin antibody. The number of positively stained cells per high power field were counted using a computer-assisted image analysis method in at least 5 sections per thyroid. The distribution of the cells within the gland was assessed as well. Comparisons between CDH and control rats were made by non-parametric tests with a significance threshold of p<0.05. The number of c-cells was dramatically reduced in CDH animals in comparison with controls (101.2 +/- 61.3 vs 23.1 +/- 37, p<0.0001). Histology of the thyroid was similar in both groups, but the distribution of positive C-cells within the gland followed an abnormal pattern in CDH rats with the cells tending to be located at the periphery rather than at the core of the lobes. Nitrofén induces a severe decrease in thyroid C cells accompanied by abnormal distribution patterns. These results add further evidence of the involvement of a neural crest dysregulation as a component of the pathogenesis of experimental CDH. Whether there is or not a clinical counterpart to these findings is still unknown, but the nature of the cardiovascular and craneo-facial malformations in some babies with CDH strongly support further research in this field.

  17. Overview of Epidemiology, Genetics, Birth Defects, and Chromosome Abnormalities Associated With CDH

    PubMed Central

    Pober, Barbara R.

    2010-01-01

    Congenital diaphragmatic hernia (CDH) is a common and well-studied birth defect. The etiology of most cases remains unknown but increasing evidence points to genetic causation. The data supporting genetic etiologies which are detailed below include the association of CDH with recurring chromosome abnormalities, the existence of CDH-multiplex families, and the co-occurrence of CDH with additional congenital malformations. PMID:17436298

  18. Genomic Locus Modulating IOP in the BXD RI Mouse Strains

    PubMed Central

    King, Rebecca; Li, Ying; Wang, Jiaxing; Struebing, Felix L.; Geisert, Eldon E.

    2018-01-01

    Intraocular pressure (IOP) is the primary risk factor for developing glaucoma, yet little is known about the contribution of genomic background to IOP regulation. The present study leverages an array of systems genetics tools to study genomic factors modulating normal IOP in the mouse. The BXD recombinant inbred (RI) strain set was used to identify genomic loci modulating IOP. We measured the IOP in a total of 506 eyes from 38 different strains. Strain averages were subjected to conventional quantitative trait analysis by means of composite interval mapping. Candidate genes were defined, and immunohistochemistry and quantitative PCR (qPCR) were used for validation. Of the 38 BXD strains examined the mean IOP ranged from a low of 13.2mmHg to a high of 17.1mmHg. The means for each strain were used to calculate a genome wide interval map. One significant quantitative trait locus (QTL) was found on Chr.8 (96 to 103 Mb). Within this 7 Mb region only 4 annotated genes were found: Gm15679, Cdh8, Cdh11 and Gm8730. Only two genes (Cdh8 and Cdh11) were candidates for modulating IOP based on the presence of non-synonymous SNPs. Further examination using SIFT (Sorting Intolerant From Tolerant) analysis revealed that the SNPs in Cdh8 (Cadherin 8) were predicted to not change protein function; while the SNPs in Cdh11 (Cadherin 11) would not be tolerated, affecting protein function. Furthermore, immunohistochemistry demonstrated that CDH11 is expressed in the trabecular meshwork of the mouse. We have examined the genomic regulation of IOP in the BXD RI strain set and found one significant QTL on Chr. 8. Within this QTL, there is one good candidate gene, Cdh11. PMID:29496776

  19. The E-cadherin gene (CDH1) variants T340A and L599V in gastric and colorectal cancer patients in Korea

    PubMed Central

    Kim, H; Wheeler, J; Kim, J; Ilyas, M; Beck, N; Kim, B; Park, K; Bodmer, W

    2000-01-01

    INTRODUCTION—Germline mutations in E-cadherin (CDH1) have been reported in families with early onset, diffuse gastric cancer. More recently, mutations in CDH1 have been described in colorectal cancer cell lines.
AIMS—We have investigated if germline mutations in CDH1 occur among different groups of Korean gastric and colorectal cancer patients, with and without a positive family history.
METHODS—We studied 131 patients and 168 normal controls (88 Korean and 80 non-Korean). Patients were divided into five groups: group I, 20 gastric cancer patients with a family history; group II, 26 colorectal cancer patients with a family history of gastric cancer (those from familial adenomatous polyposis (FAP) and hereditary non-polyposis colorectal cancer (HNPCC) kindred were excluded); group III, 16 HNPCC patients without identified germline mutations in hMLH1 and hMSH2; group IV, 35 gastric cancer patients without a family history; and group V, 34 colorectal cancer patients without a family history. Polymerase chain reaction, single strand conformational polymorphism analysis, direct sequencing, and genotyping for identified variants were performed.
RESULTS—Several germline changes in CDH1 were found. In addition to previously described polymorphisms, we found three novel changes, two of which were missense changes (T340A and L599V). T340A was present in one patient in group III and one in group V. L599V was present in one patient in group II, in two in group III, and in one in group IV. T340A was not found in normal controls while L599V was present in two of 88 Korean controls. Patients with these variants may appear to have a tendency to early onset cancer with a positive family history, although differences in frequencies did not reach statistical significance. Genotyping results suggest that these variants might have a common origin, particularly T340A.
CONCLUSION—We have described two new missense germline variants in CDH1 in various groups of Korean gastrointestinal cancer patients. Further work is required to assess if these variants increase the risk of gastrointestinal cancer.


Keywords: E-cadherin; CDH1; gastric cancer; colorectal cancer; family history; missense variant PMID:10896919

  20. Validation of caffeine dehydrogenase from Pseudomonas sp. strain CBB1 as a suitable enzyme for a rapid caffeine detection and potential diagnostic test.

    PubMed

    Mohanty, Sujit K; Yu, Chi Li; Gopishetty, Sridhar; Subramanian, Mani

    2014-08-06

    Excess consumption of caffeine (>400 mg/day/adult) can lead to adverse health effects. Recent introduction of caffeinated products (gums, jelly beans, energy drinks) might lead to excessive consumption, especially among children and nursing mothers, hence attracting the Food and Drug Administration's attention and product withdrawals. An "in-home" test will aid vigilant consumers in detecting caffeine in beverages and milk easily and quickly, thereby restricting its consumption. Known diagnostic methods lack speed and sensitivity. We report a caffeine dehydrogenase (Cdh)-based test which is highly sensitive (1-5 ppm) and detects caffeine in beverages and mother's milk in 1 min. Other components in these complex test samples do not interfere with the detection. Caffeine-dependent reduction of the dye iodonitrotetrazolium chloride results in shades of pink proportional to the levels in test samples. This test also estimates caffeine levels in pharmaceuticals, comparable to high-performance liquid chromatography. The Cdh-based test is the first with the desired attributes of a rapid and robust caffeine diagnostic kit.

  1. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.

    PubMed

    Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael

    2014-12-22

    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Genome-wide association study of kidney function decline in individuals of European descent

    PubMed Central

    Gorski, Mathias; Tin, Adrienne; Garnaas, Maija; McMahon, Gearoid M.; Chu, Audrey Y.; Tayo, Bamidele O.; Pattaro, Cristian; Teumer, Alexander; Chasman, Daniel I.; Chalmers, John; Hamet, Pavel; Tremblay, Johanne; Woodward, Marc; Aspelund, Thor; Eiriksdottir, Gudny; Gudnason, Vilmundur; Harris, Tammara B.; Launer, Lenore J.; Smith, Albert V.; Mitchell, Braxton D.; O'Connell, Jeffrey R.; Shuldiner, Alan R.; Coresh, Josef; Li, Man; Freudenberger, Paul; Hofer, Edith; Schmidt, Helena; Schmidt, Reinhold; Holliday, Elizabeth G.; Mitchell, Paul; Wang, Jie Jin; de Boer, Ian H.; Li, Guo; Siscovick, David S.; Kutalik, Zoltan; Corre, Tanguy; Vollenweider, Peter; Waeber, Gérard; Gupta, Jayanta; Kanetsky, Peter A.; Hwang, Shih-Jen; Olden, Matthias; Yang, Qiong; de Andrade, Mariza; Atkinson, Elizabeth J.; Kardia, Sharon L.R.; Turner, Stephen T.; Stafford, Jeanette M.; Ding, Jingzhong; Liu, Yongmei; Barlassina, Cristina; Cusi, Daniele; Salvi, Erika; Staessen, Jan A; Ridker, Paul M; Grallert, Harald; Meisinger, Christa; Müller-Nurasyid, Martina; Krämer, Bernhard K.; Kramer, Holly; Rosas, Sylvia E.; Nolte, Ilja M.; Penninx, Brenda W.; Snieder, Harold; Del Greco, Fabiola; Franke, Andre; Nöthlings, Ute; Lieb, Wolfgang; Bakker, Stephan J.L.; Gansevoort, Ron T.; van der Harst, Pim; Dehghan, Abbas; Franco, Oscar H.; Hofman, Albert; Rivadeneira, Fernando; Sedaghat, Sanaz; Uitterlinden, André G.; Coassin, Stefan; Haun, Margot; Kollerits, Barbara; Kronenberg, Florian; Paulweber, Bernhard; Aumann, Nicole; Endlich, Karlhans; Pietzner, Mike; Völker, Uwe; Rettig, Rainer; Chouraki, Vincent; Helmer, Catherine; Lambert, Jean-Charles; Metzger, Marie; Stengel, Benedicte; Lehtimäki, Terho; Lyytikäinen, Leo-Pekka; Raitakari, Olli; Johnson, Andrew; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Köttgen, Anna; Kao, H. Linda; Fox, Caroline S.; Böger, Carsten A.

    2014-01-01

    Genome wide association studies (GWAS) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, SNPs at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1 and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFRdecline of 3ml/min/1.73m2 or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11 and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 hours after gentamicin treatment compared to controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline. PMID:25493955

  3. The Fat-like Cadherin CDH-4 Acts Cell-Non-Autonomously in Anterior-Posterior Neuroblast Migration

    PubMed Central

    Sundararajan, Lakshmi; Norris, Megan L.; Schöneich, Sebastian; Ackley, Brian D.; Lundquist, Erik A.

    2014-01-01

    Directed migration of neurons is critical in the normal and pathological development of the brain and central nervous system. In C. elegans, the bilateral Q neuroblasts, QR on the right and QL on the left, migrate anteriorly and posteriorly, respectively. Initial protrusion and migration of the Q neuroblasts is autonomously controlled by the transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21. As QL migrates posteriorly, it encounters and EGL-20/Wnt signal that induces MAB-5/Hox expression that drives QL descendant posterior migration. QR migrates anteriorly away from EGL-20/Wnt and does not activate MAB-5/Hox, resulting in anterior QR descendant migration. A forward genetic screen for new mutations affecting initial Q migrations identified alleles of cdh-4, which caused defects in both QL and QR directional migration similar to unc-40, ptp-3, and mig-21. Previous studies showed that in QL, PTP-3/LAR and MIG-21 act in a pathway in parallel to UNC-40/DCC to drive posterior QL migration. Here we show genetic evidence that CDH-4 acts in the PTP-3/MIG-21 pathway in parallel to UNC-40/DCC to direct posterior QL migration. In QR, the PTP-3/MIG-21 and UNC-40/DCC pathways mutually inhibit each other, allowing anterior QR migration. We report here that CDH-4 acts in both the PTP-3/MIG-21 and UNC-40/DCC pathways in mutual inhibition in QR, and that CDH-4 acts cell-non-autonomously. Interaction of CDH-4 with UNC-40/DCC in QR but not QL represents an inherent left-right asymmetry in the Q cells, the nature of which is not understood. We conclude that CDH-4 might act as a permissive signal for each Q neuroblast to respond differently to anterior-posterior guidance information based upon inherent left-right asymmetries in the Q neuroblasts. PMID:24954154

  4. Cadherin 11 Involved in Basement Membrane Damage and Dermal Changes in Melasma.

    PubMed

    Kim, Nan-Hyung; Choi, Soo-Hyun; Lee, Tae Ryong; Lee, Chang-Hoon; Lee, Ai-Young

    2016-06-15

    Basement membrane (BM) disruption and dermal changes (elastosis, collagenolysis, vascular ectasia) have been reported in melasma. Although ultraviolet (UV) irradiation can induce these changes, UV is not always necessary for melasma development. Cadherin 11 (CDH11), which is upregulated in some melasma patients, has previously been shown to stimulate melanogenesis. Because CDH11 action requires cell-cell adhesion between fibroblasts and melanocytes, BM disruption in vivo should facilitate this. The aim of this study was to examine whether CDH11 overexpression leads to BM disruption and dermal changes, independent of UV irradiation. Immunohistochemistry/immunofluorescence, real-time PCR, Western blotting, and zymography suggested that BM disruption/dermal changes and related factors were present in the hyperpigmented skin of CDH11-upregulated melasma patients and in CDH11-overexpressing fibroblasts/keratinocytes. The opposite was seen in CDH11-knockdown cells. UV irradiation of the cultured cells did not increase CDH11 expression. Collectively, these data demonstrate that CDH11 overexpression could induce BM disruption and dermal changes in melasma, regardless of UV exposure.

  5. Functional Importance of the Anaphase-Promoting Complex-Cdh1-Mediated Degradation of TMAP/CKAP2 in Regulation of Spindle Function and Cytokinesis▿ †

    PubMed Central

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-01-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G1/S and peaks at G2/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis. PMID:17339342

  6. Functional importance of the anaphase-promoting complex-Cdh1-mediated degradation of TMAP/CKAP2 in regulation of spindle function and cytokinesis.

    PubMed

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-05-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G(1)/S and peaks at G(2)/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis.

  7. Therapeutic potential of mesenchymal stem cell transplantation in a nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Yuniartha, Ratih; Alatas, Fatima Safira; Nagata, Kouji; Kuda, Masaaki; Yanagi, Yusuke; Esumi, Genshiro; Yamaza, Takayoshi; Kinoshita, Yoshiaki; Taguchi, Tomoaki

    2014-09-01

    The aim of this study was to evaluate the efficacy of mesenchymal stem cells (MSCs) in a nitrofen-induced congenital diaphragmatic hernia (CDH) rat model. Pregnant rats were exposed to nitrofen on embryonic day 9.5 (E9.5). MSCs were isolated from the enhanced green fluorescent protein (eGFP) transgenic rat lungs. The MSCs were transplanted into the nitrofen-induced E12.5 rats via the uterine vein, and the E21 lung explants were harvested. The study animals were divided into three: the control group, the nitrofen-induced left CDH (CDH group), and the MSC-treated nitrofen-induced left CDH (MSC-treated CDH group). The specimens were morphologically analyzed using HE and immunohistochemical staining with proliferating cell nuclear antigen (PCNA), surfactant protein-C (SP-C), and α-smooth muscle actin. The alveolar and medial walls of the pulmonary arteries were significantly thinner in the MSC-treated CDH group than in the CDH group. The alveolar air space areas were larger, while PCNA and the SP-C positive cells were significantly higher in the MSC-treated CDH group, than in the CDH group. MSC engraftment was identified on immunohistochemical staining of the GFP in the MSC-treated CDH group. MSC transplantation potentially promotes alveolar and pulmonary artery development, thereby reducing the severity of pulmonary hypoplasia.

  8. Follistatin-like 1 expression is decreased in the alveolar epithelium of hypoplastic rat lungs with nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Zimmer, Julia; Friedmacher, Florian; Puri, Prem

    2017-05-01

    Pulmonary hypoplasia (PH), characterized by incomplete alveolar development, remains a major therapeutic challenge associated with congenital diaphragmatic hernia (CDH). Follistatin-like 1 (Fstl1) is a crucial regulator of alveolar formation and maturation, which is strongly expressed in distal airway epithelium. Fstl1-deficient mice exhibit reduced airspaces, impaired alveolar epithelial cell differentiation, and insufficient production of surfactant proteins similar to PH in human CDH. We hypothesized that pulmonary Fstl1 expression is decreased during alveolarization in the nitrofen-induced CDH model. Timed-pregnant rats received nitrofen or vehicle on gestational day 9 (D9). Fetal lungs were harvested on D18 and D21 and divided into control-/nitrofen-exposed specimens. Alveolarization was assessed using morphometric analysis techniques. Pulmonary gene expression of Fstl1 was determined by qRT-PCR. Immunofluorescence-double-staining for Fstl1 and alveolar epithelial marker surfactant protein C (SP-C) was performed to evaluate protein expression/localization. Radial alveolar count was significantly reduced in hypoplastic lungs of nitrofen-exposed fetuses with significant down regulation of Fstl1 mRNA expression on D18 and D21 compared to controls. Confocal-laser-scanning-microscopy revealed strikingly diminished Fstl1 immunofluorescence and SP-C expression in distal alveolar epithelium of nitrofen-exposed fetuses with CDH-associated PH on D18 and D21 compared to controls. Decreased expression of Fstl1 in alveolar epithelium may disrupt alveolarization and pulmonary surfactant production, thus contributing to the development of PH in the nitrofen-induced CDH model. 2b (Centre for Evidence-Based Medicine, Oxford). Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Candidate genes for congenital diaphragmatic hernia from animalmodels: sequencing of fog2 and pdgfra reveals rare variants indiaphragmatic hernia patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleyl, S.B.; Moshrefi, A.; Shaw, G.M.

    2007-05-11

    Congenital diaphragmatic hernia (CDH) is a common, lifethreatening birth defect. Although there is strong evidence implicatinggenetic factors in its pathogenesis, few causative genes have beenidentified, and in isolated CDH, only one de novo, nonsense mutation hasbeen reported in FOG2 in a female with posterior diaphragmaticeventration. We report here that the homozygous null mouse for the Pdgfragene has posterolateral diaphragmatic defects and thus is a model forhuman CDH. We hypothesized that mutations in this gene could cause humanCDH. We sequenced PDGFRa and FOG2 in 96 patients with CDH, of which 53had isolated CDH (55.2 percent), 36 had CDH and additional anomalies(37.5more » percent), and 7 had CDH and known chromosome aberrations (7.3percent). For FOG2, we identified novel sequence alterations predictingp.M703L and p.T843A in two patients with isolated CDH that were absent in526 and 564 control chromosomes respectively. These altered amino acidswere highly conserved. However, due to the lack of available parental DNAsamples we were not able to determine if the sequence alterations were denovo. For PDGFRa, we found a single variant predicting p.L967V in apatient with CDH and multiple anomalies that was absent in 768 controlchromosomes. This patient also had one cell with trisomy 15 on skinfibroblast culture, a finding of uncertain significance. Although ourstudy identified sequence variants in FOG2 and PDGFRa, we have notdefinitively established the variants as mutations and we found noevidence that CDH commonly results from mutations in thesegenes.« less

  10. Management and outcomes of scoliosis in children with congenital diaphragmatic hernia.

    PubMed

    Antiel, Ryan M; Riley, John S; Cahill, Patrick J; Campbell, Robert M; Waqar, Lindsay; Herkert, Lisa M; Rintoul, Natalie E; Peranteau, William H; Flake, Alan W; Adzick, N Scott; Hedrick, Holly L

    2016-12-01

    The purpose of this study was to evaluate the management and outcomes of CDH patients with scoliosis. From January 1996 to August 2015, 26 of 380 (7%) CDH patients were diagnosed with scoliosis. Six (23%) were prenatally diagnosed by ultrasound, and 9 (35%) were diagnosed postnatally. The remaining 11 (42%) developed scoliosis after discharge. Mean follow-up was 6.6years. Among the 15 patients with congenital scoliosis, there were 2 (13%) perinatal deaths. Five of the 13 (38%) survivors required orthopedic surgery, and 2 have required bracing. The mean age at initial surgery was 7years. These five children underwent an average of 2.8 (range 1-7) expansions or revisions. All surgical patients required supplemental oxygen at 28days of life, and 1 required a tracheostomy. None of the 11 patients who developed scoliosis later in life required surgery, but 3 have required bracing. Six of the 11 (55%) required a patch repair for CDH compared to 158 of 264 (60%) CDH patients without scoliosis (p=0.73). Early diagnosis of scoliosis in CDH patients is associated with a high rate of surgery. There was not a higher incidence of patch repair among patients who developed scoliosis. Prognosis. Retrospective study, level II. Copyright © 2016. Published by Elsevier Inc.

  11. Standardized Postnatal Management of Infants with Congenital Diaphragmatic Hernia in Europe: The CDH EURO Consortium Consensus - 2015 Update.

    PubMed

    Snoek, Kitty G; Reiss, Irwin K M; Greenough, Anne; Capolupo, Irma; Urlesberger, Berndt; Wessel, Lucas; Storme, Laurent; Deprest, Jan; Schaible, Thomas; van Heijst, Arno; Tibboel, Dick

    2016-01-01

    In 2010, the congenital diaphragmatic hernia (CDH) EURO Consortium published a standardized neonatal treatment protocol. Five years later, the number of participating centers has been raised from 13 to 22. In this article the relevant literature is updated, and consensus has been reached between the members of the CDH EURO Consortium. Key updated recommendations are: (1) planned delivery after a gestational age of 39 weeks in a high-volume tertiary center; (2) neuromuscular blocking agents to be avoided during initial treatment in the delivery room; (3) adapt treatment to reach a preductal saturation of between 80 and 95% and postductal saturation >70%; (4) target PaCO2 to be between 50 and 70 mm Hg; (5) conventional mechanical ventilation to be the optimal initial ventilation strategy, and (6) intravenous sildenafil to be considered in CDH patients with severe pulmonary hypertension. This article represents the current opinion of all consortium members in Europe for the optimal neonatal treatment of CDH. © 2016 The Author(s) Published by S. Karger AG, Basel.

  12. A three-dimensional cell culture system as an in vitro canine mammary carcinoma model for the expression of connective tissue modulators.

    PubMed

    Cardoso, T C; Sakamoto, S S; Stockmann, D; Souza, T F B; Ferreira, H L; Gameiro, R; Vieira, F V; Louzada, M J Q; Andrade, A L; Flores, E F

    2017-06-01

    In this study, derived complex carcinoma (CC) and simple carcinoma (SC) cell lines were established and cultured under two-dimensional (2D) and three-dimensional (3D) conditions. The 3D was performed in six-well AlgiMatrix™ (LifeTechnologies®, Carlsbad, CA, USA) scaffolds, resulting in spheroids sized 50-125 µm for CC and 175-200 µm for SC. Cell viability was demonstrated up to 14 days for both models. Epidermal growth factor receptor (EGFR) was expressed in CC and SC in both systems. However, higher mRNA and protein levels were observed in SC 2D and 3D systems when compared with CC (P < 0.005). The connective tissue modulators, metalloproteinases-1, -2, -9 and -13 (MMPs), relaxin receptors 1 and 2 (RXR1 and RXR2) and E-cadherin (CDH1) were quantitated. All were upregulated similarly when canine mammary tumour (CMT)-derived cell lines were cultured under 3D AlgiMatrix, except CDH1 that was downregulated (P < 0.005). These results are promising towards the used of 3D system to increase a high throughput in vitro canine tumour model. © 2016 John Wiley & Sons Ltd.

  13. DBC1 promotes castration-resistant prostate cancer by positively regulating DNA binding and stability of AR-V7.

    PubMed

    Moon, Sue Jin; Jeong, Byong Chang; Kim, Hwa Jin; Lim, Joung Eun; Kwon, Ghee Young; Kim, Jeong Hoon

    2018-03-01

    Constitutively active AR-V7, one of the major androgen receptor (AR) splice variants lacking the ligand-binding domain, plays a key role in the development of castration-resistant prostate cancer (CRPC) and anti-androgen resistance. However, our understanding of the regulatory mechanisms of AR-V7-driven transcription is limited. Here we report DBC1 as a key regulator of AR-V7 transcriptional activity and stability in CRPC cells. DBC1 functions as a coactivator for AR-V7 and is required for the expression of AR-V7 target genes including CDH2, a mesenchymal marker linked to CRPC progression. DBC1 is required for recruitment of AR-V7 to its target enhancers and for long-range chromatin looping between the CDH2 enhancer and promoter. Mechanistically, DBC1 enhances DNA-binding activity of AR-V7 by direct interaction and inhibits CHIP E3 ligase-mediated ubiquitination and degradation of AR-V7 by competing with CHIP for AR-V7 binding, thereby stabilizing and activating AR-V7. Importantly, DBC1 depletion suppresses the tumorigenic and metastatic properties of CRPC cells. Our results firmly establish DBC1 as a critical AR-V7 coactivator that plays a key role in the regulation of DNA binding and stability of AR-V7 and has an important physiological role in CRPC progression.

  14. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOEpatents

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  15. Clinical analysis of cervical radiculopathy causing deltoid paralysis.

    PubMed

    Chang, Han; Park, Jong-Beom; Hwang, Jin-Yeun; Song, Kyung-Jin

    2003-10-01

    In general, deltoid paralysis develops in patients with cervical disc herniation (CDH) or cervical spondylotic radiculopathy (CSR) at the level of C4/5, resulting in compression of the C5 nerve root. Therefore, little attention has been paid to CDH or CSR at other levels as the possible cause of deltoid paralysis. In addition, the surgical outcomes for deltoid paralysis have not been fully described. Fourteen patients with single-level CDH or CSR, who had undergone anterior cervical decompression and fusion for deltoid paralysis, were included in this study. The severity of deltoid paralysis was classified into five grades according to manual motor power test, and the severity of radiculopathy was recorded on a visual analog scale (zero to ten points). The degree of improvement in both the severity of deltoid paralysis and radiculopathy following surgery was evaluated. Of 14 patients, one had C3/4 CDH, four had C4/5 CDH, three had C4/5 CSR, one had C5/6 CDH, and five had C5/6 CSR. Both deltoid paralysis and radiculopathy improved significantly with surgery (2.57+/-0.51 grades vs 4.14+/-0.66, P=0.001, and 7.64+/-1.65 points vs 3.21+/-0.58, P=0.001, respectively). In conclusion, the current study demonstrates that deltoid paralysis can develop due to CDH or CSR not only C4/5, but also at the levels of C3/4 and C5/6, and that surgical decompression significantly improves the degree of deltoid paralysis due to cervical radiculopathy.

  16. Genome-wide association study of kidney function decline in individuals of European descent.

    PubMed

    Gorski, Mathias; Tin, Adrienne; Garnaas, Maija; McMahon, Gearoid M; Chu, Audrey Y; Tayo, Bamidele O; Pattaro, Cristian; Teumer, Alexander; Chasman, Daniel I; Chalmers, John; Hamet, Pavel; Tremblay, Johanne; Woodward, Marc; Aspelund, Thor; Eiriksdottir, Gudny; Gudnason, Vilmundur; Harris, Tamara B; Launer, Lenore J; Smith, Albert V; Mitchell, Braxton D; O'Connell, Jeffrey R; Shuldiner, Alan R; Coresh, Josef; Li, Man; Freudenberger, Paul; Hofer, Edith; Schmidt, Helena; Schmidt, Reinhold; Holliday, Elizabeth G; Mitchell, Paul; Wang, Jie Jin; de Boer, Ian H; Li, Guo; Siscovick, David S; Kutalik, Zoltan; Corre, Tanguy; Vollenweider, Peter; Waeber, Gérard; Gupta, Jayanta; Kanetsky, Peter A; Hwang, Shih-Jen; Olden, Matthias; Yang, Qiong; de Andrade, Mariza; Atkinson, Elizabeth J; Kardia, Sharon L R; Turner, Stephen T; Stafford, Jeanette M; Ding, Jingzhong; Liu, Yongmei; Barlassina, Cristina; Cusi, Daniele; Salvi, Erika; Staessen, Jan A; Ridker, Paul M; Grallert, Harald; Meisinger, Christa; Müller-Nurasyid, Martina; Krämer, Bernhard K; Kramer, Holly; Rosas, Sylvia E; Nolte, Ilja M; Penninx, Brenda W; Snieder, Harold; Fabiola Del Greco, M; Franke, Andre; Nöthlings, Ute; Lieb, Wolfgang; Bakker, Stephan J L; Gansevoort, Ron T; van der Harst, Pim; Dehghan, Abbas; Franco, Oscar H; Hofman, Albert; Rivadeneira, Fernando; Sedaghat, Sanaz; Uitterlinden, André G; Coassin, Stefan; Haun, Margot; Kollerits, Barbara; Kronenberg, Florian; Paulweber, Bernhard; Aumann, Nicole; Endlich, Karlhans; Pietzner, Mike; Völker, Uwe; Rettig, Rainer; Chouraki, Vincent; Helmer, Catherine; Lambert, Jean-Charles; Metzger, Marie; Stengel, Benedicte; Lehtimäki, Terho; Lyytikäinen, Leo-Pekka; Raitakari, Olli; Johnson, Andrew; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Goessling, Wolfram; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S; Böger, Carsten A

    2015-05-01

    Genome-wide association studies (GWASs) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, single-nucleotide polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1, and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus, which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFR decline of 3 ml/min per 1.73 m(2) or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11, and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 h after gentamicin treatment compared with controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline.

  17. Fetal stomach and gallbladder in contact with the bladder wall is a common ultrasound sign of stomach-down left congenital diaphragmatic hernia.

    PubMed

    Morgan, Tara A; Basta, Amaya; Filly, Roy A

    2017-01-01

    The aim of this study was to identify sonographic (US) findings that can assist in prenatal diagnosis of stomach-down left congenital diaphragmatic hernia (CDH), specifically related to positioning of the abdominal contents including the stomach, bladder, and gallbladder. All US examinations with a postnatally confirmed diagnosis of stomach-down left CDH over a 13-year period were retrospectively reviewed for abnormal position of the abdominal contents, including whether the fetal stomach was in contact with the urinary bladder. Normal fetuses that underwent comprehensive US surveys were similarly evaluated for comparison in a 2:1 ratio. Twenty-two fetuses with stomach-down left CDH were identified in a cohort of 278 fetuses with left CDH. In 15/22 (68.2%) cases of stomach-down left CDH, the bladder and stomach walls were in contact. Contact of the fetal gallbladder with the fetal bladder wall was also observed and was present even more commonly (17/22 cases [77.3%]). There was no case of either the stomach or gallbladder in contact with the bladder wall in the normal fetal cohort (n = 44). Recognition of the fetal stomach and/or gallbladder in contact with the bladder wall can help in the detection of stomach-down left CDH. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:8-13, 2017. © 2016 Wiley Periodicals, Inc.

  18. Post-traumatic stress disorder, drug abuse and migraine: new findings from the National Comorbidity Survey Replication (NCS-R).

    PubMed

    Peterlin, B Lee; Rosso, Andrea L; Sheftell, Fred D; Libon, David J; Mossey, Jana M; Merikangas, Kathleen R

    2011-01-01

    Post-traumatic stress disorder (PTSD) has been shown to be associated with migraine and drug abuse. This was an analysis of data from the National Comorbidity Survey Replication (NCS-R) to evaluate the association of PTSD in those with episodic migraine (EM) and chronic daily headache (CDH). Our sample consisted of 5,692 participants. Lifetime and 12-month prevalence rates of PTSD were increased in those with EM and CDH. After adjustments, the lifetime odds ratio (OR) of PTSD was greater in those with EM (OR 3.07 confidence interval [CI]: 2.12, 4.46) compared to those without headache; was greater in men than women with EM (men: OR 6.86; CI: 3.11, 15.11; women: OR 2.77; CI: 1.83, 4.21); and was comparable or greater than the association between migraine with depression or anxiety. The lifetime OR of PTSD was also increased in CDH sufferers. The OR of illicit drug abuse was not increased in those with EM or CDH unless co-occurring with PTSD or depression. The lifetime and 12-month OR of PTSD is increased in those with migraine or CDH, and is greater in men than women with migraine. The lifetime and 12-month OR of illicit drug abuse is not increased in those with migraine or CDH unless co-occurring with PTSD or depression.

  19. Aggressive Surgical Management of Congenital Diaphragmatic Hernia: Worth the Effort?: A Multicenter, Prospective, Cohort Study.

    PubMed

    Harting, Matthew T; Hollinger, Laura; Tsao, Kuojen; Putnam, Luke R; Wilson, Jay M; Hirschl, Ronald B; Skarsgard, Erik D; Tibboel, Dick; Brindle, Mary E; Lally, Pamela A; Miller, Charles C; Lally, Kevin P

    2018-05-01

    The objectives of this study were (i) to evaluate infants with congenital diaphragmatic hernia (CDH) that do not undergo repair, (ii) to identify nonrepair rate by institution, and (iii) to compare institutional outcomes based on nonrepair rate. Approximately 20% of infants with CDH go unrepaired and the threshold to offer surgical repair is variable. Data were abstracted from a multicenter, prospectively collected database. Standard clinical variables, including repair (or nonrepair), and outcome were analyzed. Institutions were grouped based on volume and rate of nonrepair. Preoperative mortality predictors were identified using logistic regression, expected mortality for each center was calculated, and observed /expected (O/E) ratios were computed for center groups and compared by Kruskal-Wallis ANOVA. A total of 3965 infants with CDH were identified and 691 infants (17.5%) were not repaired. Nonrepaired patients had lower Apgar scores (P < 0.05) and increased incidence of anomalies (P < 0.0001). Low-volume centers ("Lo", n=44 total, < 10 CDH pts/yr) and high-volume centers ("Hi", n = 21) had median nonrepair rates of 19.8% (range 0%-66.7%) and 16.7% (5.1%-38.5%), respectively. High-volume centers were further dichotomized by rate of nonrepair (HiLo = 5.1-16.7% and HiHi = 17.6-38.5%), leaving 3 groups: HiLo, HiHi, and Lo. Predictors of mortality were lower birth weight, lower Apgar scores, prenatal diagnosis, and presence of congenital anomalies. O/E ratios for mortality in the HiLo, HiHi, and Lo groups were 0.81, 0.94, and 1.21, respectively (P < 0.0001). For every 100 CDH patients, HiLo centers have 2.73 (2.4-3.1, 95% confidence interval) survivors beyond expectation. There are significant differences between repaired and nonrepaired CDH infants and significant center variation in rate of nonrepair exists. Aggressive surgical management, leading to a low rate of nonrepair, is associated with improved risk-adjusted mortality.

  20. MicroRNA-1285-5p influences the proliferation and metastasis of non-small-cell lung carcinoma cells via downregulating CDH1 and Smad4.

    PubMed

    Zhou, Shixia; Zhang, Zhongmian; Zheng, Pengyuan; Zhao, Wenchao; Han, Na

    2017-06-01

    Abnormal expression of microRNAs has been reported to regulate gene expression and cancer cell growth, invasion, and migration. Recently, upregulation of hsa-miR-1285 was demonstrated in bronchoalveolar lavage fluid samples from patients with lung cancer and downregulation in plasma level of stage-I lung cancer patients. However, the function and the underlying mechanism of miR-1285 in non-small-cell lung carcinoma have not been elucidated. In this study, we found that miR-1285-5p, the mature form of miR-1285, was significantly upregulated in human non-small-cell lung carcinoma cell lines A549 and SK-MES-1. Additionally, cells transfected with the miR-1285-5p inhibitor LV-anti-miR-1285-5p demonstrated significantly inhibited proliferation and invasion and depressed migration. Further analysis demonstrated that the miR-1285-5p precursor LV-miR-1285-5p attenuated the expression of Smad4 and cadherin-1 (CDH1) but that LV-anti-miR-1285-5p showed opposite results. A luciferase reporter assay confirmed that miR-1285-5p targeted Smad4 and CDH1. Mechanism analyses revealed that silence of Smad4 and CDH1 significantly attenuated the inhibitory effects of LV-anti-miR-1285-5p on non-small-cell lung carcinoma growth and invasion. Taken together, our data suggest that miR-1285-5p functions as a tumor promoter in the development of non-small-cell lung carcinoma by targeting Smad4 and CDH1, indicating a novel therapeutic strategy for non-small-cell lung carcinoma patients.

  1. Enhanced epithelial to mesenchymal transition (EMT) and upregulated MYC in ectopic lesions contribute independently to endometriosis.

    PubMed

    Proestling, Katharina; Birner, Peter; Gamperl, Susanne; Nirtl, Nadine; Marton, Erika; Yerlikaya, Gülen; Wenzl, Rene; Streubel, Berthold; Husslein, Heinrich

    2015-07-22

    Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose polarity and cell-to-cell contacts and acquire the migratory and invasive abilities of mesenchymal cells. These abilities are thought to be prerequisites for the establishment of endometriotic lesions. A hallmark of EMT is the functional loss of E-cadherin (CDH1) expression in epithelial cells. TWIST1, a transcription factor that represses E-cadherin transcription, is among the EMT inducers. SNAIL, a zinc-finger transcription factor, and its close relative SLUG have similar properties to TWIST1 and are thus also EMT inducers. MYC, which is upregulated by estrogens in the uterus by an estrogen response cis-acting element (ERE) in its promoter, is associated with proliferation in endometriosis. The role of EMT and proliferation in the pathogenesis of endometriosis was evaluated by analyzing TWIST1, CDH1 and MYC expression. CDH1, TWIST1, SNAIL and SLUG mRNA expression was analyzed by qRT-PCR from 47 controls and 74 patients with endometriosis. Approximately 42 ectopic and 62 eutopic endometrial tissues, of which 30 were matched samples, were collected during the same surgical procedure. We evaluated TWIST1 and MYC protein expression by immunohistochemistry (IHC) in the epithelial and stromal tissue of 69 eutopic and 90 ectopic endometrium samples, of which 49 matched samples were analyzed from the same patient. Concordant expression of TWIST1/SNAIL/SLUG and CDH1 but also of TWIST1 and MYC was analyzed. We found that TWIST1, SNAIL and SLUG are overexpressed (p < 0.001, p = 0.016 and p < 0.001) in endometriosis, while CDH1 expression was concordantly reduced in these samples (p < 0.001). Similar to TWIST1, the epithelial expression of MYC was also significantly enhanced in ectopic endometrium compared to eutopic tissues (p = 0.008). We found exclusive expression of either TWIST1 or MYC in the same samples (p = 0.003). Epithelial TWIST1 is overexpressed in endometriosis and may contribute to the formation of endometriotic lesions by inducing epithelial to mesenchymal transition, as CDH1 was reduced in ectopic lesions. We found exclusive expression of either TWIST1 or MYC in the same samples, indicating that EMT and proliferation contribute independently of each other to the formation of endometriotic lesions.

  2. MUC1-C activates EZH2 expression and function in human cancer cells.

    PubMed

    Rajabi, Hasan; Hiraki, Masayuki; Tagde, Ashujit; Alam, Maroof; Bouillez, Audrey; Christensen, Camilla L; Samur, Mehmet; Wong, Kwok-Kin; Kufe, Donald

    2017-08-07

    The EZH2 histone methyltransferase is a member of the polycomb repressive complex 2 (PRC2) that is highly expressed in diverse human cancers and is associated with a poor prognosis. MUC1-C is an oncoprotein that is similarly overexpressed in carcinomas and has been linked to epigenetic regulation. A role for MUC1-C in regulating EZH2 and histone methylation is not known. Here, we demonstrate that targeting MUC1-C in diverse human carcinoma cells downregulates EZH2 and other PRC2 components. MUC1-C activates (i) the EZH2 promoter through induction of the pRB→E2F pathway, and (ii) an NF-κB p65 driven enhancer in exon 1. We also show that MUC1-C binds directly to the EZH2 CXC region adjacent to the catalytic SET domain and associates with EZH2 on the CDH1 and BRCA1 promoters. In concert with these results, targeting MUC1-C downregulates EZH2 function as evidenced by (i) global and promoter-specific decreases in H3K27 trimethylation (H3K27me3), and (ii) activation of tumor suppressor genes, including BRCA1. These findings highlight a previously unreported role for MUC1-C in activating EZH2 expression and function in cancer cells.

  3. The Space Telescope SI C&DH system. [Scientific Instrument Control and Data Handling Subsystem

    NASA Technical Reports Server (NTRS)

    Gadwal, Govind R.; Barasch, Ronald S.

    1990-01-01

    The Hubble Space Telescope Scientific Instrument Control and Data Handling Subsystem (SI C&DH) is designed to interface with five scientific instruments of the Space Telescope to provide ground and autonomous control and collect health and status information using the Standard Telemetry and Command Components (STACC) multiplex data bus. It also formats high throughput science data into packets. The packetized data is interleaved and Reed-Solomon encoded for error correction and Pseudo Random encoded. An inner convolutional coding with the outer Reed-Solomon coding provides excellent error correction capability. The subsystem is designed with the capacity for orbital replacement in order to meet a mission life of fifteen years. The spacecraft computer and the SI C&DH computer coordinate the activities of the spacecraft and the scientific instruments to achieve the mission objectives.

  4. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells.

    PubMed

    Rajabi, Hasan; Hiraki, Masayuki; Kufe, Donald

    2018-04-01

    The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.

  5. Chronic daily headache: identification of factors associated with induction and transformation.

    PubMed

    Bigal, Marcelo E; Sheftell, Fred D; Rapoport, Alan M; Tepper, Stewart J; Lipton, Richard B

    2002-01-01

    Chronic daily headache (CDH) is one of the more frequently encountered headache syndromes at major tertiary care centers. The analysis of factors related to the transformation from episodic to chronic migraine (CM) and to the de novo development of new daily persistent headache (NDPH) remain poorly understood. To identify somatic factors and lifestyle factors associated with the development of CM and NDPH. We used a randomized case-control design to study the following groups: 1) CM with analgesic overuse (ARH), n = 399; 2) CM without analgesic overuse, n = 158; and 3) NDPH, n = 69. These groups were compared with two control groups: 1) episodic migraine, n = 100; and 2) chronic posttraumatic headache (CPTH); n = 65. Associated medical conditions were assessed. We investigated the case groups for any association with somatic or behavioral factors. Data were analyzed by the two-sided Fischer's exact test, with the odds ratio being calculated considering a 95% confidence interval using the approximation of Woolf. When the active groups were compared with the episodic migraine group, the following associations were found: 1) ARH: hypertension and daily consumption of caffeine; 2) CM: allergies, asthma, hypothyroidism, hypertension, and daily consumption of caffeine; and 3) NDPH: allergies, asthma, hypothyroidism, and consumption of alcohol more than three times per week. The following associations were found when comparing the active groups with CPTH: 1) ARH: asthma and hypertension; 2) CM: allergies, asthma, hypothyroidism, hypertension, and daily consumption of caffeine; and 3) NDPH: allergies, asthma, hypothyroidism, and consumption of alcohol more than three times per week. Several strong correlations were obtained between patients with specific types of CDH and certain somatic conditions or behaviors; some have not been previously described. Transformation of previously episodic headache or development of a NDPH thus may be related to certain medical conditions and behaviors beyond the frequently incriminated precipitant analgesic overuse. As similar results were obtained when CPTH was used as a control, the correlation is more complex than simple comorbidity.

  6. The lower genital tract microbiota in relation to cytokine-, SLPI- and endotoxin levels: application of checkerboard DNA-DNA hybridization (CDH).

    PubMed

    Nikolaitchouk, Natalia; Andersch, Björn; Falsen, Enevold; Strömbeck, Louise; Mattsby-Baltzer, Inger

    2008-04-01

    In the present study the lower genital tract microbiota in asymptomatic fertile women (n=34) was identified and quantified by culturing vaginal secretions. Also, vaginal and cervical samples were analyzed by a semiquantitative checkerboard DNA-DNA hybridization technique (CDH) based on genomic probes prepared from 13 bacterial species (Bacteroides ureolyticus, Escherichia coli, Fusobacterium nucleatum, Gardnerella vaginalis, Mobiluncus curtisii ss curtisii, Prevotella bivia, Prevotella disiens, Prevotella melaninogenica, Atopobium vaginae, Lactobacillus iners, Staphylococcus aureus ss aureus, Streptococcus anginosus, and Streptococcus agalactiae). The bacterial species found by either culture or CDH were correlated with proinflammatory cytokines (IL-1 alpha, IL-1 beta, IL-6, IL-8), secretory leukocyte protease inhibitor (SLPI), and endotoxin in the cervicovaginal samples. Grading the women into healthy, intermediate, or bacterial vaginosis (BV) as based on Gram staining of vaginal smears, the viable counts of lactobacilli (L. gasseri) and of streptococci-staphylococci combined were highest in the intermediate group. In BV, particularly the high concentrations of Actinomyces urogenitalis, Atopobium vaginae, and Peptoniphilus harei were noted (>or=10(11) per ml). The total viable counts correlated with both cervical IL-1 alpha and IL-1 beta. A strong negative correlation was observed between L. iners and total viable counts, G. vaginalis, or cervical IL-1 alpha, while it correlated positively with SLPI. Analysis of vaginal and cervical samples from 26 out of the 34 women by CDH showed that anaerobic bacteria were more frequently detected by CDH compared to culture. By this method, A. vaginae correlated with G. vaginalis, and L. iners with S. aureus. With regard to cytokines, B. ureolyticus correlated with both cervical and vaginal IL-1 alpha as well as with cervical IL-8, while F. nucleatum, S. agalactiae, S. anginosus, or S. aureus correlated with vaginal IL-1 alpha. Furthermore, all Gram-negative bacteria taken together, as measured by CDH, correlated with vaginal endotoxin and inversely with vaginal SLPI. The significance of the results is discussed. In summary, mapping of the identity and quantity of vaginal bacterial species and their association with locally produced host innate immune factors will help in defining various types of abnormal vaginal microbiota, developing new ways of assessing the risk of ascending subclinical infections, and in treating them. CDH appears to be a suitable tool for future analyses of large numbers of clinical samples with an extended number of bacterial probes.

  7. Whole Exome Sequencing Identifies de Novo Mutations in GATA6 Associated with Congenital Diaphragmatic Hernia

    PubMed Central

    Yu, Lan; Bennett, James T.; Wynn, Julia; Carvill, Gemma L.; Cheung, Yee Him; Shen, Yufeng; Mychaliska, George B.; Azarow, Kenneth S.; Crombleholme, Timothy M.; Chung, Dai H.; Potoka, Douglas; Warner, Brad W.; Bucher, Brian; Lim, Foong-Yen; Pietsch, John; Stolar, Charles; Aspelund, Gudrun; Arkovitz, Marc S.; Mefford, Heather; Chung, Wendy K.

    2014-01-01

    Background Congenital diaphragmatic hernia (CDH) is a common birth defect affecting 1 in 3,000 births. It is characterized by herniation of abdominal viscera through an incompletely formed diaphragm. Although chromosomal anomalies and mutations in several genes have been implicated, the cause for most patients is unknown. Methods We used whole exome sequencing in two families with CDH and congenital heart disease, and identified mutations in GATA6 in both. Results In the first family, we identified a de novo missense mutation (c.1366C>T, p.R456C) in a sporadic CDH patient with tetralogy of Fallot. In the second, a nonsense mutation (c.712G>T, p.G238*) was identified in two siblings with CDH and a large ventricular septal defect. The G238* mutation was inherited from their mother, who was clinically affected with congenital absence of the pericardium, patent ductus arteriosus, and intestinal malrotation. Deep sequencing of blood and saliva derived DNA from the mother suggested somatic mosaicism as an explanation for her milder phenotype, with only approximately 15% mutant alleles. To determine the frequency of GATA6 mutations in CDH, we sequenced the gene in 378 patients with CDH. We identified one additional de novo mutation (c.1071delG, p.V358Cfs34*). Conclusions Mutations in GATA6 have been previously associated with pancreatic agenesis and congenital heart disease. We conclude that, in addition to the heart and the pancreas, GATA6 is involved in development of two additional organs, the diaphragm and the pericardium. In addition we have shown that de novo mutations can contribute to the development of CDH, a common birth defect. PMID:24385578

  8. Prenatal administration of retinoic acid upregulates connective tissue growth factor in the nitrofen CDH model.

    PubMed

    Ruttenstock, Elke Maria; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2011-06-01

    Recent studies have suggested that retinoids may be involved in the molecular mechanisms of pulmonary hypoplasia (PH) in congenital diaphragmatic hernia (CDH). Connective tissue growth factor (CTGF) plays a key role in foetal lung development and remodelling during later gestation. CTGF knockout mice exhibit PH with similar characteristics to the human and nitrofen-induced PH. Prenatal administration of retinoic acid (RA) has been shown to stimulate alveologenesis in nitrofen-induced PH. In vitro studies have revealed that RA can induce CTGF gene expression. We hypothesized that pulmonary gene expression of CTGF is downregulated during the later stages of lung development, and that prenatal administration of RA upregulates CTGF in the nitrofen CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on D18, D19 and D20. Foetuses were harvested on D21 and divided into control, CDH, control + RA and CDH + RA group. Pulmonary CTGF gene and protein expression levels were determined using RT-PCR and immunohistochemistry. On D21, CTGF relative mRNA expression levels were significantly downregulated in CDH group compared to controls. After RA treatment, expression levels of CTGF were significantly upregulated in CDH + RA and control + RA compared to the CDH group. Immunohistochemical studies confirmed these results. Downregulation of pulmonary CTGF gene and protein expression during later stages of lung development may interfere with normal alveologenesis in the nitrofen CDH model. Upregulation of CTGF pulmonary gene expression after prenatal RA treatment may promote lung growth by promoting alveologenesis in the nitrofen-induced CDH model.

  9. Prenatal administration of retinoic acid upregulates insulin-like growth factor receptors in the nitrofen-induced hypoplastic lung.

    PubMed

    Ruttenstock, Elke; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2011-04-01

    Pulmonary hypoplasia (PH) is the main cause of mortality in newborns with congenital diaphragmatic hernia (CDH). Prenatal administration of retinoic acid (RA) stimulates alveologenesis in the nitrofen-induced pulmonary hypoplasia. Insulin-like growth factor receptors (IGFRs) play a crucial role in alveologenesis during lung development. We recently demonstrated that IGFRs were downregulated in later stages of lung development in the nitrofen CDH model. Several studies suggest the ability of RA to regulate insulin-like growth factor signaling. We hypothesized that IGFRs pulmonary gene expression is upregulated after the administration of RA in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on days D18, D19, and D20. Fetal lungs were dissected on D21 and divided into control, control + RA, CDH, and CDH + RA group. IGFRs gene and protein expression were determined using RT-PCR and immunohistochemistry. mRNA expression levels of IGFRs were significantly increased in control + RA and CDH + RA compared with CDH group. Immunoreactivity of IGFRs was markedly increased in control + RA and CDH + RA compared with CDH lungs. Upregulation of pulmonary gene and protein expression of IGFRs after prenatal RA treatment in the nitrofen model suggests that RA may promote lung growth by stimulating IGFRs mediated alveologenesis. © 2011 Wiley-Liss, Inc.

  10. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH).

    PubMed

    Zamora, Irving J; Olutoye, Oluyinka O; Cass, Darrell L; Fallon, Sara C; Lazar, David A; Cassady, Christopher I; Mehollin-Ray, Amy R; Welty, Stephen E; Ruano, Rodrigo; Belfort, Michael A; Lee, Timothy C

    2014-05-01

    The purpose of this study was to determine whether prenatal imaging parameters are predictive of postnatal CDH-associated pulmonary morbidity. The records of all neonates with CDH treated from 2004 to 2012 were reviewed. Patients requiring supplemental oxygen at 30 days of life (DOL) were classified as having chronic lung disease (CLD). Fetal MRI-measured observed/expected total fetal lung volume (O/E-TFLV) and percent liver herniation (%LH) were recorded. Receiver operating characteristic (ROC) curves and multivariate regression were applied to assess the prognostic value of O/E-TFLV and %LH for development of CLD. Of 172 neonates with CDH, 108 had fetal MRIs, and survival was 76%. 82% (89/108) were alive at DOL 30, 46 (52%) of whom had CLD. Neonates with CLD had lower mean O/E-TFLV (30 vs.42%; p=0.001) and higher %LH (21.3±2.8 vs.7.1±1.8%; p<0.001) compared to neonates without CLD. Using ROC analysis, the best cutoffs in predicting CLD were an O/E-TFLV<35% (AUC=0.74; p<0.001) and %LH>20% (AUC=0.78; p<0.001). On logistic regression, O/E-TFLV<35% and a %LH>20% were highly associated with indicators of long-term pulmonary sequelae. On multivariate analysis, %LH was the strongest predictor of CLD in patients with CDH (OR: 10.96, 95%CI: 2.5-48.9, p=0.002). Prenatal measurement of O/E-TFLV and %LH is predictive of CDH pulmonary morbidity and can aid in establishing parental expectations of postnatal outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Evaluation of Neonatal Lung Volume Growth by Pulmonary Magnetic Resonance Imaging in Patients with Congenital Diaphragmatic Hernia.

    PubMed

    Schopper, Melissa A; Walkup, Laura L; Tkach, Jean A; Higano, Nara S; Lim, Foong Yen; Haberman, Beth; Woods, Jason C; Kingma, Paul S

    2017-09-01

    To evaluate postnatal lung volume in infants with congenital diaphragmatic hernia (CDH) and determine if a compensatory increase in lung volume occurs during the postnatal period. Using a novel pulmonary magnetic resonance imaging method for imaging neonatal lungs, the postnatal lung volumes in infants with CDH were determined and compared with prenatal lung volumes obtained via late gestation magnetic resonance imaging. Infants with left-sided CDH (2 mild, 9 moderate, and 1 severe) were evaluated. The total lung volume increased in all infants, with the contralateral lung increasing faster than the ipsilateral lung (mean ± SD: 4.9 ± 3.0 mL/week vs 3.4 ± 2.1 mL/week, P = .005). In contrast to prenatal studies, the volume of lungs of infants with more severe CDH grew faster than the lungs of infants with more mild CDH (Spearman's ρ=-0.086, P = .01). Although the contralateral lung volume grew faster in both mild and moderate groups, the majority of total lung volume growth in moderate CDH came from increased volume of the ipsilateral lung (42% of total lung volume increase in the moderate group vs 32% of total lung volume increase in the mild group, P = .09). Analysis of multiple clinical variables suggests that increased weight gain was associated with increased compensatory ipsilateral lung volume growth (ρ = 0.57, P = .05). These results suggest a potential for postnatal catch-up growth in infants with pulmonary hypoplasia and suggest that weight gain may increase the volume growth of the more severely affected lung. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. N-cadherin Regulation of Bone Growth and Homeostasis is Osteolineage Stage-Specific

    PubMed Central

    Fontana, Francesca; Hickman-Brecks, Cynthia L.; Salazar, Valerie S.; Revollo, Leila; Abou-Ezzi, Grazia; Grimston, Susan K.; Jeong, Sung Yeop; Watkins, Marcus; Fortunato, Manuela; Alippe, Yael; Link, Daniel C.; Mbalaviele, Gabriel; Civitelli, Roberto

    2017-01-01

    N-cadherin inhibits osteogenic cell differentiation and canonical Wnt/β-catenin signaling in vitro. However, in vivo both conditional Cdh2 ablation and overexpression in osteoblasts lead to low bone mass. We tested the hypothesis that N-cadherin has different effects on osteolineage cells depending upon their differentiation stage. Embryonic conditional osteolineage Cdh2 deletion in mice results in defective growth, low bone mass and reduced osteoprogenitor number. These abnormalities are prevented by delaying Cdh2 ablation until 1 month of age, thus targeting only committed and mature osteoblasts, suggesting they are the consequence of N-cadherin deficiency in osteoprogenitors. Indeed, diaphyseal trabecularization actually increases when Cdh2 is ablated postnatally. The sclerostin-insensitive Lrp5A214V mutant, associated with high bone mass, does not rescue the growth defect, but it overrides the low bone mass of embryonically Cdh2 deleted mice, suggesting N-cadherin interacts with Wnt signaling to control bone mass. Finally, bone accrual and β-catenin accumulation after administration of an anti-Dkk1 antibody are enhanced in N-cadherin deficient mice. Thus, while lack of N-cadherin in embryonic and perinatal age is detrimental to bone growth and bone accrual, in adult mice loss of N-cadherin in osteolineage cells favors bone formation. Hence, N-cadherin inhibition may widen the therapeutic window of osteoanabolic agents. PMID:28240364

  13. Fetal Cardiac Impairment in Nitrofen-Induced Congenital Diaphragmatic Hernia: Postmortem Microcomputed Tomography Imaging Study.

