Sample records for complex adenovirus vector

  1. Protection of Nonhuman Primates Against Two Species of Ebola Virus Infection With a Single Complex Adenovirus Vector

    DTIC Science & Technology

    2010-04-01

    glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus -based vector (CAdVax). We evaluated our vaccine ...recombinant complex adenovirus vaccine (CAdVax) system, which provides multivalent protection of NHPs against multiple species of filoviruses (33). The...CAdVax vaccine platform is based on a complex, replication-defective adenovirus 5 (Ad5) vector (28–30, 37, 38) that allows for the incorporation of

  2. Increased tumor localization and reduced immune response to adenoviral vector formulated with the liposome DDAB/DOPE.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Abu-Asab, Mones S; Tsokos, Maria; Morris, John C; Kalle, Wouter H J

    2007-04-01

    We aimed to increase the efficiency of adenoviral vectors by limiting adenoviral spread from the target site and reducing unwanted host immune responses to the vector. We complexed adenoviral vectors with DDAB-DOPE liposomes to form adenovirus-liposomal (AL) complexes. AL complexes were delivered by intratumoral injection in an immunocompetent subcutaneous rat tumor model and the immunogenicity of the AL complexes and the expression efficiency in the tumor and other organs was examined. Animals treated with the AL complexes had significantly lower levels of beta-galactosidase expression in systemic tissues compared to animals treated with the naked adenovirus (NA) (P<0.05). The tumor to non-tumor ratio of beta-galactosidase marker expression was significantly higher for the AL complex treated animals. NA induced significantly higher titers of adenoviral-specific antibodies compared to the AL complexes (P<0.05). The AL complexes provided protection (immunoshielding) to the adenovirus from neutralizing antibody. Forty-seven percent more beta-galactosidase expression was detected following intratumoral injection with AL complexes compared to the NA in animals pre-immunized with adenovirus. Complexing of adenovirus with liposomes provides a simple method to enhance tumor localization of the vector, decrease the immunogenicity of adenovirus, and provide protection of the virus from pre-existing neutralizing antibodies.

  3. Modification of liposomal concentration in liposome/adenoviral complexes allows significant protection of adenoviral vectors from neutralising antibody, in vitro.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel J; Kalle, Wouter H J

    2005-06-01

    Adenoviral vectors have been commonly used in gene therapy protocols, however the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced which limits further administration. This study examines the efficacy of complexing liposomes to adenovirus for the protection of the adenovirus from neutralising antibodies in an in vitro setting. Dimethyldioctadecylammonium bromide (DDAB)-dioleoyl-l-phosphatidylethanolamine (DOPE) liposomes were bound at varying concentrations to adenovirus to form AL complexes and tested these complexes' ability to prevent adenoviral neutralisation. It is shown that by increasing the concentration of liposomes in the adenoviral-liposome (AL) complexes we can increase the level of immuno-shielding afforded the adenovirus. It is also shown that the increase in liposomal concentration may lead to drawbacks such as increased cytotoxicity and reductions in expression levels.

  4. Microsphere-liposome complexes protect adenoviral vectors from neutralising antibody without losses in transfection efficiency, in-vitro.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Kalle, Wouter H J

    2004-11-01

    Adenoviral vectors have been commonly used in gene therapy protocols but the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced, which limits further administration. This study examines the effectiveness of a novel combination of microspheres and liposomes for the shielding of adenovirus from neutralising antibodies in an in-vitro setting. We show that liposomes are effective in the protection of adenovirus from neutralising antibody and that the conjugation of these complexes to microspheres augments the level of protection. This study further reveals that previously neutralised adenovirus may still be transported into the cell via liposome-cell interactions and is still capable of expressing its genes, making this vector an effective tool for circumvention of the humoral immune response. We also looked at possible side effects of using the complexes, namely increases in cytotoxicity and reductions in transfection efficiency. Our results showed that varying the liposome:adenovirus ratio can reduce the cytotoxicity of the vector as well as increase the transfection efficiency. In addition, in cell lines that are adenoviral competent, transfection efficiencies on par with uncomplexed adenoviral vectors were achievable with the combination vector.

  5. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    PubMed Central

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; Borducchi, Erica N.; Iampietro, M. Justin; Bricault, Christine A.; Teigler, Jeffrey E.; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A.; Zhao, Guoyan; Virgin, Herbert W.; Korber, Bette

    2014-01-01

    ABSTRACT Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. PMID:25410856

  6. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    PubMed

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE PAGES

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; ...

    2014-11-19

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  8. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  9. In-vitro evaluation of ion-exchange microspheres for the sustained release of liposomal-adenoviral conjugates.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel; Kalle, Wouter H J

    2004-03-24

    This study looks at the development of a novel combination vector consisting of adenovirus conjugated to liposomes (AL complexes) bound to cation-exchanging microspheres (MAL complexes). With adenovirus having a net negative charge and the liposomes a net positive charge it was possible to modify the net charge of the AL complexes by varying the concentrations of adenovirus to liposomes. The modification of the net charge resulted in altered binding and release characteristics. Of the complexes tested, the 5:1 and 2:1 ratio AL complexes were able to be efficiently bound by the microspheres and exhibited sustained release over 24 h. The 1:1 and 1:2 AL complexes, however, bound poorly to the microspheres and were rapidly released. In addition the MAL complexes also were able to reduce the toxicity of the AL complexes, which was seen with the 10:1 ratio. The AL complexes showed considerably more toxicity alone than in combination with microspheres, highlighting a potential benefit of this vector.

  10. Local Delivery of Gene Vectors From Bare-Metal Stents by Use of a Biodegradable Synthetic Complex Inhibits In-Stent Restenosis in Rat Carotid Arteries

    PubMed Central

    Fishbein, Ilia; Alferiev, Ivan; Bakay, Marina; Stachelek, Stanley J.; Sobolewski, Peter; Lai, Meizan; Choi, Hoon; Chen, I.-W.; Levy, Robert J.

    2012-01-01

    Background Local drug delivery from polymer-coated stents has demonstrated efficacy for preventing in-stent restenosis; however, both the inflammatory effects of polymer coatings and concerns about late outcomes of drug-eluting stent use indicate the need to investigate innovative approaches, such as combining localized gene therapy with stent angioplasty. Thus, we investigated the hypothesis that adenoviral vectors (Ad) could be delivered from the bare-metal surfaces of stents with a synthetic complex for reversible vector binding. Methods and Results We synthesized the 3 components of a gene vector binding complex: (1) A polyallylamine bisphosphonate with latent thiol groups (PABT), (2) a polyethyleneimine (PEI) with pyridyldithio groups for amplification of attachment sites [PEI(PDT)], and (3) a bifunctional (amine- and thiol-reactive) cross-linker with a labile ester bond (HL). HL-modified Ad attached to PABT/PEI(PDT)-treated steel surfaces demonstrated both sustained release in vitro over 30 days and localized green fluorescent protein expression in rat arterial smooth muscle cell cultures, which were not sensitive to either inhibition by neutralizing anti-Ad antibodies or inactivation after storage at 37°C. In rat carotid studies, deployment of steel stents configured with PABT/PEI(PDT)/HL-tethered adenoviral vectors demonstrated both site-specific arterial AdGFP expression and adenovirus-luciferase transgene activity per optical imaging. Rat carotid stent delivery of adenovirus encoding inducible nitric oxide synthase resulted in significant inhibition of restenosis. Conclusions Reversible immobilization of adenovirus vectors on the bare-metal surfaces of endovascular stents via a synthetic complex represents an efficient, tunable method for sustained release of gene vectors to the vasculature. PMID:18413497

  11. Hexons from adenovirus serotypes 5 and 48 differentially protect adenovirus vectors from neutralization by mouse and human serum

    PubMed Central

    Harmon, Andrew W.; Moitra, Rituparna; Xu, Zhili

    2018-01-01

    Adenovirus vectors are widely used in gene therapy clinical trials, and preclinical studies with these vectors are often conducted in mice. It is therefore critical to understand whether mouse studies adequately predict the behavior of adenovirus vectors in humans. The most commonly-used adenovirus vectors are derived from adenovirus serotype 5 (Ad5). The Ad5 hexon protein can bind coagulation factor X (FX), and binding of FX has a major impact on vector interactions with other blood proteins. In mouse serum, FX protects Ad5 vectors from neutralization by natural antibodies and complement. In the current study, we similarly find that human FX inhibits neutralization of Ad5 vectors by human serum, and this finding is consistent among individual human sera. We show that human IgM and human IgG can each induce complement-mediated neutralization when Ad5 vectors are not protected by FX. Although mouse and human serum had similar effects on Ad5 vectors, we found that this was not true for a chimeric Ad5 vector that incorporated hexon regions from adenovirus serotype 48. Interestingly, this hexon-chimeric vector was neutralized by human serum, but not by mouse serum. These findings indicate that studies in mouse serum accurately predict the behavior of Ad5 vectors in human serum, but mouse serum is not an accurate model system for all adenovirus vectors. PMID:29401488

  12. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    PubMed

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  13. Recent advances in genetic modification of adenovirus vectors for cancer treatment.

    PubMed

    Yamamoto, Yuki; Nagasato, Masaki; Yoshida, Teruhiko; Aoki, Kazunori

    2017-05-01

    Adenoviruses are widely used to deliver genes to a variety of cell types and have been used in a number of clinical trials for gene therapy and oncolytic virotherapy. However, several concerns must be addressed for the clinical use of adenovirus vectors. Selective delivery of a therapeutic gene by adenovirus vectors to target cancer is precluded by the widespread distribution of the primary cellular receptors. The systemic administration of adenoviruses results in hepatic tropism independent of the primary receptors. Adenoviruses induce strong innate and acquired immunity in vivo. Furthermore, several modifications to these vectors are necessary to enhance their oncolytic activity and ensure patient safety. As such, the adenovirus genome has been engineered to overcome these problems. The first part of the present review outlines recent progress in the genetic modification of adenovirus vectors for cancer treatment. In addition, several groups have recently developed cancer-targeting adenovirus vectors by using libraries that display random peptides on a fiber knob. Pancreatic cancer-targeting sequences have been isolated, and these oncolytic vectors have been shown by our group to be associated with a higher gene transduction efficiency and more potent oncolytic activity in cell lines, murine models, and surgical specimens of pancreatic cancer. In the second part of this review, we explain that combining cancer-targeting strategies can be a promising approach to increase the clinical usefulness of oncolytic adenovirus vectors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

    PubMed Central

    Li, Wenyan; Shen, Jun

    2016-01-01

    Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172

  15. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials.

    PubMed

    Kallel, Héla; Kamen, Amine A

    2015-05-01

    Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Modifications of adenovirus hexon allow for either hepatocyte detargeting or targeting with potential evasion from Kupffer cells.

    PubMed

    Prill, Jan-Michael; Espenlaub, Sigrid; Samen, Ulrike; Engler, Tatjana; Schmidt, Erika; Vetrini, Francesco; Rosewell, Amanda; Grove, Nathan; Palmer, Donna; Ng, Philip; Kochanek, Stefan; Kreppel, Florian

    2011-01-01

    In vivo gene transfer with adenovirus vectors would significantly benefit from a tight control of the adenovirus-inherent liver tropism. For efficient hepatocyte transduction, adenovirus vectors need to evade from Kupffer cell scavenging while delivery to peripheral tissues or tumors could be improved if both scavenging by Kupffer cells and uptake by hepatocytes were blocked. Here, we provide evidence that a single point mutation in the hexon capsomere designed to enable defined chemical capsid modifications may permit both detargeting from and targeting to hepatocytes with evasion from Kupffer cell scavenging. Vector particles modified with small polyethylene glycol (PEG) moieties specifically on hexon exhibited decreased transduction of hepatocytes by shielding from blood coagulation factor binding. Vector particles modified with transferrin or, surprisingly, 5,000 Da PEG or dextran increased hepatocyte transduction up to 18-fold independent of the presence of Kupffer cells. We further show that our strategy can be used to target high-capacity adenovirus vectors to hepatocytes emphasizing the potential for therapeutic liver-directed gene transfer. Our approach may lead to a detailed understanding of the interactions between adenovirus vectors and Kupffer cells, one of the most important barriers for adenovirus-mediated gene delivery.

  17. Getting genetic access to natural adenovirus genomes to explore vector diversity.

    PubMed

    Zhang, Wenli; Ehrhardt, Anja

    2017-10-01

    Recombinant vectors based on the human adenovirus type 5 (HAdV5) have been developed and extensively used in preclinical and clinical studies for over 30 years. However, certain restrictions of HAdV5-based vectors have limited their clinical applications because they are rather inefficient in specifically transducing cells of therapeutic interest that lack the coxsackievirus and adenovirus receptor (CAR). Moreover, enhanced vector-associated toxicity and widespread preexisting immunity have been shown to significantly hamper the effectiveness of HAdV-5-mediated gene transfer. However, evolution of adenoviruses in the natural host is driving the generation of novel types with altered virulence, enhanced transmission, and altered tissue tropism. As a consequence, an increasing number of alternative adenovirus types were identified, which may represent a valuable resource for the development of novel vector types. Thus, researchers are focusing on the other naturally occurring adenovirus types, which are structurally similar but functionally different from HAdV5. To this end, several strategies have been devised for getting genetic access to adenovirus genomes, resulting in a new panel of adenoviral vectors. Importantly, these vectors were shown to have a host range different from HAdV5 and to escape the anti-HAdV5 immune response, thus underlining the great potential of this approach. In summary, this review provides a state-of-the-art overview of one essential step in adenoviral vector development.

  18. A Novel Vaccine Approach for Chagas Disease Using Rare Adenovirus Serotype 48 Vectors

    PubMed Central

    Farrow, Anitra L.; Peng, Binghao J.; Gu, Linlin; Krendelchtchikov, Alexandre; Matthews, Qiana L.

    2016-01-01

    Due to the increasing amount of people afflicted worldwide with Chagas disease and an increasing prevalence in the United States, there is a greater need to develop a safe and effective vaccine for this neglected disease. Adenovirus serotype 5 (Ad5) is the most common adenovirus vector used for gene therapy and vaccine approaches, but its efficacy is limited by preexisting vector immunity in humans resulting from natural infections. Therefore, we have employed rare serotype adenovirus 48 (Ad48) as an alternative choice for adenovirus/Chagas vaccine therapy. In this study, we modified Ad5 and Ad48 vectors to contain T. cruzi’s amastigote surface protein 2 (ASP-2) in the adenoviral early gene. We also modified Ad5 and Ad48 vectors to utilize the “Antigen Capsid-Incorporation” strategy by adding T. cruzi epitopes to protein IX (pIX). Mice that were immunized with the modified vectors were able to elicit T. cruzi-specific humoral and cellular responses. This study indicates that Ad48-modified vectors function comparable to or even premium to Ad5-modified vectors. This study provides novel data demonstrating that Ad48 can be used as a potential adenovirus vaccine vector against Chagas disease. PMID:26978385

  19. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy.

    PubMed Central

    Mittereder, N; March, K L; Trapnell, B C

    1996-01-01

    Development of adenovirus vectors as potential therapeutic agents for multiple applications of in vivo human gene therapy has resulted in numerous preclinical and clinical studies. However, lack of standardization of the methods for quantifying the physical concentration and functionally active fraction of virions in these studies has often made comparison between various studies difficult or impossible. This study was therefore carried out to define the variables for quantification of the concentration of adenovirus vectors. The methods for evaluation of total virion concentration included electron microscopy and optical absorbance. The methods for evaluation of the concentration of functional virions included detection of gene transfer (transgene transfer and expression) and the plaque assay on 293 cells. Enumeration of total virion concentration by optical absorbance was found to be a precise procedure, but accuracy was dependent on physical disruption of the virion to eliminate artifacts from light scattering and also on a correct value for the extinction coefficient. Both biological assays for enumerating functional virions were highly dependent on the assay conditions and in particular the time of virion adsorption and adsorption volume. Under optimal conditions, the bioactivity of the vector, defined as the fraction of total virions which leads to detected target cell infection, was determined to be 0.10 in the plaque assay and 0.29 in the gene transfer assay. This difference is most likely due to the fact that detection by gene transfer requires only measurement of levels of transgene expression in the infected cell whereas plaque formation is dependent on a series of biological events of much greater complexity. These results show that the exact conditions for determination of infectious virion concentration and bioactivity of recombinant adenovirus vectors are critical and must be standardized for comparability. These observations may be very useful in comparison of data from different preclinical and clinical studies and may also have important implications for how adenovirus vectors can optimally be used in human gene therapy. PMID:8892868

  20. Improvement in adenoviral gene transfer efficiency after preincubation at +37 degrees C in vitro and in vivo.

    PubMed

    Kossila, Maija; Jauhiainen, Suvi; Laukkanen, Mikko O; Lehtolainen, Pauliina; Jääskeläinen, Maiju; Turunen, Päivi; Loimas, Sami; Wahlfors, Jarmo; Ylä-Herttuala, Seppo

    2002-01-01

    Adenovirus is a widely used vector in gene transfer experiments because it produces high transduction efficiency in vitro and in vivo by means of the coxsackie-adenovirus receptor (CAR) and major histocompatibility complex (MHC) class I alpha-2 domain. Adenoviral gene transfer efficiency has been reported to correlate with cellular CAR expression. We report here a simple method to increase adenoviral gene transfer efficiency in cells that do not express high levels of CAR: preincubation of adenovirus for 30-40 minutes at +37 degrees C significantly increased the transduction efficiency in vitro in CHO and BALB/3T3 cells, in which CAR is expressed at very low levels. Increased transduction efficiency of preincubated adenovirus was also detected in vivo in rat brain tissue. In addition, we found that adenoviruses were rapidly inactivated in human serum in a complement-independent manner, whereas fetal bovine serum (FBS) had hardly any effects on the viral infectivity. We conclude that preincubation of adenoviral vectors at +37 degrees C may substantially increase gene transfer efficiency in applications in which target cells do not express high levels of CAR.

  1. Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses.

    PubMed

    Crosby, Catherine M; Matchett, William E; Anguiano-Zarate, Stephanie S; Parks, Christopher A; Weaver, Eric A; Pease, Larry R; Webby, Richard J; Barry, Michael A

    2017-01-15

    Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent vectors and vaccines than current RD-Ad vectors. Copyright © 2017 Crosby et al.

  2. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein.

    PubMed Central

    Stevenson, S C; Rollence, M; Marshall-Neff, J; McClelland, A

    1997-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange of the fiber head domain is a viable approach to the production of adenovirus vectors with cell-type-selective transduction properties. It may be possible to extend this approach to the use of ligands for a range of different cellular receptors in order to target gene transfer to specific cell types at the level of transduction. PMID:9151872

  3. Adenovirus tumor targeting and hepatic untargeting by a coxsackie/adenovirus receptor ectodomain anti-carcinoembryonic antigen bispecific adapter.

    PubMed

    Li, Hua-Jung; Everts, Maaike; Pereboeva, Larisa; Komarova, Svetlana; Idan, Anat; Curiel, David T; Herschman, Harvey R

    2007-06-01

    Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.

  4. “Stealth” Adenoviruses Blunt Cell-Mediated and Humoral Immune Responses against the Virus and Allow for Significant Gene Expression upon Readministration in the Lung

    PubMed Central

    Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.

    2001-01-01

    Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351

  5. Protection of nonhuman primates against two species of Ebola virus infection with a single complex adenovirus vector.

    PubMed

    Pratt, William D; Wang, Danher; Nichols, Donald K; Luo, Min; Woraratanadharm, Jan; Dye, John M; Holman, David H; Dong, John Y

    2010-04-01

    Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat.

  6. Core labeling of adenovirus with EGFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Long P.; Le, Helen N.; Nelson, Amy R.

    2006-08-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expressionmore » vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.« less

  7. Oral vaccination with an adenovirus-vectored vaccine protects against botulism

    PubMed Central

    Chen, Shan; Xu, Qingfu; Zeng, Mingtao

    2013-01-01

    We have previously shown that an adenovirus vectored vaccine delivered intramuscularly or intranasally was effective in protection against botulism in a mouse model. The adenoviral vector encodes a human codon-optimized heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). Here, we evaluate the same vaccine candidate as an oral vaccine against BoNT/C in a mouse model. To elicit protective immunity, the mice were orally vaccinated with a single dose of 1×104 to 1×107 plaque forming units (pfu) of the adenoviral vector. The immune sera, collected six weeks after oral vaccination with 2×107 pfu adenovirus, has shown an ability to neutralize the biological activity of BoNT/C in vitro. Additionally, animals receiving a single dose of 2×106 pfu adenovirus or greater were completely protected against challenge with 100×MLD50 of BoNT/C. The data demonstrated the feasibility to develop an adenovirus-based oral vaccine against botulism. PMID:23295065

  8. An acute toxicology study with INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian hamsters; comparisons with wild-type Ad5 and a replication-defective adenovirus vector

    PubMed Central

    Lichtenstein, DL; Spencer, JF; Doronin, K; Patra, D; Meyer, JM; Shashkova, EV; Kuppuswamy, M; Dhar, D; Thomas, MA; Tollefson, AE; Zumstein, LA; Wold, WSM; Toth, K

    2012-01-01

    Oncolytic (replication-competent) adenoviruses as anticancer agents provide new, promising tools to fight cancer. In support of a Phase I clinical trial, here we report safety data with INGN 007 (VRX-007), an oncolytic adenovirus with increased anti-tumor efficacy due to overexpression of the adenovirus-encoded ADP protein. Wild-type adenovirus type 5 (Ad5) and a replication-defective version of Ad5 were also studied as controls. A parallel study investigating the biodistribution of these viruses is described elsewhere in this issue. The toxicology experiments were conducted in two species, the Syrian hamster, which is permissive for INGN 007 and Ad5 replication and the poorly permissive mouse. The studies demonstrated that the safety profile of INGN 007 is similar to Ad5. Both viruses caused transient liver damage upon intravenous injection that resolved by 28 days post-infection. The No-Observable-Adverse-Effect-Level (NOAEL) for INGN 007 in hamsters was 3 × 1010 viral particles per kg. In hamsters, the replication-defective vector caused less toxicity, indicating that replication of Ad vectors in the host is an important factor in pathogenesis. With mice, INGN 007 and Ad5 caused toxicity comparable to the replication-defective adenovirus vector. Partially based on these results, the FDA granted permission to enter into a Phase I clinical trial with INGN 007. PMID:19197324

  9. An acute toxicology study with INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian hamsters; comparisons with wild-type Ad5 and a replication-defective adenovirus vector.

    PubMed

    Lichtenstein, D L; Spencer, J F; Doronin, K; Patra, D; Meyer, J M; Shashkova, E V; Kuppuswamy, M; Dhar, D; Thomas, M A; Tollefson, A E; Zumstein, L A; Wold, W S M; Toth, K

    2009-08-01

    Oncolytic (replication-competent) adenoviruses as anticancer agents provide new, promising tools to fight cancer. In support of a Phase I clinical trial, here we report safety data with INGN 007 (VRX-007), an oncolytic adenovirus with increased anti-tumor efficacy due to overexpression of the adenovirus-encoded ADP protein. Wild-type adenovirus type 5 (Ad5) and a replication-defective version of Ad5 were also studied as controls. A parallel study investigating the biodistribution of these viruses is described elsewhere in this issue. The toxicology experiments were conducted in two species, the Syrian hamster, which is permissive for INGN 007 and Ad5 replication and the poorly permissive mouse. The studies demonstrated that the safety profile of INGN 007 is similar to Ad5. Both viruses caused transient liver damage upon intravenous injection that resolved by 28 days post-infection. The No-Observable-Adverse-Effect-Level (NOAEL) for INGN 007 in hamsters was 3 x 10(10) viral particles per kg. In hamsters, the replication-defective vector caused less toxicity, indicating that replication of Ad vectors in the host is an important factor in pathogenesis. With mice, INGN 007 and Ad5 caused toxicity comparable to the replication-defective adenovirus vector. Partially based on these results, the FDA granted permission to enter into a Phase I clinical trial with INGN 007.

  10. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy.

    PubMed Central

    Gorziglia, M I; Kadan, M J; Yei, S; Lim, J; Lee, G M; Luthra, R; Trapnell, B C

    1996-01-01

    A novel recombinant adenovirus vector, Av3nBg, was constructed with deletions in adenovirus E1, E2a, and E3 regions and expressing a beta-galactosidase reporter gene. Av3nBg can be propagated at a high titer in a corresponding A549-derived cell line, AE1-2a, which contains the adenovirus E1 and E2a region genes inducibly expressed from separate glucocorticoid-responsive promoters. Av3nBg demonstrated gene transfer and expression comparable to that of Av1nBg, a first-generation adenovirus vector with deletions in E1 and E3. Several lines of evidence suggest that this vector is significantly more attenuated than E1 and E3 deletion vectors. Metabolic DNA labeling studies showed no detectable de novo vector DNA synthesis or accumulation, and metabolic protein labeling demonstrated no detectable de novo hexon protein synthesis for Av3nBg in naive A549 cells even at a multiplicity of infection of up to 3,000 PFU per cell. Additionally, naive A549 cells infected by Av3nBg did not accumulate infectious virions. In contrast, both Av1nBg and Av2Lu vectors showed DNA replication and hexon protein synthesis at multiplicities of infection of 500 PFU per cell. Av2Lu has a deletion in E1 and also carries a temperature-sensitive mutation in E2a. Thus, molecular characterization has demonstrated that the Av3nBg vector is improved with respect to the potential for vector DNA replication and hexon protein expression compared with both first-generation (Av1nBg) and second-generation (Av2Lu) adenoviral vectors. These observations may have important implications for potential use of adenovirus vectors in human gene therapy. PMID:8648763

  11. [Construction, identification and expression of three kinds of shuttle plasmids of adenovirus expression vector of hepatitis C virus structure gene].

    PubMed

    Cao, Yi-zhan; Hao, Chun-qiu; Feng, Zhi-hua; Zhou, Yong-xing; Li, Jin-ge; Jia, Zhan-sheng; Wang, Ping-zhong

    2003-02-01

    To construct three recombinant shuttle plasmids of adenovirus expression vector which can express hepatitis C virus(HCV) different structure genes(C, C+E1, C+E1+E2) in order to pack adenovirus expression vectors which can express HCV different structure gene effectively. The different HCV structure genes derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) were inserted into the backward position of cytomegalovirus(CMV) immediate early promotor element of shuttle plasmid(pAd.CMV-Link.1) of adenovirus expression vector respectively, then the three recombinant plasmids (pAd.HCV-C, pAd.HCV-CE1, pAd.HCV-S) were obtained. The recombinant plasmids were identified by endonuclease, PCR and sequencing. HCV structure genes were expressed transiently with Lipofectamine 2000 coated in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. Insert DNAs of the three recombinant plasmids' were confirmed to be HCV different structure genes by endonuclease, PCR and sequencing. The three recombinant plasmids can express HCV structure gene (C, C+E1, C+E1+E2) transiently in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. The three recombinant shuttle plasmids of adenovirus expression vector can express HCV structure gene(C, C+E1, C+E1+E2) transiently. This should be useful to pack adenovirus expression vector which can express HCV structure genes.

  12. Human adenovirus serotypes 4p and 11p are efficiently expressed in cell lines of neural tumour origin.

    PubMed

    Skog, Johan; Mei, Ya-Fang; Wadell, Göran

    2002-06-01

    Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.

  13. An Update on Canine Adenovirus Type 2 and Its Vectors

    PubMed Central

    Bru, Thierry; Salinas, Sara; Kremer, Eric J.

    2010-01-01

    Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors. PMID:21994722

  14. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    PubMed

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages. Its role in antiviral macrophage responses is largely unexplored. Here, we studied whether the differential expression of MARCO might contribute to the various susceptibilities of macrophage subtypes to adenovirus. We demonstrate that MARCO significantly enhances adenovirus infection and innate responses in macrophages. These results help to understand adenoviral pathogenesis and may open new possibilities to influence the outcome of infection with adenoviruses or adenovirus vectors. Copyright © 2017 Maler et al.

  15. Adeno-associated virus vectors can be efficiently produced without helper virus.

    PubMed

    Matsushita, T; Elliger, S; Elliger, C; Podsakoff, G; Villarreal, L; Kurtzman, G J; Iwaki, Y; Colosi, P

    1998-07-01

    The purpose of this work was to develop an efficient method for the production of adeno-associated virus (AAV) vectors in the absence of helper virus. The adenovirus regions that mediate AAV vector replication were identified and assembled into a helper plasmid. These included the VA, E2A and E4 regions. When this helper plasmid was cotransfected into 293 cells, along with plasmids encoding the AAV vector, and rep and cap genes, AAV vector was produced as efficiently as when using adenovirus infection as a source of help. CMV-driven constructs expressing the E4orf6 and the 72-M(r), E2A proteins were able to functionally replace the E4 and E2A regions, respectively. Therefore the minimum set of genes required to produce AAV helper activity equivalent to that provided by adenovirus infection consists of, or is a subset of, the following genes: the E4orf6 gene, the 72-M(r), E2A protein gene, the VA RNA genes and the E1 region. AAV vector preparations made with adenovirus and by the helper virus-free method were essentially indistinguishable with respect to particle density, particle to infectivity ratio, capsimer ratio and efficiency of muscle transduction in vivo. Only AAV vector preparations made by the helper virus-free method were not reactive with anti-adenovirus sera.

  16. Innate Functions of Immunoglobulin M Lessen Liver Gene Transfer with Helper-Dependent Adenovirus

    PubMed Central

    Unzu, Carmen; Morales-Kastresana, Aizea; Sampedro, Ana; Serrano-Mendioroz, Irantzu; Azpilikueta, Arantza; Ochoa, María Carmen; Dubrot, Juan; Martínez-Ansó, Eduardo

    2014-01-01

    The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors. PMID:24465560

  17. Akt/protein kinase B activation by adenovirus vectors contributes to NFkappaB-dependent CXCL10 expression.

    PubMed

    Liu, Qiang; White, Lindsay R; Clark, Sharon A; Heffner, Daniel J; Winston, Brent W; Tibbles, Lee Anne; Muruve, Daniel A

    2005-12-01

    In gene therapy, the innate immune system is a significant barrier to the effective application of adenovirus (Ad) vectors. In kidney epithelium-derived (REC) cells, serotype 5 Ad vectors induce the expression of the chemokine CXCL10 (IP-10), a response that is dependent on NFkappaB. Compared to the parental vector AdLuc, transduction with the RGD-deleted vector AdL.PB resulted in reduced CXCL10 activation despite increasing titers, implying that RGD-alpha(V) integrin interactions contribute to adenovirus induction of inflammatory genes. Akt, a downstream effector of integrin signaling, was activated within 10 min of transduction with Ad vectors in a dose-dependent manner. Akt activation was not present following transduction with AdL.PB, confirming the importance of capsid-alpha(V) integrin interactions in Ad vector Akt activation. Inhibition of the phosphoinositide-3-OH kinase/Akt pathway by Wortmannin or Ly294002 compounds decreased Ad vector induction of CXCL10 mRNA. Similarly, adenovirus-mediated overexpression of the dominant negative AktAAA decreased CXCL10 mRNA expression compared to the reporter vector AdLacZ alone. The effect of Akt on CXCL10 mRNA expression occurred via NFkappaB-dependent transcriptional activation, since AktAAA overexpression and Ly294002 both inhibited CXCL10 and NFkappaB promoter activation in luciferase reporter experiments. These results show that Akt plays a role in the Ad vector activation of NFkappaB and CXCL10 expression. Understanding the mechanism underlying the regulation of host immunomodulatory genes by adenovirus vectors will lead to strategies that will improve the efficacy and safety of these agents for clinical use.

  18. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis

    PubMed Central

    Wang, Danher; Suhrbier, Andreas; Penn-Nicholson, Adam; Woraratanadharm, Jan; Gardner, Joy; Luo, Min; Le, Thuy T.; Anraku, Itaru; Sakalian, Michael; Einfeld, David; Dong, John Y.

    2011-01-01

    Chikungunya virus, a mosquito-borne alphavirus, recently caused the largest epidemic ever seen for this virus. Chikungunya disease primarily manifests as a painful and debilitating arthralgia/arthritis, and no effective drug or vaccine is currently available. Here we describe a recombinant chikungunya virus vaccine comprising a non-replicating complex adenovirus vector encoding the structural polyprotein cassette of chikungunya virus. A single immunisation with this vaccine consistently induced high titres of anti-chikungunya virus antibodies that neutralised both an old Asian isolate and a Réunion Island isolate from the recent epidemic. The vaccine also completely protected mice against viraemia and arthritic disease caused by both virus isolates. PMID:21320541

  19. Development of replication-deficient adenovirus malaria vaccines.

    PubMed

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  20. Development of Peritoneal Tumor-Targeting Vector by In Vivo Screening with a Random Peptide-Displaying Adenovirus Library

    PubMed Central

    Yoshida, Kimiko; Goto, Naoko; Ohnami, Shumpei; Aoki, Kazunori

    2012-01-01

    The targeting of gene transfer at the cell-entry level is one of the most attractive challenges in vector development. However, attempts to redirect adenovirus vectors to alternative receptors by engineering the capsid-coding region have shown limited success, because the proper targeting ligands on the cells of interest are generally unknown. To overcome this limitation, we have constructed a random peptide library displayed on the adenoviral fiber knob, and have successfully selected targeted vectors by screening the library on cancer cell lines in vitro. The infection of targeted vectors was considered to be mediated by specific receptors on target cells. However, the expression levels and kinds of cell surface receptors may be substantially different between in vitro culture and in vivo tumor tissue. Here, we screened the peptide display-adenovirus library in the peritoneal dissemination model of AsPC-1 pancreatic cancer cells. The vector displaying a selected peptide (PFWSGAV) showed higher infectivity in the AsPC-1 peritoneal tumors but not in organs and other peritoneal tumors as compared with a non-targeted vector. Furthermore, the infectivity of the PFWSGAV-displaying vector for AsPC-1 peritoneal tumors was significantly higher than that of a vector displaying a peptide selected by in vitro screening, indicating the usefulness of in vivo screening in exploring the targeting vectors. This vector-screening system can facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:23029088

  1. Contrasting Effects of Human, Canine, and Hybrid Adenovirus Vectors on the Phenotypical and Functional Maturation of Human Dendritic Cells: Implications for Clinical Efficacy▿

    PubMed Central

    Perreau, Matthieu; Mennechet, Franck; Serratrice, Nicolas; Glasgow, Joel N.; Curiel, David T.; Wodrich, Harald; Kremer, Eric J.

    2007-01-01

    Antipathogen immune responses create a balance between immunity, tolerance, and immune evasion. However, during gene therapy most viral vectors are delivered in substantial doses and are incapable of expressing gene products that reduce the host's ability to detect transduced cells. Gene transfer efficacy is also modified by the in vivo transduction of dendritic cells (DC), which notably increases the immunogenicity of virions and vector-encoded genes. In this study, we evaluated parameters that are relevant to the use of canine adenovirus serotype 2 (CAV-2) vectors in the clinical setting by assaying their effect on human monocyte-derived DC (hMoDC). We compared CAV-2 to human adenovirus (HAd) vectors containing the wild-type virion, functional deletions in the penton base RGD motif, and the CAV-2 fiber knob. In contrast to the HAd type 5 (HAd5)-based vectors, CAV-2 poorly transduced hMoDC, provoked minimal upregulation of major histocompatibility complex class I/II and costimulatory molecules (CD40, CD80, and CD86), and induced negligible morphological changes indicative of DC maturation. Functional maturation assay results (e.g., reduced antigen uptake; tumor necrosis factor alpha, interleukin-1β [IL-1β], gamma interferon [IFN-γ], IL-10, IL-12, and IFN-α/β secretion; and stimulation of heterologous T-cell proliferation) were also significantly lower for CAV-2. Our data suggested that this was due, in part, to the use of an alternative receptor and a block in vesicular escape. Additionally, HAd5 vector-induced hMoDC maturation was independent of the aforementioned cytokines. Paradoxically, an HAd5/CAV-2 hybrid vector induced the greatest phenotypical and functional maturation of hMoDC. Our data suggest that CAV-2 and the HAd5/CAV-2 vector may be the antithesis of Adenoviridae immunogenicity and that each may have specific clinical advantages. PMID:17229706

  2. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokumakulapalle, Madhuri; Mei, Ya-Fang, E-mail: ya-fang.mei@umu.se

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were asmore » capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. - Highlights: • Africa green monkey cell lines were monitored for human adenovirus 11p GFP vector infection. • Human CD46 molecules were detectable in these monkey cell lines. • Adenovirus 11p GFP vector can be propagated in Vero cells increases the safety of Ad11p-based vectors for clinical trials. • To use Vero cells for preparation of Ad11p vector avoids the potential inclusion of oncogenes from tumor cells.« less

  4. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  5. Adenovirus-based genetic vaccines for biodefense.

    PubMed

    Boyer, Julie L; Kobinger, Gary; Wilson, James M; Crystal, Ronald G

    2005-02-01

    The robust host responses elicited against transgenes encoded by (E1-)(E3-) adenovirus (Ad) gene transfer vectors can be used to develop Ad-based vectors as platform technologies for vaccines against potential bioterror pathogens. This review focuses on pathogens of major concern as bioterror agents and why Ad vectors are ideal as anti-bioterror vaccine platforms, providing examples from our laboratories of using Ad vectors as vaccines against potential bioterror pathogens and how Ad vectors can be developed to enhance vaccine efficacy in the bioterror war.

  6. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    PubMed

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  7. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma

    PubMed Central

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P.; Al-Hendy, Ayman

    2016-01-01

    Background: Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. Study design: An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Materials and methods: Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. Results: In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Conclusion: Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. PMID:26884457

  8. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    PubMed

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  9. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice

    PubMed Central

    Gao, Peng

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  10. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    PubMed

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  11. Isolation and Characterization of Adenoviruses Persistently Shed from the Gastrointestinal Tract of Non-Human Primates

    PubMed Central

    Kryazhimskiy, Sergey; Grant, Rebecca; Calcedo, Roberto; Yuan, Xin; Keough, Martin; Sandhu, Arbans; Wang, Qiang; Medina-Jaszek, C. Angelica; Plotkin, Joshua B.; Wilson, James M.

    2009-01-01

    Adenoviruses are important human pathogens that have been developed as vectors for gene therapies and genetic vaccines. Previous studies indicated that human infections with adenoviruses are self-limiting in immunocompetent hosts with evidence of some persistence in adenoid tissue. We sought to better understand the natural history of adenovirus infections in various non-human primates and discovered that healthy populations of great apes (chimpanzees, bonobos, gorillas, and orangutans) and macaques shed substantial quantities of infectious adenoviruses in stool. Shedding in stools from asymptomatic humans was found to be much less frequent, comparable to frequencies reported before. We purified and fully sequenced 30 novel adenoviruses from apes and 3 novel adenoviruses from macaques. Analyses of the new ape adenovirus sequences (as well as the 4 chimpanzee adenovirus sequences we have previously reported) together with 22 complete adenovirus genomes available from GenBank revealed that (a) the ape adenoviruses could clearly be classified into species corresponding to human adenovirus species B, C, and E, (b) there was evidence for intraspecies recombination between adenoviruses, and (c) the high degree of phylogenetic relatedness of adenoviruses across their various primate hosts provided evidence for cross species transmission events to have occurred in the natural history of B and E viruses. The high degree of asymptomatic shedding of live adenovirus in non-human primates and evidence for zoonotic transmissions warrants caution for primate handling and housing. Furthermore, the presence of persistent and/or latent adenovirus infections in the gut should be considered in the design and interpretation of human and non-human primate studies with adenovirus vectors. PMID:19578438

  12. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    PubMed

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-12-03

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo.

  13. Use of adenoviral vectors as veterinary vaccines.

    PubMed

    Ferreira, T B; Alves, P M; Aunins, J G; Carrondo, M J T

    2005-10-01

    Vaccines are the most effective and inexpensive prophylactic tool in veterinary medicine. Ideally, vaccines should induce a lifelong protective immunity against the target pathogen while not causing clinical or pathological signs of diseases in the vaccinated animals. However, such ideal vaccines are rare in the veterinary field. Many vaccines are either of limited effectiveness or have harmful side effects. In addition, there are still severe diseases with no effective vaccines. A very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and even more so for poultry vaccination, where vaccines must sell for a few cents a dose. Traditional approaches include inactivated vaccines, attenuated live vaccines and subunit vaccines. Recently, genetic engineering has been applied to design new, improved vaccines. Adenovirus vectors are highly efficient for gene transfer in a broad spectrum of cell types and species. Moreover, adenoviruses often induce humoral, mucosal and cellular immune responses to antigens encoded by the inserted foreign genes. Thus, adenoviruses have become a vector of choice for delivery and expression of foreign proteins for vaccination. Consequently, the market requirements for adenovirus vaccines are increasing, creating a need for production methodologies of concentrated vectors with warranted purity and efficacy. This review summarizes recent developments and approaches of adenovirus production and purification as the application of these vectors, including successes and failures in clinical applications to date.

  14. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  15. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges.

    PubMed

    Wang, Danher; Hevey, Michael; Juompan, Laure Y; Trubey, Charles M; Raja, Nicholas U; Deitz, Stephen B; Woraratanadharm, Jan; Luo, Min; Yu, Hong; Swain, Benjamin M; Moore, Kevin M; Dong, John Y

    2006-09-30

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 10(7) pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV.

  16. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Danher; Hevey, Michael; Juompan, Laure Y.

    2006-09-30

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guineamore » pigs. Significantly, guinea pigs vaccinated with at least 5 x 10{sup 7} pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV.« less

  17. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications.

    PubMed

    Hartman, Zachary C; Appledorn, Daniel M; Amalfitano, Andrea

    2008-03-01

    Extensively characterized, modified, and employed for a variety of purposes, adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility (i.e., Ad-based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad-based vaccines are regarded as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane-bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray-based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well as highlight areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications.

  18. Adenovirus vector induced Innate Immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications

    PubMed Central

    Hartman, Zachary C.; Appledorn, Daniel M.; Amalfitano, Andrea

    2013-01-01

    Extensively characterized, modified, and employed for a variety of purposes, Adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility, (i.e.: Ad based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad based vaccines are highly acknowledged as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well point areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications. PMID:18036698

  19. Localized gene delivery using antibody tethered adenovirus from polyurethane heart valve cusps and intra-aortic implants.

    PubMed

    Stachelek, S J; Song, C; Alferiev, I; Defelice, S; Cui, X; Connolly, J M; Bianco, R W; Levy, R J

    2004-01-01

    The present study investigated a novel approach for gene therapy of heart valve disease and vascular disorders. We formulated and characterized implantable polyurethane films that could also function as gene delivery systems through the surface attachment of replication defective adenoviruses using an anti-adenovirus antibody tethering mechanism. Our hypothesis was that we could achieve site-specific gene delivery to cells interacting with these polyurethane implants, and thereby demonstrate the potential for intravascular devices that could also function as gene delivery platforms for therapeutic vectors. Previous research by our group has demonstrated that polyurethane elastomers can be derivatized post-polymerization through a series of chemical reactions activating the hard segment amide groups with alkyl bromine residues, which can enable a wide variety of subsequent chemical modifications. Furthermore, prior research by our group investigating gene delivery intravascular stents has shown that collagen-coated balloon expandable stents can be configured with anti-adenovirus antibodies via thiol-based chemistry, and can then tether adenoviral vectors at doses that lead to high levels of localized arterial neointima expression, but with virtually no distal spread of vector. Thus, we sought to create two-device configurations for our investigations building on this previous research. (1) Polyurethane films coated with Type I collagen were thiol activated to permit covalent attachment of anti-adenovirus antibodies to enable gene delivery via vector tethering. (2) We also formulated polyurethane films with direct covalent attachment of anti-adenovirus antibodies to polyurethane hard segments derivatized with alkyl-thiol groups, thereby also enabling tethering of replication-defective adenoviruses. Both formulations demonstrated highly localized and efficient transduction in cell culture studies with rat arterial smooth muscle cells. In vivo experiments with collagen-coated polyurethane films investigated an abdominal aorta implant model in pigs using a button configuration that simulated the blood contacting environment of a vascular graft. One week explants of the collagen-coated polyurethane films demonstrated 14.3+/-2.5% of neointimal cells on the surface of the implant transduced with green fluorescent protein - adenovirus (AdGFP) vector loadings of 1 x 10(8) PFU. PCR studies demonstrated no detectable vector DNA in blood or distal organs. Similarly, polyurethane films with direct attachment of antivector antibodies to the surface were used in sheep pulmonary valve leaflet replacement studies, simulating the blood contacting environment of a prosthetic heart valve cusp. Polyurethane films with antibody tethered AdGFP vector (10(8) PFU) demonstrated 25.1+/-5.7% of attached cells transduced in these 1 week studies, with no detectable vector DNA in blood or distal organs. In vivo GFP expression was confirmed with immunohistochemistry. It is concluded that site-specific intravascular delivery of adenoviral vectors for gene therapy can be achieved with polyurethane implants utilizing the antivector antibody tethering mechanism.

  20. An adenovirus-vectored nasal vaccine confers rapid and sustained protection against anthrax in a single-dose regimen.

    PubMed

    Zhang, Jianfeng; Jex, Edward; Feng, Tsungwei; Sivko, Gloria S; Baillie, Leslie W; Goldman, Stanley; Van Kampen, Kent R; Tang, De-chu C

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine.

  1. An Adenovirus-Vectored Nasal Vaccine Confers Rapid and Sustained Protection against Anthrax in a Single-Dose Regimen

    PubMed Central

    Jex, Edward; Feng, Tsungwei; Sivko, Gloria S.; Baillie, Leslie W.; Goldman, Stanley; Van Kampen, Kent R.; Tang, De-chu C.

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sustained protection against inhalation anthrax in mice in a single-dose regimen in the presence of preexisting adenovirus immunity. The potency of the vaccine was greatly enhanced when codons of the antigen gene were optimized to match the tRNA pool found in human cells. In addition, an adenovirus vector encoding lethal factor can confer partial protection against inhalation anthrax and might be coadministered with a protective antigen-based vaccine. PMID:23100479

  2. Progress on adenovirus-vectored universal influenza vaccines.

    PubMed

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  3. Insulated hsp70B' promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses.

    PubMed

    Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M

    2008-04-01

    Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.

  4. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/more » (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.« less

  5. Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...

  6. Germinal Center B Cell and T Follicular Helper Cell Responses to Viral Vector and Protein-in-Adjuvant Vaccines

    PubMed Central

    Wang, Chuan; Hart, Matthew; Chui, Cecilia; Ajuogu, Augustine; Brian, Iona J.; de Cassan, Simone C.; Borrow, Persephone; Draper, Simon J.

    2016-01-01

    There is great interest in the development of Ab-inducing subunit vaccines targeting infections, including HIV, malaria, and Ebola. We previously reported that adenovirus vectored vaccines are potent in priming Ab responses, but uncertainty remains regarding the optimal approach for induction of humoral immune responses. In this study, using OVA as a model Ag, we assessed the magnitude of the primary and anamnestic Ag–specific IgG responses of mice to four clinically relevant vaccine formulations: replication-deficient adenovirus; modified vaccinia Ankara (a poxvirus); protein with alum; and protein in the squalene oil-in-water adjuvant Addavax. We then used flow cytometric assays capable of measuring total and Ag-specific germinal center (GC) B cell and follicular Th cell responses to compare the induction of these responses by the different formulations. We report that adenovirus vectored vaccines induce Ag insert–specific GC B cell and Ab responses of a magnitude comparable to those induced by a potent protein/squalene oil-in-water formulation whereas—despite a robust overall GC response—the insert-specific GC B cell and Ab responses induced by modified vaccinia Ankara were extremely weak. Ag-specific follicular Th cell responses to adenovirus vectored vaccines exceeded those induced by other platforms at day 7 after immunization. We found little evidence that innate immune activation by adenovirus may act as an adjuvant in such a manner that the humoral response to a recombinant protein may be enhanced by coadministering with an adenovirus lacking a transgene of interest. Overall, these studies provide further support for the use of replication-deficient adenoviruses to induce humoral responses. PMID:27412417

  7. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    PubMed

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  8. Adenovirus small interfering RNA targeting ezrin induces apoptosis and inhibits metastasis of human osteosarcoma MG-63 cells.

    PubMed

    Tao, Zhi-Wei; Zou, Ping-An

    2018-06-13

    Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent year. This study attempts to explore the effect of adenovirus-mediated small interfering RNA (siRNA) targeting ezrin on the proliferation, migration, invasion and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targeting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targeting ezrin elevated expression levels of Bax, P21, P53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2, and MMP-9. Furthermore, adenovirus-mediated siRNA targeting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targeting ezrin can induce apoptosis and inhibit the proliferation, migration and invasion of human osteosarcoma MG-63 cells. ©2018 The Author(s).

  9. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo.

    PubMed

    Sapet, Cédric; Pellegrino, Christophe; Laurent, Nicolas; Sicard, Flavie; Zelphati, Olivier

    2012-05-01

    Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.

  10. Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.

    PubMed

    Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G

    2008-12-01

    With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.

  11. Evaluation of fiber-modified adenovirus vector-vaccine against foot-and-mouth diseaes in cattle

    USDA-ARS?s Scientific Manuscript database

    Novel vaccination approaches against foot-and-mouth-disease (FMD) include the use of a replication-defective human adenovirus type 5 vector (Ad5) that contains the capsid encoding regions of FMD virus (FMDV). An Ad5.A24 has proven effective as a vaccine against FMD in swine and cattle. However, ther...

  12. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNAmore » expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.« less

  13. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway.

    PubMed

    Guzman, Efrain; Taylor, Geraldine; Hope, Jayne; Herbert, Rebecca; Cubillos-Zapata, Carolina; Charleston, Bryan

    2016-10-01

    Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B-Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B-Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.

  14. Chemical Modification with High Molecular Weight Polyethylene Glycol Reduces Transduction of Hepatocytes and Increases Efficacy of Intravenously Delivered Oncolytic Adenovirus

    PubMed Central

    Doronin, Konstantin; Shashkova, Elena V.; May, Shannon M.; Hofherr, Sean E.

    2009-01-01

    Abstract Oncolytic adenoviruses are anticancer agents that replicate within tumors and spread to uninfected tumor cells, amplifying the anticancer effect of initial transduction. We tested whether coating the viral particle with polyethylene glycol (PEG) could reduce transduction of hepatocytes and hepatotoxicity after systemic (intravenous) administration of oncolytic adenovirus serotype 5 (Ad5). Conjugating Ad5 with high molecular weight 20-kDa PEG but not with 5-kDa PEG reduced hepatocyte transduction and hepatotoxicity after intravenous injection. PEGylation with 20-kDa PEG was as efficient at detargeting adenovirus from Kupffer cells and hepatocytes as virus predosing and warfarin. Bioluminescence imaging of virus distribution in two xenograft tumor models in nude mice demonstrated that PEGylation with 20-kDa PEG reduced liver infection 19- to 90-fold. Tumor transduction levels were similar for vectors PEGylated with 20-kDa PEG and unPEGylated vectors. Anticancer efficacy after a single intravenous injection was retained at the level of unmodified vector in large established prostate carcinoma xenografts, resulting in complete elimination of tumors in all animals and long-term tumor-free survival. Anticancer efficacy after a single intravenous injection was increased in large established hepatocellular carcinoma xenografts, resulting in significant prolongation of survival as compared with unmodified vector. The increase in efficacy was comparable to that obtained with predosing and warfarin pretreatment, significantly extending the median of survival. Shielding adenovirus with 20-kDa PEG may be a useful approach to improve the therapeutic window of oncolytic adenovirus after systemic delivery to primary and metastatic tumor sites. PMID:19469693

  15. Protection of Chickens against Avian Influenza with Non-Replicating Adenovirus-Vectored Vaccine

    PubMed Central

    Toro, Haroldo; Tang, De-chu C.; Suarez, David L.; Shi, Z.

    2009-01-01

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding an H7 AI hemagglutinin (AdChNY94.H7). Chickens vaccinated in ovo with an Ad vector encoding an AI H5 (AdTW68.H5) previously described, which were subsequently vaccinated intramuscularly with AdChNY94.H7 post-hatch, responded with robust antibody titers against both the H5 and H7 AI proteins. Antibody responses to Ad vector in ovo vaccination follow a dose-response kinetic. The use of a synthetic AI H5 gene codon optimized to match the chicken cell tRNA pool was more potent than the cognate H5 gene. The use of Ad-vectored vaccines to increase resistance of chicken populations against multiple AI strains could reduce the risk of an avian-originating influenza pandemic in humans. PMID:18384919

  16. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  17. A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results

    PubMed Central

    Gallaher, Sean D.; Berk, Arnold J.

    2013-01-01

    Adenoviruses are employed in the study of cellular processes and as expression vectors used in gene therapy. The success and reproducibility of these studies is dependent in part on having accurate and meaningful titers of replication competent and helper-dependent adenovirus stocks, which is problematic due to the use of varied and divergent titration protocols. Physical titration methods, which quantify the total number of viral particles, are used by many, but are poor at estimating activity. Biological titration methods, such as plaque assays, are more biologically relevant, but are time consuming and not applicable to helper-dependent gene therapy vectors. To address this, a protocol was developed called “infectious genome titration” in which viral DNA is isolated from the nuclei of cells ~3 h post-infection, and then quantified by Q-PCR. This approach ensures that only biologically active virions are counted as part of the titer determination. This approach is rapid, robust, sensitive, reproducible, and applicable to all forms of adenovirus. Unlike other Q-PCR-based methods, titers determined by this protocol are well correlated with biological activity. PMID:23624118

  18. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FM...

  19. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    USDA-ARS?s Scientific Manuscript database

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  20. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    USDA-ARS?s Scientific Manuscript database

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  1. Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines.

    PubMed

    Crosby, Catherine M; Nehete, Pramod; Sastry, K Jagannadha; Barry, Michael A

    2015-01-01

    Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered "single-cycle" adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase than SC-Ad6, it does not elicit comparable levels of anti-GFP antibodies in permissive hamsters. When tested in the larger rhesus macaque model, SC-Ad6 induces higher transgene-specific antibody and T cell responses. Together, these data suggest that SC-Ad6 could be a more effective platform for developing vaccines against more relevant antigens. This could be especially beneficial for developing vaccines for pathogens for which traditional replication-defective adenovirus vectors have not been effective. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts.

    PubMed

    Huang, Jing Li; LaRocca, Christopher J; Yamamoto, Masato

    2016-09-19

    Oncolytic adenoviruses (OAds) are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor), interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells.

  3. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  4. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  5. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  6. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...

  7. Bovine adenovirus-3 as a vaccine delivery vehicle.

    PubMed

    Ayalew, Lisanework E; Kumar, Pankaj; Gaba, Amit; Makadiya, Niraj; Tikoo, Suresh K

    2015-01-15

    The use of vaccines is an effective and relatively inexpensive means of controlling infectious diseases, which cause heavy economic losses to the livestock industry through animal loss, decreased productivity, treatment expenses and decreased carcass quality. However, some vaccines produced by conventional means are imperfect in many respects including virulence, safety and efficacy. Moreover, there are no vaccines for some animal diseases. Although genetic engineering has provided new ways of producing effective vaccines, the cost of production for veterinary use is a critical criterion for selecting the method of production and delivery of vaccines. The cost effective production and intrinsic ability to enter cells has made adenovirus vectors a highly efficient tool for delivery of vaccine antigens. Moreover, adenoviruses induce both humoral and cellular immune responses to expressed vaccine antigens. Since nonhuman adenoviruses are species specific, the development of animal specific adenoviruses as vaccine delivery vectors is being evaluated. This review summarizes the work related to the development of bovine adenovirus-3 as a vaccine delivery vehicle in animals, particularly cattle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Homologous and heterologous recombination between adenovirus vector DNA and chromosomal DNA.

    PubMed

    Stephen, Sam Laurel; Sivanandam, Vijayshankar Ganesh; Kochanek, Stefan

    2008-11-01

    Adenovirus vector DNA is perceived to remain as episome following gene transfer. We quantitatively and qualitatively analysed recombination between high capacity adenoviral vector (HC-AdV) and chromosomal DNA following gene transfer in vitro. We studied homologous and heterologous recombination with a single HC-AdV carrying (i) a large genomic HPRT fragment with the HPRT CHICAGO mutation causing translational stop upon homologous recombination with the HPRT locus and (ii) a selection marker to allow for clonal selection in the event of heterologous recombination. We analysed the sequences at the junctions between vector and chromosomal DNA. In primary cells and in cell lines, the frequency of homologous recombination ranged from 2 x 10(-5) to 1.6 x 10(-6). Heterologous recombination occurred at rates between 5.5 x 10(-3) and 1.1 x 10(-4). HC-AdV DNA integrated via the termini mostly as intact molecules. Analysis of the junction sequences indicated vector integration in a relatively random manner without an obvious preference for particular chromosomal regions, but with a preference for integration into genes. Integration into protooncogenes or tumor suppressor genes was not observed. Patchy homologies between vector termini and chromosomal DNA were found at the site of integration. Although the majority of integrations had occurred without causing mutations in the chromosomal DNA, cases of nucleotide substitutions and insertions were observed. In several cases, deletions of even relative large chromosomal regions were likely. These results extend previous information on the integration patterns of adenovirus vector DNA and contribute to a risk-benefit assessment of adenovirus-mediated gene transfer.

  9. An adenovirus vectored mucosal adjuvant augments protection of mice immunized intranasally with an adenovirus-vectored foot-and-mouth disease virus subunit vaccine

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help preve...

  10. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine

    USDA-ARS?s Scientific Manuscript database

    A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) sero-type O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa empty capsids. Swine inoculated with Ad5-O1Man developed an FMDV-specific neutralizing antibody response as compared to animals inoculated wi...

  11. Biodistribution Analysis of Oncolytic Adenoviruses in Patient Autopsy Samples Reveals Vascular Transduction of Noninjected Tumors and Tissues.

    PubMed

    Koski, Anniina; Bramante, Simona; Kipar, Anja; Oksanen, Minna; Juhila, Juuso; Vassilev, Lotta; Joensuu, Timo; Kanerva, Anna; Hemminki, Akseli

    2015-10-01

    In clinical trials with oncolytic adenoviruses, there has been no mortality associated with treatment vectors. Likewise, in the Advanced Therapy Access Program (ATAP), where 290 patients were treated with 10 different viruses, no vector-related mortality was observed. However, as the patient population who received adenovirus treatments in ATAP represented heavily pretreated patients, often with very advanced disease, some patients died relatively soon after receiving their virus treatment mandating autopsy to investigate cause of death. Eleven such autopsies were performed and confirmed disease progression as the cause of death in each case. The regulatory requirement for investigating the safety of advanced therapy medical products presented a unique opportunity to study tissue samples collected as a routine part of the autopsies. Oncolytic adenoviral DNA was recovered in a wide range of tissues, including injected and noninjected tumors and various normal tissues, demonstrating the ability of the vector to disseminate through the vascular route. Furthermore, we recovered and cultured viable virus from samples of noninjected brain metastases of an intravenously treated patient, confirming that oncolytic adenovirus can reach tumors through the intravascular route. Data presented here give mechanistic insight into mode of action and biodistribution of oncolytic adenoviruses in cancer patients.

  12. Protection of Nonhuman Primates against Two Species of Ebola Virus Infection with a Single Complex Adenovirus Vector▿

    PubMed Central

    Pratt, William D.; Wang, Danher; Nichols, Donald K.; Luo, Min; Woraratanadharm, Jan; Dye, John M.; Holman, David H.; Dong, John Y.

    2010-01-01

    Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat. PMID:20181765

  13. Native and engineered tropism of vectors derived from a rare species D adenovirus serotype 43.

    PubMed

    Belousova, Natalya; Mikheeva, Galina; Xiong, Chiyi; Stagg, Loren J; Gagea, Mihai; Fox, Patricia S; Bassett, Roland L; Ladbury, John E; Braun, Michael B; Stehle, Thilo; Li, Chun; Krasnykh, Victor

    2016-08-16

    Unique molecular properties of species D adenoviruses (Ads)-the most diverse yet underexplored group of Ads-have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies.

  14. Native and engineered tropism of vectors derived from a rare species D adenovirus serotype 43

    PubMed Central

    Belousova, Natalya; Mikheeva, Galina; Xiong, Chiyi; Stagg, Loren J.; Gagea, Mihai; Fox, Patricia S.; Bassett, Roland L.; Ladbury, John E.; Braun, Michael B.; Stehle, Thilo; Li, Chun; Krasnykh, Victor

    2016-01-01

    Unique molecular properties of species D adenoviruses (Ads)—the most diverse yet underexplored group of Ads—have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies. PMID:27462785

  15. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response

    USDA-ARS?s Scientific Manuscript database

    We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...

  16. A rapid generation of adenovirus vector with a genetic modification in hexon protein.

    PubMed

    Di, Bingyan; Mao, Qinwen; Zhao, Junli; Li, Xing; Wang, Dongyang; Xia, Haibin

    2012-02-10

    The generation of hexon-modified adenovirus vector has proven difficult. In this paper, we developed a novel method for rapid generation of hexon-modified adenoviral vector via one step ligation in vitro followed by quick white/blue color screening. The new system has the following features. First, eGFP expression driven by the CMV promoter in E1 region functions as a reporter to evaluate the tropism of hexon-modified adenovirus in vitro. Second, it has two unique restriction enzyme sites with sticky ends located in the hexon HVR5 region. Third, a lacZ expression cassette under the control of plac promoter is placed between the two restriction enzyme sites, which allows recombinants to be selected using blue/white screening. To prove the principle of the method, genetically modified adenoviruses were successfully produced by insertion of NGR, RGD or Tat PTD peptide into hexon HVR5. Furthermore, the transduction efficiency of the Tat PTD modified virus was shown to be a significant enhancement in A172 and CHO-K1 cells. In conclusion, the novel system makes the production of truly retargeted vectors more promising, which would be of substantial benefit for cancer gene therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steel, Jason C.; Morrison, Brian J.; Mannan, Poonam

    Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the studymore » of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses.« less

  18. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy.

    PubMed

    Doronin, K; Kuppuswamy, M; Toth, K; Tollefson, A E; Krajcsi, P; Krougliak, V; Wold, W S

    2001-04-01

    We have previously described two replication-competent adenovirus vectors, named KD1 and KD3, for potential use in cancer gene therapy. KD1 and KD3 have two small deletions in the E1A gene that restrict efficient replication of these vectors to human cancer cell lines. These vectors also have increased capacity to lyse cells and spread from cell to cell because they overexpress the adenovirus death protein, an adenovirus protein required for efficient cell lysis and release of adenovirus from the cell. We now describe a new vector, named KD1-SPB, which is the KD1 vector with the E4 promoter replaced by the promoter for surfactant protein B (SPB). SPB promoter activity is restricted in the adult to type II alveolar epithelial cells and bronchial epithelial cells. Because KD1-SPB has the E1A mutations, it should replicate within and destroy only alveolar and bronchial cancer cells. We show that KD1-SPB replicates, lyses cells, and spreads from cell to cell as well as does KD1 in H441 cells, a human cancer cell line where the SPB promoter is active. KD1-SPB replicates, lyses cells, and spreads only poorly in Hep3B liver cancer cells. Replication was determined by expression of the E4ORF3 protein, viral DNA accumulation, fiber synthesis, and virus yield. Cell lysis and vector spread were measured by lactate dehydrogenase release and a "vector spread" assay. In addition to Hep3B cells, KD1-SPB also did not express E4ORF3 in HT29.14S (colon), HeLa (cervix), KB (nasopharynx), or LNCaP (prostate) cancer cell lines, in which the SPB promoter is not expected to be active. Following injection into H441 or Hep3B tumors growing in nude mice, KD1-SPB caused a three- to fourfold suppression of growth of H441 tumors, similar to that seen with KD1. KD1-SPB had only a minimal effect on the growth of Hep3B tumors, whereas KD1 again caused a three- to fourfold suppression. These results establish that the adenovirus E4 promoter can be replaced by a tissue-specific promoter in a replication-competent vector. The vector has three engineered safety features: the tissue-specific promoter, the mutations in E1A that preclude efficient replication in nondividing cells, and a deletion of the E3 genes which shield the virus from attack by the immune system. KD1-SPB may have use in treating human lung cancers in which the SPB promoter is active.

  19. [Construction and expression of a recombinant adenovirus with LZP3].

    PubMed

    Chen, Bang-dang; Zhang, Fu-chun; Sun, Mei-yu; Li, Yi-jie; Ma, Zheng-hai

    2007-08-01

    To explore a new immunocontraceptive vaccine and construct an attenuated recombinant adenoviral vaccine against Lagurus lagurus zona pellucida 3(LZP3). LZP3 gene was subcloned into the shuttle vector pShuttle-CMV, and then a two-step transformation procedure was employed to construct a recombinant adenoviral plasmid with LZP3, which was digested with Pac I and transfected into HEK293 cells to package recombinant adenovirus particles. Finally, HeLa cells were infected by the recombinant adenovirus. LZP3 gene was detected from the recombinant virus by PCR, and its transcription and expression were analyzed by RT-PCR and Western blot. Recombinant adenovirus vector pAd-LZP3 with LZP3 gene was constructed by homologous recombination in E.coli, and a recombinant adenovirus was obtained by transfecting HEK293 cells with pAd-LZP3. PCR test indicated that LZP3 gene was successfully integrated into the adenoviral genome, and the titer of the recombinant adenovirus reached 1.2x10(10) pfu/L. The transcription and expression of LZP3 gene in the infected HeLa cells were confirmed by RT-PCR and Western blot. The recombinant adenovirus RAd-LZP3 can be successfully expressed in the infected HeLa cells, which lays the foundation for further researches into immunizing animals with RAd-LZP3.

  20. Adenovirus Vector Pseudotyping in Fiber-Expressing Cell Lines: Improved Transduction of Epstein-Barr Virus-Transformed B Cells

    PubMed Central

    Von Seggern, Dan J.; Huang, Shuang; Fleck, Shonna Kaye; Stevenson, Susan C.; Nemerow, Glen R.

    2000-01-01

    While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.βgal.ΔF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.βgal.ΔF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types. PMID:10590124

  1. The evolution of heart gene delivery vectors.

    PubMed

    Wasala, Nalinda B; Shin, Jin-Hong; Duan, Dongsheng

    2011-10-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. Copyright © 2011 John Wiley & Sons, Ltd.

  2. The evolution of heart gene delivery vectors

    PubMed Central

    Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng

    2012-01-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. PMID:21837689

  3. Traceless Bioresponsive Shielding of Adenovirus Hexon with HPMA Copolymers Maintains Transduction Capacity In Vitro and In Vivo

    PubMed Central

    Prill, Jan-Michael; Šubr, Vladimír; Pasquarelli, Noemi; Engler, Tatjana; Hoffmeister, Andrea; Kochanek, Stefan; Ulbrich, Karel; Kreppel, Florian

    2014-01-01

    Capsid surface shielding of adenovirus vectors with synthetic polymers is an emerging technology to reduce unwanted interactions of the vector particles with cellular and non-cellular host components. While it has been shown that attachment of shielding polymers allows prevention of undesired interactions, it has become evident that a shield which is covalently attached to the vector surface can negatively affect gene transfer efficiency. Reasons are not only a limited receptor-binding ability of the shielded vectors but also a disturbance of intracellular trafficking processes, the latter depending on the interaction of the vector surface with the cellular transport machinery. A solution might be the development of bioresponsive shields that are stably maintained outside the host cell but released upon cell entry to allow for efficient gene delivery to the nucleus. Here we provide a systematic comparison of irreversible versus bioresponsive shields based on synthetic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. In addition, the chemical strategy used for generation of the shield allowed for a traceless bioresponsive shielding, i.e., polymers could be released from the vector particles without leaving residual linker residues. Our data demonstrated that only a bioresponsive shield maintained the high gene transfer efficiency of adenovirus vectors both in vitro and in vivo. As an example for bioresponsive HPMA copolymer release, we analyzed the in vivo gene transfer in the liver. We demonstrated that both the copolymer's charge and the mode of shielding (irreversible versus traceless bioresponsive) profoundly affected liver gene transfer and that traceless bioresponsive shielding with positively charged HPMA copolymers mediated FX independent transduction of hepatocytes. In addition, we demonstrated that shielding with HPMA copolymers can mediate a prolonged blood circulation of vector particles in mice. Our results have significant implications for the future design of polymer-shielded Ad and provide a deeper insight into the interaction of shielded adenovirus vector particles with the host after systemic delivery. PMID:24475024

  4. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    PubMed

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  5. LY294002 enhances expression of proteins encoded by recombinant replication-defective adenoviruses via mTOR- and non-mTOR-dependent mechanisms.

    PubMed

    Shepelev, Mikhail V; Korobko, Elena V; Vinogradova, Tatiana V; Kopantsev, Eugene P; Korobko, Igor V

    2013-03-04

    Adenovirus-based drugs are efficient when combined with other anticancer treatments. Here we show that treatment with LY294002 and LY303511 upregulates expression of recombinant proteins encoded by replication-defective adenoviruses, including expression of therapeutically valuable combination of herpes simplex virus thymidine kinase controlled by human telomerase reverse transcriptase promoter (Ad-hTERT-HSVtk). In line with this, treatment with LY294002 synergized with Ad-hTERT-HSVtk infection in the presence of gancyclovir prodrug on Calu-I lung cancer cell death. The effect of LY294002 and LY303511 on adenovirus-delivered transgene expression was demonstrated in 4 human lung cancer cell lines. LY294002-induced upregulation of adenovirally delivered transgene is mediated in part by direct inhibition of mTOR protein kinase in mTORC2 signaling complex thus suggesting that anticancer drugs targeting mTOR will also enhance expression of transgenes delivered with adenoviral vectors. As both LY294002 and LY303511 are candidate prototypic anticancer drugs, and many mTOR inhibitors for cancer treatment are under development, our results have important implication for development of future therapeutic strategies with adenoviral gene delivery.

  6. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C., E-mail: ertl@wistar.upenn.edu

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protectsmore » against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.« less

  7. Stereotactic delivery of a recombinant adenovirus into a C6 glioma cell line in a rat brain tumor model.

    PubMed

    Badie, B; Hunt, K; Economou, J S; Black, K L

    1994-11-01

    The dismal results of conventional therapy for primary malignant brain tumors has justified exploring gene therapy approaches for this disease. Transduction of animal brain tumor models in vivo has been reported previously with retroviruses and herpes viruses. Because adenoviruses have the advantage of transducing quiescent and actively dividing tumor cells, they may prove to be more effective in such therapy. We used a replication-deficient recombinant adenovirus bearing the Escherichia coli beta-galactosidase gene in a rat C6 glioma tumor model. Transduced cells were detected by X-5-bromo-4-chloro-3-indolyl beta-D-galactoside staining to reveal beta-galactosidase activity. Initial experiments in vitro showed 50% and 90% transduction at vector titers of approximately 10(7) and 10(8) plaque-forming units/ml, respectively. Although no cytopathic effects were seen at 10(7) plaque-forming units/ml, more than 50% reduction in tumor cell growth was noted at 10(8) plaque-forming units/ml both in vitro and in vivo. Stereotactic delivery of the recombinant adenovirus into the frontal lobe of normal rat brains resulted in intense staining of all cell types, that is, neurons, astrocytes, and ependymal cells. Stereotactic injection into C6 glioma brain tumors in rats stained 25 to 30% of the tumor cells. We conclude that adenovirus vectors can be used to transfer genes to central nervous system tumors in vivo. Using stereotactic delivery, adenovirus vectors can transfer genes into the central nervous system intended for tumor therapy.

  8. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L; Hassan, Wisam S; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.

  9. Efficacy of severe acute respiratory syndrome vaccine based on a nonhuman primate adenovirus in the presence of immunity against human adenovirus.

    PubMed

    Zhi, Yan; Figueredo, Joanita; Kobinger, Gary P; Hagan, Heather; Calcedo, Roberto; Miller, James R; Gao, Guangping; Wilson, James M

    2006-05-01

    Replication-deficient human adenovirus type 5 (AdH5) vectors can induce strong transgene product-specific cellular and humoral responses. However, many adult humans have neutralizing antibodies (NAbs) against AdH5 as a result of natural infection with this virus. Therefore, a chimpanzee adenovirus C7 (AdC7) vector was developed to circumvent interference by preexisting immunity to AdH5. This study evaluated the impact of preexisting immunity to human adenovirus on the efficacy of adenovirus-based vaccines against the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). Efficacy was assessed after intramuscular injection of the vector into mice and was measured as the frequency of SARS-CoV-specific T cells and NAbs against SARS-CoV. Immunogenicity of the AdH5-based vaccine was significantly attenuated or completely abolished when the preexisting anti-AdH5 NAb titer was higher than 40. Because 27% of human serum samples from the United States tested so far have an anti-AdH5 NAb titer higher than 40, our results suggested that a significant percentage of humans with preexisting anti-AdH5 immunity would not be candidates for vaccination with an AdH5-based genetic vaccine. In contrast, preexisting anti-AdH5 NAbs have a minimal effect on the potency of the AdC7-based genetic vaccine. Taken together, our studies warrant the further development of AdC7 as a vaccine carrier for human trials.

  10. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L.; Hassan, Wisam S.; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy. PMID:28481911

  11. Direct adenovirus-mediated gene delivery to the temporomandibular joint in guinea-pigs.

    PubMed

    Kuboki, T; Nakanishi, T; Kanyama, M; Sonoyama, W; Fujisawa, T; Kobayashi, K; Ikeda, T; Kubo, T; Yamashita, A; Takigawa, M

    1999-09-01

    Adenovirus vector system is expected to be useful for direct gene therapy for joint disease. This study first sought to confirm that foreign genes can be transferred to articular chondrocytes in primary culture. Next, recombinant adenovirus vectors harbouring beta-galactosidase gene (LacZ) was injected directly into the temporomandibular joints of Hartley guinea-pigs to clarify the in vivo transfer availability of the adenovirus vectors. Specifically, recombinant adenovirus harbouring LacZ gene (AxlCALacZ) was injected into the upper joint cavities of both mandibular joints of four male 6-week-old Hartley guinea-pigs. Either the same amount of recombinant adenovirus without LacZ gene (Axlw) suspension (placebo) or the same amount of phosphate-buffered saline solution (control) were injected into the upper joint cavities of both joints of another four male guinea-pigs. At 1, 2, 3 and 4 weeks after injection, the joints were dissected and the expression of delivered LacZ was examined by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) staining and reverse transcriptase-polymerase chain reaction (RT-PCR). To investigate the expression of transferred gene in other organs, total RNA was extracted from liver, kidney, heart and brain and the expression of LacZ mRNA and 18 S ribosomal RNA were analysed by RT-PCR. Clear expression of LacZ was observed in the articular surfaces of the temporal tubercle, articular disc and synovium of the temporomandibular joints even 4 weeks after injection in the AxlCALacZ-injected group, while no expression was detected in placebo and control groups. Histological examination confirmed that LacZ activity was clearly detected in a few cell layers of the articular surface tissues, which is much more efficient than in a previously study of the knee joint. In the other organs, expression of the delivered transgene was not observed. Based on these findings, direct gene delivery into the articular surface of the temporomandibular joint using the adenovirus vector is feasible as an effective in vivo method.

  12. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Eric A.; Camacho, Zenaido T.; Hillestad, Matthew L.

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. Whenmore » wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.« less

  13. Immune Protection of Nonhuman Primates Against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    DTIC Science & Technology

    2006-06-01

    21. Geisbert TW, Hensley LE , Larsen T, Young HA, Reed DS, et al. (2003) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: Evidence that...Shedlock DJ, Xu L, et al. (2006) Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT

  14. Immunization with a Novel Human type 5 Adenovirus-Vectored Vaccine Expressing the Premembrane and Envelope Proteins of Zika Virus Provides Consistent and Sterilizing Protection in Multiple Immunocompetent and Immunocompromised Animal Models.