    PubMed

    Pelizzo, Gloria; Calcaterra, Valeria; Lombardi, Claudio; Bussani, Rossana; Zambelli, Vanessa; De Silvestri, Annalisa; Custrin, Ana; Belgrano, Manuel; Zennaro, Floriana

    2017-08-01

    We assessed the post-mortem micro-CT utility to evaluate fetal cardiac impairment in nitrofen-induced congenital diaphragmatic hernia (CDH). At 9.5d postconception (dpc), pregnant rats were exposed to nitrofen. At +18 and +21dpc, fetuses were harvested by cesarean section. Postmortem micro-CT and autopsy were performed. Fetuses were assigned to three experimental groups: Control group (C), Nitrofen group (N, exposition to nitrofen without CDH), CDH group. Cardio-pulmonary indices were evaluated. An accurate morphological evaluation of the lung and heart was obtained. Early cardiac impairment was present in the N and CDH groups. At term pregnancy, an increased maximum diameter and decreased minimum diameter of the ventricles and increased interventricular septal thickness were noted in CDH. Histology showed a myocardial "disarray" and an high density of mitotic myocytes in CDH at midgestation. The potential utility of post-mortem fetal micro-CT examination in CDH was introduced. The results highlighted the presence of cardiac adaptation in affected fetuses.

  14. Evaluation of candidate methylation markers to detect cervical neoplasia.

    PubMed

    Shivapurkar, Narayan; Sherman, Mark E; Stastny, Victor; Echebiri, Chinyere; Rader, Janet S; Nayar, Ritu; Bonfiglio, Thomas A; Gazdar, Adi F; Wang, Sophia S

    2007-12-01

    Studies of cervical cancer and its immediate precursor, cervical intraepithelial neoplasia 3 (CIN3), have identified genes that often show aberrant DNA methylation and therefore represent candidate early detection markers. We used quantitative PCR assays to evaluate methylation in five candidate genes (TNFRSF10C, DAPK1, SOCS3, HS3ST2 and CDH1) previously demonstrated as methylated in cervical cancer. In this analysis, we performed methylation assays for the five candidate genes in 45 invasive cervical cancers, 12 histologically normal cervical specimens, and 23 liquid-based cervical cytology specimens confirmed by expert review as unequivocal demonstrating cytologic high-grade squamous intraepithelial lesions, thus representing the counterparts of histologic CIN3. We found hypermethylation of HS3ST2 in 93% of cancer tissues and 70% of cytology specimens interpreted as CIN3; hypermethylation of CDH1 was found in 89% of cancers and 26% of CIN3 cytology specimens. Methylation of either HS3ST2 or CDH1 was observed in 100% of cervical cancer tissues and 83% of CIN3 cytology specimens. None of the five genes showed detectable methylation in normal cervical tissues. Our data support further evaluation of HS3ST2 and CDH1 methylation as potential markers of cervical cancer and its precursor lesions.

  15. Antenatal Saireito (TJ-114) Can Improve Pulmonary Hypoplasia and Pulmonary Vascular Remodeling in Nitrofen-Induced Congenital Diaphragmatic Hernia.

    PubMed

    Hirako, Shima; Tsuda, Hiroyuki; Kotani, Tomomi; Sumigama, Seiji; Mano, Yukio; Nakano, Tomoko; Imai, Kenji; Li, Hua; Toyokuni, Shinya; Kikkawa, Fumitaka

    2016-09-01

    Congenital diaphragmatic hernia (CDH) can induce lung hypoplasia and pulmonary hypertension and is associated with high mortality. The purpose of this study is to examine the efficacy and safety of antenatal Saireito (TJ-114), a traditional Japanese herbal medicine, in a rat CDH model. Sprague-Dawley rats were exposed to an herbicide (nitrofen, 100 mg) on embryonic day 9 (E9) to induce CDH, and antenatal Saireito (2000 mg/kg/day) was orally administered from E10 to E20. On E21, fetuses were delivered. Antenatal Saireito significantly decreased the incidence of CDH (p < 0.01), increased lung volume (p < 0.01), improved alveolarization and pulmonary artery remodeling using histological analysis, and improved respiratory function using gasometric analysis (pH; p < 0.05, and PCO2 ; p < 0.01). In addition, antenatal Saireito significantly decreased endothelin-1 and endothelin receptor A expression in the pulmonary arteries. Taken together, our results demonstrated that antenatal Saireito can improve fetal pulmonary hypoplasia and pulmonary vascular remodeling and, as a result, can improve respiratory function in a rat CDH model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Mothers of Infants With Congenital Diaphragmatic Hernia Describe "Breastfeeding" in the Neonatal Intensive Care Unit: "As Long as It's My Milk, I'm Happy".

    PubMed

    Froh, Elizabeth B; Deatrick, Janet A; Curley, Martha A Q; Spatz, Diane L

    2017-08-01

    Very little is known about the breastfeeding experience of mothers of infants born with congenital anomalies and cared for in the neonatal intensive care unit (NICU). Often, studies related to breastfeeding and lactation in the NICU setting are focused on the mothers of late preterm, preterm, low-birth-weight, and very-low-birth-weight infants. Congenital diaphragmatic hernia (CDH) is an anatomic malformation of the diaphragm and affects 1 in every 2,000 to 4,000 live births. Currently, there are no studies examining the health outcomes of infants with CDH and the effect of human milk. Research aim: This study aimed to describe the breastfeeding experience of mothers of infants with CDH cared for in the NICU. A prospective, longitudinal qualitative descriptive design was used. Phased interviews were conducted with a purposive sample of 11 CDH infant-mother dyads from a level 3 NICU in a children's hospital. Six themes emerged from the data: (a) hopeful for breastfeeding, (b) latching on . . . to the pump, (c) we've already worked so hard, (d) getting the hang of it-it's getting easier, (e) a good safety net, and (f) finding a way that works for us. For this population of CDH infant-mother dyads, the term breastfeeding is not exclusive to direct feeding at the breast and the mothers emphasized the significance of providing their own mother's milk through a combination of feeding mechanisms to their infants with CDH.

  17. Chronic Daily Headache and Medication Overuse Headache in First-Visit Headache Patients in Korea: A Multicenter Clinic-Based Study.

    PubMed

    Cha, Myoung Jin; Moon, Heui Soo; Sohn, Jong Hee; Kim, Byung Su; Song, Tae Jin; Kim, Jae Moon; Park, Jeong Wook; Park, Kwang Yeol; Kim, Soo Kyoung; Kim, Byung Kun; Cho, Soo Jin

    2016-07-01

    Chronic daily headache (CDH) is defined as a headache disorder in which headaches occur on a daily or near-daily basis (at least 15 days/month) for more than 3 months. Chronic migraine (CM) and medication overuse headache (MOH) are very disabling headaches that remain underdiagnosed. The aim of this study was to establish the frequency of CDH and its various subtypes, and examine the associations with MOH among first-visit headache patients presenting at neurology outpatient clinics in Korea. Eleven neurologists enrolled first-visit patients with complaints of headaches into outpatient clinics for further assessment. Headache disorders were classified according to the International Classification of Headache Disorder (third edition beta version) by each investigator. Primary CDH was present in 248 (15.2%) of the 1,627 included patients, comprising CM (143, 8.8%), chronic tension-type headache (CTTH) (98, 6%), and definite new daily persistent headache (NDPH) (7, 0.4%). MOH was associated with headache in 81 patients (5%). The association with MOH was stronger among CM patients (34.5%) than patients with CTTH (13.3%) or NDPH (14.3%) (p=0.001). The frequency of CDH did not differ between secondary and tertiary referral hospitals. The frequencies of CDH and MOH diagnoses were 15.2% and 5%, respectively in first-visit headache patients presented at secondary or tertiary referral hospitals in Korea. CM was the most common subtype of CDH and was most frequently associated with MOH.

  18. [5-aza-2'-deoxycytidine-induced inhibition of CDH13 expression and its inhibitory effect on methylation status in human colon cancer cells in vitro and on growth of xenograft in nude mice].

    PubMed

    Ren, Jian-zhen; Huo, Ji-rong

    2012-01-01

    To determine the inhibitory effect of 5-aza-2'-deoxycytidine (5-Aza-CdR) on the growth of human colon carcinoma cells and xenografts in nude mice, to observe its effect on CDH13 gene expression and methylation in the xenografts, and to explore the possible mechanisms. Human colon carcinoma cell line HCT116 cells were treated with 5-Aza-CdR, and the cell morphology was observe by phase contrast microscopy. The cell growth was assessed by MTT assay. A tumor-bearing mouse model was generated by subcutaneous inoculation of human colon carcinoma HCT116 cells into nude mice. The tumor growth in the nude mice was observed, the CDH13 gene expression and its methylation status in the tumors were detected using methylation specific PCR (MSP), RT-PCR, Western blotting and immunohistochemistry. After treatment with 5-Aza-CdR, the inhibition rate of the growth of cultured HCT116 cells was increased as the concentration was increasing. The growth of the xenografts in nude mice was significantly inhibited, and the methylated CDH13 gene was reactivated. After 4 weeks of 5-Aza-CdR treatment, no significant difference was found between the body weights of nude mice in the 5-Aza-CdR group [(18.06 ± 1.29) g] and control group [(17.07 ± 0.84) g], (P > 0.10), and the average volume of xenografts of the 5-Aza-CdR group was (907.00 ± 87.29) mm(3), significantly smaller than the (1370.93 ± 130.20) mm(3) in the control group (P < 0.005). No expression of CDH13 gene was found in the control group. The expression of CDH13 gene in the 5-Aza-CdR group was increased along with the increasing concentration of 5-Aza-CdR. 5-Aza-CdR inhibits the growth of human colon cancer cells in culture and in nude mice, and induces the cancer cells to re-express CDH13 in nude mice. Its mechanism may be that demethylation of the methylated CDH13 promoter induced by 5-Aza-CdR restores CDH13 expression and thus inhibits the tumor growth in nude mice.

  19. Association of TP53 codon 72 and CDH1 genetic polymorphisms with colorectal cancer risk in Bangladeshi population.

    PubMed

    Rivu, Sanzana Fareen; Apu, Mohd Nazmul Hasan; Shabnaz, Samia; Nahid, Noor Ahmed; Islam, Md Reazul; Al-Mamun, Mir Md Abdullah; Nahar, Zabun; Rabbi, Sikder Nahidul Islam; Ahmed, Maizbha Uddin; Islam, Mohammad Safiqul; Hasnat, Abul

    2017-08-01

    Till now no pharmacogenetic study of TP53 codon 72 (Arg72Pro) and CDH1 rs16260 (-160C

  20. Usher syndrome type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing.

    PubMed

    Becirovic, Elvir; Ebermann, Inga; Nagy, Ditta; Zrenner, Eberhart; Seeliger, Mathias Wolfgang; Bolz, Hanno Jörn

    2008-03-01

    Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin-23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non-syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype-phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non-pathogenic polymorphisms.

  1. [Practical problems in breast screening. Columnar cell lesions including flat epithelial atypia and lobular neoplasia].

    PubMed

    Nährig, J

    2008-11-01

    Columnar cell lesions (CCL) and lobular neoplasia (LN) are encountered with increasing frequency in breast screening biopsies. CCLs are frequently associated with microcalcifications, whereas LN is an incidental finding in most cases. Flat epithelia atypia (FEA) the atypical variant of CLL, LN and atypical ductal hyperplasia (ADH) are frequently associated lesions. Molecular genetic studies of CCL, ductal carcinoma in situ (DCIS) and low grade invasive carcinomas revealed similar chromosomal alterations supporting the assumption that CCLs are neoplastic proliferations. The frequent association of FEA together with well differentiated invasive carcinomas provides further evidence of this concept. There is no internationally accepted classification of CCLs at present. CDH1-gene mutations are the cardinal feature of LN and invasive lobular carcinoma. In immunohistochemically CDH1-positive cases, alternative genetic alterations of the CDH1 pathway can lead to functional loss of CDH1. In our opinion morphologically and immunohistochemically hybrid lesions may represent this group of lobular lesions. Recent follow-up data suggest a higher rate of ipsilateral carcinomas in patients with previously diagnosed LN. It is currently an open question whether FEA and LN are members of a common family of intralobular proliferations, which are non-obligatory precursors of a low nuclear grade breast neoplasia family.

  2. Environmental factors in the etiology of esophageal atresia and congenital diaphragmatic hernia: results of a case-control study.

    PubMed

    Felix, Janine F; van Dooren, Marieke F; Klaassens, Merel; Hop, Wim C J; Torfs, Claudine P; Tibboel, Dick

    2008-02-01

    Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) and congenital diaphragmatic hernia (CDH) are severe congenital anomalies. Their etiologies are mostly unknown and are thought to be multifactorial. No specific environmental factors have consistently been described as risk factors. In a study conducted during the years 2000 to 2004 in a pediatric surgical referral center in the Netherlands, parents of children with EA/TEF or with CDH of the Bochdalek type and parents of a group of children without major birth defects filled out a questionnaire about possible exposure to environmental risk factors during the period from 1 month before conception to the end of the first trimester of pregnancy. Children with chromosomal anomalies were excluded. Questionnaires were returned for 47 out of 64 cases (73%) with EA/TEF, for 63 out of 77 cases (82%) with CDH, and for 202 out of 243 controls (83%). In EA/TEF, maternal age was borderline significantly higher than in controls (32.2 vs. 30.6 years, p = .05). Contact with herbicides or insecticides was associated with EA/TEF in univariate analysis (OR 2.0; 95% CI: 1.0-4.1) and in multivariate analysis, although of borderline significance. In univariate analysis, CDH was significantly associated with maternal use of alcohol (OR 2.9; 95% CI: 1.6-5.2). We found a significant association between maternal alcohol use around the time of conception and CDH. A possible explanation might be the effect of alcohol on the retinoic acid pathway. An association was found between contact with herbicides or insecticides and EA/TEF. (c) 2008 Wiley-Liss, Inc.

  3. MCP-1-Induced Protein Promotes Endothelial-Like and Angiogenic Properties in Human Bone Marrow Monocytic Cells

    PubMed Central

    Wang, Kangkai; Zhelyabovska, Olga; Saad, Yasser; Kolattukudy, Pappachan E.

    2013-01-01

    Monocytic cells enhance neovascularization by releasing proangiogenic mediators and/or by transdifferentiating into endothelial-like cells. However, the mechanisms that govern this transdifferentiation process are largely unknown. Recently, monocyte chemotactic protein-1 (MCP-1)-induced protein (MCPIP) has been identified as a novel CCCH-type zinc-finger protein expressed primarily in monocytic cells. Here, we analyzed whether MCPIP might exert angiogenic effects by promoting differentiation of monocytic cells into endothelial cell (EC)-like phenotype. The expression of MCPIP increased during MCP-1-induced transdifferentiation in human bone marrow mononuclear cells (BMNCs). Knockdown of MCPIP with small interfering RNA (siRNA) abolished MCP-1-induced expression of EC markers Flk-1 and Tie-2 in human BMNCs. BMNCs transfected with MCPIP expression vector displayed EC-like morphology accompanied by downregulation of monocytic markers CD14 and CD11b, upregulation of EC markers Flk-1 and Tie-2, induction of cadherin (cdh)-12 and -19, activation of endoplasmic reticulum (ER) stress, and autophagy. Knockdown of cdh-12 or cdh-19 markedly inhibited MCPIP-induced enhancement of cell attachment and EC-marker expression. Inhibition of ER stress by tauroursodeoxycholate abolished MCPIP-induced expression of EC markers. Inhibition of autophagy by knockdown of Beclin-1 with siRNA or by an autophagy inhibitor 3′-methyladenine inhibited MCPIP-induced expression of EC markers. Expression of MCPIP in BMNCs enhanced uptake of acetylated low-density lipoprotein (acLDL), formation of EC-colony, incorporation of cells into capillary-like structure on Matrigel, and exhibited increased neovascularization in the ischemic hindlimb in mice. These results demonstrate that MCPIP may be an important regulator of inflammatory angiogenesis and provide novel mechanistic insights into the link between MCP-1 and cardiovascular diseases. PMID:24008336

  4. Nitrofen interferes with trophoblastic expression of retinol-binding protein and transthyretin during lung morphogenesis in the nitrofen-induced congenital diaphragmatic hernia model.

    PubMed

    Kutasy, Balazs; Gosemann, Jan H; Doi, Takashi; Fujiwara, Naho; Friedmacher, Florian; Puri, Prem

    2012-02-01

    Retinoids play a key role in lung development. Retinoid signaling pathway has been shown to be disrupted in the nitrofen model of congenital diaphragmatic hernia (CDH) but the exact mechanism is not clearly understood. Retinol-binding protein (RBP) and transthyretin (TTR) are transport proteins for delivery of retinol to the tissues via circulation. Previous studies have shown that pulmonary retinol levels are decreased during lung morphogenesis in the nitrofen CDH model. In human newborns with CDH, both retinol and RBP levels are decreased. It has been reported that maternal RBP does not cross the placenta and the fetus produces its own RBP by trophoblast. RBP and TTR synthesized in the fetus are essential for retinol transport to the developing organs including lung morphogenesis. We hypothesized that nitrofen interferes with the trophoblastic expression of RBP and TTR during lung morphogenesis and designed this study to examine the trophoblastic expression of RBP and TTR, and the total level of RBP and TTR in the lung in the nitrofen model of CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs and placenta harvested on D21 and divided into two groups: control (n = 8) and nitrofen with CDH (n = 8). Total lung RBP and TTR levels using protein extraction were compared with enzyme linked immunoassay (ELISA). Immunohistochemistry was performed to evaluate trophoblastic RBP and TTR expression. Total protein levels of lung RBP and TTR were significantly lower in CDH (0.26 ± 0.003 and 6.4 ± 0.5 μg/mL) compared with controls (0.4 ± 0.001 and 9.9 ± 1.6 μg/mL, p < 0.05). In the control group, immunohistochemical staining showed strong immunoreactivity of RBP and TTR in the trophoblast compared to CDH group. Decreased trophoblast expression of retinol transport proteins suggest that nitrofen may interfere with the fetal retinol transport resulting in reduced pulmonary RBP and TTR levels and causing pulmonary hypoplasia in CDH.

  5. Primary chronic daily headache and its subtypes in adolescents and adults.

    PubMed

    Bigal, M E; Lipton, R B; Tepper, S J; Rapoport, A M; Sheftell, F D

    2004-09-14

    To determine the relative frequency of chronic daily headache (CDH) subtypes in adolescents and to compare the distribution of CDH subtypes in adolescents and adults of various ages. Adolescents (13 to 17 years, n = 170) and adults (18 or older, n = 638) were recruited during the same time frame. CDH subtypes were classified according the criteria proposed by Silberstein and Lipton (1996) as transformed migraine (TM), chronic tension-type headache (CTTH), new daily persistent headache (NDPH), and hemicrania continua (HC). Among adolescents and adults there were substantial differences in the distribution of CDH subtypes. The relative frequency of TM was lower in adolescents (68.8% vs 87.4%, p < 0.001), while NDPH (21.1% vs 10.8%, p < 0.001) and CTTH (10.1% vs 0.9%, p < 0.0001) were more common. HC (0 vs 0.9%, NS) was equally rare. The lower relative frequency of TM in adolescents was accounted for by TM with medication overuse (TM+), much more common in adults (28.2% vs 62.5%, p < 0.001). In fact, TM without medication overuse (TM-) was more common in adolescents (40.5% vs 24.9%, p < 0.001). The relative frequency of TM+ increased until the age of 50 years (p < 0.001). In adolescents with CDH, TM usually develops without medication overuse. Adolescents with the early onset form of TM may develop the disorder in the absence of medication overuse because they are at increased biologic risk.

  6. CAPNS1 Regulates USP1 Stability and Maintenance of Genome Integrity

    PubMed Central

    Cataldo, Francesca; Peche, Leticia Y.; Klaric, Enio; Brancolini, Claudio; Myers, Michael P.

    2013-01-01

    Calpains regulate a wide spectrum of biological functions, including migration, adhesion, apoptosis, secretion, and autophagy, through the modulating cleavage of specific substrates. Ubiquitous microcalpain (μ-calpain) and millicalpain (m-calpain) are heterodimers composed of catalytic subunits encoded, respectively, by CAPN1 and CAPN2 and a regulatory subunit encoded by CAPNS1. Here we show that calpain is required for the stability of the deubiquitinating enzyme USP1 in several cell lines. USP1 modulates DNA replication polymerase choice and repair by deubiquitinating PCNA. The ubiquitinated form of the USP1 substrate PCNA is stabilized in CAPNS1-depleted U2OS cells and mouse embryonic fibroblasts (MEFs), favoring polymerase-η loading on chromatin and increased mutagenesis. USP1 degradation directed by the cell cycle regulator APC/Ccdh1, which marks USP1 for destruction in the G1 phase, is upregulated in CAPNS1-depleted cells. USP1 stability can be rescued upon forced expression of calpain-activated Cdk5/p25, previously reported as a cdh1 repressor. These data suggest that calpain stabilizes USP1 by activating Cdk5, which in turn inhibits cdh1 and, consequently, USP1 degradation. Altogether these findings point to a connection between the calpain system and the ubiquitin pathway in the regulation of DNA damage response and place calpain at the interface between cell cycle modulation and DNA repair. PMID:23589330

  7. WMAP C&DH Software

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan; Leath, Tim; Ferrer, Art; Miller, Todd; Walters, Mark; Savadkin, Bruce; Wu, Ji-Wei; Slegel, Steve; Stagmer, Emory

    2007-01-01

    The command-and-data-handling (C&DH) software of the Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft functions as the sole interface between (1) the spacecraft and its instrument subsystem and (2) ground operations equipment. This software includes a command-decoding and -distribution system, a telemetry/data-handling system, and a data-storage-and-playback system. This software performs onboard processing of attitude sensor data and generates commands for attitude-control actuators in a closed-loop fashion. It also processes stored commands and monitors health and safety functions for the spacecraft and its instrument subsystems. The basic functionality of this software is the same of that of the older C&DH software of the Rossi X-Ray Timing Explorer (RXTE) spacecraft, the main difference being the addition of the attitude-control functionality. Previously, the C&DH and attitude-control computations were performed by different processors because a single RXTE processor did not have enough processing power. The WMAP spacecraft includes a more-powerful processor capable of performing both computations.

  8. Downregulated bone morphogenetic protein signaling in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Makanga, Martine; Dewachter, Céline; Maruyama, Hidekazu; Vuckovic, Aline; Rondelet, Benoit; Naeije, Robert; Dewachter, Laurence

    2013-08-01

    Bone morphogenetic proteins (BMP) have been shown to play crucial roles in not only lung and heart development, but also in the pathogenesis of pulmonary vascular remodeling in pulmonary hypertension (PH). We therefore hypothesized that BMP signaling could be altered in nitrofen-induced congenital diaphragmatic hernia (CDH) and associated PH. Pregnant rats were exposed to either 100 mg nitrofen or vehicle on embryonic day (E) 9.5. On E17 and E21, fetuses were delivered by cesarean section, killed and checked for left-sided CDH. The tissue was then harvested for pathobiological evaluation. In nitrofen-induced CDH, pulmonary expressions of BMP4, BMP receptor (BMPR) type 2 and Id1 decreased on E17 and E21. On E17, pulmonary gremlin-1 expression increased, while BMP7 decreased. In the lungs, Id1 expression was correlated to BMP4 and BMPR2 and inversely correlated to gremlin-1 expression. Myocardial expressions of BMPR2, BMPR1A, BMP7 and SERCA-2A decreased, while gremlin-1 and noggin expressions increased on E17. On E21, myocardial expressions of Id1 and SERCA-2A decreased, while gremlin-1 expression increased. Moreover, BMPR2 and BMPR1A expressions were correlated to SERCA-2A expression and inversely correlated to pro-apoptotic Bax/Bcl2 ratio within the myocardium. Downregulation of BMP signaling seems to contribute to pulmonary and myocardial anomalies observed in nitrofen-induced CDH.

  9. High-risk individuals' perceptions of reproductive genetic testing for CDH1 mutations.

    PubMed

    Hallowell, Nina; Badger, Shirlene; Richardson, Sue; Caldas, Carlos; Hardwick, Richard H; Fitzgerald, Rebecca C; Lawton, Julia

    2017-10-01

    Reproductive genetic testing- PreNatal Diagnosis (PND) and Preimplantation Genetic Diagnosis (PGD)-for CDH1 mutations associated with Hereditary Diffuse Gastric Cancer (HDGC)is available in the UK. This qualitative interview study examined high-risk individuals' (n = 35) views of CDH1 reproductive genetic testing. Interviewees generally regarded reproductive genetic testing as an acceptable form of HDGC risk management. However, some were concerned that their genetic risks required them to plan reproduction and anticipated difficulties communicating this to reproductive partners. Individuals had a preference for PGD over PND because it avoided the need for a termination of pregnancy. However, those who had not yet had children expressed concerns about having to undergo IVF procedures and worries about their effectiveness and the need for embryo selection in PGD. It is suggested that high-risk individuals are provided with access to reproductive genetic counselling.

  10. Recurrence of reported CDH23 mutations causing DFNB12 in a special cohort of South Indian hearing impaired assortative mating families - an evaluation.

    PubMed

    Vanniya S, Paridhy; Chandru, Jayasankaran; Pavithra, Amritkumar; Jeffrey, Justin Margret; Kalaimathi, Murugesan; Ramakrishnan, Rajagopalan; Karthikeyen, Natarajan P; C R Srikumari, Srisailapathy

    2018-03-01

    Mutations in CDH23 are known to cause autosomal-recessive nonsyndromic hearing loss (DFNB12). Until now, there was only one study describing its frequency in Indian population. We screened for CDH23 mutations to identify prevalent and recurring mutations among South Indian assortative mating hearing-impaired individuals who were identified as non-DFNB1 (GJB2 and GJB6). Whole-exome sequencing was performed in individuals found to be heterozygous for CDH23 to determine whether there was a second pathogenic allele. In our study, 19 variants including 6 pathogenic missense mutations were identified. The allelic frequency of pathogenic mutations accounts to 4.7% in our cohort, which is higher than that reported previously; three mutations (c.429+4G>A, c.2968G>A, and c.5660C>T) reported in the previous Indian study were found to recur. DFNB12 was found to be the etiology in 3.4% of our cohort, with missense mutation c.2968G>A (p.Asp990Asn) being the most prevalent (2.6%). These results suggest a need to investigate the possibility for higher proportion of CDH23 mutations in the South Indian hearing-impaired population. © 2017 John Wiley & Sons Ltd/University College London.

  11. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics.

    PubMed

    Kadek, Alan; Kavan, Daniel; Marcoux, Julien; Stojko, Johann; Felice, Alfons K G; Cianférani, Sarah; Ludwig, Roland; Halada, Petr; Man, Petr

    2017-02-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far. To investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used. HDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation. Transition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH. The results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Chronic Daily Headache and Medication Overuse Headache in First-Visit Headache Patients in Korea: A Multicenter Clinic-Based Study

    PubMed Central

    Cha, Myoung-Jin; Moon, Heui-Soo; Sohn, Jong-Hee; Kim, Byung-Su; Song, Tae-Jin; Kim, Jae-Moon; Park, Jeong Wook; Park, Kwang-Yeol; Kim, Soo-Kyoung; Kim, Byung-Kun

    2016-01-01

    Background and Purpose Chronic daily headache (CDH) is defined as a headache disorder in which headaches occur on a daily or near-daily basis (at least 15 days/month) for more than 3 months. Chronic migraine (CM) and medication overuse headache (MOH) are very disabling headaches that remain underdiagnosed. The aim of this study was to establish the frequency of CDH and its various subtypes, and examine the associations with MOH among first-visit headache patients presenting at neurology outpatient clinics in Korea. Methods Eleven neurologists enrolled first-visit patients with complaints of headaches into outpatient clinics for further assessment. Headache disorders were classified according to the International Classification of Headache Disorder (third edition beta version) by each investigator. Results Primary CDH was present in 248 (15.2%) of the 1,627 included patients, comprising CM (143, 8.8%), chronic tension-type headache (CTTH) (98, 6%), and definite new daily persistent headache (NDPH) (7, 0.4%). MOH was associated with headache in 81 patients (5%). The association with MOH was stronger among CM patients (34.5%) than patients with CTTH (13.3%) or NDPH (14.3%) (p=0.001). The frequency of CDH did not differ between secondary and tertiary referral hospitals. Conclusions The frequencies of CDH and MOH diagnoses were 15.2% and 5%, respectively in first-visit headache patients presented at secondary or tertiary referral hospitals in Korea. CM was the most common subtype of CDH and was most frequently associated with MOH. PMID:27449912

  13. Analysis of Ethnic Admixture in Prostate Cancer

    DTIC Science & Technology

    2006-12-01

    low penetrant genes have been identified as potential PCA suscept- ibility genes. These candidate genes include SRD5A2 (MIM 607306), CYP3A4 (MIM 124010...progression [13]. The CDH1gene is located at 16q22.1 and consists of 16 exons spanning approximately 100 kb of genomic DNA. Several polymorphisms, germline and...upstreamof theATGstart site and all 16 exons of CDH1 were screened for DNA sequence variation by denaturing high-performance liquid chro- matography

  14. Does the size of the rod affect the surgical results in adolescent idiopathic scoliosis? 5.5-mm versus 6.35-mm rod.

    PubMed

    Huang, Tsung-Hsi; Ma, Hsiao-Li; Wang, Shih-Tien; Chou, Po-Hsin; Ying, Szu-Han; Liu, Chien-Lin; Yu, Wing-Kwong; Chang, Ming-Chau

    2014-08-01

    Favorable clinical outcomes of surgical treatment with Cotrel-Dubousset instrumentation (CDI) or instrumentations that follow the principles of CDI, for adolescent idiopathic scoliosis (AIS) have been reported. However, there are few studies concerning the results with rods of different sizes. To find out whether the rod size affects the surgical results for AIS. A retrospective cohort study based on the same spinal system with different sizes of rod. A consecutive series of 93 patients, who underwent posterior correction with posterior instrumentation and fusion for AIS, were included and retrospectively analyzed. Postoperative radiologic outcomes were evaluated using coronal curves, percentage of curve correction, and coronal global balance. Ninety-three patients treated during the period January 2000 to December 2008 were included in this study; 48 patients were treated with the Cotrel-Dubousset Horizon (CDH) M10 system with a 6.35-mm rod from January 2000 through December 2004, and a CDH M8 was used with a 5.5-mm rod in another 45 patients from January 2005 through December 2008. The Cobb angle, Risser grade, coronal curves, flexibility of curve, percentage of curve correction, coronal global balance, operative time, and estimated blood loss were measured and analyzed. The same parameters were used when the patient was followed at the OPD. All of the patients underwent regular follow-up for at least 2 years. No statistical significance was observed in the demographic data, including age, sex, BMI, and Risser grade, between these 2 groups. The overall average percentage of correction was 60.0%±12.7%: 60.7%±12.5% for the CDH M10 group, and 59%±13.1% for the CDH M8 group. At the final follow-up, the overall average loss of correction was 4.8±3.9° for the CDH M10 group, and 4.3±4.0° for the CDH M8 group. The average percentage of correction at the final follow-up was 50.9%±15.1% for the CDH M10 group, and 51.1%±16.1% for the M8 group. No statistical significance could be observed in the radiologic parameters between these 2 groups. The radiologic results for the 5.5-mm rod and the 6.35-mm rod were comparable in terms of correction, loss of correction, and coronal global balance. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Long-term neurodevelopmental outcomes of congenital diaphragmatic hernia survivors not treated with extracorporeal membrane oxygenation.

    PubMed

    Frisk, Virginia; Jakobson, Lorna S; Unger, Sharon; Trachsel, Daniel; O'Brien, Karel

    2011-07-01

    Although there has been a marked improvement in the survival of children with congenital diaphragmatic hernia (CDH) in the past 2 decades, there are few reports of long-term neurodevelopmental outcome in this population. The present study examined neurodevelopmental outcomes in 10- to 16-year-old CDH survivors not treated with extracorporeal membrane oxygenation (ECMO). Parents of 27 CDH survivors completed questionnaires assessing medical problems, daily living skills, educational outcomes, behavioral problems, and executive functioning. Fifteen CDH survivors and matched full-term controls completed standardized intelligence, academic achievement, phonological processing, and working memory tests. Non-ECMO-treated CDH survivors demonstrated high rates of clinically significant difficulties on standardized academic achievement measures, and 14 of the 27 survivors had a formal diagnosis of specific learning disability, attention deficit hyperactivity disorder, or developmental disability. Specific problems with executive function, cognitive and attentional weaknesses, and social difficulties were more common in CDH patients than controls. Perioperative hypocapnia was linked to executive dysfunction, behavioral problems, lowered intelligence, and poor achievement in mathematics. Non-ECMO-treated CDH survivors are at substantial risk for neurodevelopmental problems in late childhood and adolescence. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. BMP4 Signaling Is Able to Induce an Epithelial-Mesenchymal Transition-Like Phenotype in Barrett’s Esophagus and Esophageal Adenocarcinoma through Induction of SNAIL2

    PubMed Central

    Kestens, Christine; Siersema, Peter D.; Offerhaus, G. Johan A.; van Baal, Jantine W. P. M.

    2016-01-01

    Background Bone morphogenetic protein 4 (BMP4) signaling is involved in the development of Barrett’s esophagus (BE), a precursor of esophageal adenocarcinoma (EAC). In various cancers, BMP4 has been found to induce epithelial-mesenchymal transition (EMT) but its function in the development of EAC is currently unclear. Aim To investigate the expression of BMP4 and several members of the BMP4 pathway in EAC. Additionally, to determine the effect of BMP4 signaling in a human Barrett’s esophagus (BAR-T) and adenocarcinoma (OE33) cell line. Methods Expression of BMP4, its downstream target ID2 and members of the BMP4 pathway were determined by Q-RT-PCR, immunohistochemistry and Western blot analysis using biopsy samples from EAC patients. BAR-T and OE33 cells were incubated with BMP4 or the BMP4 antagonist, Noggin, and cell viability and migration assays were performed. In addition, expression of factors associated with EMT (SNAIL2, CDH1, CDH2 and Vimentin) was evaluated by Q-RT-PCR and Western blot analysis. Results Compared to squamous epithelium (SQ), BMP4 expression was significantly upregulated in EAC and BE. In addition, the expression of ID2 was significantly upregulated in EAC and BE compared to SQ. Western blot analysis confirmed our results, showing an upregulated expression of BMP4 and ID2 in both BE and EAC. In addition, more phosphorylation of SMAD1/5/8 was observed. BMP4 incubation inhibited cell viability, but induced cell migration in both BAR-T and OE33 cells. Upon BMP4 incubation, SNAIL2 expression was significantly upregulated in BAR-T and OE33 cells while CDH1 expression was significantly downregulated. These results were confirmed by Western blot analysis. Conclusion Our results indicate active BMP4 signaling in BE and EAC and suggest that this results in an invasive phenotype by inducing an EMT-like response through upregulation of SNAIL2 and subsequent downregulation of CDH1. PMID:27191723

  17. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.

    PubMed

    Fewings, Eleanor; Larionov, Alexey; Redman, James; Goldgraben, Mae A; Scarth, James; Richardson, Susan; Brewer, Carole; Davidson, Rosemarie; Ellis, Ian; Evans, D Gareth; Halliday, Dorothy; Izatt, Louise; Marks, Peter; McConnell, Vivienne; Verbist, Louis; Mayes, Rebecca; Clark, Graeme R; Hadfield, James; Chin, Suet-Feung; Teixeira, Manuel R; Giger, Olivier T; Hardwick, Richard; di Pietro, Massimiliano; O'Donovan, Maria; Pharoah, Paul; Caldas, Carlos; Fitzgerald, Rebecca C; Tischkowitz, Marc

    2018-04-26

    Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. UK Medical Research Council (Sackler programme), European Research Council under the European Union's Seventh Framework Programme (2007-13), National Institute for Health Research Cambridge Biomedical Research Centre, Experimental Cancer Medicine Centres, and Cancer Research UK. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  18. Nitrofen increases total retinol levels in placenta during lung morphogenesis in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Kutasy, Balazs; Pes, Lara; Friedmacher, Florian; Paradisi, Francesca; Puri, Prem

    2014-10-01

    It has been shown that pulmonary retinol level is decreased during lung morphogenesis in the nitrofen-induced PH in congenital diaphragmatic hernia (CDH). Placenta has a major role in the retinol homeostasis in fetal life. Since there is no fetal retinol synthesis, maternal retinol has to cross the placenta. Placenta is the main fetal retinol store where retinol is stored in retinyl-ester formation. Trophoblasts have to produce its own retinol-binding protein (RBP) for retinol transport from placenta to fetus. Recently, we demonstrated that trophoblastic RBP expression is decreased in the nitrofen model of CDH. The aim of this study was to investigate the retinol transfer from mother to the placenta in nitrofen model of CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal placenta harvested on D21 and divided into two groups: control (n = 11) and nitrofen with CDH (n = 11). Retinoid levels in placenta were measured using HPLC. Immunohistochemistry was performed to evaluate trophoblastic expression of main RSP genes. Total retinol levels in the placenta were significantly increased in CDH placenta compared to control placenta. The retinyl-ester levels were significantly increased in CDH placenta compared to control placenta. Markedly, decreased immunoreactivity of retinoid signaling pathway was observed in trophoblast cells in CDH compared to control placenta. Increased placental retinol levels show that retinol is transferred from mother to placenta and stored in the placenta in nitrofen model of CDH during lung morphogenesis. Nitrofen may disturb the mobilization of retinol from placenta to fetal circulation causing PH in CDH.

  19. Prenatal microRNA miR-200b Therapy Improves Nitrofen-induced Pulmonary Hypoplasia Associated With Congenital Diaphragmatic Hernia.

    PubMed

    Khoshgoo, Naghmeh; Kholdebarin, Ramin; Pereira-Terra, Patricia; Mahood, Thomas H; Falk, Landon; Day, Chelsea A; Iwasiow, Barbara M; Zhu, Fuqin; Mulhall, Drew; Fraser, Carly; Correia-Pinto, Jorge; Keijzer, Richard

    2017-11-13

    We aimed to evaluate the use of miR-200b as a prenatal transplacental therapy in the nitrofen rat model of abnormal lung development and congenital diaphragmatic hernia (CDH). Pulmonary hypoplasia (PH) and pulmonary hypertension determine mortality and morbidity in CDH babies. There is no safe medical prenatal treatment available. We previously discovered that higher miR-200b is associated with better survival in CDH babies. Here, we investigate the role of miR-200b in the nitrofen rat model of PH and CDH and evaluate its use as an in vivo prenatal therapy. We profiled miR-200b expression during nitrofen-induced PH using RT-qPCR and in situ hybridization in the nitrofen rat model of PH and CDH. The effects of nitrofen on downstream miR-200b targets were studied in bronchial lung epithelial cells using a SMAD luciferase assay, Western blotting and Immunohistochemistry. We evaluated miR-200b as a lung growth promoting therapy ex vivo and in vivo using lung explant culture and transplacental prenatal therapy in the nitrofen rat model. We show that late lung hypoplasia in CDH is associated with (compensatory) upregulation of miR-200b in less hypoplastic lungs. Increasing miR-200b abundance with mimics early after nitrofen treatment decreases SMAD-driven TGF-β signaling and rescues lung hypoplasia both in vitro and in vivo. Also, prenatal miR-200b therapy decreases the observed incidence of CDH. Our data indicate that miR-200b improves PH and decreases the incidence of CDH. Future studies will further exploit this newly discovered prenatal therapy for lung hypoplasia and CDH.

  20. Fetoscopic Therapy for Severe Pulmonary Hypoplasia in Congenital Diaphragmatic Hernia: A First in Prenatal Regenerative Medicine at Mayo Clinic.

    PubMed

    Ruano, Rodrigo; Klinkner, Denise B; Balakrishnan, Karthik; Novoa Y Novoa, Victoria A; Davies, Norman; Potter, Dean D; Carey, William A; Colby, Christopher E; Kolbe, Amy B; Arendt, Katherine W; Segura, Leal; Sviggum, Hans P; Lemens, Maureen A; Famuyide, Abimbola; Terzic, Andre

    2018-05-15

    To introduce the prenatal regenerative medicine service at Mayo Clinic for fetal endoscopic tracheal occlusion (FETO) care for severe congenital diaphragmatic hernia (CDH). Two cases of prenatal management of severe CDH with FETO between January and August 2017 are reported. Per protocol, FETO was offered for life-threatening severe CDH at between 26 and 29 weeks' gestation. Regenerative outcome end point was fetal lung growth. Gestational age at procedure and maternal and perinatal outcomes were additional monitored parameters. Diagnosis by ultrasonography of severe CDH was based on extremely reduced lung size (observed-to-expected lung area to head circumference ratio [o/e-LHR], eg, o/e-LHR of 20.3% for fetus 1 and 23.0% for fetus 2) along with greater than one-third of the liver herniated into the chest in both fetuses. Both patients underwent successful FETO at 28 weeks. At the time of intervention, no maternal or fetal complications were observed. Postintervention, fetal lung growth was observed in both fetuses, reaching an o/e-LHR of 62.7% at 36 weeks in fetus 1 and 52.4% at 32 weeks in fetus 2. The balloons were removed successfully at 35 weeks and 4 days by ultrasound-guided puncture in the first patient and at 32 weeks and 3 days by ex utero intrapartum therapy-to-airway procedure in the second patient. Postnatal management followed standard of care with patch CDH therapy. At discharge, one patient was breathing normally, whereas the other required minimal nasal cannula oxygen support. The successful launch of the first fetoscopic therapy for CDH at Mayo Clinic reveals its feasibility and safety, with early signs of benefit documented by fetal lung growth and reversal of severe pulmonary hypoplasia. clinicaltrials.gov Identifier: G170062. Copyright © 2018 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  1. A Novel de novo CDH1 Germline Variant Aids in the Classification of C-terminal E-cadherin Alterations Predicted to Escape Nonsense-Mediated mRNA Decay.

    PubMed

    Krempely, Kate; Karam, Rachid

    2018-05-24

    Most truncating CDH1 pathogenic alterations confer an elevated lifetime risk of diffuse gastric cancer and lobular breast cancer. However, transcripts containing carboxyl-terminal (C-terminal) premature stop codons have been demonstrated to escape the nonsense-mediated mRNA decay (NMD) pathway, and gastric and breast cancer risks associated with these truncations should be carefully evaluated. A female patient underwent multigene panel testing due to a personal history of invasive lobular breast cancer diagnosed at age 54, which identified the germline CDH1 nonsense alteration, c.2506G>T (p.E836*), in the last exon of the gene. Subsequent parental testing for the alteration was negative and additional short tandem repeat analysis confirmed the familial relationships and the de novo occurrence in the proband. Based on the de novo occurrence, clinical history, and rarity in general population databases, this alteration was classified as a likely pathogenic variant. This is the most C-terminal pathogenic alteration reported to date. Additionally, this alteration contributed to the classification of six other upstream CDH1 C-terminal truncating variants as pathogenic or likely pathogenic. Identifying the most distal pathogenic alteration provides evidence to classify other C-terminal truncating variants as either pathogenic or benign, a fundamental step to offering pre-symptomatic screening and prophylactic procedures to the appropriate patients. Cold Spring Harbor Laboratory Press.

  2. Developing a primary dental care outreach (PDCO) course--part 1: practical issues and evaluation of clinical activity.

    PubMed

    Hind, V; Waterhouse, P J; Maguire, A; Tabari, D; Lloyd, J

    2009-11-01

    The primary dental care outreach (PDCO) course in Newcastle, UK commenced in September 2004 with dental undergraduates attending outreach clinics on a fortnightly rotation over a 2 year continuous placement. To evaluate the PDCO with respect to practical issues and clinical activity. Clinical activity data were collected using data sheets and Access software together with data on patient attendances and Structured Clinical Operative Tests (SCOTs). Comparative clinical data were collected from the same group of students in Child Dental Health (CDH) in the School of Dental Sciences. In 2004/2005, 1683 clinical procedures were undertaken in PDCO and 1362 in CDH. Of the treatment undertaken in PDCO, 37.1% was examination and treatment planning, 17.1% basic intracoronal restorations and 13.1% fissure sealing, the activity representative of day to day in general practice. Completion rates for the five piloted SCOTs in cross infection control, writing a prescription, writing a referral letter, taking a valid consent and taking a radiograph ranged from 74% to 97% in 2004/2006. The practical issues and challenges of delivering a new clinical course broadly related to induction of new PDCO staff, support of staff, establishing effective communication, timetabling logistics, delivery of clinical teaching and quality assurance. Once the practical issues and challenges of setting up a new clinical course have been overcome PDCO has a valuable role to play in preparing undergraduates for their future practising careers.

  3. Are all pulmonary hypoplasias the same? A comparison of pulmonary outcomes in neonates with congenital diaphragmatic hernia, omphalocele and congenital lung malformation.

    PubMed

    Akinkuotu, Adesola C; Sheikh, Fariha; Cass, Darrell L; Zamora, Irving J; Lee, Timothy C; Cassady, Christopher I; Mehollin-Ray, Amy R; Williams, Jennifer L; Ruano, Rodrigo; Welty, Stephen E; Olutoye, Oluyinka O

    2015-01-01

    Patients with congenital diaphragmatic hernias (CDH), omphaloceles, and congenital lung malformations (CLM) may have pulmonary hypoplasia and experience respiratory insufficiency. We hypothesize that given equivalent lung volumes, the degree of respiratory insufficiency will be comparable regardless of the etiology. Records of all fetuses with CDH, omphalocele, and CLM between January 2000 and June 2013 were reviewed. MRI-based observed-to-expected total fetal lung volumes (O/E-TFLV) were calculated. An analysis of outcomes in patients with O/E-TFLV between 40% and 60%, the most inclusive range, was performed. 285 patients were evaluated (161, CDH; 24, omphalocele; 100, CLM). Fetuses with CDH had the smallest mean O/E-TFLV. CDH patients were intubated for longer and had a higher incidence of pulmonary hypertension. Fifty-six patients with the three diagnoses had an O/E-TFLV of 40%-60%. The need for ECMO, supplemental oxygen at 30days of life, and 6-month mortality were similar among groups. CDH patients had a significantly longer duration of intubation and higher incidence of pulmonary hypertension than the other two diagnoses. Given equivalent lung volumes (40%-60% of expected), CDH patients require more pulmonary support initially than omphalocele and CLM patients. In addition to lung volumes, disease-specific factors, such as pulmonary hypertension in CDH, also contribute to pulmonary morbidity and overall outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Promoter methylation profile in gallbladder cancer.

    PubMed

    Roa, Juan Carlos; Anabalón, Leonardo; Roa, Iván; Melo, Angélica; Araya, Juan Carlos; Tapia, Oscar; de Aretxabala, Xavier; Muñoz, Sergio; Schneider, Barbara

    2006-03-01

    Methylation in the promoter region of genes is an important mechanism of inactivation of tumor suppressor genes. Our objective was to analyze the methylation pattern of some of the genes involved in carcinogenesis of the gallbladder, examining the immunohistochemical expression of proteins, clinical features, and patient survival time. Twenty cases of gallbladder cancer were selected from the frozen tumor bank. The DNA extracted was analyzed by means of a methylation-specific polymerase chain reaction test for the CDKN2A (p16), MLH1, APC, FHIT, and CDH1 (E-cadherin) genes. Morphological and clinical data and follow-up information were obtained. All cases were in an advanced stage: histologically moderate or poorly differentiated tumors (95%). Methylation of the promoter area of genes was observed in 5%, 20%, 30%, 40%, and 65% of cases, and an altered immunohistochemical pattern (AIP) in 5%, 35%, 21%, 25%, and 66% for the MLH1, CDKN2A, FHIT, APC, and CDH1 genes, respectively. The Kappa concordance index between methylation of the promoter area and AIP for the MLH1 and CDH1 genes was very high (K > 0.75) and substantial for APC (K > 0.45). No correlation was found between survival time and the methylation of the genes studied. The high frequency of gene methylation (with the exception of MLH1) and the high agreement between AIP and methylation of the gene promoter area for the MLH1, APC, and CDH1 genes suggest that the inactivation of tumor suppressor genes and of the genes related to the control of cellular proliferation through this mechanism is involved in gallbladder carcinogenesis.

  5. Transgenerational Radiation Epigenetics

    DTIC Science & Technology

    2014-11-01

    Cxcl12, Cyp1b1, Fhit, Mlh1 , Mthfr, Prdm2, Rarb, Rassf1, Rassf2, Sema3b, Slit2, Sfrp1, Tcf21; Genes with Metastatic Potential: Anxa5, Dlg2, Dusp6...Anxa5, Apc, Bcl2, Birc5, Braf, Cadm1, Cdh1, Cdh13, Cdkn2a, Dlc1, Egfr, Erbb2, Erbb3, Hgf, Hras1, Kras, Lck, Mlh1 , Mmp9, Nf1, Nfkb1, Ptgs2, Sema3b...Trp53; Immune response genes: Bcl2, Cadm1, Csf3, Cxcl12, Cxcl13, Irf4, Lck, Mlh1 , Nfkb1, Pax5, Stat1, Stat2, Tgfb1, Tnf, Trp53, Vegfa; and

  6. Genetic background of extreme violent behavior

    PubMed Central

    Tiihonen, J; Rautiainen, M-R; Ollila, HM; Repo-Tiihonen, E; Virkkunen, M; Palotie, A; Pietiläinen, O; Kristiansson, K; Joukamaa, M; Lauerma, H; Saarela, J; Tyni, S; Vartiainen, H; Paananen, J; Goldman, D; Paunio, T

    2015-01-01

    In developed countries, the majority of all violent crime is committed by a small group of antisocial recidivistic offenders, but no genes have been shown to contribute to recidivistic violent offending or severe violent behavior, such as homicide. Our results, from two independent cohorts of Finnish prisoners, revealed that a monoamine oxidase A (MAOA) low-activity genotype (contributing to low dopamine turnover rate) as well as the CDH13 gene (coding for neuronal membrane adhesion protein) are associated with extremely violent behavior (at least 10 committed homicides, attempted homicides or batteries). No substantial signal was observed for either MAOA or CDH13 among non-violent offenders, indicating that findings were specific for violent offending, and not largely attributable to substance abuse or antisocial personality disorder. These results indicate both low monoamine metabolism and neuronal membrane dysfunction as plausible factors in the etiology of extreme criminal violent behavior, and imply that at least about 5–10% of all severe violent crime in Finland is attributable to the aforementioned MAOA and CDH13 genotypes. PMID:25349169

  7. Genetic background of extreme violent behavior.

    PubMed

    Tiihonen, J; Rautiainen, M-R; Ollila, H M; Repo-Tiihonen, E; Virkkunen, M; Palotie, A; Pietiläinen, O; Kristiansson, K; Joukamaa, M; Lauerma, H; Saarela, J; Tyni, S; Vartiainen, H; Paananen, J; Goldman, D; Paunio, T

    2015-06-01

    In developed countries, the majority of all violent crime is committed by a small group of antisocial recidivistic offenders, but no genes have been shown to contribute to recidivistic violent offending or severe violent behavior, such as homicide. Our results, from two independent cohorts of Finnish prisoners, revealed that a monoamine oxidase A (MAOA) low-activity genotype (contributing to low dopamine turnover rate) as well as the CDH13 gene (coding for neuronal membrane adhesion protein) are associated with extremely violent behavior (at least 10 committed homicides, attempted homicides or batteries). No substantial signal was observed for either MAOA or CDH13 among non-violent offenders, indicating that findings were specific for violent offending, and not largely attributable to substance abuse or antisocial personality disorder. These results indicate both low monoamine metabolism and neuronal membrane dysfunction as plausible factors in the etiology of extreme criminal violent behavior, and imply that at least about 5-10% of all severe violent crime in Finland is attributable to the aforementioned MAOA and CDH13 genotypes.

  8. Cadherin-13 gene is associated with hyperactive/impulsive symptoms in attention/deficit hyperactivity disorder.

    PubMed

    Salatino-Oliveira, Angélica; Genro, Julia Pasqualini; Polanczyk, Guilherme; Zeni, Cristian; Schmitz, Marcelo; Kieling, Christian; Anselmi, Luciana; Menezes, Ana Maria Baptista; Barros, Fernando Cde; Polina, Evelise Regina; Mota, Nina R; Grevet, Eugênio Horácio; Bau, Claiton Henrique Dotto; Rohde, Luis Augusto; Hutz, Mara Helena

    2015-04-01

    Several efforts have been made to find new genetic risk variants which explain the high heritability of ADHD. At the genome level, genes involved in neurodevelopmental pathways were pointed as candidates. CDH13 and CTNNA2 genes are within GWAS top hits in ADHD and there are emerging notions about their contribution to ADHD pathophysiology. The main goal of this study is to test the association between SNPs in CDH13 and CTNNA2 genes and ADHD across the life cycle in subjects with ADHD. This study included 1,136 unrelated ADHD cases and 946 individuals without ADHD. No significant association between CDH13 and CTNNA2 was observed between cases and controls across different samples (P ≥ 0.096 for all comparisons). No allele was significantly more transmitted than expected from parents to ADHD probands. The CDH13 rs11150556 CC genotype was associated with more hyperactive/impulsive symptoms in youths with ADHD (children/adolescents clinical sample: F = 7.666, P = 0.006, FDR P-value = 0.032; Pelotas Birth Cohort sample: F = 6.711, P = 0.011, FDR P-value = 0.032). Although there are many open questions regarding the role of neurodevelopmental genes in ADHD symptoms, the present study suggests that CDH13 is associated with hyperactive/impulsive symptoms in youths with ADHD. © 2015 Wiley Periodicals, Inc.

  9. Challenging embryological theories on congenital diaphragmatic hernia: future therapeutic implications for paediatric surgery.

    PubMed Central

    Jesudason, E. C.