    PubMed

    Guo, Qiang; Chan, Jasper Fuk-Woo; Poon, Vincent Kwok-Man; Wu, Shipo; Chan, Chris Chung-Sing; Hou, Lihua; Yip, Cyril Chik-Yan; Ren, Changpeng; Cai, Jian-Piao; Zhao, Mengsu; Zhang, Anna Jinxia; Song, Xiaohong; Chan, Kwok-Hung; Wang, Busen; Kok, Kin-Hang; Wen, Yanbo; Yuen, Kwok-Yung; Chen, Wei

    2018-03-29

    Zika virus (ZIKV) infection may be associated with severe complications and disseminated via both vector-borne and non-vector-borne routes. Adenovirus-vectored vaccines represent a favorable controlling measure for the ZIKV epidemic as they have been shown to be safe, immunogenic, and rapidly generable for other emerging viral infections. Evaluations of two previously reported adenovirus-vectored ZIKV vaccines were performed using non-lethal animal models and/or non-epidemic ZIKV strain. We constructed and evaluated two human adenovirus-5-vectored vaccines containing the ZIKV premembrane-envelope(Ad5-Sig-prM-Env) and envelope(Ad5-Env) proteins, respectively, in multiple non-lethal and lethal animal models using epidemic ZIKV strains. Both vaccines elicited robust humoral and cellular immune responses in immunocompetent BALB/c mice. Dexamethasone-immunosuppressed mice vaccinated with either vaccine demonstrated robust and durable antibody responses and significantly lower blood/tissue viral loads than controls(P<0.05). Similar findings were also observed in interferon-α/β-receptor-deficient A129 mice. In both these immunocompromised animal models, Ad5-Sig-prM-Env-vaccinated mice had significantly(P<0.05) higher titers of anti-ZIKV-specific neutralizing antibody titers and lower(undetectable) viral loads than Ad5-Env-vaccinated mice. The close correlation between the neutralizing antibody titer and viral load helped to explain the better protective effect of Ad5-Sig-prM-Env than Ad5-Env. Anamnestic response was absent in Ad5-Sig-prM-Env-vaccinated A129 mice. Ad5-Sig-prM-Env provided sterilizing protection against ZIKV infection in mice.

  15. Increasing the Efficacy of Oncolytic Adenovirus Vectors

    PubMed Central

    Toth, Karoly; Wold, William S. M.

    2010-01-01

    Oncolytic adenovirus (Ad) vectors present a new modality to treat cancer. These vectors attack tumors via replicating in and killing cancer cells. Upon completion of the vector replication cycle, the infected tumor cell lyses and releases progeny virions that are capable of infecting neighboring tumor cells. Repeated cycles of vector replication and cell lysis can destroy the tumor. Numerous Ad vectors have been generated and tested, some of them reaching human clinical trials. In 2005, the first oncolytic Ad was approved for the treatment of head-and-neck cancer by the Chinese FDA. Oncolytic Ads have been proven to be safe, with no serious adverse effects reported even when high doses of the vector were injected intravenously. The vectors demonstrated modest anti-tumor effect when applied as a single agent; their efficacy improved when they were combined with another modality. The efficacy of oncolytic Ads can be improved using various approaches, including vector design, delivery techniques, and ancillary treatment, which will be discussed in this review. PMID:21994711

  16. The Use of Adenovirus Dodecahedron in the Delivery of an Enzymatic Activity in the Cell

    PubMed Central

    Sumarheni; Gallet, Benoit; Fender, Pascal

    2016-01-01

    Penton-dodecahedron (Pt-Dd) derived from adenovirus type 3 is a symmetric complex of pentameric penton base plus fiber which can be produced in the baculovirus system at a high concentration. The size of Pt-Dd is smaller than the virus, but this virus-like particle (VLP) has the major proteins recognized by specific receptors on the surface of almost all types of cell. In this study, by direct observation with fluorescence microscopy on a fixed and living cell, the intracellular trafficking and localization of Pt-Dd labeled with fluorescence dyes in the cytoplasm of HeLa Tub-GFP showed a rapid internalization characteristic. Subsequently, the linkage of horseradish peroxidase (HRP) with Pt-Dd as the vector demonstrated an efficient system to deliver this enzyme into the cell without interfering its enzymatic activity as shown by biochemical and cellular experiments. These results were supported by additional studies using Bs-Dd or free form of the HRP used as the control. Overall, this study strengthens the potential role of Pt-Dd as an alternative vector for delivering therapeutic agents. PMID:27242929

  17. Integration Profile and Safety of an Adenovirus Hybrid-Vector Utilizing Hyperactive Sleeping Beauty Transposase for Somatic Integration

    PubMed Central

    Zhang, Wenli; Muck-Hausl, Martin; Wang, Jichang; Sun, Chuanbo; Gebbing, Maren; Miskey, Csaba; Ivics, Zoltan; Izsvak, Zsuzsanna; Ehrhardt, Anja

    2013-01-01

    We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB) transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR) and linear amplification-mediated PCR (LAM-PCR). Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models. PMID:24124483

  18. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  19. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  20. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  1. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  2. Radiation increases the activity of oncolytic adenovirus cancer gene therapy vectors that overexpress the ADP (E3-11.6K) protein.

    PubMed

    Toth, Karoly; Tarakanova, Vera; Doronin, Konstantin; Ward, Peter; Kuppuswamy, Mohan; Locke, Jacob E; Dawson, Julie E; Kim, Han J; Wold, William S M

    2003-03-01

    We have described three potential adenovirus type 5 (Ad5)-based replication-competent cancer gene therapy vectors named KD1, KD3, and VRX-007. All three vectors overexpress an Ad5 protein named Adenovirus Death Protein (ADP, also named E3-11.6 K protein). ADP is required for efficient lysis of Ad5-infected cells and spread of virus from cell to cell, and thus its overexpression increases the oncolytic activity of the vectors. KD1 and KD3 contain mutations in the Ad5 E1A gene that knock out binding of the E1A proteins to cellular p300/CBP and pRB; these mutations allow KD1 and KD3 to grow well in cancer cells but not in normal cells. VRX-007 has wild-type E1A. Here we report that radiation increases the oncolytic activity of KD1, KD3, and VRX-007. This increased activity was observed in cultured cells, and it was not because of radiation-induced replication of the vectors. The combination of radiation plus KD3 suppressed the growth of A549 lung adenocarcinoma xenografts in nude mice more efficiently than radiation alone or KD3 alone. The combination of ADP-overexpressing vectors and radiation may have potential in treating cancer.

  3. Protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion.

    PubMed

    Zhai, S-Q; Guo, W; Hu, Y-Y; Yu, N; Chen, Q; Wang, J-Z; Fan, M; Yang, W-Y

    2011-05-01

    To explore the protective effects of brain-derived neurotrophic factor on the noise-damaged cochlear spiral ganglion. Recombinant adenovirus brain-derived neurotrophic factor vector, recombinant adenovirus LacZ and artificial perilymph were prepared. Guinea pigs with audiometric auditory brainstem response thresholds of more than 75 dB SPL, measured seven days after four hours of noise exposure at 135 dB SPL, were divided into three groups. Adenovirus brain-derived neurotrophic factor vector, adenovirus LacZ and perilymph were infused into the cochleae of the three groups, variously. Eight weeks later, the cochleae were stained immunohistochemically and the spiral ganglion cells counted. The auditory brainstem response threshold recorded before and seven days after noise exposure did not differ significantly between the three groups. However, eight weeks after cochlear perfusion, the group receiving brain-derived neurotrophic factor had a significantly decreased auditory brainstem response threshold and increased spiral ganglion cell count, compared with the adenovirus LacZ and perilymph groups. When administered via cochlear infusion following noise damage, brain-derived neurotrophic factor appears to improve the auditory threshold, and to have a protective effect on the spiral ganglion cells.

  4. Immunogenicity and protective efficacy of a replication-defective infectious bronchitis virus vaccine using an adenovirus vector and administered in ovo.

    PubMed

    Zeshan, Basit; Zhang, Lili; Bai, Juan; Wang, Xinglong; Xu, Jiarong; Jiang, Ping

    2010-06-01

    In ovo vaccination remains an attractive option for a cost effective, uniform and mass application of vaccines for commercial poultry. However, the vaccines which can be delivered safely by this method are limited and there is no currently licensed embryo-safe vaccine against infectious bronchitis virus (IBV). In this study, a recombinant adenovirus expressing the S1 gene of nephropathogenic IBV (rAd-S1) was constructed and the immune responses and protective efficacy against homologous challenge were evaluated after in ovo vaccination. The results showed that the rAd-S1 led to dramatic augmentation of humoral and cellular responses in birds vaccinated in ovo followed by an intramuscular inoculation. Both IFN-gamma and IL-4 in chicken's lymphocytes were produced by this strategy. Following challenge with IBV, the chickens vaccinated with recombinant adenovirus showed fewer nephropathic lesions and less severe clinical signs as compared to those receiving wild-type adenovirus or PBS. The construction of non-replicating human adenovirus vector encoding S1 gene of IBV and its in ovo delivery demonstrated the potential of an alternative vaccination strategy against IBV. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Immune Response to Recombinant Adenovirus in Humans: Capsid Components from Viral Input Are Targets for Vector-Specific Cytotoxic T Lymphocytes

    PubMed Central

    Molinier-Frenkel, Valérie; Gahery-Segard, Hanne; Mehtali, Majid; Le Boulaire, Christophe; Ribault, Sébastien; Boulanger, Pierre; Tursz, Thomas; Guillet, Jean-Gérard; Farace, Françoise

    2000-01-01

    We previously demonstrated that a single injection of 109 PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218–2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8+ CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses. PMID:10906225

  6. The Adenovirus Genome Contributes to the Structural Stability of the Virion

    PubMed Central

    Saha, Bratati; Wong, Carmen M.; Parks, Robin J.

    2014-01-01

    Adenovirus (Ad) vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design. PMID:25254384

  7. In Vivo Stable Transduction of Humanized Liver Tissue in Chimeric Mice via High-Capacity Adenovirus–Lentivirus Hybrid Vector

    PubMed Central

    Kataoka, Miho; Tateno, Chise; Yoshizato, Katsutoshi; Kawasaki, Yoshiko; Kimura, Takahiro; Faure-Kumar, Emmanuelle; Palmer, Donna J.; Ng, Philip; Okamura, Haruki; Kasahara, Noriyuki

    2010-01-01

    Abstract We developed hybrid vectors employing high-capacity adenovirus as a first-stage carrier encoding all the components required for in situ production of a second-stage lentivirus, thereby achieving stable transgene expression in secondary target cells. Such vectors have never previously been tested in normal tissues, because of the scarcity of suitable in vivo systems permissive for second-stage lentivirus assembly. Here we employed a novel murine model in which endogenous liver tissue is extensively reconstituted with engrafted human hepatocytes, and successfully achieved stable transduction by the second-stage lentivirus produced in situ from first-stage adenovirus. This represents the first demonstration of the functionality of adenoviral-lentiviral hybrid vectors in a normal parenchymal organ in vivo. PMID:19725756

  8. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production.

    PubMed

    Carinhas, Nuno; Pais, Daniel A M; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P

    2016-03-23

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.

  9. Cancer gene therapy with targeted adenoviruses.

    PubMed

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  10. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization

    PubMed Central

    Maxfield, Lori F.; Abbink, Peter; Stephenson, Kathryn E.; Borducchi, Erica N.; Ng'ang'a, David; Kirilova, Marinela M.; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank

    2015-01-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. PMID:26376928

  11. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization.

    PubMed

    Maxfield, Lori F; Abbink, Peter; Stephenson, Kathryn E; Borducchi, Erica N; Ng'ang'a, David; Kirilova, Marinela M; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank; Barouch, Dan H

    2015-11-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. Copyright © 2015, Maxfield et al.

  12. Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens.

    PubMed

    Tatsis, Nia; Lasaro, Marcio O; Lin, Shih-Wen; Haut, Larissa H; Xiang, Zhi Q; Zhou, Dongming; Dimenna, Lauren; Li, Hua; Bian, Ang; Abdulla, Sarah; Li, Yan; Giles-Davis, Wynetta; Engram, Jessica; Ratcliffe, Sarah J; Silvestri, Guido; Ertl, Hildegund C; Betts, Michael R

    2009-05-15

    In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with preexisting neutralizing Abs against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here, we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee-derived Ad vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the chimpanzee-derived Ad vectors induced higher T and B cell responses than did repeated immunizations with the AdHu5 vector, especially in AdHu5-preexposed macaques.

  13. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord

    PubMed Central

    Kamada, Takahito; Hashimoto, Masayuki; Murakami, Masazumi; Shirasawa, Hiroshi; Sakao, Seiichiro; Ino, Hidetoshi; Yoshinaga, Katsunori; Koshizuka, Shuhei; Moriya, Hideshige; Yamazaki, Masashi

    2007-01-01

    The aim of this study was to evaluate the efficacy in adult rat completely transected spinal cord of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to bone marrow stromal cells (BMSC). BMSC were infected with adenovirus vectors carrying β-galactosidase (AxCALacZ) or BDNF (AxCABDNF) genes. The T8 segment of spinal cord was removed and replaced by graft containing Matrigel alone (MG group) or Matrigel and BMSC infected by AxCALacZ (BMSC-LacZ group) or AxCABDNF (BMSC-BDNF group). Axons in the graft were evaluated by immunohistochemistry and functional recovery was assessed with BBB locomotor scale. In the BMSC-BDNF group, the number of fibers positive for growth associated protein-43, tyrosine hydroxylase, and calcitonin gene-related peptide was significantly larger than numbers found for the MG and BMSC-LacZ groups. Rats from BMSC-BDNF and BMSC-LacZ groups showed significant recovery of hind limb function compared with MG rats; however, there was no significant difference between groups in degree of functional recovery. These findings demonstrate that adenovirus vector-mediated ex vivo gene transfer of BDNF enhances the capacity of BMSC to promote axonal regeneration in this completely transected spinal cord model; however, BDNF failed to enhance hind limb functional recovery. Further investigation is needed to establish an optimal combination of cell therapy and neurotrophin gene transfer for cases of spinal cord injury. PMID:17885772

  14. Immunological thresholds in neurological gene therapy: highly efficient elimination of transduced cells might be related to the specific formation of immunological synapses between T cells and virus-infected brain cells

    PubMed Central

    Barcia, Carlos; Gerdes, Christian; Xiong, Wei-Dong; Thomas, Clare E.; Liu, Chunyan; Kroeger, Kurt M.; Castro, Maria G.; Lowenstein, Pedro R.

    2007-01-01

    First-generation adenovirus can be engineered with powerful promoters to drive expression of therapeutic transgenes. Numerous clinical trials for glioblastoma multiforme using first generation adenoviral vectors have either been performed or are ongoing, including an ongoing, Phase III, multicenter trial in Europe and Israel (Ark Therapeutics, Inc.). Although in the absence of anti-adenovirus immune responses expression in the brain lasts 6–18 months, systemic infection with adenovirus induces immune responses that inhibit dramatically therapeutic transgene expression from first generation adenoviral vectors, thus, potentially compromising therapeutic efficacy. Here, we show evidence of an immunization threshold for the dose that generates an immune response strong enough to eliminate transgene expression from the CNS. For the systemic immunization to eliminate transgene expression from the brain, ≥1 × 107 infectious units (iu) of adenovirus need to be used as immunogen. Furthermore, this immune response eliminates >90% of transgene expression from 1 × 107–1 × 10³ iu of vector injected into the striatum 60 days earlier. Importantly, elimination of transgene expression is independent of the nature of the promoter that drives transgene expression and is accompanied by brain infiltration of CD8+ T cells and macrophages. In conclusion, once the threshold for systemic immunization (i.e. 1 × 107 iu) is crossed, the immune response eliminates transgene expression by >90% even from brains that receive as little as 1000 iu of adenoviral vectors, independently of the type of promoter that drives expression. PMID:18084640

  15. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    PubMed

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. [The preparation of recombinant adenovirus Ad-Rad50-GFP and detection of the optimal multiplicity of infection in CNE1 transfected hv Ad-Rad50-GFP].

    PubMed

    Yan, Ruicheng; Huang, Jiancong; Zhu, Ling; Chang, Lihong; Li, Jingjia; Wu, Xifu; Ye, Jin; Zhang, Gehua

    2015-12-01

    The optimal multiplicity of infection (MOI) of the recombinant adenovirus Ad-Rad50-GFP carrying a mutant Rad50 gene expression region on the cell growth of nasopharyngeal carcinoma and the viral amplification efficiency of CNE1 cell infected by this adenovirus were studied. The biological titer of Ad-Rad50-GFP was measured by end point dilution method. The impact of recombinant adenoviral vector transfection on the growth of CNE1 cells was observed by cell growth curve. Transfection efficacy of recombinant adenoviral vector was observed and calculated through fluorescence microscope. The expression f mutant Rad50 in the Ad-Rad50-GFP transfected CNE1 cells with optimal MOI was detected by Western Blot after transfection. The biological titer of Ad-Rad50-GFP was 1.26 x 10¹¹ pfu/ml. CNE1 cell growth was not influenced significantly as they were transfected by recombinant adenoviral vector with MOI less than 50. Transfection efficacy of recombinant adenoviral vector was most salient at 24 hours after transfection, with the high expression of mutant Rad50, and the efficiency still remained about 70% after 72 hours. Recombinant adenoviral vector Ad-Rad50-GFP could transfect CNE1 cells as well as result in the expression of mutant Rad50 in CNE1 cells effectively. MOI = 50 was the optimal multiplicity of infection of CNE1 cells transfected by recombinant adenoviral vector Ad-Rad50-GFP.

  17. Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection

    PubMed Central

    Lee, Jeong Yoon; Lee, Ji Sun; Materne, Emma C.; Rajala, Rahul; Ismail, Ashrafali M.; Seto, Donald; Dyer, David W.

    2018-01-01

    ABSTRACT Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the presence of bacterial RecA protein facilitated homologous recombination between viruses. Genetic recombination led to evolution of an important external feature on the adenoviral capsid, namely, the penton base protein hypervariable loop 2, which contains the arginine-glycine-aspartic acid motif critical to viral internalization. We speculate that free Rec proteins present in gastrointestinal secretions upon bacterial cell death facilitate the evolution of human adenoviruses through homologous recombination, an example of viral commensalism and the complexity of virus-host interactions, including regional microbiota. PMID:29925671

  18. The role of cyclophosphamide in enhancing antitumor efficacy of an adenovirus oncolytic vector in subcutaneous Syrian hamster tumors.

    PubMed

    Young, B A; Spencer, J F; Ying, B; Tollefson, A E; Toth, K; Wold, W S M

    2013-09-01

    We have previously reported that intratumoral injection of VRX-007--an Ad5 (a species C adenovirus)-based vector overexpressing adenovirus death protein--can suppress the growth of subcutaneous HaK (hamster renal cancer) tumors. VRX-007 replication and tumor growth inhibition are enhanced when the hamsters are immunosuppressed by a high dose of cyclophosphamide (CP), an immunosuppressive and chemotherapeutic agent. Here, we report that continuous immunosuppression with CP was not required for increased oncolytic activity of VRX-007 because short-term dosing or continuous dosing with the drug yielded similar antitumor results. Prolonged viral replication was found only in animals on continuous CP treatment. We used 007-Luc, a replication-competent, luciferase-expressing vector similar to VRX-007, to investigate the replication of the vector over time. Tumor growth inhibition was similar in hamsters given CP treatment either 1 week before or 1 week after 007-Luc injection, which suggests that CP exerts its antitumor efficacy independently of vector therapy. 007-Luc did not spread far from the inoculation site, even in immunosuppressed, CP-treated animals. Our results indicate that the enhanced effectiveness that is produced by the combination of VRX-007 and CP therapies is due to their two independent mechanisms and that they do not have to be given simultaneously for the improved outcome.

  19. Applying Genomic and Bioinformatic Resources to Human Adenovirus Genomes for Use in Vaccine Development and for Applications in Vector Development for Gene Delivery

    PubMed Central

    Seto, Jason; Walsh, Michael P.; Mahadevan, Padmanabhan; Zhang, Qiwei; Seto, Donald

    2010-01-01

    Technological advances and increasingly cost-effect methodologies in DNA sequencing and computational analysis are providing genome and proteome data for human adenovirus research. Applying these tools, data and derived knowledge to the development of vaccines against these pathogens will provide effective prophylactics. The same data and approaches can be applied to vector development for gene delivery in gene therapy and vaccine delivery protocols. Examination of several field strain genomes and their analyses provide examples of data that are available using these approaches. An example of the development of HAdV-B3 both as a vaccine and also as a vector is presented. PMID:21994597

  20. Live-cell visualization of intracellular interaction between a nuclear migration protein (hNUDC) and the thrombopoietin receptor (Mpl).

    PubMed

    Zheng, Yuan-Bin; Xiao, Ying-Ying; Tan, Peng; Zhang, Qing; Xu, Peilin

    2012-01-01

    We previously demonstrated that endogenous hNUDC and Mpl co-localized in the perinuclear and cytoplasmic regions of megakaryocyte cells by indirect immunofluorescence. We further reported that hNUDC accumulated in the Golgi when NIH 3T3 cells were transfected with an hNUDC expression vector alone. However, co-transfection with hNUDC and Mpl expression vectors caused both proteins to co-localize predominantly in the cytosol. These observations led us to hypothesize that a complex containing hNUDC and Mpl may alter hNUDC subcellular location and induce its secretion. In the present study, we test this hypothesis by employing bimolecular fluorescence complementation (BiFC) to detect and visualize the complex formation of hNUDC/Mpl in living cells. We further examined in detail the subcellular locations of the hNUDC/Mpl complex by co-transfection of BiFC chimeras with known subcellular markers. The distribution of hNUDC/Mpl in the endoplasmic reticulum (ER), Golgi and cell surface was determined. Furthermore, the N-terminal 159 amino acids of hNUDC, but not C-terminal half, bound to Mpl in vivo and exhibited a similar localization pattern to that of full-length hNUDC in Cos-1 cells. Adenovirus-mediated overexpression of hNUDC or its N-terminal 159 residues in a human megakaryocyte cell line (Dami) resulted in increased levels of hNUDC or hNUDC(1-159) secretion. In contrast, depletion of Mpl by transfecting Dami cells with adenovirus bearing Mpl-targeting siRNA significantly blocked hNUDC secretion. Thus, we provide the first evidence that the N-terminal region of hNUDC contains all of the necessary information to complex with Mpl and traffic through the secretory pathway.

  1. Live-Cell Visualization of Intracellular Interaction between a Nuclear Migration Protein (hNUDC) and the Thrombopoietin Receptor (Mpl)

    PubMed Central

    Zheng, Yuan-Bin; Xiao, Ying-Ying; Tan, Peng; Zhang, Qing; Xu, Peilin

    2012-01-01

    We previously demonstrated that endogenous hNUDC and Mpl co-localized in the perinuclear and cytoplasmic regions of megakaryocyte cells by indirect immunofluorescence. We further reported that hNUDC accumulated in the Golgi when NIH 3T3 cells were transfected with an hNUDC expression vector alone. However, co-transfection with hNUDC and Mpl expression vectors caused both proteins to co-localize predominantly in the cytosol. These observations led us to hypothesize that a complex containing hNUDC and Mpl may alter hNUDC subcellular location and induce its secretion. In the present study, we test this hypothesis by employing bimolecular fluorescence complementation (BiFC) to detect and visualize the complex formation of hNUDC/Mpl in living cells. We further examined in detail the subcellular locations of the hNUDC/Mpl complex by co-transfection of BiFC chimeras with known subcellular markers. The distribution of hNUDC/Mpl in the endoplasmic reticulum (ER), Golgi and cell surface was determined. Furthermore, the N-terminal 159 amino acids of hNUDC, but not C-terminal half, bound to Mpl in vivo and exhibited a similar localization pattern to that of full-length hNUDC in Cos-1 cells. Adenovirus-mediated overexpression of hNUDC or its N-terminal 159 residues in a human megakaryocyte cell line (Dami) resulted in increased levels of hNUDC or hNUDC(1-159) secretion. In contrast, depletion of Mpl by transfecting Dami cells with adenovirus bearing Mpl-targeting siRNA significantly blocked hNUDC secretion. Thus, we provide the first evidence that the N-terminal region of hNUDC contains all of the necessary information to complex with Mpl and traffic through the secretory pathway. PMID:23284788

  2. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    PubMed

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the molecular components of adenovirus-based vaccines can produce potent, optimized product, useful for vaccination and post-exposure therapy.

  3. Viral Vectors for Use in the Development of Biodefense Vaccines

    DTIC Science & Technology

    2005-06-17

    vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine vectors has enabled researchers to develop effective means for countering the...biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine -vectors has enabled researchers to... vaccines . . . . . . . . . . . . . . . . . . . 1298 2.1.3. Vaccinia virus-vectored Venezuelan equine encephalitis vaccines

  4. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    PubMed Central

    Xiang, Z.Q.; Greenberg, L.; Ertl, H. C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  5. Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control.

    PubMed

    Work, L M; Ritchie, N; Nicklin, S A; Reynolds, P N; Baker, A H

    2004-08-01

    Adenovirus (Ad)-mediated gene delivery is a promising approach for genetic manipulation of the vasculature and is being used in both preclinical models and clinical trials. However, safety concerns relating to infection of nontarget tissue and the poor infectivity of vascular cells compared to other cell types necessitates Ad vector refinement. Here, we combine a transductional targeting approach to improve vascular cell infectivity through RGD peptide insertion into adenovirus fibers, combined with transcriptional targeting to endothelial cells using a approximately 1 kb fragment of the fms-like tyrosine kinase receptor-1 (FLT-1) promoter. Single- and double-modified vectors were characterized in human cell lines that either support or have silenced FLT-1 expression. In rat hepatocytes and endothelial cells, the double modification substantially shifted transduction profiles toward vascular endothelial cells. Furthermore, in intact aortae derived from spontaneously hypertensive rats that display enhanced alphav integrin expression on dysfunctional endothelium, enhanced levels of transduction were observed using the double-modified vector but not in aortae derived from normotensive control rats. Our data indicate that Ad-mediated transduction can be beneficially modified in vitro and in vivo by combining fiber modification and a cell-selective promoter within a single-component vector system.

  6. Single-cycle adenovirus vectors in the current vaccine landscape.

    PubMed

    Barry, Michael

    2018-02-01

    Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. Areas covered: This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. Expert commentary: The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.

  7. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs

    PubMed Central

    Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne

    2015-01-01

    Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses. PMID:25668122

  8. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs.

    PubMed

    Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne

    2015-01-01

    Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.

  9. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy.

    PubMed

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-12-28

    Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues

    USDA-ARS?s Scientific Manuscript database

    Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...

  11. Recent Advances in Preclinical Developments Using Adenovirus Hybrid Vectors.

    PubMed

    Ehrke-Schulz, Eric; Zhang, Wenli; Gao, Jian; Ehrhardt, Anja

    2017-10-01

    Adenovirus (Ad)-based vectors are efficient gene-transfer vehicles to deliver foreign DNA into living organisms, offering large cargo capacity and low immunogenicity and genotoxicity. As Ad shows low integration rates of their genomes into host chromosomes, vector-derived gene expression decreases due to continuous cell cycling in regenerating tissues and dividing cell populations. To overcome this hurdle, adenoviral delivery can be combined with mechanisms leading to maintenance of therapeutic DNA and long-term effects of the desired treatment. Several hybrid Ad vectors (AdV) exploiting various strategies for long-term treatment have been developed and characterized. This review summarizes recent developments of preclinical approaches using hybrid AdVs utilizing either the Sleeping Beauty transposase system for somatic integration into host chromosomes or designer nucleases, including transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease for permanent gene editing. Further options on how to optimize these vectors further are discussed, which may lead to future clinical applications of these versatile gene-therapy tools.

  12. Optimizing cardiovascular gene therapy: increased vascular gene transfer with modified adenoviral vectors.

    PubMed

    Kibbe, M R; Murdock, A; Wickham, T; Lizonova, A; Kovesdi, I; Nie, S; Shears, L; Billiar, T R; Tzeng, E

    2000-02-01

    Adenovirus is widely used as a vector for gene transfer to the vasculature. However, the efficiency of these vectors can be limited by ineffective viral-target cell interactions. Viral attachment, which largely determines adenoviral tropism, is mediated through binding of the adenoviral fiber coat protein to the Coxsackievirus and adenovirus receptor, while internalization follows binding of the adenoviral RGD motif to alpha(v)-integrin receptors. Modifications of the fiber coat protein sequence have been successful for targeting the adenovirus to more prevalent receptors in the vasculature, including heparan sulfate-containing receptors and alpha(v)-integrin receptors. Modified adenoviral vectors targeted to receptors more prevalent in the vasculature result in an increased transfer efficiency of the virus in vitro and in vivo even in the presence of clinically relevant doses of heparin. We tested 2 modified E1- and E3-deleted Ad5 type adenoviral vectors containing the beta-galactosidase gene. AdZ.F(pK7) contains multiple positively charged lysines in the fiber coat protein that target the adenovirus to heparan sulfate receptors, while AdZ.F(RGD) contains an RGD integrin-binding sequence in the fiber coat protein that allows binding to alpha(v)-integrin receptors. The gene transfer efficiency of these modified viruses was compared in rat aortic smooth muscle cells in vitro and in an in vivo porcine model of balloon-induced arterial injury. Because of the use of heparin during most vascular surgical procedures and the concern that heparin might interfere with the binding of AdZ.F(pK7) to heparan sulfate receptors, the effect of heparin on the in vitro and in vivo transfer efficiency of these 2 modified adenoviruses was evaluated. In vitro infection of rat aortic smooth muscle cells with AdZ.F(pK7) and AdZ.F(RGD) resulted in significantly higher levels of beta-galactosidase expression compared with the unmodified adenovirus (mean +/- SEM, 1766.3 +/- 89.1 and 44.8 +/- 3.4 vs 10.1 +/- 0.7 mU per milligram of protein; P<.001). Following heparin administration, the gene transfer efficiency achieved with AdZ.F(pK7) diminished slightly in a concentration-dependent manner. However, the transfer efficiency was still greater than with the unmodified virus (mean +/- SEM, 1342.3 +/- 101.8 vs 4.8 +/- 0.4 mU per milligram of protein; P<.001). In vivo, following injury to the pig iliac artery with a 4F Fogarty balloon catheter, we found that AdZ.F(pK7) transduced the artery approximately 35-fold more efficiently than AdZ.F and 3-fold more efficiently than AdZ.F(RGD) following the administration of intravenous heparin, 100 U/kg body weight, and heparinized saline irrigation. Modifications of the adenovirus that lead to receptor targeting resulted in significantly improved gene transfer efficiencies. These improvements in transfer efficiencies observed with the modified vectors decreased slightly in the presence of heparin. However, AdZ.F(pK7) was still superior to AdZ.F(RGD) and AdZ.F despite heparin administration. These data demonstrate that modifications of adenoviral vectors that enhance binding to heparan sulfate receptors significantly improve gene transfer efficiency even in the presence of heparin and suggest an approach to optimize gene transfer into blood vessels.

  13. Interferon-α Silencing by Small Interference RNA Increases Adenovirus Transduction and Transgene Expression in Huh7 Cells.

    PubMed

    Sobrevilla-Navarro, Ana Alondra; Sandoval-Rodríguez, Ana; García-Bañuelos, Jesús Javier; Armendariz-Borunda, Juan; Salazar-Montes, Adriana María

    2018-04-01

    Adenoviruses are the most common vectors used in clinical trials of gene therapy. In 2017, 21.2% of clinical trials used rAds as vectors. Systemic administration of rAds results in high tropism in the liver. Interferon types α and β are the major antiviral cytokines which orchestrate the host's immune response against rAd, limiting therapeutic gene expression and preventing subsequent vector administration. siRNA is small double-strand RNAs that temporally inhibit the expression of a specific gene. The aim is to evaluate the effect of IFN-α blocking by a specific siRNA on Ad-GFP transduction and on transgene expression in Huh7 cells in culture. Huh7 cells were cultured in DMEM and transfected with 70 nM of siRNA-IFN-α. Six hours later, the cells were exposed to 1 × 10 9  vp/ml of rAd-GFP for 24 h. Expression of IFN-α, TNF-α and the PKR gene was determined by RT-qPCR. Percentage of transduction was analyzed by flow cytometry and by qPCR. GFP expression was determined by western blot. 70 nM of siRNA-IFN-α inhibited 96% of IFN-α and 65% of TNF-α gene expression compared to an irrelevant siRNA. Percentage of transduction and transgene expression increased in these cells compared to an irrelevant siRNA. Inhibition of IFN-α expression by siRNA-IFN-α enabled a higher level of transduction and transgene expression GFP, highlighting the role of IFN-α in the elimination of adenovirus in transduced cells and thus suggesting that its inhibition could be an important strategy for gene therapy in clinical trials using adenovirus as a vector directed to liver diseases.

  14. Complete replication-competent adenovirus 11p vectors with E1 or E3 insertions show improved heat stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ya-Fang, E-mail: ya-fang.mei@umu.se

    2016-10-15

    Conventional adenovirus vectors harboring E1 or E3 deletions followed by the insertion of an exogenous gene show considerably reduced virion stability. Here, we report strategies to generate complete replication-competent Ad11p(RCAd11p) vectors that overcome the above disadvantage. A GFP cassette was successfully introduced either upstream of E1A or in the E3A region. The resulting vectors showed high expression levels of the hexon and E1genes and also strongly induced the cytopathic effect in targeted cells. When harboring oversized genomes, the RCAd11pE1 and RCAd11pE3 vectors showed significantly improved heat stability in comparison to Ad11pwt;of the three, RCAd11pE3 was the most tolerant to heatmore » treatment. Electron microscopy showed that RCAd11pE3, RCAd11pE1, Ad11pwt, and Ad11pE1 Delmanifested dominant, moderate, minimum, or no full virus particles after heat treatment at 47 °C for 5 h. Our results demonstrated that both genome size and the insertion site in the viral genome affect virion stability. -- Highlights: •Replicating adenovirus 11p GFP vectors at the E1 or E3 region were generated. •RCAd11pE3 and RCAd11pE1 vectors manifested significantly improved heat stability. •RCAd11pE3 and RCAd11pE1 showed more full viral particles than Ad11pwt after heating. •We demonstrated that both genome size and the insertion site affect virion stability.« less

  15. Ebola virus vaccine: benefit and risks of adenovirus-based vectors.

    PubMed

    Mennechet, Franck J D; Tran, Thi Thu Phuong; Eichholz, Karsten; van de Perre, Philippe; Kremer, Eric J

    2015-01-01

    In 2014, an outbreak of Ebola virus spread rapidly in West Africa. The epidemic killed more than 10,000 people and resulted in transmissions outside the endemic countries. WHO hopes for effective vaccines by the end of 2015. Numerous vaccine candidates have been proposed, and several are currently being evaluated in humans. Among the vaccine candidates are vectors derived from adenovirus (Ad). Despite previous encouraging preclinical and Phase I/II trials, Ad vectors used in three Phase II trials targeting HIV were prematurely interrupted because of the lack of demonstrated efficacy. The vaccine was not only ineffective but also led to a higher rate of HIV acquisition. In this context, the authors discuss the potential benefits, risks and impact of using Ad-derived vaccines to control Ebola virus disease.

  16. Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens1

    PubMed Central

    Tatsis, Nia; Lasaro, Marcio O.; Lin, Shih-Wen; Xiang, Zhi Q.; Zhou, Dongming; DiMenna, Lauren; Li, Hua; Bian, Ang; Abdulla, Sarah; Li, Yan; Giles-Davis, Wynetta; Engram, Jessica; Ratcliffe, Sarah J.; Silvestri, Guido; Ertl, Hildegund C.; Betts, Michael R.

    2009-01-01

    In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with pre-existing neutralizing antibodies against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee derived Ad (AdC) vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the AdC vectors induced higher T and B cell responses than repeated immunizations with the AdHu5 vector especially in AdHu5-pre-exposed macaques. PMID:19414814

  17. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    PubMed

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  18. Anti-tumor function of double-promoter regulated adenovirus carrying SEA gene, in the treatment of bladder cancer.

    PubMed

    Hu, Jianpeng; Xuan, Xujun; Han, Conghui; Hao, Lin; Zhang, Peiying; Chen, Meng; He, Houguang; Fan, Tao; Dong, Binzheng

    2012-03-01

    To construct an adenovirus carrying SEA gene and regulated by telomerase reverse transcriptase (hTERT) and hypoxia-inducible factor (HIF) promoters and investigate its anti-tumor function in vitro, as well as its role in lymphocyte production. hTERT and HIF genes were cloned into adenovirus E1A and E1B shuttle plasmids. The control vector for SEA gene expression is under the regulation of CMV and SV40 promoters. Double regulation was obtained through homologous recombination. The positive clones of replicable adenovirus H2-SEA-Ad were selected by plaque assay. The adenovirus was purified, titrated, and DNA was verified by PCR. The obtained virus was used to infect EJ bladder tumor cells and the SEA Mrna, and protein expression was measured by RT-PCR, western blot, and immunofluorescence microscopy, respectively. Co-culture of lymphocytes and tumor cells was observed dynamically under microscope. The construction of shuttle plasmid p315-CSS-SEA was confirmed by PCR and DNA sequencing. Insertion of superantigen SEA gene in adenovirus (H2-SEA-Ad.SEA) was obtained by homologous recombination. In lymphocytes and tumor cell co-culture, the number of viable tumor cells in test groups was significantly lower than that in control group after 12, 24, and 48 h of treatment. Production of interleukin-2, interleukin-4, and tumor necrosis factor were higher in test groups than in control group. Expression of SEA gene in bladder tumor cells by adenoviral vector caused reduced tumor cell proliferation, as well as stimulation of inflammatory cytokine productions in co-cultures with lymphocytes.

  19. Cocaine Analog Coupled to Disrupted Adenovirus: A Vaccine Strategy to Evoke High-titer Immunity Against Addictive Drugs

    PubMed Central

    Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Davidson, Jesse T; Moreno, Amira Y; Janda, Kim D; Wee, Sunmee; Koob, George F; Hackett, Neil R; Kaminsky, Stephen M; Worgall, Stefan; Toth, Miklos; Mezey, Jason G; Crystal, Ronald G

    2011-01-01

    Based on the concept that anticocaine antibodies could prevent inhaled cocaine from reaching its target receptors in the brain, an effective anticocaine vaccine could help reverse cocaine addiction. Leveraging the knowledge that E1−E3− adenovirus (Ad) gene transfer vectors are potent immunogens, we have developed a novel vaccine platform for addictive drugs by covalently linking a cocaine analog to the capsid proteins of noninfectious, disrupted Ad vector. The Ad-based anticocaine vaccine evokes high-titer anticocaine antibodies in mice sufficient to completely reverse, on a persistent basis, the hyperlocomotor activity induced by intravenous administration of cocaine. PMID:21206484

  20. Selective intraarterial gene delivery into a canine meningioma.

    PubMed

    Chauvet, A E; Kesava, P P; Goh, C S; Badie, B

    1998-05-01

    The goal of this study was to evaluate gene delivery to a benign brain tumor. A recombinant adenovirus vector bearing the Escherichia coli beta-galactosidase reporter gene was selectively injected into the vascular supply of a spontaneously occurring canine olfactory groove meningioma. The tumor and a small amount of peritumoral brain tissue were removed 5 days after viral injection and stained with X-Gal to assess gene delivery. The authors noted significant beta-galactosidase gene expression by the tumor, but not by surrounding brain tissue. No obvious viral-related cytotoxicity was noted. The authors found that meningiomas can be successfully transduced by adenovirus vectors by using endovascular techniques.

  1. Corrective GUSB transfer to the canine mucopolysaccharidosis VII cornea using a helper-dependent canine adenovirus vector

    PubMed Central

    Serratrice, Nicolas; Cubizolle, Aurelie; Ibanes, Sandy; Mestre-Francés, Nadine; Bayo-Puxan, Neus; Creyssels, Sophie; Gennetier, Aurelie; Bernex, Florence; Verdier, Jean-Michel; Haskins, Mark E.; Couderc, Guilhem; Malecaze, Francois; Kalatzis, Vasiliki; Kremer, Eric J.

    2015-01-01

    Corneal transparency is maintained, in part, by specialized fibroblasts called keratocytes, which reside in the fibrous lamellae of the stroma. Corneal clouding, a condition that impairs visual acuity, is associated with numerous diseases, including mucopolysaccharidosis (MPS) type VII. MPS VII is due to deficiency in β-glucuronidase (β-glu) enzymatic activity, which leads to accumulation of glycosaminoglycans (GAGs), and secondary accumulation of gangliosides. Here, we tested the efficacy of canine adenovirus type 2 (CAV-2) vectors to transduce keratocyte in vivo in mice and nonhuman primates, and ex vivo in dog and human corneal explants. Following efficacy studies, we asked if we could treat corneal clouding by the injection a helper-dependent (HD) CAV-2 vector (HD-RIGIE) harboring the human cDNA coding for β-glu (GUSB) in the canine MPS VII cornea. β-Glu activity, GAG content, and lysosome morphology and physiopathology were analyzed. We found that HD-RIGIE injections efficiently transduced coxsackievirus adenovirus receptor-expressing keratocytes in the four species and, compared to mock-injected controls, improved the pathology in the canine MPS VII cornea. The key criterion to corrective therapy was the steady controlled release of β-glu and its diffusion throughout the collagen-dense stroma. These data support the continued evaluation of HD CAV-2 vectors to treat diseases affecting corneal keratocytes. PMID:24607662

  2. Intra-testicular injection of adenoviral constructs results in Sertoli cell-specific gene expression and disruption of the seminiferous epithelium

    PubMed Central

    Hooley, R P; Paterson, M; Brown, P; Kerr, K; Saunders, P T K

    2009-01-01

    Spermatogenesis is a complex process that cannot be modelled in vitro. The somatic Sertoli cells (SCs) within the seminiferous tubules perform a key role in supporting maturation of germ cells (GCs). Progress has been made in determining what aspects of SC function are critical to maintenance of fertility by developing rodent models based on the Cre/LoxP system; however, this is time-consuming and is only applicable to mice. The aim of the present study was to establish methods for direct injection of adenoviral vectors containing shRNA constructs into the testis as a way of inducing target-selective knock-down in vivo. This paper describes a series of experiments using adenovirus expressing a green fluorescent protein (GFP) transgene. Injection via the efferent ductules resulted in SC-specific expression of GFP; expression levels paralleled the amount of infective viral particles injected. At the highest doses of virus seminiferous tubule architecture were grossly disturbed and immune cell invasion noted. At lower concentrations, the expression of GFP was variable/negligible, the seminiferous tubule lumen was maintained but stage-dependent GC loss and development of numerous basal vacuoles was observed. These resembled intercellular dilations of SC junctional complexes previously described in rats and may be a consequence of disturbances in SC function due to interaction of the viral particles with the coxsackie/adenovirus receptor that is a component of the junctional complexes within the blood testis barrier. In conclusion, intra-testicular injection of adenoviral vectors disturbs SC function in vivo and future work will therefore focus on the use of lentiviral delivery systems. PMID:18955374

  3. Cycles of Transient High-Dose Cyclophosphamide Administration and Oncolytic Adenovirus Vector Intratumoral Injection for Long Term Tumor Suppression in Syrian Hamsters

    PubMed Central

    Dhar, Debanjan; Toth, Karoly; Wold, William S.M.

    2014-01-01

    Immune responses against oncolytic adenovirus (Ad) vectors are thought to limit vector anti-tumor efficacy. In Syrian hamsters, which are immunocompetent and whose tumors and normal tissues are permissive for replication of Ad5-based oncolytic Ad vectors, treating with high-dose cyclophosphamide to suppress the immune system and exert chemotherapeutic effects enhances Ad vector anti-tumor efficacy. However, long term cyclophosphamide treatment and immunosuppression can lead to anemia and vector spread to normal tissues. Here we employed three cycles of transient high-dose cyclophosphamide administration plus intratumoral injection of the oncolytic Ad vector VRX-007 followed by withdrawal from cyclophosphamide. Each cycle lasted 4-6 weeks. This protocol allowed the hamsters to remain healthy so the study could be continued for ~100 days. The tumors were very well suppressed throughout the study. With immunocompetent hamsters, the vector retarded tumor growth initially, but after 3-4 weeks the tumors resumed rapid growth and further injections of vector were ineffective. Preimmunization of the hamsters with Ad5 prevented vector spillover from the tumor to the liver yet still allowed for effective long term anti-tumor efficacy. Our results suggest that a clinical protocol might be developed with cycles of transient chemotherapy plus intratumoral vector injection to achieve significant anti-tumor efficacy while minimizing the side effects of cytostatic treatment. PMID:24722357

  4. Cycles of transient high-dose cyclophosphamide administration and intratumoral oncolytic adenovirus vector injection for long-term tumor suppression in Syrian hamsters.

    PubMed

    Dhar, D; Toth, K; Wold, W S M

    2014-04-01

    Immune responses against oncolytic adenovirus (Ad) vectors are thought to limit vector anti-tumor efficacy. With Syrian hamsters, which are immunocompetent and whose tumors and normal tissues are permissive for replication of Ad5-based oncolytic Ad vectors, treating with high-dose cyclophosphamide (CP) to suppress the immune system and exert chemotherapeutic effects enhances Ad vector anti-tumor efficacy. However, long-term CP treatment and immunosuppression can lead to anemia and vector spread to normal tissues. Here, we employed three cycles of transient high-dose CP administration plus intratumoral injection of the oncolytic Ad vector VRX-007 followed by withdrawal of CP. Each cycle lasted 4-6 weeks. This protocol allowed the hamsters to remain healthy so the study could be continued for ~100 days. The tumors were very well suppressed throughout the study. With immunocompetent hamsters, the vector retarded tumor growth initially, but after 3-4 weeks the tumors resumed rapid growth and further injections of vector were ineffective. Preimmunization of the hamsters with Ad5 prevented vector spillover from the tumor to the liver yet still allowed for effective long-term anti-tumor efficacy. Our results suggest that a clinical protocol might be developed with cycles of transient chemotherapy plus intratumoral vector injection to achieve significant anti-tumor efficacy while minimizing the side effects of cytostatic treatment.

  5. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    USDA-ARS?s Scientific Manuscript database

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  6. Tumor Necrosis Factor α‐Gene Therapy for an Established Murine Melanoma Using RGB (Arg‐Gly‐Asp) Fiber‐mutant Adenovirus Vectors

    PubMed Central

    Okada, Yuka; Nakagawa, Shinsaku; Mizuguchi, Hiroyuki; Takahashi, Koichi; Mizuno, Nobuyasu; Fujita, Takuya; Yamamoto, Akira; Hayakawa, Takao; Mayumi, Tadanori

    2002-01-01

    Although adenovirus vectors (Ad) provide high‐level transduction efficacy to many cell types, extremely high doses of Ad are required for sufficient gene transduction into several tumors, including melanoma. Here, we demonstrated that the expression of coxsackie‐adenovirus receptor, a primitive Ad‐receptor, was very low in murine and human melanoma cells. We also found that fiber‐mutant Ad containing the Arg‐Gly‐Asp (RGD) sequence in the fiber knob remarkably augmented gene transduction efficacy in melanoma cells by targeting αv‐integrins. In addition, intratumoral injection of RGD fiber‐mutant Ad containing the tumor necrosis factor α gene (AdRGD‐TNFα) revealed dramatic anti‐tumor efficacy through hemolytic necrosis in an established murine B16 BL6 melanoma model. Ad‐RGD‐TNFα required one‐tenth the dosage of Ad‐TNFα to induce an equal therapeutic effect. These results suggest that αv‐integrin‐targeted Ad will be a very powerful tool for the advancement of melanoma gene therapy. PMID:11985794

  7. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-01-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.

  8. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  9. Vasculature-Specific Adenovirus Vectors for Gene Therapy of Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    reporter gene. To this end, a recombinant replication-deficient retrovirus vector containing an open reading frame of Renilla luciferase (hRLuc...dual-mode reporter gene ( Renilla luciferase and green fluorescent protein) has been designed and produced in a pan- tropic configuration. • Dual

  10. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

    PubMed Central

    Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel

    2015-01-01

    ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in the capsid and the molecular details of capsid assembly. Here, we provide evidence supporting one of the two current models for capsid architecture. We also show for the first time the location of the packaging protein L1 52/55k in particles lacking the virus genome and how this location changes during maturation. Our results contribute to clarifying standing questions in adenovirus capsid architecture and provide new details on the role of L1 52/55k protein in assembly. PMID:26178997

  11. Impact of novel histone deacetylase inhibitors, CHAP31 and FR901228 (FK228), on adenovirus-mediated transgene expression.

    PubMed

    Taura, Kojiro; Yamamoto, Yuzo; Nakajima, Akio; Hata, Koichiro; Uchinami, Hiroshi; Yonezawa, Kei; Hatano, Etsuro; Nishino, Norikazu; Yamaoka, Yoshio

    2004-05-01

    Histone deacetylase inhibitors (HDIs) are known to enhance adenovirus (Ad)-mediated transgene expression. Recently, novel HDIs, including cyclic hydroxamic-acid-containing peptide 31 (CHAP31) and FR901228 (FK228), have been developed. The effects of these two novel HDIs on Ad-transduced or endogenous gene expression were investigated. Acetylation of core histones and the expression of the coxsackie and adenovirus receptor (CAR) in HDI-treated cells were examined using Western blot and a quantitative reverse transcription polymerase chain reaction (TaqMan RT-PCR), respectively. Their in vivo effect on adenoviral gene expression was investigated in BALB/c mice. Both compounds enhanced and prolonged Ad-mediated beta-galactosidase expression more effectively than did trichostatin A, a classic HDI. The same effect was observed in Ad-transduced heat shock protein 72 (HSP72), but not in hyperthermia-induced endogenous expression of HSP72, suggesting that the effect is specific for transduced gene expression. Hyperacetylation of core histones induced by HDIs was considered responsible for the augmentative effects of gene expression. Intravenous administration of either CHAP31 or FR901228 enhanced beta-galactosidase expression in mice infected with AdLacZ. CHAP31 and FR901228 amplified Ad-mediated transgene expression. The enhancement of transgene expression by HDIs may result in fewer vector doses for necessary gene expression, helping to alleviate disadvantages caused by Ad vectors. This could be a useful tool in overcoming current limitations of gene therapy using adenovirus vectors. Copyright 2004 John Wiley & Sons, Ltd.

  12. Establishment and validation of new complementing cells for production of E1-deleted adenovirus vectors in serum-free suspension culture.

    PubMed

    Gilbert, Rénald; Guilbault, Claire; Gagnon, David; Bernier, Alice; Bourget, Lucie; Elahi, Seyyed Mehdy; Kamen, Amine; Massie, Bernard

    2014-11-01

    E1-deleted adenovirus vectors (AdV) are important gene transfer vehicles for gene therapy and vaccination. Amplification of AdV must take place in cells that express the adenovirus E1A and E1B genes. Sequence homology between AdV and the E1 genes integrated within the complementing cells should be minimal to reduce the odds of generating replication-competent adenovirus (RCA). The present study describes the establishment of AdV complementing cells constructed by stable transfection of the minimal E1A and E1B genes into human lung carcinoma (A549). Because some transgene products can be cytotoxic, the cells were engineered to stably express the repressor of the cumate-switch (CymR) to silence transgene transcription during vector growth. For regulatory compliance and to facilitate the scale-up, the resulting complementing cells (SF-BMAdR) were adapted to serum-free suspension culture. The best clone of SF-BMAdR produced AdV carrying an innocuous transgene to the same level as 293 cells, but titers were better for AdV carrying transgene for a cytotoxic product. Elevated titers were maintained for at least two months in suspension culture in the absence of selective agent and the cells did not produce RCA. Because of their advantageous properties, SF-BMAdR cells should become an important tool for developing large-scale production processes of AdV for research and clinical applications. Copyright © 2014. Published by Elsevier B.V.

  13. Adenoviral vector gene delivery via the round window membrane in guinea pigs.

    PubMed

    Suzuki, Mitsuya; Yamasoba, Tatsuya; Suzukawa, Keigo; Kaga, Kimitaka

    2003-10-27

    We have found that damage from a local anesthetic solution containing phenol permitted beta-galactosidase (beta-gal) gene delivery to the guinea pig inner ear via the round window membrane (RWM). RWM damage was evident as degeneration of the outer epithelium. After adenovirus lacZ vector was applied to the damaged RWM, immunohistochemistry showed strong beta-gal expression in the RWM, mesothelial cells, organ of Corti, spiral limbus, spiral ligament and spiral ganglion. In the vestibular labyrinth, expression was seen in the sensory and supporting cells, transitional cells, and the dark-cell area. Thus, adenovirus can transfect a variety of inner ear cells in the guinea pig through a damaged RWM.

  14. Specific Retrograde Transduction of Spinal Motor Neurons Using Lentiviral Vectors Targeted to Presynaptic NMJ Receptors

    PubMed Central

    Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND

    2014-01-01

    To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531

  15. The effects of radiation on antitumor efficacy of an oncolytic adenovirus vector in the Syrian hamster model

    PubMed Central

    Young, Brittany A.; Spencer, Jacqueline F.; Ying, Baoling; Toth, Karoly; Wold, William S. M.

    2013-01-01

    We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared to those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either one week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors. PMID:23928730

  16. The effects of radiation on antitumor efficacy of an oncolytic adenovirus vector in the Syrian hamster model.

    PubMed

    Young, B A; Spencer, J F; Ying, B; Toth, K; Wold, W S M

    2013-09-01

    We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared with those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either 1 week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors.

  17. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model

    PubMed Central

    Simão, Daniel; Pinto, Catarina; Fernandes, Paulo; Peddie, Christopher J.; Piersanti, Stefania; Collinson, Lucy M.; Salinas, Sara; Saggio, Isabella; Schiavo, Giampietro; Kremer, Eric J.; Brito, Catarina; Alves, Paula M.

    2017-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in pre-clinical tests. For clinical translation, in-depth pre-clinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, while human adenovirus type 5 (HAdV5) showed increased tropism towards glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity. PMID:26181626

  18. Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model.

    PubMed

    Simão, D; Pinto, C; Fernandes, P; Peddie, C J; Piersanti, S; Collinson, L M; Salinas, S; Saggio, I; Schiavo, G; Kremer, E J; Brito, C; Alves, P M

    2016-01-01

    Gene therapy is a promising approach with enormous potential for treatment of neurodegenerative disorders. Viral vectors derived from canine adenovirus type 2 (CAV-2) present attractive features for gene delivery strategies in the human brain, by preferentially transducing neurons, are capable of efficient axonal transport to afferent brain structures, have a 30-kb cloning capacity and have low innate and induced immunogenicity in preclinical tests. For clinical translation, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. Stem cell-derived human neural cells have a great potential as complementary tools by bridging the gap between animal models, which often diverge considerably from human phenotype, and clinical trials. Herein, we explore helper-dependent CAV-2 (hd-CAV-2) efficacy and safety for gene delivery in a human stem cell-derived 3D neural in vitro model. Assessment of hd-CAV-2 vector efficacy was performed at different multiplicities of infection, by evaluating transgene expression and impact on cell viability, ultrastructural cellular organization and neuronal gene expression. Under optimized conditions, hd-CAV-2 transduction led to stable long-term transgene expression with minimal toxicity. hd-CAV-2 preferentially transduced neurons, whereas human adenovirus type 5 (HAdV5) showed increased tropism toward glial cells. This work demonstrates, in a physiologically relevant 3D model, that hd-CAV-2 vectors are efficient tools for gene delivery to human neurons, with stable long-term transgene expression and minimal cytotoxicity.

  19. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  20. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D.

    PubMed

    Abbink, Peter; Lemckert, Angelique A C; Ewald, Bonnie A; Lynch, Diana M; Denholtz, Matthew; Smits, Shirley; Holterman, Lennart; Damen, Irma; Vogels, Ronald; Thorner, Anna R; O'Brien, Kara L; Carville, Angela; Mansfield, Keith G; Goudsmit, Jaap; Havenga, Menzo J E; Barouch, Dan H

    2007-05-01

    Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.

  1. Recombinase-Mediated Cassette Exchange Using Adenoviral Vectors.

    PubMed

    Kolb, Andreas F; Knowles, Christopher; Pultinevicius, Patrikas; Harbottle, Jennifer A; Petrie, Linda; Robinson, Claire; Sorrell, David A

    2017-01-01

    Site-specific recombinases are important tools for the modification of mammalian genomes. In conjunction with viral vectors, they can be utilized to mediate site-specific gene insertions in animals and in cell lines which are difficult to transfect. Here we describe a method for the generation and analysis of an adenovirus vector supporting a recombinase-mediated cassette exchange reaction and discuss the advantages and limitations of this approach.

  2. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents.

    PubMed

    Fooks, A R; Jeevarajah, D; Lee, J; Warnes, A; Niewiesk, S; ter Meulen, V; Stephenson, J R; Clegg, J C

    1998-05-01

    The genes encoding the measles virus (MV) haemagglutinin (H) and fusion (F) proteins were placed under the control of the human cytomegalovirus immediate early promoter in a replication-deficient adenovirus vector. Immunofluorescence and radioimmune precipitation demonstrated the synthesis of each protein and biological activity was confirmed by the detection of haemadsorption and fusion activities in infected cells. Oral as well as parenteral administration of the H-expressing recombinant adenovirus elicited a significant protective response in mice challenged with MV. While the F-expressing adenovirus failed to protect mice, cotton rats immunized with either the H- or F-expressing recombinant showed reduced MV replication in the lungs. Antibodies elicited in mice following immunization with either recombinant had no in vitro neutralizing activity, suggesting a protective mechanism involving a cell-mediated immune response. This study demonstrates the feasibility of using oral administration of adenovirus recombinants to induce protective responses to heterologous proteins.

  3. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    PubMed

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  4. Adenoviral vector tethering to metal surfaces via hydrolysable cross-linkers for the modulation of vector release and transduction

    PubMed Central

    Fishbein, Ilia; Forbes, Scott P.; Chorny, Michael; Connolly, Jeanne M.; Adamo, Richard F.; Corrales, Ricardo; Alferiev, Ivan S.; Levy, Robert J.

    2013-01-01

    The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolysable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37°C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolysable cross-linkers with structure-specific release kinetics. PMID:23777912

  5. Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival

    PubMed Central

    Miller, Daniel L; Myers, Chad L; Rickards, Brenden; Coller, Hilary A; Flint, S Jane

    2007-01-01

    Background Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite widespread efforts to develop adenoviruses for therapeutic applications. Results We used two-color hybridization and oligonucleotide microarrays to monitor changes in cellular RNA concentrations as a function of time after Ad5 infection of quiescent, normal human fibroblasts. We observed that the expression of some 2,000 genes, about 10% of those examined, increased or decreased by a factor of two or greater following Ad5 infection, but were not altered in mock-infected cells. Consensus k-means clustering established that the temporal patterns of these changes were unexpectedly complex. Gene Ontology terms associated with cell proliferation were significantly over-represented in several clusters. The results of comparative analyses demonstrate that Ad5 infection induces reversal of the quiescence program and recapitulation of the core serum response, and that only a small subset of the observed changes in cellular gene expression can be ascribed to well characterized functions of the viral E1A and E1B proteins. Conclusion These findings establish that the impact of adenovirus infection on host cell programs is far greater than appreciated hitherto. Furthermore, they provide a new framework for investigating the molecular functions of viral early proteins and information relevant to the design of conditionally replicating adenoviral vectors. PMID:17430596

  6. Adenovirus Type 5 Viral Particles Pseudotyped with Mutagenized Fiber Proteins Show Diminished Infectivity of Coxsackie B-Adenovirus Receptor-Bearing Cells

    PubMed Central

    Jakubczak, John L.; Rollence, Michele L.; Stewart, David A.; Jafari, Jonathon D.; Von Seggern, Dan J.; Nemerow, Glen R.; Stevenson, Susan C.; Hallenbeck, Paul L.

    2001-01-01

    A major limitation of adenovirus type 5 (Ad5)-based gene therapy, the inability to target therapeutic genes to selected cell types, is attributable to the natural tropism of the virus for the widely expressed coxsackievirus-adenovirus receptor (CAR) protein. Modifications of the Ad5 fiber knob domain have been shown to alter the tropism of the virus. We have developed a novel system to rapidly evaluate the function of modified fiber proteins in their most relevant context, the adenoviral capsid. This transient transfection/infection system combines transfection of cells with plasmids that express high levels of the modified fiber protein and infection with Ad5.βgal.ΔF, an E1-, E3-, and fiber-deleted adenoviral vector encoding β-galactosidase. We have used this system to test the adenoviral transduction efficiency mediated by a panel of fiber protein mutants that were proposed to influence CAR interaction. A series of amino acid modifications were incorporated via mutagenesis into the fiber expression plasmid, and the resulting fiber proteins were subsequently incorporated onto adenoviral particles. Mutations located in the fiber knob AB and CD loops demonstrated the greatest reduction in fiber-mediated gene transfer in HeLa cells. We also observed effects on transduction efficiency with mutations in the FG loop, indicating that the binding site may extend to the adjacent monomer in the fiber trimer and in the HI loop. These studies support the concept that modification of the fiber knob domain to diminish or ablate CAR interaction should result in a detargeted adenoviral vector that can be combined simultaneously with novel ligands for the development of a systemically administered, targeted adenoviral vector. PMID:11222722

  7. Protective immunity against tularemia provided by an adenovirus-vectored vaccine expressing Tul4 of Francisella tularensis.

    PubMed

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-03-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, of F. tularensis LVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 10(7) PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD(50)) F. tularensis LVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain of F. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 of F. tularensis LVS.

  8. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    PubMed

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. Current status of non-viral gene therapy for CNS disorders

    PubMed Central

    Jayant, Rahul Dev; Sosa, Daniela; Kaushik, Ajeet; Atluri, Venkata; Vashist, Arti; Tomitaka, Asahi; Nair, Madhavan

    2017-01-01

    Introduction Viral and non-viral vectors have been used as methods of delivery in gene therapy for many CNS diseases. Currently, viral vectors such as adeno-associated viruses (AAV), retroviruses, lentiviruses, adenoviruses and herpes simplex viruses (HHV) are being used as successful vectors in gene therapy at clinical trial levels. However, many disadvantages have risen from their usage. Non-viral vectors like cationic polymers, cationic lipids, engineered polymers, nanoparticles, and naked DNA offer a much safer option and can therefore be explored for therapeutic purposes. Areas covered This review discusses different types of viral and non-viral vectors for gene therapy and explores clinical trials for CNS diseases that have used these types of vectors for gene delivery. Highlights include non-viral gene delivery and its challenges, possible strategies to improve transfection, regulatory issues concerning vector usage, and future prospects for clinical applications. Expert opinion Transfection efficiency of cationic lipids and polymers can be improved through manipulation of molecules used. Efficacy of cationic lipids is dependent on cationic charge, saturation levels, and stability of linkers. Factors determining efficacy of cationic polymers are total charge density, molecular weights, and complexity of molecule. All of the above mentioned parameters must be taken care for efficient gene delivery. PMID:27249310

  10. Genetic Targeting of an Adenovirus Vector via Replacement of the Fiber Protein with the Phage T4 Fibritin

    PubMed Central

    Krasnykh, Victor; Belousova, Natalya; Korokhov, Nikolay; Mikheeva, Galina; Curiel, David T.

    2001-01-01

    The utility of adenovirus (Ad) vectors for gene therapy is restricted by their inability to selectively transduce disease-affected tissues. This limitation may be overcome by the derivation of vectors capable of interacting with receptors specifically expressed in the target tissue. Previous attempts to alter Ad tropism by genetic modification of the Ad fiber have had limited success due to structural conflicts between the fiber and the targeting ligand. Here we present a strategy to derive an Ad vector with enhanced targeting potential by a radical replacement of the fiber protein in the Ad capsid with a chimeric molecule containing a heterologous trimerization motif and a receptor-binding ligand. Our approach, which capitalized upon the overall structural similarity between the human Ad type 5 (Ad5) fiber and bacteriophage T4 fibritin proteins, has resulted in the generation of a genetically modified Ad5 incorporating chimeric fiber-fibritin proteins targeted to artificial receptor molecules. Gene transfer studies employing this novel viral vector have demonstrated its capacity to efficiently deliver a transgene payload to the target cells in a receptor-specific manner. PMID:11287567

  11. Construction and characterization of recombinant adenovirus carrying a mouse TIGIT-GFP gene.

    PubMed

    Zheng, J M; Cui, J L; He, W T; Yu, D W; Gao, Y; Wang, L; Chen, Z K; Zhou, H M

    2015-12-29

    Recombinant adenovirus vector systems have been used extensively in protein research and gene therapy. However, the construction and characterization of recombinant adenovirus is a tedious and time-consuming process. TIGIT is a recently discovered immunosuppressive molecule that plays an important role in maintaining immunological balance. The construction of recombinant adenovirus mediating TIGIT expression must be simplified to facilitate its use in the study of TIGIT. In this study, the TIGIT gene was combined with green fluorescent protein (GFP); the TIGIT-GFP gene was inserted into a gateway plasmid to construct a TIGIT-GFP adenovirus. HEK 293A cells were infected with the adenovirus, which was then purified and subjected to virus titering. TIGIT-GFP adenovirus was characterized by flow cytometry and immunofluorescence, and its expression in mouse liver was detected by infection through caudal vein injection. The results showed the successful construction of the TIGIT-GFP adenovirus (5 x 10(10) PFU/mL). Co-expression of TIGIT and GFP was identified in 293A and liver cells; synthesis and positioning of TIGIT-GFP was viewed under a fluorescence microscope. TIGIT-GFP was highly expressed on liver cells 1 day (25.53%) after infection and faded 3 days (11.36%) after injection. In conclusion, the fusion of TIGIT with GFP allows easy, rapid, and uncomplicated detection of TIGIT translation. The construction of a TIGIT-GFP adenovirus, mediating TIGIT expression in vitro and in vivo, lays the foundation for further research into TIGIT function and gene therapy. Moreover, the TIGIT-GFP adenovirus is a helpful tool for studying other proteins (which could replace the TIGIT gene).

  12. The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3.

    PubMed

    Sirena, Dominique; Ruzsics, Zsolt; Schaffner, Walter; Greber, Urs F; Hemmi, Silvio

    2005-12-20

    Human adenovirus (Ad) serotype 3 causes respiratory infections. It is considered highly virulent, accounting for about 13% of all Ad isolates. We report here the complete Ad3 DNA sequence of 35,343 base pairs (GenBank accession DQ086466). Ad3 shares 96.43% nucleotide identity with Ad7, another virulent subspecies B1 serotype, and 82.56 and 62.75% identity with the less virulent species B2 Ad11 and species C Ad5, respectively. The genomic organization of Ad3 is similar to the other human Ads comprising five early transcription units, E1A, E1B, E2, E3, and E4, two delayed early units IX and IVa2, and the major late unit, in total 39 putative and 7 hypothetical open reading frames. A recombinant E1-deleted Ad3 was generated on a bacterial artificial chromosome. This prototypic virus efficiently transduced CD46-positive rodent and human cells. Our results will help in clarifying the biology and pathology of adenoviruses and enhance therapeutic applications of viral vectors in clinical settings.

  13. Protection against California 2002 NDV strain afforded by adenovirus vectored vaccine expressing Fusion or Hemagglutination-neuraminidase genes

    USDA-ARS?s Scientific Manuscript database

    Vectored vaccines expressing the combination of the hemagglutinin-neuraminidase (HN) and fusion (F) genes generally have better clinical protection against Newcastle disease virus (NDV) than when either the F and HN genes are expressed alone. Interestingly, the protection induced by F is usually bet...

  14. Rescue administration of a helper-dependent adenovirus vector with long-term efficacy in dogs with glycogen storage disease type Ia.

    PubMed

    Crane, B; Luo, X; Demaster, A; Williams, K D; Kozink, D M; Zhang, P; Brown, T T; Pinto, C R; Oka, K; Sun, F; Jackson, M W; Chan, L; Koeberl, D D

    2012-04-01

    Glycogen storage disease type Ia (GSD-Ia) stems from glucose-6-phosphatase (G6Pase) deficiency and causes hypoglycemia, hepatomegaly, hypercholesterolemia and lactic acidemia. Three dogs with GSD-Ia were initially treated with a helper-dependent adenovirus encoding a human G6Pase transgene (HDAd-cG6Pase serotype 5) on postnatal day 3. Unlike untreated dogs with GSD-Ia, all three dogs initially maintained normal blood glucose levels. After 6-22 months, vector-treated dogs developed hypoglycemia, anorexia and lethargy, suggesting that the HDAd-cG6Pase serotype 5 vector had lost efficacy. Liver biopsies collected at this time revealed significantly elevated hepatic G6Pase activity and reduced glycogen content, when compared with affected dogs treated only by frequent feeding. Subsequently, the HDAd-cG6Pase serotype 2 vector was administered to two dogs, and hypoglycemia was reversed; however, renal dysfunction and recurrent hypoglycemia complicated their management. Administration of a serotype 2 HDAd vector prolonged survival in one GSD-Ia dog to 12 months of age and 36 months of age in the other, but the persistence of long-term complications limited HDAd vectors in the canine model for GSD-Ia.

  15. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via "Antigen Capsid-Incorporation" strategy.

    PubMed

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L

    2016-01-01

    Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. Copyright © 2015. Published by Elsevier Inc.

  16. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge.

    PubMed

    Stanley, Daphne A; Honko, Anna N; Asiedu, Clement; Trefry, John C; Lau-Kilby, Annie W; Johnson, Joshua C; Hensley, Lisa; Ammendola, Virginia; Abbate, Adele; Grazioli, Fabiana; Foulds, Kathryn E; Cheng, Cheng; Wang, Lingshu; Donaldson, Mitzi M; Colloca, Stefano; Folgori, Antonella; Roederer, Mario; Nabel, Gary J; Mascola, John; Nicosia, Alfredo; Cortese, Riccardo; Koup, Richard A; Sullivan, Nancy J

    2014-10-01

    Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.

  17. Adenoviral modification of mouse brain derived endothelial cells, bEnd3, to induce apoptosis by vascular endothelial growth factor.

    PubMed

    Mitsuuchi, Y; Powell, D R; Gallo, J M

    2006-02-09

    A second generation genetically-engineered cell-based drug delivery system, referred to as apoptotic-induced drug delivery (AIDD), was developed using endothelial cells (ECs) that undergo apoptosis upon binding of vascular endothelial growth factor (VEGF) to a Flk-1:Fas fusion protein (FF). This new AIDD was redesigned using mouse brain derived ECs, bEnd3 cells, and an adenovirus vector in order to enhance and control the expression of FF. The FF was tagged with a HA epitope (FFHA) and designed to be coexpressed with green fluorescence protein (GFP) by the regulation of cytomegalovirus promoters in the adenovirus vector. bEnd3 cells showed favorable coexpression of FFHA and GFP consistent with the multiplicity of infection of the adenovirus. Immunofluorescence analysis demonstrated that FFHA was localized at the plasma membrane, whereas GFP was predominantly located in the cytoplasm of ECs. Cell death was induced by VEGF, but not by platelet derived growth factor or fibroblast growth factor in a dose-dependent manner (range 2-20 ng/ml), and revealed caspase-dependent apoptotic profiles. The FFHA expressing bEnd3 cells underwent apoptosis when cocultured with a glioma cell (SF188V+) line able to overexpress VEGF. The combined data indicated that the FFHA adenovirus system can induce apoptotic signaling in ECs in response to VEGF, and thus, is an instrumental modification to the development of AIDD.

  18. An adenovirus vectored mucosal adjuvant augments protection of mice immunized intranasally with an adenovirus-vectored foot-and-mouth disease virus subunit vaccine.

    PubMed

    Alejo, Diana M; Moraes, Mauro P; Liao, Xiaofen; Dias, Camila C; Tulman, Edan R; Diaz-San Segundo, Fayna; Rood, Debra; Grubman, Marvin J; Silbart, Lawrence K

    2013-04-26

    Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help prevent initial infection and viral spread. E. coli heat-labile enterotoxin (LT) has been described as one of the few molecules that have adjuvant activity at mucosal surfaces. The objective of this study was to evaluate the efficacy of replication-defective adenovirus 5 (Ad5) vectors encoding either of two LT-based mucosal adjuvants, LTB or LTR72. These vectored adjuvants were delivered intranasally to mice concurrent with an Ad5-FMDV vaccine (Ad5-A24) to assess their ability to augment mucosal and systemic humoral immune responses to Ad5-A24 and protection against FMDV. Mice receiving Ad5-A24 plus Ad5-LTR72 had higher levels of mucosal and systemic neutralizing antibodies than those receiving Ad5-A24 alone or Ad5-A24 plus Ad5-LTB. The vaccine plus Ad5-LTR72 group also demonstrated 100% survival after intradermal challenge with a lethal dose of homologous FMDV serotype A24. These results suggest that Ad5-LTR72 could be used as an important tool to enhance mucosal and systemic immunity against FMDV and potentially other pathogens with a common route of entry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    PubMed

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Inhalation of Nebulized Perfluorochemical Enhances Recombinant Adenovirus and Adeno-Associated Virus-Mediated Gene Expression in Lung Epithelium

    PubMed Central

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny

    2012-01-01

    Abstract Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (p<0.05). However, vector administration 1 hr, 1 day, or 3 days after perflubron exposure was not different from either nebulized saline with vector or vector alone and a 60-min exposure to nebulized perflubron is required. In parallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression. PMID:22568624

  1. Disrupted adenovirus-based vaccines against small addictive molecules circumvent anti-adenovirus immunity.

    PubMed

    De, Bishnu P; Pagovich, Odelya E; Hicks, Martin J; Rosenberg, Jonathan B; Moreno, Amira Y; Janda, Kim D; Koob, George F; Worgall, Stefan; Kaminsky, Stephen M; Sondhi, Dolan; Crystal, Ronald G

    2013-01-01

    Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1(-)E3(-) Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines.

  2. Adenovirus E1B 19-Kilodalton Protein Modulates Innate Immunity through Apoptotic Mimicry

    PubMed Central

    Grigera, Fernando; Ucker, David S.; Cook, James L.

    2014-01-01

    ABSTRACT Cells that undergo apoptosis in response to chemical or physical stimuli repress inflammatory reactions, but cells that undergo nonapoptotic death in response to such stimuli lack this activity. Whether cells dying from viral infection exhibit a cell death-type modulatory effect on inflammatory reactions is unknown. We compared the effects on macrophage inflammatory responses of cells dying an apoptotic or a nonapoptotic death as a result of adenoviral infection. The results were exactly opposite to the predictions from the conventional paradigm. Cells dying by apoptosis induced by infection with an adenovirus type 5 (Ad5) E1B 19-kilodalton (E1B 19K) gene deletion mutant did not repress macrophage NF-κB activation or cytokine responses to proinflammatory stimuli, whereas cells dying a nonapoptotic death from infection with E1B 19K-competent, wild-type Ad5 repressed these macrophage inflammatory responses as well as cells undergoing classical apoptosis in response to chemical injury. The immunorepressive, E1B 19K-related cell death activity depended upon direct contact of the virally infected corpses with responder macrophages. Replacement of the viral E1B 19K gene with the mammalian Bcl-2 gene in cis restored the nonapoptotic, immunorepressive cell death activity of virally infected cells. These results define a novel function of the antiapoptotic, adenoviral E1B 19K protein that may limit local host innate immune inflammation during accumulation of virally infected cells at sites of infection and suggest that E1B 19K-deleted, replicating adenoviral vectors might induce greater inflammatory responses to virally infected cells than E1B 19K-positive vectors, because of the net effect of their loss-of-function mutation. IMPORTANCE We observed that cells dying a nonapoptotic cell death induced by adenovirus infection repressed macrophage proinflammatory responses while cells dying by apoptosis induced by infection with an E1B 19K deletion mutant virus did not repress macrophage proinflammatory responses and enhanced some cytokine responses. Our results define a new function of the antiapoptotic, adenoviral protein E1B 19K, which we have termed “apoptotic mimicry.” Our studies suggest the possibility that the presence or absence of this E1B 19K function could alter the immunological outcome of both natural and therapeutic adenoviral infections. For example, emerging, highly immunopathogenic adenovirus serotypes might induce increased host inflammatory responses as a result of altered E1B 19K function or expression. It is also possible that engineered variations in E1B 19K expression/function could be created during adenovirus vector design that would increase the therapeutic efficacy of replicating adenovirus vectors for vaccines or oncolytic viral targeting of neoplastic cells. PMID:24352454

  3. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes.