    2002-01-01

    Lung hypoplasia is central to the poor prognosis of babies with congenital diaphragmatic hernia (CDH). Prolapse of abdominal organs through a diaphragmatic defect has traditionally been thought to impair lung growth by compression. The precise developmental biology of CDH remains unresolved. Refractory to fetal correction, lung hypoplasia in CDH may instead originate during embryogenesis and before visceral herniation. Resolving these conflicting hypotheses may lead to reappraisal of current clinical strategies. Genetic studies in murine models and the fruitfly, Drosophila melanogaster are elucidating the control of normal respiratory organogenesis. Branchless and breathless are Drosophila mutants lacking fibroblast growth factor (FGF) and its cognate receptor (FGFR), respectively. Sugarless and sulphateless mutants lack enzymes essential for heparan sulphate (HS) biosynthesis. Phenotypically, all these mutants share abrogated airway branching. Mammalian organ culture and transgenic models confirm the essential interaction of FGFs and HS during airway ramification. Embryonic airway development (branching morphogenesis) occurs in a defined spatiotemporal sequence. Unlike the surgically-created lamb model, the nitrofen rat model permits investigation of embryonic lung growth in CDH. Microdissecting embryonic lung primordia from the nitrofen CDH model and normal controls, we demonstrated that disruption of stereotyped airway branching correlates with and precedes subsequent CDH formation. To examine disturbed branching morphogenesis longitudinally, we characterised a system that preserves lung hypoplasia in organ culture. We tested FGFs and heparin (an HS analogue) as potential therapies on normal and hypoplastic lungs. Observing striking differences in morphological response to FGFs between normal and hypoplastic lung primordia, we postulated abnormalities of FGF/HS signalling in the embryonic CDH lung. Evaluating this hypothesis further, we examined effects of an HS-independent growth factor (epidermal growth factor, EGF) on hypoplastic lung development. Visible differences in morphological response indicate an intrinsic abnormality of hypoplastic lung primordia that may involve shared targets of FGFs and EGE. These studies indicate that lung hypoplasia precedes diaphragmatic hernia and may involve disturbances of mitogenic signalling pathways fundamental to embryonic lung development. What does this imply for human CDH? Fetal surgery may be 'too little, too late' to correct an established lung embryopathy. In utero growth factor therapy may permit antenatal lung rescue. Prevention of the birth defect by preconceptual prophylaxis may represent the ultimate solution. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:12215028

  10. mRNA expression of CDH3, IGF2BP3, and BIRC5 in biliary brush cytology specimens is a useful adjunctive tool of cytology for the diagnosis of malignant biliary stricture

    PubMed Central

    Kim, Tae Ho; Chang, Jae Hyuck; Lee, Hee Jin; Kim, Jean A; Lim, Yeon Soo; Kim, Chang Whan; Han, Sok Won

    2016-01-01

    Abstract Although advances have been made in diagnostic tools, the distinction between malignant and benign biliary strictures still remains challenging. Intraductal brush cytology is a convenient and safe method that is used for the diagnosis of biliary stricture, but, low sensitivity limits its usefulness. This study aimed to demonstrate the usefulness of mRNA expression levels of target genes in brush cytology specimens combined with cytology for the diagnosis of malignant biliary stricture. Immunohistochemistry for cadherin 3 (CDH3), p53, insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3), homeobox B7 (HOXB7), and baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) was performed in 4 benign and 4 malignant bile duct tissues. Through endoscopic or interventional radiologic procedures, brush cytology specimens were prospectively obtained in 21 and 35 paitents with biliary strictures. In the brush cytology specimens, the mRNA expressions levels of 5 genes were determined by real-time polymerase chain reaction. Immunohistochemistry for CDH3, p53, IGF2BP3, HOXB7, and BIRC5 all showed positive staining in malignant tissues in contrast to benign tissues, which were negative. In the brush cytology specimens, the mRNA expression levels of CDH3, IGF2BP3, HOXB7, and BIRC5 were significantly higher in cases of malignant biliary stricture compared with cases of benign stricture (P = 0.006, P < 0.001, P < 0.001, and P = 0.001). The receiver-operating characteristic curves of these 4 mRNAs demonstrated that mRNA expression levels are useful for the prediction of malignant biliary stricture (P = 0.006, P < 0.001, P < 0.001, and P = 0.002). The sensitivity and specificity, respectively, for malignant biliary stricture were 57.1% and 100% for cytology, 57.1% and 64.3% for CDH3, 76.2% and 100% for IGF2BP3, 71.4% and 57.1% for HOXB7, and 76.2% and 64.3% for BIRC5. When cytology was combined with the mRNA levels of CDH3, IGF2BP3, or BIRC5, the sensitivity for malignant biliary stricture improved to 90.5%. The measurement of the mRNA expression levels of CDH3, IGF2BP3, and BIRC5 by real-time polymerase chain reaction combined with cytology was useful for the differentiation of malignant and benign biliary strictures in brush cytology specimens. PMID:27399126

  11. Increased Frequency of CpG Island Methylator Phenotype and CDH1 Methylation in a Gastric Cancer High-Risk Region of China1

    PubMed Central

    Zhang, Kai-Li; Sun, Yuan; Li, Yan; Liu, Ming; Qu, Bo; Cui, Shu-Hong; Kong, Qing-You; Chen, Xiao-Yan; Li, Hong; Liu, Jia

    2008-01-01

    This study aimed to profile the methylation statuses of CDH1/E-cadherin and five CpG island methylator phenotype (CIMP)-associated genes (p16, hMLH1, MINT1, MINT2, and MINT31) in gastric specimens of 47 Dalian long-term residents with and 31 without gastric cancers (GCs). CIMP patterns were classified as CIMP-H with over three methylated genes, CIMP-L with one to two methylated genes, and CIMP-N without methylation. Of 47 GC cases, 24 (51.1%) were CIMP-H, 18 (38.3%) were CIMP-L, and 5 (10.6%) were CIMP-N, whereas 5 of 21 (23.8%) premalignant lesions were CIMP-H and 15 (71.4%) were CIMP-L. CIMP-L was found in 75% (12/16) of GC-adjacent mucosa and in 38.7% (12/31) of mucosa from GC-free patients. CDH1 methylation occurred in 48.9% (23/47) of cancer, in 23.8% (5/21) of premalignant, and in 25% (4/16) of noncancerous tissues and was correlated with patients' age (P = .01), lymph node metastasis, and CIMP severity (P = .000–.028). Our results demonstrated that the frequencies of CIMP-H in Dalian GCs, CIMP-L, and p16 methylation in GC-adjacent tissues and in GC-free mucosa were much higher than those reported previously, indicating the elevated methylation pressure in this GC high-risk region. The close correlation between CDH1 methylation and CIMP severity suggests the necessity of their combination in GC prevention and earlier diagnosis. PMID:18607505

  12. The impact of generalized joint laxity (GJL) on the posterior neck pain, cervical disc herniation, and cervical disc degeneration in the cervical spine.

    PubMed

    Lee, Sun-Mi; Oh, Su Chan; Yeom, Jin S; Shin, Ji-Hoon; Park, Sam-Guk; Shin, Duk-Seop; Ahn, Myun-Whan; Lee, Gun Woo

    2016-12-01

    Generalized joint laxity (GJL) can have a negative impact on lumbar spine pathology, including low back pain, disc degeneration, and disc herniation, but the relationship between GJL and cervical spine conditions remains unknown. To investigate the relationship between GJL and cervical spine conditions, including the prevalence of posterior neck pain (PNP), cervical disc herniation (CDH), and cervical disc degeneration (CDD), in a young, active population. Retrospective 1:2 matched cohort (case-control) study from prospectively collected data PATIENT SAMPLE: Of a total of 1853 individuals reviewed, 73 individuals with GJL (study group, gruop A) and 146 without GJL (control group, Group B) were included in the study according to a 1:2 case-control matched design for age, sex, and body mass index. The primary outcome measure was the prevalence and intensity of PNP at enrollment based on a visual analogue scale score for pain. The secondary outcome measures were (1) clinical outcomes as measured with the neck disability index (NDI) and 12-item short form health survey (SF-12) at enrollment, and (2) radiological outcomes of CDH and CDD at enrollment. We compared baseline data between groups. Descriptive statistical analyses were performed to compare the 2 groups in terms of the outcome measures. The prevalence and intensity of PNP were significantly greater in group A (patients with GJL) than in group B (patients without GJL) (prevalence: p=.02; intensity: p=.001). Clinical outcomes as measured with NDI and SF-12 did not differ significantly between groups. For radiologic outcomes, the prevalence of CDD was significantly greater in group A than in group B (p=.04), whereas the prevalence of CDH did not differ significantly between groups (p=.91). The current study revealed that GJL was closely related to the prevalence and intensity of PNP, suggesting that GJL may be a causative factor for PNP. In addition, GJL may contribute to the occurrence of CDD, but not CDH. Spine surgeons should screen for GJL in patientswith PNP and inform patients of its potential negative impact on disc degeneration of the cervical spine. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Molecular Genetic Studies of Bone Mechanical Strain and of Pedigrees with Very High Bone Density

    DTIC Science & Technology

    2007-11-01

    regulating the expression of BSP. 17 0-25 Map3k4 Clcn7 Thbs2 Traf7 Tnf Notch3 Vegfa Runx2 Involved in normal skeletal patterning. Critical for...Chrs cM Genes 8 38–69 Ptger1 Junb Mt1, 2 Cdh11 Hsd11b2 Cdh1 Cbfb Hsd17b2 Il17c 16 30–46 Col8a1 EphA3 Pit1 17 0–25 Map3k4 Clcn7 Thbs2 Traf7 Tnf Notch3

  14. Abnormal intrinsic esophageal innervation in congenital diaphragmatic hernia: a likely cause of motor dysfunction.

    PubMed

    Pederiva, Federica; Rodriguez, Jose I; Ruiz-Bravo, Elena; Martinez, Leopoldo; Tovar, Juan A

    2009-03-01

    Patients with congenital diaphragmatic hernia (CDH) often have dilated esophagus and gastroesophageal reflux. Sparse intrinsic esophageal innervation has been described in rats with CDH, but this issue has not been investigated in patients with CDH. The present study tests the hypothesis that innervatory anomalies could account for motor dysfunction in human CDH. The esophagi of CDH (n = 6) and control babies dead of other causes (n = 6) were included in paraffin, transversally sectioned, and immunostained with antineurofilament and anti-S-100 antibodies. The proportion of the section surface occupied by neural structures, the ganglionar surface, and the number of neurons per ganglion were measured in 2 to 5 low-power fields from the proximal and distal esophagus with the assistance of image analysis software. Mann-Whitney tests were used for comparing the results using a threshold of significance of P < .05. The percentage of neural/muscle surface was similar in the upper esophagus in both groups, but it was significantly decreased in the lower esophagus of patients with CDH in comparison with controls. There was a relative scarcity of neural tissue in the intermuscular plexus of the lower esophagus. On the other hand, the ganglionar surface and the number of neurons per ganglion were identical in both groups. These results were similar with both immunostainings. Intrinsic innervation of the lower esophagus in CDH is abnormal in terms of decreased density of neural structures in the intermuscular plexus. These neural crest-derived anomalies could explain in part the esophageal dysfunction in survivors of CDH.

  15. Effect of dexamethasone on endothelial nitric oxide synthase in experimental congenital diaphragmatic hernia

    PubMed Central

    Okoye, B.; Losty, P.; Fisher, M.; Wilmott, I.; Lloyd, D.

    1998-01-01

    AIMS—To study the effect of prenatal glucocorticoid treatment on endothelial nitric oxide synthase (eNOS) expression in rats with congenital diaphragmatic hernia (CDH).
METHODS—CDH was induced in fetal rats by the maternal administration of nitrofen on day 9.5 of gestation. Dexamethasone was administered on days 18.5 and 19.5 before delivery of the fetuses on days 20.5and 21.5. Pulmonary eNOS protein expression was studied by western immunoblotting and immunohistochemistry.
RESULTS—On day 20.5, eNOS expression was significantly reduced in CDH pups compared with normal control rats. Dexamethasone treated CDH pups had eNOS concentrations equivalent to those of normal animals. By day 21.5, however, there was no detectable difference in eNOS expression between the experimental groups.
CONCLUSIONS—eNOS is deficient in near term (day 20.5) CDH rats. Dexamethasone restores eNOS expression in these animals to that seen in normal rat lungs. At term, the precise role of eNOS in the pathophysiology of CDH remains uncertain.

 PMID:9713033

  16. Stephen L. Gans Distinguished Overseas Lecture. The neural crest in pediatric surgery.

    PubMed

    Tovar, Juan A

    2007-06-01

    This review highlights the relevance of the neural crest (NC) as a developmental control mechanism involved in several pediatric surgical conditions and the investigative interest of following some of its known signaling pathways. The participation of the NC in facial clefts, ear defects, branchial fistulae and cysts, heart outflow tract and aortic arch anomalies, pigmentary disorders, abnormal enteric innervation, neural tumors, hemangiomas, and vascular anomalies is briefly reviewed. Then, the literature on clinical and experimental esophageal atresia-tracheoesophageal fistula (EA-TEF) and congenital diaphragmatic hernia (CDH) is reviewed for the presence of associated NC defects. Finally, some of the molecular signaling pathways involved in both conditions (sonic hedgehog, Hox genes, and retinoids) are summarized. The association of facial, cardiovascular, thymic, parathyroid, and C-cell defects together with anomalies of extrinsic and intrinsic esophageal innervation in babies and/or animals with both EA-TEF and CDH strongly supports the hypothesis that NC is involved in the pathogenesis of these malformative clusters. On the other hand, both EA-TEF and CDH are observed in mice mutant for genes involved in the previously mentioned signaling pathways. The investigation of NC-related molecular pathogenic pathways involved in malformative associations like EA-TEF and CDH that are induced by chromosomal anomalies, chemical teratogens, and engineered mutations is a promising way of clarifying why and how some pediatric surgical conditions occur. Pediatric surgeons should be actively involved in these investigations.

  17. Downregulation of Midkine gene expression and its response to retinoic acid treatment in the nitrofen-induced hypoplastic lung.

    PubMed

    Doi, Takashi; Shintaku, Mika; Dingemann, Jens; Ruttenstock, Elke; Puri, Prem

    2011-02-01

    Nitrofen-induced congenital diaphragmatic hernia (CDH) model has been widely used to investigate the pathogenesis of pulmonary hypoplasia (PH) in CDH. Recent studies have suggested that retinoids may be involved in the molecular mechanisms of PH in CDH. Prenatal treatment with retinoic acid (RA) has been reported to improve the growth of hypoplastic lung in the nitrofen CDH model. Midkine (MK), a RA-responsive growth factor, plays key roles in various organogenesis including lung development. In fetal lung, MK mRNA expression has its peak at E13.5-E16.5 and is markedly decreased during mid-to-late gestation, indicating its important role in early lung morphogenesis. We designed this study to investigate the hypothesis that the pulmonary MK gene expression is downregulated in the early lung morphogenesis in the nitrofen-induced PH, and to evaluate the effect of prenatal RA treatment on pulmonary MK gene expression in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15, D18, and D21 and divided into control, nitrofen with or without CDH [CDH(+) or CDH(-)]. In addition, RA was given on days D18, D19, and D20 and fetal lungs were harvested on D21, and then divided into control + RA and nitrofen + RA. The pulmonary gene expression levels of MK were evaluated by real-time RT-PCR and statistically analyzed. Immunohistochemistry was also performed to examine protein expression/distribution of MK in fetal lung. The relative mRNA expression levels of MK were significantly downregulated in nitrofen group compared to controls at D15 ((§)p < 0.01), whereas there were no significant differences at D18 and D21. MK gene expression levels were significantly upregulated in nitrofen + RA (0.71 ± 0.17) compared to the control (0.35 ± 0.16), CDH(-) (0.24 ± 0.15), CDH(+) (0.39 ± 0.19) and control + RA (0.47 ± 0.13) (*p < 0.05). Immunoreactivity of MK was also markedly decreased in nitrofen lungs compared to controls on D15, and increased in nitrofen + RA lungs compared to the other lungs on D21. Downregulation of MK gene on D15 may contribute to primary PH in the nitrofen CDH model by disrupting early lung morphogenesis. Upregulation of MK gene after RA treatment in the nitrofen-induced hypoplastic lung suggests that RA may have a therapeutic potential to rescue PH in CDH through RA-responsive growth factor signaling.

  18. Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development.

    PubMed

    Najarro, Elvis Huarcaya; Wong, Lianna; Zhen, Mei; Carpio, Edgar Pinedo; Goncharov, Alexandr; Garriga, Gian; Lundquist, Erik A; Jin, Yishi; Ackley, Brian D

    2012-03-21

    In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.

  19. Down-regulation of liver-intestine cadherin enhances noscapine-induced apoptosis in human colon cancer cells.

    PubMed

    Tian, Xia; Liu, Meng; Zhu, Qingxi; Tan, Jie; Liu, Weijie; Wang, Yanfen; Chen, Wei; Zou, Yanli; Cai, Yishan; Han, Zheng; Huang, Xiaodong

    2017-09-01

    The aim of the present study was to explore the signaling pathway of noscapine which induces apoptosis by blocking liver-intestine cadherin (CDH17) gene in colon cancer SW480 cells. Human colon cancer SW480 cells were transfected with CDH17 interference vector and treatment with 10 µmol/L noscapine. The proliferation and apoptosis of SW480 cells were detected by MTT assay and AnnexinV-FITC/PI flow cytometry kit (BD), respectively. Cell invasion were assessed by transwell assays. Apoptosis related proteins (Cyt-c, Bax, Bcl-2 and Bcl-xL) levels were evaluated by western blot. Compared to the noscapine group, the proliferation was decreased significantly and the apoptosis was increased significantly in SW480 cells of the siCDH17+noscapine group. Cyt-c and Bax protein levels in siCDH17+noscapine group was higher than that of the noscapine group, but Bcl-2 and Bcl-xL protein levels in siCDH17+noscapine group were lower than that of the noscapine group. Moreover, up-expression of CDH17 inhibited the efficacy of noscapine-induced apoptosis in SW480 cells. We inferred that down-expression of extrinsic CDH17 gene can conspicuously promote apoptosis-inducing effects of noscapine on human colon cancer SW480 cells, which is a novel strategy to improve chemotherapeutic effects on colon cancer.

  20. Pulmonary FGF9 gene expression is downregulated during the pseudoglandular stage in nitrofen-induced hypoplastic lungs.

    PubMed

    Takahashi, Hiromizu; Friedmacher, Florian; Fujiwara, Naho; Hofmann, Alejandro; Puri, Prem

    2014-02-01

    The pathogenesis of pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH) remains unclear. Fibroblast growth factor 9 (FGF9) is an essential component of the gene network that regulates lung development. FGF9 knockouts exhibit disrupted mesenchymal proliferation and reduced airway branching. The authors hypothesized that pulmonary FGF9 gene expression is downregulated during the pseudoglandular stage in nitrofen-induced hypoplastic lungs. Pregnant rats received either nitrofen or vehicle on gestational day 9 (D9). Fetal lungs were dissected on D15 and D18, and were divided into controls, hypoplastic lungs with CDH (CDH+) and hypoplastic lungs without CDH (CDH-). Pulmonary FGF9 gene expression levels were analyzed by quantitative real-time polymerase chain reaction. Immunohistochemistry was performed to investigate FGF9 protein expression/distribution. Relative messenger RNA levels of FGF9 were significantly decreased on D15 in hypoplastic lungs compared with controls (p < 0.01), and on D18 in CDH+ and CDH- compared with controls (p< 0.05, respectively). Immunoreactivity of FGF9 was markedly diminished in mesothelium and distal airway epithelium on D15 and decreased in overall intensity on D18 in hypoplastic lungs compared with controls. Downregulation of FGF9 gene expression during the pseudoglandular stage may cause pulmonary hypoplasia in the nitrofen model by decreasing distal airway epithelial and mesenchymal proliferation throughout the branching morphogenesis. Georg Thieme Verlag KG Stuttgart · New York.

  1. Whole exome sequencing with genomic triangulation implicates CDH2-encoded N-cadherin as a novel pathogenic substrate for arrhythmogenic cardiomyopathy.

    PubMed

    Turkowski, Kari L; Tester, David J; Bos, J Martijn; Haugaa, Kristina H; Ackerman, Michael J

    2017-03-01

    Arrhythmogenic cardiomyopathy (ACM) is a heritable disease characterized by fibrofatty replacement of cardiomyocytes, has a prevalence of approximately 1 in 5000 individuals, and accounts for approximately 20% of sudden cardiac death in the young (≤35 years). ACM is most often inherited as an autosomal dominant trait with incomplete penetrance and variable expression. While mutations in several genes that encode key desmosomal proteins underlie about half of all ACM, the remainder is elusive genetically. Here, whole exome sequencing (WES) was performed with genomic triangulation in an effort to identify a novel explanation for a phenotype-positive, genotype-negative multi-generational pedigree with a presumed autosomal dominant, maternal inheritance of ACM. WES and genomic triangulation was performed on a symptomatic 14-year-old female proband, her affected mother and affected sister, and her unaffected father to elucidate a novel ACM-susceptibility gene for this pedigree. Following variant filtering using Ingenuity® Variant Analysis, gene priority ranking was performed on the candidate genes using ToppGene and Endeavour. The phylogenetic and physiochemical properties of candidate mutations were assessed further by 6 in silico prediction tools. Species alignment and amino acid conservation analysis was performed using the Uniprot Consortium. Tissue expression data was abstracted from Expression Atlas. Following WES and genomic triangulation, CDH2 emerged as a novel, autosomal dominant, ACM-susceptibility gene. The CDH2-encoded N-cadherin is a cell-cell adhesion protein predominately expressed in the heart. Cardiac dysfunction has been demonstrated in prior CDH2 knockout and over-expression animal studies. Further in silico mutation prediction, species conservation, and protein expression analysis supported the ultra-rare (minor allele frequency <0.005%) p.Asp407Asn-CDH2 variant as a likely pathogenic variant. Herein, it is demonstrated that genetic mutations in CDH2-encoded N-cadherin may represent a novel pathogenetic basis for ACM in humans. The prevalence of CDH2-mediated ACM in heretofore genetically elusive ACM remains to be determined. © 2017 Wiley Periodicals, Inc.

  2. Association between human papillomavirus and Epstein - Barr virus DNA and gene promoter methylation of RB1 and CDH1 in the cervical lesions: a transversal study.

    PubMed

    McCormick, Thaís M; Canedo, Nathalie H S; Furtado, Yara L; Silveira, Filomena A; de Lima, Roberto J; Rosman, Andréa D F; Almeida Filho, Gutemberg L; Carvalho, Maria da Glória da C

    2015-06-02

    Human papillomavirus (HPV) inactivates the retinoblastoma 1 (RB1) gene by promoter methylation and reduces cellular E-cadherin expression by overexpression of DNA methyltransferase 1 (DNMT1). The Epstein-Barr virus (EBV) is an oncogenic virus that may be related to cervical carcinogenesis. In gastric cancer, it has been demonstrated that E-cadherin gene (CDH1) hypermethylation is associated with DNMT1 overexpression by EBV infection. Our aim was to analyze the gene promoter methylation frequency of RB1 and CDH1 and verify the association between that methylation frequency and HPV and EBV infection in cervical lesions. Sixty-five samples were obtained from cervical specimens: 15 normal cervices, 17 low-grade squamous intraepithelial lesions (LSIL), 15 high-grade squamous intraepithelial lesions (HSIL), and 18 cervical cancers. HPV and EBV DNA testing was performed by PCR, and the methylation status was verified by MSP. HPV frequency was associated with cervical cancer cases (p = 0.005) but not EBV frequency (p = 0.732). Viral co-infection showed a statistically significant correlation with cancer (p = 0.027). No viral infection was detected in 33.3% (5/15) of controls. RB1 methylated status was associated with cancer (p = 0.009) and HPV infection (p = 0.042). CDH1 methylation was not associated with cancer (p = 0.181). Controls and LSIL samples did not show simultaneous methylation, while both genes were methylated in 27.8% (5/18) of cancer samples. In the presence of EBV, CDH1 methylation was present in 27.8% (5/18) of cancer samples. Only cancer cases presented RB1 promoter methylation in the presence of HPV and EBV (33.3%). The methylation status of both genes increased with disease progression. With EBV, RB1 methylation was a tumor-associated event because only the cancer group presented methylated RB1 with HPV infection. HPV infection was shown to be significantly correlated with cancer conditions. The global methylation frequency was higher when HPV was present, showing its epigenetic role in cervical carcinogenesis. Nevertheless, EBV seems to be a cofactor and needs to be further investigated. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1159157579149317 .

  3. Role of IKK-alpha in EGFR Signaling Regulation

    DTIC Science & Technology

    2013-09-01

    correlated with IKKα expression using CCLE. Nonsupervised hierarchical clustering analysis was performed based on Erbb2, ERα ( ESR1 ), PR (PgR...signature (ERBB2, ESR1 , and PGR) genes. A subset of 4 genes showing distinct expression pattern in TNBC versus non-TNBC cell lines is shown in the...AKT2 AKT3 CDH1 MYB CDH2 VIM ERBB2 ESR1 PGR H C C 11 87 C A L- 85 -1 H C C 11 43 H D Q -P 1 C A L- 51 H C C 38 H C C 21 57 C A L- 12 0 B T- 54 9 H C C

  4. Gene Expression of FRAS1-Related Extracellular Matrix 1 Is Decreased in Nitrofen-Induced Congenital Diaphragmatic Hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Puri, Prem

    2016-02-01

    The origin of congenital diaphragmatic hernia (CDH) is considered to lie in a malformation of the nonmuscular primordial diaphragm. It is known that fetal diaphragmatic development requires the structural integrity of its underlying mesenchymal tissue. Developmental mutations that inhibit the formation of normal diaphragmatic mesenchyme have been shown to cause CDH. FRAS1-related extracellular matrix 1 (FREM1) plays a critical role in the development of the fetal diaphragm. It has been demonstrated that a deficiency of FREM1 can lead to CDH both in humans and mice. Furthermore, FREM1-deficient fetuses exhibit a decreased level of mesenchymal cell proliferation in their developing diaphragms. We hypothesized that FREM1 expression is decreased in developing diaphragms of fetal rats with nitrofen-induced CDH. Timed-pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9), and fetuses were harvested on selected time-points D13, D15, and D18. Dissected diaphragms (n = 72) were divided into control and nitrofen-exposed samples (n = 12 per time-point and experimental group). Diaphragmatic gene expression levels of FREM1 were analyzed by quantitative polymerase chain reaction. Immunofluorescence staining for FREM1 was combined with the mesenchymal marker GATA4 to localize FREM1 protein expression and tissue distribution in fetal diaphragms. In nitrofen-exposed fetuses, relative mRNA expression of FREM1 was significantly reduced in pleuroperitoneal folds on D13 (0.30 ± 0.23 vs. 0.83 ± 0.19; p < 0.05), developing diaphragms on D15 (0.54 ± 0.22 vs. 1.19 ± 0.28; p < .05) and fully muscularized diaphragms on D18 (0.49 ± 0.37 vs. 0.97 ± 0.53; p < 0.05) in comparison with controls. Confocal laser scanning microscopy revealed markedly diminished diaphragmatic FREM1 immunofluorescence, which was associated with reduced proliferation of diaphragmatic mesenchymal cells in nitrofen-exposed fetuses on D13, D15, and D18 compared to controls. Decreased expression of FREM1 in the nitrofen-induced CDH model may disturb the formation of the diaphragmatic mesenchyme, thus contributing to the development of diaphragmatic defects. Georg Thieme Verlag KG Stuttgart · New York.

  5. Update of Inpatient Treatment for Refractory Chronic Daily Headache.

    PubMed

    Lai, Tzu-Hsien; Wang, Shuu-Jiun

    2016-01-01

    Chronic daily headache (CDH) is a group of headache disorders, in which headaches occur daily or near-daily (>15 days per month) and last for more than 3 months. Important CDH subtypes include chronic migraine, chronic tension-type headache, hemicrania continua, and new daily persistent headache. Other headaches with shorter durations (<4 h/day) are usually not included in CDH. Common comorbidities of CDH are medication overuse headache and various psychiatric disorders, such as depression and anxiety. Indications of inpatient treatment for CDH patients include poor responses to outpatient management, need for detoxification for overuse of specific medications (particularly opioids and barbiturates), and severe psychiatric comorbidities. Inpatient treatment usually involves stopping acute pain, preventing future attacks, and detoxifying medication overuse if present. Multidisciplinary integrated care that includes medical staff from different disciplines (e.g., psychiatry, clinical psychology, and physical therapy) has been recommended. The outcomes of inpatient treatment are satisfactory in terms of decreasing headache intensity or frequency, withdrawal from medication overuse, reducing disability, and improving life quality, although long-term relapse is not uncommon. In conclusion, inpatient treatment may be useful for select patients with refractory CDH and should be incorporated in a holistic headache care program.

  6. Collagen triple helix repeat containing 1 is a new promigratory marker of arthritic pannus.

    PubMed

    Shekhani, Mohammed Talha; Forde, Toni S; Adilbayeva, Altynai; Ramez, Mohamed; Myngbay, Askhat; Bexeitov, Yergali; Lindner, Volkhard; Adarichev, Vyacheslav A

    2016-07-19

    The formation of destructive hypercellular pannus is critical to joint damage in rheumatoid arthritis (RA). The collagen triple helix repeat containing 1 (CTHRC1) protein expressed by activated stromal cells of diverse origin has previously been implicated in tissue remodeling and carcinogenesis. We recently discovered that the synovial Cthrc1 mRNA directly correlates with arthritis severity in mice. This study characterizes the role of CTHRC1 in arthritic pannus formation. Synovial joints of mice with collagen antibody-induced arthritis (CAIA) and human RA-fibroblast-like synoviocytes (FLS) were immunostained for CTHRC1, FLS and macrophage-specific markers. CTHRC1 levels in plasma from patients with RA were measured using sandwich ELISA. The migratory response of fibroblasts was studied with a transwell migration assay and time-lapse microscopy. Velocity and directness of cell migration was analyzed by recording the trajectories of cells treated with rhCTHRC1. Immunohistochemical analysis of normal and inflamed synovium revealed highly inducible expression of CTHRC1 in arthritis (10.9-fold). At the tissue level, CTHRC1-expressing cells occupied the same niche as large fibroblast-like cells positive for α-smooth muscle actin (α-SMA) and cadherin 11 (CDH11). CTHRC1 was produced by activated FLS predominantly located at the synovial intimal lining and at the bone-pannus interface. Cultured RA-FLS expressed CDH11, α-SMA, and CTHRC1. Upon treatment with exogenous rhCTHRC1, embryonic fibroblasts and RA-FLS significantly increased migration velocity, directness, and cell length along the front-tail axis (1.4-fold, p < 0.01). CTHRC1 was established as a novel marker of activated synoviocytes in murine experimental arthritis and RA. The pro-migratory effect of CTHRC1 on synoviocytes is considered one of the mechanisms promoting hypercellularity of the arthritic pannus.

  7. Studies of single-mode injection lasers and of quaternary materials. Volume 1: Single-mode constricted double-heterojunction AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1982-01-01

    Constricted double-heterojunction (CDH) lasers are presented as the class of single-mode nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various types of CDH structures are considered under three general topics: liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers have positive-index lateral-mode confinement and provide: single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C; light-current characteristics with second-harmonic distortion as low as -57 dB below the fundamental level; threshold-current temperature coefficients, as high as 375 C (pulsed) and 310 C (CW); constant external differential quantum efficiency to 100 C; and lasing operation to 170 C CW and 280 C pulsed. Semileakyguide CDH lasers have an asymmetric leaky cavity for lateral-mode confinement and provide single-mode operation to 15 to 20 mW/facet CW and to 50 mW/facet at 50% duty cycle. Modulation characteristics and preliminary reliability data are discussed.

  8. Prophylactic use of the Arabin cervical pessary in fetuses with severe congenital diaphragmatic hernia treated by fetoscopic endoluminal tracheal occlusion (FETO): preliminary experience.

    PubMed

    Dobrescu, Oana; Cannie, Mieke M; Cordier, Anne-Gael; Rodó, Carlota; Fabietti, Isabella; Benachi, Alexandra; Carreras, Elena; Persico, Nicola; Hurtado, Ivan; Gucciardo, Léonardo; Jani, Jacques C

    2016-01-01

    The aim of this study was to describe whether the prophylactic use of a cervical pessary decreases the rate of premature birth in congenital diaphragmatic hernia (CDH) fetuses treated with fetoscopic tracheal occlusion (FETO). The study concerns a consecutive series of cases with CDH and FETO and a group of CDH without FETO. In a subgroup of the FETO group, a prophylactic cervical pessary was inserted the day following the procedure. Gestational age (GA) at birth was the primary outcome. Fifty-nine fetuses with FETO and 47 expectantly managed were included. The last 15 FETO had a cervical pessary inserted. The median GA at delivery in the FETO group with pessary was 35.1 weeks and was not different from that in the FETO group without a pessary (34.3 weeks; p = 0.28) but was below that in the expectantly managed group (38.3 weeks; p < 0.001). Early results suggest that prophylactic use of an Arabin cervical pessary does not prolong gestation of CDH fetuses treated with FETO. © 2015 John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.

  9. Congential dislocation of the hip and adult low back pain: a report of three cases

    PubMed Central

    Kitchen, Robert G; Mierau, Dale; Cassidy, David; Dupuis, Pierre

    1988-01-01

    Congenital dislocation of the hip (CDH) in an adult can accompany or cause mechanical low-back pain. This in turn, can create confusion in making the proper diagnosis. The mechanical alterations caused by CDH create an added strain to the lumbosacral spine. Manipulative treatment for back pain in these patients must not subject the dislocated hips to undue torque. ImagesFigure 1Figure 2Figure 3Figure 4aFigure 4b

  10. Ghrelin expression in human and rat fetal lungs and the effect of ghrelin administration in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Santos, Marta; Bastos, Pedro; Gonzaga, Silvia; Roriz, José-Mário; Baptista, Maria J; Nogueira-Silva, Cristina; Melo-Rocha, Gustavo; Henriques-Coelho, Tiago; Roncon-Albuquerque, Roberto; Leite-Moreira, Adelino F; De Krijger, Ronald R; Tibboel, Dick; Rottier, Robbert; Correia-Pinto, Jorge

    2006-04-01

    Ghrelin is a strong physiologic growth hormone secretagogue that exhibits endocrine and non-endocrine actions. In this study, ghrelin expression in humans and rats was evaluated throughout development of normal and hypoplastic lungs associated with congenital diaphragmatic hernia (CDH). Additionally, the effect of antenatal treatment with ghrelin in the nitrofen-induced CDH rat model was tested. In normal lungs, ghrelin was expressed in the primitive epithelium at early stages of development and decreased in levels of expression with gestational age. In hypoplastic lungs ghrelin was overexpressed in both human and rat CDH fetuses when compared with controls. Exogenous administration of ghrelin to nitrofen-treated dams led to an attenuation of pulmonary hypoplasia of CDH pups. Furthermore, the growth hormone, secretagogue receptor (GHSR1a), could not be amplified from human or rat fetal lungs by RT-PCR. In conclusion, of all the lungs studied so far, the fetal lung is one of the first to express ghrelin during development and might be considered a new source of circulating fetal ghrelin. Overexpression of ghrelin in hypoplastic lungs and the effect of exogenous administration of ghrelin to nitrofen-treated dams strongly suggest a role for ghrelin in mechanisms involved in attenuation of fetal lung hypoplasia, most likely through a GHSR1a-independent pathway.

  11. Expression of Iroquois genes is up-regulated during early lung development in the nitrofen-induced pulmonary hypoplasia.

    PubMed

    Doi, Takashi; Lukošiūtė, Aušra; Ruttenstock, Elke; Dingemann, Jens; Puri, Prem

    2011-01-01

    Iroquois homeobox (Irx) genes have been implicated in the early lung morphogenesis of vertebrates. Irx1-3 and Irx5 gene expression is seen in fetal lung in rodents up to day (D) 18.5 of gestation. Fetal lung in Irx knockdown mice shows loss of mesenchyme and dilated airspaces, whereas nitrofen-induced hypoplastic lung displays thickened mesenchyme and diminished airspaces. We hypothesized that the Irx genes are up-regulated during early lung morphogenesis in the nitrofen-induced hypoplastic lung. Pregnant rats were exposed either to olive oil or nitrofen on D9. Fetal lungs harvested on D15 were divided into control and nitrofen groups; and the lungs harvested on D18 were divided into control, nitrofen without congenital diaphragmatic hernia (CDH[-]), and nitrofen with CDH (CDH[+]). Irx gene expression levels were analyzed by reverse transcriptase polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression of Irx family. Pulmonary Irx1-3 and Irx5 messenger RNA expression levels were significantly up-regulated in nitrofen group compared with controls at D15. On D15, Irx immunoreactivity was increased in nitrofen-induced hypoplastic lung compared with controls. Overexpression of Irx genes in the early lung development may cause pulmonary hypoplasia in the nitrofen CDH model by inducing lung dysmorphogenesis with thickened mesenchyme and diminished airspaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The novel protein C3orf43 accelerates hepatocyte proliferation.

    PubMed

    Zhang, Chunyan; Chang, Cuifang; Li, Deming; Zhang, Fuchun; Xu, Cunshuan

    2017-01-01

    Our previous study found that single-pass membrane protein with coiled-coil domains 1 (C3orf43; XM_006248472.3) was significantly upregulated in the proliferative phase during liver regeneration. This indicates that C3orf43 plays a vital role in liver cell proliferation. However, its physiological functions remains unclear. The expressions of C3orf43 in BRL-3A cells transfected with C3orf43-siRNA (C3-siRNA) or overexpressing the vector plasmid pCDH-C3orf43 (pCDH-C3) were measured via RT-qPCR and western blot. Cell growth and proliferation were determined using MTT and flow cytometry. Cell proliferation-related gene expression was measured using RT-qPCR and western blot. It was found that upregulation of C3orf43 by pCDH-C3 promoted hepatocyte proliferation, and inhibition of C3orf43 by C3-siRNA led to the reduction of cell proliferation. The results of qRT-PCR and western blot assay showed that the C3-siRNA group downregulated the expression of cell proliferation-related genes like JUN, MYC, CCND1 and CCNA2, and the pCDH-C3 group upregulated the expression of those genes. These findings reveal that C3orf43 may contribute to hepatocyte proliferation and may have the potential to promote liver repair and regeneration.

  13. Disruption of copper-dependent signaling pathway in the nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Takahashi, Hiromizu; Hofmann, Alejandro Daniel; Puri, Prem

    2015-01-01

    Normal development of the fetal diaphragm requires muscularization of the diaphragm as well as the structural integrity of its underlying connective tissue components. Developmental mutations that inhibit the formation of extracellular matrix (ECM) have been shown to result in congenital diaphragmatic hernia (CDH). Copper (Cu) is an important element during diaphragm morphogenesis by participating in cross-linking of collagen and elastin fibers. Cu transport is strictly regulated by two membrane proteins: Cu-uptake transporter 1 (CTR1) and the Cu-efflux pump ATP7A. Animals lacking Cu-dependent enzymes exhibit abnormal connective tissue with diaphragmatic defects. However, the molecular basis of disruptions in Cu-mediated ECM formation in CDH remains unclear. We designed this study to investigate the hypothesis that diaphragmatic expression of CTR1 and ATP7A is decreased in the nitrofen-induced CDH model. Timed-pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9), and fetuses were harvested on selected time-points D15 and D18. Microdissected fetal diaphragms (n = 48) were divided into control and nitrofen-induced CDH samples (n = 12 per experimental group and time-point). Diaphragmatic gene expression levels of CTR1 and ATP7A were analyzed by quantitative real-time polymerase chain reaction. Immunohistochemistry was performed to evaluate CTR1 and ATP7A protein expression in fetal diaphragms, which was combined with specific rhodanine staining to determine diaphragmatic Cu content. Relative mRNA levels of CTR1 and ATP7A were significantly reduced in diaphragms of nitrofen-exposed fetuses on D15 (0.06 ± 0.02 vs. 0.18 ± 0.08; p < 0.05 and 0.04 ± 0.02 vs. 0.08 ± 0.02; p < 0.05) and D18 (0.10 ± 0.03 vs. 0.17 ± 0.02; p < 0.05 and 0.09 ± 0.03 vs. 0.16 ± 0.04; p < 0.05) compared to controls. Immunoreactivity of CTR1 and ATP7A was markedly decreased in the malformed diaphragmatic ECM of nitrofen-exposed fetuses on D15 and D18, which was associated with a significantly decreased diaphragmatic Cu content on D15 (7.22 ± 2.91 vs. 17.50 ± 3.09; p < 0.05) and D18 (17.60 ± 3.54 vs. 28.20 ± 4.63; p < 0.05) compared to controls. Reduced diaphragmatic expression of CTR1 and ATP7A during morphogenesis may impair the activity of Cu-dependent enzymes and thus contribute to defective ECM during diaphragmatic development.

  14. Management of chronic daily headache: challenges in clinical practice.

    PubMed

    Saper, Joel R; Dodick, David; Gladstone, Jonathan P

    2005-04-01

    Chronic daily headache (CHD) refers to a category of headache disorders that are characterized by headaches occurring on more than 15 days per month. This category is subdivided into long- and short-duration (>4 or <4 hours) CDH disorders based on the duration of individual headache attacks. Examples of long-duration CDH include transformed migraine (TM), chronic migraine (CM), new daily persistent headache (NDPH), acute medication overuse headache, and hemicrania continua (HC). The goal of this review is to enable clinicians to accurately diagnose and effectively manage patients with long-duration CDH. Patients with CDH often require an aggressive and comprehensive treatment approach that includes a combination of acute and preventive medications, as well as nondrug therapies.

  15. Methylation of DAPK and THBS1 genes in esophageal gastric-type columnar metaplasia

    PubMed Central

    Herrera-Goepfert, Roberto; Oñate-Ocaña, Luis F; Mosqueda-Vargas, José Luis; Herrera, Luis A; Castro, Clementina; Mendoza, Julia; González-Barrios, Rodrigo

    2016-01-01

    AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori (H. pylori) status in individuals harboring esophageal columnar metaplasia. METHODS: Distal esophageal mucosal samples obtained by endoscopy and histologically diagnosed as gastric-type (non-specialized) columnar metaplasia, were studied thoroughly. DNA was extracted from paraffin blocks, and methylation status of death-associated protein kinase (DAPK), thrombospondin-1 (THBS1), cadherin-1 (CDH1), and p14 genes, was examined using a methyl-sensitive polymerase chain reaction (MS-PCR) and sodium bisulfite modification protocol. H. pylori cagA status was determined by PCR. RESULTS: In total, 68 subjects (33 females and 35 males), with a mean age of 52 years, were included. H. pylori cagA positive was present in the esophageal gastric-type metaplastic mucosa of 18 individuals. DAPK, THSB1, CDH1, and p14 gene promoters were methylated by MS-PCR in 40 (58.8%), 33 (48.5%), 46 (67.6%), and 23 (33.8%) cases of the 68 esophageal samples. H. pylori status was associated with methylation of DAPK (P = 0.003) and THBS1 (P = 0.019). CONCLUSION: DNA methylation occurs in cases of gastric-type (non-specialized) columnar metaplasia of the esophagus, and this modification is associated with H. pylori cagA positive infection. PMID:27182166

  16. Psychiatric comorbidity of chronic daily headache: focus on traumatic experiences in childhood, post-traumatic stress disorder and suicidality.

    PubMed

    Juang, Kai Dih; Yang, Chin-Yi

    2014-04-01

    The fifth edition of the Diagnostic and Statistic Manual (DSM-5) reclassified some mental disorders recently. Post-traumatic stress disorder (PTSD) is in a new section termed "trauma- and stressor-related disorder". Community-based studies have shown that PTSD is associated with a notably high suicidal risk. In addition to previous findings of comorbidity between chronic daily headache (CDH) and both depressive disorders and anxiety disorders, recent data suggest that frequency of childhood maltreatment, PTSD, and suicidality are also increased in CDH. CDH patients with migraine aura are especially at risk of suicidal ideation. Research suggests that migraine attack, aura, frequency, and chronicity may all be related to serotonergic dysfunction. Vulnerability to PTSD and suicidality are also linked to brain serotonin function, including polymorphisms in the serotonin transporter gene (5-HTTLPR). In the present review, we focus on recent advances in knowledge of traumatic experiences in childhood, PTSD, and suicidality in relation to migraine and CDH. We hypothesize that vulnerability to PTSD is associated with migraine attack, migraine aura, and CDH. We further postulate that these associations may explain some of the elevated suicidal risks among patients with migraine, migraine aura, and/or CDH. Field studies are required to support these hypotheses.

  17. A Sharp Cadherin-6 Gene Expression Boundary in the Developing Mouse Cortical Plate Demarcates the Future Functional Areal Border

    PubMed Central

    Terakawa, Youhei W.; Inoue, Yukiko U.; Asami, Junko; Hoshino, Mikio; Inoue, Takayoshi

    2013-01-01

    The mammalian cerebral cortex can be tangentially subdivided into tens of functional areas with distinct cyto-architectures and neural circuitries; however, it remains elusive how these areal borders are genetically elaborated during development. Here we establish original bacterial artificial chromosome transgenic mouse lines that specifically recapitulate cadherin-6 (Cdh6) mRNA expression profiles in the layer IV of the somatosensory cortex and by detailing their cortical development, we show that a sharp Cdh6 gene expression boundary is formed at a mediolateral coordinate along the cortical layer IV as early as the postnatal day 5 (P5). By further applying mouse genetics that allows rigid cell fate tracing with CreERT2 expression, it is demonstrated that the Cdh6 gene expression boundary set at around P4 eventually demarcates the areal border between the somatosensory barrel and limb field at P20. In the P6 cortical cell pellet culture system, neurons with Cdh6 expression preferentially form aggregates in a manner dependent on Ca2+ and electroporation-based Cdh6 overexpression limited to the postnatal stages perturbs area-specific cell organization in the barrel field. These results suggest that Cdh6 expression in the nascent cortical plate may serve solidification of the protomap for cortical functional areas. PMID:22875867

  18. Genetic variation in CDH13 gene was associated with non-small cell lung cancer (NSCLC): A population-based case-control study

    PubMed Central

    Li, Yingfu; Li, Chuanyin; Ma, Qianli; Zhang, Yu; Yao, Yueting; Liu, Shuyuan; Zhang, Xinwen; Hong, Chao; Tan, Fang; Shi, Li; Yao, Yufeng

    2018-01-01

    Cadherin 13 (CDH13, T-cadherin, H-cadherin) has been identified as an anti-oncogene in various cancers. Recent studies have reported that downregulation of H-cadherin in cancers is associated with CDH13 promoter hypermethylation, which could be affected by the single nucleotide polymorphisms (SNPs) near CpG sites in the CDH13 promoter. In the current study, we investigated and analyzed the association of seven SNPs (rs11646213, rs12596316, rs3865188, rs12444338, rs4783244, rs12051272 and rs7195409) with non-small cell lung cancer (NSCLC) using logistic regression analysis. SNPs rs11646213, rs12596316, rs3865188 and rs12444338 are located in the promoter region, rs4783244 and rs12051272 are located in intron 1, and rs7195409 is located in intron 7. A total of 454 patients with NSCLC were placed into a NSCLC group and 444 healthy controls were placed into a control group, all participants were recruited to genotype the SNPs using Taqman assay. Our results showed that the allelic frequencies of rs11646213 were significantly different between NSCLC and control groups (P = 0.006). In addition, the association analysis of these SNPs stratified into NSCLC pathologic stages I+II and III+IV showed that the allelic frequencies rs7195409 had a significant difference between NSCLC pathologic stages I+II and III+IV (P = 0.006). Our results indicated that the rs11646213 and rs7195409 in CDH13 could be associated with NSCLC or its pathologic stages in the Chinese Han population. PMID:29416663

  19. The case for early use of rapid whole genome sequencing in management of critically ill infants: Late diagnosis of Coffin-Siris syndrome in an infant with left congenital diaphragmatic hernia, congenital heart disease and recurrent infections.

    PubMed

    Sweeney, Nathaly M; Nahas, Shareef A; Chowdhury, Shimul; Del Campo, Miguel; Jones, Marilyn C; Dimmock, David P; Kingsmore, Stephen F; Investigators, Rcigm

    2018-03-16

    Congenital diaphragmatic hernia (CDH) results from incomplete formation of the diaphragm leading to herniation of abdominal organs into the thoracic cavity. CDH is associated with pulmonary hypoplasia, congenital heart disease and pulmonary hypertension. Genetically, it is associated with aneuploidies, chromosomal copy number variants, and single gene mutations. CDH is the most expensive non-cardiac congenital defect: Management frequently requires implementation of Extracorporeal Membrane Oxygenation (ECMO), which increases management expenditures 2.4 - 3.5-fold. The cost of management of CDH has been estimated to exceed $250 million per year. Despite in hospital survival of 80-90%, current management is imperfect, as a great proportion of surviving children have long-term functional deficits. We report the case of a premature infant prenatally diagnosed with CDH and congenital heart disease, who had a protracted and complicated course in the intensive care unit with multiple surgical interventions, including post-cardiac surgery ECMO, gastrostomy tube placement with Nissen fundoplication, tracheostomy for respiratory failure, recurrent infections and developmental delay. Rapid whole genome sequencing (rWGS) identified a de novo, likely pathogenic, c.3096_3100delCAAAG (p.Lys1033Argfs*32) variant in ARID1B, providing a diagnosis of Coffin-Siris syndrome. Her parents elected palliative care and she died later that day. Had rWGS been performed as a neonate, eight months of suffering and futile healthcare utilization may have been avoided. Cold Spring Harbor Laboratory Press.

  20. Pulmonary FGF-18 gene expression is downregulated during the canalicular-saccular stages in nitrofen-induced hypoplastic lungs.

    PubMed

    Takahashi, Hiromizu; Friedmacher, Florian; Fujiwara, Naho; Hofmann, Alejandro; Kutasy, Balazs; Gosemann, Jan-Hendrik; Puri, Prem

    2013-11-01

    Pulmonary hypoplasia (PH) associated with congenital diaphragmatic hernia (CDH) represents one of the major challenges in neonatal intensive care. However, the molecular pathogenesis of PH is still poorly understood. In developing fetal lungs, fibroblast growth factor 18 (FGF-18) plays a crucial role in distal airway maturation. FGF-18 knockouts show smaller lung sizes with reduced alveolar spaces and thicker interstitial mesenchymal compartments, highlighting its important function for fetal lung growth and differentiation. We hypothesized that pulmonary FGF-18 gene expression is downregulated during late gestation in nitrofen-induced hypoplastic lungs. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetuses were harvested on D18 and D21, and lungs were divided into three groups: controls, hypoplastic lungs without CDH [CDH(-)], and hypoplastic lungs with CDH [CDH(+)] (n = 24 at each time-point). Pulmonary FGF-18 gene expression levels were analyzed by qRT-PCR. Immunohistochemistry was performed to investigate FGF-18 protein expression/distribution. Relative mRNA levels of pulmonary FGF-18 gene expression were significantly decreased in CDH(-) and CDH(+) on D18 and D21 compared to controls (p < 0.05 and p < 0.01, respectively). Immunoreactivity of FGF-18 was markedly diminished in mesenchymal cells surrounding the airway epithelium on D18 and D21 compared to controls. Downregulation of FGF-18 gene expression in nitrofen-induced hypoplastic lungs suggests that decreased FGF-18 expression during the canalicular-saccular stages may interfere with saccular-alveolar differentiation and distal airway maturation resulting in PH.

  1. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    PubMed

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. The quantitative lung index and the prediction of survival in fetuses with congenital diaphragmatic hernia.

    PubMed

    Illescas, Tamara; Rodó, Carlota; Arévalo, Silvia; Giné, Carles; Peiró, José L; Carreras, Elena

    2016-03-01

    The lung-to-head ratio (LHR) is routinely used to select the best candidates for prenatal surgery and to follow-up the fetuses with congenital diaphragmatic hernia (CDH). Since this index is gestation-dependent, the quantitative lung index (QLI) was proposed as an alternative parameter that stays constant throughout pregnancy. Our objective was to study the performance of QLI to predict survival in fetuses with CDH. Observational retrospective study of fetuses with isolated CDH, referred to our center. LHR was originally used for the prenatal surgery evaluation. We calculated the QLI and compared the performance of both indexes (QLI and LHR) to predict survival. From January-2009 to February-2015 we followed 31 fetuses with isolated CDH. The mean QLI was 0.66 (95% CI: 0.57-0.75) for survivors and 0.41 (95% CI: 0.25-0.58) for non-survivors (p<0.01) and the mean LHR was 1.38 (95% CI: 1.17-1.60) for survivors and 0.91 (95% CI: 0.57-1.25) for non-survivors (p<0.02). All operated fetuses (n=12) had a LHR <1 and a QLI <0.5 and none of them survived when the QLI was <0.32. When separately considering the prenatal surgery status, the mean values of the QLI (but not those of the LHR) were still significantly different between survivors and non-survivors. The comparative ROC curves showed a better performance of the QLI with respect to the LHR for the prediction of survival, especially in the group of operated fetuses, although differences were not statistically significant. The QLI seems to be a better predictor for survival than the LHR, especially for the group of fetuses undergoing prenatal surgery. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Prenatal administration of retinoic acid increases the trophoblastic insulin-like growth factor 2 protein expression in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Kutasy, Balazs; Friedmacher, Florian; Duess, Johannes W; Puri, Prem

    2014-02-01

    The high mortality rate in congenital diaphragmatic hernia (CDH) is attributed to pulmonary hypoplasia (PH). Insulin-like growth factor 2 (IGF2) is an important regulator of fetal growth. The highest levels of IGF2 expression are found in the placenta, which are negatively regulated by decidual retinoid acid receptor alpha (RARα). It has been demonstrated that prenatal administration of retinoic acid (RA) suppresses decidual RARα expression. Previous studies have further shown that prenatal administration of RA can reverse PH in nitrofen-induced CDH model. In IGF2 knockout animals, low levels of IGF2 are associated with decreased placental growth and PH. We therefore hypothesized that nitrofen decreases trophoblastic IGF2 expression and prenatal administration of RA increases it through decidual RARα in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). RA was given intraperitoneally on D18, D19 and D20. Fetuses were harvested on D21 and divided into three groups: control, CDH and nitrofen+RA. Immunohistochemistry was performed to evaluate decidual RARα and trophoblastic IGF2 expression. Protein levels of IGF2 in serum, intra-amniotic fluid and left lungs were measured by enzyme-linked immunosorbent assay. Significant growth retardation of placenta and left lungs was observed in the CDH group compared to control and nitrofen+RA group. Markedly increased decidual RARα and decreased IGF2 immunoreactivity were found in the CDH group compared to control and nitrofen+RA group. Significantly decreased IGF2 protein levels were detected in serum, intra-amniotic fluid and left lungs in the CDH group compared to control and nitrofen+RA group. Our findings suggest that nitrofen may disturb trophoblastic IGF2 expression through decidual RARα resulting in retarded placental growth and PH in the nitrofen-induced CDH. Prenatal administration of RA may promote lung and placental growth by increasing trophoblastic IGF2 expression.