    PubMed

    Holman, David H; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U; Luo, Min; Zhang, Jianghui; Porter, Kevin R; Dong, John Y

    2007-02-01

    Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.

  4. Regulation of adeno-associated virus DNA replication by the cellular TAF-I/set complex.

    PubMed

    Pegoraro, Gianluca; Marcello, Alessandro; Myers, Michael P; Giacca, Mauro

    2006-07-01

    The Rep proteins of the adeno-associated virus (AAV) are required for viral replication in the presence of adenovirus helper functions and as yet poorly characterized cellular factors. In an attempt to identify such factors, we purified Flag-Rep68-interacting proteins from human cell lysates. Several polypeptides were identified by mass spectrometry, among which was ANP32B, a member of the acidic nuclear protein 32 family which takes part in the formation of the template-activating factor I/Set oncoprotein (TAF-I/Set) complex. The N terminus of Rep was found to specifically bind the acidic domain of ANP32B; through this interaction, Rep was also able to recruit other members of the TAF-I/Set complex, including the ANP32A protein and the histone chaperone TAF-I/Set. Further experiments revealed that silencing of ANP32A and ANP32B inhibited AAV replication, while overexpression of all of the components of the TAF-I/Set complex increased de novo AAV DNA synthesis in permissive cells. Besides being the first indication that the TAF-I/Set complex participates in wild-type AAV replication, these findings have important implications for the generation of recombinant AAV vectors since overexpression of the TAF-I/Set components was found to markedly increase viral vector production.

  5. Avidin-Based Targeting and Purification of a Protein IX-Modified, Metabolically Biotinylated Adenoviral Vector

    PubMed Central

    Campos, Samuel K.; Parrott, M. Brandon; Barry, Michael A.

    2014-01-01

    While genetic modification of adenoviral vectors can produce vectors with modified tropism, incorporation of targeting peptides/proteins into the structural context of the virion can also result in destruction of ligand targeting or virion integrity. To combat this problem, we have developed a versatile targeting system using metabolically biotinylated adenoviral vectors bearing biotinylated fiber proteins. These vectors have been demonstrated to be useful as a platform for avidin-based ligand screening and vector targeting by conjugating biotinylated ligands to the virus using high-affinity tetrameric avidin (Kd = 10−15 M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (Kd = 10−7 M). In this report, a second metabolically biotinylated adenovirus vector, Ad-IX-BAP, has been engineered by fusing a biotin acceptor peptide (BAP) to the C-terminus of the adenovirus pIX protein. This biotinylated vector displays twice as many biotins and was markedly superior for single-step affinity purification on monomeric avidin resin. However, unlike the fiber-biotinylated vector, Ad-IX-BAP failed to retarget to cells with biotinylated antibodies including anti-CD71 against the transferrin receptor. In contrast, Ad-IX-BAP was retargeted if transferrin, the cognate ligand for CD71, was used as a ligand rather than the anti-CD71. This work demonstrates the utility of metabolic biotinylation as a molecular screening tool to assess the utility of different viral capsid proteins for ligand display and the biology and compatibility of different ligands and receptors for vector targeting applications. These results also demonstrate the utility of the pIX-biotinylated vector as a platform for gentle single-step affinity purification of adenoviral vectors. PMID:15194061

  6. In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors

    PubMed Central

    Richter, Maximilian; Saydaminova, Kamola; Yumul, Roma; Krishnan, Rohini; Liu, Jing; Nagy, Eniko-Eva; Singh, Manvendra; Izsvák, Zsuzsanna; Cattaneo, Roberto; Uckert, Wolfgang; Palmer, Donna; Ng, Philip; Haworth, Kevin G.; Kiem, Hans-Peter; Ehrhardt, Anja; Papayannopoulou, Thalia

    2016-01-01

    Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin−Sca1+Kit− cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy. PMID:27554082

  7. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein.

    PubMed

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain.

    PubMed Central

    Muldoon, L. L.; Nilaver, G.; Kroll, R. A.; Pagel, M. A.; Breakefield, X. O.; Chiocca, E. A.; Davidson, B. L.; Weissleder, R.; Neuwelt, E. A.

    1995-01-01

    Delivery of adenovirus, herpes simplex virus (HSV), and paramagnetic monocrystalline iron oxide nanoparticles (MION) to rat brain (n = 64) was assessed after intracerebral inoculation or osmotic disruption of the blood-brain barrier (BBB). After intracerebral inoculation, the area of distribution was 7.93 +/- 0.43 mm2 (n = 9) for MION and 9.17 +/- 1.27 mm2 (n = 9) for replication-defective adenovirus. The replication-compromised HSV RH105 spread to 14.00 +/- 0.87 mm2 (n = 8), but also had a large necrotic center (3.54 +/- 0.47 mm2). No infection was detected when virus was administered intra-arterially without hyperosmotic mannitol. After osmotic BBB disruption, delivery of the viruses and MIONs was detected throughout the disrupted cerebral cortex. Positive staining was found in 4 to 845 cells/100 microns thick coronal brain section (n = 7) after adenovirus administration, and in 13 to 197 cells/section (n = 8) after HSV administration. Cells of glial morphology were more frequently stained after administration of adenovirus, whereas neuronal cells were preferentially stained after delivery of both HSV vectors and MION. In a preliminary test of vector delivery in the feline, MION was detected throughout the white matter tracts after inoculation into normal cat brain. Thus MION may be a tool for use in vivo, to monitor the delivery of virus to the central nervous system. Additionally, BBB disruption may be an effective method to globally deliver recombinant viruses to the CNS. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7495307

  9. Selective and augmented β-glucuronidase expression combined with DOX-GA3 application elicits the potent suppression of prostate cancer.

    PubMed

    Wang, Longxin; Dong, Jie; Wei, Ming; Wen, Weihong; Gao, Jianping; Zhang, Zhengyu; Qin, Weijun

    2016-03-01

    The present study was carried out to evaluate the specific and amplified β-glucuronidase (βG) expression in prostate cancer cells by using a prostate‑specific antigen (PSA) promoter-controlled bicistronic adenovirus and to evaluate the specific killing of prostate cancer cells after the application of the prodrug DOX‑GA3. Bicistronic adenoviral expression vectors were constructed, and the effectiveness of specific and amplified expression was evaluated using luciferase and EGFP as reporter genes. βG expression was detected in LNCaP cells after they were infected with the βG‑expressing PSA promoter-controlled bicistronic adenovirus. MTT assays were conducted to evaluate the cytoxicity on the infected cells after the application of the prodrug DOX‑GA3. Tumor growth inhibition was also evaluated in nude mice after treatment with the βG‑expressing adenovirus and DOX‑GA3. Selective and amplified expression was observed in the PSA-producing LNCaP cells, but not in the PSA‑non‑producing DU145 cells. Potent cytotoxity and a strong bystander effect were observed in the LNCaP cells after infection with the βG‑expressing adenovirus and the application of DOX‑GA3. Intravenous injection of a GAL4 regulated bicistronic adenovirus vector constructed to express βG under the control of the PSA promoter (Ad/PSAP‑GV16‑βG) and the application of DOX‑GA3 strongly inhibited tumor growth and prolonged the survival time of tumor‑bearing nude mice. Selective and amplified βG expression together with the prodrug DOX‑GA3 had an increased antitumor effect, showing great potential for prostate cancer therapy.

  10. Immune Recognition of Gene Transfer Vectors: Focus on Adenovirus as a Paradigm

    PubMed Central

    Aldhamen, Yasser Ali; Seregin, Sergey S.; Amalfitano, Andrea

    2011-01-01

    Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene transfer platform in multiple pre-clinical and clinical applications. These applications are numerous, and inclusive of both gene therapy and vaccine based approaches to human or animal diseases. The widespread utilization of these vectors in both animal models, as well as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors relative to numbers of patients treated, as well as number of clinical trials overall), has shed light on how this virus vector interacts with both the innate and adaptive immune systems. The ability to generate and administer large amounts of this vector likely contributes not only to their ability to allow for highly efficient gene transfer, but also their elicitation of host immune responses to the vector and/or the transgene the vector expresses in vivo. These facts, coupled with utilization of several models that allow for full detection of these responses has predicted several observations made in human trials, an important point as lack of similar capabilities by other vector systems may prevent detection of such responses until only after human trials are initiated. Finally, induction of innate or adaptive immune responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications). Herein, we review the current understanding of innate and adaptive immune responses to Ad vectors, as well some recent advances that attempt to capitalize on this understanding so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in general. PMID:22566830

  11. Therapeutic effect of targeted Fas-expressing adenoviruses method combining γδ T cells in a mouse model of human ovarian carcinoma.

    PubMed

    Zeng, Dingyuan; Lin, Jiajing; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting

    2018-02-01

    The present study aimed to investigate the therapeutic effect and safety of targeted use of Fas-expressing adenoviruses combined with γδ T cell-mediated killing to treat human ovarian cancer xenografts in BALB/c mice. Shuttle plasmids containing control elements of human telomerase reverse transcriptase promoter and two-step transcriptional amplification system were constructed and packaged into adenovirus-5 vectors to generate expression of an exogenous Fas gene. A mouse xenograft model of human ovarian carcinoma was constructed. A total of 35 BALB/c mice were randomly divided into five groups, which were injected with PBS, γδ T cells, Fas-expressing adenoviruses, taxol, or Fas-expressing adenovirus and γδ T cells. The weight and volume of tumors in mice in each group was monitored. Tissue sections of the various tissues of mice in the Fas-expressing adenovirus and γδ T cells group was compared with those in the PBS group to evaluate the safety of Fas-expressing adenovirus and γδ T cells in the treatment of human ovarian cancer xenograft tumors. The results of the present study indicated that mice in all treatment groups were alive at the end of the treatment course. Tumor weight and volume was the highest in the PBS group, followed successively by the adenovirus group, the γδ T cell group, the adenovirus and γδ T cell group, and the taxol group. The weight and volume inhibition rate in adenovirus and γδ T cell group were significantly higher compared with in the PBS group (P<0.05). Pathological observation of tissue samples revealed that none of vital organs in the adenovirus and γδ T cell group developed any evident morphological changes during treatment, when compared with healthy controls. In conclusion, the combined therapy with Fas-expressing adenoviruses and γδ T cells is efficient and safe for the treatment of mouse human ovarian carcinoma xenografts.

  12. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    PubMed Central

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  13. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine

    PubMed Central

    Lee, Cody S.; Bishop, Elliot S.; Zhang, Ruyi; Yu, Xinyi; Farina, Evan M.; Yan, Shujuan; Zhao, Chen; Zheng, Zongyue; Shu, Yi; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; Ho, Sherwin; Athiviraham, Aravind; Lee, Michael J.; Wolf, Jennifer Moriatis; Reid, Russell R.; He, Tong-Chuan

    2017-01-01

    With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine. PMID:28944281

  14. INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: comparison of biodistribution studies.

    PubMed

    Ying, B; Toth, K; Spencer, J F; Meyer, J; Tollefson, A E; Patra, D; Dhar, D; Shashkova, E V; Kuppuswamy, M; Doronin, K; Thomas, M A; Zumstein, L A; Wold, W S M; Lichtenstein, D L

    2009-08-01

    Preclinical biodistribution studies with INGN 007, an oncolytic adenovirus (Ad) vector, supporting an early stage clinical trial were conducted in Syrian hamsters, which are permissive for Ad replication, and mice, which are a standard model for assessing toxicity and biodistribution of replication-defective (RD) Ad vectors. Vector dissemination and pharmacokinetics following intravenous administration were examined by real-time PCR in nine tissues and blood at five time points spanning 1 year. Select organs were also examined for the presence of infectious vector/virus. INGN 007 (VRX-007), wild-type Ad5 and AdCMVpA (an RD vector) were compared in the hamster model, whereas only INGN 007 was examined in mice. DNA of all vectors was widely disseminated early after injection, but decayed rapidly in most organs. In the hamster model, DNA of INGN 007 and Ad5 was more abundant than that of the RD vector AdCMVpA at early times after injection, but similar levels were seen later. An increased level of INGN 007 and Ad5 DNA but not AdCMVpA DNA in certain organs early after injection, and the presence of infectious INGN 007 and Ad5 in lung and liver samples at early times after injection, strongly suggests that replication of INGN 007 and Ad5 occurred in several Syrian hamster organs. There was no evidence of INGN 007 replication in mice. In addition to providing important information about INGN 007, the results underscore the utility of the Syrian hamster as a permissive immunocompetent model for Ad5 pathogenesis and oncolytic Ad vectors.

  15. Structural analysis of viral replicative intermediates isolated from adenovirus type 2-infected HeLa cell nuclei.

    PubMed Central

    Kedinger, C; Brison, O; Perrin, F; Wilhelm, J

    1978-01-01

    Deoxyribonucleoprotein complexes released 17 h postinfection from adenovirus type 1 (Ad2)-infected HeLa cell nuclei were shown by electron microscopy to contain filaments much thicker (about 200 A [20 nm]) than double-stranded DNA (about 20 A [2 nm]). The complexes were partially purified through a linear sucrose gradient, concentrated, and further purified in a metrizamide gradient. The major protein present in the complexes was identified as the 72,000-dalton (72K), adenovirus-coded single-stranded DNA-binding protein (72K DBP). Three types of complexes have been visualized by electron microscopy. Some linear complexes were uniformly thick, and their length corresponded roughly to that of the adenovirus genome. Other linear genome-length complexes appeared to consist of a thick filament connected to a thinner filament with the diameter of double-stranded DNA. Forked complexes consisting of one thick filament connected to a genome-length, thinner double-stranded DNA filament were also visualized. Both thick and thin filaments were sensitive to DNase and not to RNase, but only the thick filaments were digested by the single-strand-specific Neurospora crassa nuclease, indicating that they correspond to a complex of 72K DBP and Ad2 single-stranded DNA. Experiments with anti-72K DBP immunoglobulins indicated that these nucleoprotein complexes, containing the 72K DBP, correspond to replicative intermediates. Both strands of the Ad2 genome were found associated to the 72K DBP. Altogether, our results establish the in vivo association of the 72K DBP with adenovirus single-stranded DNA, as previously suggested from in vitro studies, and support a strand displacement mechanism for Ad2 DNA replication, in which both strands can be displaced. In addition, our results indicate that, late in infection, histones are not bound to adenovirus DNA in the form of a nucleosomal chromatine-like structure. Images PMID:207893

  16. Structural analysis of viral replicative intermediates isolated from adenovirus type 2-infected HeLa cell nuclei.

    PubMed

    Kedinger, C; Brison, O; Perrin, F; Wilhelm, J

    1978-05-01

    Deoxyribonucleoprotein complexes released 17 h postinfection from adenovirus type 1 (Ad2)-infected HeLa cell nuclei were shown by electron microscopy to contain filaments much thicker (about 200 A [20 nm]) than double-stranded DNA (about 20 A [2 nm]). The complexes were partially purified through a linear sucrose gradient, concentrated, and further purified in a metrizamide gradient. The major protein present in the complexes was identified as the 72,000-dalton (72K), adenovirus-coded single-stranded DNA-binding protein (72K DBP). Three types of complexes have been visualized by electron microscopy. Some linear complexes were uniformly thick, and their length corresponded roughly to that of the adenovirus genome. Other linear genome-length complexes appeared to consist of a thick filament connected to a thinner filament with the diameter of double-stranded DNA. Forked complexes consisting of one thick filament connected to a genome-length, thinner double-stranded DNA filament were also visualized. Both thick and thin filaments were sensitive to DNase and not to RNase, but only the thick filaments were digested by the single-strand-specific Neurospora crassa nuclease, indicating that they correspond to a complex of 72K DBP and Ad2 single-stranded DNA. Experiments with anti-72K DBP immunoglobulins indicated that these nucleoprotein complexes, containing the 72K DBP, correspond to replicative intermediates. Both strands of the Ad2 genome were found associated to the 72K DBP. Altogether, our results establish the in vivo association of the 72K DBP with adenovirus single-stranded DNA, as previously suggested from in vitro studies, and support a strand displacement mechanism for Ad2 DNA replication, in which both strands can be displaced. In addition, our results indicate that, late in infection, histones are not bound to adenovirus DNA in the form of a nucleosomal chromatine-like structure.

  17. A New Genetic Vaccine Platform Based on an Adeno-Associated Virus Isolated from a Rhesus Macaque ▿

    PubMed Central

    Lin, Jianping; Calcedo, Roberto; Vandenberghe, Luk H.; Bell, Peter; Somanathan, Suryanarayan; Wilson, James M.

    2009-01-01

    We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8+ T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8+ T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses. PMID:19812149

  18. Generation of a Kupffer Cell-evading Adenovirus for Systemic and Liver-directed Gene Transfer

    PubMed Central

    Khare, Reeti; May, Shannon M; Vetrini, Francesco; Weaver, Eric A; Palmer, Donna; Rosewell, Amanda; Grove, Nathan; Ng, Philip; Barry, Michael A

    2011-01-01

    As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated >10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vector, Ad5/6 mediated higher luciferase and factor IX transgene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies. PMID:21505422

  19. Generation of a Kupffer cell-evading adenovirus for systemic and liver-directed gene transfer.

    PubMed

    Khare, Reeti; May, Shannon M; Vetrini, Francesco; Weaver, Eric A; Palmer, Donna; Rosewell, Amanda; Grove, Nathan; Ng, Philip; Barry, Michael A

    2011-07-01

    As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated >10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vector, Ad5/6 mediated higher luciferase and factor IX transgene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies.

  20. [Construction and identification of recombinant human platelet-derived growth factor-B adenoviral vector and transfection into periodontal ligament stem cells].

    PubMed

    Shang, Shu-huan; Zhang, Yu-feng; Shi, Bin; Cheng, Xiang-rong

    2008-10-01

    To construct a recombinant human platelet-derived growth factor-B (PDGF-B) adenoviral vector and to transfect it into human periodontal ligament stem cells (PDLSC). The recombinant plasmid pAd-PDGF-B was constructed by homologous recombination and confirmed by restriction endonucleases digestion. Recombinant adenovirus was packaged in HEK293 cells. PDLSC were transfected with recombinant adenovirus and PDGF-B expression was confirmed. Expression of collagen type I gene was determined by quantitative analysis of the products of RT-PCR. The cell proliferation was determined with MTT colorimetric assay. The recombinant plasmid pAd-PDGF-B was confirmed by restriction endonucleases digestion. EGFP expression was observed on the third day after transfecting, and the expression of PDGF-B was detected. Immunohistochemical methods revealed that PDGF-B was expressed in PDLSC. Levels of expression of collagen type I gene were increased significantly by transfer of the exogenous PDGF-B gene to PDLSC. At the same time, findings indicated that Ad-PDGF-B stimulated PDLSC proliferation. MTT assay indicated the absorbance of PDLSC by stimulating with Ad-PDGF-B was (0.68 +/- 0.02), P < 0.01. Using the AdEasy system, the human PDGF-B recombinant adenovirus can be rapidly obtained. These results indicate that recombinant adenoviruses encoding PDGF-B transgenes could modulate proliferative activity of PDLSC, enhance the high expression of collagen type I and lay the foundation for periodontal tissue regeneration and dental implant gene therapy.

  1. Neutralized adenovirus-immune complexes can mediate effective gene transfer via an Fc receptor-dependent infection pathway.

    PubMed

    Leopold, Philip L; Wendland, Rebecca L; Vincent, Theresa; Crystal, Ronald G

    2006-10-01

    Neutralization of adenovirus (Ad) by anti-Ad neutralizing antibodies in serum involves formation of Ad-immune complexes that prevent the virus from interacting with target cells. We hypothesized that Ad-immune complexes likely contain viable Ad vectors which, although no longer capable of gaining access to receptors on target cells, may be able to express transgenes in cells bearing Fc receptors for immunoglobulins, i.e., that antibody-based "neutralization" of Ad vectors may be circumvented by the Fc receptor pathway. To test this hypothesis, we expressed the Fcgamma receptor IIA (FcgammaR) in A549 lung epithelial cells or human dermal fibroblasts and evaluated gene transfer in the presence of human neutralizing anti-Ad serum. FcgammaR-expressing cells bound and internalized copious amounts of Ad, with a distinct population of internalized Ad trafficking to the nucleus. The dose-response curves for inhibition of gene transfer revealed that FcgammaR-expressing cells required a more-than-10-fold higher concentration of anti-Ad serum to achieve 50% inhibition of Ad-encoded beta-galactosidase expression compared with non-FcgammaR-expressing cells. The discrepancy between neutralization of Ad during infection of FcgammaR-expressing cells and neutralization of Ad during infection of non-FcgammaR-expressing cells occurred with either heat-inactivated or non-heat-inactivated sera, was blocked by addition of purified Fc domain protein, and did not require the cytoplasmic domain of FcgammaR, suggesting that immune complex internalization proceeded via endocytosis rather than phagocytosis. FcgammaR-mediated infection by Ad-immune complexes did not require expression of the coxsackie virus-Ad receptor (CAR) since similar data were obtained when CAR-deficient human dermal fibroblasts were engineered to express FcgammaR. However, interaction of the Ad penton base with cell surface integrins contributed to the difference in neutralization between FcgammaR-expressing and non-FcgammaR-expressing cells. The data indicate that complexes formed from Ad and anti-Ad neutralizing antibodies, while compromised with respect to infection of non-FcgammaR-expressing target cells, maintain the potential to transfer genes to FcgammaR-expressing cells, with consequent expression of the transgene. The formation of Ad-immune complexes that can target viable virus to antigen-presenting cells may account for the success of Ad-based vaccines administered in the presence of low levels of neutralizing anti-Ad antibody.

  2. Disrupted Adenovirus-Based Vaccines Against Small Addictive Molecules Circumvent Anti-Adenovirus Immunity

    PubMed Central

    De, Bishnu P.; Pagovich, Odelya E.; Hicks, Martin J.; Rosenberg, Jonathan B.; Moreno, Amira Y.; Janda, Kim D.; Koob, George F.; Worgall, Stefan; Kaminsky, Stephen M.; Sondhi, Dolan

    2013-01-01

    Abstract Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1−E3− Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines. PMID:23140508

  3. A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma.

    PubMed

    Kim, Julius W; Kane, J Robert; Young, Jacob S; Chang, Alan L; Kanojia, Deepak; Morshed, Ramin A; Miska, Jason; Ahmed, Atique U; Balyasnikova, Irina V; Han, Yu; Zhang, Lingjiao; Curiel, David T; Lesniak, Maciej S

    2015-09-01

    The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as "GliomaFF." We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy.

  4. [Effects of SREBP-1 over-expression on fatty acid metabolism related genes expression in goats].

    PubMed

    Xu, Huifen; Luo, Jun; Li, Fang; Yu, Kang; Shi, Hengbo; Li, Jun; Lin, Xianzi; Zhu, Jiangjiang

    2012-11-01

    The aim of the study was to construct a recombinant adenovirus overexpression vector for Sterol Regulatory Element Binding Protein-1 (SREBP-1) of Xinong Saanen dairy goat, and to detect its effect on genes related to fatty acid metabolism in goat mammary epithelial cells, to establish foundation for further study of its roles in metabolism of fatty acid synthesis and lactation. First, we designed primers based on the SREBP-1 gene sequence in GenBank for PCR amplification and inserted the sequence into shuttle vector pAdTrack-CMV. The recombinant plasmid pAdTrack-CMV-SREBP-1 linearized by Pme I was transformed into E. coli BJ5183 competence cell containing the backbone vector pAdEasy-1 to obtain recombinant vector pAd-SREBP-1 by homologous recombination. pAd-SREBP-1 was linearized by Pac I and transfected into HEK 293 cell. Then we infected goat mammary epithelial cells with recombinant adenovirus which was packaged in HEK 293 cell line. The results showed that the recombinant adenovirus vector containing SREBP-1 was successfully constructed, and the titer of virus was 10(9) U/mL. Compared with the control group, mRNA level of SREBP-1 increased by about 15 times after infected for 48 h and 30 times after infected for 72 h. Fatty acid synthase (FASN) and Acetyl-CoA carboxylase (ACC) was upregulated by almost 2 times. The expression level of Peroxisome proliferator activated receptorgamma (PPARgamma) increased by 1.5 times. Liver X receptoralpha (LXRalpha) and Adipose triglyceride lipase (ATGL) upregulated by 1.2 times compared with that of control. But Stearoyl-coenzyme A desaturase (SCD) had no obvious change. In conclusion, SREBP-1 can activate the expression of genes related to fatty acid synthesis in mammary epithelial cells of Xinong Saanen dairy goat, demonstrated a regulatory function on the fatty acid metabolism in goat mammary gland.

  5. Virucidal effects of rodent cage-cleaning practices on the viability of adenovirus vectors.

    PubMed

    Porter, Jacqueline D; Lyons, Russette M

    2002-09-01

    Human adenoviruses and adenoviral vectors are classified as Risk Group 2 agents and require BSL2 containment and practices. An additional consideration in using adenoviruses and viral vectors in laboratory animal studies is the possible transmission of these agents to other animals and/or personnel as a result of viral shedding in animal urine and feces. When handling BSL2 agents, cage-wash staff are required to wear appropriate personnel protective equipment, including scrubs, Tyvek suit, hair covering, dust mask, shoes covers, and gloves. Current decontamination procedures are to bag and autoclave soiled rodent cages containing bedding prior to washing in the cage washer to prevent possible adenoviral transmission. However, the practice of autoclaving softens the polycarbonate-based rodent cages, allowing damaging agents or conditions to affect the integrity of the plastic and degrade the cages. The objective of this study was to determine whether current rodent cage-cleaning practices produced virucidal effects for use in lieu of or prior to autoclaving the cages. We found that heating an Av3GFP vector in a test tube to a temperature of 74 degrees C (165 degrees F) for 6 min conditions equivalent to those of the cage washer resulted in greater than an 11-log reduction in infectivity of the vector as evaluated by its cytopathic effect on cells. The combination of heating and a liquid, phosphate-free alkaline detergent produced the same reduction in vector infectivity. However, common cage-cleaning solutions alone possessed no virucidal activity. The high temperatures used in cage-washing procedures alone or in combination with a cleaning solution reduced or eliminated the risk of transmission from viral shedding through urine and feces even at vector concentrations far greater than would ever be expected to be present. Autoclaving cages diminishes the stability and integrity of the polycarbonate cages without providing a further reduction in the risk of virus or vector transmission. On the basis of results from this study, new cage-wash recommendations include dumping the contaminated bedding into a HEPA-filtered waste disposal system and autoclaving the bags of bedding before disposal, then cleaning the cages in the rack washer at wash temperatures of 74 degrees C (165 F) and rinse temperatures of 82 degrees C (180 F).

  6. 76 FR 25700 - National Institute of Allergy and Infectious Diseases; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... adenovirus vectors for malaria and AIDS vaccines and discussing future clinical trial plans for AIDS vaccine... Committee: AIDS Research Advisory Committee, NIAID, AIDS Vaccine Research Subcommittee. Date: May 24-25...

  7. Specific in vivo labeling with GFP retroviruses, lentiviruses, and adenoviruses for imaging

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.; Kishimoto, Hiroyuki; Fujiwara, Toshiyoshi

    2008-02-01

    Fluorescent proteins have revolutionized the field of imaging. Our laboratory pioneered in vivo imaging with fluorescent proteins. Fluorescent proteins have enabled imaging at the subcellular level in mice. We review here the use of different vectors carrying fluorescent proteins to selectively label normal and tumor tissue in vivo. We show that a GFP retrovirus and telomerase-driven GFP adenovirus can selectively label tumors in mice. We also show that a GFP lentivirus can selectively label the liver in mice. The practical application of these results are discussed.

  8. Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component

    DTIC Science & Technology

    2011-10-01

    receiving the vaccine (Figure 3). Within 14 days after the first immunization, Grade 1 neutropenia was recorded in one of 15 volunteers and Grade 2 in...one of 15 volunteers; within 14 days after the second immunization, Grade 1 neutropenia was recorded in two of 14 volunteers and Grade 2 in two of 14...range of doses was administered [62,64]. Neutropenia was the only apparent vaccine-related laboratory abnormality. Serotype 5 adenoviruses are thought

  9. Hexon modification to improve the activity of oncolytic adenovirus vectors against neoplastic and stromal cells in pancreatic cancer.

    PubMed

    Lucas, Tanja; Benihoud, Karim; Vigant, Frédéric; Schmidt, Christoph Q; Schmidt, Christoph Q Andreas; Wortmann, Andreas; Bachem, Max G; Simmet, Thomas; Kochanek, Stefan

    2015-01-01

    Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFβ receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety.

  10. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  11. Central Nervous System Delivery of Helper-Dependent Canine Adenovirus Corrects Neuropathology and Behavior in Mucopolysaccharidosis Type VII Mice

    PubMed Central

    Ariza, Lorena; Giménez-Llort, Lydia; Cubizolle, Aurélie; Pagès, Gemma; García-Lareu, Belén; Serratrice, Nicolas; Cots, Dan; Thwaite, Rosemary; Chillón, Miguel; Kremer, Eric J.

    2014-01-01

    Abstract Canine adenovirus type 2 vectors (CAV-2) are promising tools to treat global central nervous system (CNS) disorders because of their preferential transduction of neurons and efficient retrograde axonal transport. Here we tested the potential of a helper-dependent CAV-2 vector expressing β-glucuronidase (HD-RIGIE) in a mouse model of mucopolysaccharidosis type VII (MPS VII), a lysosomal storage disease caused by deficiency in β-glucuronidase activity. MPS VII leads to glycosaminoglycan accumulation into enlarged vesicles in peripheral tissues and the CNS, resulting in peripheral and neuronal dysfunction. After intracranial administration of HD-RIGIE, we show long-term expression of β-glucuronidase that led to correction of neuropathology around the injection site and in distal areas. This phenotypic correction correlated with a decrease in secondary-elevated lysosomal enzyme activity and glycosaminoglycan levels, consistent with global biochemical correction. Moreover, HD-RIGIE-treated mice show significant cognitive improvement. Thus, injections of HD-CAV-2 vectors in the brain allow a global and sustained expression and may have implications for brain therapy in patients with lysosomal storage disease. PMID:24299455

  12. Non-replicating adenovirus vectors expressing avian influenza virus hemagglutinin and nucleocapsid proteins induce chicken specific effector, memory and effector memory CD8+ T lymphocytes

    PubMed Central

    Singh, Shailbala; Toro, Haroldo; Tang, De-Chu; Briles, Worthie E.; Yates, Linda M.; Kopulos, Renee T.; Collisson, Ellen W.

    2010-01-01

    Avian influenza virus (AIV) specific CD8+ T lymphocyte responses stimulated by intramuscular administration of an adenovirus (Ad) vector expressing either HA or NP were evaluated in chickens following ex vivo stimulation by non-professional antigen presenting cells. The CD8+ T lymphocyte responses were AIV specific, MHC-I restricted, and cross-reacted with heterologousH7N2 AIV strain. Specific effector responses, at 10 days post-inoculation (p.i.), were undetectable at 2 weeks p.i., and memory responses were detected from 3 to 8 weeks p.i. Effector memory responses, detected 1 week following a booster inoculation, were significantly greater than the primary responses and, within 7 days, declined to undetectable levels. Inoculation of an Ad-vector expressing human NP resulted in significantly greater MHC restricted, activation of CD8+ T cell responses specific for AIV. Decreases in all responses with time were most dramatic with maximum activation of T cells as observed following effector and effector memory responses. PMID:20557918

  13. INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: comparison of biodistribution studies

    PubMed Central

    Ying, B; Toth, K; Spencer, JF; Meyer, J; Tollefson, AE; Patra, D; Dhar, D; Shashkova, EV; Kuppuswamy, M; Doronin, K; Thomas, MA; Zumstein, LA; Wold, WSM; Lichtenstein, DL

    2012-01-01

    Preclinical biodistribution studies with INGN 007, an oncolytic adenovirus (Ad) vector, supporting an early stage clinical trial were conducted in Syrian hamsters, which are permissive for Ad replication, and mice, which are a standard model for assessing toxicity and biodistribution of replication-defective (RD) Ad vectors. Vector dissemination and pharmacokinetics following intravenous administration were examined by real-time PCR in nine tissues and blood at five time points spanning 1 year. Select organs were also examined for the presence of infectious vector/virus. INGN 007 (VRX-007), wild-type Ad5 and AdCMVpA (an RD vector) were compared in the hamster model, whereas only INGN 007 was examined in mice. DNA of all vectors was widely disseminated early after injection, but decayed rapidly in most organs. In the hamster model, DNA of INGN 007 and Ad5 was more abundant than that of the RD vector AdCMVpA at early times after injection, but similar levels were seen later. An increased level of INGN 007 and Ad5 DNA but not AdCMVpA DNA in certain organs early after injection, and the presence of infectious INGN 007 and Ad5 in lung and liver samples at early times after injection, strongly suggests that replication of INGN 007 and Ad5 occurred in several Syrian hamster organs. There was no evidence of INGN 007 replication in mice. In addition to providing important information about INGN 007, the results underscore the utility of the Syrian hamster as a permissive immunocompetent model for Ad5 pathogenesis and oncolytic Ad vectors. PMID:19197322

  14. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens

    PubMed Central

    Mahairas, Gregory G.; Shaw, Carolyn E.; Huang, Meei-Li; Koelle, David M.; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M.

    2015-01-01

    ABSTRACT We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4+ and CD8+ T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. IMPORTANCE HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and acquisition of HIV-1 infection 3- to 4-fold. A herpes vaccine that prevents genital lesions and asymptomatic genital shedding will have a substantial impact on two epidemics, i.e., both the HSV-2 and HIV-1 epidemics. We previously reported that a vaccine containing HSV-2 glycoprotein C (gC2) and glycoprotein D (gD2) reduced genital lesions and asymptomatic HSV-2 genital shedding in guinea pigs, yet the protection was not complete. We evaluated whether adding the T cell immunogens UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) would enhance the protection provided by the gC2/gD2 vaccine, which produces potent antibody responses. Here we report the efficacy of a combination vaccine containing gC2/gD2 and UL19/UL47 for prevention of genital disease, vaginal shedding of HSV-2 DNA, and latent infection of dorsal root ganglia in guinea pigs. PMID:26041292

  15. The role of cyclophosphamide in enhancing antitumor efficacy of an adenovirus oncolytic vector in subcutaneous Syrian hamster tumors

    PubMed Central

    Young, Brittany A.; Spencer, Jacqueline F.; Ying, Baoling; Tollefson, Ann E.; Toth, Karoly; Wold, William S. M.

    2013-01-01

    We have previously reported that intratumoral injection of VRX-007—an Ad5-based vector overexpressing ADP (Adenovirus Death Protein)—can suppress the growth of subcutaneous HaK (hamster renal cancer) tumors. VRX-007 replication and tumor growth inhibition are enhanced when the hamsters are immunosuppressed by a high dose of cyclophosphamide (CP), an immunosuppressive and chemotherapeutic agent. Here we report that continuous immunosuppression with CP was not required for increased oncolytic activity of VRX-007 because short-term dosing or continuous dosing with the drug yielded similar antitumor results. Prolonged viral replication was found only in animals on continuous CP treatment. We used 007-Luc, a replication-competent, luciferase-expressing vector similar to VRX-007 to investigate the replication of the vector over time. Tumor growth inhibition was similar in hamsters given CP treatment either one week before or one week after 007-Luc injection, which suggests that CP exerts its antitumor efficacy independently of vector therapy. 007-Luc did not spread far from the inoculation site, even in immunosuppressed, CP-treated animals. Our results indicate that the enhanced effectiveness that is produced by the combination of VRX-007 and CP therapies is due to their two independent mechanisms and that they do not have to be given simultaneously for the improved outcome shown. PMID:23928731

  16. Adenovirus-mediated gene transfer of pathogen-associated molecular patterns for cancer immunotherapy.

    PubMed

    Tosch, C; Geist, M; Ledoux, C; Ziller-Remi, C; Paul, S; Erbs, P; Corvaia, N; Von Hoegen, P; Balloul, J-M; Haegel, H

    2009-04-01

    The delivery of stimulatory signals to dendritic cells (DCs) in the tumor microenvironment could be an effective means to break tumor-induced tolerance. The work presented here evaluates the immunostimulatory properties of pathogen-associated molecular patterns (PAMPs), microbial molecules which bind Toll-like receptors and deliver activating signals to immune cells, when expressed in tumor cells using adenoviral (Ad) vectors. In vitro, transduction of A549 tumor cells with Ad vectors expressing either flagellin from Listeria monocytogenes or P40 protein from Klebsiella pneumoniae induced the maturation of human monocyte-derived DCs in co-cultures. In mixed lymphocyte reactions (MLRs), Ad-flagellin and Ad-P40 transduction of tumor cells stimulated lymphocyte proliferation and the secretion of IFN-gamma. In vivo, these vectors were used either as stand-alone immunoadjuvants injected intratumorally or as vaccine adjuvants combined with a tumor antigen-expressing vector. When Ad-PAMPs were administered intratumorally to mice bearing subcutaneous syngeneic B16F0-CAR (cocksackie-adenovirus receptor) melanomas, tumor progression was transiently inhibited by Ad-P40. In a therapeutic vaccine setting, the combination of Ad-MUC1 and Ad-PAMP vectors injected subcutaneously delayed the growth of implanted RenCa-MUC1 tumors and improved tumor rejection when compared with vaccination with Ad-MUC1 alone. These results suggest that Ad-PAMPs could be effective immunoadjuvants for cancer immunotherapy.

  17. Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.

    PubMed

    Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2018-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation.

    PubMed

    Kim, So Young; Kang, Dongxu; Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J

    2017-02-28

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma.

  19. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation

    PubMed Central

    Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J.

    2017-01-01

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma. PMID:28178658

  20. Generation of an Adenovirus-Parvovirus Chimera with Enhanced Oncolytic Potential

    PubMed Central

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K.; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M.; Rommelaere, Jean

    2012-01-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells. PMID:22787235

  1. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    PubMed

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  2. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?.

    PubMed

    Fausther-Bovendo, Hugues; Kobinger, Gary P

    2014-01-01

    Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.

  3. Induction of Shock After Intravenous Injection of Adenovirus Vectors: A Critical Role for Platelet-activating Factor

    PubMed Central

    Xu, Zhili; Smith, Jeffrey S.; Tian, Jie; Byrnes, Andrew P.

    2009-01-01

    Innate immune responses are a major barrier to safe systemic gene therapy with adenovirus (Ad) vectors. We show that intravenous (IV) injection of rats with Ad5 vectors causes a novel rapid shock reaction that involves hypotension, hemoconcentration, tissue edema, and vasocongestion, with notable pathology in the pancreas and the gastrointestinal system. We show for the first time that this reaction is dependent on platelet-activating factor (PAF), a lipid signaling molecule that is a known shock inducer. Ad upregulated PAF within 5 minutes in vivo, and antagonists of the PAF receptor were able to prevent Ad-induced shock. Ad upregulated PAF via the reticuloendothelial system (RES), because splenectomy or depletion of phagocytes blocked the ability of Ad to induce both PAF and shock. Rats were considerably more sensitive to Ad-induced shock than were mice, but PAF mediated shock in both species. Other Ad-induced innate immune responses such as cytokine induction and thrombocytopenia were not mediated by PAF. In summary, systemic IV injection of Ad stimulates the RES to upregulate PAF within a matter of minutes, which results in shock. The identification of this novel pathway suggests strategies to improve the safety of systemic gene therapy with Ad vectors. PMID:19953082

  4. Prospects for Oral Replicating Adenovirus-Vectored Vaccines

    PubMed Central

    Deal, Cailin; Pekosz, Andrew; Ketner, Gary

    2013-01-01

    Orally delivered replicating adenovirus (Ad) vaccines have been used for decades to prevent adenovirus serotype 4 and 7 respiratory illness in military recruits, demonstrating exemplary safety and high efficacy. That experience suggests that oral administration of live recombinant Ads (rAds) holds promise for immunization against other infectious diseases, including those that have been refractory to traditional vaccination methods. Live rAds can express intact antigens from free-standing transgenes during replication in infected cells. Alternatively, antigenic epitopes can be displayed on the rAd capsid itself, allowing presentation of the epitope to the immune system both prior to and during replication of the virus. Such capsid-display rAds offer a novel vaccine approach that could be used either independently of or in combination with transgene expression strategies to provide a new tool in the search for protection from infectious disease. PMID:23707160

  5. Adenovirus type 5 intrinsic adsorption rates measured by surface plasmon resonance.

    PubMed

    Roper, D Keith; Nakra, Shamit

    2006-01-01

    Intrinsic adsorption rates of whole adenovirus type 5 (Ad5) onto a diethylaminoethyl (DEAE) anion exchange surface are measured for the first time by surface plasmon resonance (SPR). Fitting SPR sensorgrams to a two-compartment mass transport reaction model distinguishes intrinsic adsorption rates from slow diffusive Ad5 mass transport. Ad5 is a widely used viral vector for gene therapy that binds electrostatically to surfaces of cells and synthetics such as membranes, chromatographic resins, and glass. Increasing NaCl concentration from 4.8 to 14.4mM shifts binding of whole Ad5 from diffusion control to a regime where both sorption and diffusion affect binding. Intrinsic adsorption rates for Ad5-DEAE interaction are 16 times faster than intrinsic adsorption rates for Ad5 fiber knob interacting with soluble extracellular domain of coxsackievirus adenovirus receptors (s-CAR).

  6. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors.

    PubMed

    Crosby, Catherine M; Barry, Michael A

    2017-02-18

    Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed "single cycle" Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad drove stronger luciferase expression than RC- or RD-Ad. These data demonstrate better transgene expression by SC- and RC-Ad in vitro and in vivo than RD-Ad. This higher expression by the replicating vectors results in a peak of expression within 1 to 2 days followed by cell death of infected cells and release of transgene products. While SC- and RC-Ad expression were similar in mice and in Syrian hamsters, RC-Ad provoked much stronger ISG induction which may explain in part SC-Ad's ability to generate stronger and more persistent immune responses than RC-Ad in Ad permissive hamsters.

  7. A recombinant chimeric Ad5/3 vector expressing a multi-stage Plasmodium antigen induces protective immunity in mice using heterologous prime-boost immunization regimens1

    PubMed Central

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Zhao, Chunxia; Makarova, Natalia; Dmitriev, Igor; Curiel, David T.; Blackwell, Jerry; Moreno, Alberto

    2016-01-01

    An ideal malaria vaccine should target several stages of the parasite life cycle and induce anti-parasite and anti-disease immunity. We have reported a Plasmodium yoelii chimeric multi-stage recombinant protein (PyLPC/RMC), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein (CSP) and the merozoite surface protein 1 (MSP-1). This chimeric protein elicits protective immunity, mediated by CD4+ T cells and neutralizing antibodies. However, experimental evidence from pre-erythrocytic vaccine candidates and irradiated sporozoites has shown that CD8+ T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8+ T cell responses. The human adenovirus serotype 5 (Ad5) has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing antibodies in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing antibodies. Furthermore, we implemented heterologous adenovirus/protein immunization regimens which include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrate that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development. PMID:27574299

  8. Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination

    PubMed Central

    Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.

    2018-01-01

    To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380

  9. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    PubMed

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  10. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo.

    PubMed Central

    Kass-Eisler, A; Falck-Pedersen, E; Alvira, M; Rivera, J; Buttrick, P M; Wittenberg, B A; Cipriani, L; Leinwand, L A

    1993-01-01

    To optimize the use of modified adenoviruses as vectors for gene delivery to the myocardium, we have characterized infection of cultured fetal and adult rat cardiac myocytes in vitro and of adult cardiac myocytes in vivo by using a replication-defective adenovirus carrying the chloramphenicol acetyltransferase (CAT) reporter gene driven by the cytomegalovirus promoter (AdCMVCATgD). In vitro, virtually all fetal or adult cardiocytes express the CAT gene when infected with 1 plaque-forming unit of virus per cell. CAT enzymatic activity can be detected in these cells as early as 4 hr after infection, reaching near-maximal levels at 48 hr. In fetal cells, CAT expression was maintained without a loss in activity for at least 1 week. Using in vitro studies as a guide, we introduced the AdCMVCATgD virus directly into adult rat myocardium and compared the expression results obtained from virus injection with those obtained by direct injection of pAdCMVCATgD plasmid DNA. The amount of CAT activity resulting from adenovirus infection of the myocardium was orders of magnitude higher than that seen from DNA injection and was proportional to the amount of input virus. Immunostaining for CAT protein in cardiac tissue sections following adenovirus injection demonstrated large numbers of positive cells, reaching nearly 100% of the myocytes in many regions of the heart. Expression of genes introduced by adenovirus peaked at 5 days but was still detectable 55 days following infection. Adenoviruses are therefore a very useful tool for high-efficiency gene transfer into the cardiovascular system. Images Fig. 1 Fig. 5 PMID:8265580

  11. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2004-05-18

    Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method, residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.

  12. Vector-based genetically modified vaccines: Exploiting Jenner's legacy.

    PubMed

    Ramezanpour, Bahar; Haan, Ingrid; Osterhaus, Ab; Claassen, Eric

    2016-12-07

    The global vaccine market is diverse while facing a plethora of novel developments. Genetic modification (GM) techniques facilitate the design of 'smarter' vaccines. For many of the major infectious diseases of humans, like AIDS and malaria, but also for most human neoplastic disorders, still no vaccines are available. It may be speculated that novel GM technologies will significantly contribute to their development. While a promising number of studies is conducted on GM vaccines and GM vaccine technologies, the contribution of GM technology to newly introduced vaccines on the market is disappointingly limited. In this study, the field of vector-based GM vaccines is explored. Data on currently available, actually applied, and newly developed vectors is retrieved from various sources, synthesised and analysed, in order to provide an overview on the use of vector-based technology in the field of GM vaccine development. While still there are only two vector-based vaccines on the human vaccine market, there is ample activity in the fields of patenting, preclinical research, and different stages of clinical research. Results of this study revealed that vector-based vaccines comprise a significant part of all GM vaccines in the pipeline. This study further highlights that poxviruses and adenoviruses are among the most prominent vectors in GM vaccine development. After the approval of the first vectored human vaccine, based on a flavivirus vector, vaccine vector technology, especially based on poxviruses and adenoviruses, holds great promise for future vaccine development. It may lead to cheaper methods for the production of safe vaccines against diseases for which no or less perfect vaccines exist today, thus catering for an unmet medical need. After the introduction of Jenner's vaccinia virus as the first vaccine more than two centuries ago, which eventually led to the recent eradication of smallpox, this and other viruses may now be the basis for constructing vectors that may help us control other major scourges of mankind. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. E1A promoter of bovine adenovirus type 3.

    PubMed

    Xing, Li; Tikoo, Suresh Kumar

    2006-12-01

    Conserved motifs of eukaryotic gene promoters, such as TATA box and CAAT box sequences, of E1A of human adenoviruses (e.g human adenovirus 5) lie between the left inverted terminal repeat (ITR) and the ATG of E1A. However, analysis of the left end of the bovine adenovirus 3 (BAdV-3) genome revealed that the conserved sequences of the E1A promoter are present only in the ITR. As such, the promoter activity of ITR was tested in the context of a BAdV-3 vector or a plasmid-based system. Different regions of the left end of the BAdV-3 genome initiated transcription of the red fluorescent protein gene in a plasmid-based system. Moreover, BAdV-3 mutants in which the open reading frame of E1A was placed immediately downstream of the ITR produced E1A transcript and could be propagated in non-E1A-complementing Madin-Darby bovine kidney cells. These results suggest that the left ITR contains the sole BAdV-3 E1A promoter.

  14. Purification of infectious adenovirus in two hours by ultracentrifugation and tangential flow filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugai, Hideyo; Yamasaki, Takahito; Hirose, Megumi

    2005-06-17

    Adenoviruses are excellent vectors for gene transfer and are used extensively for high-level expression of the products of transgenes in living cells. The development of simple and rapid methods for the purification of stable infectious recombinant adenoviruses (rAds) remains a challenge. We report here a method for the purification of infectious adenovirus type 5 (Ad5) that involves ultracentrifugation on a cesium chloride gradient at 604,000g for 15 min at 4 deg C and tangential flow filtration. The entire procedure requires less than two hours and infectious Ad5 can be recovered at levels higher than 64% of the number of plaque-formingmore » units (pfu) in the initial crude preparation of viruses. We have obtained titers of infectious purified Ad5 of 1.35 x 10{sup 10} pfu/ml and a ratio of particle titer to infectious titer of seven. The method described here allows the rapid purification of rAds for studies of gene function in vivo and in vitro, as well as the rapid purification of Ad5.« less

  15. Development of nonhuman adenoviruses as vaccine vectors

    PubMed Central

    Bangari, Dinesh S.; Mittal, Suresh K.

    2006-01-01

    Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination. PMID:16297508

  16. Pulmonary vasculature directed adenovirus increases epithelial lining fluid alpha-1 antitrypsin levels.

    PubMed

    Buggio, Maurizio; Towe, Christopher; Annan, Anand; Kaliberov, Sergey; Lu, Zhi Hong; Stephens, Calvin; Arbeit, Jeffrey M; Curiel, David T

    2016-01-01

    Gene therapy for inherited serum deficiency disorders has previously been limited by the balance between obtaining adequate expression and causing hepatic toxicity. Our group has previously described modifications of a replication deficient human adenovirus serotype 5 that increase pulmonary vasculature transgene expression. In the present study, we use a modified pulmonary targeted adenovirus to express human alpha-1 antitrypsin (A1AT) in C57BL/6 J mice. Using the targeted adenovirus, we were able to achieve similar increases in serum A1AT levels with less liver viral uptake. We also increased pulmonary epithelial lining fluid A1AT levels by more than an order of magnitude compared to that of untargeted adenovirus expressing A1AT in a mouse model. These gains are achieved along with evidence of decreased systemic inflammation and no evidence for increased inflammation within the vector-targeted end organ. In addition to comprising a step towards clinically viable gene therapy for A1AT, maximization of protein production at the site of action represents a significant technical advancement in the field of systemically delivered pulmonary targeted gene therapy. It also provides an alternative to the previous limitations of hepatic viral transduction and associated toxicities. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Production of recombinant adenovirus containing human interlukin-4 gene.

    PubMed

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-11-01

    Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics.

  18. Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 Transduction In Vitro in the Presence of Mouse Serum

    PubMed Central

    Lopez-Gordo, Estrella; Doszpoly, Andor; Duffy, Margaret R.; Coughlan, Lynda; Bradshaw, Angela C.; White, Katie M.; Denby, Laura; Nicklin, Stuart A.

    2017-01-01

    ABSTRACT Human adenoviral serotype 5 (HAdV-5) vectors have predominantly hepatic tropism when delivered intravascularly, resulting in immune activation and toxicity. Coagulation factor X (FX) binding to HAdV-5 mediates liver transduction and provides protection from virion neutralization in mice. FX is dispensable for liver transduction in mice lacking IgM antibodies or complement, suggesting that alternative transduction pathways exist. To identify novel factor(s) mediating HAdV-5 FX-independent entry, we investigated HAdV-5 transduction in vitro in the presence of serum from immunocompetent C57BL/6 or immunocompromised mice lacking IgM antibodies (Rag 2−/− and NOD-scid-gamma [NSG]). Sera from all three mouse strains enhanced HAdV-5 transduction of A549 cells. While inhibition of HAdV-5–FX interaction with FX-binding protein (X-bp) inhibited transduction in the presence of C57BL/6 serum, it had negligible effect on the enhanced transduction observed in the presence of Rag 2−/− or NSG serum. Rag 2−/− serum also enhanced transduction of the FX binding-deficient HAdV-5HVR5*HVR7*E451Q (AdT*). Interestingly, Rag 2−/− serum enhanced HAdV-5 transduction in a FX-independent manner in CHO-CAR and SKOV3-CAR cells (CHO or SKOV3 cells transfected to stably express human coxsackievirus and adenovirus receptor [CAR]). Additionally, blockade of CAR with soluble HAdV-5 fiber knob inhibited mouse serum-enhanced transduction in A549 cells, suggesting a potential role for CAR. Transduction of HAdV-5 KO1 and HAdV-5/F35 (CAR binding deficient) in the presence of Rag 2−/− serum was equivalent to that of HAdV-5, indicating that direct interaction between HAdV-5 and CAR is not required. These data suggest that FX may protect HAdV-5 from neutralization but has minimal contribution to HAdV-5 transduction in the presence of immunocompromised mouse serum. Alternatively, transduction occurs via an unidentified mouse serum protein capable of bridging HAdV-5 to CAR. IMPORTANCE The intravascular administration of HAdV-5 vectors can result in acute liver toxicity, transaminitis, thrombocytopenia, and injury to the vascular endothelium, illustrating challenges yet to overcome for HAdV-5-mediated systemic gene therapy. The finding that CAR and potentially an unidentified factor present in mouse serum might be important mediators of HAdV-5 transduction highlights that a better understanding of the complex biology defining the interplay between adenovirus immune recognition and cellular uptake mechanisms is still required. These findings are important to inform future optimization and development of HAdV-5-based adenoviral vectors for gene therapy. PMID:28381574

  19. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    PubMed

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m 2 was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  20. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys.

    PubMed

    Barouch, Dan H; Liu, Jinyan; Li, Hualin; Maxfield, Lori F; Abbink, Peter; Lynch, Diana M; Iampietro, M Justin; SanMiguel, Adam; Seaman, Michael S; Ferrari, Guido; Forthal, Donald N; Ourmanov, Ilnour; Hirsch, Vanessa M; Carville, Angela; Mansfield, Keith G; Stablein, Donald; Pau, Maria G; Schuitemaker, Hanneke; Sadoff, Jerald C; Billings, Erik A; Rao, Mangala; Robb, Merlin L; Kim, Jerome H; Marovich, Mary A; Goudsmit, Jaap; Michael, Nelson L

    2012-01-04

    Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIV(SME543) Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIV(MAC251) challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.

  1. Short-fiber protein of ad40 confers enteric tropism and protection against acidic gastrointestinal conditions.

    PubMed

    Rodríguez, Ester; Romero, Carolina; Río, Adolfo; Miralles, Marta; Raventós, Aida; Planells, Laura; Burgueño, Joan F; Hamada, Hirofumi; Perales, Jose Carlos; Bosch, Assumpció; Gassull, Miguel Angel; Fernández, Ester; Chillon, Miguel

    2013-08-01

    The lack of vectors for selective gene delivery to the intestine has hampered the development of gene therapy strategies for intestinal diseases. We hypothesized that chimeric adenoviruses of Ad5 (species C) displaying proteins of the naturally enteric Ad40 (species F) might hold the intestinal tropism of the species F and thus be useful for gene delivery to the intestine. As oral-fecal dissemination of enteric adenovirus must withstand the conditions encountered in the gastrointestinal tract, we studied the resistance of chimeric Ad5 carrying the short-fiber protein of Ad40 to acid milieu and proteases and found that the Ad40 short fiber confers resistance to inactivation in acidic conditions and that AdF/40S was further activated upon exposure to low pH. In contrast, the chimeric AdF/40S exhibited only a slightly higher protease resistance compared with Ad5 to proteases present in simulated gastric juice. Then, the biodistribution of different chimeric adenoviruses by oral, rectal, and intravenous routes was tested. Expression of reporter β-galactosidase was measured in extracts of 15 different organs 3 days after administration. Our results indicate that among the chimeric viruses, only intrarectally given AdF/40S infected the colon (preferentially enteroendocrine cells and macrophages) and to a lesser extent, the small intestine, whereas Ad5 infectivity was very poor in all tissues. Additional in vitro experiments showed improved infectivity of AdF/40S also in different human epithelial cell lines. Therefore, our results point at the chimeric adenovirus AdF/40S as an interesting vector for selective gene delivery to treat intestinal diseases.

  2. Expression of immunoregulatory molecules by thyrocytes protects nonobese diabetic-H2h4 mice from developing autoimmune thyroiditis.

    PubMed

    Nakahara, Mami; Nagayama, Yuji; Saitoh, Ohki; Sogawa, Rintaro; Tone, Shigenobu; Abiru, Norio

    2009-03-01

    One approach to prevent tissue destruction by autoimmune attack in organ-specific autoimmune diseases is to protect the target tissue from autoimmune reaction, regardless of its persistent activity. To provide proof-of-principle for the feasibility of this approach, the immunoregulatory molecules, TNF-related apoptosis-inducing ligand (TRAIL) and indoleamine 2, 3-dioxygenase, were expressed in the thyroid glands using adenovirus vector in nonobese diabetic-H2(h4) mice that spontaneously develop thyroiditis. Mice were anesthetized, and the thyroid glands were exposed by neck dissection, followed by in situ infection with adenovirus vector (5 x 10(10) particles per mouse) twice or thrice, starting 1 d or 4 wk before mice were supplied with sodium iodine (NaI) water. After 8 wk NaI provision, the extent of thyroiditis, serum titers of antithyroglobulin antibodies, and cytokine expression in the spleen were examined. In situ infection of adenovirus expressing TRAIL or indoleamine 2, 3-dioxygenase, but not green fluorescent protein, significantly suppressed thyroiditis scores. However, antithyroglobulin antibody titers and expression levels of cytokines (interferon-gamma and IL-4) in the spleen remained unaltered. Importantly, adenovirus infection 4 wk after NaI provision was also effective at suppressing thyroiditis. The suppressive effect of TRAIL appears to be mediated at least partly by accumulation of CD4(+)Foxp3(+) regulatory T cells into the thyroid glands. Thus, localized expression of immunoregulatory molecules efficiently protected the thyroid glands from autoimmune attack without changing the systemic autoimmunity in nonobese diabetic-H2(h4) mice. This kind of immunological intervention, although it does not suppress autoimmune reactivity, may have a potential for treating organ-specific autoimmune diseases.

  3. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    PubMed

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  4. Mucosal prior to systemic application of recombinant adenovirus boosting is more immunogenic than systemic application twice but confers similar protection against SIV-challenge in DNA vaccine-primed macaques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Reiner; Suh, You-Suk; Sauermann, Ulrike

    2009-01-20

    We investigated the immunogenicity and efficacy of a bimodal prime/boost vaccine regimen given by various routes in the Simian immunodeficiency virus (SIV) rhesus monkey model for AIDS. Twelve animals were immunized with SIV DNA-vectors followed by the application of a recombinant adenovirus (rAd5) expressing the same genes either intramuscularly (i.m.) or by oropharyngeal spray. The second rAd5-application was given i.m. All vaccinees plus six controls were challenged orally with SIVmac239 12 weeks post-final immunization. Both immunization strategies induced strong SIV Gag-specific IFN-{gamma} and T-cell proliferation responses and mediated a conservation of CD4{sup +} memory T-cells and a reduction of viralmore » load during peak viremia following infection. Interestingly, the mucosal group was superior to the systemic group regarding breadth and strength of SIV-specific T-cell responses and exhibited lower vector specific immune responses. Therefore, our data warrant the inclusion of mucosal vector application in a vaccination regimen which makes it less invasive and easier to apply.« less

  5. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  6. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors

    PubMed Central

    Corridon, Peter R.; Rhodes, George J.; Leonard, Ellen C.; Basile, David P.; Gattone, Vincent H.; Bacallao, Robert L.

    2013-01-01

    Gene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys. We show, using intravital fluorescence two-photon microscopy, that fluorescent albumin and dextrans injected into the renal vein under defined conditions of hydrodynamic pressure distribute broadly throughout the kidney in live animals. We found injection parameters that result in no kidney injury as determined by intravital microscopy, histology, and serum creatinine measurements. Plasmids, baculovirus, and adenovirus vectors, designed to express EGFP, EGFP-actin, EGFP-occludin, EGFP-tubulin, tdTomato-H2B, or RFP-actin fusion proteins, were introduced into live kidneys in a similar fashion. Gene expression was then observed in live and ex vivo kidneys using two-photon imaging and confocal laser scanning microscopy. We recorded widespread fluorescent protein expression lasting more than 1 mo after introduction of transgenes. Plasmid and adenovirus vectors provided gene transfer efficiencies ranging from 50 to 90%, compared with 10–50% using baculovirus. Using plasmids and adenovirus, fluorescent protein expression was observed 1) in proximal and distal tubule epithelial cells; 2) within glomeruli; and 3) within the peritubular interstitium. In isolated kidneys, fluorescent protein expression was observed from the cortex to the papilla. These results provide a robust approach for gene delivery and the study of protein function in live mammal kidneys. PMID:23467422

  7. Transcriptional and posttranscriptional regulation of class I major histocompatibility complex genes following transformation with human adenoviruses.

    PubMed Central

    Shemesh, J; Rotem-Yehudar, R; Ehrlich, R

    1991-01-01

    Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells. Images PMID:1895404

  8. Melanoma cultures show different susceptibility towards E1A-, E1B-19 kDa- and fiber-modified replication-competent adenoviruses.

    PubMed

    Schmitz, M; Graf, C; Gut, T; Sirena, D; Peter, I; Dummer, R; Greber, U F; Hemmi, S

    2006-06-01

    Replicating adenovirus (Ad) vectors with tumour tissue specificity hold great promise for treatment of cancer. We have recently constructed a conditionally replicating Ad5 AdDeltaEP-TETP inducing tumour regression in a xenograft mouse model. For further improvement of this vector, we introduced four genetic modifications and analysed the viral cytotoxicity in a large panel of melanoma cell lines and patient-derived melanoma cells. (1) The antiapoptotic gene E1B-19 kDa (Delta19 mutant) was deleted increasing the cytolytic activity in 18 of 21 melanoma cells. (2) Introduction of the E1A 122-129 deletion (Delta24 mutant), suggested to attenuate viral replication in cell cycle-arrested cells, did not abrogate this activity and increased the cytolytic activity in two of 21 melanoma cells. (3) We inserted an RGD sequence into the fiber to extend viral tropism to alphav integrin-expressing cells, and (4) swapped the fiber with the Ad35 fiber (F35) enhancing the tropism to malignant melanoma cells expressing CD46. The RGD-fiber modification strongly increased cytolysis in all of the 11 CAR-low melanoma cells. The F35 fiber-chimeric vector boosted the cytotoxicity in nine of 11 cells. Our results show that rational engineering additively enhances the cytolytic potential of Ad vectors, a prerequisite for the development of patient-customized viral therapies.

  9. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-α-glucosidase

    PubMed Central

    Amalfitano, A.; McVie-Wylie, A. J.; Hu, H.; Dawson, T. L.; Raben, N.; Plotz, P.; Chen, Y. T.

    1999-01-01

    This report demonstrates that a single intravenous administration of a gene therapy vector can potentially result in the correction of all affected muscles in a mouse model of a human genetic muscle disease. These results were achieved by capitalizing both on the positive attributes of modified adenovirus-based vectoring systems and receptor-mediated lysosomal targeting of enzymes. The muscle disease treated, glycogen storage disease type II, is a lysosomal storage disorder that manifests as a progressive myopathy, secondary to massive glycogen accumulations in the skeletal and/or cardiac muscles of affected individuals. We demonstrated that a single intravenous administration of a modified Ad vector encoding human acid α-glucosidase (GAA) resulted in efficient hepatic transduction and secretion of high levels of the precursor GAA proenzyme into the plasma of treated animals. Subsequently, systemic distribution and uptake of the proenzyme into the skeletal and cardiac muscles of the GAA-knockout mouse was confirmed. As a result, systemic decreases (and correction) of the glycogen accumulations in a variety of muscle tissues was demonstrated. This model can potentially be expanded to include the treatment of other lysosomal enzyme disorders. Lessons learned from systemic genetic therapy of muscle disorders also should have implications for other muscle diseases, such as the muscular dystrophies. PMID:10430861

  10. The foot-and-mouth disease carrier state divergence in cattle

    USDA-ARS?s Scientific Manuscript database

    The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated following simulated-natural virus exposure of 43 cattle that were either naïve or vaccinated using a recombinant, adenovirus-vectored vaccine. Although vaccinated cattle were protected against clinical dise...

  11. Comparison of the Life Cycles of Genetically Distant Species C and Species D Human Adenoviruses Ad6 and Ad26 in Human Cells.

    PubMed

    Turner, Mallory A; Middha, Sumit; Hofherr, Sean E; Barry, Michael A

    2015-12-01

    Our understanding of adenovirus (Ad) biology is largely extrapolated from human species C Ad5. Most humans are immune to Ad5, so lower-seroprevalence viruses like human Ad6 and Ad26 are being tested as therapeutic vectors. Ad6 and Ad26 differ at the DNA level by 34%. To better understand how this might impact their biology, we examined the life cycle of the two viruses in human lung cells in vitro. Both viruses infected A549 cells with similar efficiencies, executed DNA replication with identical kinetics within 12 h, and began killing cells within 72 h. While Ad6-infected cells remained adherent until death, Ad26-infected cells detached within 12 h of infection but remained viable. Next-generation sequencing (NGS) of mRNA from infected cells demonstrated that viral transcripts constituted 1% of cellular mRNAs within 6 h and 8 to 16% within 12 h. Quantitative PCR and NGS revealed the activation of key early genes at 6 h and transition to late gene activation by 12 h by both viruses. There were marked differences in the balance of E1A and E1B activation by the two viruses and in the expression of E3 immune evasion mRNAs. Ad6 was markedly more effective at suppressing major histocompatibility complex class I (MHC I) display on the cell surface and in evading TRAIL-mediated apoptosis than was Ad26. These data demonstrate shared as well as divergent life cycles in these genetically distant human adenoviruses. An understanding of these differences expands the knowledge of alternative Ad species and may inform the selection of related Ads for therapeutic development. A burgeoning number of adenoviruses (Ads) are being harnessed as therapeutics, yet the biology of these viruses is generally extrapolated from Ad2 and Ad5. Here, we are the first to compare the transcriptional programs of two genetically distant Ads by mRNA next-generation sequencing (NGS). Species C Ad6 and Ad26 are being pursued as lower-seroprevalence Ad vectors but differ at the DNA level by 34%. Head-to-head comparison in human lung cells by NGS revealed that the two viruses generally conform to our general understanding of the Ad transcriptional program. However, fine mapping revealed subtle and strong differences in how these two viruses execute these programs, including differences in the balance of E1A and E1B mRNAs and in E3 immune evasion genes. This suggests that not all adenoviruses behave like Ad2 and Ad5 and that they may have unique strategies to infect cells and evade the immune system. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    PubMed Central

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. Materials and Methods In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Results Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. Conclusion This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics. PMID:23493491

  13. Potential use of G-CSF for protection against Streptococcus suis infection in swine

    USDA-ARS?s Scientific Manuscript database

    The use of immunomodulators is a promising alternative to the use of antibiotics for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease. We developed a replication-defective adenovirus vector that expresses porcine granulocyte colony-stimulating factor (G-CSF) ...

  14. Chromosomal integration of adenoviral vector DNA in vivo.

    PubMed

    Stephen, Sam Laurel; Montini, Eugenio; Sivanandam, Vijayshankar Ganesh; Al-Dhalimy, Muhseen; Kestler, Hans A; Finegold, Milton; Grompe, Markus; Kochanek, Stefan

    2010-10-01

    So far there has been no report of any clinical or preclinical evidence for chromosomal vector integration following adenovirus (Ad) vector-mediated gene transfer in vivo. We used liver gene transfer with high-capacity Ad vectors in the FAH(Deltaexon5) mouse model to analyze homologous and heterologous recombination events between vector and chromosomal DNA. Intravenous injection of Ad vectors either expressing a fumarylacetoacetate hydrolase (FAH) cDNA or carrying part of the FAH genomic locus resulted in liver nodules of FAH-expressing hepatocytes, demonstrating chromosomal vector integration. Analysis of junctions between vector and chromosomal DNA following heterologous recombination indicated integration of the vector genome through its termini. Heterologous recombination occurred with a median frequency of 6.72 x 10(-5) per transduced hepatocyte, while homologous recombination occurred more rarely with a median frequency of 3.88 x 10(-7). This study has established quantitative and qualitative data on recombination of adenoviral vector DNA with genomic DNA in vivo, contributing to a risk-benefit assessment of the biosafety of Ad vector-mediated gene transfer.

  15. Antibody responses to prime-boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors expressing HIV-1 gp140.

    PubMed

    Emmer, Kristel L; Wieczorek, Lindsay; Tuyishime, Steven; Molnar, Sebastian; Polonis, Victoria R; Ertl, Hildegund C J

    2016-10-23

    Over 2 million individuals are infected with HIV type 1 (HIV-1) each year, yet an effective vaccine remains elusive. The most successful HIV-1 vaccine to date demonstrated 31% efficacy. Immune correlate analyses associated HIV-1 envelope (Env)-specific antibodies with protection, thus providing a path toward a more effective vaccine. We sought to test the antibody response from novel prime-boost vaccination with a chimpanzee-derived adenovirus (AdC) vector expressing a subtype C Env glycoprotein (gp)140 combined with either a serologically distinct AdC vector expressing gp140 of a different subtype C isolate or an alum-adjuvanted, partially trimeric gp145 from yet another subtype C isolate. Three different prime-boost regimens were tested in mice: AdC prime-protein boost, protein prime-AdC boost, and AdC prime-AdC boost. Each regimen was tested at two different doses of AdC vector in a total of six experimental groups. Sera were collected at various time points and evaluated by ELISA for Env-specific antibody binding, isotype, and avidity. Antibody functionality was assessed by pseudovirus neutralization assay. Priming with AdC followed by a protein boost or sequential immunizations with two AdC vectors induced HIV-1 Env-specific binding antibodies, including those to the variable region 2, whereas priming with protein followed by an AdC boost was relatively ineffective. Antibodies that cross-neutralized tier 1 HIV-1 from different subtypes were elicited with vaccine regimens that included immunizations with protein. Our study warrants further investigation of AdC vector and gp145 protein prime-boost vaccines and their ability to protect against acquisition in animal challenge studies.

  16. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens.

    PubMed

    Awasthi, Sita; Mahairas, Gregory G; Shaw, Carolyn E; Huang, Meei-Li; Koelle, David M; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M

    2015-08-01

    We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and acquisition of HIV-1 infection 3- to 4-fold. A herpes vaccine that prevents genital lesions and asymptomatic genital shedding will have a substantial impact on two epidemics, i.e., both the HSV-2 and HIV-1 epidemics. We previously reported that a vaccine containing HSV-2 glycoprotein C (gC2) and glycoprotein D (gD2) reduced genital lesions and asymptomatic HSV-2 genital shedding in guinea pigs, yet the protection was not complete. We evaluated whether adding the T cell immunogens UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) would enhance the protection provided by the gC2/gD2 vaccine, which produces potent antibody responses. Here we report the efficacy of a combination vaccine containing gC2/gD2 and UL19/UL47 for prevention of genital disease, vaginal shedding of HSV-2 DNA, and latent infection of dorsal root ganglia in guinea pigs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5–based Constructs

    PubMed Central

    Alonso-Padilla, Julio; Papp, Tibor; Kaján, Győző L; Benkő, Mária; Havenga, Menzo; Lemckert, Angelique; Harrach, Balázs; Baker, Andrew H

    2016-01-01

    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes. PMID:26478249

  18. Pre-existing immunity against vaccine vectors – friend or foe?

    PubMed Central

    Saxena, Manvendra; Van, Thi Thu Hao; Baird, Fiona J.; Coloe, Peter J.

    2013-01-01

    Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Salmonella and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses. PMID:23175507

  19. Radiolabeled Adenoviral Sub-unit Proteins for Molecular Imaging and Therapeutic Applications in Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S.; Meinken, G.; Springer, K. Awasthi, V.

    2004-10-06

    The objective of this project was to develop and optimize new ligand systems, based on adenoviral vectors (intact adenovirus, adeno-viral fiber protein, and the knob protein), for delivering suitable radionuclides into tumor cells for molecular imaging and combined gene/radionuclide therapy of cancer.

  20. Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats.

    PubMed

    Badie, B; Drazan, K E; Kramar, M H; Shaked, A; Black, K L

    1995-06-01

    Adenoviral vectors have recently been shown to effectively deliver genes into a variety of tissues. Since these vectors have some advantages over the more extensively investigated retroviruses, we studied the effect of two replication-defective adenovectors bearing human wild type tumor suppressor gene p53 (Adp53) and Escherichia coli beta-galactosidase gene (AdLacZ) on 9L glioma cells. Successful in vitro gene transfer was shown by DNA polymerase chain reaction (PCR), and expression was confirmed by reverse transcriptase RNA PCR and Western blot analyses. Transduction of 9L cells with the Adp53 inhibited cell growth and induced phenotypic changes consistent with cell death at low titers, while AdLacZ caused cytopathic changes only at high titers. Stereotactic injection of AdLacZ (10(7) plaque forming units) into tumor bed stained 25 to 30% of tumor cells at the site of vector delivery. Injection of Adp53 (10(7) plaque forming units), but not AdLacZ (controls), into established 4-day old 9L glioma brain tumors decreased tumor volume by 40% after 14 days. As a step toward gene therapy of brain tumors using replication-defective adenoviruses, these data support the use of tumor suppressor gene transfer for in vivo treatment of whole animal brain tumor models.

  1. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine.

    PubMed

    Fernandez-Sainz, Ignacio; Medina, Gisselle N; Ramirez-Medina, Elizabeth; Koster, Marla J; Grubman, Marvin J; de Los Santos, Teresa

    2017-02-01

    A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa capsid and capsid-processing proteins. Swine inoculated with Ad5-O1Man developed an FMDV-specific humoral response as compared to animals inoculated with an empty Ad5-vector. Vaccinated animals were completely protected against homologous challenge at 7 or 21 days post-vaccination. Potency studies exhibited a PD50 of about 10 7 pfu/animal while a dose of 4×10 7 pfu/animal fully protected swine against FMDV intradermal challenge. In-vitro cross-neutralization analysis distinctly predicted that swine vaccinated with Ad5-O1Man would be protected against challenge with homologous FMDV O1Man Middle East-South Asia (ME-SA) topotype and also against recent outbreak strains of Mya-98 South East Asia (SEA) lineage including O1-UK-2001 and O1-South Korea-2010. These results indicate that recombinant Ad5-O1Man is an effective, safe and cross-reacting vaccine that could potentially be used preventively and in outbreak situations, to control FMDV O Mya-98 lineage in swine. Published by Elsevier Inc.

  2. Immune responses in pigs induced by recombinant canine adenovirus 2 expressing the glycoprotein 5 of porcine reproductive and respiratory syndrome virus.

    PubMed

    Zhou, J-X; Xue, J-D; Yu, T; Zhang, J-B; Liu, Y; Jiang, N; Li, Y-L; Hu, R-L

    2010-04-01

    To develop a new type vaccine for porcine reproductive and respiratory syndrome (PRRS) prevention by using canine adenovirus 2(CAV-2) as vector, the Glycoprotein 5(GP5) gene from PRRSV strain JL was amplified by RT-PCR, and the expression cassette of GP5 was constructed using the human cytomegalovirus (HCMV) promoter and the simian virus 40 (SV40) early mRNA polyadenylation signal. The expression cassette of Glycoprotein 5 was cloned into the CAV-2 genome in which E3 region had been partly deleted, and the recombinant virus (CAV-2-GP5) was obtained by transfecting the recombinant CAV-2-GP5 genome into MDCK cells together with Lipofectamine 2000. Immunization trial in pigs with the recombinant virus CAV-2-GP5 showed that CAV-2-GP5 could stimulate a specific immune response to PRRSV. Immune response to the GP5 and PRRSV was confirmed by ELISA, neutralization test and lymphocyte proliferative responses, and western blotting confirmed expression of GP5 by the vector in cells. These results indicated that CAV-2 may serve as a vector for development of PRRSV vaccine in pigs, and the CAV-2-GP5 might be a candidate vaccine to be tested for preventing PRRSV infection.

  3. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases

    NASA Astrophysics Data System (ADS)

    Sauter, Bernhard V.; Martinet, Olivier; Zhang, Wei-Jian; Mandeli, John; Woo, Savio L. C.