  4. Management of chronic daily headache in children and adolescents.

    PubMed

    Mack, Kenneth J; Gladstein, Jack

    2008-01-01

    Chronic daily headache (CDH) occurs in 1-2% of children and adolescents. It can evolve from either episodic tension-type headache or episodic migraine, or can appear with no previous headache history. As with other primary headache disorders, treatment is based on the level of disability. There are children and adolescents who cope well, but there are others who are markedly disabled by their chronic headaches. As in adults, children and adolescents with CDH are at risk for medication overuse. CDH is a diagnosis of exclusion, based on a thorough history, normal physical examination, and negative neuroimaging findings. Along with the chronic headaches, children with this condition may have co-morbid sleep problems, autonomic dysfunction, anxiety, and/or depression. Principles of treatment include identifying migrainous components, stopping medication overuse, stressing normalcy, using rational pharmacotherapy, and addressing co-morbid conditions. Successful outcomes often involve identifying an appropriate headache preventative, reintegration into school, and family participation in resetting realistic expectations.

  5. Molecular Characterization and Putative Pathogenic Pathways of Tuberous Sclerosis Complex-Associated Renal Cell Carcinoma.

    PubMed

    Park, Jeong Hwan; Lee, Cheol; Chang, Mee Soo; Kim, Kwangsoo; Choi, Seongmin; Lee, Hyunjung; Lee, Hyun-Seob; Moon, Kyung Chul

    2018-06-17

    Tuberous sclerosis complex-associated renal cell carcinoma (TSC-RCC) has distinct clinical and histopathologic features and is considered a specific subtype of RCC. The genetic alterations of TSC1 or TSC2 are responsible for the development of TSC. In this study, we assessed the mTOR pathway activation and aimed to evaluate molecular characteristics and pathogenic pathways of TSC-RCC. Two cases of TSC-RCC, one from a 31-year-old female and the other from an 8-year-old male, were assessed. The mTOR pathway activation was determined by immunohistochemistry. The mutational spectrum of both TSC-RCCs was evaluated by whole exome sequencing (WES), and pathogenic pathways were analyzed. Differentially expressed genes were analyzed by NanoString Technologies nCounter platform. The mTOR pathway activation and the germline mutations of TSC2 were identified in both TSC-RCC cases. The WES revealed several cancer gene alterations. In Case 1, genetic alterations of CHD8, CRISPLD1, EPB41L4A, GNA11, NOTCH3, PBRM1, PTPRU, RGS12, SETBP1, SMARCA4, STMN1, and ZNRF3 were identified. In Case 2, genetic alterations of IWS1 and TSC2 were identified. Further, putative pathogenic pathways included chromatin remodeling, G protein-coupled receptor, Notch signaling, Wnt/β-catenin, PP2A and the microtubule dynamics pathway in Case 1, and mRNA processing and the PI3K/AKT/mTOR pathway in Case 2. Additionally, the ALK and CRLF2 mRNA expression was upregulated and CDH1, MAP3K1, RUNX1, SETBP1, and TSC1 mRNA expression was downregulated in both TSC-RCCs. We present mTOR pathway activation and molecular characteristics with pathogenic pathways in TSC-RCCs, which will advance our understanding of the pathogenesis of TSC-RCC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Down-regulation of N-deacetylase-N-sulfotransferase-1 signaling in the developing diaphragmatic vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2017-06-01

    Congenital diaphragmatic hernia (CDH) has been attributed to various developmental abnormalities of the underlying tissue components. N-deacetylase-N-sulfotransferase-1 (Ndst1) is a strongly expressed biosynthetic enzyme in endothelial cells, which has recently been identified as an important factor during diaphragmatic vascularization. Loss of endothelial Ndst1 has been demonstrated to cause angiogenic defects in the developing diaphragm and disrupt normal diaphragmatic development. Furthermore, deficiency of Ndst1 diminishes the expression of slit homolog 3 (Slit3), a known CDH-related gene that has been associated with reduced vascular density and muscle defects in the diaphragm of Slit3 -/- mice. We hypothesized that expression of Ndst1 and Slit3 is decreased in the diaphragmatic vasculature of fetal rats with nitrofen-induced CDH. Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms were microdissected on D13, D15 and D18, and divided into control and nitrofen-exposed specimens. Gene expression levels of Ndst1 and Slit3 were assessed using qRT-PCR. Immunofluorescence-double-staining for Ndst1 and Slit3 was performed to evaluate protein expression and localization. Relative mRNA expression of Ndst1 and Slit3 was significantly decreased in pleuroperitoneal folds (D13), developing diaphragms (D15) and fully muscularized diaphragms (D18) of nitrofen-exposed fetuses compared to controls. Confocal-laser-scanning-microscopy revealed markedly diminished Ndst1 and Slit3 expression in endothelial cells within the diaphragmatic vasculature on D13, D15 and D18 compared to controls. Down-regulation of Ndst1 signaling in the developing diaphragm may impair endothelial cell migration and angiogenesis, thus leading to defective diaphragmatic vascular development and CDH. Ib. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A genome-wide analysis of the response to inhaled β2-agonists in chronic obstructive pulmonary disease.

    PubMed

    Hardin, M; Cho, M H; McDonald, M-L; Wan, E; Lomas, D A; Coxson, H O; MacNee, W; Vestbo, J; Yates, J C; Agusti, A; Calverley, P M A; Celli, B; Crim, C; Rennard, S; Wouters, E; Bakke, P; Bhatt, S P; Kim, V; Ramsdell, J; Regan, E A; Make, B J; Hokanson, J E; Crapo, J D; Beaty, T H; Hersh, C P

    2016-08-01

    Short-acting β2-agonist bronchodilators are the most common medications used in treating chronic obstructive pulmonary disease (COPD). Genetic variants determining bronchodilator responsiveness (BDR) in COPD have not been identified. We performed a genome-wide association study (GWAS) of BDR in 5789 current or former smokers with COPD in one African-American and four white populations. BDR was defined as the quantitative spirometric response to inhaled β2-agonists. We combined results in a meta-analysis. In the meta-analysis, single-nucleotide polymorphisms (SNPs) in the genes KCNK1 (P=2.02 × 10(-7)) and KCNJ2 (P=1.79 × 10(-7)) were the top associations with BDR. Among African Americans, SNPs in CDH13 were significantly associated with BDR (P=5.1 × 10(-9)). A nominal association with CDH13 was identified in a gene-based analysis in all subjects. We identified suggestive association with BDR among COPD subjects for variants near two potassium channel genes (KCNK1 and KCNJ2). SNPs in CDH13 were significantly associated with BDR in African Americans.The Pharmacogenomics Journal advance online publication, 27 October 2015; doi:10.1038/tpj.2015.65.

  8. Congenital diaphragmatic hernia: Observed/expected lung-to-head ratio as a predictor of long-term morbidity.

    PubMed

    King, Sebastian K; Alfaraj, Malikah; Gaiteiro, Rose; O'Brien, Karel; Moraes, Theo; Humpl, Tilman; Marcon, Margaret; Chiang, Monping; Reyes, Janette; Haliburton, Beth; Ryan, Greg; Cox, Peter; Chiu, Priscilla P L

    2016-05-01

    The aim of this study was to investigate the association of observed/expected (O/E) lung-to-head ratio (LHR) with long-term morbidity for isolated fetal congenital diaphragmatic hernia (CDH) patients in a single institution. We performed a retrospective study of prenatally diagnosed CDH from 18 to 38weeks of gestation (01/2002-04/2010). Two cohorts of O/E LHR were defined (22.6-45%, 45.1-78.3%) based upon previous studies. Survivors with at least 1-year follow-up of prospectively collected long-term morbidity assessments were included. O/E LHR was available in 43 survivors (median 40%, range 22.8-78.3%). Follow-up data were available in 41 survivors (M:F=24:17, left CDH=39/41). Median follow-up was 6.5years (1-11years). Height/weight trajectories were similar between the two cohorts, with the majority below the 50th centile. There were no differences between the two cohorts by age 3years for Bayley scales (developmental domains) and/or REEL-3 (language development). In addition, V/Q scans in the two cohorts demonstrated similar degrees of mismatch (mean delta V/Q=35.4 versus 31.3). In fetuses with isolated CDH, a reduction in O/E LHR does not predict a worse outcome in long-term follow-up. There is no association between a lower O/E LHR and a reduction in REEL-3 or Bayley score nor V/Q mismatch. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord

    PubMed Central

    Yang, Pai-Feng; Wang, Feng

    2015-01-01

    Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus–response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates. SIGNIFICANCE STATEMENT This is the first fMRI demonstration of distinct intrasegmental and intersegmental nociceptive heat and touch processing circuits in the spinal cord of nonhuman primates. This study provides novel insights into the local functional organizations of the primate spinal cord for pain and touch, information that will be valuable for designing and optimizing therapeutic interventions for chronic pain management. PMID:26203144

  10. Cloning and expression of delta-1-pyrroline-5-carboxylate dehydrogenase in Escherichia coli DH5α improves phosphate solubilization.

    PubMed

    Gong, Mingbo; Tang, Chaoxi; Zhu, Changxiong

    2014-11-01

    A primary cDNA library of Penicillium oxalicum I1 was constructed using the switching mechanism at the 5' end of the RNA transcript (SMART) technique. A total of 106 clones showed halos in tricalcium phosphate (TCP) medium, and clone I-40 showed clear halos. The full-length cDNA of clone I-40 was 1355 bp with a complete open reading frame (ORF) of 1032 bp, encoding a protein of 343 amino acids. Multiple alignment analysis revealed a high degree of homology between the ORF of clone I-40 and delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) of other fungi. The ORF expression vector was constructed and transformed into Escherichia coli DH5α. The transformant (ORF-1) with the P5CDH gene secreted organic acid in medium with TCP as the sole source of phosphate. Acetic acid and α-ketoglutarate were secreted in 4 and 24 h, respectively. ORF-1 decreased the pH of the medium from 6.62 to 3.45 and released soluble phosphate at 0.172 mg·mL(-1) in 28 h. Expression of the P. oxalicum I1 p5cdh gene in E. coli could enhance organic acid secretion and phosphate-solubilizing ability.

  11. Study of the Role of siRNA Mediated Promoter Methylation in DNMT3B Knockdown and Alteration of Promoter Methylation of CDH1, GSTP1 Genes in MDA-MB -453 Cell Line.

    PubMed

    Naghitorabi, Mojgan; Mir Mohammad Sadeghi, Hamid; Mohammadi Asl, Javad; Rabbani, Mohammad; Jafarian-Dehkordi, Abbas

    2017-01-01

    Promoter methylation is one of the main epigenetic mechanisms that leads to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifically knock down the DNMTs at mRNA level. Also many studies have focused on transcriptional gene silencing in mammalian cells via siRNA mediated promoter methylation. The present study was designed to assess the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of Cadherin-1 (CDH1), Glutathione S-Transferase Pi 1(GSTP1), and DNMT3B genes in MDA-MB-453 cell line. MDA-MB-453 cells were transfected with siDNMT targeting DNMT3B promoter and harvested at 24 and 48 h post transfection to monitor gene silencing and promoter methylation respectively. DNMT3B expression was monitored by quantitative RT-PCR method. Promoter methylation was quantitatively evaluated using differential high resolution melting analysis. A non-significant 20% reduction in DNMT3B mRNA level was shown only after first transfection with siDNMT, which was not reproducible. Promoter methylation levels of DNMT3B, CDH1, and GSTP1 were detected at about 15%, 70% and 10% respectively, in the MDA-MB-453 cell line, with no significant change after transfection. Our results indicated that siDNMT sequence were not able to affect promoter methylation and silencing of DNMT3B in MDA-MB-453 cells. However, quantitation of methylation confirmed a hypermethylated phenotype at CDH1 and GSTP1 promoters as well as a differential methylation pattern at DNMT3B promoter in breast cancer.

  12. Prognostic usefulness of derived T2-weighted fetal magnetic resonance imaging measurements in congenital diaphragmatic hernia.

    PubMed

    Sebastià, C; Gomez, O; Salvador, R; Buñesch, L; Garcia, R; Nicolau, C

    2015-01-01

    To determine the usefulness of various parameters based on T2-weighted fetal magnetic resonance (MR) imaging measurements of the uninvolved lung for the neonatal prognosis of congenital diaphragmatic hernia (CDH). We used ultrasonography and MR imaging to study 28 fetuses with CDH. We retrospectively analyzed a) on fetal ultrasonography, the observed-to-expected lung to head ratio (O/E LHR) and the position of the liver, and b) on fetal MR imaging, the lung-liver signal ratio (LLSR) and the lungcerebrospinal fluid ratio (L/CSF SR). To determine the prognostic value of these parameters, we compared them with the following postnatal parameters: survival, pulmonary hypertension, need for oxygen supplementation, and need for extracorporeal membrane oxygenation. We found significant differences between O/E LHR and the need for postnatal extracorporeal membrane oxygenation (P=.033) and postnatal survival (P=.01). We also found significant differences in LLSR between fetuses that survived more than 45 days and those that died within 45 days (1.91 vs. 2.56; P=.039). In fetuses with CDH, the LLSR correlates with postnatal survival and can potentially be used as a prognostic parameter in CDH. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  13. Down-regulation of lung Kruppel-like factor in the nitrofen-induced hypoplastic lung.

    PubMed

    Lukošiūtė, A; Doi, T; Dingemann, J; Ruttenstock, E M; Puri, P

    2011-01-01

    Pulmonary hypoplasia is a primary cause of high morbidity and mortality in neonates with Congenital Diaphragmatic Hernia (CDH). However, the precise pathogenesis of PH associated with CDH is still not clearly understood. It has been recently reported that lung Kruppel-like factor (LKLF), a member of the Kruppel-like factor family of transcription factors, is predominantly expressed in lungs and plays an important role in lung morphogenesis and functional maturation. It has been reported that homozygous deletion of LKLF gene in mice results in reduced lung morphogenesis. It is further reported that chimeric mice derived from LKLF (-/-) embryonic stem cells exhibit delayed lung development especially in the later gestational stages. We therefore designed this study to test the hypothesis that the LKLF gene is down-regulated during later stages of lung development in nitrofen-induced hypoplastic lungs. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15, D18, and D21 and divided into 3 groups:control, nitrofen without CDH(CDH(-)) and nitrofen with CDH(CDH(+)) (n=24 for each group). Real-time RT-PCR analysis was performed to investigate pulmonary gene expression levels of LKLF. Differences between the 3 groups at each time point were tested statistically and significance was accepted at p<0.05. Immunohistochemistry was also performed to evaluate LKLF protein expression and distribution. The relative mRNA expression levels of LKLF on D18 and D21 were significantly decreased (p<0.01) in CDH(-) and CDH(+) groups compared to controls. The gene expression levels of LKLF on D15 did not differ significantly between the nitrofen group and controls. Immunohistochemical study showed strong LKLF immunoreactivity on D18 and D21 in nitrofen-induced hypoplastic lung compared to controls, whereas no difference was seen on D15. Our results provide evidence for the first time that LKLF is down-regulated in the later stages of lung development in nitrofen-induced hypoplastic lungs. These data suggest that the down-regulation of LKLF during this critical period of lung morphogenesis may impair lung development and maturation, resulting in pulmonary hypoplasia in the nitrofen CDH model. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Disturbance of parathyroid hormone-related protein signaling in the nitrofen-induced hypoplastic lung.

    PubMed

    Doi, Takashi; Lukosiūte, Ausra; Ruttenstock, Elke; Dingemann, Jens; Puri, Prem

    2010-01-01

    Despite remarkable progress in resuscitation and intensive care, the morbidity and mortality rates in congenital diaphragmatic hernia (CDH) remain high due to severe pulmonary hypoplasia. The pathogenesis of pulmonary hypoplasia associated with CDH is still not clearly understood. Pulmonary parathyroid hormone-related protein (PTHrP) is expressed in the type II epithelial cells and stimulates surfactant production by a paracrine feedback loop regulated by PTHrP receptor (PTHrP-R), which is expressed in the mesenchyme, during terminal airway differentiation. It has been reported that PTHrP knockout and PTHrP-R null mice both exhibit pulmonary hypoplasia, disrupting alveolar maturation before birth. We designed this study to test the hypothesis that gene expression of PTHrP and PTHrP-R is downregulated in the late stages of lung morphogenesis in the nitrofen-induced hypoplastic lung. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetal lungs were harvested on D15, 18, and 21 and divided into three groups: control, nitrofen without CDH [CDH(-)], and nitrofen with CDH [CDH(+)] (n = 8 at each time point for each group, respectively). Total mRNA was extracted from fetal lungs and mRNA expression of PTHrP and PTHrP-R was analyzed by real-time RT-PCR and the significant differences between the groups were accepted at P < 0.05 by statistical analysis. Immunohistochemical studies were also performed to evaluate PTHrP and PTHrP-R protein expression at each time point. Pulmonary mRNA expression of PTHrP-R was significantly decreased in both nitrofen groups [CDH(-) and CDH(+)] compared to controls at D18 and 21. The mRNA level of PTHrP was significantly decreased at D21 in both nitrofen groups compared to controls. Immunoreactivity of PTHrP and PTHrP-R at D18 and 21 was diminished in the distal epithelium and in the mesenchyme, respectively, in the nitrofen-induced hypoplastic lung compared to control lungs. There were no significant differences in both gene/protein expression of PTHrP and PTHrP-R on D15. Downregulation of PTHrP and PTHrP-R gene expression during late lung morphogenesis may cause pulmonary hypoplasia in the nitrofen CDH model, disrupting alveolar maturation and surfactant production by interfering with mesenchymal-epithelial interactions.

  15. CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with Usher syndrome and nonsyndromic deafness.

    PubMed

    Astuto, L M; Bork, J M; Weston, M D; Askew, J W; Fields, R R; Orten, D J; Ohliger, S J; Riazuddin, S; Morell, R J; Khan, S; Riazuddin, S; Kremer, H; van Hauwe, P; Moller, C G; Cremers, C W R J; Ayuso, C; Heckenlively, J R; Rohrschneider, K; Spandau, U; Greenberg, J; Ramesar, R; Reardon, W; Bitoun, P; Millan, J; Legge, R; Friedman, T B; Kimberling, W J

    2002-08-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP-like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia.

  16. Suppressed erythropoietin expression in a nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takayasu, Hajime; Hagiwara, Koki; Masumoto, Kouji

    2017-05-01

    Erythropoietin (EPO), an essential stimulator of erythropoiesis produced by the fetal liver, is important both in vascular remodeling and modulation of the endothelial response in the pulmonary vasculature. In addition, EPO guides alveolar development, along with retinoic acid (RA). EPO is a direct target of RA, and the retinoid pathway is altered in the nitrofen-induced congenital diaphragmatic hernia (CDH) model. In the present study, we tested the hypothesis that the synthesis of EPO is suppressed in a rat model of CDH. Pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D19 and D21 and divided into control and CDH groups. Immunohistochemistry and quantitative real-time polymerase chain reaction (RT-PCR) were performed to determine the expression of EPO in the fetal liver and kidney. We also estimated the expression of EPO receptor in the fetal lung. The relative EPO mRNA expression in the liver on D19 and in the kidney on D21 were significantly lower in the CDH group than in the controls (P = 0.0008 and P = 0.0064, respectively). In addition, the results of immunohistochemistry supported the findings from the RT-PCR analysis. No significant changes were noted in the expression pattern or EPO receptor levels in the fetal lungs of the CDH group compared to the controls. Our results reveal the suppressed EPO synthesis in the CDH fetus, which may contribute to the pathogenesis of lung hypoplasia and modification of pulmonary vasculature in the CDH rat model. Pediatr Pulmonol. 2017;52:606-615. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    PubMed Central

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507

  18. Rate of increase of lung-to-head ratio over the course of gestation is predictive of survival in left-sided congenital diaphragmatic hernia.

    PubMed

    Partridge, Emily A; Peranteau, William H; Herkert, Lisa; Rintoul, Natalie E; Flake, Alan W; Adzick, N Scott; Hedrick, Holly L

    2016-05-01

    Congenital diaphragmatic hernia (CDH) is associated with high postnatal mortality because of pulmonary hypoplasia. The prognostic utility of serial lung-to-head circumference measurements as a marker of lung growth has not been described. Our objective was to examine the relationship between the rate of interval increase of LHR and postnatal survival in left-sided CDH. We retrospectively reviewed charts of all left-sided CDH patients from January 2004 to July 2014. All ultrasound studies performed at our institution (n=473) were reviewed. Categorical and continuous data were analyzed by chi-square and Mann-Whitney t-test, respectively, and slope analysis was performed by linear regression analysis (p<0.05). A total of 226 patients were studied, with 154 long-term survivors and 72 non-survivors. Established markers of CDH severity, including intrathoracic liver position and requirement for patch repair, were significantly increased in non-survivors (p<0.0001). The rate of LHR increase as measured by linear regression and slope analysis was significantly increased in long-term survivors (p=0.0175). Our findings indicate that the interval increase in LHR levels over the course of gestation correlate with survival in left-sided CDH patients. Regular ultrasonographic re-evaluation of LHR throughout gestation following diagnosis of CDH may provide prognostic insight and help guide patient management. Copyright © 2016. Published by Elsevier Inc.

  19. Revealing the Strong Functional Association of adipor2 and cdh13 with adipoq: A Gene Network Study.

    PubMed

    Bag, Susmita; Anbarasu, Anand

    2015-04-01

    In the present study, we have analyzed functional gene interactions of adiponectin gene (adipoq). The key role of adipoq is in regulating energy homeostasis and it functions as a novel signaling molecule for adipose tissue. Modules of highly inter-connected genes in disease-specific adipoq network are derived by integrating gene function and protein interaction data. Among twenty genes in adipoq web, adipoq is effectively conjoined with two genes: Adiponectin receptor 2 (adipor2) and cadherin 13 (cdh13). The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with adipoq are adipor2 and cdh13. Interestingly, the ontological aspect of adipor2 and cdh13 in the adipoq network reveal the fact that adipoq and adipor2 are involved mostly in glucose and lipid metabolic processes. The gene cdh13 indulge in cell adhesion process with adipoq and adipor2. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of adipoq, adipor2, and cdh13 with not only with obesity but also with breast cancer, leukemia, renal cancer, lung cancer, and cervical cancer. The current study provides researchers a comprehensible layout of adipoq network, its functional strategies and candidate disease approach associated with adipoq network.

  20. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells.

    PubMed

    Söllner, Christian; Rauch, Gerd-Jörg; Siemens, Jan; Geisler, Robert; Schuster, Stephan C; Müller, Ulrich; Nicolson, Teresa

    2004-04-29

    Hair cells have highly organized bundles of apical projections, or stereocilia, that are deflected by sound and movement. Displacement of stereocilia stretches linkages at the tips of stereocilia that are thought to gate mechanosensory channels. To identify the molecular machinery that mediates mechanotransduction in hair cells, zebrafish mutants were identified with defects in balance and hearing. In sputnik mutants, stereociliary bundles are splayed to various degrees, with individuals displaying reduced or absent mechanotransduction. Here we show that the defects in sputnik mutants are caused by mutations in cadherin 23 (cdh23). Mutations in Cdh23 also cause deafness and vestibular defects in mice and humans, and the protein is present in hair bundles. We show that zebrafish Cdh23 protein is concentrated near the tips of hair bundles, and that tip links are absent in homozygous sputnik(tc317e) larvae. Moreover, tip links are absent in larvae carrying weak alleles of cdh23 that affect mechanotransduction but not hair bundle integrity. We conclude that Cdh23 is an essential tip link component required for hair-cell mechanotransduction.

  1. Psychiatric comorbidity and suicide risk in adolescents with chronic daily headache.

    PubMed

    Wang, Shuu-Jiun; Juang, Kai-Dih; Fuh, Jong-Ling; Lu, Shiang-Ru

    2007-05-01

    To investigate the prevalence and correlates of comorbid psychiatric disorders and suicidal risk in community-based adolescents with chronic daily headache (CDH). We identified and recruited 122 adolescents with CDH from a non-referral student sample (n = 7,900). CDH subtypes were classified according to the most updated criteria of the International Classification of Headache Disorders, 2nd edition (ICHD-2). An in-person psychiatric interview was performed with each subject with CDH to assess depressive and anxiety disorders and suicidal risk based on the Mini-International Neuropsychiatric Interview-Kid (MINI-Kid). Clinical correlates and impacts were investigated. A total of 121 subjects (31 male/90 female, mean age 13.8 years) finished the psychiatric interview. Fifty-seven subjects (47%) had > or =1 assessed psychiatric comorbidity with major depression (21%) and panic disorder (19%) as the two most common diagnoses. Current suicidal risk was assessed as high (score > or = 10) in 20% of subjects. Female gender and older age were associated with depressive disorders. Presence of migraine was associated with psychiatric comorbidities (OR = 3.5, p = 0.002). The associations with psychiatric disorders were stronger for migraine with aura than for migraine without aura. Migraine with aura also independently predicted a high suicidal risk (score > or = 10) (adjusted OR = 6.0, p = 0.028). In contrast, CDH subtypes, headache frequencies, or medication overuse were not correlated. Comorbid psychiatric disorders were not related to physician consultations or more days of sick leave. This community-based study showed high comorbidity of psychiatric disorders and suicidal risk in adolescents with chronic daily headache. The presence of migraine attacks, especially migraine with aura, was the major predictor for these associations.

  2. [Degradation of the herbicide atrazine by the soil mycelial fungus INBI 2-26(-)--a producer of cellobiose dehydrogenase].

    PubMed

    Khromonygina, V V; Saltykova, A I; Vasil'chenko, L G; Kozlov, Iu P; Rabinovich, M L

    2004-01-01

    Nonsporulating mycelial fungi producing cellobiose dehydrogenase (CDH) and isolated from soils of South Vietnam with high residual content of dioxins are capable of growing on a solid medium in the presence of high atrazine concentrations (to 500 mg/l). At 20 and 50 mg/l atrazine, the area of fungal colonies was 1.5-1.2-fold larger, respectively, compared with control colonies of the same age, whereas development of the colonies at 500 mg/l atrazine was delayed by 5 days, compared with controls grown in the absence of atrazine. Surface cultivation of the fungus on a minimal medium with glucose as a sole source of carbon and energy decreased the initial concentration of atrazine (20 mg/l) 50 times in 40 days; in addition, no pronounced sorption of atrazine by mycelium was detected. This was paralleled by accumulation in the culture medium of extracellular CDH; atrazine increased the synthesis of this enzyme two- to threefold. Accumulation of beta-glucosidase (a mycelium-associated enzyme) and cellulases preceded the formation of CDH.

  3. ANG-1 TIE-2 and BMPR Signalling Defects Are Not Seen in the Nitrofen Model of Pulmonary Hypertension and Congenital Diaphragmatic Hernia

    PubMed Central

    Corbett, Harriet Jane; Connell, Marilyn Gwen; Fernig, David Garth

    2012-01-01

    Background Pulmonary hypertension (PH) is a lethal disease that is associated with characteristic histological abnormalities of the lung vasculature and defects of angiopoetin-1 (ANG-1), TIE-2 and bone morphogenetic protein receptor (BMPR)-related signalling. We hypothesized that if these signalling defects cause PH generically, they will be readily identifiable perinatally in congenital diaphragmatic hernia (CDH), where the typical pulmonary vascular changes are present before birth and are accompanied by PH after birth. Methods CDH (predominantly left-sided, LCDH) was created in Sprague-Dawley rat pups by e9.5 maternal nitrofen administration. Left lungs from normal and LCDH pups were compared at fetal and postnatal time points for ANG-1, TIE-2, phosphorylated-TIE-2, phosphorylated-SMAD1/5/8 and phosphorylated-ERK1/2 by immunoprecipitation and Western blotting of lung protein extracts and by immunohistochemistry on lung sections. Results In normal lung, pulmonary ANG-1 protein levels fall between fetal and postnatal life, while TIE-2 levels increase. Over the corresponding time period, LCDH lung retained normal expression of ANG-1, TIE-2, phosphorylated-TIE-2 and, downstream of BMPR, phosphorylated-SMAD1/5/8 and phosphorylated-p44/42. Conclusion In PH and CDH defects of ANG-1/TIE-2/BMPR-related signalling are not essential for the lethal vasculopathy. PMID:22539968

  4. Comparison of Selected Protein Levels in Tumour and Surgical Margin in a Group of Patients with Oral Cavity Cancer.

    PubMed

    Strzelczyk, Joanna Katarzyna; Gołąbek, Karolina; Cuber, Piotr; Krakowczyk, Łukasz; Owczarek, Aleksander Jerzy; Fronczek, Martyna; Choręża, Piotr; Hudziec, Edyta; Ostrowska, Zofia

    2017-08-01

    Oral cavity cancer belongs to head-and-neck squamous cell carcinoma group. The purpose of the study was to assess the levels of certain proteins in a tumour and surgical margin in a group of patients with oral cavity cancer. The levels of DAPK1, MGMT, CDH1, SFRP1, SFRP2, RORA, TIMP3, p16, APC and RASSF1 proteins were measured by ELISA in tissue homogenates. The protein levels of DAPK1, MGMT, CDH1, SFRP2 and RASSF1 were significantly higher in tumour tissue than in the margin, contrary to TIMP3 which was lower in the tumour itself. DAPK1 level in the tumour was significantly higher in females than in males, the MGMT and p16 levels were lower in the tumours with lymph node metastasis (N1 + N2) than in N0 samples. The CDH1 expression was higher in a group with smoking habits, whereas TIMP3 was lower in this group. Changes in the levels of proteins in tumour and surgical margin may be either reflective of tumour occurrence and development, or they might be also responsible for the progress and reoccurrence of the disease. Levels of the studied proteins might be good prognostic factors; however, further studies are required.

  5. Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism

    PubMed Central

    Foe, Ian T.; Foster, Scott A.; Cheung, Stephanie K.; DeLuca, Steven Z.; Morgan, David O.; Toczyski, David P.

    2012-01-01

    SUMMARY Background Cells control progression through late mitosis by regulating Cdc20 and Cdh1, the two mitotic activators of the Anaphase Promoting Complex (APC). The control of Cdc20 protein levels during the cell cycle is not well understood. Results Here, we demonstrate that Cdc20 is degraded in budding yeast by multiple APC-dependent mechanisms. We find that the majority of Cdc20 turnover does not involve a second activator molecule, but instead depends on in cis Cdc20 autoubiquitination while it is bound to its activator-binding site on the APC core. Unlike in trans ubiquitination of Cdc20 substrates, the APC ubiquitinates Cdc20 independent of APC activation by Cdc20’s C-box. Cdc20 turnover by this intramolecular mechanism is cell cycle-regulated, contributing to the decline in Cdc20 levels that occurs after anaphase. Interestingly, high substrate levels in vitro significantly reduce Cdc20 autoubiquitination. Conclusion We show here that Cdc20 fluctuates through the cell cycle via a distinct form of APC-mediated ubiquitination. This in cis autoubiquitination may preferentially occur in early anaphase, following depletion of Cdc20 substrates. This suggests that distinct mechanisms are able to target Cdc20 for ubiquitination at different points during the cell cycle. PMID:22079111

  6. Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang; Yuknis, William; Haghani, Noosha; Pursley, Scott; Haddad, Omar

    2012-01-01

    A document describes a high-performance, modular, and state-of-the-art Command and Data Handling (C&DH) system developed for use on the Lunar Reconnaissance Orbiter (LRO) mission. This system implements a complete hardware C&DH subsystem in a single chassis enclosure that includes a processor card, 48 Gbytes of solid-state recorder memory, data buses including MIL-STD-1553B, custom RS-422, SpaceWire, analog collection, switched power services, and interfaces to the Ka-Band and S-Band RF communications systems. The C&DH team capitalized on extensive experience with hardware and software with PCI bus design, SpaceWire networking, Actel FPGA design, digital flight design techniques, and the use of VxWorks for the real-time operating system. The resulting hardware architecture was implemented to meet the LRO mission requirements. The C&DH comprises an enclosure, a backplane, a low-voltage power converter, a single-board computer, a communications interface board, four data storage boards, a housekeeping and digital input/output board, and an analog data acquisition board. The interfaces between the C&DH and the instruments and avionics are connected through a SpaceWire network, a MIL-STD-1553 bus, and a combination of synchronous and asynchronous serial data transfers over RS-422 and LVDS (low-voltage differential-signaling) electrical interfaces. The C&DH acts as the spacecraft data system with an instrument data manager providing all software and internal bus scheduling, ingestion of science data, distribution of commands, and performing science operations in real time.

  7. WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity.

    PubMed

    Li, Qiuhong; Chang, Leifu; Aibara, Shintaro; Yang, Jing; Zhang, Ziguo; Barford, David

    2016-09-20

    The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin-RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1(WD40)). To understand how Apc1(WD40) contributes to APC/C activity, a mutant form of the APC/C with Apc1(WD40) deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1(WD40) abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C-Cdh1 complex with Apc1(WD40) deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1(WD40) is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C.

  8. WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity

    PubMed Central

    Li, Qiuhong; Chang, Leifu; Aibara, Shintaro; Yang, Jing; Zhang, Ziguo; Barford, David

    2016-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin–RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1WD40). To understand how Apc1WD40 contributes to APC/C activity, a mutant form of the APC/C with Apc1WD40 deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1WD40 abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C–Cdh1 complex with Apc1WD40 deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1WD40 is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C. PMID:27601667

  9. Sample Analysis at Mars Instrument Simulator

    NASA Technical Reports Server (NTRS)

    Benna, Mehdi; Nolan, Tom

    2013-01-01

    The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes, and thus validates, complex command scripts prior to their up-linking to the SAM instrument. As an output, this module generates synthetic data and message logs at a rate that is similar to the actual instrument.

  10. Alternative splicing of inner-ear-expressed genes.

    PubMed

    Wang, Yanfei; Liu, Yueyue; Nie, Hongyun; Ma, Xin; Xu, Zhigang

    2016-09-01

    Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+ 68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca(2+)-activated K(+) channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits.

  11. Alterations in CDH15 and KIRREL3 in Patients with Mild to Severe Intellectual Disability

    PubMed Central

    Bhalla, Kavita; Luo, Yue; Buchan, Tim; Beachem, Michael A.; Guzauskas, Gregory F.; Ladd, Sydney; Bratcher, Shelly J.; Schroer, Richard J.; Balsamo, Janne; DuPont, Barbara R.; Lilien, Jack; Srivastava, Anand K.

    2008-01-01

    Cell-adhesion molecules play critical roles in brain development, as well as maintaining synaptic structure, function, and plasticity. Here we have found the disruption of two genes encoding putative cell-adhesion molecules, CDH15 (cadherin superfamily) and KIRREL3 (immunoglobulin superfamily), by a chromosomal translocation t(11;16) in a female patient with intellectual disability (ID). We screened coding regions of these two genes in a cohort of patients with ID and controls and identified four nonsynonymous CDH15 variants and three nonsynonymous KIRREL3 variants that appear rare and unique to ID. These variations altered highly conserved residues and were absent in more than 600 unrelated patients with ID and 800 control individuals. Furthermore, in vivo expression studies showed that three of the CDH15 variations adversely altered its ability to mediate cell-cell adhesion. We also show that in neuronal cells, human KIRREL3 colocalizes and interacts with the synaptic scaffolding protein, CASK, recently implicated in X-linked brain malformation and ID. Taken together, our data suggest that alterations in CDH15 and KIRREL3, either alone or in combination with other factors, could play a role in phenotypic expression of ID in some patients. PMID:19012874

  12. A Case of Fatal Pulmonary Hypoplasia with Congenital Diaphragmatic Hernia, Thoracic Myelomeningocele, and Thoracic Dysplasia.

    PubMed

    Ito, Ai; Fujinaga, Hideshi; Matsui, Sachiko; Tago, Kumiko; Iwasaki, Yuka; Fujino, Shuhei; Nagasawa, Junko; Amari, Shoichiro; Kaneshige, Masao; Wada, Yuka; Takahashi, Shigehiro; Tsukamoto, Keiko; Miyazaki, Osamu; Yoshioka, Takako; Ishiguro, Akira; Ito, Yushi

    2017-10-01

    Background  Congenital diaphragmatic hernia (CDH) is fatal in severe cases of pulmonary hypoplasia. We experienced a fatal case of pulmonary hypoplasia due to CDH, thoracic myelomeningocele (MMC), and thoracic dysplasia. This constellation of anomalies has not been previously reported. Case Report  A male infant with a prenatal diagnosis of thoracic MMC with severe hydrocephalus and scoliosis was born at 36 weeks of gestation. CDH was found after birth and the patient died of respiratory failure due to pulmonary hypoplasia and persistent pulmonary hypertension of the newborn at 30 hours of age despite neonatal intensive care. An autopsy revealed a left CDH without herniation of the liver or stomach into the thoracic cavity, severe hydrocephalus, Chiari malformation type II, MMC with spina bifida from Th4 to Th12, hemivertebrae, fused ribs, deformities of the thoracic cage and legs, short trunk, and agenesis of the left kidney. Conclusion  We speculate that two factors may be associated with the severe pulmonary hypoplasia: decreased thoracic space due to the herniation of visceral organs caused by CDH and thoracic dysplasia due to skeletal deformity and severe scoliosis.

  13. Neurocognitive outcomes in congenital diaphragmatic hernia survivors: a cross-sectional prospective study.

    PubMed

    Bojanić, Katarina; Grubić, Marina; Bogdanić, Ana; Vuković, Jurica; Weingarten, Toby N; Huebner, Andrea R; Sprung, Juraj; Schroeder, Darrell R; Grizelj, Ruža

    2016-10-01

    Congenital diaphragmatic hernia (CDH) survivors may have persistent neurocognitive delays. We assessed neurodevelopmental outcomes in CDH survivors from infancy to late teenage years. A cross-sectional study was conducted on 37 CDH survivors to examine neurocognitive functioning. Overall cognitive score was tested with the early learning composite (ELC) of Mullen Scales of Early Learning (n=19), and Full Scale IQ (FSIQ) of Wechsler Intelligence Scale for Children-Fourth Edition (n=18). ELC was 85.7±16.4, lower than the expected norm of 100, P=0.004, and 6 survivors had moderate, and 3 severe delay, which is not greater than expected in the general population (P=0.148). FSIQ was 99.6±19.1, consistent with the expected norm of 100, P=0.922, and 3 survivors had moderate and 2 severe delay, which is greater than expected (P=0.048). Although ELC was lower than FSIQ (P=0.024), within each testing group overall cognitive ability was not associated with participant age (ELC, P=0.732; FSIQ, P=0.909). Longer hospital stay was the only factor found to be consistently associated with a worse cognitive score across all participants in our cohort. A high percentage of survivors with CDH have moderate to severe cognitive impairment suggesting that these subjects warrant early testing with implementation of therapeutic and educational interventions. Published by Elsevier Inc.

  14. Modular, Autonomous Command and Data Handling Software with Built-In Simulation and Test

    NASA Technical Reports Server (NTRS)

    Cuseo, John

    2012-01-01

    The spacecraft system that plays the greatest role throughout the program lifecycle is the Command and Data Handling System (C&DH), along with the associated algorithms and software. The C&DH takes on this role as cost driver because it is the brains of the spacecraft and is the element of the system that is primarily responsible for the integration and interoperability of all spacecraft subsystems. During design and development, many activities associated with mission design, system engineering, and subsystem development result in products that are directly supported by the C&DH, such as interfaces, algorithms, flight software (FSW), and parameter sets. A modular system architecture has been developed that provides a means for rapid spacecraft assembly, test, and integration. This modular C&DH software architecture, which can be targeted and adapted to a wide variety of spacecraft architectures, payloads, and mission requirements, eliminates the current practice of rewriting the spacecraft software and test environment for every mission. This software allows missionspecific software and algorithms to be rapidly integrated and tested, significantly decreasing time involved in the software development cycle. Additionally, the FSW includes an Onboard Dynamic Simulation System (ODySSy) that allows the C&DH software to support rapid integration and test. With this solution, the C&DH software capabilities will encompass all phases of the spacecraft lifecycle. ODySSy is an on-board simulation capability built directly into the FSW that provides dynamic built-in test capabilities as soon as the FSW image is loaded onto the processor. It includes a six-degrees- of-freedom, high-fidelity simulation that allows complete closed-loop and hardware-in-the-loop testing of a spacecraft in a ground processing environment without any additional external stimuli. ODySSy can intercept and modify sensor inputs using mathematical sensor models, and can intercept and respond to actuator commands. ODySSy integration is unique in that it allows testing of actual mission sequences on the flight vehicle while the spacecraft is in various stages of assembly, test, and launch operations all without any external support equipment or simulators. The ODySSy component of the FSW significantly decreases the time required for integration and test by providing an automated, standardized, and modular approach to integrated avionics and component interface and functional verification. ODySSy further provides the capability for on-orbit support in the form of autonomous mission planning and fault protection.

  15. Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface

    PubMed Central

    2011-01-01

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm−2 at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. PMID:21417322

  16. Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.

    PubMed

    Tasca, Federico; Harreither, Wolfgang; Ludwig, Roland; Gooding, John Justin; Gorton, Lo

    2011-04-15

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. © 2011 American Chemical Society

  17. Evidence for decreased lipofibroblast expression in hypoplastic rat lungs with congenital diaphragmatic hernia.

    PubMed

    Friedmacher, Florian; Fujiwara, Naho; Hofmann, Alejandro Daniel; Takahashi, Hiromizu; Gosemann, Jan-Hendrik; Puri, Prem

    2014-10-01

    Pulmonary hypoplasia (PH) is a serious condition in newborns with congenital diaphragmatic hernia (CDH). Lipid-containing interstitial fibroblasts (LIFs) play an essential role in fetal lung maturation by stimulating alveolarization and lipid homeostasis. In rodents, LIFs are first evident during the canalicular phase of lung development with a significant increase over the last 4 days of gestation. Adipocyte differentiation-related protein (ADRP), a functional lipogenic molecular marker characterizing LIFs, is highly expressed in fetal lungs during this critical time period. We hypothesized that LIF expression in hypoplastic rat lungs is decreased in the nitrofen-induced CDH model, which is accompanied by reduced alveolar ADRP expression and lipid content. On embryonic day 9.5 (E9.5), time-mated rats received either nitrofen or vehicle. Fetuses were sacrificed on selected time points E18.5 and E21.5, and dissected lungs were divided into controls and CDH-associated PH. Pulmonary gene expression levels of ADRP were determined by quantitative real-time polymerase chain reaction. ADRP immunohistochemistry and oil red O staining were used to assess pulmonary protein expression and lipid content. Immunofluorescence double staining for alpha smooth muscle actin, which is known to be absent in LIFs, and lipid droplets was performed to evaluate the pulmonary expression of this specific subset of fibroblasts. Relative mRNA expression of ADRP was significantly reduced in lungs of CDH-associated PH on E18.5 and E21.5 compared to controls. ADRP immunoreactivity and lipid staining were markedly diminished in alveolar mesenchymal cells of CDH-associated PH on E18.5 and E21.5 compared to controls. Confocal laser scanning microscopy demonstrated markedly decreased LIF expression in alveolar interstitium of CDH-associated PH on E18.5 and E21.5 compared to controls. Decreased pulmonary LIF expression during late gestation suggests impaired LIF functioning in the nitrofen-induced CDH model, which may cause disruption in fetal alveolarization and lipid homeostasis, and thus contribute to the development of PH.

  18. Absolute Quantitation of DNA Methylation of 28 Candidate Genes in Prostate Cancer Using Pyrosequencing

    PubMed Central

    Vasiljeviš, Nataڑa; Wu, Keqiang; Brentnall, Adam R.; Kim, Dae Cheol; Thorat, Mangesh A.; Kudahetti, Sakunthala C.; Mao, Xueying; Xue, Liyan; Yu, Yongwei; Shaw, Greg L.; Beltran, Luis; Lu, Yong-Jie; Berney, Daniel M.; Cuzick, Jack; Lorincz, Attila T.

    2011-01-01

    Aberrant DNA methylation plays a pivotal role in carcinogenesis and its mapping is likely to provide biomarkers for improved diagnostic and risk assessment in prostate cancer (PCa). We quantified and compared absolute methylation levels among 28 candidate genes in 48 PCa and 29 benign prostate hyperplasia (BPH) samples using the pyrosequencing (PSQ) method to identify genes with diagnostic and prognostic potential. RARB, HIN1, BCL2, GSTP1, CCND2, EGFR5, APC, RASSF1A, MDR1, NKX2-5, CDH13, DPYS, PTGS2, EDNRB, MAL, PDLIM4, HLAa, ESR1 and TIG1 were highly methylated in PCa compared to BPH (p < 0.001), while SERPINB5, CDH1, TWIST1, DAPK1, THRB, MCAM, SLIT2, CDKN2a and SFN were not. RARB methylation above 21% completely distinguished PCa from BPH. Separation based on methylation level of SFN, SLIT2 and SERPINB5 distinguished low and high Gleason score cancers, e.g. SFN and SERPINB5 together correctly classified 81% and 77% of high and low Gleason score cancers respectively. Several genes including CDH1 previously reported as methylation markers in PCa were not confirmed in our study. Increasing age was positively associated with gene methylation (p < 0.0001). Accurate quantitative measurement of gene methylation in PCa appears promising and further validation of genes like RARB, HIN1, BCL2, APC and GSTP1 is warranted for diagnostic potential and SFN, SLIT2 and SERPINB5 for prognostic potential. PMID:21694441

  19. Constricted double-heterojunction AlGaAs diode lasers - Structures and electrooptical characteristics

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1981-01-01

    Constricted double-heterojunction (CDH) diode lasers are presented as a class of nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various CDH structures are discussed while treating such topics as liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers with positive-index lateral mode confinement provides single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C, while exhibiting light-current characteristics with second-harmonic distortions as low as -57 dB below the fundamental level. Semileaky guide CDH lasers with an asymmetric leaky cavity provide single-mode operation to 15-20 mW/facet CW, and to 50 mW/facet at 50% duty cycle.

  20. Chronic daily headache: correlation between the 2004 and the 1988 International Headache Society diagnostic criteria.

    PubMed

    Bigal, Marcelo E; Tepper, Stewart J; Sheftell, Fred D; Rapoport, Alan M; Lipton, Richard B

    2004-01-01

    In a previous study, we compared the 1988 International Headache Society (IHS) criteria and the Silberstein-Lipton criteria (S-L) in a subspeciality clinic sample of 638 patients with chronic daily headache (CDH) assessed both clinically and with headache diaries. Both systems allowed for the classification of most patients with CDH. The 1988 IHS classification required multiple diagnoses and was more complex to apply. The aim of this study was to revisit the same database, now comparing the prior classification systems with the new 2004 IHS classification. In contrast with the 1st edition, the 2nd edition includes criteria for chronic migraine (CM), new daily persistent headache (NDPH), and hemicrania continua (HC). We reviewed the clinical records and the headache diaries of 638 patients seen between 1980 and 2001 at a headache center. All patients had primary CDH according to the S-L criteria. Using the S-L criteria as a reference, of the 158 patients with transformed migraine (TM) without medication overuse, just 9 (5.6%) met 2004 IHS criteria for CM. Most of the subjects were classified using combinations of migraine and CTTH diagnoses, much like the 1988 IHS classification. Similarly, using the new IHS system, just 41/399 (10.2%) subjects with TM with medication overuse were classified as probable CM with probable medication overuse. Most patients with NDPH without overuse were easily classified using the 2004 criteria (95.8%). Regarding NDPH with medication overuse, the diagnostic groups were much like results for the 1st edition. All patients with chronic tension-type headache (CTTH) and hemicrania continua (HC) according to the S-L system were easily classified using the 2004 IHS criteria. We conclude that the 2004 IHS criteria facilitate the classification of NDPH without medication overuse and HC. For subjects with TM according to the S-L system, the new IHS criteria are complex to use and require multiple diagnoses. Very few patients with TM in the S-L system could be classified with a single diagnosis in the 2004 IHS classification. In fact, CM was so rare that it would be virtually impossible to conduct clinical trials of this entity using the 2004 IHS criteria. Clinical trials of this entity should therefore be conducted using the S-L criteria. Finally, we propose that in the 3rd edition of the IHS classification, the diagnosis of NDPH be revised so as not to exclude migraine features.

  1. The AlGaAs single-mode stability

    NASA Technical Reports Server (NTRS)

    Botez, D.; Ladany, I.

    1983-01-01

    Single-mode spectral behavior with aging in constricted double heterojunction (CDH) lasers was studied. The CDH lasers demonstrated excellent reliability ( or = 1 million years extrapolated room-temperature MTTF) and single-mode operation after 10,000 hours of 70 C aging. The deleterious effects of laser-fiber coupling on the spectra of the diodes were eliminated through the use of wedge-shaped fibers. A novel high-power large optical cavity (LOC)-type laser was developed: the terraced-heterostructure (TH)-LOC laser, which provides the highest power into a single-mode (i.e., 50 mW CW) ever reported.

  2. Upregulation of S1P1 and Rac1 receptors in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Zimmer, Julia; Takahashi, Toshiaki; Duess, Johannes W; Hofmann, Alejandro D; Puri, Prem

    2016-02-01

    Sphingolipids play a crucial role in pulmonary development. The sphingosine kinase 1 (SphK1) modulates the synthesis of sphingolipid sphingosine-1-phosphate (S1P). S1P regulates cell proliferation and angiogenesis via different receptors, S1P1, S1P2 and S1P3, which all influence the expression of Ras-related C3 botulinum toxin substrate 1 (Rac1). We designed this study to test the hypothesis that the S1P/Rac1 pathway is altered in the nitrofen-induced CDH model. Pregnant rats received nitrofen or vehicle on D9. On D21, fetuses were killed and divided into nitrofen and control group (n = 12). QRT-PCR, western blotting and confocal-immunofluorescence microscopy were performed to reveal pulmonary gene and protein expression levels of SphK1, S1P1, S1P2, S1P3 and Rac1. Pulmonary gene expression of S1P1 and Rac1 was significantly increased in the CDH group compared to controls, whereas S1P2 and S1P3 expression was decreased. These results were confirmed by western blotting and confocal microscopy. SphK1 expression was not found to be altered. The increased expression of S1P1 and Rac1 in the pulmonary vasculature of nitrofen-induced CDH lungs suggests that S1P1 and Rac1 are important mediators of PH in this model.

  3. Upregulation of serotonin-receptor-2a and serotonin transporter expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Hofmann, Alejandro D; Friedmacher, Florian; Hunziker, Manuela; Takahashi, Hiromizu; Duess, Johannes W; Gosemann, Jan-Hendrik; Puri, Prem

    2014-06-01

    Congenital diaphragmatic hernia (CDH) is attributed to severe pulmonary hypoplasia and pulmonary hypertension (PH). PH is characterized by structural changes resulting in vascular remodeling. Serotonin, a potent vasoconstrictor, plays a central role in the development of PH. It exerts its constricting effects on the vessels via Serotonin receptor 2A (5-HT2A) and induces pulmonary smooth muscle cell proliferation via the serotonin transporter (5-HTT). This study was designed to investigate expressions of 5-HT2A and 5-HTT in the pulmonary vasculature of rats with nitrofen-induced CDH. Rats were exposed to nitrofen or vehicle on D9. Fetuses were sacrificed on D21 and divided into nitrofen and control group (n=32). Pulmonary RNA was extracted and mRNA level of 5HT2A was determined by qRT-PCR. Protein expression of 5HT2A and 5-HTT was investigated by western blotting. Confocal immunofluorescence double-staining for 5-HT2A, 5-HTT, and alpha smooth muscle actin were performed. Pulmonary 5-HT2A gene expression levels were significantly increased in nitrofen-induced CDH compared to controls. Western blotting and confocal microscopy confirmed increased pulmonary protein expression in CDH lungs compared to controls. Increased gene and protein expression of 5HT2A and 5-HTT in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that 5HT2A and 5-HTT are important mediators of PH in nitrofen-induced CDH. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Increased c-kit and stem cell factor expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-05-01

    Persistent pulmonary hypertension(PPH) in congenital diaphragmatic hernia (CDH) is caused by increased vascular cell proliferation and endothelial cell (EC) dysfunction, thus leading to obstructive changes in the pulmonary vasculature. C-Kit and its ligand, stem cell factor(SCF), are expressed by ECs in the developing lung mesenchyme, suggesting an important role during lung vascular formation. Conversely, absence of c-Kit expression has been demonstrated in ECs of dysplastic alveolar capillaries. We hypothesized that c-Kit and SCF expression is increased in the pulmonary vasculature of nitrofen-induced CDH. Timed-pregnant rats received nitrofen or vehicle on gestational day 9(D9). Fetuses were sacrificed on D15, D18, and D21, and divided into control and CDH group. Pulmonary gene expression levels of c-Kit and SCF were analyzed by qRT-PCR. Immunofluorescence double staining for c-Kit and SCF was combined with CD34 to evaluate protein expression in ECs of the pulmonary vasculature. Relative mRNA levels of c-Kit and SCF were significantly increased in lungs of CDH fetuses on D15, D18, and D21 compared to controls. Confocal laser scanning microscopy confirmed markedly increased vascular c-Kit and SCF expression in mesenchymal ECs of CDH lungs on D15, D18, and D21 compared to controls. Increased expression of c-Kit and SCF in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that increased c-Kit signaling during lung vascular formation may contribute to vascular remodeling and thus to PPH. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Defective parasympathetic innervation is associated with airway branching abnormalities in experimental CDH

    PubMed Central

    Rhodes, Julie; Saxena, Deeksha; Zhang, GuangFeng; Gittes, George K.

    2015-01-01

    Developmental mechanisms leading to lung hypoplasia in congenital diaphragmatic hernia (CDH) remain poorly defined. Pulmonary innervation is defective in the human disease and in the rodent models of CDH. We hypothesize that defective parasympathetic innervation may contribute to airway branching abnormalities and, therefore, lung hypoplasia, during lung development in CDH. The murine nitrofen model of CDH was utilized to study the effect of the cholinergic agonist carbachol on embryonic day 11.5 (E11.5) lung explant cultures. Airway branching and contractions were quantified. In a subset of experiments, verapamil was added to inhibit airway contractions. Sox9 immunostaining and 5-bromo-2-deoxyuridine incorporation were used to identify and quantify the number and proliferation of distal airway epithelial progenitor cells. Intra-amniotic injections were used to determine the in vivo effect of carbachol. Airway branching and airway contractions were significantly decreased in nitrofen-treated lungs compared with controls. Carbachol resulted in increased airway contractions and branching in nitrofen-treated lungs. Nitrofen-treated lungs exhibited an increased number of proliferating Sox9-positive distal epithelial progenitor cells, which were decreased and normalized by treatment with carbachol. Verapamil inhibited the carbachol-induced airway contractions in nitrofen-treated lungs but had no effect on the carbachol-induced increase in airway branching, suggesting a direct carbachol effect independent of airway contractions. In vivo treatment of nitrofen-treated embryos via amniotic injection of carbachol at E10.5 resulted in modest increases in lung size and branching at E17.5. These results suggest that defective parasympathetic innervation may contribute to airway branching abnormalities in CDH. PMID:25934671

  6. Management of Chronic Daily Headache and Psychiatric Co-Morbidities by Lifestyle Modification: Participatory Action Research Combining New Communication Media

    PubMed Central

    Faizi, Fakhrudin; Tavallaee, Abbas; Rahimi, Abolfazl; Saghafinia, Masoud

    2017-01-01

    Background Lifestyle modification has a significant role in chronic daily headache (CDH) management. Participatory action research (PAR) can play an important role in managing chronic medical conditions. However, it has been scarcely used in CDH management. Objectives This study aimed to empower patients with CDH to modify their lifestyle in order to reduce both their headache and related psychiatric co-morbidities in a multidisciplinary headache clinic at Baqiyatallah hospital, Tehran, IR Iran. Methods In the PAR plan, 37 patients (27 females) diagnosed with CDH were selected using purposeful sampling. Along with face-to-face group sessions, all available communication means such as phone calls, emails, short message system (SMS), and social media (Telegram) were used to facilitate the process. Questionnaires of health promotion lifestyle profile (HPLPІІ), visual analog scale (VAS), and depression-anxiety-stress scale (DASS21) were used to collect data. The data were analyzed using SPSS software. Results Mean age of the patients was 38.33 (± 9.7) years. Both “general pain” and “the worst imaginable pain” reduced (mean of reduction: 2.56 ± 2.7 and 2.3 ± 2.9, respectively, P < 0.001). > 50% of pain reduction occurred in “the worst imaginable pain" category (-1.45 ± 2.02, P < 0.001) and mean VAS score reduced to 5.20 (± 2.3) compared to the start of the study (7.50 ± 1.9, P < 0.001). Mean DASS-21 score also reduced significantly for depression (P < 0.016), anxiety (P < 0.026), and stress (P < 0.008). HPLPІІ score significantly improved (118.17 ± 14.8 vs. 160.83 ± 16.4, P < 0.001) and the highest increase was seen in the subscale of "stress management" (17.73 ± 2.8 vs. 25.53 ± 3.9, P < 0.001). Conclusions The empowering PAR plan combined with new communication tools helped the CDH patients better handle their lifestyle, reduce their headache, and lower their symptoms. Further studies with better use of currently available communication tools and social media are recommended for action research to be more applicable. PMID:28920050

  7. Management of Chronic Daily Headache and Psychiatric Co-Morbidities by Lifestyle Modification: Participatory Action Research Combining New Communication Media.