    2000-04-01

    Inhibition of angiogenesis has been shown to be an effective strategy in cancer therapy in mice. However, its widespread application has been hampered by difficulties in the large-scale production of the antiangiogenic proteins. This limitation may be resolved by in vivo delivery and expression of the antiangiogenic genes. We have constructed a recombinant adenovirus that expresses murine endostatin that is biologically active both in vitro, as determined in endothelial cell proliferation assays, and in vivo, by suppression of angiogenesis induced by vascular endothelial growth factor 165. Persistent high serum levels of endostatin (605-1740 ng/ml; mean, 936 ng/ml) were achieved after systemic administration of the vector to nude mice, which resulted in significant reduction of the growth rates and the volumes of JC breast carcinoma and Lewis lung carcinoma (P < 0.001 and P < 0.05, respectively). In addition, the endostatin vector treatment completely prevented the formation of pulmonary micrometastases in Lewis lung carcinoma (P = 0.0001). Immunohistochemical staining of the tumors demonstrated a decreased number of blood vessels in the treatment group versus the controls. In conclusion, the present study clearly demonstrates the potential of vector-mediated antiangiogenic gene therapy as a component in cancer therapy.

  4. Regulation of a Viral Proteinase by a Peptide and DNA in One-dimensional Space

    PubMed Central

    Blainey, Paul C.; Graziano, Vito; Pérez-Berná, Ana J.; McGrath, William J.; Flint, S. Jane; San Martín, Carmen; Xie, X. Sunney; Mangel, Walter F.

    2013-01-01

    Precursor proteins used in the assembly of adenovirus virions must be processed by the virally encoded adenovirus proteinase (AVP) before the virus particle becomes infectious. An activated adenovirus proteinase, the AVP-pVIc complex, was shown to slide along viral DNA with an extremely fast one-dimensional diffusion constant, 21.0 ± 1.9 × 106 bp2/s. In principle, one-dimensional diffusion can provide a means for DNA-bound proteinases to locate and process DNA-bound substrates. Here, we show that this is correct. In vitro, AVP-pVIc complexes processed a purified virion precursor protein in a DNA-dependent reaction; in a quasi in vivo environment, heat-disrupted ts-1 virions, AVP-pVIc complexes processed five different precursor proteins in DNA-dependent reactions. Sliding of AVP-pVIc complexes along DNA illustrates a new biochemical mechanism by which a proteinase can locate its substrates, represents a new paradigm for virion maturation, and reveals a new way of exploiting the surface of DNA. PMID:23043138

  5. Adenovirus-vectored Ebola vaccines.

    PubMed

    Gilbert, Sarah C

    2015-01-01

    The 2014 outbreak of Ebola virus disease in West Africa has highlighted the need for the availability of effective vaccines against outbreak pathogens that are suitable for use in frontline workers who risk their own health in the course of caring for those with the disease, and also for members of the community in the affected area. Along with effective contact tracing and quarantine, use of a vaccine as soon as an outbreak is identified could greatly facilitate rapid control and prevent the outbreak from spreading. This review describes the progress that has been made in producing and testing adenovirus-based Ebola vaccines in both pre-clinical and clinical studies, and considers the likely future use of these vaccines.

  6. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias

    PubMed Central

    Scala, Stefania; Portella, Giuseppe; Fedele, Monica; Chiappetta, Gennaro; Fusco, Alfredo

    2000-01-01

    High mobility group I (HMGI) proteins are overexpressed in several human malignant tumors. We previously demonstrated that inhibition of HMGI synthesis prevents thyroid cell transformation. Here, we report that an adenovirus carrying the HMGI(Y) gene in an antisense orientation (Ad-Yas) induced programmed cell death of two human thyroid anaplastic carcinoma cell lines (ARO and FB-1), but not normal thyroid cells. The Ad-Yas virus led to death of lung, colon, and breast carcinoma cells. A control adenovirus carrying the lacZ gene did not inhibit the growth of either normal or neoplastic cells. Ad-Yas treatment of tumors induced in athymic mice by ARO cells caused a drastic reduction in tumor size. Therefore, suppression of HMGI(Y) protein synthesis by an HMGI(Y) antisense adenoviral vector may be a useful treatment strategy in a variety of human malignant neoplasias, in which HMGI(Y) gene overexpression is a general event. PMID:10759549

  7. Systemic administration of a PEGylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis.

    PubMed

    Yao, X; Yoshioka, Y; Morishige, T; Eto, Y; Watanabe, H; Okada, Y; Mizuguchi, H; Mukai, Y; Okada, N; Nakagawa, S

    2009-12-01

    Cancer gene therapy by adenovirus vectors (Advs) for metastatic cancer is limited because systemic administration of Adv produces low therapeutic effect and severe side effects. In this study, we generated a dual cancer-specific targeting vector system by using PEGylation and the telomere reverse transcriptase (TERT) promoter and attempted to treat experimental metastases through systemic administration of the vectors. We first optimized the molecular size of PEG and modification ratios used to create PEG-Ads. Systemic administration of PEG-Ad with 20-kDa PEG at a 45% modification ratio (PEG[20K/45%]-Ad) resulted in higher tumor-selective transgene expression than unmodified Adv. Next, we examined the effectiveness against metastases and side effects of a TERT promoter-driven PEG[20K/45%]-Ad containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk). Systemic administration of PEG-Ad-TERT/HSVtk showed superior antitumor effects against metastases with negligible side effects. A cytomegalovirus (CMV) promoter-driven PEG[20K/45%]-Ad also produced antimetastatic effects, but these were accompanied by side effects. Combining PEG-Ad-TERT/HSVtk with etoposide or 5-fluorouracil enhanced the therapeutic effects with negligible side effects. These results suggest that modification with 20-kDa PEG at a 45% modification ratio is the optimal condition for PEGylation of Adv, and PEG-Ad-TERT/HSVtk is a prototype Adv for systemic cancer gene therapy against metastases.

  8. Combination of Adt-O1MANISA AND Ad5-boIFN induces early protective immunity against foot-and-mouth diseases in cattle

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth-disease (FMD) remains one of the most important economic concerns for the agricultural industry worldwide. Although vaccination with a commercially available inactivated whole virus formulation, or a recently developed replication-defective human adenovirus 5 vector-based subunit vacc...

  9. 75 FR 54589 - Availability of an Environmental Assessment for Field Testing Foot-and-Mouth Disease Vaccine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2010-0011] Availability of an Environmental Assessment for Field Testing Foot-and-Mouth Disease Vaccine, Live Adenovirus Vector AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are advising...

  10. Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter

    PubMed Central

    Seunguk, Oh; Odland, Rick; Wilson, Scott R.; Kroeger, Kurt M.; Liu, Chunyan; Lowenstein, Pedro R.; Castro, Maria G.; Hall, Walter A.; Ohlfest, John R.

    2008-01-01

    Object A hollow fiber catheter was developed to improve the distribution of drugs administered via direct infusion into the central nervous system (CNS). It is a porous catheter that significantly increases the surface area of brain tissue into which a drug is infused. Methods Dye was infused into the mouse brain through convection-enhanced delivery (CED) using a 28-gauge needle compared with a 3-mm-long hollow fiber catheter. To determine whether a hollow fiber catheter could increase the distribution of gene therapy vectors, a recombinant adenovirus expressing the firefly luciferase reporter was injected into the mouse striatum. Gene expression was monitored using in vivo bioluminescent imaging. To assess the distribution of gene transfer, an adenovirus expressing green fluorescent protein was injected into the striatum using a hollow fiber catheter or a needle. Results Hollow fiber catheter—mediated infusion increased the volume of brain tissue labeled with dye by 2.7 times relative to needle-mediated infusion. In vivo imaging revealed that catheter-mediated infusion of adenovirus resulted in gene expression that was 10 times greater than that mediated by a needle. The catheter appreciably increased the area of brain transduced with adenovirus relative to a needle, affecting a significant portion of the injected hemisphere. Conclusions The miniature hollow fiber catheter used in this study significantly increased the distribution of dye and adenoviral-mediated gene transfer in the mouse brain compared with the levels reached using a 28-gauge needle. Compared with standard single-port clinical catheters, the hollow fiber catheter has the advantage of millions of nanoscale pores to increase surface area and bulk flow in the CNS. Extending the scale of the hollow fiber catheter for the large mammalian brain shows promise in increasing the distribution and efficacy of gene therapy and drug therapy using CED. PMID:17886557

  11. Guinea pig adenovirus infection does not inhibit cochlear transfection with human adenoviral vectors in a model of hearing loss.

    PubMed

    Hankenson, F Claire; Wathen, Asheley B; Eaton, Kathryn A; Miyazawa, Toru; Swiderski, Donald L; Raphael, Yehoash

    2010-04-01

    Routine surveillance of guinea pigs maintained within a barrier facility detected guinea pig adenovirus (GPAdV) in sentinel animals. These guinea pigs served as models of induced hearing loss followed by regeneration of cochlear sensory (hair) cells through transdifferentiation of nonsensory cells by using human adenoviral (hAV) gene therapy. To determine whether natural GPAdV infection affected the ability of hAV vectors to transfect inner ear cells, adult male pigmented guinea pigs (n = 7) were enrolled in this study because of their prolonged exposure to GPAdV-seropositive conspecifics. Animals were deafened chemically (n = 2), received an hAV vector carrying the gene for green fluorescent protein (hAV-GFP) surgically without prior deafening (n = 2), or were deafened chemically with subsequent surgical inoculation of hAV-GFP (n = 3). Cochleae were evaluated by using fluorescence microscopy, and GFP expression in supporting cells indicated that the hAV-GFP vector was able to transfect inner ears in GPAdV-seropositive guinea pigs that had been chemically deafened. Animals had histologic evidence of interstitial pneumonia, attributable to prior infection with GPAdV. These findings confirmed that the described guinea pigs were less robust animal models with diminished utility for the overall studies. Serology tests confirmed that 5 of 7 animals (71%) were positive for antibodies against GPAdV at necropsy, approximately 7 mo after initial detection of sentinel infection. Control animals (n = 5) were confirmed to be seronegative for GPAdV with clinically normal pulmonary tissue. This study is the first to demonstrate that natural GPAdV infection does not negatively affect transfection with hAV vectors into guinea pig inner ear cells, despite the presence of other health complications attributed to the viral infection.

  12. Perfluorochemical (PFC) liquid enhances recombinant adenovirus vector-mediated viral interleukin-10 (AdvIL-10) expression in rodent lung.

    PubMed

    Li, John T; Bonneau, Laura A; Zimmerman, Jerry J; Weiss, Daniel J

    2007-05-01

    Adenovirus and cationic liposome mediated transfer of Interleukin-10 (IL-10), a potent anti-inflammatory cytokine, has been shown to decrease pro-inflammatory cytokine levels and overall lung inflammation in models of lung transplantation and injury. Limitations to current approaches of IL-10 gene therapy include poor vector delivery methods and pro-inflammatory properties of human IL-10 under certain conditions. We hypothesize that using perfluorochemical (PFC) liquid to deliver the highly homologous viral IL-10 (vIL-10), which is predominantly anti-inflammatory with minimal pro-inflammatory activities, can potentially be a more effective strategy to combat inflammatory lung diseases. In this study, we compare the use of PFC liquid versus aerosolized method to deliver adenovirus encoding the vIL-10 gene (AdvIL-10) in C57Bl6 mice. Detectable vIL-10 levels were measured from bronchoalveolar lavage fluid and lung homogenates at one, four, ten and thirty days after AdvIL-10. Furthermore, we determined if use of PFC liquid could allow for the use of a lower dose of AdvIL-10 by comparing the levels of detectable vIL-10 at different doses of AdvIL-10 delivered +/- PFC liquid. Results showed that PFC liquid enhanced detectable vIL-10 by up to ten fold and that PFC liquid allowed the use of ten-fold less vector. PFC liquid increased detectable vIL-10 in lung homogenates at all time points; however, the increase in detectable vIL-10 in BAL fluid peaked at four days and was no longer evident by thirty days after intratracheal instillation. In summary, this is the first report utilizing PFC liquid to enhance the delivery of a potentially therapeutic molecule, vIL-10. We believe this strategy can be used to perform future studies on the use of the predominantly anti-inflammatory vIL-10 to treat inflammatory lung diseases.

  13. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases.

  14. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    PubMed Central

    2018-01-01

    Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. PMID:29445265

  15. Standard Free Droplet Digital Polymerase Chain Reaction as a New Tool for the Quality Control of High-Capacity Adenoviral Vectors in Small-Scale Preparations

    PubMed Central

    Boehme, Philip; Stellberger, Thorsten; Solanki, Manish; Zhang, Wenli; Schulz, Eric; Bergmann, Thorsten; Liu, Jing; Doerner, Johannes; Baiker, Armin E.

    2015-01-01

    Abstract High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy. PMID:25640117

  16. Production of adenovirus vectors and their use as a delivery system for influenza vaccines

    PubMed Central

    Vemula, Sai V.; Mittal, Suresh K.

    2010-01-01

    IMPORTANCE OF THE FIELD With the emergence of highly pathogenic avian influenza H5N1 viruses that have crossed species barriers and are responsible for lethal infections in humans in many countries, there is an urgent need for the development of effective vaccines which can be produced in large quantities at a short notice and confer broad protection against these H5N1 variants. In order to meet the potential global vaccine demand in a pandemic scenario, new vaccine-production strategies must be explored in addition to the currently used egg-based technology for seasonal influenza. AREAS COVERED IN THIS REVIEW Adenovirus (Ad) based influenza vaccines represent an attractive alternative/supplement to the currently licensed egg-based influenza vaccines. Ad-based vaccines are relatively inexpensive to manufacture, and their production process does not require either chicken eggs or labor intensive and time-consuming processes necessitating enhanced biosafety facilities. Most importantly, in a pandemic situation, this vaccine strategy could offer a stockpiling option to reduce the response time before a strain-matched vaccine could be developed. WHAT THE READER WILL GAIN This review discusses Ad-vector technology and the current progress in the development of Ad-based influenza vaccines. TAKE HOME MESSAGE Ad vector-based influenza vaccines for pandemic preparedness are under development to meet the global vaccine demand. PMID:20822477

  17. Single-Dose Intranasal Treatment with DEF201 (Adenovirus Vectored Consensus Interferon) Prevents Lethal Disease Due to Rift Valley Fever Virus Challenge

    PubMed Central

    Gowen, Brian B.; Ennis, Jane; Bailey, Kevin W.; Vest, Zachary; Scharton, Dionna; Sefing, Eric J.; Turner, Jeffrey D.

    2014-01-01

    Rift Valley fever virus (RVFV) causes severe disease in humans and ungulates. The virus can be transmitted by mosquitoes, direct contact with infected tissues or fluids, or aerosol, making it a significant biological threat for which there is no approved vaccine or therapeutic. Herein we describe the evaluation of DEF201, an adenovirus-vectored interferon alpha which addresses the limitations of recombinant interferon alpha protein (cost, short half-life), as a pre- and post-exposure treatment in a lethal hamster RVFV challenge model. DEF201 was delivered intranasally to stimulate mucosal immunity and effectively bypass any pre-existing immunity to the vector. Complete protection against RVFV infection was observed from a single dose of DEF201 administered one or seven days prior to challenge while all control animals succumbed within three days of infection. Efficacy of treatment administered two weeks prior to challenge was limited. Post‑exposure, DEF201 was able to confer significant protection when dosed at 30 min or 6 h, but not at 24 h post-RVFV challenge. Protection was associated with reductions in serum and tissue viral loads. Our findings suggest that DEF201 may be a useful countermeasure against RVFV infection and further demonstrates its broad-spectrum capacity to stimulate single dose protective immunity. PMID:24662673

  18. Expression of porcine fusion protein IRF7/3(5D) efficiently controls foot-and-mouth disease virus replication

    USDA-ARS?s Scientific Manuscript database

    Several studies have demonstrated that administration of type I, II, or III interferons (IFN) delivered using a replication defective human adenovirus 5 (Ad5) vector is effective to control Foot-and-Mouth Disease (FMD) in cattle and swine during experimental infections. However, high doses are requi...

  19. Venezuelan Equine Encephalitis Virus replicon particles can induce rapid protection against Foot-and-Mouth Disease Virus

    USDA-ARS?s Scientific Manuscript database

    We have previously shown that swine pretreated with a replication-defective human adenovirus vector (Ad5) containing the porcine type I interferon gene (poIFN-alpha/Beta) are sterilely protected when challenged one day later with Foot-and-Mouth Disease Virus (FMDV), but the dose required is relativ...

  20. Adenovirus-vectored shRNAs targeted to the highly conserved regions of VP1 and 2B in tandem inhibits replication of foot-and-mouth disease virus both in vitro and in vivo.

    PubMed

    Xu, Yan-Fang; Shen, Hai-Yan; Zhao, Ming-Qiu; Chen, Li-Jun; Li, Yin-Guang; Liao, Ming; Jia, Jun-Tao; Lv, Ying-Ran; Yi, Lin; Chen, Jin-Ding

    2012-04-01

    Foot-and-mouth disease is a highly contagious and economically important disease of cloven-hoofed animals. RNA interference (RNAi) can be used as a rapid and specific antiviral approach. It was shown that treatment with recombinant adenovirus (Ad(VP1-2B)) carrying shRNAs targeted to the VP1 and 2B genes of FMDV expressed in tandem had marked antiviral effects against FMDV both in IBRS-2 cells and guinea pigs. Treatment with Ad(VP1-2B) both before and after FMDV infection was most effective in IBRS-2 cells, as the FMDV RNA transcripts could not be detected within 48 h post-challenge (hpc), and the viral RNA copy number at 72 hpc was only 0.02% of that in the positive control group. Delivery of Ad(VP1-2B) reduced significantly the susceptibility of guinea pigs to FMDV infection. All guinea pigs were protected within 3 days post challenge (dpc) when they were injected twice with the same dose of Ad(VP1-2B), and a third treatment with the same dose of Ad(VP1-2B) at 3 dpc was necessary to confer longer lasting protection (up to 6 dpc). In conclusion, application of such a adenovirus vector to inhibit more than one viral gene may be an advantageous method for prevention and therapy of FMDV infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Phase I study of adenovirus p53 administered by bronchoalveolar lavage in patients with bronchioloalveolar cell lung carcinoma: ECOG 6597.

    PubMed

    Keedy, Vicki; Wang, Wei; Schiller, Joan; Chada, Sunil; Slovis, Bonnie; Coffee, Keith; Worrell, John; Thet, Lyn A; Johnson, David H; Carbone, David P

    2008-09-01

    This pilot phase I trial evaluated the safety and maximum-tolerated dose of p53 gene transfer using an adenovirus vector (Ad-p53) delivered via bronchoalveolar lavage (BAL) to patients with bronchioloalveolar lung carcinoma (BAC). Patients were initially administered two treatments of Ad-p53 to a single involved lobe, beginning at 2 x 10(9) viral particles (vp) per dose and escalated to a maximum of 2 x 10(12) vp. If a clinical benefit was seen and the treatment was well tolerated, additional doses could be administered to additional lobes. Twenty-five patients were treated at doses between 2 x 10(9) and 2 x 10(12) vp. At 2 x 10(12) vp, one patient experienced grade 4 pulmonary toxicity, and one patient died 25 days after his second cycle; therefore, a cohort of 10 patients was treated at the recommended phase II dose of 5 x 10(11) vp, with no grade 4 toxicity observed. The most frequent toxicities included low-grade fever, hypoxia, and dyspnea. Of the 23 assessable patients, 16 had stable disease as their best response. Subjective improvement in breathing was noted in eight patients. Limited distribution of vector was observed, with transient detection in patient sputum for 1 to 2 days after administration. Ad-p53 can be administered safely by BAL at 5 x 10(11) vp with repeated dosing. Stabilization of disease and symptomatic improvement may warrant further studies of Ad-p53 or other adenoviruses administered by BAL in patients with BAC.

  2. The Ad5 [E1-, E2b-]-based vector: a new and versatile gene delivery platform

    NASA Astrophysics Data System (ADS)

    Jones, Frank R.; Gabitzsch, Elizabeth S.; Balint, Joseph P.

    2015-05-01

    Based upon advances in gene sequencing and construction, it is now possible to identify specific genes or sequences thereof for gene delivery applications. Recombinant adenovirus serotype-5 (Ad5) viral vectors have been utilized in the settings of gene therapy, vaccination, and immunotherapy but have encountered clinical challenges because they are recognized as foreign entities to the host. This recognition leads to an immunologic clearance of the vector that contains the inserted gene of interest and prevents effective immunization(s). We have reported on a new Ad5-based viral vector technology that can be utilized as an immunization modality to induce immune responses even in the presence of Ad5 vector immunity. We have reported successful immunization and immunotherapy results to infectious diseases and cancers. This improved recombinant viral platform (Ad5 [E1-, E2b-]) can now be utilized in the development of multiple vaccines and immunotherapies.

  3. Viral Vectors for In Vivo Gene Transfer in Parkinson’s disease: Properties and Clinical Grade Production

    PubMed Central

    Burger, Corinna; Snyder, Richard O.

    2009-01-01

    Because Parkinson’s disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson’s disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and lentivirus are described and contrasted. In order for viral vectors to be developed into clinical grade reagents, they must be manufactured and tested to precise regulatory standards. Indeed, clinical lots of viral vectors can be produced in compliance with current Good Manufacturing Practices (cGMPs) regulations using industry accepted manufacturing methodologies, manufacturing controls, and quality systems. The viral vector properties themselves combined with physiological product formulations facilitate long-term storage and direct in vivo administration. PMID:17916354

  4. Immunogenicity and efficacy in mice of an adenovirus-based bicistronic rotavirus vaccine expressing NSP4 and VP7.

    PubMed

    Xie, Li; Yan, Min; Wang, Xiaonan; Ye, Jing; Mi, Kai; Yan, Shanshan; Niu, Xianglian; Li, Hongjun; Sun, Maosheng

    2015-12-02

    NSP4 and VP7 are important functional proteins of rotavirus. Proper combination of viral gene expression is favorable to improving the protection effect of subunit vaccine. In the present study, We evaluated the immunogenicity and efficacy of the bicistronic recombinant adenovirus (rAd-NSP4-VP7) and two single-gene expressing adenoviruses (rAd-NSP4, rAd-VP7). The three adenovirus vaccines were used to immunize mice by intramuscular or intranasal administration. The data showed significant increases in serum antibodies, T lymphocyte subpopulations proliferation, and cytokine secretions of splenocyte in all immunized groups. However, the serum IgA and neutralizing antibody levels of the rAd-NSP4-VP7 or rAd-VP7 groups were significantly higher than those of the rAd-NSP4, while the splenocyte numbers of IFN-γ secretion in the rAd-NSP4-VP7 or rAd-NSP4 groups was greater than that of the rAd-VP7. Furthermore, the efficacy evaluation in a suckling mice model indicated that only rAd-NSP4-VP7 conferred significant protection against rotavirus shedding challenge. These results suggest that the co-expression of NSP4 and VP7 in an adenovirus vector induce both humoral and cell-mediated immune responses efficiently, and provide potential efficacy for protection against rotavirus disease. It is possible to represent an efficacious subunits vaccine strategy for control of rotavirus infection and transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Application of aqueous two-phase micellar system to improve extraction of adenoviral particles from cell lysate.

    PubMed

    Molino, João Vitor Dutra; Lopes, André Moreni; Viana Marques, Daniela de Araújo; Mazzola, Priscila Gava; da Silva, Joas Lucas; Hirata, Mario Hiroyuki; Hirata, Rosário Dominguez Crespo; Gatti, Maria Silvia Viccari; Pessoa, Adalberto

    2017-12-04

    Viral vectors are important in medical approaches, such as disease prevention and gene therapy, and their production depends on efficient prepurification steps. In the present study, an aqueous two-phase micellar system (ATPMS) was evaluated to extract human adenovirus type 5 particles from a cell lysate. Adenovirus was cultured in human embryonic kidney 293 (HEK-293) cells to a concentration of 1.4 × 10 10 particles/mL. Cells were lysed, and the system formed by direct addition of Triton X-114 in a 2 3 full factorial design with center points. The systems were formed with Triton X-114 at a final concentration of 1.0, 6.0, and 11.0% (w/w), cell lysate pH of 6.0, 6.5, and 7.0, and incubation temperatures at 33, 35, and 37 °C. Adenovirus particles recovered from partition phases were measured by qPCR. The best system condition was with 11.0% (w/w) of Triton X-114, a cell lysate pH of 7.0, and an incubation temperature at 33 °C, yielding 3.51 × 10 10 adenovirus particles/mL, which increased the initial adenovirus particles concentration by 2.3-fold, purifying it by 2.2-fold from the cell lysate, and removing cell debris. In conclusion, these results demonstrated that the use of an aqueous two-phase micellar system in the early steps of downstream processing could improve viral particle extraction from cultured cells while integrating clarification, concentration, and prepurification steps. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  6. An Engineered Virus Library as a Resource for the Spectrum-wide Exploration of Virus and Vector Diversity.

    PubMed

    Zhang, Wenli; Fu, Jun; Liu, Jing; Wang, Hailong; Schiwon, Maren; Janz, Sebastian; Schaffarczyk, Lukas; von der Goltz, Lukas; Ehrke-Schulz, Eric; Dörner, Johannes; Solanki, Manish; Boehme, Philip; Bergmann, Thorsten; Lieber, Andre; Lauber, Chris; Dahl, Andreas; Petzold, Andreas; Zhang, Youming; Stewart, A Francis; Ehrhardt, Anja

    2017-05-23

    Adenoviruses (Ads) are large human-pathogenic double-stranded DNA (dsDNA) viruses presenting an enormous natural diversity associated with a broad variety of diseases. However, only a small fraction of adenoviruses has been explored in basic virology and biomedical research, highlighting the need to develop robust and adaptable methodologies and resources. We developed a method for high-throughput direct cloning and engineering of adenoviral genomes from different sources utilizing advanced linear-linear homologous recombination (LLHR) and linear-circular homologous recombination (LCHR). We describe 34 cloned adenoviral genomes originating from clinical samples, which were characterized by next-generation sequencing (NGS). We anticipate that this recombineering strategy and the engineered adenovirus library will provide an approach to study basic and clinical virology. High-throughput screening (HTS) of the reporter-tagged Ad library in a panel of cell lines including osteosarcoma disease-specific cell lines revealed alternative virus types with enhanced transduction and oncolysis efficiencies. This highlights the usefulness of this resource. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Using adenovirus armed short hairpin RNA targeting transforming growth factor β1 inhibits melanoma growth and metastasis in an ex vivo animal model.

    PubMed

    Tai, Kuo-Feng; Wang, Chien-Hsing

    2013-12-01

    The transforming growth factor β (TGF-β) is the key molecule implicated in impaired immune function in human patients with malignant melanoma. TGF-β can promote tumor growth, invasion, and metastasis in advanced stages of melanoma. Blocking these tumor-promoting effects of TGF-β provides a potentially important therapeutic strategy for the treatment of melanoma. In this study, we used an adenovirus-based shRNA expression system and successfully constructed Ad/TGF-β1-RNA interference (RNAi) which mediated the RNAi for TGF-β1 gene silencing. We examined the effects of TGF-β1 protein knockdown by RNAi on the growth and metastasis of melanoma in C57BL/6 mice induced by the B16F0 cell line. The TGF-β1 hairpin oligonucleotide was cloned into adenoviral vector. The resulting recombinant adenoviruses infected murine melanoma cell line, B16F0, and designated as B16F0/TGF-β1-RNAi cells. The blank adenoviral vector also infected B16F0 cells and designed as B16F0/vector-control cells served as a control. TGF-β1 expression was reduced in B16F0/TGF-β1-RNAi cells compared with B16F0 cells and B16F0/vector-control cells. Three million wild-type B16F0 cells, B16F0/vector-control cells, and B16F0/TGF-β1-RNAi cells were injected subcutaneously into the right flanks of adult female syngeneic mice C57BL/6. The tumor sizes were 756.09 (65.35), 798.48 (78.77), and 203.55 (24.56) mm at the 14th day in the mice receiving B16F0 cells, B16F0/vector-control cells, and B16F0/TGFβ1-RNAi cells, respectively. The P value was less than 0.01 by 1-way analysis of variance. TGF-β1 knockdown in B16F0 cells enhanced the infiltration of CD4 and CD8 T cells in the tumor regions. C57BL/6 mice were evaluated for pulmonary metastasis after tail vein injection of 2 million B16F0 cells, B16F0/vector-control cells, and B16F0/TGF-β1-RNAi cells. The pulmonary metastasis also reduced significantly on days 14 day and 21 in mice injected with B16F0/TGF-β1-RNAi tumors. The blood vessel density of the tumors markedly reduced in B16F0/TGF-β1-RNAi tumors. Our results showed that Ad/TGF-β1-RNAi could induce silencing of the TGF-β1 gene effectively. Silencing of TGF-β1 expression in B16F0 cells by RNAi technology can inhibit the growth and metastasis of this tumor after being transplanted to C57BL/6 mice. This kind of adenoviral vector based on RNAi might be a promising vector for cancer therapy.

  8. Adenovirus core protein VII contains distinct sequences that mediate targeting to the nucleus and nucleolus, and colocalization with human chromosomes.

    PubMed

    Lee, Tim W R; Blair, G Eric; Matthews, David A

    2003-12-01

    During adenovirus infection, following capsid dissociation, core protein VII enters the host cell nucleus complexed with adenovirus DNA. In order to determine whether protein VII may have an active role in this nuclear import, regions of the preVII gene were amplified by PCR, and further oligonucleotide mutants were designed with site-directed mutation of codons for the basic amino acids arginine and lysine. Fragments were cloned into a mammalian expression plasmid to express the peptides as N-terminal fusions to enhanced green fluorescent protein. Results demonstrate that preVII protein contains both nuclear and nucleolar targeting sequences. Such signals may be important in the delivery of adenovirus DNA to the host cell nucleus during adenovirus infection. Furthermore, the data suggest that protein VII may bind to human chromosomes by means of two distinct domains, one sharing homology with the N-terminal regulatory tail of histone H3.

  9. Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma.

    PubMed

    Siurala, Mikko; Havunen, Riikka; Saha, Dipongkor; Lumen, Dave; Airaksinen, Anu J; Tähtinen, Siri; Cervera-Carrascon, Víctor; Bramante, Simona; Parviainen, Suvi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2016-08-01

    Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of (111)In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies.

  10. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    PubMed

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.

  11. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine.

    PubMed

    Zhou, Yan; Sullivan, Nancy J

    2015-08-01

    The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine. Published by Elsevier Ltd.

  12. Vectors for Treatment of Metastatic Breast Cancer

    DTIC Science & Technology

    2005-08-01

    from human carcinomas of the breast, ovary and mouse breast cancer. In this study, in vitro cytotoxicity tests were carried out with the replication...injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas . J...see Figure IC) in carcinomas of the breast, lung, prostate, ovary, cervix, endometrium, esophagous, stomach and colon is associated with metastasis

  13. Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage.

    PubMed

    Xu, Kun; Song, Yufeng; Dai, Lianpan; Zhang, Yongli; Lu, Xuancheng; Xie, Yijia; Zhang, Hangjie; Cheng, Tao; Wang, Qihui; Huang, Qingrui; Bi, Yuhai; Liu, William J; Liu, Wenjun; Li, Xiangdong; Qin, Chuan; Shi, Yi; Yan, Jinghua; Zhou, Dongming; Gao, George F

    2018-03-15

    The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control. IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M/E glycoproteins was used for ZIKV vaccine development. Impressively, AdC7-M/E exhibited exceptional performance as a ZIKV vaccine, as follows: (i) protective efficacy by a single vaccination, (ii) rapid development of a robust humoral response, (iii) durable immune responses, (iv) robust T cell responses, and (v) sterilizing immunity achieved by a single vaccination. These advantages of AdC7-M/E strongly support its potential application as a promising ZIKV vaccine in the clinic. Copyright © 2018 American Society for Microbiology.

  14. Magnetic nanoparticles as a new approach to improve the efficacy of gene therapy against differentiated human uterine fibroid cells and tumor-initiating stem cells

    PubMed Central

    Shalaby, Shahinaz Mahmood; Khater, Mostafa K; Mas Perucho, Aymara; Mohamed, Sara A; Helwa, Inas; Laknaur, Archana; Lebedyeva, Iryna; Liu, Yutao; Diamond, Michael P; Al-Hendy, Ayman A

    2016-01-01

    Uterine fibroid(s) (UF/UFs) are benign tumors commonly found in women of reproductive age. The long-term outcomes of myomectomies are often hampered by high rates of recurrence (up to 60%). Objective To study whether efficient transduction and subsequent elimination of fibroid tumor initiating stem cells during debulking of tumor cells will aid in completely eradicating the tumor as well as decreasing the likelihood of recurrence. Design We have developed a localized non-surgical adenovirus-based alternative for the treatment of UFs. Combining viral based gene delivery with nanotechnology provides an opportunity to develop more efficient targeted viral gene therapy. Magnetic nanoparticles (MNPs) complexed to adenovirus, in the presence of an external magnetic field, accelerate adenovirus transduction. Setting Research laboratory located in Georgia Regents University, an academic research institution. Patients N/A Interventions MNPs complexed to adenovirus (AD GFP) or (AD LacZ) were used to transfect differentiated human fibroid cells in vitro. Main Outcome Measures rate of transduction and tumor growth inhibition. Results We observed a significant increase in transduction efficiency among differentiated human fibroid cells at 2 different multiplicities of infection (MOI); 1 and 10 respectively, with MNPs as compared to adenovirus-alone. Human fibroid stem cells transfected with AD-LacZ expressed β-Galactosidaze at (MOI) of 1, 10, and 50 at percentages of 19%, 62%, and 90%, respectively, which were significantly enhanced with MNPs. Conclusion When applied with adenovirus herpes simplex thymidine kinase, magnetofection significantly suppressed proliferation and induced apoptosis in both cell types. Through the use of magnetofection, we will prove that a lower viral dose will effectively increase the overall safety profile of suicide gene therapy against fibroid tumors. PMID:27020169

  15. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  16. Structure of a Reptilian Adenovirus Reveals a Phage Tailspike Fold Stabilizing a Vertebrate Virus Capsid.

    PubMed

    Menéndez-Conejero, Rosa; Nguyen, Thanh H; Singh, Abhimanyu K; Condezo, Gabriela N; Marschang, Rachel E; van Raaij, Mark J; San Martín, Carmen

    2017-10-03

    Although non-human adenoviruses (AdVs) might offer solutions to problems posed by human AdVs as therapeutic vectors, little is known about their basic biology. In particular, there are no structural studies on the complete virion of any AdV with a non-mammalian host. We combine mass spectrometry, cryo-electron microscopy, and protein crystallography to characterize the composition and structure of a snake AdV (SnAdV-1, Atadenovirus genus). SnAdV-1 particles contain the genus-specific proteins LH3, p32k, and LH2, a previously unrecognized structural component. Remarkably, the cementing protein LH3 has a trimeric β helix fold typical of bacteriophage host attachment proteins. The organization of minor coat proteins differs from that in human AdVs, correlating with higher thermostability in SnAdV-1. These findings add a new piece to the intriguing puzzle of virus evolution, hint at the use of cell entry pathways different from those in human AdVs, and will help development of new, thermostable SnAdV-1-based vectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Transfer of a gene encoding the anticandidal protein histatin 3 to salivary glands.

    PubMed

    O'Connell, B C; Xu, T; Walsh, T J; Sein, T; Mastrangeli, A; Crystal, R G; Oppenheim, F G; Baum, B J

    1996-12-01

    Mucosal candidiasis, the most common opportunistic fungal infection in human immunodeficiency virus (HIV)-infected patients, is an early sign of clinically overt acquired immunodeficiency syndrome (AIDS) and an important cause of morbidity, particularly in HIV-infected children. The appearance of azole-resistant strains of Candida albicans had made clinical management of candidiasis increasingly difficult. We propose a novel approach to the management of candidal infections that involves the use of naturally occurring antifungal proteins, such as the histatins. Histatins are a family of small proteins that are secreted in human saliva. We have constructed recombinant adenovirus vectors that contain the histatin 3 cDNA. These vectors are capable of directing the expression of histatin 3 in the saliva of rats at up to 1,045 micrograms/ml, well above the levels found in normal human saliva. The adenovirus-directed histatin demonstrated a 90% candidacidal effect in the timed-kill assay against both fluconazole-susceptible and fluconazole-resistant strains of C. albicans and inhibited germination by 45% in the same strains. These studies suggest that a gene transfer approach to overexpress naturally occurring antifungal proteins may be useful in the management of mucosal candidiasis.

  18. Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8+ T Cells by Persistent Viruses and Vaccines.

    PubMed

    Gordon, Claire Louse; Lee, Lian Ni; Swadling, Leo; Hutchings, Claire; Zinser, Madeleine; Highton, Andrew John; Capone, Stefania; Folgori, Antonella; Barnes, Eleanor; Klenerman, Paul

    2018-04-17

    The induction and maintenance of T cell memory is critical to the success of vaccines. A recently described subset of memory CD8 + T cells defined by intermediate expression of the chemokine receptor CX3CR1 was shown to have self-renewal, proliferative, and tissue-surveillance properties relevant to vaccine-induced memory. We tracked these cells when memory is sustained at high levels: memory inflation induced by cytomegalovirus (CMV) and adenovirus-vectored vaccines. In mice, both CMV and vaccine-induced inflationary T cells showed sustained high levels of CX3R1 int cells exhibiting an effector-memory phenotype, characteristic of inflationary pools, in early memory. In humans, CX3CR1 int CD8 + T cells were strongly induced following adenovirus-vectored vaccination for hepatitis C virus (HCV) (ChAd3-NSmut) and during natural CMV infection and were associated with a memory phenotype similar to that in mice. These data indicate that CX3CR1 int cells form an important component of the memory pool in response to persistent viruses and vaccines in both mice and humans. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Assessment of the Safety and Immunogenicity of 2 Novel Vaccine Platforms for HIV-1 Prevention: A Randomized Trial.