    PubMed

    Faizi, Fakhrudin; Tavallaee, Abbas; Rahimi, Abolfazl; Saghafinia, Masoud

    2017-04-01

    Lifestyle modification has a significant role in chronic daily headache (CDH) management. Participatory action research (PAR) can play an important role in managing chronic medical conditions. However, it has been scarcely used in CDH management. This study aimed to empower patients with CDH to modify their lifestyle in order to reduce both their headache and related psychiatric co-morbidities in a multidisciplinary headache clinic at Baqiyatallah hospital, Tehran, IR Iran. In the PAR plan, 37 patients (27 females) diagnosed with CDH were selected using purposeful sampling. Along with face-to-face group sessions, all available communication means such as phone calls, emails, short message system (SMS), and social media (Telegram) were used to facilitate the process. Questionnaires of health promotion lifestyle profile (HPLPІІ), visual analog scale (VAS), and depression-anxiety-stress scale (DASS21) were used to collect data. The data were analyzed using SPSS software. Mean age of the patients was 38.33 (± 9.7) years. Both "general pain" and "the worst imaginable pain" reduced (mean of reduction: 2.56 ± 2.7 and 2.3 ± 2.9, respectively, P < 0.001). > 50% of pain reduction occurred in "the worst imaginable pain" category (-1.45 ± 2.02, P < 0.001) and mean VAS score reduced to 5.20 (± 2.3) compared to the start of the study (7.50 ± 1.9, P < 0.001). Mean DASS-21 score also reduced significantly for depression (P < 0.016), anxiety (P < 0.026), and stress (P < 0.008). HPLPІІ score significantly improved (118.17 ± 14.8 vs. 160.83 ± 16.4, P < 0.001) and the highest increase was seen in the subscale of "stress management" (17.73 ± 2.8 vs. 25.53 ± 3.9, P < 0.001). The empowering PAR plan combined with new communication tools helped the CDH patients better handle their lifestyle, reduce their headache, and lower their symptoms. Further studies with better use of currently available communication tools and social media are recommended for action research to be more applicable.

  8. Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics.

    PubMed

    Pomo, Joseph M; Taylor, Robert M; Gullapalli, Rama R

    2016-01-01

    Spheroid based culture methods are gaining prominence to elucidate the role of the microenvironment in liver carcinogenesis. Additionally, the phenomenon of epithelial-mesenchymal transition also plays an important role in determining the metastatic potential of liver cancer. Tumor spheroids are thus important models to understand the basic biology of liver cancer. We cultured, characterized and examined the formation of compact 3-D micro-tumor spheroids in five hepatocellular carcinoma (HCC) cell lines, each with differing TP53 mutational status (wt vs mutant vs null). Spheroid viability and death was systematically measured over a course of a 10 day growth period using various assays. We also examined the TP53 and E-cadherin (CDH1) mRNA and protein expression status in each cell line of the 2-D and 3-D cell models. A novel finding of our study was the identification of variable 3-D spheroid morphology in individual cell lines, ranging from large and compact, to small and unstable spheroid morphologies. The observed morphological differences between the spheroids were robust and consistent over the duration of spheroid culture growth of 10 days in a repeatable manner. Highly variable CDH1 expression was identified depending on the TP53 mutational status of the individual HCC cell line, which may explain the variable spheroid morphology. We observed consistent patterns of TP53 and CDH1 expression in both 2-D and 3-D culture models. In conclusion, we show that 3-D spheroids are a useful model to determine the morphological growth characteristics of cell lines which are not immediately apparent in routine 2-D culture methods. 3-D culture methods may provide a better alternative to study the process of epithelial-mesenchymal transition (EMT) which is important in the process of liver cancer metastasis.

  9. Myogenin gene expression is not altered in the developing diaphragm of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Takahashi, Hiromizu; Hofmann, Alejandro Daniel; Puri, Prem

    2014-09-01

    Pleuroperitoneal folds (PPFs) represent the only source of muscle precursors cells (MPCs) in the primordial diaphragm. However, the exact pathogenesis of malformed PPFs and congenital diaphragmatic hernia (CDH) remains unclear. The muscle-specific transcription factor myogenin plays a key role during development and muscularization of the fetal diaphragm. Although myogenin knockout mice lack skeletal muscle fibers, the diaphragmatic musculature is intact without any defects. It has further been demonstrated that proliferation and differentiation of MPCs in PPFs and developing diaphragms are normal in rodent CDH models. We hypothesized that myogenin gene expression is not altered in malformed PPFs, developing diaphragms and diaphragmatic musculature in the nitrofen-induced CDH model. Pregnant rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Fetuses were harvested during PPF formation (D13), diaphragmatic development (D14-15) and muscularization (D18-21). Fetal PPFs, developing diaphragms and diaphragmatic musculature were dissected and divided into nitrofen and control groups. Myogenin mRNA levels were analyzed by quantitative real-time polymerase chain reaction, while immunohistochemistry was performed to investigate myogenin protein expression and distribution. Relative mRNA expression of myogenin was not significant different in PPFs (0.30 ± 0.09 vs. 0.48 ± 0.09; P = 0.37), developing diaphragms (1.25 ± 0.29 vs. 1.60 ± 0.32; P=0.53) and diaphragmatic musculature (1.08 ± 0.24 vs. 1.59 ± 0.20; P = 0.15) of nitrofen-exposed fetuses compared to controls. Myogenin immunoreactivity was not altered in the muscular components of malformed PPFs, developing diaphragms and diaphragmatic musculature of nitrofen-exposed fetuses compared to controls. Myogenin gene expression is not altered in PPFs, developing diaphragms and diaphragmatic musculature in the nitrofen-induced CDH model, thus suggesting that diaphragmatic defects in this model develop independent of myogenic processes.

  10. Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma

    PubMed Central

    Goeppert, Benjamin; Ernst, Christina; Baer, Constance; Roessler, Stephanie; Renner, Marcus; Mehrabi, Arianeb; Hafezi, Mohammadreza; Pathil, Anita; Warth, Arne; Stenzinger, Albrecht; Weichert, Wilko; Bähr, Marion; Will, Rainer; Schirmacher, Peter; Plass, Christoph; Weichenhan, Dieter

    2016-01-01

    ABSTRACT Cholangiocarcinoma (CC) is a rare malignancy of the extrahepatic or intrahepatic biliary tract with an outstanding poor prognosis. Non-surgical therapeutic regimens result in minimally improved survival of CC patients. Global genomic analyses identified a few recurrently mutated genes, some of them in genes involved in epigenetic patterning. In a previous study, we demonstrated global DNA methylation changes in CC, indicating major contribution of epigenetic alterations to cholangiocarcinogenesis. Here, we aimed at the identification and characterization of CC-related, differentially methylated regions (DMRs) in potential microRNA promoters and of genes targeted by identified microRNAs. Twenty-seven hypermethylated and 13 hypomethylated potential promoter regions of microRNAs, known to be associated with cancer-related pathways like Wnt, ErbB, and PI3K-Akt signaling, were identified. Selected DMRs were confirmed in 2 independent patient cohorts. Inverse correlation between promoter methylation and expression suggested miR-129-2 and members of the miR-200 family (miR-200a, miR-200b, and miR-429) as novel tumor suppressors and oncomiRs, respectively, in CC. Tumor suppressor genes deleted in liver cancer 1 (DLC1), F-box/WD-repeat-containing protein 7 (FBXW7), and cadherin-6 (CDH6) were identified as presumed targets in CC. Tissue microarrays of a representative and well-characterized cohort of biliary tract cancers (n=212) displayed stepwise downregulation of CDH6 and association with poor patient outcome. Ectopic expression of CDH6 on the other hand, delayed growth in the CC cell lines EGI-1 and TFK-1, together suggesting a tumor suppressive function of CDH6. Our work represents a valuable repository for the study of epigenetically altered miRNAs in cholangiocarcinogenesis and novel putative, CC-related tumor suppressive miRNAs and oncomiRs. PMID:27593557

  11. MMPI personality profiles in patients with primary chronic daily headache: a case-control study.

    PubMed

    Bigal, M E; Sheftell, F D; Rapoport, A M; Tepper, S J; Weeks, R; Baskin, S M

    2003-10-01

    We assessed the psychological profile of a large sample of patients with chronic daily headache (CDH) seen in tertiary care. We used a case-control design to study 791 patients who fell into the following categories: ARH group, chronic migraine with analgesic overuse (analgesic rebound headache, ARH), n=399; CM group, chronic migraine (CM) without analgesic overuse, n=158; and new daily persistent headache (NDPH) group, n=69. These groups were compared to two control groups: 1, migraine, n=100; 2, chronic posttraumatic headache (CPTH), n=65. We assessed personality and psychopathology with the Minnesota multiphasic personality inventory (MMPI)-2. The number of patients with Tscores > or =65 and < or =40 were analyzed by the two-sided Fischer's exact test. The ARH and CM groups had a higher number of subjects with T-scores > or =65, when compared to the migraine group, on the following scales: 1 (hypochondrias), 2 (depression), 8 (schizophrenia) and 0 (social introversion). No differences were observed between the NDPH and migraine groups. Considering CPTH as the control group, the pattern we found was quite the opposite of that described above: NDPH group presented a higher number of subjects with T-scores > or =65 on the following scales: 1, 2, 7 (psychasthenia) and 8. ARH and CM groups had significantly higher T-scores for scale 7 alone. NDPH showed T-scores < or =40 in scale 9 when compared to both control groups. We conclude that: (1) psychopathological factors are common in CDH patients, and appear to be a consequence of the chronification process; (2) low scores on scale 9 (hypomania) may relate to the development of NDPH; (3) psychopathological profiles differ among the subgroups of CDH and the MMPI-2 is reliable in identifying such patterns; and (4) psychological assessment is an essential step in the evaluation and treatment of patients with CDH.

  12. [Postnatal diagnosis of gastric volvulus revealing congenital diaphragmatic hernia].

    PubMed

    Aprahamian, A; Nouyrigat, V; Grévent, D; Hervieux, E; Chéron, G

    2017-05-01

    Postnatally diagnosed congenital diaphragmatic hernias (CDH) are rare and have a better prognosis than those diagnosed prenatally. Postnatal symptoms can be respiratory, digestive, or mixed. Gastric volvulus can reveal CDH. Symptoms are pain, abdominal distension, and/or vomiting. Upper gastrointestinal barium X-ray radiography provides the diagnosis. Prognosis is related to early surgical management in complicated forms with intestinal occlusion or sub-occlusion. We report on an infant who presented with vomiting, which revealed gastric volvulus associated with a CDH. Progression was favorable after surgical treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Early development of the primordial mammalian diaphragm and cellular mechanisms of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Clugston, Robin D; Zhang, Wei; Greer, John J

    2010-01-01

    Congenital diaphragmatic hernia (CDH) is a frequently occurring cause of neonatal respiratory distress and is associated with high mortality and long-term morbidity. Evidence from animal models suggests that CDH has its origins in the malformation of the pleuroperitoneal fold (PPF), a key structure in embryonic diaphragm formation. The aims of this study were to characterize the embryogenesis of the PPF in rats and humans, and to determine the potential mechanism that leads to abnormal PPF development in the nitrofen model of CDH. Analysis of rat embryos, and archived human embryo sections, allowed the timeframe of PPF formation to be determined for both species, thus delineating a critical period of diaphragm development in relation to CDH. Experiments on nitrofen-exposed NIH 3T3 cells in vitro led us to hypothesize that nitrofen might cause diaphragmatic hernia in vivo by two possible mechanisms: through decreased cell proliferation or by inducing apoptosis. Data from nitrofen-exposed rat embryos indicates that the primary mechanism of nitrofen teratogenesis in the PPF is through decreased cell proliferation. This study provides novel insight into the embryogenesis of the PPF in rats and humans, and it indicates that impaired cell proliferation might contribute to abnormal diaphragm development in the nitrofen model of CDH. Copyright 2009 Wiley-Liss, Inc.

  14. Applying Model-Based Reasoning to the FDIR of the Command and Data Handling Subsystem of the International Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Peter; Shirley, Mark; Fletcher, Daryl; Alena, Rick; Duncavage, Dan; Lee, Charles

    2003-01-01

    All of the International Space Station (ISS) systems which require computer control depend upon the hardware and software of the Command and Data Handling System (C&DH) system, currently a network of over 30 386-class computers called Multiplexor/Dimultiplexors (MDMs)[18]. The Caution and Warning System (C&W)[7], a set of software tasks that runs on the MDMs, is responsible for detecting, classifying, and reporting errors in all ISS subsystems including the C&DH. Fault Detection, Isolation and Recovery (FDIR) of these errors is typically handled with a combination of automatic and human effort. We are developing an Advanced Diagnostic System (ADS) to augment the C&W system with decision support tools to aid in root cause analysis as well as resolve differing human and machine C&DH state estimates. These tools which draw from sources in model-based reasoning[ 16,291, will improve the speed and accuracy of flight controllers by reducing the uncertainty in C&DH state estimation, allowing for a more complete assessment of risk. We have run tests with ISS telemetry and focus on those C&W events which relate to the C&DH system itself. This paper describes our initial results and subsequent plans.

  15. Outcome in fetuses with isolated congenital diaphragmatic hernia with increased nuchal translucency thickness in first trimester.

    PubMed

    Spaggiari, E; Stirnemann, J; Ville, Y

    2012-03-01

    To examine the possible association between increased nuchal translucency (NT) thickness in the first trimester and perinatal outcome in isolated congenital diaphragmatic hernia (CDH). We conducted a retrospective study between January 2004 and June 2010. The database was searched to identify all consecutive cases of CDH referred to the fetal medicine center of Necker Hospital in Paris. Enlarged NT was defined above the 95th centile. Only children born alive with an isolated CDH were selected for the analysis of prognostic factors. We also studied the correlation between NT thickness in the first trimester and lung-to-head ratio, observed to expected lung area-to-head ratio, lung volume estimated by magnetic resonance imaging, and other prenatal features of intrathoracic compression. Seventy-one cases of isolated CDH were available. The fetal NT was above the 95th centile in 9 of the 71 cases. Neonatal death occurred in 7/9 (78%) cases with enlarged NT, compared with 24/62 (38%) with normal NT (P = 0.035). Enlarged NT was significantly associated with prenatal features of intrathoracic compression. Enlarged NT thickness in CDH is associated with a poor outcome and is related to an early intrathoracic compression. © 2012 John Wiley & Sons, Ltd.

  16. Decreased Desmin expression in the developing diaphragm of the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-12-01

    Congenital diaphragmatic hernia (CDH) is presumed to originate from defects in the primordial diaphragmatic mesenchyme, mainly comprising of muscle connective tissue (MCT). Thus, normal diaphragmatic morphogenesis depends on the structural integrity of the underlying MCT. Developmental mutations that inhibit normal formation of diaphragmatic MCT have been shown to result in CDH. Desmin (DES) is a major filament protein in the MCT, which is essential for the tensile strength of the developing diaphragm muscle. DES -/- knockout mice exhibit significant reductions in stiffness and elasticity of the developing diaphragmatic muscle tissue. Furthermore, sequence changes in the DES gene have recently been identified in human cases of CDH, suggesting that alterations in DES expression may lead to diaphragmatic defects. This study was designed to investigate the hypothesis that diaphragmatic DES expression is decreased in fetal rats with nitrofen-induced CDH. Time-mated Sprague-Dawley rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetuses were harvested on selected time-points D13, D15 and D18, and dissected diaphragms (n = 72) were divided into control and nitrofen-exposed specimens (n = 12 per time-point and experimental group, respectively). Laser-capture microdissection was used to obtain diaphragmatic tissue elements. Diaphragmatic gene expression of DES was analyzed by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for DES was combined with the mesenchymal marker GATA4 to evaluate protein expression and localization in developing fetal diaphragms. Relative mRNA expression levels of DES were significantly decreased in pleuroperitoneal folds on D13 (1.49 ± 1.79 vs. 3.47 ± 2.32; p < 0.05), developing diaphragms on D15 (1.49 ± 1.41 vs. 3.94 ± 3.06; p < 0.05) and fully muscularized diaphragms on D18 (2.45 ± 1.47 vs. 5.12 ± 3.37; p < 0.05) of nitrofen-exposed fetuses compared to controls. Confocal laser scanning microscopy demonstrated markedly diminished immunofluorescence of DES mainly in diaphragmatic MCT, which was associated with a reduction of proliferating mesenchymal cells in nitrofen-exposed fetuses on D13, D15 and D18 compared to controls. Decreased expression of DES in the fetal diaphragm may disturb the basic integrity of myofibrils and the cytoskeletal network during myogenesis, causing malformed MCT and leading to diaphragmatic defects in the nitrofen-induced CDH model.

  17. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L.

    USDA-ARS?s Scientific Manuscript database

    Sequestration mechanisms that prevent high concentrations of free metal ions from persisting in metabolically active compartments of cells are thought to be central in tolerance of plants to high levels of divalent cation metals. Expression of "AtCAX2" or "AtCAX4", which encode divalent cation/proto...

  18. Congenital diaphragmatic hernia: antenatal prognostic factors. Does cardiac ventricular disproportion in utero predict outcome and pulmonary hypoplasia?

    PubMed

    Thébaud, B; Azancot, A; de Lagausie, P; Vuillard, E; Ferkadji, L; Benali, K; Beaufils, F

    1997-10-01

    Despite regular progress in neonatal intensive care, congenital diaphragmatic hernia (CDH) diagnosed antenatally is still associated with up to 80% mortality. It is impossible to predict which fetus with CDH will survive or not. To identify reliable antenatal predictors of outcome and of pulmonary hypoplasia (PH) in fetuses with CDH. Retrospective study. Paediatric intensive care unit of a university children's hospital. Antenatal parameters and presence of left ventricular hypoplasia in utero were compared retrospectively to outcome and to presence of PH in 32 consecutive newborn infants with antenatally diagnosed CDH. Antenatal parameters included: gestational age at diagnosis, herniated organs, associated malformations and presence of polyhydramnios. Size of the cardiac ventricles, the aorta (Ao) and the pulmonary artery (PA) were obtained by fetal echocardiography, from which we calculated a cardioventricular index (left ventricle/right ventricle, LV/RV) and a cardiovascular index (Ao/PA). Delivery was planned in order to provide ventilatory and hemodynamic management. In case of death, PH was assessed according to the following criteria: the lung weight/body weight index and the radial alveolar count. For statistical comparisons, patients were separated into two groups: the hypoplasia group (H) and the non-hypoplasia group (NH). Thirty-two pregnancies were delivered. Twenty-six newborns died (81%), 6 survived (19%). When comparing non-survivors to survivors, predictors of poor outcome were: mean gestational age at diagnosis (23 vs 28 weeks, p = 0.002), intrathoracic stomach (20 vs 1 s, p = 0.01) and associated malformations (6 vs 0). Cardiac ventricular disproportion, expressed by the LV/RV ratio, appeared to correlate well with a poor outcome (0.63 in non-survivors vs 0.93 in survivors, p = 0.03) and with PH (0.63 in the H group vs 0.95 in the NH group, p = 0.03). Our study confirmed the factors for a poor prognosis associated with CDH previously described in the literature, but none with a consistent demonstration of accuracy. LV hypoplasia may be a more accurate predictor of outcome and of PH but it has to be assessed by prospective studies with larger samples. Further basic science and Doppler-flow studies may be helpful to understand the natural history and pathophysiology of LV hypoplasia in CDH.

  19. Epidemiology of headache disorders in the Asia-pacific region.

    PubMed

    Peng, Kuan-Po; Wang, Shuu-Jiun

    2014-04-01

    Headache disorder is a major public health issue and is a great burden for the person, the health care system, and society. This article reviews epidemiological surveys of primary headache disorders including migraine and tension-type headache (TTH) among adults in the Asia-Pacific region using the International Classification of Headache Disorders (ICHD), first or second edition. Chronic daily headache (CDH), which is not an official diagnosis in the ICHD, was also reviewed. In the Asia-Pacific region, the median (range) 1-year prevalence of primary headache disorders was 9.1% (1.5-22.8%) for migraine, 16.2% (10.8-33.8%) for TTH, and 2.9% (1.0-3.9%) for CDH. The 1-year prevalence of migraine and TTH were rather consistent; however, the extremes in the 1-year prevalence of migraine in earlier studies from Hong Kong (1.5%) and South Korea (22.3%) were not repeated in later surveys (Hong Kong: 12.5%; South Korea: 6%). According to the United Nations, the estimated population of the Asia-Pacific region was 3.85 billion in 2010, equaling to headache suffers of 350 million patients with migraine, 624 million with TTH, and 112 million with CDH; many remain to be treated. The prevalence of headache disorders has remained stable over the last 2 decades in this region, where the diversity of geography, race, and development is wide. Thus, the pursuit of better headache care in this region might be our next challenge. © 2014 American Headache Society.

  20. Chronic daily headache in children and adolescents: a clinic based study from India.

    PubMed

    Chakravarty, A

    2005-10-01

    Chronic Daily Headache (CDH) is uncommon in Indian children compared to their adult counterpart. This is a retrospective study looking at the headache phenomenology of CDH in Indian children and adolescents. The validity of the case definitions of subtypes of chronic primary headaches mentioned in the IHS 2004 classification have been evaluated. 22 children (age range 8-15 years; M : F-16 : 6) diagnosed as having primary CDH using a modified definition seen between 2002 and 2003 have been studied. CDH has been defined as daily or near daily headaches > 15d/month for > 6 weeks. The rationale for this modified definition has been discussed. Majority of children (15/22) had a more or loss specified time of onset of regular headache spells resembling New Daily Persistent Headache (NDPH) but did not fulfil totally the diagnostic criteria of NDPH as laid down by IHS 2004. In all cases headache phenomenology included a significant vascular component. Headache phenomenology closely resembled Chronic Tension Type Headache (CTTH) in 4 patients and Chronic Migraine in 3 patients. However, in no patient in these groups, a history of evolution from the episodic forms of the diseases could be elicited. Heightened level of anxiety mostly related to academic stress and achievement was noted in the majority (19/22). Only a minority of patients (3/22) had anxiety and depression related to interpersonal relationships in the family. Medication overuse was not implicated in any patient. CDH in children in India is very much different from CDH in adults with the vast majority of patients exhibiting overlapping features of migraine and tension-type headache. There is need for a modified diagnostic criteria and terminology for chronic primary headaches in children.

  1. Xenogenous Collagen Matrix and/or Enamel Matrix Derivative for Treatment of Localized Gingival Recessions: A Randomized Clinical Trial. Part II: Patient-Reported Outcomes.

    PubMed

    Rocha Dos Santos, Manuela; Sangiorgio, João Paulo Menck; Neves, Felipe Lucas da Silva; França-Grohmann, Isabela Lima; Nociti, Francisco Humberto; Silverio Ruiz, Karina Gonzales; Santamaria, Mauro Pedrine; Sallum, Enilson Antonio

    2017-12-01

    Gingival recession (GR) might be associated with patient discomfort due to cervical dentin hypersensitivity (CDH) and esthetic dissatisfaction. The aim is to evaluate the effect of root coverage procedure with a xenogenous collagen matrix (CM) and/or enamel matrix derivative (EMD) in combination with a coronally advanced flap (CAF) on CDH, esthetics, and oral health-related quality of life (OHRQoL) of patients with GR. Sixty-eight participants with single Miller Class I/II GRs were treated with CAF (n = 17), CAF + CM (n = 17), CAF + EMD (n = 17), and CAF + CM + EMD (n = 17). CDH was assessed by evaporative stimuli using a visual analog scale (VAS) and a Schiff scale. Esthetics outcome was assessed with VAS and the Questionnaire of Oral Esthetic Satisfaction. Oral Health Impact Profile-14 (OHIP-14) questionnaire was used to assess OHRQoL. All parameters were evaluated at baseline and after 6 months. Intragroup analysis showed statistically significant reduction in CDH and esthetic dissatisfaction with no intergroup significant differences (P >0.05). The impact of oral health on QoL after 6 months was significant for CAF + CM, CAF + EMD, and CAF + CM + EMD (P <0.05). Total OHIP-14 score and psychologic discomfort, psychologic disability, social disability, and handicap dimensions showed negative correlation with esthetics. OHIP-14 physical pain dimension had positive correlation with CDH (P <0.05). OHIP-14 showed no correlation with percentage of root coverage, keratinized tissue width, or keratinized tissue thickness (P >0.05). Root coverage procedures improve patient OHRQoL by impacting on a wide range of dimensions, perceived after reduction of CDH and esthetic dissatisfaction of patients with GRs treated with CAF + CM, CAF + EMD, and CAF + CM + EMD.

  2. The Impact of CDH13 Polymorphism and Statin Administration on TG/HDL Ratio in Cardiovascular Patients

    PubMed Central

    Choi, Jung Ran; Kim Yoon, Sungjoo; Park, Jong Keun; Sorn, Sungbin Richard; Park, Mi-Young

    2015-01-01

    Purpose Adiponectin is expressed in adipose tissue, and is affected by smoking, obesity, and genetic factors, such as CDH13 polymorphism, contributing to the development of coronary vascular diseases (CVDs). Materials and Methods We investigated the effect of genetic variations of CDH13 (rs3865188) on blood chemistry and adiponectin levels in 345 CVD patients undergoing statin-free or statin treatment. Results Genetic variation in CDH13 was significantly correlated with several clinical factors, including adiponectin, diastolic blood pressure, triglyceride (TG), and insulin levels. Subjects with the T allele (mutant form) had significantly lower adiponectin levels than those with the A allele. Total cholesterol (TC), low-density lipoprotein cholesterol (LDLc), TG/high-density lipoprotein cholesterol (HDLc) ratio, and HDL3b subtype were markedly decreased in statin treated subjects regardless of having the A or T allele. TG and TG/HDL in the statin-free group with TT genotype of the rs3865188 was higher than in the others but they were not different in the statin-treated subjects. We observed a significant difference in adiponectin levels between patients with the A and T alleles in the statin-free group; meanwhile, no difference in adiponectin levels was noted in the statin group. Plasma levels of other cytokines, leptin, visfatin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), were not different among the CDH13 genotypes according to statin administration. Body mass index (BMI), TG, insulin, HDL3b, and TG/HDL ratio showed negative correlations with adiponectin levels. Conclusion Plasma adiponectin levels and TG/HDL ratio were significantly different according to variants of CDH13 and statin administration in Korean patients with CVD. PMID:26446643

  3. The Impact of CDH13 Polymorphism and Statin Administration on TG/HDL Ratio in Cardiovascular Patients.

    PubMed

    Choi, Jung Ran; Jang, Yangsoo; Kim Yoon, Sungjoo; Park, Jong Keun; Sorn, Sungbin Richard; Park, Mi-Young; Lee, Myoungsook

    2015-11-01

    Adiponectin is expressed in adipose tissue, and is affected by smoking, obesity, and genetic factors, such as CDH13 polymorphism, contributing to the development of coronary vascular diseases (CVDs). We investigated the effect of genetic variations of CDH13 (rs3865188) on blood chemistry and adiponectin levels in 345 CVD patients undergoing statin-free or statin treatment. Genetic variation in CDH13 was significantly correlated with several clinical factors, including adiponectin, diastolic blood pressure, triglyceride (TG), and insulin levels. Subjects with the T allele (mutant form) had significantly lower adiponectin levels than those with the A allele. Total cholesterol (TC), low-density lipoprotein cholesterol (LDLc), TG/high-density lipoprotein cholesterol (HDLc) ratio, and HDL3b subtype were markedly decreased in statin treated subjects regardless of having the A or T allele. TG and TG/HDL in the statin-free group with TT genotype of the rs3865188 was higher than in the others but they were not different in the statin-treated subjects. We observed a significant difference in adiponectin levels between patients with the A and T alleles in the statin-free group; meanwhile, no difference in adiponectin levels was noted in the statin group. Plasma levels of other cytokines, leptin, visfatin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), were not different among the CDH13 genotypes according to statin administration. Body mass index (BMI), TG, insulin, HDL3b, and TG/HDL ratio showed negative correlations with adiponectin levels. Plasma adiponectin levels and TG/HDL ratio were significantly different according to variants of CDH13 and statin administration in Korean patients with CVD.

  4. Association of psychiatric co-morbidity and efficacy of treatment in chronic daily headache in Indian population.

    PubMed

    Singh, Ajai Kumar; Shukla, Rakesh; Trivedi, Jitendra Kumar; Singh, Deepti

    2013-04-01

    To study the prevalence of psychiatric co-morbidity in patients of chronic daily headache (CDH) and compare the efficacy of treatment between various type of headache associated with psychiatric co-morbidity. Prospective case control cohort study, 92 consecutive patients of CDH meeting eligibility criteria. The diagnosis of various subtypes of CDH was made according to the IHS criteria. Age, sex, educational, marital and socioeconomic status, matched controls were also selected. Patients were evaluated with the Mini International Neuropsychiatric Interview (MINI) scale at the time of enrolment and at 3 months. CDH accounted for 28% of all headache patients. The mean age of presentation was 30.2 ± 10.3 years, male: Female ratio of 28:64 and mean duration of 4.56 ± 0.56 years. Chronic migraine (CM) accounted for 59 patients, chronic tension type headache (CTTH) 22 patients, new daily persistent headache (NDPH) 3 patients and miscellaneous 8 patients. Psychiatric co-morbidity was present in 53.3% patients with CDH, and was more common in CM (62.7%) as compared to CTTH (36.4%). Single psychiatric co-morbidity was seen in 26 patients, while 23 patients had multiple co-morbidity. Major depressive episode, anxiety disorder, agoraphobia and dysthymia were significant psychiatric co-morbidities. Patients with CM were treated with topiramate or divalproex sodium ER and CTTH were treated with amitriptyline. 55 patients came for follow up at 3 months, improvement in headache was seen in 29 patients. Psychiatric co-morbidity was present in more than 50% patients with CDH and its presence along with a duration of ≥2 years was associated with a poor response to treatment.

  5. Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects.

    PubMed

    Alvizi, Lucas; Ke, Xiayi; Brito, Luciano Abreu; Seselgyte, Rimante; Moore, Gudrun E; Stanier, Philip; Passos-Bueno, Maria Rita

    2017-05-26

    Non-syndromic cleft lip and/or palate (NSCLP) is a common congenital malformation with a multifactorial model of inheritance. Although several at-risk alleles have been identified, they do not completely explain the high heritability. We postulate that epigenetic factors as DNA methylation might contribute to this missing heritability. Using a Methylome-wide association study in a Brazilian cohort (67 NSCLP, 59 controls), we found 578 methylation variable positions (MVPs) that were significantly associated with NSCLP. MVPs were enriched in regulatory and active regions of the genome and in pathways already implicated in craniofacial development. In an independent UK cohort (171 NSCLP, 177 controls), we replicated 4 out of 11 tested MVPs. We demonstrated a significant positive correlation between blood and lip tissue DNA methylation, indicating blood as a suitable tissue for NSCLP methylation studies. Next, we quantified CDH1 promoter methylation levels in CDH1 mutation-positive families, including penetrants, non-penetrants or non-carriers for NSCLP. We found methylation levels to be significantly higher in the penetrant individuals. Taken together, our results demonstrated the association of methylation at specific genomic locations as contributing factors to both non-familial and familial NSCLP and altered DNA methylation may be a second hit contributing to penetrance.

  6. Molecular classification of spontaneous endometrial adenocarcinomas in BDII rats.

    PubMed

    Samuelson, Emma; Hedberg, Carola; Nilsson, Staffan; Behboudi, Afrouz

    2009-03-01

    Female rats of the BDII/Han inbred strain are prone to spontaneously develop endometrial carcinomas (EC) that in cell biology and pathogenesis are very similar to those of human. Human EC are classified into two major groups: Type I displays endometroid histology, is hormone-dependent, and characterized by frequent microsatellite instability and PTEN, K-RAS, and CTNNB1 (beta-Catenin) mutations; Type II shows non-endometrioid histology, is hormone-unrelated, displays recurrent TP53 mutation, CDKN2A (P16) inactivation, over-expression of ERBB2 (Her2/neu), and reduced CDH1 (Cadherin 1 or E-Cadherin) expression. However, many human EC have overlapping clinical, morphologic, immunohistochemical, and molecular features of types I and II. The EC developed in BDII rats can be related to type I tumors, since they are hormone-related and histologically from endometrioid type. Here, we combined gene sequencing (Pten, Ifr1, and Ctnnb1) and real-time gene expression analysis (Pten, Cdh1, P16, Erbb2, Ctnnb1, Tp53, and Irf1) to further characterize molecular alterations in this tumor model with respect to different subtypes of EC in humans. No mutation in Pten and Ctnnb1 was detected, whereas three tumors displayed sequence aberrations of the Irf1 gene. Significant down regulation of Pten, Cdh1, p16, Erbb2, and Ctnnb1 gene products was found in the tumors. In conclusion, our data suggest that molecular features of spontaneous EC in BDII rats can be related to higher-grade human type I tumors and thus, this model represents an excellent experimental tool for research on this malignancy in human.

  7. Prenatal diagnosis of Wolf-Hirschhorn syndrome (4p-) in association with congenital diaphragmatic hernia, cystic hygroma and IUGR.

    PubMed

    Basgul, A; Kavak, Z N; Akman, I; Basgul, A; Gokaslan, H; Elcioglu, N

    2006-01-01

    Wolf-Hirschhorn syndrome (WHS) is a rare distinct clinical entity caused by a deletion of the short arm of chromosome 4. We report a case in which intrauterine growth restriction (IUGR), severe oligohydramnios, left-sided congenital diaphragmtic hernia (CDH), and cystic hygroma were detected by prenatal ultrasound examination at 27 weeks of gestation. A 29-year-old gravida 3, para 2, woman was referred at 26 weeks' gestation with suspicion of IUGR and cystic hygroma. Sonographic examination revealed IUGR with severe oligohydramnios, increased nuchal fold with cystic hygroma (left-sided diaphragmatic defect of Bochdalek type), and congenital diaphragmatic hernia. Chromosome analysis revealed a 46, XX, del(4)(p15.2) karyotype. Autopsy confirmed the ultrasound findings. Congenital diaphragmatic hernia (CDH) has rarely been described to be associated with WHS. CDH and cystic hygroma can lead to a diagnosis of this syndrome very early in life. We recommend genetic evaluation of a fetus with cystic hygroma, IUGR and CDH taking into consideration 4p deletion syndrome.

  8. Impact of prenatal evaluation and protocol-based perinatal management on congenital diaphragmatic hernia outcomes.

    PubMed

    Lazar, David A; Cass, Darrell L; Rodriguez, Manuel A; Hassan, Saif F; Cassady, Christopher I; Johnson, Yvette R; Johnson, Karen E; Johnson, Anthony; Moise, Kenneth J; Belleza-Bascon, Bella; Olutoye, Oluyinka O

    2011-05-01

    Although intuitive, the benefit of prenatal evaluation and multidisciplinary perinatal management for fetuses with congenital diaphragmatic hernia (CDH) is unproven. We compared the outcome of prenatally diagnosed patients with CDH whose perinatal management was by a predefined protocol with those who were diagnosed postnatally and managed by the same team. We hypothesized that patients with CDH undergoing prenatal evaluation with perinatal planning would demonstrate improved outcome. Retrospective chart review of all patients with Bochdalek-type CDH at a single institution between 2004 and 2009 was performed. Patients were stratified by history of perinatal management, and data were analyzed by Fisher's Exact test and Student's t test. Of 116 patients, 71 fetuses presented in the prenatal period and delivered at our facility (PRE), whereas 45 infants were either outborn or postnatally diagnosed (POST). There were more high-risk patients in the PRE group compared with the POST group as indicated by higher rates of liver herniation (63% vs 36%, P = .03), need for patch repair (57% vs 27%, P = .004), and extracorporeal membrane oxygenation use (35% vs 18%, P = .05). Despite differences in risk, there was no difference in 6-month survival between groups (73% vs 73%). Patients with CDH diagnosed prenatally are a higher risk group. Prenatal evaluation and multidisciplinary perinatal management allows for improved outcome in these patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Infection after anterior spinal fusion for idiopathic scoliosis using the Cotrel-Dubousset-Hopf system: A clinical case series of three patients.

    PubMed

    Tolk, Jaap J; Willems, Paul C; Punt, Ilona M; van Rhijn, Lodewijk W; van Ooij, André

    2016-01-01

    Three patients with late-onset infection after multilevel instrumented anterior spinal fusion for idiopathic scoliosis, using the Cotrel-Dubousset-Hopf (CDH) system, are presented. The CDH-system is an anterior instrumentation with high biomechanical stability and rigidity, ensuring a stable primary fixation. Unlike after posterior spinal fusion, infection after anterior spinal fusion (ASF) for idiopathic scoliosis has rarely been reported. The files of three patients who developed an infection after ASF for scoliosis using the CDH-system, were reviewed. The clinical presentation and diagnostic and therapeutic options are discussed. All three patients had a late-onset infection of the CDH-system, which was difficult to diagnose because of nonspecific symptoms. Radiographs and technetium bone scan appeared to be of low value. When an abscess was present, this could accurately be diagnosed with MRI or CT imaging. Operative treatment with implant removal and antibiotic therapy was successful in all cases. Late onset infections after ASF using the CDH-system presented with few and nonspecific symptoms. The clinical presentation was mainly characterized by vague abdominal- or back-pain after an interval of normal postoperative recovery, moderately raised infection parameters and inconclusive findings with imaging modalities. As treatment, implant removal, debridement and parenteral antibiotics are recommended. It should be noted though that implant removal poses serious risks for vascular and visceral structures.

  10. Prevalence and burden of chronic migraine in adolescents: results of the chronic daily headache in adolescents study (C-dAS).

    PubMed

    Lipton, Richard B; Manack, Aubrey; Ricci, Judith A; Chee, Elsbeth; Turkel, Catherine C; Winner, Paul

    2011-05-01

    To estimate the prevalence of chronic migraine (CM) among adolescents and to describe the epidemiologic profile, headache characteristics, disability, and healthcare utilization of adolescents with CM in the USA. Chronic daily headache (CDH) and CM occur in children and adolescents, but are poorly understood in these populations because their presentation is different from that in adults. It may be difficult to assign a definitive diagnosis to young people suffering from CDH because symptoms may fail to meet the criteria for one of the CDH subtypes. A large sample of households with at least one resident aged 12 to 19 years was selected in balance with the US Census. Data were collected in 3 phases: (1) mailed questionnaire; (2) telephone interview; and (3) 30-day interactive voice response system diary. CM prevalence was estimated by adapting the second edition of the International Classification of Headache Disorders criteria for CM to include pediatric migraine diagnostic criteria. The population was stratified for medication overuse. Medication overuse was defined as 15 or more days per month of acute medication use. Included in the study were measures of headache characteristics, headache impact (Headache Impact Test), disability (Pediatric Migraine Disability Assessment), and healthcare and medication use. Data are reported on subjects 12 to 17 years of age only. The US adolescent (12-17 years) prevalence rate for CM was 0.79% (0.00-1.70) excluding those with medication overuse and 1.75% (0.62-2.89) when adolescents with medication overuse were included. The majority of adolescents with CM had Headache Impact Test scores greater than or equal to 60, indicating severe headache impact, and mean Pediatric Migraine Disability Assessment scores greater than 17, indicating severe headache and disability. The majority of adolescents with CM (approximately 60%) had not visited a healthcare provider in the previous year and less than one in 5 reported taking medications to prevent headaches during the last month. Results suggest that CM occurs less frequently in adolescents than adults, but like adults, adolescents are severely burdened by the disorder. Data support an unmet medical need; however, the development of optimal criteria for diagnosing adolescents with CM is critical to fully understanding how medical needs can be met within this complex population. © 2011 American Headache Society.

  11. G1/S phase progression is regulated by PLK1 degradation through the CDK1/βTrCP axis.

    PubMed

    Giráldez, Servando; Galindo-Moreno, María; Limón-Mortés, M Cristina; Rivas, A Cristina; Herrero-Ruiz, Joaquín; Mora-Santos, Mar; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2017-07-01

    Polo-like kinase 1 (PLK1) is a serine/threonine kinase involved in several stages of the cell cycle, including the entry and exit from mitosis, and cytokinesis. Furthermore, it has an essential role in the regulation of DNA replication. Together with cyclin A, PLK1 also promotes CDH1 phosphorylation to trigger its ubiquitination and degradation, allowing cell cycle progression. The PLK1 levels in different type of tumors are very high compared to normal tissues, which is consistent with its role in promoting proliferation. Therefore, several PLK1 inhibitors have been developed and tested for the treatment of cancer. Here, we further analyzed PLK1 degradation and found that cytoplasmic PLK1 is ubiquitinated and subsequently degraded by the SCF βTrCP /proteasome. This procedure is triggered when heat shock protein (HSP) 90 is inhibited with geldanamycin, which results in misfolding of PLK1. We also identified CDK1 as the major kinase involved in this degradation. Our work shows for the first time that HSP90 inhibition arrests cell cycle progression at the G 1 /S transition. This novel mechanism inhibits CDH1 degradation through CDK1-dependent PLK1 destruction by the SCF βTrCP /proteasome. In these conditions, CDH1 substrates do not accumulate and cell cycle arrests, providing a novel pathway for regulation of the cell cycle at the G 1 -to-S boundary.-Giráldez, S., Galindo-Moreno, M., Limón-Mortés, M. C., Rivas, A. C., Herrero-Ruiz, J., Mora-Santos, M., Sáez, C., Japón, M. Á., Tortolero, M., Romero, F. G 1 /S phase progression is regulated by PLK1 degradation through the CDK1/βTrCP axis. © FASEB.

  12. Expression of Prx1 and Tcf4 is decreased in the diaphragmatic muscle connective tissue of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Zimmer, Julia; Friedmacher, Florian; Puri, Prem

    2016-12-01

    Pleuroperitoneal folds (PPFs) are the source of the primordial diaphragm's muscle connective tissue (MCT), and developmental mutations have been shown to result in congenital diaphragmatic hernia (CDH). The protein paired-related homeobox 1 (Prx1) labels migrating PPF cells and stimulates expression of transcription factor 4 (Tcf4), a novel MCT marker that controls morphogenesis of the fetal diaphragm. We hypothesized that diaphragmatic Prx1 and Tcf4 expression is decreased in the nitrofen-induced CDH model. Time-mated rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms were microdissected on D13, D15, and D18, and divided into control and nitrofen-exposed specimens. Gene expression levels of Prx1 and Tcf4 were analyzed by qRT-PCR. Immunofluorescence double staining for Prx1 and Tcf4 was performed to evaluate protein expression and localization. Relative mRNA expression of Prx1 and Tcf4 was significantly downregulated in PPFs (D13), developing diaphragms (D15) and fully muscularized diaphragms (D18) of nitrofen-exposed fetuses compared to controls. Confocal laser scanning microscopy revealed markedly diminished Prx1 and Tcf4 expression in diaphragmatic MCT of nitrofen-exposed fetuses on D13, D15, and D18 compared to controls. Decreased expression of Prx1 and Tcf4 in the fetal diaphragm may cause defects in the PPF-derived MCT, leading to development of CDH in the nitrofen model. Level 2c (Centre for Evidence-Based Medicine, Oxford). Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Decreased expression of monocarboxylate transporter 1 and 4 in the branching airway epithelium of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-06-01

    Monocarboxylate transporters (MCTs) are crucial for the maintenance of intracellular pH homeostasis in developing fetal lungs. MCT1/4 is strongly expressed by epithelial airway cells throughout lung branching morphogenesis. Functional inhibition of MCT1/4 in fetal rat lung explants has been shown to result in airway defects similar to pulmonary hypoplasia (PH) in congenital diaphragmatic hernia (CDH). We hypothesized that pulmonary expression of MCT1/4 is decreased during lung branching morphogenesis in the nitrofen model of CDH-associated PH. Timed-pregnant rats received nitrofen or vehicle on gestational day 9 (D9). Fetuses were harvested on D15, D18, and D21, and divided into control and nitrofen-exposed group. Pulmonary gene expression levels of MCT1/4 were analyzed by qRT-PCR. Immunofluorescence staining for MCT1/4 was combined with E-cadherin in order to evaluate protein expression in branching airway tissue. Relative mRNA levels of MCT1/4 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18, and D21 compared to controls. Confocal laser scanning microscopy confirmed markedly decreased immunofluorescence of MCT1/4 in distal bronchial and primitive alveolar epithelium of nitrofen-exposed fetuses on D15, D18, and D21 compared to controls. Decreased expression of MCT1/4 in distal airway epithelium may disrupt lung branching morphogenesis and thus contribute to the development of PH in the nitrofen-induced CDH model. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation?

    PubMed

    Thompson, Sophie M; Connell, Marilyn G; van Kuppevelt, Toin H; Xu, Ruoyan; Turnbull, Jeremy E; Losty, Paul D; Fernig, David G; Jesudason, Edwin C

    2011-06-14

    Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme.We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.

  15. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation?

    PubMed Central

    2011-01-01

    Background Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. Results The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme. We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. Conclusions The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality. PMID:21672206

  16. Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts.

    PubMed

    Syed, Khaja Mohieddin; Joseph, Sunu; Mukherjee, Ananda; Majumder, Aditi; Teixeira, Jose M; Dutta, Debasree; Pillai, Madhavan Radhakrishna

    2016-12-15

    Induction of pluripotency in differentiated cells through the exogenous expression of the transcription factors Oct4, Sox2, Klf4 and cellular Myc involves reprogramming at the epigenetic level. Histones and their metabolism governed by histone chaperones constitute an important regulator of epigenetic control. We hypothesized that histone chaperones facilitate or inhibit the course of reprogramming. For the first time, we report here that the downregulation of histone chaperone Aprataxin PNK-like factor (APLF) promotes reprogramming by augmenting the expression of E-cadherin (Cdh1), which is implicated in the mesenchymal-to-epithelial transition (MET) involved in the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Downregulation of APLF in MEFs expedites the loss of the repressive MacroH2A.1 (encoded by H2afy) histone variant from the Cdh1 promoter and enhances the incorporation of active histone H3me2K4 marks at the promoters of the pluripotency genes Nanog and Klf4, thereby accelerating the process of cellular reprogramming and increasing the efficiency of iPSC generation. We demonstrate a new histone chaperone (APLF)-MET-histone modification cohort that functions in the induction of pluripotency in fibroblasts. This regulatory axis might provide new mechanistic insights into perspectives of epigenetic regulation involved in cancer metastasis. © 2016. Published by The Company of Biologists Ltd.

  17. ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis.

    PubMed

    Chong, Yuk Kien; Sandanaraj, Edwin; Koh, Lynnette W H; Thangaveloo, Moogaambikai; Tan, Melanie S Y; Koh, Geraldene R H; Toh, Tan Boon; Lim, Grace G Y; Holbrook, Joanna D; Kon, Oi Lian; Nadarajah, Mahendran; Ng, Ivan; Ng, Wai Hoe; Tan, Nguan Soon; Lim, Kah Leong; Tang, Carol; Ang, Beng Ti

    2016-02-01

    Cell surface sialylation is associated with tumor cell invasiveness in many cancers. Glioblastoma is the most malignant primary brain tumor and is highly infiltrative. ST3GAL1 sialyltransferase gene is amplified in a subclass of glioblastomas, and its role in tumor cell self-renewal remains unexplored. Self-renewal of patient glioma cells was evaluated using clonogenic, viability, and invasiveness assays. ST3GAL1 was identified from differentially expressed genes in Peanut Agglutinin-stained cells and validated in REMBRANDT (n = 390) and Gravendeel (n = 276) clinical databases. Gene set enrichment analysis revealed upstream processes. TGFβ signaling on ST3GAL1 transcription was assessed using chromatin immunoprecipitation. Transcriptome analysis of ST3GAL1 knockdown cells was done to identify downstream pathways. A constitutively active FoxM1 mutant lacking critical anaphase-promoting complex/cyclosome ([APC/C]-Cdh1) binding sites was used to evaluate ST3Gal1-mediated regulation of FoxM1 protein. Finally, the prognostic role of ST3Gal1 was determined using an orthotopic xenograft model (3 mice groups comprising nontargeting and 2 clones of ST3GAL1 knockdown in NNI-11 [8 per group] and NNI-21 [6 per group]), and the correlation with patient clinical information. All statistical tests on patients' data were two-sided; other P values below are one-sided. High ST3GAL1 expression defines an invasive subfraction with self-renewal capacity; its loss of function prolongs survival in a mouse model established from mesenchymal NNI-11 (P < .001; groups of 8 in 3 arms: nontargeting, C1, and C2 clones of ST3GAL1 knockdown). ST3GAL1 transcriptomic program stratifies patient survival (hazard ratio [HR] = 2.47, 95% confidence interval [CI] = 1.72 to 3.55, REMBRANDT P = 1.92 x 10⁻⁸; HR = 2.89, 95% CI = 1.94 to 4.30, Gravendeel P = 1.05 x 10⁻¹¹), independent of age and histology, and associates with higher tumor grade and T2 volume (P = 1.46 x 10⁻⁴). TGFβ signaling, elevated in mesenchymal patients, correlates with high ST3GAL1 (REMBRANDT gliomacor = 0.31, P = 2.29 x 10⁻¹⁰; Gravendeel gliomacor = 0.50, P = 3.63 x 10⁻²⁰). The transcriptomic program upon ST3GAL1 knockdown enriches for mitotic cell cycle processes. FoxM1 was identified as a statistically significantly modulated gene (P = 2.25 x 10⁻⁵) and mediates ST3Gal1 signaling via the (APC/C)-Cdh1 complex. The ST3GAL1-associated transcriptomic program portends poor prognosis in glioma patients and enriches for higher tumor grades of the mesenchymal molecular classification. We show that ST3Gal1-regulated self-renewal traits are crucial to the sustenance of glioblastoma multiforme growth. © The Author 2015. Published by Oxford University Press.

  18. ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis

    PubMed Central

    Chong, Yuk Kien; Sandanaraj, Edwin; Koh, Lynnette W. H.; Thangaveloo, Moogaambikai; Tan, Melanie S. Y.; Koh, Geraldene R. H.; Toh, Tan Boon; Lim, Grace G. Y.; Holbrook, Joanna D.; Kon, Oi Lian; Nadarajah, Mahendran; Ng, Ivan; Ng, Wai Hoe; Tan, Nguan Soon; Lim, Kah Leong

    2016-01-01

    Background: Cell surface sialylation is associated with tumor cell invasiveness in many cancers. Glioblastoma is the most malignant primary brain tumor and is highly infiltrative. ST3GAL1 sialyltransferase gene is amplified in a subclass of glioblastomas, and its role in tumor cell self-renewal remains unexplored. Methods: Self-renewal of patient glioma cells was evaluated using clonogenic, viability, and invasiveness assays. ST3GAL1 was identified from differentially expressed genes in Peanut Agglutinin–stained cells and validated in REMBRANDT (n = 390) and Gravendeel (n = 276) clinical databases. Gene set enrichment analysis revealed upstream processes. TGFβ signaling on ST3GAL1 transcription was assessed using chromatin immunoprecipitation. Transcriptome analysis of ST3GAL1 knockdown cells was done to identify downstream pathways. A constitutively active FoxM1 mutant lacking critical anaphase-promoting complex/cyclosome ([APC/C]-Cdh1) binding sites was used to evaluate ST3Gal1-mediated regulation of FoxM1 protein. Finally, the prognostic role of ST3Gal1 was determined using an orthotopic xenograft model (3 mice groups comprising nontargeting and 2 clones of ST3GAL1 knockdown in NNI-11 [8 per group] and NNI-21 [6 per group]), and the correlation with patient clinical information. All statistical tests on patients’ data were two-sided; other P values below are one-sided. Results: High ST3GAL1 expression defines an invasive subfraction with self-renewal capacity; its loss of function prolongs survival in a mouse model established from mesenchymal NNI-11 (P < .001; groups of 8 in 3 arms: nontargeting, C1, and C2 clones of ST3GAL1 knockdown). ST3GAL1 transcriptomic program stratifies patient survival (hazard ratio [HR] = 2.47, 95% confidence interval [CI] = 1.72 to 3.55, REMBRANDT P = 1.92x10-8; HR = 2.89, 95% CI = 1.94 to 4.30, Gravendeel P = 1.05x10-11), independent of age and histology, and associates with higher tumor grade and T2 volume (P = 1.46x10-4). TGFβ signaling, elevated in mesenchymal patients, correlates with high ST3GAL1 (REMBRANDT gliomacor = 0.31, P = 2.29x10-10; Gravendeel gliomacor = 0.50, P = 3.63x10-20). The transcriptomic program upon ST3GAL1 knockdown enriches for mitotic cell cycle processes. FoxM1 was identified as a statistically significantly modulated gene (P = 2.25x10-5) and mediates ST3Gal1 signaling via the (APC/C)-Cdh1 complex. Conclusions: The ST3GAL1-associated transcriptomic program portends poor prognosis in glioma patients and enriches for higher tumor grades of the mesenchymal molecular classification. We show that ST3Gal1-regulated self-renewal traits are crucial to the sustenance of glioblastoma multiforme growth. PMID:26547933

  19. Assembly and property research on seven 0D-3D complexes derived from imidazole dicarboxylate and 1,2-bi(pyridin-4-yl)ethene

    NASA Astrophysics Data System (ADS)

    Mu, Bao; Li, Qian; Lv, Lei; Yang, Dan-Dan; Wang, Qing; Huang, Ru-Dan

    2015-03-01

    The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H3ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H2O)] (1), [M(H2ImDC)2(H2O)2]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn3(ImDC)2(bpe)(H2O)]·3H2O (5) and [Cd(H2ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O-H•••O and O-H•••N). Complexes 2-4 and 6 are isomorphous, and they display the mononuclear structures. In these complexes, the O-H•••O and O-H•••N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (103) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1-7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K.

  20. Telomere length in non-neoplastic gastric mucosa and its relationship to H. pylori infection, degree of gastritis, and NSAID use.

    PubMed

    Tahara, Tomomitsu; Shibata, Tomoyuki; Kawamura, Tomohiko; Ishizuka, Takamitsu; Okubo, Masaaki; Nagasaka, Mitsuo; Nakagawa, Yoshihito; Arisawa, Tomiyasu; Ohmiya, Naoki; Hirata, Ichiro

    2016-02-01

    Telomere shortening occurs with human aging in many organs and tissues and is accelerated by rapid cell turnover and oxidative injury. We measured average telomere length using quantitative real-time PCR in non-neoplastic gastric mucosa and assessed its relationship to H. pylori-related gastritis, DNA methylation, ulcer disease, and nonsteroidal anti-inflammatory drug (NSAID) usage. Gastric biopsies were obtained from 151 cancer-free subjects including 49 chronic NSAID users and 102 nonusers. Relative telomere length in genomic DNA was measured by real-time PCR. H. pylori infection status, histological severity of gastritis, and serum pepsinogens (PGs) were also investigated. E-cadherin (CDH1) methylation status was determined by methylation-specific PCR (MSP). Average relative telomere length of H. pylori-infected subjects was significantly shortened when compared to H. pylori-negative subjects (p = 0.002) and was closely associated with all histological parameter of gastritis (all p values <0.01) and CDH1 methylation (p = 0.0002). In H. pylori-negative subjects, NSAID users presented significantly shorter telomere length than nonusers (p = 0.028). Shorter telomere length was observed in duodenal and gastric ulcer patients compared with non-ulcer subjects among NSAID users. Telomere shortening is closely associated with severity of H. pylori-induced gastritis and CDH1 methylation status. Also, telomere shortening is accelerated by NSAID usage especially in H. pylori-negative subjects.

  1. Mortality following congenital diaphragmatic hernia repair: the role of anesthesia.

    PubMed

    Goonasekera, Chulananda; Ali, Kamal; Hickey, Ann; Sasidharan, Lekshmi; Mathew, Malcolm; Davenport, Mark; Greenough, Anne

    2016-12-01

    Mortality following surgical repair of congenital diaphragmatic hernia (CDH) remains high. The volume and type of perioperative intravenous fluid administered, baro-trauma, oxygen toxicity, and the duration of anesthesia are thought to affect outcome in surgical populations. The aim of this retrospective observational study was to determine whether the perioperative volume or type of fluids and/or the duration of anesthesia were associated with postoperative mortality and if mortality was predicted by the oxygenation index (OI) prior to or following CDH surgical repair. The records of infants with a left-sided CDH and without other congenital anomalies, who underwent surgical repair between April 2009 and March 2015, were examined. The oxygenation index was used to "quantify" the severity of lung function abnormality and reported as the best OI on day 1 after birth (OI BEST ), the OI immediately prior to surgery (OI PRE ) and at 1, 6, 12, and 24 h postsurgery (OI 1h , OI 6h , OI 12h , OI 24h ), respectively. The change in the OI index (delta OI) was calculated by subtracting OI PRE from postoperative OIs. The records of 37 CDH infants (median gestational age 35.8, range 31.5-41.4 weeks) were assessed; six died postoperatively. Neither the duration of anesthesia, the volume of crystalloids or colloids administered, nor the peak inflation pressures used during surgical repair were significantly correlated with postoperative mortality. Neither fetal tracheal occlusion nor use of a parietal patch significantly influenced mortality. The postoperative OI 1 h , OI 6h , OI 12h showed weak evidence for a difference between survivors and nonsurvivors. An OI 24h of ≥5.5 predicted mortality with 100% sensitivity (95% CI, confidence intervals (CI) 40-100) and 93.1% specificity (95% CI, 77-99). Neither the volume of intraoperative fluids administered nor the duration of anesthesia was associated with postoperative death. The OI 24 h postsurgery was the best predictor of an increased risk of mortality. © 2016 John Wiley & Sons Ltd.

  2. Sepsis risk factors in infants with congenital diaphragmatic hernia.

    PubMed

    Levy, Michaël; Le Sache, Nolwenn; Mokhtari, Mostafa; Fagherazzi, Guy; Cuzon, Gaelle; Bueno, Benjamin; Fouquet, Virginie; Benachi, Alexandra; Eleni Dit Trolli, Sergio; Tissieres, Pierre

    2017-12-01

    Congenital diaphragmatic hernia (CDH) is a rare congenital anomaly and remains among the most challenging ICU-managed disease. Beside severe pulmonary hypertension, lung hypoplasia and major abdominal surgery, infective complications remain major determinants of outcome. However, the specific incidence of sepsis as well as associated risk factors is unknown. This prospective, 4-year observational study took place in the pediatric intensive care and neonatal medicine department of the Paris South University Hospitals (Le Kremlin-Bicêtre, France), CDH national referral center and involved 62 neonates with CDH. During their ICU stay, 28 patients (45%) developed 38 sepsis episodes. Ventilator-associated pneumonia (VAP: 23/38; 31.9 VAP per 1000 days of mechanical ventilation) and central line-associated blood stream infections (CLABSI: 5/38; 5.5 per 1000 line days) were the most frequently encountered infections. Multivariate analysis showed that gestational age at birth and intra-thoracic position of liver were significantly associated with the occurrence of sepsis. Infected patients had longer duration of mechanical and noninvasive ventilation (16.2 and 5.8 days, respectively), longer delay to first feeding (1.2 days) and a longer length of stay in ICU (23 days), but there was no difference in mortality. Healthcare-associated infections, and more specifically VAP, are the main infective threat in children with CDH. Sepsis has a significant impact on the duration of ventilator support and ICU length of stay but does not impact mortality. Low gestational age and intra-thoracic localization of the liver are two independent risk factors associated with sepsis.

  3. A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels

    PubMed Central

    Martínez-Martínez, Maria Ángeles; De Juan Romero, Camino; Fernández, Virginia; Cárdenas, Adrián; Götz, Magdalena; Borrell, Víctor

    2016-01-01

    The outer subventricular zone (OSVZ) is a germinal layer playing key roles in the development of the neocortex, with particular relevance in gyrencephalic species such as human and ferret, where it contains abundant basal radial glia cells (bRGCs) that promote cortical expansion. Here we identify a brief period in ferret embryonic development when apical RGCs generate a burst of bRGCs that become founders of the OSVZ. After this period, bRGCs in the OSVZ proliferate and self-renew exclusively locally, thereby forming a self-sustained lineage independent from the other germinal layers. The time window for the brief period of OSVZ bRGC production is delineated by the coincident downregulation of Cdh1 and Trnp1, and their upregulation reduces bRGC production and prevents OSVZ seeding. This mechanism in cortical development may have key relevance in brain evolution and disease. PMID:27264089

  4. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex

    PubMed Central

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J.; Espinosa, Ana; Molnár, Zoltán

    2016-01-01

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. PMID:27151949

  5. Fetal stomach position predicts neonatal outcomes in isolated left-sided congenital diaphragmatic hernia

    PubMed Central

    Basta, Amaya M; Lusk, Leslie A; Keller, Roberta L; Filly, Roy A

    2015-01-01

    Introduction We sought to determine the relationship between degree of stomach herniation by antenatal sonography and neonatal outcomes in fetuses with isolated left-sided congenital diaphragmatic hernia (CDH). Materials and Methods We retrospectively reviewed neonatal medical records and antenatal sonography of fetuses with isolated left CDH cared for at a single institution (2000–2012). Fetal stomach position was classified on sonography as follows: intra-abdominal, anterior left chest, mid-to-posterior left chest, or retrocardiac (right chest). Results Ninety fetuses were included with 70% surviving to neonatal discharge. Stomach position was intra-abdominal in 14% (n=13), anterior left chest in 19% (n=17), mid-to-posterior left chest in 41% (n=37), and retrocardiac in 26% (n=23). Increasingly abnormal stomach position was linearly associated with an increased odds of death (OR 4.8, 95%CI 2.1–10.9), extracorporeal membrane oxygenation (ECMO) (OR 5.6, 95%CI 1.9–16.7), nonprimary diaphragmatic repair (OR 2.7, 95%CI 1.4–5.5), prolonged mechanical ventilation (OR 5.9, 95%CI 2.3–15.6), and prolonged respiratory support (OR 4.0, 95%CI 1.6–9.9). All fetuses with intra-abdominal stomach position survived without substantial respiratory morbidity or need for ECMO. Discussion Fetal stomach position is strongly associated with neonatal outcomes in isolated left CDH. This objective tool may allow for accurate prognostication in a variety of clinical settings. PMID:26562540

  6. Fetal Stomach Position Predicts Neonatal Outcomes in Isolated Left-Sided Congenital Diaphragmatic Hernia.

    PubMed

    Basta, Amaya M; Lusk, Leslie A; Keller, Roberta L; Filly, Roy A

    2016-01-01

    We sought to determine the relationship between the degree of stomach herniation by antenatal sonography and neonatal outcomes in fetuses with isolated left-sided congenital diaphragmatic hernia (CDH). We retrospectively reviewed neonatal medical records and antenatal sonography of fetuses with isolated left CDH cared for at a single institution (2000-2012). Fetal stomach position was classified on sonography as follows: intra-abdominal, anterior left chest, mid-to-posterior left chest, or retrocardiac (right chest). Ninety fetuses were included with 70% surviving to neonatal discharge. Stomach position was intra-abdominal in 14% (n = 13), anterior left chest in 19% (n = 17), mid-to-posterior left chest in 41% (n = 37), and retrocardiac in 26% (n = 23). Increasingly abnormal stomach position was linearly associated with an increased odds of death (OR 4.8, 95% CI 2.1-10.9), extracorporeal membrane oxygenation (ECMO; OR 5.6, 95% CI 1.9-16.7), nonprimary diaphragmatic repair (OR 2.7, 95% CI 1.4-5.5), prolonged mechanical ventilation (OR 5.9, 95% CI 2.3-15.6), and prolonged respiratory support (OR 4.0, 95% CI 1.6-9.9). All fetuses with intra-abdominal stomach position survived without substantial respiratory morbidity or need for ECMO. Fetal stomach position is strongly associated with neonatal outcomes in isolated left CDH. This objective tool may allow for accurate prognostication in a variety of clinical settings. © 2015 S. Karger AG, Basel.

  7. Parallel evolution of auditory genes for echolocation in bats and toothed whales.

    PubMed

    Shen, Yong-Yi; Liang, Lu; Li, Gui-Sheng; Murphy, Robert W; Zhang, Ya-Ping

    2012-06-01

    The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators--two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.

  8. Low PIP4K2B expression in human breast tumors correlates with reduced patient survival: A role for PIP4K2B in the regulation of E-cadherin expression.

    PubMed

    Keune, Willem-Jan; Sims, Andrew H; Jones, David R; Bultsma, Yvette; Lynch, James T; Jirström, Karin; Landberg, Goran; Divecha, Nullin

    2013-12-01

    Phosphatidylinositol-5-phosphate (PtdIns5P) 4-kinase β (PIP4K2B) directly regulates the levels of two important phosphoinositide second messengers, PtdIns5P and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2]. PIP4K2B has been linked to the regulation of gene transcription, to TP53 and AKT activation, and to the regulation of cellular reactive oxygen accumulation. However, its role in human tumor development and on patient survival is not known. Here, we have interrogated the expression of PIP4K2B in a cohort (489) of patients with breast tumor using immunohistochemical staining and by a meta-analysis of gene expression profiles from 2,999 breast tumors, both with associated clinical outcome data. Low PIP4K2B expression was associated with increased tumor size, high Nottingham histological grade, Ki67 expression, and distant metastasis, whereas high PIP4K2B expression strongly associated with ERBB2 expression. Kaplan-Meier curves showed that both high and low PIP4K2B expression correlated with poorer patient survival compared with intermediate expression. In normal (MCF10A) and tumor (MCF7) breast epithelial cell lines, mimicking low PIP4K2B expression, using short hairpin RNA interference-mediated knockdown, led to a decrease in the transcription and expression of the tumor suppressor protein E-cadherin (CDH1). In MCF10A cells, knockdown of PIP4K2B enhanced TGF-β-induced epithelial to mesenchymal transition (EMT), a process required during the development of metastasis. Analysis of gene expression datasets confirmed the association between low PIP4K2B and low CDH1expression. Decreased CDH1 expression and enhancement of TGF-β-induced EMT by reduced PIP4K2B expression might, in part, explain the association between low PIP4K2B expression and poor patient survival.

  9. Cadherin-8 expression, synaptic localization, and molecular control of neuronal form in prefrontal corticostriatal circuits.

    PubMed

    Friedman, Lauren G; Riemslagh, Fréderike W; Sullivan, Josefa M; Mesias, Roxana; Williams, Frances M; Huntley, George W; Benson, Deanna L

    2015-01-01

    Neocortical interactions with the dorsal striatum support many motor and executive functions, and such underlying functional networks are particularly vulnerable to a variety of developmental, neurological, and psychiatric brain disorders, including autism spectrum disorders, Parkinson's disease, and Huntington's disease. Relatively little is known about the development of functional corticostriatal interactions, and in particular, virtually nothing is known of the molecular mechanisms that control generation of prefrontal cortex-striatal circuits. Here, we used regional and cellular in situ hybridization techniques coupled with neuronal tract tracing to show that Cadherin-8 (Cdh8), a homophilic adhesion protein encoded by a gene associated with autism spectrum disorders and learning disability susceptibility, is enriched within striatal projection neurons in the medial prefrontal cortex and in striatal medium spiny neurons forming the direct or indirect pathways. Developmental analysis of quantitative real-time polymerase chain reaction and western blot data show that Cdh8 expression peaks in the prefrontal cortex and striatum at P10, when cortical projections start to form synapses in the striatum. High-resolution immunoelectron microscopy shows that Cdh8 is concentrated at excitatory synapses in the dorsal striatum, and Cdh8 knockdown in cortical neurons impairs dendritic arborization and dendrite self-avoidance. Taken together, our findings indicate that Cdh8 delineates developing corticostriatal circuits where it is a strong candidate for regulating the generation of normal cortical projections, neuronal morphology, and corticostriatal synapses. © 2014 Wiley Periodicals, Inc.

  10. The Mass1frings mutation underlies early onset hearing impairment in BUB/BnJ mice, a model for the auditory pathology of Usher syndrome IIC

    PubMed Central

    Johnson, K.R.; Zheng, Q.Y.; Weston, M.D.; Ptacek, L.J.; Noben-Trauth, K.

    2010-01-01

    The human ortholog of the gene responsible for audiogenic seizure susceptibility in Frings and BUB/BnJ mice (mouse gene symbol Mass1) recently was shown to underlie Usher syndrome type IIC (USH2C). Here we report that the Mass1frings mutation is responsible for the early onset hearing impairment of BUB/BnJ mice. We found highly significant linkage of Mass1 with ABR threshold variation among mice from two backcrosses involving BUB/BnJ mice with mice of strains CAST/EiJ and MOLD/RkJ. We also show an additive effect of the Cdh23 locus in modulating the progression of hearing loss in backcross mice. Together, these two loci account for more than 70% of the total ABR threshold variation among the backcross mice at all ages. The modifying effect of the strain-specific Cdh23ahl variant may account for the hearing and audiogenic seizure differences observed between Frings and BUB/BnJ mice, which share the Mass1frings mutation. During postnatal cochlear development in BUB/BnJ mice, stereocilia bundles develop abnormally and remain immature and splayed into adulthood, corresponding with the early onset hearing impairment associated with Mass1frings. Progressive base–apex hair cell degeneration occurs at older ages, corresponding with the age-related hearing loss associated with Cdh23ahl. The molecular basis and pathophysiology of hearing loss suggest BUB/BnJ and Frings mice as models to study cellular and molecular mechanisms underlying USH2C auditory pathology. PMID:15820310

  11. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

    PubMed

    Bolz, H; von Brederlow, B; Ramírez, A; Bryda, E C; Kutsche, K; Nothwang, H G; Seeliger, M; del C-Salcedó Cabrera, M; Vila, M C; Molina, O P; Gal, A; Kubisch, C

    2001-01-01

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.

  12. Insulinlike growth factor receptor type 1 and type 2 are downregulated in the nitrofen-induced hypoplastic lung.

    PubMed

    Ruttenstock, Elke; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2010-06-01

    In congenital diaphragmatic hernia (CDH), high mortality rates are attributed to severe pulmonary hypoplasia. The insulinlike growth factor receptor type 1 (IGF-1R) and type 2 (IGF-2R) play a critical role in the alveologenesis during lung development. The IGF-1R null mutation mice die after birth because of respiratory failure. The IGF-2R knockout mice showed retarded lungs with poorly formed alveoli. We hypothesized that IGF-1R and IGF-2R gene expression levels are downregulated in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or 100 mg of nitrofen on day 9.5 (D9.5) of gestation. Fetuses were harvested on D18 and D21 and divided into control and nitrofen groups. Relative messenger RNA (mRNA) levels of IGF-1R and IGF-2R were determined using real time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to determine protein expression. Relative levels of IGF-1R mRNA were significantly decreased in the nitrofen group (2.91 +/- 0.81) on D21 compared to controls (5.29 +/- 2.59) (P < .05). Expression levels of IGF-2R mRNA on D21 were also significantly decreased in nitrofen group (1.76 +/- 0.49) compared to controls (3.59 +/- 2.45) (P < .05). Immunohistochemistry performed on D21 showed decreased IGF-1R and also IGF-2R expression in nitrofen group. Downregulation of IGF-1R and IGF-2R gene expression may interfere with normal alveologenesis causing pulmonary hypoplasia in the nitrofen-induced CDH model. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Hemicrania continua and symptomatic medication overuse.

    PubMed

    Young, W B; Silberstein, S D

    1993-10-01

    Hemicrania continua (HC) is a rare, strictly unilateral, nonparoxysmal headache disorder characterized by its absolute responsiveness to indomethacin. The pain is usually moderate in intensity and frequently associated with a superimposed "jabs and jolts" headache. We report two cases of HC which presented as chronic daily headache (CDH) with abortive medication overuse. CDH can be due to transformed migraine (TM), new daily persistent headache (NDPH), chronic tension-type headache, and HC. All can be unilateral, and all can be associated with medication overuse. Our two cases meet the criteria for HC based on indomethacin responsiveness. One meets the criteria for TM, the other NDPH. Is HC a distinct disorder, or a subset of these other disorders? CDH with medication overuse includes in its differential diagnosis HC.

  14. New daily persistent headache in children and adolescents.

    PubMed

    Baron, Eric P; Rothner, A David

    2010-03-01

    New daily persistent headache (NDPH) is a form of chronic daily headache (CDH) that may have features of both migraine and tension-type headache. In contrast with other types of CDH, NDPH is characterized by patients recalling the specific date their unremitting daily headache began. In comparison, chronic tension-type headache and chronic migraine are preceded by a gradually increasing frequency of headache. After several months, all three of these CDH forms often have a similar phenotype, making early history a key to diagnosing NDPH. Evaluations to exclude secondary causes are necessary but usually negative. NDPH is difficult to treat and requires a multimodal approach. Questions regarding NDPH remain unanswered. Additional prospective studies are necessary to further understand, characterize, diagnose, and treat NDPH.

  15. Effect of DNA methylation on identification of aggressive prostate cancer.

    PubMed

    Alumkal, Joshi J; Zhang, Zhe; Humphreys, Elizabeth B; Bennett, Christina; Mangold, Leslie A; Carducci, Michael A; Partin, Alan W; Garrett-Mayer, Elizabeth; DeMarzo, Angelo M; Herman, James G

    2008-12-01

    Biochemical (prostate-specific antigen) recurrence of prostate cancer after radical prostatectomy remains a major problem. Better biomarkers are needed to identify high-risk patients. DNA methylation of promoter regions leads to gene silencing in many cancers. In this study, we assessed the effect of DNA methylation on the identification of recurrent prostate cancer. We studied the methylation status of 15 pre-specified genes using methylation-specific polymerase chain reaction on tissue samples from 151 patients with localized prostate cancer and at least 5 years of follow-up after prostatectomy. On multivariate logistic regression analysis, a high Gleason score and involvement of the capsule, lymph nodes, seminal vesicles, or surgical margin were associated with an increased risk of biochemical recurrence. Methylation of CDH13 by itself (odds ratio 5.50, 95% confidence interval [CI] 1.34 to 22.67; P = 0.02) or combined with methylation of ASC (odds ratio 5.64, 95% CI 1.47 to 21.7; P = 0.01) was also associated with an increased risk of biochemical recurrence. The presence of methylation of ASC and/or CDH13 yielded a sensitivity of 72.3% (95% CI 57% to 84.4%) and negative predictive value of 79% (95% CI 66.8% to 88.3%), similar to the weighted risk of recurrence (determined from the lymph node status, seminal vesicle status, surgical margin status, and postoperative Gleason score), a powerful clinicopathologic prognostic score. However, 34% (95% CI 21% to 49%) of the patients with recurrence were identified by the methylation profile of ASC and CDH13 rather than the weighted risk of recurrence. The results of our study have shown that methylation of CDH13 alone or combined with methylation of ASC is independently associated with an increased risk of biochemical recurrence after radical prostatectomy even considering the weighted risk of recurrence score. These findings should be validated in an independent, larger cohort of patients with prostate cancer who have undergone radical prostatectomy.

  16. Endothelial ErbB4 deficit induces alterations in exploratory behavior and brain energy metabolism in mice.

    PubMed

    Wu, Gang; Liu, Xiu-Xiu; Lu, Nan-Nan; Liu, Qi-Bing; Tian, Yun; Ye, Wei-Feng; Jiang, Guo-Jun; Tao, Rong-Rong; Han, Feng; Lu, Ying-Mei

    2017-06-01

    The receptor tyrosine kinase ErbB4 is present throughout the primate brain and has a distinct functional profile. In this study, we investigate the potential role of endothelial ErbB4 receptor signaling in the brain. Here, we show that the endothelial cell-specific deletion of ErbB4 induces decreased exploratory behavior in adult mice. However, the water maze task for spatial memory and the memory reconsolidation test reveal no changes; additionally, we observe no impairment in CaMKII phosphorylation in Cdh5Cre;ErbB4 f/f mice, which indicates that the endothelial ErbB4 deficit leads to decreased exploratory activity rather than direct memory deficits. Furthermore, decreased brain metabolism, which was measured using micro-positron emission tomography, is observed in the Cdh5Cre;ErbB4 f/f mice. Consistently, the immunoblot data demonstrate the downregulation of brain Glut1, phospho-ULK1 (Ser555), and TIGAR in the endothelial ErbB4 conditional knockout mice. Collectively, our findings suggest that endothelial ErbB4 plays a critical role in regulating brain function, at least in part, through maintaining normal brain energy homeostasis. Targeting ErbB4 or the modulation of endothelial ErbB4 signaling may represent a rational pharmacological approach to treat neurological disorders. © 2017 John Wiley & Sons Ltd.

  17. An investigation of the factors effecting high-risk individuals’ decision-making about prophylactic total gastrectomy and surveillance for hereditary diffuse gastric cancer (HDGC)

    PubMed Central

    Hallowell, Nina; Badger, Shirlene; Richardson, Sue; Caldas, Carlos; Hardwick, Richard H.; Fitzgerald, Rebecca C.; Lawton, Julia

    2018-01-01

    Because Hereditary Diffuse Gastric Cancer (HDGC) has an early onset and poor prognosis, individuals who carry a pathogenic (CDH1) mutation in the E-cadherin gene (CDH1) are offered endoscopic surveillance and advised to undergo prophylactic total gastrectomy (PTG) in their early to mid-twenties. Patients not ready or fit to undergo gastrectomy, or in whom the genetic testing result is unknown or ambiguous, are offered surveillance. Little is known about the factors that influence decisions to undergo or decline PTG, making it difficult to provide optimal support for those facing these decisions. Qualitative interviews were carried out with 35 high-risk individuals from the Familial Gastric Cancer Study in the UK. Twenty-seven had previously undergone PTG and eight had been identified as carrying a pathogenic CDH1 mutation but had declined surgery at the time of interview. The interviews explored the experience of decision-making and factors influencing risk-management decisions. The data suggest that decisions to proceed with PTG are influenced by a number of potentially competing factors: objective risk confirmation by genetic testing and/or receiving a positive biopsy; perceived familial cancer burden and associated risk perceptions; perceptions of post-surgical life; an increasing inability to tolerate endoscopic procedures; a concern that surveillance could miss a cancer developing and individual’s life stage. These findings have implications for advising this patient group. PMID:27256430

  18. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay

    Treesearch

    Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Masahiro Samejima; David Hibbett; Bernard Henrissat; Dan Cullen

    2013-01-01

    To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (...

  19. The importance of social media for patients and families affected by congenital anomalies: A Facebook cross-sectional analysis and user survey.

    PubMed

    Jacobs, Robyn; Boyd, Leanne; Brennan, Kirsty; Sinha, C K; Giuliani, Stefano

    2016-11-01

    We aimed to define characteristics and needs of Facebook users in relation to congenital anomalies. Cross-sectional analysis of Facebook related to four congenital anomalies: anorectal malformation (ARM), congenital diaphragmatic hernia (CDH), congenital heart disease (CHD) and hypospadias/epispadias (HS/ES). A keyword search was performed to identify relevant Groups/Pages. An anonymous survey was posted to obtain quantitative/qualitative data on users and their healthcare needs. 54 Groups and 24 Pages were identified (ARM: 10 Groups; CDH: 9 Groups, 7 Pages; CHD: 32 Groups, 17 Pages; HS/ES: 3 Groups), with 16,191 Group members and 48,766 Page likes. 868/1103 (79%) of respondents were parents. Male:female ratio was 1:10.9. 65% of the users were 26-40years old. Common reasons for joining these Groups/Pages included: seeking support, education, making friends, and providing support to others. 932/1103 (84%) would like healthcare professionals (HCPs) to actively participate in their Group. 31% of the respondents felt that they did not receive enough support from their healthcare system. 97% of the respondents would like to join a Group linked to their primary hospital. Facebook Groups/Pages related to congenital anomalies are highly populated and active. There is a need for HCPs and policy makers to better understand and participate in social media to support families and improve patient care. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Correlation between lung to thorax transverse area ratio and observed/expected lung area to head circumference ratio in fetuses with left-sided diaphragmatic hernia.

    PubMed

    Hidaka, Nobuhiro; Murata, Masaharu; Sasahara, Jun; Ishii, Keisuke; Mitsuda, Nobuaki

    2015-05-01

    Observed/expected lung area to head circumference ratio (o/e LHR) and lung to thorax transverse area ratio (LTR) are the sonographic indicators of postnatal outcome in fetuses with congenital diaphragmatic hernia (CDH), and they are not influenced by gestational age. We aimed to evaluate the relationship between these two parameters in the same subjects with fetal left-sided CDH. Fetuses with left-sided CDH managed between 2005 and 2012 were included. Data of LTR and o/e LHR values measured on the same day prior to 33 weeks' gestation in target fetuses were retrospectively collected. The correlation between the two parameters was estimated using the Spearman's rank-correlation coefficient, and linear regression analysis was used to assess the relationship between them. Data on 61 measurements from 36 CDH fetuses were analyzed to obtain a Spearman's rank-correlation coefficient of 0.74 with the following linear equation: LTR = 0.002 × (o/e LHR) + 0.005. The determination coefficient of this linear equation was sufficiently high at 0.712, and the prediction accuracy obtained with this regression formula was considered satisfactory. A good linear correlation between the LTR and the o/e LHR was obtained, suggesting that we can translate the predictive parameters for each other. This information is expected to be useful to improve our understanding of different investigations focusing on LTR or o/e LHR as a predictor of postnatal outcome in CDH. © 2014 Japanese Teratology Society.

  1. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.

    2007-11-16

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins includingmore » SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.« less

  2. Congenital diaphragmatic hernia in a case of patau syndrome: a rare association.

    PubMed

    A, Jain; P, Kumar; A, Jindal; Yk, Sarin

    2015-01-01

    Congenital diaphragmatic hernia (CDH) occurs in 5-10% associated with chromosomal abnormalities like, Pallister Killian syndrome, Trisomy 18, and certain deletions.. Association of CDH with trisomy 13 (Patau syndromes) is very rare. Here, we report such an unusual association, where surgical repair was done, but eventually the case succumbed as a result of multiple fatal co-morbidities.

  3. Congenital Diaphragmatic Hernia in a Case of Patau Syndrome: A Rare Association

    PubMed Central

    A, Jain; P, Kumar; A, Jindal; Yk, Sarin

    2015-01-01

    Congenital diaphragmatic hernia (CDH) occurs in 5-10% associated with chromosomal abnormalities like, Pallister Killian syndrome, Trisomy 18, and certain deletions.. Association of CDH with trisomy 13 (Patau syndromes) is very rare. Here, we report such an unusual association, where surgical repair was done, but eventually the case succumbed as a result of multiple fatal co-morbidities. PMID:26034714

  4. Rate and Risk Factors Associated with Autism Spectrum Disorder in Congenital Diaphragmatic Hernia

    ERIC Educational Resources Information Center

    Danzer, Enrico; Hoffman, Casey; D'Agostino, Jo Ann; Miller, Judith S.; Waqar, Lindsay N.; Gerdes, Marsha; Bernbaum, Judy C.; Rosenthal, Hannah; Rintoul, Natalie E.; Herkert, Lisa M.; Peranteau, William H.; Flake, Alan W.; Adzick, N. Scott; Hedrick, Holly L.

    2018-01-01

    To determine the rate and predictors of autism spectrum disorder (ASD) in congenital diaphragmatic hernia (CDH). Between 06/2004 and 09/2015 a total of 110 CDH survivors underwent neurodevelopmental (ND) testing and screening for ASD, followed by a full autism diagnostic evaluation if indicated at our institution. We found a 9 time higher rate of…

  5. The Co-regulation Data Harvester: Automating gene annotation starting from a transcriptome database

    NASA Astrophysics Data System (ADS)

    Tsypin, Lev M.; Turkewitz, Aaron P.

    Identifying co-regulated genes provides a useful approach for defining pathway-specific machinery in an organism. To be efficient, this approach relies on thorough genome annotation, a process much slower than genome sequencing per se. Tetrahymena thermophila, a unicellular eukaryote, has been a useful model organism and has a fully sequenced but sparsely annotated genome. One important resource for studying this organism has been an online transcriptomic database. We have developed an automated approach to gene annotation in the context of transcriptome data in T. thermophila, called the Co-regulation Data Harvester (CDH). Beginning with a gene of interest, the CDH identifies co-regulated genes by accessing the Tetrahymena transcriptome database. It then identifies their closely related genes (orthologs) in other organisms by using reciprocal BLAST searches. Finally, it collates the annotations of those orthologs' functions, which provides the user with information to help predict the cellular role of the initial query. The CDH, which is freely available, represents a powerful new tool for analyzing cell biological pathways in Tetrahymena. Moreover, to the extent that genes and pathways are conserved between organisms, the inferences obtained via the CDH should be relevant, and can be explored, in many other systems.

  6. Chronic daily headache in the elderly.

    PubMed

    Özge, Aynur

    2013-12-01

    Disabling headache disorders are ubiquitous in all age groups, including the elderly, yet they are under-recognized, underdiagnosed and undertreated worldwide. Surveys and clinic-based research reports on headache disorders in elderly populations are extremely limited in number. Chronic daily headache (CDH) is an important and growing subtype of primary headache disorders, associated with increased burden and disruption to quality of life. CDH can be divided into two forms, based on headache duration. Common forms of primary headache disorders of long duration (>4 hours) were comprehensively defined in the third edition of the International Classification of Headache Disorders (ICHD-3 beta). These include chronic migraine, chronic tension-type headache, new daily persistent headache, and hemicrania continua. Rarer short-duration (<4 hours) forms of CDH are chronic cluster headache, chronic paroxysmal hemicrania, SUNCT, and hypnic headache. Accurate diagnosis, management, and relief of the burden of CDH in the elderly population present numerous unique challenges as the "aging world" continues to grow. In order to implement appropriate coping strategies for the elderly, it is essential to establish the correct diagnosis at each step and to exercise caution in differentiating from secondary causes, while always taking into consideration the unique needs and limitations of the aged body.

  7. Towards Resolving the Pro- and Anti-Tumor Effects of the Aryl Hydrocarbon Receptor.

    PubMed

    Narasimhan, Supraja; Stanford Zulick, Elizabeth; Novikov, Olga; Parks, Ashley J; Schlezinger, Jennifer J; Wang, Zhongyan; Laroche, Fabrice; Feng, Hui; Mulas, Francesca; Monti, Stefano; Sherr, David H

    2018-05-07

    We have postulated that the aryl hydrocarbon receptor (AHR) drives the later, more lethal stages of some cancers when chronically activated by endogenous ligands. However, other studies have suggested that, under some circumstances, the AHR can oppose tumor aggression. Resolving this apparent contradiction is critical to the design of AHR-targeted cancer therapeutics. Molecular (siRNA, shRNA, AHR repressor, CRISPR-Cas9) and pharmacological (AHR inhibitors) approaches were used to confirm the hypothesis that AHR inhibition reduces human cancer cell invasion (irregular colony growth in 3D Matrigel cultures and Boyden chambers), migration (scratch wound assay) and metastasis (human cancer cell xenografts in zebrafish). Furthermore, these assays were used for a head-to-head comparison between AHR antagonists and agonists. AHR inhibition or knockdown/knockout consistently reduced human ER − /PR − /Her2 − and inflammatory breast cancer cell invasion, migration, and metastasis. This was associated with a decrease in invasion-associated genes (e.g., Fibronectin , VCAM1 , Thrombospondin, MMP1 ) and an increase in CDH1/E-cadherin , previously associated with decreased tumor aggression. Paradoxically, AHR agonists (2,3,7,8-tetrachlorodibenzo- p -dioxin and/or 3,3′-diindolylmethane) similarly inhibited irregular colony formation in Matrigel and blocked metastasis in vivo but accelerated migration. These data demonstrate the complexity of modulating AHR activity in cancer while suggesting that AHR inhibitors, and, under some circumstances, AHR agonists, may be useful as cancer therapeutics.

  8. Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor.

    PubMed

    Felice, Alfons K G; Sygmund, Christoph; Harreither, Wolfgang; Kittl, Roman; Gorton, Lo; Ludwig, Roland

    2013-05-01

    Electrochemical sensors for glucose monitoring employ different signal transduction strategies for electron transfer from the biorecognition element to the electrode surface. We present a biosensor that employs direct electron transfer and evaluate its response to various interfering substances known to affect glucose biosensors. The enzyme cellobiose dehydrogenase (CDH) was adsorbed on the surface of a carbon working electrode and covalently bound by cross linking. The response of CDH-modified electrodes to glucose and possible interfering compounds was measured by flow-injection analysis, linear sweep, and chronoamperometry. Chronoamperometry showed initial swelling/wetting of the electrode. After stabilization, the signal was stable and a sensitivity of 0.21 µA mM-1 cm-2 was obtained. To investigate the influence of the interfering substances on the biorecognition element, the simplest possible sensor architecture was used. The biosensor showed little (<5% signal deviation) or no response to various reported electroactive or otherwise interfering substances. Direct electron transfer from the biorecognition element to the electrode is a new principle applied to glucose biosensors, which can be operated at a low polarization potential of -100 mV versus silver/silver chloride. The reduction of interferences by electrochemically active substances is an attractive feature of this promising technology for the development of continuous glucose biosensors. © 2013 Diabetes Technology Society.

  9. Associated morbidities to congenital diaphragmatic hernia and a relationship to human milk.

    PubMed

    Froh, Elizabeth B; Spatz, Diane L

    2012-08-01

    The majority of what is known in the recent literature regarding human milk studies in the neonatal intensive care setting is specific to term and/or preterm infants (including very-low-birth-weight preterm infants). However, there is a lack of human milk and breastfeeding literature concerning infants with congenital anomalies, specifically infants diagnosed with congenital diaphragmatic hernia (CDH). By applying human milk research conducted among other populations of infants, this article highlights how human milk may have a significant impact on infants with CDH. Recent human milk studies are reviewed and then applied to the CDH population in regard to respiratory and gastrointestinal morbidities, as well as infection and length of stay. In addition, clinical implications of these relationships are discussed and suggestions for future research are presented.

  10. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer.

    PubMed

    Khatami, Fatemeh; Larijani, Bagher; Heshmat, Ramin; Keshtkar, Abbasali; Mohammadamoli, Mahsa; Teimoori-Toolabi, Ladan; Nasiri, Shirzad; Tavangar, Seyed Mohammad

    2017-01-01

    Promoter methylation in a number of tumor-suppressor genes (TSGs) can play crucial roles in the development of thyroid carcinogenesis. The focus of the current meta-analysis was to determine the impact of promoter methylation of eight selected candidate TSGs on thyroid cancer and to identify the most important molecules in this carcinogenesis pathway. A comprehensive search was performed using Pub Med, Scopus, and ISI Web of Knowledge databases, and eligible studies were included. The methodological quality of the included studies was evaluated according to the Newcastle Ottawa scale table and pooled odds ratios (ORs); 95% confidence intervals (CIs) were used to estimate the strength of the associations with Stata 12.0 software. Egger's and Begg's tests were applied to detect publication bias, in addition to the "Metatrim" method. A total of 55 articles were selected, and 135 genes with altered promoter methylation were found. Finally, we included eight TSGs that were found in more than four studies (RASSF1, TSHR, PTEN, SLC5A, DAPK, P16, RARβ2, and CDH1). The order of the pooled ORs for these eight TSGs from more to less significant was CDH1 (OR = 6.73), SLC5 (OR = 6.15), RASSF1 (OR = 4.16), PTEN (OR = 3.61), DAPK (OR = 3.51), P16 (OR = 3.31), TSHR (OR = 2.93), and RARβ2 (OR = 1.50). Analyses of publication bias and sensitivity confirmed that there was very little bias. Thus, our findings showed that CDH1 and SCL5A8 genes were associated with the risk of thyroid tumor genesis.

  11. Cryopreservation and Recovery of Human Endometrial Epithelial Cells with High Viability, Purity, and Functional Fidelity

    PubMed Central

    Chen, Joseph C.; Hoffman, Jacquelyn R.; Arora, Ripla; Perrone, Lila A.; Gonzalez-Gomez, Christian J; Vo, Kim Chi; Laird, Diana J.; Irwin, Juan C.; Giudice, Linda C.

    2015-01-01

    Objective To develop a protocol for cryopreservation and recovery of human endometrial epithelial cells (eEC) retaining molecular and functional characteristics of endometrial epithelium in vivo. Design This is an in vitro study using human endometrial cells. Setting University research laboratory. Patients Endometrial biopsies were obtained from premenopausal women undergoing benign gynecological procedures. Interventions Primary eEC were cryopreserved in 1% fetal bovine serum (FBS)/10% dimethyl sulfoxide (DMSO) in Defined Keratinocyte Serum Free Medium (KSFM). Recovered cells were observed for endometrial stromal fibroblast (eSF) contamination and subsequently evaluated for morphology, gene expression, and functional characteristics of freshly cultured eECs and in vivo endometrial epithelium. Main Outcome Measures Analysis of eEC morphology and the absence of eSF contamination; evaluation of epithelial-specific gene and protein expression; assessment of epithelial polarity. Results eEC recovered after cryopreservation (n=5) displayed epithelial morphology and expressed E-cadherin (CDH1), occludin (OCLN), claudin1 (CLDN1), and keratin18 (KRT18). Compared to eSF, recovered eEC displayed increased (P<0.05) expression of epithelial-specific genes AREG, CDH1, DEFB4A, MMP7, and WNT7A, while exhibiting low-to-undetectable (P<0.05) stromal-specific genes COL6A3, HOXA11, MMP2, PDGFRB, and WNT5A. Recovered eEC secrete levels of cytokines and growth factors comparable to freshly cultured eEC. Recovered eEC can formed a polarized monolayer with high transepithelial electrical resistance (TER) and impermeability to small molecules, and expressed apical/basolateral localization of CDH1 and apical localization of OCLN. Conclusion We have developed a protocol for cryopreservation of eEC in which recovered cells after thawing demonstrate morphological, transcriptomic, and functional characteristics of human endometrial epithelium in vivo. PMID:26515378

  12. Epidemiology and Outcome of Major Congenital Malformations in a Large German County.

    PubMed

    Wittekindt, Boris; Schloesser, Rolf; Doberschuetz, Nora; Salzmann-Manrique, Emilia; Grossmann, Jasmin; Misselwitz, Bjoern; Rolle, Udo

    2018-05-01

     Congenital malformations are associated with substantial neonatal morbidity and mortality. Furthermore, only sparse data are available on the modalities of care provided to and the associated clinical outcomes in affected neonates. In this study, we focused on five malformations that require surgery during the neonatal period: duodenal stenosis and atresia (DA), gastroschisis (GA), omphalocele (OM), congenital diaphragmatic herniation (CDH), and esophageal atresia (EA).  We reviewed the Hessian neonatal registry (2010-2015) to identify records including the ICD-10 (International Classification of Diseases, Tenth Edition) codes for the aforementioned diagnoses and identified 283 patients who were affected by at least one of these conditions. Multiple regression analyses were performed to further identify risk factors for mortality and extended length of hospital stay.  The incidence rates per 10,000 live births and inhospital mortality rates were as follows: DA: 1.79 and 3.6%; GA: 1.79 and 1.8%; OM: 1.60 and 24%; CDH: 1.32 and 27.5%; and EA: 2.67 and 11.1%, respectively. Thirty-three percent of the patients had not been born in a perinatal center in which corrective surgeries were performed. The following risk factors were significantly associated with early mortality: trisomy 13 and 18, congenital heart defects, prematurity, and high-risk malformations (OM and CDH). The predictors of length of stay were as follows: gestational age, number of additional malformations, and treatment in the center with the highest patient volume.  Epidemiology and outcome of major congenital malformations in Hesse, Germany, are comparable to previously published data. In addition, our data revealed a volume-outcome association with regard to the length of hospital stay. Georg Thieme Verlag KG Stuttgart · New York.

  13. MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia.

    PubMed

    Tagde, Ashujit; Rajabi, Hasan; Stroopinsky, Dina; Gali, Reddy; Alam, Maroof; Bouillez, Audrey; Kharbanda, Surender; Stone, Richard; Avigan, David; Kufe, Donald

    2016-06-28

    Aberrant DNA methylation is a hallmark of acute myeloid leukemia (AML); however, the regulation of DNA methyltransferase 1 (DNMT1), which is responsible for maintenance of DNA methylation patterns, has largely remained elusive. MUC1-C is a transmembrane oncoprotein that is aberrantly expressed in AML stem-like cells. The present studies demonstrate that targeting MUC1-C with silencing or a pharmacologic inhibitor GO-203 suppresses DNMT1 expression. In addition, MUC1 expression positively correlates with that of DNMT1 in primary AML cells, particularly the CD34+/CD38- population. The mechanistic basis for this relationship is supported by the demonstration that MUC1-C activates the NF-κB p65 pathway, promotes occupancy of the MUC1-C/NF-κB complex on the DNMT1 promoter and drives DNMT1 transcription. We also show that targeting MUC1-C substantially reduces gene promoter-specific DNA methylation, and derepresses expression of tumor suppressor genes, including CDH1, PTEN and BRCA1. In support of these results, we demonstrate that combining GO-203 with the DNMT1 inhibitor decitabine is highly effective in reducing DNMT1 levels and decreasing AML cell survival. These findings indicate that (i) MUC1-C is an attractive target for the epigentic reprogramming of AML cells, and (ii) targeting MUC1-C in combination with decitabine is a potentially effective clinical approach for the treatment of AML.

  14. Decreased expression of hepatocyte growth factor in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-10-01

    Pleuroperitoneal folds (PPFs) are essential for normal diaphragmatic development, representing the only source of the diaphragm's muscle connective tissue. Hepatocyte growth factor (Hgf), which is secreted in PPFs, plays a crucial role in the formation of the muscular diaphragmatic components by regulating the migration of myogenic progenitor cells into the primordial diaphragm. Hgf is also a known downstream target of Gata4 and it has been demonstrated that the expression of Hgf was significantly downregulated in PPF cells of Gata4 knockouts with congenital diaphragmatic hernia (CDH). Furthermore, mutations in PPF-derived cells have been shown to result in CDH. We hypothesized that Hgf expression is decreased in developing diaphragms of fetal rats with nitrofen-induced CDH. Timed-pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetuses were harvested on selected time-points D13, D15 and D18. Dissected diaphragms (n = 72) were divided into control and nitrofen-exposed specimens (n = 12 per time-point and experimental group, respectively). Diaphragmatic gene expression of Hgf was analyzed by qRT-PCR. Immunofluorescence double staining for Hgf and the mesenchymal marker Gata4 or muscular progenitor marker Myogenin was performed to evaluate protein expression and localization in fetal diaphragms. Relative mRNA expression of Hgf was significantly downregulated in PPFs of nitrofen-exposed fetuses on D13 (3.08 ± 1.46 vs. 5.24 ± 1.93; p < 0.05), developing diaphragms of nitrofen-exposed fetuses on D15 (2.01 ± 0.79 vs. 4.10 ± 1.50; p < 0.05) and fully muscularized diaphragms of nitrofen-exposed fetuses on D18 (1.60 ± 0.78 vs. 3.21 ± 1.89; p < 0.05) compared to controls. Confocal laser scanning microscopy revealed markedly diminished diaphragmatic immunofluorescence of Hgf in nitrofen-exposed fetuses on D13, D15 and D18 compared to controls, which was associated with disruptions in muscle connective tissue formation and reduced myogenic progenitor cell invasion. Decreased diaphragmatic expression of Hgf may disturb the formation of muscle connective tissue in PPFs and thus prevent essential migration of muscle progenitor cells into the developing diaphragm, leading to diaphragmatic defects in the nitrofen CDH model.

  15. Global hypomethylation and promoter methylation in small intestinal neuroendocrine tumors: an in vivo and in vitro study.

    PubMed

    Fotouhi, Omid; Adel Fahmideh, Maral; Kjellman, Magnus; Sulaiman, Luqman; Höög, Anders; Zedenius, Jan; Hashemi, Jamileh; Larsson, Catharina

    2014-07-01

    Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2-3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2-3, and CXCL14 expression was reduced in metastases vs. primary tumors (P<0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.

  16. Crystal structure of 1-(8-meth-oxy-2H-chromen-3-yl)ethanone.

    PubMed

    Koh, Dongsoo

    2014-09-01

    In the structure of the title compound, C12H12O3, the di-hydro-pyran ring is fused with the benzene ring. The di-hydro-pyran ring is in a half-chair conformation, with the ring O and methyl-ene C atoms positioned 1.367 (3) and 1.504 (4) Å, respectively, on either side of the mean plane formed by the other four atoms. The meth-oxy group is coplanar with the benzene ring to which it is connected [Cb-Cb-Om-Cm torsion angle = -0.2 (4)°; b = benzene and m = meth-oxy], and similarly the aldehyde is coplanar with respect to the double bond of the di-hydro-pyran ring [Cdh-Cdh-Ca-Oa = -178.1 (3)°; dh = di-hydro-pyran and a = aldehyde]. In the crystal, mol-ecules are linked by weak meth-yl-meth-oxy C-H⋯O hydrogen bonds into supra-molecular chains along the a-axis direction.

  17. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex.

    PubMed

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J; Espinosa, Ana; Molnár, Zoltán; Mueller, Ulrich

    2016-06-15

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. © 2016. Published by The Company of Biologists Ltd.

  18. The Holstein Friesian Lethal Haplotype 5 (HH5) Results from a Complete Deletion of TBF1M and Cholesterol Deficiency (CDH) from an ERV-(LTR) Insertion into the Coding Region of APOB

    PubMed Central

    Schütz, Ekkehard; Wehrhahn, Christin; Wanjek, Marius; Bortfeld, Ralf; Wemheuer, Wilhelm E.; Beck, Julia; Brenig, Bertram

    2016-01-01

    Background With the availability of massive SNP data for several economically important cattle breeds, haplotype tests have been performed to identify unknown recessive disorders. A number of so-called lethal haplotypes, have been uncovered in Holstein Friesian cattle and, for at least seven of these, the causative mutations have been identified in candidate genes. However, several lethal haplotypes still remain elusive. Here we report the molecular genetic causes of lethal haplotype 5 (HH5) and cholesterol deficiency (CDH). A targeted enrichment for the known genomic regions, followed by massive parallel sequencing was used to interrogate for causative mutations in a case/control approach. Methods Targeted enrichment for the known genomic regions, followed by massive parallel sequencing was used in a case/control approach. PCRs for the causing mutations were developed and compared to routine imputing in 2,100 (HH5) and 3,100 (CDH) cattle. Results HH5 is caused by a deletion of 138kbp, spanning position 93,233kb to 93,371kb on chromosome 9 (BTA9), harboring only dimethyl-adenosine transferase 1 (TFB1M). The deletion breakpoints are flanked by bovine long interspersed nuclear elements Bov-B (upstream) and L1ME3 (downstream), suggesting a homologous recombination/deletion event. TFB1M di-methylates adenine residues in the hairpin loop at the 3’-end of mitochondrial 12S rRNA, being essential for synthesis and function of the small ribosomal subunit of mitochondria. Homozygous TFB1M-/- mice reportedly exhibit embryonal lethality with developmental defects. A 2.8% allelic frequency was determined for the German HF population. CDH results from a 1.3kbp insertion of an endogenous retrovirus (ERV2-1-LTR_BT) into exon 5 of the APOB gene at BTA11:77,959kb. The insertion is flanked by 6bp target site duplications as described for insertions mediated by retroviral integrases. A premature stop codon in the open reading frame of APOB is generated, resulting in a truncation of the protein to a length of only <140 amino acids. Such early truncations have been shown to cause an inability of chylomicron excretion from intestinal cells, resulting in malabsorption of cholesterol. The allelic frequency of this mutation in the German HF population was 6.7%, which is substantially higher than reported so far. Compared to PCR assays inferring the genetic variants directly, the routine imputing used so far showed a diagnostic sensitivity of as low as 91% (HH5) and 88% (CDH), with a high specificity for both (≥99.7%). Conclusion With the availability of direct genetic tests it will now be possible to more effectively reduce the carrier frequency and ultimately eliminate the disorders from the HF populations. Beside this, the fact that repetitive genomic elements (RE) are involved in both diseases, underline the evolutionary importance of RE, which can be detrimental as here, but also advantageous over generations. PMID:27128314

  19. COUP-TFII gene expression is upregulated in embryonic pleuroperitoneal folds in the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Dingemann, J; Doi, T; Ruttenstock, E M; Gosemann, J H; Puri, P

    2012-02-01

    The nitrofen model of congenital diaphragmatic hernia (CDH) creates a Bochdalek-type diaphragmatic defect and has been widely used to investigate the pathogenesis of CDH. However, the exact pathogenesis of the diaphragmatic defect in this model is still poorly understood. Chicken ovalbumin upstream promotor-transcription factor II (COUP-TFII) is expressed in the embryonic pleuroperitoneal folds (PPF) in the early stage of development and in the diaphragm in the late days of gestation. COUP-TFII is known to be a strong repressor of the retinoid signaling pathway (RSP), which plays an important role in diaphragm development. Furthermore, it has been recently shown that COUP-TFII is upregulated during early gestation in the nitrofen-induced hypoplastic lung. We designed this study to investigate the hypothesis that COUP-TFII gene expression is upregulated during early diaphragmatic development in the PPF. Timed pregnant rats were exposed to either olive oil (Control) or nitrofen (CDH) on day 9 of gestation (D9). Fetuses were sacrificed on D13, D18 or D21. The PPF was dissected from D13 fetuses using laser capture microdissection. Diaphragms were dissected from D18 and D21 fetuses under the dissection microscope. The relative mRNA expression levels of COUP-TFII were determined using real-time PCR. Immunohistochemistry was performed to evaluate diaphragmatic protein expression and the distribution of COUP-TFII.Results On D13, gene expression levels of COUP-TFII in the PPF were significantly increased in the CDH group (82.93 ± 11.85) compared to Controls (46.22 ± 8.09; p < 0.05), whereas there were no differences at later time points. The immunoreactivity of diaphragmatic COUP-TFII was markedly increased in the PPF in the CDH group compared to controls on D13. No difference in immunoreactivity was observed on D18 and D21. Upregulation of COUP-II gene expression in the PPF may contribute to the diaphragmatic defect in the nitrofen CDH model by inhibiting the RSP. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Total Gastrectomy for Hereditary Diffuse Gastric Cancer at a Single Center: Postsurgical Outcomes in 41 Patients.

    PubMed

    Strong, Vivian E; Gholami, Sepideh; Shah, Manish A; Tang, Laura H; Janjigian, Yelena Y; Schattner, Mark; Selby, Luke V; Yoon, Sam S; Salo-Mullen, Erin; Stadler, Zsofia K; Kelsen, David; Brennan, Murray F; Coit, Daniel G

    2017-12-01

    The aim of this study was to describe postoperative outcomes of total gastrectomy at our institution for patients with hereditary diffuse gastric cancer (HDGC). HDGC, which is mainly caused by germline mutations in the E-cadherin gene (CDH1), renders a lifetime risk of gastric cancer of up to 70%, prompting a recommendation for prophylactic total gastrectomy. A prospective gastric cancer database identified 41 patients with CDH1 mutation who underwent total gastrectomy during 2005 to 2015. Perioperative, histopathologic, and long-term data were collected. Of the 41 patients undergoing total gastrectomy, median age was 47 years (range 20 to 71). There were 14 men and 27 women, with 25 open operations and 16 minimally invasive operations. Median length of stay was 7 days (range 4 to 50). In total, 11 patients (27%) experienced a complication requiring intervention, and there was 1 peri-operative mortality (2.5%). Thirty-five patients (85%) demonstrated 1 or more foci of intramucosal signet ring cell gastric cancer in the examined specimen. At 16 months median follow-up, the median weight loss was 4.7 kg (15% of preoperative weight). By 6 to 12 months postoperatively, weight patterns stabilized. Overall outcome was reported to be "as expected" by 40% of patients and "better than expected" by 45%. Patient-reported outcomes were similar to those of other patients undergoing total gastrectomy. Total gastrectomy should be considered for all CDH1 mutation carriers because of the high risk of invasive diffuse-type gastric cancer and lack of reliable surveillance options. Although most patients have durable weight loss after total gastrectomy, weights stabilize at about 6 to 12 months postoperatively, and patients report outcomes as being good to better than their preoperative expectations. No patients have developed gastric cancer recurrence after resections.

  1. Upregulation of endothelin receptors A and B in the nitrofen induced hypoplastic lung occurs early in gestation.

    PubMed

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2010-01-01

    Pulmonary hypoplasia and persistent pulmonary hypertension (PPH) aggravate clinical courses in congenital diaphragmatic hernia (CDH). Endothelin 1 enhances PPH by vasoconstriction and proliferation of vessel walls. Up-regulation of pulmonary Endothelin Receptors A and B (EDNRA, EDNRB) has been reported in human CDH and animal models, but the onset of those alterations during lung development remains unclear. We hypothesized that pulmonary expression of EDNRA and EDNRB is up-regulated at early gestational stages in the nitrofen model. Pregnant rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Embryos were sacrificed on D15, D18 and D21 and divided into nitrofen- and control group. Pulmonary RNA was extracted and mRNA levels of EDNRA and EDNRB were determined by real-time PCR. Immunohistochemistry for protein expression of both receptors was performed. mRNA levels of EDNRA and EDNRB were significantly increased in the nitrofen group on D15, D18 and D21. Immunohistochemistry revealed increased pulmonary vascular expression of EDNRA and EDNRB compared to controls. Altered expression of EDNRA and EDNRB is an early event in lung morphogenesis in the nitrofen model. We speculate that pulmonary arteries in CDH become excessively muscularised in early fetal life, becoming unable to adapt normally at birth.

  2. New daily persistent headache in the paediatric population.

    PubMed

    Kung, E; Tepper, S J; Rapoport, A M; Sheftell, F D; Bigal, M E

    2009-01-01

    We conducted a clinic-based study focusing on the clinical features of new-onset chronic daily headaches (CDH) in children and adolescents. The clinical records and headache diaries of 306 children and adolescents were reviewed, to identify 187 with CDH. Relevant information was transferred to a standardized form that included operational criteria for the diagnoses of the headaches. Since we were interested in describing the clinical features of these headaches, we followed the criteria A and B of the 2nd edn of the International Classification of Headache Disorders (ICHD-2) and refer to them as new daily persistent headaches (NDPH) regardless of the presence of migraine features (therefore, this is a modified version of the ICHD-2 criteria). From the 56 adolescents with NDPH, most (91.8%) did not overuse medications. Nearly half (48.1%) reported they could recall the month when their headaches started. NDPH was more common than chronic tension-type headache in both adolescents overusing and not overusing medication. Individuals with NDPH had headaches fulfilling criteria for migraine on an average of 18.5 days per month. On most days, they had migraine-associated symptoms (one of nausea, photophobia or phonophobia)). NDPH is common in children and adolescents with CDH. Most subjects do not overuse medication. Migraine features are common.

  3. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons

    PubMed Central

    Machado, Carolina Barcellos; Kanning, Kevin C.; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-01-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations. PMID:24496616

  4. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    PubMed

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  5. Analysis of the methylation patterns of the p16 INK4A, p15 INK4B, and APC genes in gastric adenocarcinoma patients from a Brazilian population.

    PubMed

    do Nascimento Borges, Bárbara; Burbano, Rommel Mario Rodriguez; Harada, Maria Lúcia

    2013-08-01

    Gastric cancer is a major public health problem in Pará state, where studies suggest complex genetic and epigenetic profiles of the population, indicating the need for the identification of molecular markers for this tumor type. In the present study, the methylation patterns of three genes [p16 (INK4A), p15 (INK4B), and adenomatous polyposis coli (APC)] were assessed in patients with gastric adenocarcinoma from Pará state in order to identify possible molecular markers of gastric carcinogenesis. DNA samples from tumoral and non-tumoral gastric tissues were modified with sodium bisulfite. A fragment of the promoter region of each gene was amplified and sequenced, and samples with more than 20 % of methylated CpG sites were considered hypermethylated. The correlation between the methylation pattern of the selected genes and the MTHFR C677T polymorphism, as well as the relationship between APC and CDH1 methylation, were evaluated. The results suggest that APC hypermethylation is an age-specific marker of gastric carcinogenesis, and the concordance of this event with CDH1 hypermethylation suggests that the Wnt pathway has an important role in gastric carcinogenesis. While the hypermethylation pattern of p15 (INK4B) seems to be an earlier event in this type of tumor, the hypomethylated status of this gene seems to be correlated to the C677T MTHFR TT genotype. On the other hand, the observed pattern of p16 (INK4A) hypermethylation suggests that this event is a good marker for the gastric cancer pathway in the Pará state population.

  6. The T>A (rs11646213) gene polymorphism of cadherin-13 (CDH13) gene is associated with decreased risk of developing hypertension in Mexican population.

    PubMed

    Vargas-Alarcon, Gilberto; Martinez-Rodriguez, Nancy; Velazquez-Cruz, Rafael; Perez-Mendez, Oscar; Posadas-Sanchez, Rosalinda; Posadas-Romero, Carlos; Peña-Duque, Marco Antonio; Martinez-Rios, Marco Antonio; Ramirez-Fuentes, Silvestre; Fragoso, Jose Manuel

    2017-10-01

    Hypertension is a major public health problem affecting about 30% of the adult population and is associated with an increased risk of developing metabolic and cardiovascular disease. Recent reports have shown that the T-cadherin receptor characteristically expressed on endothelial and vascular smooth muscle cells is involved in hypertension. The aim of the present study was to evaluate the role of cadherin-13 (CDH13) gene polymorphisms as susceptibility markers for hypertension in Mexican population. Six CDH13 polymorphisms (rs11646213, rs11646411, rs6563943, rs3096277, rs3784990 and rs254340) were genotyped by 5' exonuclease TaqMan assays in a group of 644 hypertensive and 765 non-hypertensive individuals. Under co-dominant, recessive, and additive models, the CDH13 T>A (rs11646213) polymorphism was associated with decreased risk of developing hypertension when compared to non-hypertensive individuals (OR=0.61, 95% CI: 0.42-0.89, P co-dom =0.019; OR=0.63, 95% CI: 0.46-0.87, P res =0.005; OR=0.80, 95% CI: 0.66-0.96, P add =0.016, respectively). All models were adjusted by gender, age, body index mass, type II diabetes mellitus, alcohol consumption, dyslipidemia and smoking habit. Linkage disequilibrium analysis showed one haplotype (TCACGG) with decreased frequency in hypertensive when compared to non-hypertensive individuals (OR=0.52, 95% CI: 0.33-0.82, P=0.0053). In summary, our data suggests that the CDH13 T>A (rs11646213) polymorphism is associated with decreased risk of developing hypertension in the Mexican population. In addition, it was possible to distinguish one haplotype associated with decreased risk and two for increased risk of develop hypertension. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma

    PubMed Central

    Zhou, Yunli; Zhang, Xun; Klibanski, Anne

    2013-01-01

    Human pituitary adenomas are the most common intracranial neoplasms. Approximately 5% of them are familial adenomas. Patients with familial tumors carry germline mutations in predisposition genes, including AIP, MEN1 and PRKAR1A. These mutations are extremely rare in sporadic pituitary adenomas, which therefore are caused by different mechanisms. Multiple tumor suppressive genes linked to sporadic tumors have been identified. Their inactivation is caused by epigenetic mechanisms, mainly promoter hypermethylation, and can be placed into two groups based on their functional interaction with tumor suppressors RB or p53. The RB group includes CDKN2A, CDKN2B, CDKN2C, RB1, BMP4, CDH1, CDH13, GADD45B and GADD45G; AIP and MEN1 genes also belong to this group. The p53 group includes MEG3, MGMT, PLAGL1, RASSF1, RASSF3 and SOCS1. We propose that the tumor suppression function of these genes is mainly mediated by the RB and p53 pathways. We also discuss possible tumor suppression mechanisms for individual genes. PMID:24035864

  8. Rare combination of left-sided congenital diaphragmatic hernia and omphalocele.

    PubMed

    Chee, Yuet Yee; Wong, Siu Chun Mabel; Wong, Ming Sum Rosanna

    2017-08-07

    We reported a rare case of left-sided posterolateral congenital diaphragmatic hernia (CDH) and omphalocele, which is not associated with chromosomal abnormalities or other syndromes. Omphalocele was detected antenatally (CDH was not detected in antenatal ultrasound). The patient suffered from respiratory failure secondary to severe pulmonary hypertension. As the combination of CDH and omphalocele is rare and with the abdominal content herniating into the omphalocele instead of the thorax, antenatal diagnosis of such condition can be difficult. Unlike other reported cases in the literature, our patient's respiratory condition has been improving with time and is surviving beyond the infancy period. We believe this to be the first such survival case reported in the literature. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin-Deficient Cells.

    PubMed

    Telford, Bryony J; Chen, Augustine; Beetham, Henry; Frick, James; Brew, Tom P; Gould, Cathryn M; Single, Andrew; Godwin, Tanis; Simpson, Kaylene J; Guilford, Parry

    2015-05-01

    The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib. Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC. ©2015 American Association for Cancer Research.

  10. NOVEL EPIGENETIC CHANGES IN CDKN2A ARE ASSOCIATED WITH PROGRESSION OF CERVICAL INTRAEPITHELIAL NEOPLASIA

    PubMed Central

    Wijetunga, N. Ari; Belbin, Thomas J.; Burk, Robert D.; Whitney, Kathleen; Abadi, Maria; Greally, John M.; Einstein, Mark H.; Schlecht, Nicolas F.

    2016-01-01

    Objective To conduct a comprehensive mapping of the genomic DNA methylation in CDKN2A, which codes for the p16INK4A and p14ARF proteins, and 14 of the most promising DNA methylation marker candidates previously reported to be associated with progression of low-grade cervical intraepithelial neoplasia (CIN1) to cervical cancer. Methods We analyzed DNA methylation in 68 HIV-seropositive and negative women with incident CIN1, CIN2, CIN3 and invasive cervical cancer, assaying 120 CpG dinucleotide sites spanning APC, CDH1, CDH13, CDKN2A, CDKN2B, DAPK1, FHIT, GSTP1, HIC1, MGMT, MLH1, RARB, RASSF1, TERT and TIMP3 using the Illumina Infinium array. Validation was performed using high resolution mapping of the target genes with HELP-tagging for 286 CpGs, followed by fine mapping of candidate genes with targeted bisulfite sequencing. We assessed for statistical differences in DNA methylation levels for each CpG loci assayed using univariate and multivariate methods correcting for multiple comparisons. Results In our discovery sample set, we identified dose dependent differences in DNA methylation with grade of disease in CDKN2A, APC, MGMT, MLH1 and HIC1, whereas single CpG locus differences between CIN2/3 and cancer groups were seen for CDH13, DAPK1 and TERT. Only those CpGs in the gene body of CDKN2A showed a monotonic increase in methylation between persistent CIN1, CIN2, CIN3 and cancers. Conclusion Our data suggests a novel link between early cervical disease progression and DNA methylation in a region downstream of the CDKN2A transcription start site that may lead to increased p16INK4A/p14ARF expression prior to development of malignant disease. PMID:27401842

  11. Novel epigenetic changes in CDKN2A are associated with progression of cervical intraepithelial neoplasia.

    PubMed

    Wijetunga, N Ari; Belbin, Thomas J; Burk, Robert D; Whitney, Kathleen; Abadi, Maria; Greally, John M; Einstein, Mark H; Schlecht, Nicolas F

    2016-09-01

    To conduct a comprehensive mapping of the genomic DNA methylation in CDKN2A, which codes for the p16(INK4A) and p14(ARF) proteins, and 14 of the most promising DNA methylation marker candidates previously reported to be associated with progression of low-grade cervical intraepithelial neoplasia (CIN1) to cervical cancer. We analyzed DNA methylation in 68 HIV-seropositive and negative women with incident CIN1, CIN2, CIN3 and invasive cervical cancer, assaying 120 CpG dinucleotide sites spanning APC, CDH1, CDH13, CDKN2A, CDKN2B, DAPK1, FHIT, GSTP1, HIC1, MGMT, MLH1, RARB, RASSF1, TERT and TIMP3 using the Illumina Infinium array. Validation was performed using high resolution mapping of the target genes with HELP-tagging for 286 CpGs, followed by fine mapping of candidate genes with targeted bisulfite sequencing. We assessed for statistical differences in DNA methylation levels for each CpG loci assayed using univariate and multivariate methods correcting for multiple comparisons. In our discovery sample set, we identified dose dependent differences in DNA methylation with grade of disease in CDKN2A, APC, MGMT, MLH1 and HIC1, whereas single CpG locus differences between CIN2/3 and cancer groups were seen for CDH13, DAPK1 and TERT. Only those CpGs in the gene body of CDKN2A showed a monotonic increase in methylation between persistent CIN1, CIN2, CIN3 and cancers. Our data suggests a novel link between early cervical disease progression and DNA methylation in a region downstream of the CDKN2A transcription start site that may lead to increased p16(INK4A)/p14(ARF) expression prior to development of malignant disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dual-Hit Hypothesis Explains Pulmonary Hypoplasia in the Nitrofen Model of Congenital Diaphragmatic Hernia

    PubMed Central

    Keijzer, Richard; Liu, Jason; Deimling, Julie; Tibboel, Dick; Post, Martin

    2000-01-01

    Pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH) remains a major therapeutic problem. Moreover, the pathogenesis of pulmonary hypoplasia in case of CDH is controversial. In particular, little is known about early lung development in this anomaly. To investigate lung development separate from diaphragm development we used an in vitro modification of the 2,4-dichlorophenyl-p-nitrophenylether (Nitrofen) animal model for CDH. This enabled us to investigate the direct effects of Nitrofen on early lung development and branching morphogenesis in an organotypic explant system without the influence of impaired diaphragm development. Epithelial cell differentiation of the lung explants was assessed using surfactant protein-C and Clara cell secretory protein-10 mRNA expression as markers. Furthermore, cell proliferation and apoptosis were investigated. Our results indicate that Nitrofen negatively influences branching morphogenesis of the lung. Initial lung anlage formation is not affected. In addition, epithelial cell differentiation and cell proliferation are attenuated in lungs exposed to Nitrofen. These data indicate that Nitrofen interferes with early lung development before and separate from (aberrant) diaphragm development. Therefore, we postulate the dual-hit hypothesis, which explains pulmonary hypoplasia in CDH by two insults, one affecting both lungs before diaphragm development and one affecting the ipsilateral lung after defective diaphragm development. PMID:10751355

  13. Improved pulmonary function in the nitrofen model of congenital diaphragmatic hernia following prenatal maternal dexamethasone and/or sildenafil.

    PubMed

    Burgos, Carmen Mesas; Pearson, Erik G; Davey, Marcus; Riley, John; Jia, Huimin; Laje, Pablo; Flake, Alan W; Peranteau, William H

    2016-10-01

    Pulmonary hypoplasia and hypertension is a leading cause of morbidity and mortality in congenital diaphragmatic hernia (CDH). The etiologic insult occurs early in gestation highlighting the potential of prenatal interventions. We evaluated prenatal pharmacologic therapies in the nitrofen CDH model. Olive oil or nitrofen were administered alone or with dexamethasone (DM), sildenafil, or DM+sildenafil to pregnant rats. Newborn pups were assessed for lung function, structure and pulmonary artery (PA) flow and resistance. Prenatal DM treatment of CDH pups increased alveolar volume density (Vva), decreased interalveloar septal thickness, increased tidal volumes and improved ventilation without improving oxygenation or PA resistance. Sildenafil decreased PA resistance and improved oxygenation without improving ventilation or resulting in significant histologic changes. DM+sildenafil decreased PA resistance, improved oxygenation and ventilation while increasing Vva and decreasing interalveolar septal and pulmonary arteriole medial wall thickness. Lung and body weights were decreased in pups treated with DM and/or sildenafil. Prenatal DM or sildenafil treatment increased pulmonary compliance and decreased pulmonary vascular resistance respectively, and was associated with improved neonatal gas exchange but had a detrimental effect on lung and fetal growth. This study highlights the potential of individual and combined prenatal pharmacologic therapies for CDH management.

  14. A Novel Technique of Posterolateral Suturing in Thoracoscopic Diaphragmatic Hernia Repair

    PubMed Central

    Boo, Yoon Jung; Rohleder, Stephan; Muensterer, Oliver J.

    2017-01-01

    Background  Closure of the posterolateral defect in some cases of congenital diaphragmatic hernia (CDH) can be difficult. Percutaneous transcostal suturing is often helpful to create a complete, watertight closure of the diaphragm. A challenge with the technique is passing the needle out the same tract that it entered so that no skin is caught when the knots are laid down into the subcutaneous tissue. This report describes a novel technique using a Tuohy needle to percutaneously suture the posterolateral defect during thoracoscopic repair of CDH. Case  We report a case of a 6-week-old infant who presented with a CDH and ipsilateral intrathoracic kidney that was repaired using thoracoscopic approach. The posterolateral part of the defect was repaired by percutaneous transcostal suturing and extracorporeal knot tying. To assure correct placement of the sutures and knots, a Tuohy needle was used to guide the suture around the rib and out through the same subcutaneous tract. The total operative time was 145 minutes and there were no perioperative complications. The patient was followed up for 3 months, during which there was no recurrence. Conclusion  Our percutaneous Tuohy technique for closure of the posterolateral part of CDH enables a secure, rapid, and tensionless repair. PMID:28804698

  15. A Novel Technique of Posterolateral Suturing in Thoracoscopic Diaphragmatic Hernia Repair.

    PubMed

    Boo, Yoon Jung; Rohleder, Stephan; Muensterer, Oliver J

    2017-01-01

    Background  Closure of the posterolateral defect in some cases of congenital diaphragmatic hernia (CDH) can be difficult. Percutaneous transcostal suturing is often helpful to create a complete, watertight closure of the diaphragm. A challenge with the technique is passing the needle out the same tract that it entered so that no skin is caught when the knots are laid down into the subcutaneous tissue. This report describes a novel technique using a Tuohy needle to percutaneously suture the posterolateral defect during thoracoscopic repair of CDH. Case  We report a case of a 6-week-old infant who presented with a CDH and ipsilateral intrathoracic kidney that was repaired using thoracoscopic approach. The posterolateral part of the defect was repaired by percutaneous transcostal suturing and extracorporeal knot tying. To assure correct placement of the sutures and knots, a Tuohy needle was used to guide the suture around the rib and out through the same subcutaneous tract. The total operative time was 145 minutes and there were no perioperative complications. The patient was followed up for 3 months, during which there was no recurrence. Conclusion  Our percutaneous Tuohy technique for closure of the posterolateral part of CDH enables a secure, rapid, and tensionless repair.

  16. Reduced oxygen concentration for the resuscitation of infants with congenital diaphragmatic hernia.

    PubMed

    Riley, John S; Antiel, Ryan M; Rintoul, Natalie E; Ades, Anne M; Waqar, Lindsay N; Lin, Nan; Herkert, Lisa M; D'Agostino, Jo Ann; Hoffman, Casey; Peranteau, William H; Flake, Alan W; Adzick, N Scott; Hedrick, Holly L

    2018-06-11

    To evaluate whether infants with congenital diaphragmatic hernia (CDH) can be safely resuscitated with a reduced starting fraction of inspired oxygen (FiO 2 ) of 0.5. A retrospective cohort study comparing 68 patients resuscitated with starting FiO 2 0.5 to 45 historical controls resuscitated with starting FiO 2 1.0. Reduced starting FiO 2 had no adverse effect upon survival, duration of intubation, need for ECMO, duration of ECMO, or time to surgery. Furthermore, it produced no increase in complications, adverse neurological events, or neurodevelopmental delay. The need to subsequently increase FiO 2 to 1.0 was associated with female sex, lower gestational age, liver up, lower lung volume-head circumference ratio, decreased survival, a higher incidence of ECMO, longer time to surgery, periventricular leukomalacia, and lower neurodevelopmental motor scores. Starting FiO 2 0.5 may be safe for the resuscitation of CDH infants. The need to increase FiO 2 to 1.0 during resuscitation is associated with worse outcomes.

  17. MicroRNA-495 Inhibits Gastric Cancer Cell Migration and Invasion Possibly via Targeting High Mobility Group AT-Hook 2 (HMGA2).

    PubMed

    Wang, Huashe; Jiang, Zhipeng; Chen, Honglei; Wu, Xiaobin; Xiang, Jun; Peng, Junsheng

    2017-02-04

    BACKGROUND Gastric cancer is one of the most common malignancies, and has a high mortality rate. miR-495 acts as a suppressor in some cancers and HMGA2 (high mobility group AT-hook 2) is a facilitator for cell growth and epithelial-mesenchymal transition (EMT), but little is known about their effect in gastric cancer. This study aimed to investigate the role and mechanism of miR-495 in gastric cancer. MATERIAL AND METHODS miR-495 levels were quantitatively analyzed in gastric cancer tissue and GES-1, SGC-7901, BGC-823, and HGC-27 cell lines by qRT-PCR. Levels of miR-495 and HMGA2 were altered by cell transfection, after which cell migration and invasion were examined by Transwell and E-cadherin (CDH1); vimentin (VIM), and alpha smooth muscle actin (ACTA2) were detected by qRT-PCR and Western blotting. The interaction between miR-495 and HMGA2 was verified by dual-luciferase reporter assay. RESULTS miR-495 was significantly downregulated in cancer tissue and cell lines (p<0.05). Its overexpression inhibited cell migration and invasion, elevated CDH1, and inhibited VIM and ACTA2 levels in BGC-823 and HGC-27 cells. miR-495 directly inhibited HMGA2, which was upregulated in gastric cancer tissue, and promoted cell migration and invasion, inhibited CDH1, and elevated VIM and ACTA2. CONCLUSIONS miR-495 acts as a tumor suppressor in gastric cancer by inhibiting cell migration and invasion, which may be associated with its direct inhibition on HMGA2. These results suggest a promising therapeutic strategy for gastric cancer treatment.

  18. CLCA2 epigenetic regulation by CTBP1, HDACs, ZEB1, EP300 and miR-196b-5p impacts prostate cancer cell adhesion and EMT in metabolic syndrome disease.

    PubMed

    Porretti, Juliana; Dalton, Guillermo N; Massillo, Cintia; Scalise, Georgina D; Farré, Paula L; Elble, Randolph; Gerez, Esther N; Accialini, Paula; Cabanillas, Ana M; Gardner, Kevin; De Luca, Paola; De Siervi, Adriana

    2018-03-14

    Prostate cancer (PCa) is the most common cancer among men. Metabolic syndrome (MeS) is associated with increased PCa aggressiveness and recurrence. Previously, we proposed C-terminal binding protein 1 (CTBP1), a transcriptional co-repressor, as a molecular link between these two conditions. Notably, CTBP1 depletion decreased PCa growth in MeS mice. The aim of this study was to investigate the molecular mechanisms that explain the link between MeS and PCa mediated by CTBP1. We found that CTBP1 repressed chloride channel accessory 2 (CLCA2) expression in prostate xenografts developed in MeS animals. CTBP1 bound to CLCA2 promoter and repressed its transcription and promoter activity in PCa cell lines. Furthermore, we found that CTBP1 formed a repressor complex with ZEB1, EP300 and HDACs that modulates the CLCA2 promoter activity. CLCA2 promoted PCa cell adhesion inhibiting epithelial-mesenchymal transition (EMT) and activating CTNNB1 together with epithelial marker (CDH1) induction, and mesenchymal markers (SNAI2 and TWIST1) repression. Moreover, CLCA2 depletion in PCa cells injected subcutaneously in MeS mice increased the circulating tumor cells foci compared to control. A microRNA (miRNA) expression microarray from PCa xenografts developed in MeS mice, showed 21 miRNAs modulated by CTBP1 involved in angiogenesis, extracellular matrix organization, focal adhesion and adherents junctions, among others. We found that miR-196b-5p directly targets CLCA2 by cloning CLCA2 3'UTR and performing reporter assays. Altogether, we identified a new molecular mechanism to explain PCa and MeS link based on CLCA2 repression by CTBP1 and miR-196b-5p molecules that might act as key factors in the progression onset of this disease. © 2018 UICC.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, I.C.; Ko, S.F.; Shieh, C.S.

    Ehlers-Danlos syndrome (EDS) includes a group of connective tissue disorders with abnormal collagen metabolism and a diverse clinical spectrum. We report two siblings with EDS who both presented with congenital diaphragmatic hernia (CDH). The elder sister suffered from recurrent diaphragmatic hernia twice and EDS was overlooked initially. Echocardiography as well as contrast-enhanced magnetic resonance angiography (MRA) showed dilatation of the pulmonary artery, and marked elongation and tortuosity of the aorta and its branches. A diagnosis of EDS was eventually established when these findings were coupled with the clinical features of hyperelastic skin. Her younger brother also had similar features. Thismore » report emphasizes that EDS may present as CDH in a small child which could easily be overlooked. Without appropriate surgery, diaphragmatic hernia might occur. Echocardiographic screening is recommended in patients with CDH. Contrast-enhanced MRA can be helpful in delineation of abnormally tortuous aortic great vessels that are an important clue to the early diagnosis of EDS.« less

  20. International Headache Society classification: new proposals about chronic headache.

    PubMed

    Manzoni, G C; Torelli, P

    2003-05-01

    In the International Headache Society (IHS) classification of 1988, chronic daily headache (CDH) forms are not exhaustively categorized. The forthcoming revision of the classification will include a number of CDH forms that had been reported prior to 1988 or have been identified after that date. In particular, chronic migraine will be added to the classification as a complication of migraine, provided that use of symptomatic drugs does not exceed 10 days per month. In addition to chronic cluster headache and chronic paroxysmal hemicrania, short-lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCT) and hemicrania continua will be comprised among CDH forms with short-lived attacks. Hypnic headache will be included in Group 4 ("Other primary headaches"). No additions will be made to the new IHS classification for forms such as new daily persistent headache (NDPH) and cervicogenic headache as proposed by Sjaastad.

  1. MicroRNAs in hereditary diffuse gastric cancer.

    PubMed

    Suárez-Arriaga, Mayra-Cecilia; Ribas-Aparicio, Rosa-María; Ruiz-Tachiquín, Martha-Eugenia

    2016-08-01

    In 2012, gastric cancer (GC) was the third cause of mortality due to cancer in men and women. In Central and South America, high mortality rates have been reported. A total of 95% of tumors developed in the stomach are of epithelial origin; thus, these are denominated adenocarcinomas of the stomach. Diverse classification systems have been established, among which two types of GC based on histological type and growth pattern have been described as follows: Intestinal (IGC) and diffuse (DGC). Approximately 1-3% of GC cases are associated with heredity. Hereditary-DGC (HDGC), with 80% penetrance, is an autosomal-type, dominant syndrome in which 40% of cases are carriers of diverse mutations of the CDH1 gene, which encodes for the cadherin protein. By contrast, microRNA are non-encoded, single-chain RNA molecules. These molecules regulate the majority of cellular functions at the post-transcriptional level. However, analysis of these interactions by means of Systems Biology has allowed the understanding of complex and heterogeneous diseases, such as cancer. These molecules are ubiquitous; however, their expression can be specific in different tissues either temporarily or permanently, depending on the stage of the cell. Due to the participation of microRNA in the processes of cellular proliferation, cell cycle control, apoptosis, differentiation and metabolism, these have been indicated to have a role in the development of cancerous processes, finding specific patterns of expression in different neoplasms, including GC, in which the microRNA expression profile is different in samples of non-cancerous versus cancerous tissues. A difference has been observed in the expression patterns of DGC and IGC. However, the role of microRNA in HDGC has not yet been established. The present study reviews the investigations that describe the participation of microRNA in the regulation of genes CDH1 , RHOA , CTNNA1 , INSR and TGF -β in different neoplasms, such as HDGC.

  2. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis

    PubMed Central

    Zhang, Jinfang; Wan, Lixin; Dai, Xiangpeng; Sun, Yi; Wei, Wenyi

    2014-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that primarily governs cell cycle progression. APC/C is composed of at least 14 core subunits and recruits its substrates for ubiquitination via one of the two adaptor proteins, Cdc20 or Cdh1, in M or M/early G1 phase, respectively. Furthermore, recent studies have shed light on crucial functions for APC/C in maintaining genomic integrity, neuronal differentiation, cellular metabolism and tumorigenesis. To gain better insight into the in vivo physiological functions of APC/C in regulating various cellular processes, particularly development and tumorigenesis, a number of mouse models of APC/C core subunits, coactivators or inhibitors have been established and characterized. However, due to their essential role in cell cycle regulation, most of the germline knockout mice targeting the APC/C pathway are embryonic lethal, indicating the need for generating conditional knockout mouse models to assess the role in tumorigenesis for each APC/C signaling component in specific tissues. In this review, we will first provide a brief introduction of the ubiquitin-proteasome system (UPS) and the biochemical activities and cellular functions of the APC/C E3 ligase. We will then focus primarily on characterizing genetic mouse models used to understand the physiological roles of each APC/C signaling component in embryogenesis, cell proliferation, development and carcinogenesis. Finally, we discuss future research directions to further elucidate the physiological contributions of APC/C components during tumorigenesis and validate their potentials as a novel class of anti-cancer targets. PMID:24569229

  3. Identification of biomarkers in human head and neck tumor cell lines that predict for in vitro sensitivity to gefitinib.

    PubMed

    Hickinson, D Mark; Marshall, Gayle B; Beran, Garry J; Varella-Garcia, Marileila; Mills, Elizabeth A; South, Marie C; Cassidy, Andrew M; Acheson, Kerry L; McWalter, Gael; McCormack, Rose M; Bunn, Paul A; French, Tim; Graham, Alex; Holloway, Brian R; Hirsch, Fred R; Speake, Georgina

    2009-06-01

    Potential biomarkers were identified for in vitro sensitivity to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib in head and neck cancer. Gefitinib sensitivity was determined in cell lines, followed by transcript profiling coupled with a novel pathway analysis approach. Eleven cell lines were highly sensitive to gefitinib (inhibitor concentration required to give 50% growth inhibition [GI(50)] < 1 microM), three had intermediate sensitivity (GI(50) 1-7 microM), and six were resistant (GI(50) > 7 microM); an exploratory principal component analysis revealed a separation between the genomic profiles of sensitive and resistant cell lines. Subsequently, a hypothesis-driven analysis of Affymetrix data (Affymetrix, Inc., Santa Clara, CA, USA) revealed higher mRNA levels for E-cadherin (CDH1); transforming growth factor, alpha (TGF-alpha); amphiregulin (AREG); FLJ22662; EGFR; p21-activated kinase 6 (PAK6); glutathione S-transferase Pi (GSTP1); and ATP-binding cassette, subfamily C, member 5 (ABCC5) in sensitive versus resistant cell lines. A hypothesis-free analysis identified 46 gene transcripts that were strongly differentiated, seven of which had a known association with EGFR and head and neck cancer (human EGF receptor 3 [HER3], TGF-alpha, CDH1, EGFR, keratin 16 [KRT16], fibroblast growth factor 2 [FGF2], and cortactin [CTTN]). Polymerase chain reaction (PCR) and enzyme-linked immunoabsorbant assay analysis confirmed Affymetrix data, and EGFR gene mutation, amplification, and genomic gain correlated strongly with gefitinib sensitivity. We identified biomarkers that predict for in vitro responsiveness to gefitinib, seven of which have known association with EGFR and head and neck cancer. These in vitro predictive biomarkers may have potential utility in the clinic and warrant further investigation.

  4. Genome-Wide Association Study of d-Amphetamine Response in Healthy Volunteers Identifies Putative Associations, Including Cadherin 13 (CDH13)

    PubMed Central

    Wardle, Margaret C.; Sokoloff, Greta; Stephens, Matthew; de Wit, Harriet; Palmer, Abraham A.

    2012-01-01

    Both the subjective response to d-amphetamine and the risk for amphetamine addiction are known to be heritable traits. Because subjective responses to drugs may predict drug addiction, identifying alleles that influence acute response may also provide insight into the genetic risk factors for drug abuse. We performed a Genome Wide Association Study (GWAS) for the subjective responses to amphetamine in 381 non-drug abusing healthy volunteers. Responses to amphetamine were measured using a double-blind, placebo-controlled, within-subjects design. We used sparse factor analysis to reduce the dimensionality of the data to ten factors. We identified several putative associations; the strongest was between a positive subjective drug-response factor and a SNP (rs3784943) in the 8th intron of cadherin 13 (CDH13; P = 4.58×10−8), a gene previously associated with a number of psychiatric traits including methamphetamine dependence. Additionally, we observed a putative association between a factor representing the degree of positive affect at baseline and a SNP (rs472402) in the 1st intron of steroid-5-alpha-reductase-α-polypeptide-1 (SRD5A1; P = 2.53×10−7), a gene whose protein product catalyzes the rate-limiting step in synthesis of the neurosteroid allopregnanolone. This SNP belongs to an LD-block that has been previously associated with the expression of SRD5A1 and differences in SRD5A1 enzymatic activity. The purpose of this study was to begin to explore the genetic basis of subjective responses to stimulant drugs using a GWAS approach in a modestly sized sample. Our approach provides a case study for analysis of high-dimensional intermediate pharmacogenomic phenotypes, which may be more tractable than clinical diagnoses. PMID:22952603

  5. Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13).

    PubMed

    Hart, Amy B; Engelhardt, Barbara E; Wardle, Margaret C; Sokoloff, Greta; Stephens, Matthew; de Wit, Harriet; Palmer, Abraham A

    2012-01-01

    Both the subjective response to d-amphetamine and the risk for amphetamine addiction are known to be heritable traits. Because subjective responses to drugs may predict drug addiction, identifying alleles that influence acute response may also provide insight into the genetic risk factors for drug abuse. We performed a Genome Wide Association Study (GWAS) for the subjective responses to amphetamine in 381 non-drug abusing healthy volunteers. Responses to amphetamine were measured using a double-blind, placebo-controlled, within-subjects design. We used sparse factor analysis to reduce the dimensionality of the data to ten factors. We identified several putative associations; the strongest was between a positive subjective drug-response factor and a SNP (rs3784943) in the 8(th) intron of cadherin 13 (CDH13; P = 4.58×10(-8)), a gene previously associated with a number of psychiatric traits including methamphetamine dependence. Additionally, we observed a putative association between a factor representing the degree of positive affect at baseline and a SNP (rs472402) in the 1(st) intron of steroid-5-alpha-reductase-α-polypeptide-1 (SRD5A1; P = 2.53×10(-7)), a gene whose protein product catalyzes the rate-limiting step in synthesis of the neurosteroid allopregnanolone. This SNP belongs to an LD-block that has been previously associated with the expression of SRD5A1 and differences in SRD5A1 enzymatic activity. The purpose of this study was to begin to explore the genetic basis of subjective responses to stimulant drugs using a GWAS approach in a modestly sized sample. Our approach provides a case study for analysis of high-dimensional intermediate pharmacogenomic phenotypes, which may be more tractable than clinical diagnoses.

  6. Genetics Home Reference: hereditary diffuse gastric cancer

    MedlinePlus

    ... Pennell E, MacMillan A, Fernandez B, Keller G, Lynch H, Shah SP, Guilford P, Gallinger S, Corso G, Roviello F, Caldas C, Oliveira C, Pharoah PD, Huntsman DG. Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond. JAMA Oncol. 2015 Apr; ...

  7. Chronic daily headache with analgesics overuse in professional women breath-hold divers.

    PubMed

    Choi, Jay Chol; Lee, Jung Seok; Kang, Sa-Yoon; Kang, Ji-Hoon; Bae, Jong-Myon

    2008-07-01

    The object of this study is to investigate the prevalence and characteristics of headache in Korean professional women breath-hold divers, including their overuse of analgesics. Headache is a common problem encountered in clinical practice, and undersea divers exhibit unique causes of headache in addition to other common primary headaches. Many scuba divers are known to use various types of drugs to overcome dive-related symptoms or to enhance their underwater performance. The target population of this study was women divers in the northern district of Jeju Island who were registered in the divers' union. Data were collected using telephone interviews with a structured questionnaire. Headache was diagnosed and classified according to criteria of the International Headache Society. Nine hundred and eleven (80.3%) divers responded to the telephone interview. The prevalence rates of headache were 21.4% for tension-type headache and 9.1% for migraine. One hundred and four divers (11.4%) fulfilled the criteria for chronic daily headache (CDH). Overuse of combination analgesics was reported by 70.7% of divers. Women divers with CDH were significantly older and they complained more of tinnitus and dizziness, and had a greater history of hypertension than divers without headache. The prevalence of CDH is high in Korean professional women breath-hold divers, with many of them being combination-analgesics overusers.

  8. Antenatal assessment of liver position, rather than lung-to-head ratio (LHR) or observed/expected LHR, is predictive of outcome in fetuses with isolated left-sided congenital diaphragmatic hernia.

    PubMed

    Straňák, Zbyněk; Krofta, Ladislav; Haak, Lucia Anna; Vojtěch, Jiří; Hašlík, Luboš; Rygl, Michal; Pýcha, Karel; Feyereisl, Jaroslav

    2017-01-01

    Respiratory morbidity in congenital diaphragmatic hernia (CDH) is associated with high mortality and adverse outcome. Accurate prenatal diagnosis is essential for prognosis and potential treatment in utero. The aim was to evaluate the prenatal ultrasound findings in assessing the respiratory prognosis in fetuses with isolated left-sided CDH. We retrospectively analyzed the medical records of 59 prenatally diagnosed left-sided CDH cases managed at a tertiary perinatal center. Survival rate in the study group was 73% (43/59). We found no statistically significant relationship between survival and the presence of polyhydramnios, gestational age at diagnosis, lung-to-head ratio (LHR) and observed/expected LHR (O/E LHR) values, gestational age at birth and birth weight. Intrathoracic liver herniation was a statistically significant parameter adversely affecting survival (37.2% in survivors, 68.8% in non-survivors, p = 0.031) and logistic regression confirmed this relationship. The presence of pneumothorax and severe pulmonary hypertension were significantly associated with mortality (82% non-survivors versus 15% in survivors, p = 0.0001). Intrathoracic liver herniation seems to be a reliable parameter in the prediction of survival and neonatal respiratory morbidity in fetuses with isolated left-sided CDH. In contrast, we found no significant correlation between perinatal outcome and LHR, O/E LHR values, birth weight and gestational age.

  9. Hypermethylation of CDH13, DKK3 and FOXL2 promoters and the expression of EZH2 in ovary granulosa cell tumors.

    PubMed

    Xu, Yanmei; Li, Xia; Wang, Hongtao; Xie, Pengmu; Yan, Xun; Bai, Yu; Zhang, Tingguo

    2016-09-01

    Aberrant epigenetic modification is associated with the development and progression of cancer. Hypermethylation of tumor suppressor gene promoters and cooperative histone modification have been considered to be the primary mechanisms of epigenetic modification. Ovary granulosa cell tumors (GCTs) are relatively rare, accounting for ~3% of all ovarian malignancies. The present study assessed hypermethylation of the cadherin 13 (CDH13), dickkopf WNT signaling pathway inhibitor 3 (DKK3) and forkhead box L2 (FOXL2) promoters in 30 GCT tissues and 30 healthy control tissues using methylation-specific polymerase chain reaction analysis. The data showed that the frequencies of CDH13, DKK3 and FOXL2 promoter methylation were significantly higher in the GCT tissues, compared with the healthy control tissues (86.67, vs. 23.33%; 80, vs. 26.67% and 66.67, vs. 20%, respectively; P<0.001). Immunostaining of enhancer of zeste homolog 2 (EZH2), a histone H3K27 methyltransferase, showed that the EZH2 protein was expressed in 11 of the 30 GCT tissue samples, whereas no EZH2 protein was expressed in the 30 healthy control tissues (P<0.01). These data suggested that hypermethylation of the CDH13, DKK3 and FOXL2 gene promoters, and overexpression of the EZH2 protein were involved in the development of GCT.

  10. Lung function and pulmonary artery blood flow following prenatal maternal retinoic acid and imatinib in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Burgos, Carmen Mesas; Davey, Marcus G; Riley, John S; Jia, Huimin; Flake, Alan W; Peranteau, William H

    2017-12-19

    Lung and pulmonary vascular maldevelopment in congenital diaphragmatic hernia (CDH) results in significant morbidity and mortality. Retinoic acid (RA) and imatinib have been shown to improve pulmonary morphology following prenatal administration in the rat nitrofen-induced CDH model. It remains unclear if these changes translate into improved function. We evaluated the effect of prenatal RA and imatinib on postnatal lung function, structure, and pulmonary artery (PA) blood flow in the rat CDH model. Olive oil or nitrofen was administered alone or in combination with RA or imatinib to pregnant rats. Pups were assessed for PA blood flow by ultrasound and pulmonary function/morphology following delivery, intubation, and short-term ventilation. Neither RA nor imatinib had a negative effect on lung and body growth. RA accelerated lung maturation indicated by increased alveoli number and thinner interalveolar septa and was associated with decreased PA resistance and improved oxygenation. With the exception of a decreased PA pulsatility index, no significant changes in morphology and pulmonary function were noted following imatinib. Prenatal treatment with RA but not imatinib was associated with improved pulmonary morphology and function, and decreased pulmonary vascular resistance. This study highlights the potential of prenatal pharmacologic therapies, such as RA, for management of CDH. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Downregulation of p300 gene expression in airway mesenchyme of nitrofen-induced hypoplastic lungs.

    PubMed

    Takahashi, Hiromizu; Friedmacher, Florian; Fujiwara, Naho; Hofmann, Alejandro; Takahashi, Toshiaki; Puri, Prem

    2014-04-01

    Congenital diaphragmatic hernia (CDH) is a relatively common developmental abnormality causing life-threatening respiratory distress at birth. The nitrofen model has been widely used to investigate the pathogenesis of hypoplastic lungs associated with CDH. Embryos lacking p300 and CBP genes are significantly smaller in lung formation. We hypothesized that pulmonary gene expression of p300 and CBP is downregulated during late gestation in the nitrofen-induced CDH model. Time-pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetal lungs were harvested on D18 and D21 (n = 8 at each time point). Pulmonary gene expression of p300 and CBP was analyzed by quantitative real-time PCR. Immunohistochemistry was performed to investigate expression and localization of pulmonary p300 and CBP proteins. Relative mRNA expression levels of p300 were significantly decreased in nitrofen-induced hypoplastic lungs on D18 compared to controls (3.00 ± 0.20 vs. 3.76 ± 0.14; p = 0.0039), while CBP levels were not altered. p300 immunoreactivity was markedly diminished in surrounding mesenchymal compartments and nuclei of proximal and distal airway cells, while CBP expression was not altered. Downregulation of p300 gene expression during the early canalicular stage may disrupt epithelial-mesenchymal signaling interactions, contributing to the development of hypoplastic lungs in the nitrofen-induced CDH model.

  12. Hernia Sac Presence Portends Better Survivability of Isolated Congenital Diaphragmatic Hernia with "Liver-Up".

    PubMed

    Grizelj, Ruža; Bojanić, Katarina; Vuković, Jurica; Novak, Milivoj; Weingarten, Toby N; Schroeder, Darrell R; Sprung, Juraj

    2017-04-01

    Objective  The objective of this study was to investigate the prognostic value of a hernia sac in isolated congenital diaphragmatic hernia (CDH) with intrathoracic liver herniation ("liver-up"). Study Design  A retrospective study from the single tertiary center. Isolated "liver-up" CDH neonates referred to our institution between 2000 and 2015 were reviewed for the presence or absence of a hernia sac. Association between the presence of a hernia sac and survival was assessed. Results  Over the study period, there were 29 isolated CDH patients with "liver-up" who were treated, 7 (24%) had a sac, and 22 (76%) did not. Demographics were similar between groups. However, disease acuity, assessed from lower Apgar scores ( p  = 0.044), lower probability of survival ( p  = 0.037), and lower admission oxygenation ( p  = 0.027), was higher in neonates without a sac. Hospital survival was significantly higher for those with sac compared with those without (7/7, 100 vs. 7/22, 32%, p  = 0.002). Conclusion  The presence of a hernia sac may be associated with better survival for isolated "liver-up" CDH. As the presence of sac can be prenatally detected, it may be a useful marker to aid perinatal decision making. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients.

    PubMed

    Patel, Neil

    2012-01-01

    Pulmonary hypertension and secondary cardiac dysfunction are important contributors of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). Milrinone, a phosphodiesterase-3 inhibitor, may be useful in this setting for its combined actions as a pulmonary vasodilator and to improve systolic and diastolic function. This study aimed to assess the effects of milrinone on cardiac function and pulmonary artery pressure in infants with CDH. A retrospective review of echocardiograms performed on infants with CDH who received milrinone was performed. Tissue Doppler imaging velocities were used to assess systolic and diastolic function. Pulmonary artery pressure was assessed from the pattern and velocity of ductal shunting. Six infants with CDH and severe pulmonary hypertension were identified. Systolic and diastolic myocardial velocities were reduced in the right ventricle (RV) and interventricular septum (IVS) at baseline. In the 72 h after commencement of milrinone, there was a significant increase in early diastolic myocardial velocities in the RV, accompanied by increasing systolic velocities in the RV and IVS. Oxygenation index was significantly reduced, blood pressure unchanged, and ductal shunt velocity minimally altered over the same time period. Milrinone use was associated with an improvement in systolic and diastolic function in the RV, corresponding to an improvement in clinical status. Copyright © 2012 S. Karger AG, Basel.

  14. Choice of surgical approach for ossification of the posterior longitudinal ligament in combination with cervical disc hernia.

    PubMed

    Yang, Hai-song; Chen, De-yu; Lu, Xu-hua; Yang, Li-li; Yan, Wang-jun; Yuan, Wen; Chen, Yu

    2010-03-01

    Ossification of the posterior longitudinal ligament (OPLL) is a common spinal disorder that presents with or without cervical myelopathy. Furthermore, there is evidence suggesting that OPLL often coexists with cervical disc hernia (CDH), and that the latter is the more important compression factor. To raise the awareness of CDH in OPLL for spinal surgeons, we performed a retrospective study on 142 patients with radiologically proven OPLL who had received surgery between January 2004 and January 2008 in our hospital. Plain radiograph, three-dimensional computed tomography construction (3D CT), and magnetic resonance imaging (MRI) of the cervical spine were all performed. Twenty-six patients with obvious CDH (15 of segmental-type, nine of mixed-type, two of continuous-type) were selected via clinical and radiographic features, and intraoperative findings. By MRI, the most commonly involved level was C5/6, followed by C3/4, C4/5, and C6/7. The areas of greatest spinal cord compression were at the disc levels because of herniated cervical discs. Eight patients were decompressed via anterior cervical discectomy and fusion (ACDF), 13 patients via anterior cervical corpectomy and fusion (ACCF), and five patients via ACDF combined with posterior laminectomy and fusion. The outcomes were all favorable. In conclusion, surgeons should consider the potential for CDH when performing spinal cord decompression and deciding the surgical approach in patients presenting with OPLL.

  15. Smad1 and WIF1 genes are downregulated during saccular stage of lung development in the nitrofen rat model.

    PubMed

    Fujiwara, Naho; Doi, Takashi; Gosemann, Jan-Hendrik; Kutasy, Balazs; Friedmacher, Florian; Puri, Prem

    2012-02-01

    The exact pathogenesis of pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia (CDH) still remains unclear. Smad1, one of the bone morphogenesis protein (BMP) receptor downstream signaling proteins, plays a key role in organogenesis including lung development and maturation. Smad1 knockout mice display reduced sacculation, an important feature of pulmonary hypoplasia. Wnt inhibitor factor 1 (Wif1) is a target gene of Smad1 in the developing lung epithelial cells (LECs). Smad1 directly regulates Wif1 gene expression and blockade of Smad1 function in fetal LECs is reported to downregulate Wif1 gene expression. We designed this study to test the hypothesis that pulmonary Smad1 and Wif1 gene expression is downregulated during saccular stage of lung development in the nitrofen CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Fetuses were harvested on D18, and D21. Fetal lungs were dissected and divided into 2 groups: control and nitrofen (n = 9 at each time point, respectively). Pulmonary gene expression of Smad1 and Wif1 were analyzed by real-time RT-PCR. Immunohistochemistry was performed to evaluate protein expression/distribution of Smad1 and Wif1. The relative mRNA expression levels of Smad1 and Wif1 were significantly downregulated in the nitrofen group compared to controls on D18 and D21 (*p < 0.01, **p < 0.05). Immunoreactivity of Smad1 and Wif1 was also markedly decreased in nitrofen lungs compared to controls on D18 and D21. We provide evidence, for the first time, that the pulmonary gene expression of Smad1 and Wif1 is downregulated on D18 and D21 (saccular stage of lung development) in the nitrofen-induced hypoplastic lung. These findings suggest that the downregulation of Smad1/Wif1 gene expression may contribute to pulmonary hypoplasia in the nitrofen CDH model by retardation of lung development during saccular stage.

  16. Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients with Gastric Cancer

    PubMed Central

    Sahasrabudhe, Ruta; Lott, Paul; Bohorquez, Mabel; Toal, Ted; Estrada, Ana P.; Suarez, John J.; Brea-Fernández, Alejandro; Cameselle-Teijeiro, José; Pinto, Carla; Ramos, Irma; Mantilla, Alejandra; Prieto, Rodrigo; Corvalan, Alejandro; Norero, Enrique; Alvarez, Carolina; Tapia, Teresa; Carvallo, Pilar; Gonzalez, Luz M.; Cock-Rada, Alicia; Solano, Angela; Neffa, Florencia; Valle, Adriana Della; Yau, Chris; Soares, Gabriela; Borowsky, Alexander; Hu, Nan; He, Li-Ji; Han, Xiao-You; Taylor, Philip R.; Goldstein, Alisa M.; Torres, Javier; Echeverry, Magdalena; Ruiz-Ponte, Clara; Teixeira, Manuel R.; Carvajal Carmona, Luis G.

    2016-01-01

    Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer. PMID:28024868

  17. Health-related quality of life and its determinants in children with a congenital diaphragmatic hernia

    PubMed Central

    2013-01-01

    Background The development of new therapeutics has led to progress in the early management of congenital diaphragmatic hernia (CDH) in pediatric intensive care units (PICU). Little is known about the impact on the quality of life (QoL) of children and their family. The aim of this study was to assess the impact of CDH treated according to the most recent concepts and methods outlined above on child survivors’ QoL and their parents’ QoL. Patients and methods This study incorporated a cross-sectional design performed in two PICU (Marseille, France). Families of CDH survivors born between 1999 and 2008 were eligible. The following data were recorded: socio-demographics, antenatal history and delivery, initial hospitalization history. Self-reported data were collected by mail, including current clinical problems of the children (13-symptom list), children’s QoL (Kidscreen-27 questionnaire), and parents’ QoL (Short-Form 36 questionnaire). Children’s QoL score was compared with controls and QoL of survivors of childhood leukemia. Parent’s QoL was compared with controls. Non-parametric statistics were employed. Results Forty-two families agreed to participate and questionnaires were completed by 32 of them. Twenty-one children had a current clinical problems related to CDH. All the QoL scores of CHD survivors were significantly lower compared with controls. The physical well-being dimension was significantly higher for CHD survivors compared with survivors of childhood leukemia. Gastro-esophageal reflux at discharge, antenatal diagnosis, length of stay in the PICU, and neuropsychological and respiratory issues significantly impacted QoL scores of children. The parents of CHD survivors had significantly poorer score in emotional role dimension compared with controls. Conclusion The impact of CDH on QoL seems to be important and must be understood by clinicians who treat these children and their parents. PMID:23786966

  18. SigCH, an extracytoplasmic function sigma factor of Porphyromonas gingivalis regulates the expression of cdhR and hmuYR.

    PubMed

    Ota, Koki; Kikuchi, Yuichiro; Imamura, Kentaro; Kita, Daichi; Yoshikawa, Kouki; Saito, Atsushi; Ishihara, Kazuyuki

    2017-02-01

    Extracytoplasmic function (ECF) sigma factors play an important role in the bacterial response to various environmental stresses. Porphyromonas gingivalis, a prominent etiological agent in human periodontitis, possesses six putative ECF sigma factors. So far, information is limited on the ECF sigma factor, PGN_0319. The aim of this study was to investigate the role of PGN_0319 (SigCH) of P. gingivalis, focusing on the regulation of hmuY and hmuR, which encode outer-membrane proteins involved in hemin utilization, and cdhR, a transcriptional regulator of hmuYR. First, we evaluated the gene expression profile of the sigCH mutant by DNA microarray. Among the genes with altered expression levels, those involved in hemin utilization were downregulated in the sigCH mutant. To verify the microarray data, quantitative reverse transcription PCR analysis was performed. The RNA samples used were obtained from bacterial cells grown to early-log phase, in which sigCH expression in the wild type was significantly higher than that in mid-log and late-log phases. The expression levels of hmuY, hmuR, and cdhR were significantly decreased in the sigCH mutant compared to wild type. Transcription of these genes was restored in a sigCH complemented strain. Compared to the wild type, the sigCH mutant showed reduced growth in log phase under hemin-limiting conditions. Electrophoretic mobility shift assays showed that recombinant SigCH protein bound to the promoter region of hmuY and cdhR. These results suggest that SigCH plays an important role in the early growth of P. gingivalis, and directly regulates cdhR and hmuYR, thereby playing a potential role in the mechanisms of hemin utilization by P. gingivalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. RhoA-ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells.

    PubMed

    Ordóñez-Morán, Paloma; Larriba, María Jesús; Pálmer, Héctor G; Valero, Ruth A; Barbáchano, Antonio; Duñach, Mireia; de Herreros, Antonio García; Villalobos, Carlos; Berciano, María Teresa; Lafarga, Miguel; Muñoz, Alberto

    2008-11-17

    The active vitamin D metabolite 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits proliferation and promotes differentiation of colon cancer cells through the activation of vitamin D receptor (VDR), a transcription factor of the nuclear receptor superfamily. Additionally, 1,25(OH)(2)D(3) has several nongenomic effects of uncertain relevance. We show that 1,25(OH)(2)D(3) induces a transcription-independent Ca(2+) influx and activation of RhoA-Rho-associated coiled kinase (ROCK). This requires VDR and is followed by activation of the p38 mitogen-activated protein kinase (p38MAPK) and mitogen- and stress-activated kinase 1 (MSK1). As shown by the use of chemical inhibitors, dominant-negative mutants and small interfering RNA, RhoA-ROCK, and p38MAPK-MSK1 activation is necessary for the induction of CDH1/E-cadherin, CYP24, and other genes and of an adhesive phenotype by 1,25(OH)(2)D(3). RhoA-ROCK and MSK1 are also required for the inhibition of Wnt-beta-catenin pathway and cell proliferation. Thus, the action of 1,25(OH)(2)D(3) on colon carcinoma cells depends on the dual action of VDR as a transcription factor and a nongenomic activator of RhoA-ROCK and p38MAPK-MSK1.

  20. Intrinsic catch-up growth of hypoplastic fetal lungs is mediated by interleukin-6.

    PubMed

    Nogueira-Silva, Cristina; Moura, Rute S; Esteves, Nuno; Gonzaga, Sílvia; Correia-Pinto, Jorge

    2008-07-01

    Fetal lung hypoplasia is a common finding in several fetal conditions such as congenital diaphragmatic hernia (CDH). Interestingly, previous studies have demonstrated that hypoplastic lungs have the ability to recover to normal size, when relieved from mechanical factors. However, the underlying mechanisms remain largely unknown. Recently, interleukin-6 (IL-6) has been involved in catch-up growth phenomenon in children. Thus, we hypothesized that IL-6 could mediate fetal growth recover from hypoplastic lungs. Control and nitrofen-induced hypoplastic lung explants were cultured either in normal conditions or with IL-6 neutralizing antibodies. The total number of peripheral airway buds, epithelial perimeter, and total explant area were analyzed and daily branching rates were calculated. Additionally, IL-6 mRNA and protein expression was assessed both in qualitative (by in situ hybridization and immunohistochemistry) and in quantitative (by real-time PCR and Western blot) approaches, in control and hypoplastic lungs (nitrofen and CDH groups). Nitrofen-induced hypoplastic lungs showed in vitro, out of systemic environment, the ability to recover from hypoplasia and presented daily branching rates significantly higher than controls. Blocking IL-6 activity significantly diminished the intrinsic capacity of hypoplastic fetal lungs to recover from hypoplasia and attenuated their daily branching rates. Although more exacerbated in CDH, both nitrofen-exposed lungs presented significant IL-6 mRNA and protein over-expression throughout all studied gestational ages. The present study suggests, for the first time, that fetal lung is able to recover from growth retardation through a way that resembles the catch-up growth phenomenon, and it seems to be, at least partially, orchestrated by intrinsic mechanisms implicating IL-6.

  1. Fibrillin-1 Expression Is Decreased in the Diaphragmatic Muscle Connective Tissue of Nitrofen-Induced Congenital Diaphragmatic Hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2017-02-01

    Introduction  Diaphragmatic morphogenesis depends on proper formation of muscle connective tissue (MCT) and underlying extracellular matrix (ECM). Fibrillin-1 is an essential ECM protein and crucial for the structural integrity of MCT in the developing diaphragm. Recently, mutations in the fibrillin-1 gene (FBN1) have been identified in cases of congenital diaphragmatic hernia (CDH), thus suggesting that alterations in FBN1 gene expression may lead to diaphragmatic defects. We designed this study to investigate the hypothesis that the diaphragmatic expression of fibrillin-1 is decreased in the MCT of nitrofen-induced CDH. Materials and Methods  Time-mated rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms ( n  = 72) were harvested on D13, D15, and D18, and divided into control and nitrofen-exposed specimens. Laser-capture microdissection was used to obtain diaphragmatic tissue cells. Gene expression levels of FBN1 were analyzed by qRT-PCR. Immunofluorescence-double-staining for fibrillin-1 and the mesenchymal marker Gata4 was performed to evaluate protein expression and localization. Results  Relative mRNA expression of FBN1 was significantly decreased in pleuroperitoneal folds on D13 (3.39 ± 1.29 vs. 5.47 ± 1.92; p  < 0.05), developing diaphragms on D15 (2.48 ± 0.89 vs. 4.03 ± 1.62; p  < 0.05), and fully muscularized diaphragms on D18 (2.49 ± 0.69 vs. 3.93 ± 1.55; p  < 0.05) of nitrofen-exposed fetuses compared with controls. Confocal-laser-scanning microscopy revealed markedly diminished fibrillin-1 immunofluorescence mainly in MCT, associated with a reduction of proliferating mesenchymal cells in nitrofen-exposed fetuses on D13, D15, and D18 compared with controls. Conclusions  Decreased expression of fibrillin-1 during morphogenesis of the fetal diaphragm may disrupt mesenchymal cell proliferation, causing malformed MCT and thus resulting in diaphragmatic defects in the nitrofen-induced CDH model. Georg Thieme Verlag KG Stuttgart · New York.

  2. Biochemical characterization of native Usher protein complexes from a vesicular subfraction of tracheal epithelial cells.

    PubMed

    Zallocchi, Marisa; Sisson, Joseph H; Cosgrove, Dominic

    2010-02-16

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in nondetergent buffer and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15, and VLGR-1 and a different one at the top of the gradient that included all of the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100-200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins cosediment into the gradient at a sedimentation coefficient of approximately 50 S, correlating with a predicted molecular mass of 2 x 10(6) Da. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher protein complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors.

  3. BIOCHEMICAL CHARACTERIZATION OF NATIVE USHER PROTEIN COMPLEXES FROM A VESICULAR SUBFRACTION OF TRACHEAL EPITHELIAL CELLS†

    PubMed Central

    Zallocchi, Marisa; Sisson, Joseph H.; Cosgrove, Dominic

    2010-01-01

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells, and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in non-detergent buffer, and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15 and VLGR-1, and a different one at the top of the gradient that included all the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100–200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins co-sediment into the gradient at a sedimentation coefficient of approximately 50S, correlating with a predicted molecular mass of 2 × 106 Daltons. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher proteins complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors. PMID:20058854

  4. A Novel High-Throughput 3D Screening System for EMT Inhibitors: A Pilot Screening Discovered the EMT Inhibitory Activity of CDK2 Inhibitor SU9516.

    PubMed

    Arai, Kazuya; Eguchi, Takanori; Rahman, M Mamunur; Sakamoto, Ruriko; Masuda, Norio; Nakatsura, Tetsuya; Calderwood, Stuart K; Kozaki, Ken-Ichi; Itoh, Manabu

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a crucial pathological event in cancer, particularly in tumor cell budding and metastasis. Therefore, control of EMT can represent a novel therapeutic strategy in cancer. Here, we introduce an innovative three-dimensional (3D) high-throughput screening (HTS) system that leads to an identification of EMT inhibitors. For the establishment of the novel 3D-HTS system, we chose NanoCulture Plates (NCP) that provided a gel-free micro-patterned scaffold for cells and were independent of other spheroid formation systems using soft-agar. In the NCP-based 3D cell culture system, A549 lung cancer cells migrated, gathered, and then formed multiple spheroids within 7 days. Live cell imaging experiments showed that an established EMT-inducer TGF-β promoted peripheral cells around the core of spheroids to acquire mesenchymal spindle shapes, loss of intercellular adhesion, and migration from the spheroids. Along with such morphological change, EMT-related gene expression signatures were altered, particularly alteration of mRNA levels of ECAD/CDH1, NCAD/CDH2, VIM and ZEB1/TCF8. These EMT-related phenotypic changes were blocked by SB431542, a TGF-βreceptor I (TGFβR1) inhibitor. Inside of the spheroids were highly hypoxic; in contrast, spheroid-derived peripheral migrating cells were normoxic, revealed by visualization and quantification using Hypoxia Probe. Thus, TGF-β-triggered EMT caused spheroid hypoplasia and loss of hypoxia. Spheroid EMT inhibitory (SEMTIN) activity of SB431542 was calculated from fluorescence intensities of the Hypoxia Probe, and then was utilized in a drug screening of EMT-inhibitory small molecule compounds. In a pilot screening, 9 of 1,330 compounds were above the thresholds of the SEMTIN activity and cell viability. Finally, two compounds SB-525334 and SU9516 showed SEMTIN activities in a dose dependent manner. SB-525334 was a known TGFβR1 inhibitor. SU9516 was a cyclin-dependent kinase 2 (CDK2) inhibitor, which we showed also had an EMT-inhibitory activity. The half maximal inhibitory concentration (IC50) of SB-525334 and SU9516 were 0.31 μM and 1.21 μM, respectively, while IC50 of SB431542 was 2.38 μM. Taken together, it was shown that this 3D NCP-based HTS system was useful for screening of EMT-regulatory drugs.

  5. Usher syndrome type 1–associated cadherins shape the photoreceptor outer segment

    PubMed Central

    Parain, Karine; Aghaie, Asadollah; Picaud, Serge

    2017-01-01

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. PMID:28495838

  6. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment.

    PubMed

    Schietroma, Cataldo; Parain, Karine; Estivalet, Amrit; Aghaie, Asadollah; Boutet de Monvel, Jacques; Picaud, Serge; Sahel, José-Alain; Perron, Muriel; El-Amraoui, Aziz; Petit, Christine

    2017-06-05

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis , these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23 , encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. © 2017 Schietroma et al.

  7. Hypotrichosis and juvenile macular dystrophy caused by CDH3 mutation: A candidate disease for retinal gene therapy.

    PubMed

    Singh, Mandeep S; Broadgate, Suzanne; Mathur, Ranjana; Holt, Richard; Halford, Stephanie; MacLaren, Robert E

    2016-05-09

    Hypotrichosis with juvenile macular dystrophy (HJMD) is an autosomal recessive disorder that causes childhood visual impairment. HJMD is caused by mutations in CDH3 which encodes cadherin-3, a protein expressed in retinal pigment epithelium (RPE) cells that may have a key role in intercellular adhesion. We present a case of HJMD and analyse its phenotypic and molecular characteristics to assess the potential for retinal gene therapy as a means of preventing severe visual loss in this condition. Longitudinal in vivo imaging of the retina showed the relative anatomical preservation of the macula, which suggested the presence of a therapeutic window for gene augmentation therapy to preserve visual acuity. The coding sequence of CDH3 fits within the packaging limit of recombinant adeno-associated virus vectors that have been shown to be safe in clinical trials and can efficiently target RPE cells. This report expands the number of reported cases of HJMD and highlights the phenotypic characteristics to consider when selecting candidates for retinal gene therapy.

  8. Choice of surgical approach for ossification of the posterior longitudinal ligament in combination with cervical disc hernia

    PubMed Central

    Yang, Hai-song; Lu, Xu-hua; Yang, Li–li; Yan, Wang-jun; Yuan, Wen; Chen, Yu

    2009-01-01

    Ossification of the posterior longitudinal ligament (OPLL) is a common spinal disorder that presents with or without cervical myelopathy. Furthermore, there is evidence suggesting that OPLL often coexists with cervical disc hernia (CDH), and that the latter is the more important compression factor. To raise the awareness of CDH in OPLL for spinal surgeons, we performed a retrospective study on 142 patients with radiologically proven OPLL who had received surgery between January 2004 and January 2008 in our hospital. Plain radiograph, three-dimensional computed tomography construction (3D CT), and magnetic resonance imaging (MRI) of the cervical spine were all performed. Twenty-six patients with obvious CDH (15 of segmental-type, nine of mixed-type, two of continuous-type) were selected via clinical and radiographic features, and intraoperative findings. By MRI, the most commonly involved level was C5/6, followed by C3/4, C4/5, and C6/7. The areas of greatest spinal cord compression were at the disc levels because of herniated cervical discs. Eight patients were decompressed via anterior cervical discectomy and fusion (ACDF), 13 patients via anterior cervical corpectomy and fusion (ACCF), and five patients via ACDF combined with posterior laminectomy and fusion. The outcomes were all favorable. In conclusion, surgeons should consider the potential for CDH when performing spinal cord decompression and deciding the surgical approach in patients presenting with OPLL. PMID:20012451

  9. Loss of Cardio-Protective Effects at the CDH13 Locus Due to Gene-Sleep Interaction: The BCAMS Study.

    PubMed

    Li, Ge; Feng, Dan; Wang, Yonghui; Fu, Junling; Han, Lanwen; Li, Lujiao; Grant, Struan F A; Li, Mingyao; Li, Ming; Gao, Shan

    2018-06-12

    Left ventricular mass index (LVMI) provides a metric for cardiovascular disease risk. We aimed to assess the association of adiponectin-related genetic variants resulting from GWAS in East Asians (loci in/near CDH13, ADIPOQ, WDR11FGF, CMIP and PEPD) with LVMI, and to examine whether sleep duration modified these genetic associations in youth. The 559 subjects aged 15-28 years were recruited from the Beijing Child and Adolescent Metabolic Syndrome study. Among the six loci, CDH13 rs4783244 was significantly correlated with adiponectin levels (p = 8.07 × 10 -7 ). The adiponectin-rising allele in rs4783244 locus was significantly associated with decreased LVMI (p = 6.99 × 10 -4 ) after adjusting for classical cardiovascular risk factors, and further for adiponectin levels, while no significant association was found between the other loci and LVMI. Moreover, we observed a significant interaction effect between rs4783244 and sleep duration (p = .005) for LVMI; the genetic association was more evident in long sleep duration while lost in short sleep duration. Similar interaction was found in the subgroup analysis using longitudinal data (p = .025 for interaction). In this young Chinese population, CDH13 rs4783244 represents a key locus for cardiac structure, and confers stronger cardio-protection in longer sleep duration when contrasted with short sleep duration. Copyright © 2018. Published by Elsevier B.V.

  10. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion

    PubMed Central

    A.P., Sudheesh

    2017-01-01

    ABSTRACT Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3′-end processing and expression of pre-mRNAs encoding key anti-invasive factors (KISS1R, CDH1, NME1, CDH13, FEZ1, and WIF1) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP–PIPKIα-mediated 3′-end processing as a key anti-invasive mechanism in breast cancer. PMID:29203642

  11. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion.

    PubMed

    A P, Sudheesh; Laishram, Rakesh S

    2018-03-01

    Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3'-end processing and expression of pre-mRNAs encoding key anti-invasive factors ( KISS1R , CDH1 , NME1 , CDH13 , FEZ1 , and WIF1 ) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP-PIPKIα-mediated 3'-end processing as a key anti-invasive mechanism in breast cancer. Copyright © 2018 A.P. and Laishram.

  12. [Controversies in the therapeutical management of congenital diaphragmatic hernia: update by means of evidence-based medicine].

    PubMed

    Salguero, E; González de Dios, J; García del Rio, M; Sánchez Díaz, F

    2005-10-01

    Congenital diaphragmatic hernia (CDH) is one of the high-risk diseases in neonatal surgery. The aim of this article is to make an update of the controversies about the therapeutic management (time of surgery and modalities of medical stabilization) of CDH, by means of a systematic and critical review of the best scientific evidence in bibliography. Systematic and structured review of the articles about therapeutic management of CDH (surgery, mechanical ventilation, inhaled nitric oxide, extracorporeal membrane oxygenation, surfactant, etc) published in secondary (TRIPdatabase, systematic review in Cochrane Collaboration, clinical practice guidelines, health technology assessment database, etc) and primary (bibliographic databases, biomedical journals, books, etc) publications and critical appraisal by means of methodology of the Evidence-Based Medicine Working Group. We selected the publications with the main scientific evidence in therapeutical articles (clinical trial, systematic review, meta-analysis and clinical practice guideline). The main secondary information is found in The Cochrane Library: 3 systematic review in the Neonatal Group (one specific about the time of surgery, and two related to the use of nitric oxide and extracorporeal membrane oxygenation in neonatal severe respiratory failure). But we found the main relevant articles in Pubmed database, mainly published in Journal Pediatric Surgery and with some clusters of investigation (Congenital Diaphragmatic Hernia Study Group in Texas University and Buffalo Institute of Fetal Therapy in New York University). From the evidence-based analysis, the results of CDH management between immediate versus delayed surgery were unclear, but delayed surgical (with pre-operative stabilization) has become preferred approach in many centers, and foetal surgery is not better than neonatal one. Opinion regarding the time of surgery has gradually shifted from early repair to a policy of stabilization and delayed repair. Because of associated persistent pulmonary hypertension and/or pulmonary hypoplasia in CDH, medical therapy is focused toward optimizing oxygenation while avoiding barotrauma, using gentle ventilation and permissive hypercarbia. High frequency oscillatory ventilation, inhaled nitric oxide and extracorporeal membrane oxygenation are used in severe cases, but these treatments do not clearly improve the outcome in neonates with CDH. The usefulness of surfactant and partial liquid ventilation are based in animal model experimentation, because the clinical trials in newborns are little and non-conclusive. Challenges for the future in this thematic area include the need for bigger and better trials of therapy in this field, with long-term outcomes among surviving children.

  13. Identifying neonates at a very high risk for mortality among children with congenital diaphragmatic hernia managed with extracorporeal membrane oxygenation.

    PubMed

    Haricharan, Ramanath N; Barnhart, Douglas C; Cheng, Hong; Delzell, Elizabeth

    2009-01-01

    The purpose of this study was to identify mortality risk factors in children with congenital diaphragmatic hernia (CDH) treated with extracorporeal membrane oxygenation (ECMO) and generate a prediction score for those at a very high risk for mortality. Data on first ECMO runs of all neonates with CDH, between January 1997 and June 2007, were obtained from the Extracorporeal Life Support Organization registry (N = 2678). The data were split into "training data (TD)" (n = 2006) and "validation data" (n = 672). The primary outcome analyzed was in-hospital mortality. Modified Poisson regression was used for analyses. Overall in-hospital mortality among 2678 neonates (males, 57%; median age at ECMO, 1 day) was 52%. The univariate and multivariable analyses were performed using TD. An empirically weighted mortality prediction score was generated with possible scores ranging from 0 to 35 points. Of 69 who scored 14 or higher in the TD, 62 died (positive predictive value [PPV], 90%), of 37 with 15 or higher, 35 died (PPV, 95%), of 23 with 16 or higher, 22 died (PPV, 96%). A cut-off point of 15 was chosen and was tested using the separate validation dataset. In validation data, the cut-off point 15 had a PPV of 96% (23 died of 24). Scoring 15 or higher on the prediction score identifies neonates with CDH at a very high risk for mortality among those managed with ECMO and could be used in surgical decision making and counseling.

  14. Abnormal platelet-derived growth factor signaling accounting for lung hypoplasia in experimental congenital diaphragmatic hernia.

    PubMed

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2010-10-01

    The pathogenesis of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH) is not fully understood. Platelet-derived growth factor A (PDGFA) and platelet-derived growth factor receptor α (PDGFRα) play a crucial role in lung development. It has been reported that PDGF induces H(2)O(2)-production and that oxidative stress may be an important mechanism for the impaired lung development in the nitrofen rat model. We hypothesized that pulmonary expression of PDGFA and PDGFRα is altered in the nitrofen induced CDH model. Pregnant rats received 100 mg nitrofen or vehicle on gestational day 9 (D9) and were sacrificed on D15, D18 or D21. RNA was extracted from fetal left lungs and mRNA levels of PDGFA and PDGFRα were determined using real-time polymerase chain reaction. Immunohistochemistry for protein expression of PDGFA and PDGFRα was performed. Pulmonary H(2)O(2) was measured colorimetrically. mRNA levels of PDGFRα at D15 (4.50 ± 0.87) and PDGFA at D18 (2.90 ± 1.38) were increased in the nitrofen group (P < .05). Immunohistochemistry revealed increased pulmonary expression of PDGFRα and PDGFA. H(2)O(2) content was significantly higher in the nitrofen group. Increased expression of PDGFA and PDGFRα suggests that pulmonary hypoplasia in the nitrofen CDH model may be owing to PDGF-induced oxidative stress during lung development. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Migraine may be a risk factor for the development of complex regional pain syndrome

    PubMed Central

    Peterlin, BL; Rosso, AL; Nair, S; Young, WB; Schwartzman, RJ

    2014-01-01

    The aim was to assess the relative frequency of migraine and the headache characteristics of complex regional pain syndrome (CRPS) sufferers. CRPS and migraine are chronic, often disabling pain syndromes. Recent studies suggest that headache is associated with the development of CRPS. Consecutive adults fulfilling International Association for the Study of Pain criteria for CRPS at a pain clinic were included. Demographics, medical history, and pain characteristics were obtained. Headache diagnoses were made using International Classification of Headache Disorders, 2nd edn criteria. Migraine and pain characteristics were compared in those with migraine with those without. ANOVA with Tukey post hoc tests was used to determine the significance of continuous variables and Fisher’s exact or χ2 tests for categorical variables. The expected prevalence of migraine and chronic daily headache (CDH) was calculated based on age- and gender-stratified general population estimates. Standardized morbidity ratios (SMR) were calculated by dividing the observed prevalence of migraine by the expected prevalence from the general population. The sample consisted of 124 CRPS participants. The mean age was 45.5 ± 12.0 years. Age-and gender-adjusted SMRs showed that those with CRPS were 3.6 times more likely to have migraine and nearly twice as likely to have CDH as the general population. Aura was reported in 59.7% (74/124) of participants. Of those CRPS sufferers with migraine, 61.2% (41/67) reported the onset of severe headaches before the onset of CRPS symptoms Mean age of onset of CRPS was earlier in those with migraine (34.9 ± 11.1 years) and CDH (32.5 ± 13.4 years) compared with those with no headaches (46.8 ± 14.9 years) and those with tension-type headache (TTH) (39.9 ± 9.9 years), P < 0.05. More extremities were affected by CRPS in participants with migraine (median of four extremities) compared with the combined group of those CRPS sufferers with no headaches or TTH (median 2.0 extremities), P < 0.05. The presence of static, dynamic and deep joint mechanoallodynia together was reported by more CRPS participants with migraine (72.2%) than those with no headaches or TTH (46.2%), P ≤ 0.05. Migraine may be a risk factor for CRPS and the presence of migraine may be associated with a more severe form of CRPS. Specifically: (i) migraine occurs in a greater percentage of CRPS sufferers than expected in the general population; (ii) the onset of CRPS is reported earlier in those with migraine than in those without; and (iii) CRPS symptoms are present in more extremities in those CRPS sufferers with migraine compared with those without. In addition, as we also found that the presence of aura is reported in a higher percentage of those CRPS sufferers with migraine than reported in migraineurs in the general population, further evaluation of the cardiovascular risk profile of CRPS sufferers is warranted. PMID:19614690

  16. A superlinear convergence estimate for an iterative method for the biharmonic equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, M.A.

    In [CDH] a method for the solution of boundary value problems for the biharmonic equation using conformal mapping was investigated. The method is an implementation of the classical method of Muskhelishvili. In [CDH] it was shown, using the Hankel structure, that the linear system in [Musk] is the discretization of the identify plus a compact operator, and therefore the conjugate gradient method will converge superlinearly. The purpose of this paper is to give an estimate of the superlinear convergence in the case when the boundary curve is in a Hoelder class.

  17. [Effect of ambroxol on lung development of rat models with nitrofen-induced congenital diaphragmatic hernia].

    PubMed

    Qiao, Ying-li; Chen, Gong; Xiao, Xian-min; Zheng, Shan; Chen, Lian

    2010-09-14

    To investigate the effects of ambroxol on rat models with nitrofen-induced congenital diaphragmatic hernia (CDH) and its potential mechanism. Nine pregnant female SD rats were randomly divided into 3 groups at Day 9.5: 2 ml olive oil intragastrically in control group (2 rats) and 200 mg nitrofen in nitrofen (2 rats) and ambroxol groups (5 rats). Antenatal ambroxol was given intraperitoneally to ambroxol group at Days 18.5, 19.5 and 20.5 of gestation while control and nitrofen groups only received intraperitoneal normal saline. At Day 21.5 the fetuses were delivered by cesarean section. Incidence of hernia, lung weight/body weight (LW/BW), mean terminal branch density (MTBD), percentage of lung alveolar area (PLAA), percentage of wall thickness (MT%) and the expression of TGF-β1 were observed. There were 19 CDH fetuses in nitrofen group (68.4%). The incidence of hernia in ambroxol group was 65.1% (28/43). There was no significant difference (P>0.05) between two groups. LW/BW and PLAA decreased while MTBD and MT% increased significantly in the nitrofen group versus the control group [(45±6) mg/g vs (60±7) mg/g, (50.1±4.0)% vs (58.4±3.0)%, (14.0±1.8) vs (8.5±1.1), (45±6)% vs (29±6)%, all P=0.001]. After ambroxol intervention, the ambroxol group showed a higher PLAA but a lower MTBD and MT% [(54.0±2.0)%, (12.2±2.1), (39±4)%] than those in the nitrofen group (P=0.001, 0.006, 0.002). The expression of TGF-β1 in pulmonary tissues of the nitrofen group was significantly higher than that in the control group (13,594±3113 vs 9447±1355, P=0.001). It decreased after ambroxol intervention (10 015±818, P=0.01). Though with no effect upon the occurrence of CDH in rats, the administration of ambroxol may improve the pulmonary maturity. The down-regulated expression of TGF-β1 and the oxidative stability are possible mechanisms.

  18. Frequency of Usher syndrome type 1 in deaf children by massively parallel DNA sequencing

    PubMed Central

    Yoshimura, Hidekane; Miyagawa, Maiko; Kumakawa, Kozo; Nishio, Shin-ya; Usami, Shin-ichi

    2016-01-01

    Usher syndrome type 1 (USH1) is the most severe of the three USH subtypes due to its profound hearing loss, absent vestibular response and retinitis pigmentosa appearing at a prepubescent age. Six causative genes have been identified for USH1, making early diagnosis and therapy possible through DNA testing. Targeted exon sequencing of selected genes using massively parallel DNA sequencing (MPS) technology enables clinicians to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using MPS along with direct sequence analysis, we screened 227 unrelated non-syndromic deaf children and detected recessive mutations in USH1 causative genes in five patients (2.2%): three patients harbored MYO7A mutations and one each carried CDH23 or PCDH15 mutations. As indicated by an earlier genotype–phenotype correlation study of the CDH23 and PCDH15 genes, we considered the latter two patients to have USH1. Based on clinical findings, it was also highly likely that one patient with MYO7A mutations possessed USH1 due to a late onset age of walking. This first report describing the frequency (1.3–2.2%) of USH1 among non-syndromic deaf children highlights the importance of comprehensive genetic testing for early disease diagnosis. PMID:26791358

  19. Frequency of Usher syndrome type 1 in deaf children by massively parallel DNA sequencing.

    PubMed

    Yoshimura, Hidekane; Miyagawa, Maiko; Kumakawa, Kozo; Nishio, Shin-Ya; Usami, Shin-Ichi

    2016-05-01

    Usher syndrome type 1 (USH1) is the most severe of the three USH subtypes due to its profound hearing loss, absent vestibular response and retinitis pigmentosa appearing at a prepubescent age. Six causative genes have been identified for USH1, making early diagnosis and therapy possible through DNA testing. Targeted exon sequencing of selected genes using massively parallel DNA sequencing (MPS) technology enables clinicians to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using MPS along with direct sequence analysis, we screened 227 unrelated non-syndromic deaf children and detected recessive mutations in USH1 causative genes in five patients (2.2%): three patients harbored MYO7A mutations and one each carried CDH23 or PCDH15 mutations. As indicated by an earlier genotype-phenotype correlation study of the CDH23 and PCDH15 genes, we considered the latter two patients to have USH1. Based on clinical findings, it was also highly likely that one patient with MYO7A mutations possessed USH1 due to a late onset age of walking. This first report describing the frequency (1.3-2.2%) of USH1 among non-syndromic deaf children highlights the importance of comprehensive genetic testing for early disease diagnosis.

  20. Purification and Characterization of Schwann Cells from Adult Human Skin and Nerve

    PubMed Central

    Stratton, Jo Anne; Shah, Prajay; Shapira, Yuval; Midha, Rajiv

    2017-01-01

    Abstract Despite its modest capacity for regeneration, peripheral nervous system injury often results in significant long-term disability. Supplementing peripheral nervous system injury with autologous Schwann cells (SCs) may serve to rejuvenate the postinjury environment to enhance regeneration and ultimately improve functional outcomes. However, human nerve-derived SC (hN-SC) collection procedures require invasive surgical resection. Here, we describe the characterization of SCs from adult human skin (hSk-SCs) of four male donors ranging between 27 and 46 years old. Within five weeks of isolating and culturing adherent mixed skin cells, we were able to obtain 3–5 million purified SCs. We found that hSk-SCs appeared transcriptionally indistinguishable from hN-SCs with both populations exhibiting expression of SC genes including: SOX10, SOX9, AP2A1, CDH19, EGR1, ETV5, PAX3, SOX2, CX32, DHH, NECL4, NFATC4, POU3F1, S100B, and YY1. Phenotypic analysis of hSk-SCs and hN-SCs cultures revealed highly enriched populations of SCs indicated by the high percentage of NES+ve, SOX10+ve, s100+ve and p75+ve cells, as well as the expression of a battery of other SC-associated proteins (PAX3, CDH19, ETV5, SOX2, POU3F1, S100B, EGR2, and YY1). We further show that both hSk-SCs and hN-SCs are capable of promoting axonal growth to similar degrees and that a subset of both associate with regenerating axons and form myelin following transplantation into the injured mouse sciatic nerve. Interestingly, although the majority of both hSk-SCs and hN-SCs maintained SOX10 immunoreactivity following transplant, only a subset of each activated the promyelinating factor, POU3F1, and were able to myelinate. Taken together, we demonstrate that adult hSk-SCs are genetically and phenotypically indistinguishable to hN-SCs. PMID:28512649

  1. The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma.

    PubMed

    Cappellesso, Rocco; Marioni, Gino; Crescenzi, Marika; Giacomelli, Luciano; Guzzardo, Vincenza; Mussato, Alessio; Staffieri, Alberto; Martini, Alessandro; Blandamura, Stella; Fassina, Ambrogio

    2015-10-01

    Laryngeal squamous cell carcinoma (LSCC) prognosis is definitely related to lymph node metastasis. Epithelial-mesenchymal transition (EMT) allows neoplastic cells to gain the plasticity and motility required for tumour progression and metastasis. The aim of this study was to investigate the role of EMT in the prognosis of LSCC. Immunohistochemical analysis of E-cadherin, N-cadherin, Snail, Slug, ZEB1, and ZEB2 was performed in 37 consecutive LSCC cases. Low E-cadherin levels and high Slug levels correlated with both disease recurrence (P = 0.02 and P =0.01, respectively) and shorter disease-free survival (DFS) (P = 0.04 and P = 0.02, respectively). Relative expression levels of CDH1, SNAI2, miR-1 and the miR-200 family were also evaluated. CDH1, miR-200a and miR-200c down-regulation and SNAI2 overexpression were significantly associated with disease recurrence (P = 0.03, P = 0.02, P = 0.04, and P = 0.04, respectively). EMT increases tumour recurrence risk and shortens DFS in LSCC. E-cadherin and Slug immunohistochemical analysis could be useful for identifying patients requiring more aggressive treatment after surgery. © 2015 John Wiley & Sons Ltd.

  2. Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients With Gastric Cancer.

    PubMed

    Sahasrabudhe, Ruta; Lott, Paul; Bohorquez, Mabel; Toal, Ted; Estrada, Ana P; Suarez, John J; Brea-Fernández, Alejandro; Cameselle-Teijeiro, José; Pinto, Carla; Ramos, Irma; Mantilla, Alejandra; Prieto, Rodrigo; Corvalan, Alejandro; Norero, Enrique; Alvarez, Carolina; Tapia, Teresa; Carvallo, Pilar; Gonzalez, Luz M; Cock-Rada, Alicia; Solano, Angela; Neffa, Florencia; Della Valle, Adriana; Yau, Chris; Soares, Gabriela; Borowsky, Alexander; Hu, Nan; He, Li-Ji; Han, Xiao-You; Taylor, Philip R; Goldstein, Alisa M; Torres, Javier; Echeverry, Magdalena; Ruiz-Ponte, Clara; Teixeira, Manuel R; Carvajal-Carmona, Luis G

    2017-04-01

    Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Gata-6 expression is decreased in diaphragmatic and pulmonary mesenchyme of fetal rats with nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2018-03-01

    Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia are thought to be caused by a malformation of the underlying diaphragmatic and airway mesenchyme. GATA binding protein 6 (Gata-6) is a zinc finger-containing transcription factor that plays a crucial role during diaphragm and lung development. In the primordial diaphragm, Gata-6 expression is restricted to mesenchymal compartments of the pleuroperitoneal folds (PPFs). In addition, Gata-6 is essential for airway branching morphogenesis through upregulation of mesenchymal signaling. Recently, mutations in Gata-6 have been linked to human CDH. We hypothesized that diaphragmatic and pulmonary Gata-6 expression is decreased in the nitrofen-induced CDH model. Time-mated rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms (n = 72) and lungs (n = 48) were microdissected on selected timepoints D13, D15 and D18, and divided into control and nitrofen-exposed specimens (n = 12 per sample, timepoint and experimental group, respectively). Diaphragmatic and pulmonary gene expression of Gata-6 was analyzed by qRT-PCR. Immunofluorescence-double staining for Gata-6 was combined with the diaphragmatic mesenchymal marker Gata-4 and the pulmonary mesenchymal marker Fgf-10 to evaluate protein expression and localization in fetal diaphragms and lungs. Relative mRNA expression levels of Gata-6 were significantly decreased in PPFs on D13 (0.57 ± 0.21 vs. 2.27 ± 1.30; p < 0.05), developing diaphragms (0.94 ± 0.59 vs. 2.28 ± 1.89; p < 0.05) and lungs (0.56 ± 0.16 vs. 0.71 ± 0.39; p < 0.05) on D15 and fully muscularized diaphragms (1.20 ± 1.10 vs. 2.52 ± 1.86; p < 0.05) and differentiated lungs (0.56 ± 0.05 vs. 0.77 ± 0.14; p < 0.05) on D18 of nitrofen-exposed fetuses compared to controls. Confocal laser scanning microscopy demonstrated markedly diminished immunofluorescence of Gata-6 mainly in diaphragmatic and pulmonary mesenchyme, which was associated with a reduction of proliferating mesenchymal cells in nitrofen-exposed fetuses on D13, D15, and D18 compared to controls. Decreased Gata-6 expression during diaphragmatic development and lung branching morphogenesis may disrupt mesenchymal cell proliferation, causing malformed PPFs and reduced airway branching, thus leading to diaphragmatic defects and pulmonary hypoplasia in the nitrofen-induced CDH model.

  4. Is there a role for antioxidants in prevention of pulmonary hypoplasia in nitrofen-induced rat model of congenital diaphragmatic hernia?

    PubMed

    Cigdem, Murat Kemal; Kizil, Goksel; Onen, Abdurrahman; Kizil, Murat; Nergiz, Yusuf; Celik, Yusuf

    2010-04-01

    Many studies suggest a role for antioxidants in the prevention of lung hypoplasia in nitrofen-induced rat models with congenital diaphragmatic hernia (CDH). This study investigates the oxidative status and the histological outcome of prenatal administration of vitamins E and C with synergistic effect, and effect of N-acetylcysteine (NAC) to improve lung maturation of nitrofen-induced rats. CDH was induced by maternal administration of a single oral dose of nitrofen on day 9.5 of gestation, and the Sprague-Dawley rats were randomly divided into five groups: nitrofen (N), nitrofen + vitamin C (NC), nitrofen + vitamin E (NE), nitrofen + vitamin C + vitamin E (NCE) and nitrofen + NAC (NNAC). A control group in which only vehicle was administered was included. Cesarean section was performed on day 21. Body weight (BW) and total lung weight (LW) of all fetuses with CDH were recorded; lung histological evaluation was performed, and protein content of lungs, determination of thiobarbituric acid reactive substances, and the protein carbonyls in tissue samples were determined. A total of 133 rat fetuses with CDH were investigated. The body weight and the lung weight of fetuses of all groups that were exposed to nitrofen were significantly decreased than of the control group (P < 0.05). The animals exposed to nitrofen with different antioxidants showed increased protein levels in lung tissue. However, in the NCE and the NNAC groups, protein levels were significantly increased than in the others. Malondialdehyde levels significantly decreased in the NCE and the NNAC groups when compared with the NC and the NE groups. In addition, the NCE and NNAC groups decreased protein oxidation to control levels, and no significant difference was observed between control and these two antioxidants groups. The N, NC, NE and NNAC groups showed minimal improvement in lung histology; the NCE groups showed the most improvement in lung histology when compared with the other nitrofen plus antioxidant groups. Prenatal administration of NAC and vitamin E in combination with vitamin C represented the best effects to avoid oxidative damage and protein content of the lungs in rat pups with CDH at birth.

  5. DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells.

    PubMed

    Rajabi, H; Tagde, A; Alam, M; Bouillez, A; Pitroda, S; Suzuki, Y; Kufe, D

    2016-12-15

    Aberrant expression of the DNA methyltransferases (DNMTs) and disruption of DNA methylation patterns are associated with carcinogenesis and cancer cell survival. The oncogenic MUC1-C protein is aberrantly overexpressed in diverse carcinomas; however, there is no known link between MUC1-C and DNA methylation. Our results demonstrate that MUC1-C induces the expression of DNMT1 and DNMT3b, but not DNMT3a, in breast and other carcinoma cell types. We show that MUC1-C occupies the DNMT1 and DNMT3b promoters in complexes with NF-κB p65 and drives DNMT1 and DNMT3b transcription. In this way, MUC1-C controls global DNA methylation as determined by analysis of LINE-1 repeat elements. The results further demonstrate that targeting MUC1-C downregulates DNA methylation of the CDH1 tumor suppressor gene in association with induction of E-cadherin expression. These findings provide compelling evidence that MUC1-C is of functional importance to induction of DNMT1 and DNMT3b and, in turn, changes in DNA methylation patterns in cancer cells.

  6. Pax3 gene expression is not altered during diaphragmatic development in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Gosemann, Jan-Hendrik; Doi, Takashi; Kutasy, Balazs; Friedmacher, Florian; Dingemann, Jens; Puri, Prem

    2012-06-01

    Malformations of the pleuroperitoneal folds (PPFs) have been identified as the origin of the diaphragmatic defect in congenital diaphragmatic hernia (CDH). Pax3, expressed in muscle precursor cells (MPCs), plays a key role in regulating myogenesis and muscularization in the fetal diaphragm. Pax3 mutant mice display absence of muscular diaphragm. However, the distribution of muscle precursor cells is reported to be normal in the PPF of the nitrofen-CDH model. We designed this study to investigate the hypothesis that Pax3 gene expression is unaltered in the PPF and developing diaphragm in the nitrofen-induced CDH model. Pregnant rats were treated with nitrofen or vehicle on gestational day (D) 9 and sacrificed on D13, D18, and D21. Pleuroperitoneal folds (D13) and developing diaphragms (D18 and D21) were dissected, total RNA was extracted, and real-time quantitative polymerase chain reaction was performed to determine Pax3 messenger RNA levels. Confocal immunofluorescence microscopy was performed to evaluate protein expression/distribution of Pax3. Relative messenger RNA expression levels of Pax3 in PPFs and developing diaphragms were not significantly different in the nitrofen group compared with controls. Intensity of Pax3 immunofluorescence was also not altered in PPFs and developing diaphragms of the nitrofen group compared with controls. Pax3 gene expression is not altered in the PPFs and developing diaphragm of nitrofen-CDH model, suggesting that the diaphragmatic defect is not caused by disturbance of myogenesis and muscularization. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Effect of Perflubron-induced lung growth on pulmonary vascular remodeling in congenital diaphragmatic hernia.

    PubMed

    Shah, Mansi; Phillips, Michael R; Bryner, Benjamin; Hirschl, Ronald B; Mychaliska, George B; McLean, Sean E

    2016-06-01

    Congenital diaphragmatic hernia (CDH) involves lung hypoplasia and pulmonary hypertension (PH). Post-natal Perflubron ventilation induces lung growth. This phenomenon is called Perflubon-induced lung growth (PILG). However, it does not appear to ameliorate PH in CDH. We aim to determine the effect of PILG on pulmonary vascular remodeling in neonates with CDH and PH requiring extracorporeal membrane oxygenation (ECMO). Lung tissue from four patients was obtained, three treated with PILG + ECMO, and one maintained on conventional ventilation + ECMO (control). The distribution of collagen was assessed with Masson's trichrome stain. Immunohistochemistry was done to assess cell proliferation and immunofluorescence to assess vascular morphology. Comparing PILG vs. control, there was an increase in vessel wall diameter (6.85 μm, 10.28 μm, and 10.35 μm vs. 4.34 μm), increase in collagen thickness in two PILG patients (35.66 μm, 14.23 μm, and 38.46 μm vs. 22.16 μm), and decrease in lumen diameter despite similar total area (48.99 μm, 41.74 μm, and 36.32 μm vs. 51.56 μm) for each PILG patient vs. the control patient, respectively. PILG does not appear to improve pulmonary vascular remodeling that occurs with PH. The findings are descriptive and will require larger samples to validate the significance of the findings. Overall, further studies will be required to identify the mechanistic causes of PH in CDH to create effective treatments.

  8. Lithosphere-to-Ionosphere Plug-and-Play Architecture (LION-PNP): Networking the Physical World Made Cheap and Easy

    NASA Astrophysics Data System (ADS)

    Darling, N. T.; Mendez, J. S.; Fritz, T. A.; Hoffman, C.

    2012-12-01

    The lack of rapidly reconfigurable and easily deployable instrumentation packages often results in information loss during unannounced or time-critical geophysical events such as spaceweather flare-ups, earthquakes, volcanic eruptions, and tsunamis. While increasingly powerful and sensitive sensor technologies have been created in the last years to study our planet, robust, yet simple and cost-effective, mechanical, electrical, and data interfaces between these devices and the user (scientist) have yet to be developed. Non-standardized interfaces make instrument integration and field operation cumbersome and error-prone. Indeed, the assembly and deployment of some systems can take months and incur high costs. To address this problem, we present the LIthosphere-to-IOnosphere Plug-aNd-Play architecture (LION-PNP), a complete, low cost integration protocol for space, atmospheric, and terrestrial sensor networks. Similar to the USB plug-and-play protocols created for personal computers, LION-PNP offers geophysicists and space scientists the ability to assemble and operate complex sensor packages by simply "plugging" devices (magnetometers, seismometers, GPS, spectrometers, etc) into a centralized Command and Data Handling unit (CDH). LION-PNP accomplishes this by inserting a Generic Sensor Interpreter (GSI) between the back-end of a device and the CDH. The GSI allows the CDH to automatically configure a sensor without requiring the user to manually install drivers. Mechanical integration is also accelerated by repackaging instruments according to the CubeSAT form-factor (multiples of 10 x 10 x 10 cm cubes). In the following work, we report on the development of LION-PNP. To demonstrate our initial success, we first discuss the Boston University Student-satellite for Applications and Training (BUSAT), a low-cost, modular, spaceweather satellite running LION-PNP. BUSAT is a completely student-driven project meant for magnetospheric-ionospheric research incorporating 4 scientific payloads. To further stress the broad applicability of LION-PNP we also present VolcanoNET, a ground-based, multi-sensor package that will explore charging of volcanic ash plumes and volcanic lightning.; The Boston University Student satellite for Applications and Training (BUSAT) canisterized scientific satellite concept.

  9. Proliferative defects and formation of a double cortex in mice lacking Mltt4 and Cdh2 in the dorsal telencephalon.

    PubMed

    Gil-Sanz, Cristina; Landeira, Bruna; Ramos, Cynthia; Costa, Marcos R; Müller, Ulrich

    2014-08-06

    Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we show that the adherens junction proteins afadin and CDH2 are critical for the control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telencephalon leads to a phenotype resembling subcortical band heterotopia, also known as "double cortex," a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype. Copyright © 2014 the authors 0270-6474/14/3410475-13$15.00/0.

  10. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma

    PubMed Central

    Yucesoy, Berran; Kaufman, Kenneth M.; Lummus, Zana L.; Weirauch, Matthew T.; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M.; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B.; Bernstein, David I.

    2015-01-01

    Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10−14). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10−9 and rs2514805, p = 1.22 × 10−8, respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10−6). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies. PMID:25918132

  11. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2006-09-01

    WNT and FGF signaling pathways cross-talk during a variety of cellular processes, such as human colorectal carcinogenesis, mouse mammary tumor virus (MMTV)-induced carcinogenesis, E2A-Pbx-induced leukemogenesis, early embryogenesis, body-axis formation, limb-bud formation, and neurogenesis. Canonical WNT signals are transduced through Frizzled receptor and LRP5/6 coreceptor to downregulate GSK3beta (GSK3B) activity not depending on Ser 9 phosphorylation. FGF signals are transduced through FGF receptor to the FRS2-GRB2-GAB1-PI3K-AKT signaling cascade to downregulate GSK3beta activity depending on Ser 9 phosphorylation. Because GSK3beta-dependent phosphorylation of beta-catenin and SNAIL leads to FBXW1 (betaTRCP)-mediated ubiquitination and degradation, GSK3beta downregulation results in the stabilization and the nuclear accumulation of beta-catenin and SNAIL. Nuclear beta-catenin is complexed with TCF/LEF, Legless (BCL9 or BCL9L) and PYGO (PYGO1 or PYGO2) to activate transcription of CCND1, MYC, FGF18 and FGF20 genes for the cell-fate determination. Nuclear SNAIL represses transcription of CDH1 gene, encoding E-cadherin, to induce the epithelial-mesenchymal transition (EMT). Mammary carcinogenesis in MMTV-Wnt1 transgenic mice is accelerated by MMTV infection due to MMTV integration around Fgf3-Fgf4 or Fgf8 loci, and mammary carcinogenesis in MMTV-Fgf3 transgenic mice due to MMTV integration around Wnt1-Wnt10b locus. Coactivation of WNT and FGF signaling pathways in tumors leads to more malignant phenotypes. Single nucleotide polymorphism (SNP) and copy number polymorphism (CNP) of WNT and FGF signaling molecules could be utilized as screening method of cancer predisposition. cDNA-PCR, microarray or ELISA reflecting aberrant activation of WNT and FGF signaling pathways could be developed as novel cancer-related biomarkers for diagnosis, prognosis, and therapy. Cocktail therapy using WNT and FGF inhibitors, such as small-molecule compounds and human neutralizing antibodies, should be developed to increase the efficacy of chemotherapy through the inhibition of recurrence by destructing cancer stem cells.

  12. Piston-pump-type high frequency oscillatory ventilation for neonates with congenital diaphragmatic hernia: a new protocol.

    PubMed

    Tamura, M; Tsuchida, Y; Kawano, T; Honna, T; Ishibashi, R; Iwanaka, T; Morita, Y; Hashimoto, H; Tada, H; Miyasaka, K

    1988-05-01

    High frequency ventilation and extracorporeal membrane oxygenation (ECMO) are devices that are expected to save the lives of newborn infants whose pulmonary conditions have deteriorated. A piston-pump-type high-frequency oscillator (HFO), developed by Bryan and Miyasaka called "Hummingbird," is considered to be superior to high frequency "jet" ventilators or those of the flow-interrupter type, and was used successfully in two neonates with congenital diaphragmatic hernia (CDH) in a high-risk group. The first baby was on a conventional ventilator with pharmacologic support for the first 54 hours and then operated on. Postoperative deterioration necessitated the use of HFO for the next eight days. The infant then recovered uneventfully. For the second baby, HFO was necessary both preoperatively and postoperatively. This baby had a major diaphragmatic defect and her case was complicated with pneumothorax. There was a long stormy course on HFO (total, 70 days), but the patient was successfully extubated on the 75th day postoperatively and is now doing well. We believe active long preoperative stabilization with pharmacologic support and preoperative and postoperative hyperventilation with a piston-pump-type HFO may be a new innovative strategy for the management of severe CDH patients.

  13. SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration.

    PubMed

    Sundararajan, Lakshmi; Norris, Megan L; Lundquist, Erik A

    2015-05-28

    The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration. Copyright © 2015 Sundararajan et al.

  14. SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration

    PubMed Central

    Sundararajan, Lakshmi; Norris, Megan L.; Lundquist, Erik A.

    2015-01-01

    The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration. PMID:26022293

  15. The association of rs4307059 and rs35678 markers with autism spectrum disorders is replicated in Italian families.

    PubMed

    Prandini, Paola; Pasquali, Alessandra; Malerba, Giovanni; Marostica, Andrea; Zusi, Chiara; Xumerle, Luciano; Muglia, Pierandrea; Da Ros, Lucio; Ratti, Emiliangelo; Trabetti, Elisabetta; Pignatti, Pier Franco

    2012-08-01

    The objective of this study was to replicate an association study on a newly collected Italian autism spectrum disorder (ASD) cohort by studying the genetic markers associated with ASDs from recent genome-wide and candidate gene association studies. We have genotyped 746 individuals from 227 families of the Italian Autism Network using allelic discrimination TaqMan assays for seven common single-nucleotide polymorphisms: rs2292813 (SLC25A12 gene), rs35678 (ATP2B2 gene), rs4307059 (between CDH9 and CDH10 genes), rs10513025 (between SEMA5A and TAS2R1 genes), rs6872664 (PITX1 gene), rs1861972 (EN2 gene), and rs4141463 (MACROD2 gene). A family-based association study was conducted. A significant association was found for two of seven markers: rs4307059 T allele (odds ratio: 1.758, SE=0.236; P-value=0.017) and rs35678 TC genotype (odds ratio: 0.528, SE=0.199; P-value=0.0013). A preferential allele transmission of two markers located at loci previously associated with social and verbal communication skill has been confirmed in patients of a new ASD family sample.

  16. High-temperature CW and pulsed operation in constricted double-heterojunction AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.; Connolly, J. C.; Gilbert, D. B.

    1981-01-01

    The behavior of constricted double-heterojunction (CDH) diode lasers has been investigated up to 170 C CW and 270 C pulsed. It is found that the temperature-dependent current concentration effect responsible for low threshold-current sensitivity and temperature-invariant external differential quantum efficiency in CDH lasers saturates at about 100 C. It is also found that over a wide temperature interval (180-280 C) the threshold current density has a To value of 40-50 C and that the spontaneous emission becomes increasingly sublinear above 220 C. Both effects are believed to reflect Auger recombination.

  17. Novel metastatic models of esophageal adenocarcinoma derived from FLO-1 cells highlight the importance of E-cadherin in cancer metastasis.

    PubMed

    Liu, David S; Hoefnagel, Sanne J M; Fisher, Oliver M; Krishnadath, Kausilia K; Montgomery, Karen G; Busuttil, Rita A; Colebatch, Andrew J; Read, Matthew; Duong, Cuong P; Phillips, Wayne A; Clemons, Nicholas J

    2016-12-13

    There is currently a paucity of preclinical models available to study the metastatic process in esophageal cancer. Here we report FLO-1, and its isogenic derivative FLO-1LM, as two spontaneously metastatic cell line models of human esophageal adenocarcinoma. We show that FLO-1 has undergone epithelial-mesenchymal transition and metastasizes following subcutaneous injection in mice. FLO-1LM, derived from a FLO-1 liver metastasis, has markedly enhanced proliferative, clonogenic, anti-apoptotic, invasive, immune-tolerant and metastatic potential. Genome-wide RNAseq profiling revealed a significant enrichment of metastasis-related pathways in FLO-1LM cells. Moreover, CDH1, which encodes the adhesion molecule E-cadherin, was the most significantly downregulated gene in FLO-1LM compared to FLO-1. Consistent with this, repression of E-cadherin expression in FLO-1 cells resulted in increased metastatic activity. Importantly, reduced E-cadherin expression is commonly reported in esophageal adenocarcinoma and independently predicts poor patient survival. Collectively, these findings highlight the biological importance of E-cadherin activity in the pathogenesis of metastatic esophageal adenocarcinoma and validate the utility of FLO-1 parental and FLO-1LM cells as preclinical models of metastasis in this disease.

  18. The Upturned Superior Mesenteric Artery Sign for First-Trimester Detection of Congenital Diaphragmatic Hernia and Omphalocele.

    PubMed

    Lakshmy, Ravi Selvaraj; Agnees, Joy; Rose, Nity

    2017-03-01

    The aim of this study was to follow the course of the superior mesenteric artery (SMA) in first-trimester fetuses to predict the location of the small bowel. Its abnormal course aids in early detection of congenital diaphragmatic hernia (CDH) and assessment of the contents of omphalocele. The SMA can be easily identified in a sagittal section of the fetus by using color Doppler sonography at the 11- to 14-week scan, and normally, it has a downward course caudally to supply the intestines. The course of the SMA points to the location of the bowel. We report a series of 7 cases detected in first trimester with an abnormal course of the SMA, 3 of which had CDH and 4 of which had omphalocele. In CDH, the intestines herniate into the thoracic cavity; hence, the SMA tends to have an upward course toward the thorax. In 4 cases of omphalocele, the SMA follows the exteriorized bowel into the base of the umbilical cord. Second-trimester sonography for detection of congenital malformations is a standardized protocol, but a careful anatomic survey at the 11- to 14-week scan is often rewarding. When there is a suspicion of an intrathoracic mass or a mediastinal shift, the upturned course of SMA serves as a valuable sign in confirmation of CDH. Chromosomal abnormalities are often reported in cases of omphalocele containing small bowel only, and the upward course of the SMA toward the base of the cord helps in its early prenatal diagnosis, which facilitates early genetic assessment in these fetuses. © 2017 by the American Institute of Ultrasound in Medicine.

  19. The Real Difference between Biotic and Abiotic Methane

    NASA Astrophysics Data System (ADS)

    Cao, X.; Bao, H.; Peng, Y.

    2017-12-01

    Methane has both biotic and abiotic origins, and the identification of these two origins has important implications not only in understanding terrestrial processes but also in searching for extraterrestrial life. Carbon and hydrogen isotopes in methane have been used to identify certain biosignatures, but such efforts often suffer from ambiguity. Recent advancement in our capability in measuring multiply substituted isotopologues of methane (i.e. 13CDH3 and 12CD2H2) has found large 12CD2H2 depletion in abiotic methane. Quantum tunneling has been proposed to account for the apparent abiotic signature. However, quantum tunneling is neither unique to abiotic processes nor consistent with the observed not-so-depleted hydrogen isotope composition. Here we constructed a general kinetic model for methane formation from CO2, and validated it by fitting its parameters to observed 13CDH3, 12CD2H2, and 12CDH3. Our model revealed that the fundamental difference between biotic and abiotic methane isotopic signatures is in the source of hydrogens during methane formation. Hydrogens in biotic methane originate from the stronger carbon-hydrogen and sulfur-hydrogen bonds, while hydrogens in abiotic methane originate from the much weaker metal-hydrogen adsorption bond. This hydrogen source difference results in abiotic methane being more depleted in 12CD2H2 than the biotic one. Our model also shows that the primary kinetic hydrogen isotope effect is at approximately 0.6 for both abiotic and biotic pathways, a normal value further nullifying the role of quantum tunneling. The active and exclusive shuttling of reduced hydrogen via strong chemical bonds like carbon-hydrogen and sulfur-hydrogen in coenzymes is proposed here to be a unique signature of life. In an ironic sense, it is the equilibrated hydrogen isotope composition in the hydrogen donors that distinguishes the living from the non-living.

  20. Persistent activation of interlinked type 2 airway epithelial gene networks in sputum-derived cells from aeroallergen-sensitized symptomatic asthmatics.

    PubMed

    Jones, Anya C; Troy, Niamh M; White, Elisha; Hollams, Elysia M; Gout, Alexander M; Ling, Kak-Ming; Kicic, Anthony; Stick, Stephen M; Sly, Peter D; Holt, Patrick G; Hall, Graham L; Bosco, Anthony

    2018-01-24

    Atopic asthma is a persistent disease characterized by intermittent wheeze and progressive loss of lung function. The disease is thought to be driven primarily by chronic aeroallergen-induced type 2-associated inflammation. However, the vast majority of atopics do not develop asthma despite ongoing aeroallergen exposure, suggesting additional mechanisms operate in conjunction with type 2 immunity to drive asthma pathogenesis. We employed RNA-Seq profiling of sputum-derived cells to identify gene networks operative at baseline in house dust mite-sensitized (HDM S ) subjects with/without wheezing history that are characteristic of the ongoing asthmatic state. The expression of type 2 effectors (IL-5, IL-13) was equivalent in both cohorts of subjects. However, in HDM S -wheezers they were associated with upregulation of two coexpression modules comprising multiple type 2- and epithelial-associated genes. The first module was interlinked by the hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3 and mucociliary clearance genes. Our findings provide new insight into the molecular mechanisms operative at baseline in the airway mucosa in atopic asthmatics undergoing natural aeroallergen exposure, and suggest that susceptibility to asthma amongst these subjects involves complex interactions between type 2- and epithelial-associated gene networks, which are not operative in equivalently sensitized/exposed atopic non-asthmatics.

Top