    PubMed

    Baden, Lindsey R; Karita, Etienne; Mutua, Gaudensia; Bekker, Linda-Gail; Gray, Glenda; Page-Shipp, Liesl; Walsh, Stephen R; Nyombayire, Julien; Anzala, Omu; Roux, Surita; Laher, Fatima; Innes, Craig; Seaman, Michael S; Cohen, Yehuda Z; Peter, Lauren; Frahm, Nicole; McElrath, M Juliana; Hayes, Peter; Swann, Edith; Grunenberg, Nicole; Grazia-Pau, Maria; Weijtens, Mo; Sadoff, Jerry; Dally, Len; Lombardo, Angela; Gilmour, Jill; Cox, Josephine; Dolin, Raphael; Fast, Patricia; Barouch, Dan H; Laufer, Dagna S

    2016-03-01

    A prophylactic HIV-1 vaccine is a global health priority. To assess a novel vaccine platform as a prophylactic HIV-1 regimen. Randomized, double-blind, placebo-controlled trial. Both participants and study personnel were blinded to treatment allocation. (ClinicalTrials.gov: NCT01215149). United States, East Africa, and South Africa. Healthy adults without HIV infection. 2 HIV-1 vaccines (adenovirus serotype 26 with an HIV-1 envelope A insert [Ad26.EnvA] and adenovirus serotype 35 with an HIV-1 envelope A insert [Ad35.Env], both administered at a dose of 5 × 1010 viral particles) in homologous and heterologous combinations. Safety and immunogenicity and the effect of baseline vector immunity. 217 participants received at least 1 vaccination, and 210 (>96%) completed follow-up. No vaccine-associated serious adverse events occurred. All regimens were generally well-tolerated. All regimens elicited humoral and cellular immune responses in nearly all participants. Preexisting Ad26- or Ad35-neutralizing antibody titers had no effect on vaccine safety and little effect on immunogenicity. In both homologous and heterologous regimens, the second vaccination significantly increased EnvA antibody titers (approximately 20-fold from the median enzyme-linked immunosorbent assay titers of 30-300 to 3000). The heterologous regimen of Ad26-Ad35 elicited significantly higher EnvA antibody titers than Ad35-Ad26. T-cell responses were modest and lower in East Africa than in South Africa and the United States. Because the 2 envelope inserts were not identical, the boosting responses were complex to interpret. Durability of the immune responses elicited beyond 1 year is unknown. Both vaccines elicited significant immune responses in all populations. Baseline vector immunity did not significantly affect responses. Second vaccinations in all regimens significantly boosted EnvA antibody titers, although vaccine order in the heterologous regimen had a modest effect on the immune response. International AIDS Vaccine Initiative, National Institutes of Health, Ragon Institute, Crucell Holland.

  20. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    PubMed

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector.

  1. Effects of the Deletion of Early Region 4 (E4) Open Reading Frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on Virus-Host Cell Interaction, Transgene Expression, and Immunogenicity of Replicating Adenovirus HIV Vaccine Vectors

    PubMed Central

    Thomas, Michael A.; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A.; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector. PMID:24143187

  2. p53-dependent cell death/apoptosis is required for a productive adenovirus infection.

    PubMed

    Hall, A R; Dix, B R; O'Carroll, S J; Braithwaite, A W

    1998-09-01

    The p53 tumor suppressor protein binds to both cellular and viral proteins, which influence its biological activity. One such protein is the large E1b tumor antigen (E1b58kDa) from adenoviruses (Ads), which abrogates the ability of p53 to transactivate various promoters. This inactivation of p53 function is believed to be the mechanism by which E1b58kDa contributes to the cell transformation process. Although the p53-E1b58kDa complex occurs during infection and is conserved among different serotypes, there are limited data demonstrating that it has a role in virus replication. However, loss of p53 expression occurs after adenovirus infection of human cells and an E1b58kDa deletion mutant (Onyx-015, also called dl 1520) selectively replicates in p53-defective cells. These (and other) data indicate a plausible hypothesis is that loss of p53 function may be conducive to efficient adenovirus replication. However, wild-type (wt) Ad5 grows more efficiently in cells expressing a wt p53 protein. These studies indicate that the hypothesis may be an oversimplification. Here, we show that cells expressing wt p53, as well as p53-defective cells, allow adenovirus replication, but only cells expressing wt p53 show evidence of virus-induced cytopathic effect. This correlates with the ability of adenovirus to induce cell death. Our data indicate that p53 plays a necessary part in mediating cellular destruction to allow a productive adenovirus infection. In contrast, p53-deficient cells are less sensitive to the cytolytic effects of adenovirus and as such raise questions about the use of E1b58kDa-deficient adenoviruses in tumor therapy.

  3. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    PubMed Central

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  4. An oncolytic adenovirus regulated by a radiation-inducible promoter selectively mediates hSulf-1 gene expression and mutually reinforces antitumor activity of I131-metuximab in hepatocellular carcinoma.

    PubMed

    Zhang, Yan; Fang, Lin; Zhang, Quan'an; Zheng, Qin; Tong, Jinlong; Fu, Xiaohui; Jiang, Xiaoqing; Su, Changqing; Zheng, Junnian

    2013-06-01

    Gene therapy and antibody approaches are crucial auxiliary strategies for hepatocellular carcinoma (HCC) treatment. Previously, we established a survivin promoter-regulated oncolytic adenovirus that has inhibitory effect on HCC growth. The human sulfatase-1 (hSulf-1) gene can suppress the growth factor signaling pathways, then inhibit the proliferation of cancer cells and enhance cellular sensitivity to radiotherapy and chemotherapy. I(131)-metuximab (I(131)-mab) is a monoclonal anti-HCC antibody that conjugated to I(131) and specifically recognizes the HAb18G/CD147 antigen on HCC cells. To integrate the oncolytic adenovirus-based gene therapy and the I(131)-mab-based radioimmunotherapy, this study combined the CArG element of early growth response-l (Egr-l) gene with the survivin promoter to construct a radiation-inducible enhanced promoter, which was used to recombine a radiation-inducible oncolytic adenovirus as hSulf-1 gene vector. When I(131)-mab was incorporated into the treatment regimen, not only could the antibody produce radioimmunotherapeutic effect, but the I(131) radiation was able to further boost adenoviral proliferation. We demonstrated that the CArG-enhanced survivin promoter markedly improved the proliferative activity of the oncolytic adenovirus in HCC cells, thereby augmenting hSulf-1 expression and inducing cancer cell apoptosis. This novel strategy that involved multiple, synergistic mechanisms, including oncolytic therapy, gene therapy and radioimmunotherapy, was demonstrated to exert an excellent anti-cancer outcome, which will be a promising approach in HCC treatment. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Immunogenicity and protective efficacy of heterologous prime-boost regimens with mycobacterial vaccines and recombinant adenovirus- and poxvirus-vectored vaccines against murine tuberculosis.

    PubMed

    You, Qingrui; Wu, Yongge; Wu, Yang; Wei, Wei; Wang, Changyong; Jiang, Dehua; Yu, Xianghui; Zhang, Xizhen; Wang, Yong; Tang, Zhijiao; Jiang, Chunlai; Kong, Wei

    2012-11-01

    To evaluate regimens using bacillus Calmette-Guérin (BCG) or recombinant BCG (rBCG) overexpressing Ag85B for priming, followed by boosting with a modified vaccinia virus Ankara strain (MVA) and/or adenovirus vector (AD) expressing an Ag85B-ESAT6 fusion protein. Cellular and humoral immune responses were determined after subcutaneous vaccination, which was employed to trigger systemic immunity against intravenous infection in a mouse model of tuberculosis (TB). Bacterial loads and lung histology were evaluated. The relative IgG2a and IgG1 antibody levels indicated that the viral-vectored vaccines generated a T-helper type 1 (Th1)-biased response after two doses of viral boost vaccinations. Boosting BCG-primed mice with viral vaccines induced a Th1 immune response that included both CD4 and CD8 T-cells generating antigen-specific interferon-gamma (IFN-γ) and CD8 T cytotoxic activity. Only mice vaccinated with two different viral boosters after BCG priming exhibited a significant reduction in bacterial burden in the lung after challenge. Histology examinations confirmed the attenuation of lung damage and more compact granulomas. After mycobacteria priming, boosting with AD85B-E6 followed by MVA85B-E6 afforded better protection than the reverse order of administration of the viral vectors. This study demonstrates the potential of multiple heterologous viral booster vaccines, although the exact correlates of protection and optimal regimens should be further investigated for the rational design of future vaccine strategies. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Dry-Coated Live Viral Vector Vaccines Delivered by Nanopatch Microprojections Retain Long-Term Thermostability and Induce Transgene-Specific T Cell Responses in Mice

    PubMed Central

    Pearson, Frances E.; McNeilly, Celia L.; Crichton, Michael L.; Primiero, Clare A.; Yukiko, Sally R.; Fernando, Germain J. P.; Chen, Xianfeng; Gilbert, Sarah C.; Hill, Adrian V. S.; Kendall, Mark A. F.

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara – two vectors under evaluation for the delivery of malaria antigens to humans – were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8+ T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates. PMID:23874462

  7. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle.

    PubMed

    Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J

    2017-05-01

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice.

    PubMed

    Pearson, Frances E; McNeilly, Celia L; Crichton, Michael L; Primiero, Clare A; Yukiko, Sally R; Fernando, Germain J P; Chen, Xianfeng; Gilbert, Sarah C; Hill, Adrian V S; Kendall, Mark A F

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.

  9. Serotype-Specific Neutralizing Antibody Epitopes of Human Adenovirus Type 3 (HAdV-3) and HAdV-7 Reside in Multiple Hexon Hypervariable Regions

    PubMed Central

    Qiu, Hongling; Li, Xiao; Tian, Xingui; Zhou, Zhichao; Xing, Ke; Li, Haitao; Tang, Ni; Liu, Wenkuan; Bai, Peisheng

    2012-01-01

    Human adenovirus types 3 and 7 (HAdV-3 and HAdV-7) occur epidemically and contribute greatly to respiratory diseases, but there is no currently available licensed recombinant HAdV-3/HAdV-7 bivalent vaccine. Identification of serotype-specific neutralizing antibody (NAb) epitopes for HAdV-3 and HAdV-7 will be beneficial for development of recombinant HAdV-3/HAdV-7 bivalent vaccines. In this study, four NAb epitopes within hexon hypervariable regions (HVRs) were predicted for HAdV-3 and HAdV-7, respectively, by using bioinformatics. Eight hexon chimeric adenovirus vectors with the alternation of only one predicted neutralizing epitope were constructed. Further in vitro and in vivo neutralization assays indicated that E2 (residing in HVR2) and E3 (residing in HVR5) are NAb epitopes for HAdV-7, and E3 plays a more important role in generating NAb responses. Cross-neutralization assays indicated that all four predicted epitopes, R1 to R4, are NAb epitopes for HAdV-3, and R1 (residing in HVR1) plays the most important role in generating NAb responses. Humoral immune responses elicited by the recombinant rAdH7R1 (containing the R1 epitope) were significantly and durably suppressed by HAdV-3-specific NAbs. Surprisingly, the rAdΔE3GFP-specific neutralizing epitope responses induced by rAdMHE3 (R3 replaced by E3) and rAdMHE4 (R4 replaced by E4) were weaker than those of rAdMHE1 (R1 replaced by E1) or rAdMHE2 (R2 relaced by E2) in vitro and in vivo. Furthermore, rAdMHE4 replicated more slowly in HEp-2 cells, and the final yield was about 10-fold lower than that of rAdΔE3GFP. The current findings contribute not only to the development of new adenovirus vaccine candidates, but also to the construction of new gene delivery vectors. PMID:22623776

  10. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates

    PubMed Central

    Kirtley, Michelle L.; Klages, Curtis; Erova, Tatiana E.; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C.; Baze, Wallace B.; Sivasubramani, Satheesh K.; Lawrence, William S.; Patrikeev, Igor; Peel, Jennifer E.; Andersson, Jourdan A.; Kozlova, Elena V.; Tiner, Bethany L.; Peterson, Johnny W.; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L.

    2016-01-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis. We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642

  11. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    PubMed

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. An oncolytic adenovirus vector combining enhanced cell-to-cell spreading, mediated by the ADP cytolytic protein, with selective replication in cancer cells with deregulated wnt signaling.

    PubMed

    Toth, Karoly; Djeha, Hakim; Ying, Baoling; Tollefson, Ann E; Kuppuswamy, Mohan; Doronin, Konstantin; Krajcsi, Peter; Lipinski, Kai; Wrighton, Christopher J; Wold, William S M

    2004-05-15

    We have constructed a novel oncolytic adenovirus (Ad) vector named VRX-009 that combines enhanced cell spread with tumor-specific replication. Enhanced spread, which could significantly increase antitumor efficacy, is mediated by overexpression of the Ad cytolytic protein named ADP (also known as E3-11.6K). Replication of VRX-009 is restricted to cells with a deregulated wnt signal transduction pathway by replacement of the wild-type Ad E4 promoter with a synthetic promoter consisting of five consensus binding sites for the T-cell factor transcription factor. Tumor-selective replication is indicated by several lines of evidence. VRX-009 expresses E4ORF3, a representative Ad E4 protein, only in colon cancer cell lines. Furthermore, VRX-009 replicates preferentially in colon cancer cell lines as evidenced by virus productivity 2 orders of magnitude higher in SW480 colon cancer cells than in A549 lung cancer cells. Replication in primary human bronchial epithelial cells and human umbilical vein endothelial cells was also significantly lower than in SW480 cells. When tested in human tumor xenografts in nude mice, VRX-009 effectively suppressed the growth of SW480 colon tumors but not of A549 lung tumors. VRX-009 may provide greater level of antitumor efficacy than standard oncolytic Ad vectors in tumors in which a defect in wnt signaling increases the level of nuclear beta-catenin.

  13. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    PubMed

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Retargeting of adenovirus vectors through genetic fusion of a single-chain or single-domain antibody to capsid protein IX.

    PubMed

    Poulin, Kathy L; Lanthier, Robert M; Smith, Adam C; Christou, Carin; Risco Quiroz, Milagros; Powell, Karen L; O'Meara, Ryan W; Kothary, Rashmi; Lorimer, Ian A; Parks, Robin J

    2010-10-01

    Adenovirus (Ad) vectors are the most commonly used system for gene therapy applications, due in part to their ability to infect a wide array of cell types and tissues. However, many therapies would benefit from the ability to target the Ad vector only to specific cells, such as tumor cells for cancer gene therapy. In this study, we investigated the utility of capsid protein IX (pIX) as a platform for the presentation of single-chain variable-fragment antibodies (scFv) and single-domain antibodies (sdAb) for virus retargeting. We show that scFv can be displayed on the capsid through genetic fusion to native pIX but that these molecules fail to retarget the virus, due to improper folding of the scFv. Redirecting expression of the fusion protein to the endoplasmic reticulum (ER) results in correct folding of the scFv and allows it to recognize its epitope; however, ER-targeted pIX-scFv was incorporated into the Ad capsid at a very low level which was not sufficient to retarget virus infection. In contrast, a pIX-sdAb construct was efficiently incorporated into the Ad capsid and enhanced virus infection of cells expressing the targeted receptor. Taken together, our data indicate that pIX is an effective platform for presentation of large targeting polypeptides on the surface of the virus capsid, but the nature of the ligand can significantly affect its association with virions.

  15. Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naïve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine

    USDA-ARS?s Scientific Manuscript database

    In order to investigate host factors associated with the establishment of persistent foot-and-mouth disease virus (FMDV) infection, the systemic immune response to vaccination and challenge was studied in 47 Holstein steers. Eighteen steers which had received one dose of recombinant FMDV A vaccine t...

  16. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure representsmore » a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.« less

  17. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    PubMed

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  18. Intramuscular Delivery of Adenovirus Serotype 5 Vector Expressing Humanized Protective Antigen Induces Rapid Protection against Anthrax That May Bypass Intranasally Originated Preexisting Adenovirus Immunity

    PubMed Central

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie

    2014-01-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 108 infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD50) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax. PMID:24307239

  19. Arginine deiminase expressed in vivo, driven by human telomerase reverse transcriptase promoter, displays high hepatoma targeting and oncolytic efficiency.

    PubMed

    Jiang, Hui; Guo, Song; Xiao, Dan; Bian, Xuzhao; Wang, Jie; Wang, Ying; Zhou, Huiting; Cai, Jun; Zheng, Zhongliang

    2017-06-06

    Arginine starvation has the potential to selectively treat both primary tumor and (micro) metastatic tissue with very low side effects. Arginine deiminase (ADI; EC 3.5.3.6), an arginine-degrading enzyme, has been studied as a potential anti-tumor drug for the treatment of arginine-auxotrophic tumors. Though ADI-PEG20 (pegylated ADI by PEG 20,000) already passed the phase I/II clinical trials [1], it is just used as adjuvant therapy because of its low efficiency and less targeting. Then, this paper discussed the efficiency of arginine starvation mediated by ADI expressed in cytoplasm for liver cancers. In order to guarantee the tumor targeting, human telomerase reverse transcriptase (hTERT) promoter was used to drive the expression of ADI in vivo. To access the anti-tumor efficiency of ADI, p53 gene was used as the positive control. Thus, ADI displayed obvious cytotoxicity to BEL7402 and HUH7 cell lines in cytoplasm. The apoptosis rates rose from 15% to nearly 60% after changing the expression vectors from pcDNA4 plasmid to adenovirus. Compared with p53-adenovirus, ADI-adenovirus showed the higher oncolytic activity in the intratumoral injection model of mice. Tumor disappeared after the treatment of ADI-adenovirus for two weeks, and the mice pulled through all. Therefore, ADI is an ideal anti-tumor gene for caner targeting therapy with the help of hTERT promoter.

  20. Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma

    PubMed Central

    Siurala, Mikko; Havunen, Riikka; Saha, Dipongkor; Lumen, Dave; Airaksinen, Anu J.; Tähtinen, Siri; Cervera-Carrascon, Víctor; Bramante, Simona; Parviainen, Suvi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2016-01-01

    Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of 111In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies. PMID:27357626

  1. Substitution of blood coagulation factor X-binding to Ad5 by position-specific PEGylation: Preventing vector clearance and preserving infectivity.

    PubMed

    Krutzke, L; Prill, J M; Engler, T; Schmidt, C Q; Xu, Z; Byrnes, A P; Simmet, T; Kreppel, F

    2016-08-10

    The biodistribution of adenovirus type 5 (Ad5) vector particles is heavily influenced by interaction of the particles with plasma proteins, including coagulation factor X (FX), which binds specifically to the major Ad5 capsid protein hexon. FX mediates hepatocyte transduction by intravenously-injected Ad5 vectors and shields vector particles from neutralization by natural antibodies and complement. In mice, mutant Ad5 vectors that are ablated for FX-binding become detargeted from hepatocytes, which is desirable for certain applications, but unfortunately such FX-nonbinding vectors also become sensitive to neutralization by mouse plasma proteins. To improve the properties of Ad5 vectors for systemic delivery, we developed a strategy to replace the natural FX shield by a site-specific chemical polyethylene glycol shield. Coupling of polyethylene glycol to a specific site in hexon hypervariable region 1 yielded vector particles that were protected from neutralization by natural antibodies and complement although they were unable to bind FX. These vector particles evaded macrophages in vitro and showed significantly improved pharmacokinetics and hepatocyte transduction in vivo. Thus, site-specific shielding of Ad5 vectors with polyethylene glycol rendered vectors FX-independent and greatly improved their properties for systemic gene therapy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Modification to the Capsid of the Adenovirus Vector That Enhances Dendritic Cell Infection and Transgene-Specific Cellular Immune Responses

    PubMed Central

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L.; Merritt, Robert; Hackett, Neil R.; Rovelink, Peter W.; Bruder, Joseph T.; Wickham, Thomas J.; Kovesdi, Imi; Crystal, Ronald G.

    2004-01-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing β-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the β-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing β-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to β-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-β-galactosidase antibody levels following vector administration. However, cellular responses to β-galactosidase were significantly enhanced, with the frequency of CD4+ as well as the CD8+ β-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing β-galactosidase: BALB/c mice implanted with the CT26 syngeneic β-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines. PMID:14963160

  3. Requirement of Sur2 for Efficient Replication of Mouse Adenovirus Type 1

    PubMed Central

    Fang, Lei; Stevens, Jennitte L.; Berk, Arnold J.; Spindler, Katherine R.

    2004-01-01

    Mouse adenovirus type 1 (MAV-1) early region 1A (E1A) encodes a virulence gene in viral infection of mice. To broaden our understanding of the functions of E1A in MAV-1 pathogenesis, an unbiased experimental approach, glutathione S-transferase (GST) pulldown, was used to screen for cellular proteins that interact with E1A protein. We identified mouse Sur2, a subunit of Mediator complex, as a protein that binds to MAV-1 E1A. The interaction between Sur2 and MAV-1 E1A was confirmed in virus-infected cells. Conserved region 3 (CR3) of MAV-1 E1A was mapped as the region required for Sur2-E1A interaction, as is the case for human adenovirus E1A. Although it has been proposed that human adenovirus E1A recruits the Mediator complex to transactivate transcription of viral early genes, Sur2 function in adenovirus replication has not been directly tested previously. Studies on the functions of Sur2 with mouse embryonic fibroblasts (MEFs) showed that there was a multiplicity-dependent growth defect of MAV-1 in Sur2−/− MEFs compared to Sur2+/+ MEFs. Comparison of the viral DNA and viral mRNA levels in Sur2+/+ and Sur2−/− MEFs confirmed that Sur2 was important for efficient viral replication. The viral replication defects in Sur2−/− MEFs appeared to be due at least in part to a defect in viral early gene transcription. PMID:15542641

  4. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of Biodistribution and Safety of Adenovirus Vectors Containing Group B Fibers after Intravenous Injection into Baboons

    PubMed Central

    NI, SHAOHENG; BERNT, KATHRIN; GAGGAR, ANUJ; LI, ZONG-YI; KIEM, HANS-PETER; LIEBER, ANDRÉ

    2005-01-01

    Vectors containing group B adenovirus (Ad) fibers are able to efficiently transduce gene therapy targets that are refractory to infection with standard Ad serotype 5 (Ad5) vectors, including malignant tumor cells, hematopoietic stem cells, and dendritic cells. Preliminary studies in mice indicate that, after intravenous injection, B-group fiber-containing Ads do not efficiently transduce most organs and cause less acute toxicity than Ad5 vectors. However, biodistribution and safety studies in mice are of limited value because the mouse analog of the B-group Ad receptor, CD46, is expressed only in the testis, whereas in humans, CD46 is expressed on all nucleated cells. Unlike mice, baboons have CD46 expression patterns and levels that closely mimic those in humans. We conducted a biodistribution and toxicity study of group B Ad fiber-containing vectors in baboons. Animals received phosphate-buffered saline, Ad5-bGal (a first-generation Ad5 vector), or B-group fiber-containing Ads (Ad5/35-bGal and Ad5/11-bGal) at a dose of 2 × 1012 VP/kg, and vector biodistribution and safety was analyzed over 3 days. The amount of Ad5/35-bGal and Ad5/11-bGal vector genomes was in most tissues one to three orders of magnitude below that of Ad5. Significant Ad5/35- and Ad5/11-mediated transgene (β-galactosidase) expression was seen only in the marginal zone of splenic follicles. Compared with the animal that received Ad5-bGal, all animals injected with B-group fiber-containing Ad vectors had lower elevations in serum proinflammatory cytokine levels. Gross and histopathology were normal in animals that received B-group Ad fiber-containing Ads, in contrast to the Ad5-infused animal, which showed widespread endothelial damage and inflammation. In a further study, a chimeric Ad5/35 vector carrying proapoptotic TRAIL and Ad E1A genes under tumor-specific regulation was well tolerated in a 30-day toxicity study. No major clinical, serologic, or pathologic abnormalities were noticed in this animal. OVERVIEW SUMMARY B-group Ad fiber-containing vectors are promising tools for gene therapy, for example, for the treatment of metastatic cancer or cardiovascular diseases, or for vaccination/immunotherapy. However, only a few studies of vectors containing B-group Ad fibers in mice have been conducted so far, and little is known about the mechanisms and effects of B-group Ad vector delivery in vivo. Before these vectors can be considered for clinical application, this knowledge gap must be filled. We performed biodistribution and safety studies after intravenous injection of chimeric Ad5 vectors containing Ad35 and Ad11 fibers into baboons. Our study suggests that Ad vectors possessing B-group Ad fibers have a better safety profile after intravenous injection than do conventional Ad5-based vectors. PMID:15960598

  6. Gene Transduction and Cell Entry Pathway of Fiber-Modified Adenovirus Type 5 Vectors Carrying Novel Endocytic Peptide Ligands Selected on Human Tracheal Glandular Cells

    PubMed Central

    Gaden, Florence; Franqueville, Laure; Magnusson, Maria K.; Hong, Saw See; Merten, Marc D.; Lindholm, Leif; Boulanger, Pierre

    2004-01-01

    Monolayers of cystic fibrosis transmembrane conductance regulator (CFTR)-deficient human tracheal glandular cells (CF-KM4) were subjected to phage biopanning, and cell-internalized phages were isolated and sequenced, in order to identify CF-KM4-specific peptide ligands that would confer upon adenovirus type 5 (Ad5) vector a novel cell target specificity and/or higher efficiency of gene delivery into airway cells of patients with cystic fibrosis (CF). Three different ligands, corresponding to prototypes of the most represented families of phagotopes recovered from intracellular phages, were designed and individually inserted into Ad5-green fluorescent protein (GFP) (AdGFP) vectors at the extremities of short fiber shafts (seven repeats [R7]) terminated by scissile knobs. Only one vector, carrying the decapeptide GHPRQMSHVY (abbreviated as QM10), showed an enhanced gene transduction of CF-KM4 cells compared to control nonliganded vector with fibers of the same length (AdGFP-R7-knob). The enhancement in gene transfer efficiency was not specific to CF-KM4 cells but was observed in other mammalian cell lines tested. The QM10-liganded vector was referred to as AdGFP-QM10-knob in its knobbed version and as AdGFP-QM10 in its proteolytically deknobbed version. AdGFP-QM10 was found to transduce cells with a higher efficiency than its knob-bearing version, AdGFP-QM10-knob. Consistent with this, competition experiments indicated that the presence of knob domains was not an absolute requirement for cell attachment of the QM10-liganded vector and that the knobless AdGFP-QM10 used alternative cell-binding domains on its capsid, including penton base capsomer, via a site(s) different from its RGD motifs. The QM10-mediated effect on gene transduction seemed to take place at the step of endocytosis in both quantitative and qualitative manners. Virions of AdGFP-QM10 were endocytosed in higher numbers than virions of the control vector and were directed to a compartment different from the early endosomes targeted by members of species C Ad. AdGFP-QM10 was found to accumulate in late endosomal and low-pH compartments, suggesting that QM10 acted as an endocytic ligand of the lysosomal pathway. These results validated the concept of detargeting and retargeting Ad vectors via our deknobbing system and redirecting Ad vectors to an alternative endocytic pathway via a peptide ligand inserted in the fiber shaft domain. PMID:15194799

  7. Aggresome formation by the adenoviral protein E1B55K is not conserved among adenovirus species and is not required for efficient degradation of nuclear substrates.

    PubMed

    Blanchette, Paola; Wimmer, Peter; Dallaire, Frédéric; Cheng, Chi Ying; Branton, Philip E

    2013-05-01

    Much of the work on the basic molecular biology of human adenoviruses has been carried out on a very limited number of the more than 60 serotypes, primarily the highly related species C viruses adenovirus type 5 (Ad5) and Ad2 and, to some extent, Ad12 of species A. Until recently, it has been widely assumed that insights obtained with these model viruses were representative of all human adenoviruses. Recent studies on the E3 ubiquitin ligase formed by the viral E1B55K and E4orf6 proteins with a cellular Cullin-based complex indicated that although all species form such a functional complex, significant variations exist in terms of complex composition and the substrates that are degraded. In the present report we conducted a comprehensive analysis of the localization of E1B55K products from representatives of six of the seven adenovirus species in the presence and the absence of the corresponding E4orf6 protein. We found that although in some species E1B55K localized in aggresomes, such was not always the case, suggesting that these structures are not necessary for the efficient degradation of substrates. In addition, differences were evident in the localization of E1B55K, although all forms readily associated with PML. Finally, Ad5 E1B55K was seen to localize in close proximity to Rab11, a marker for the endosomal recycling compartment, and both focused at the microtubule organizing center. These findings suggest that E1B55K from some species may employ the transport system utilized by the membrane recycling pathway to assemble aggresomes and the possibility that this structure might then affect recycling of cell surface components.

  8. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes.

    PubMed

    Khanam, Saima; Rajendra, Pilankatta; Khanna, Navin; Swaminathan, Sathyamangalam

    2007-02-15

    Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. This work stems from the emergence of (i) the DEN virus envelope (E) domain III (EDIII) as the most important region of the molecule from a vaccine perspective and (ii) the adenovirus (Ad) as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd) vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has implications for the development of safe and effective tetravalent dengue vaccines.

  9. Viral Vectors for Gene Delivery to the Central Nervous System

    PubMed Central

    Lentz, Thomas B.; Gray, Steven J.; Samulski, R. Jude

    2011-01-01

    The potential benefits of gene therapy for neurological diseases such as Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer’s are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features. PMID:22001604

  10. Oral Modeling of an Adenovirus-Based Quadrivalent Influenza Vaccine in Ferrets and Mice.

    PubMed

    Scallan, Ciaran D; Lindbloom, Jonathan D; Tucker, Sean N

    2016-06-01

    Oral vaccines delivered as tablets offer a number of advantages over traditional parenteral-based vaccines including the ease of delivery, lack of needles, no need for trained medical personnel, and the ability to formulate into temperature-stable tablets. We have been evaluating an oral vaccine platform based on recombinant adenoviral vectors for the purpose of creating a prophylactic vaccine to prevent influenza, and have demonstrated vaccine efficacy in animal models and substantial immunogenicity in humans. These studies have evaluated monovalent vaccines to date. To protect against the major circulating A and B influenza strains, a multivalent influenza vaccine will be required. In this study, the immunogenicity of orally delivered monovalent, bivalent, trivalent, and quadrivalent vaccines was tested in ferrets and mice. The various vaccine combinations were tested by blending monovalent recombinant adenovirus vaccines, each expressing hemagglutinin from a single strain. Human tablet delivery was modeled in animals by oral gavage in mice and by endoscopic delivery in ferrets. We demonstrated minimal interference between the various vaccine vectors when used in combination and that the oral quadrivalent vaccine compared favorably to an approved trivalent inactivated vaccine. The quadrivalent vaccine presented here produced immune responses that we predict should be capable of providing protection against multiple influenza strains, and the platform should have applications to other multivalent vaccines. Vaxart, Inc.

  11. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines.

    PubMed

    See, Raymond H; Petric, Martin; Lawrence, David J; Mok, Catherine P Y; Rowe, Thomas; Zitzow, Lois A; Karunakaran, Karuna P; Voss, Thomas G; Brunham, Robert C; Gauldie, Jack; Finlay, B Brett; Roper, Rachel L

    2008-09-01

    Although the 2003 severe acute respiratory syndrome (SARS) outbreak was controlled, repeated transmission of SARS coronavirus (CoV) over several years makes the development of a SARS vaccine desirable. We performed a comparative evaluation of two SARS vaccines for their ability to protect against live SARS-CoV intranasal challenge in ferrets. Both the whole killed SARS-CoV vaccine (with and without alum) and adenovirus-based vectors encoding the nucleocapsid (N) and spike (S) protein induced neutralizing antibody responses and reduced viral replication and shedding in the upper respiratory tract and progression of virus to the lower respiratory tract. The vaccines also diminished haemorrhage in the thymus and reduced the severity and extent of pneumonia and damage to lung epithelium. However, despite high neutralizing antibody titres, protection was incomplete for all vaccine preparations and administration routes. Our data suggest that a combination of vaccine strategies may be required for effective protection from this pathogen. The ferret may be a good model for SARS-CoV infection because it is the only model that replicates the fever seen in human patients, as well as replicating other SARS disease features including infection by the respiratory route, clinical signs, viral replication in upper and lower respiratory tract and lung damage.

  12. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    PubMed

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus infections. The ability of adenovirus to inhibit killing through these receptors may prolong acute and persistent infections.

  13. Inhibition of TRAIL-Induced Apoptosis and Forced Internalization of TRAIL Receptor 1 by Adenovirus Proteins

    PubMed Central

    Tollefson, Ann E.; Toth, Karoly; Doronin, Konstantin; Kuppuswamy, Mohan; Doronina, Oksana A.; Lichtenstein, Drew L.; Hermiston, Terry W.; Smith, Craig A.; Wold, William S. M.

    2001-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus infections. The ability of adenovirus to inhibit killing through these receptors may prolong acute and persistent infections. PMID:11533151

  14. Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the fiber head domain.

    PubMed Central

    Stevenson, S C; Rollence, M; White, B; Weaver, L; McClelland, A

    1995-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to cell surface receptors. The identity of the cellular receptor which mediates binding is unknown, although there is evidence suggesting that two distinct adenovirus receptors interact with the group C (adenovirus type 5 [Ad5]) and the group B (Ad3) adenoviruses. In order to define the determinants of adenovirus receptor specificity, we have carried out a series of competition binding experiments using recombinant native fiber polypeptides from Ad5 and Ad3 and chimeric fiber proteins in which the head domains of Ad5 and Ad3 were exchanged. Specific binding of fiber to HeLa cell receptors was assessed with radiolabeled protein synthesized in vitro, and by competition analysis with baculovirus-expressed fiber protein. Fiber produced in vitro was found as both monomer and trimer, but only the assembled trimers had receptor binding activity. Competition data support the conclusion that Ad5 and Ad3 interact with different cellular receptors. The Ad5 receptor distribution on several cell lines was assessed with a fiber binding flow cytometric assay. HeLa cells were found to express high levels of receptor, while CHO and human diploid fibroblasts did not. A chimeric fiber containing the Ad5 fiber head domain blocked the binding of Ad5 fiber but not Ad3 fiber. Similarly, a chimeric fiber containing the Ad3 fiber head blocked the binding of labeled Ad3 fiber but not Ad5 fiber. In addition, the isolated Ad3 fiber head domain competed effectively with labeled Ad3 fiber for binding to HeLa cell receptors. These results demonstrate that the determinants of receptor binding are located in the head domain of the fiber and that the isolated head domain is capable of trimerization and binding to cellular receptors. Our results also show that it is possible to change the receptor specificity of the fiber protein by manipulation of sequences contained in the head domain. Modification or replacement of the fiber head domain with novel ligands may permit adenovirus vectors with new receptor specificities which could be useful for targeted gene delivery in vivo to be engineered. PMID:7707507

  15. Inhibition of HBV replication in vivo using helper-dependent adenovirus vectors to deliver antiviral RNA interference expression cassettes.

    PubMed

    Crowther, Carol; Mowa, Mohube B; Ely, Abdullah; Arbuthnot, Patrick B

    2014-01-01

    HBV is hyperendemic to southern Africa and parts of Asia, but licensed antivirals have little effect on limiting life-threatening complications of the infection. Although RNA interference (RNAi)-based gene silencing has shown therapeutic potential, difficulties with delivery of anti-HBV RNAi effectors remain an obstacle to their clinical use. To address concerns about the transient nature of transgene expression and toxicity resulting from immunostimulation by recombinant adenovirus vectors (Ads), utility of RNAi-activating anti-HBV helper-dependent (HD) Ads were assessed in this study. Following intravenous administration of 5×10(9) unmodified or pegylated HD Ad infectious particles to HBV transgenic mice, HBV viral loads and serum HBV surface antigen levels were monitored for 12 weeks. Immunostimulation of HD Ads was assessed by measuring inflammatory cytokines, hepatic function and immune response to the co-delivered LacZ reporter gene. Unmodified and pegylated HD Ads transduced 80-90% of hepatocytes and expressed short hairpin RNAs (shRNAs) were processed to generate intended HBV-targeting guides. Markers of HBV replication were decreased by approximately 95% and silencing was sustained for 8 weeks. Unmodified HD Ads induced release of proinflammatory cytokines and there was evidence of an adaptive immune response to β-galactosidase. However the HD Ad-induced innate immune response was minimal in preparations that were enriched with infectious particles. HD Ads have potential utility for delivery of therapeutic HBV-silencing sequences and alterations of these vectors to attenuate their immune responses may further improve their efficacy.

  16. Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Y. Chuang

    2006-08-31

    It has been long recognized that a significant fraction of the radiation-induced genetic damage to cells are caused by secondary oxidative species. Internal cellular defense systems against oxidative stress play significant roles in countering genetic damage induced by ionizing radiation. The role of the detoxifying enzymes may be even more prominent in the case of low-dose, low-LET irradiation, as the majority of genetic damage may be caused by secondary oxidative species. In this study we have attempted to decipher the roles of the superoxide dismutase (SOD) genes, which are responsible for detoxifying the superoxide anions. We used adenovirus vectors tomore » deliver RNA interference (RNAi or siRNA) technology to down-regulate the expression levels of the SOD genes. We have also over-expressed the SOD genes by use of recombinant adenovirus vectors. Cells infected with the vectors were then subjected to low dose γ-irradiation. Total RNA were extracted from the exposed cells and the expression of 9000 genes were profiled by use of cDNA microarrays. The result showed that low dose radiation had clear effects on gene expression in HCT116 cells. Both over-expression and down-regulation of the SOD1 gene can change the expression profiles of sub-groups of genes. Close to 200 of the 9000 genes examined showed over two-fold difference in expression under various conditions. Genes with changed expression pattern belong to many categories that include: early growth response, DNA-repair, ion transport, apoptosis, and cytokine response.« less

  17. Epitope Capsid-Incorporation: New Effective Approach for Vaccine Development for Chagas Disease

    PubMed Central

    Matthews, Qiana L.; Farrow, Anitra L.; Rachakonda, Girish; Gu, Linlin; Nde, Pius; Krendelchtchikov, Alexandre; Pratap, Siddharth; Sakhare, Shruti S.; Sabbaj, Steffanie; Lima, Maria F.; Villalta, Fernando

    2016-01-01

    Background Previously we reported that a hexon-modified adenovirus (Ad) vector containing the invasive neutralizing epitope of Trypanosoma cruzi (T. cruzi) trypomastigote gp83 (Ad5-gp83) provided immunoprotection against T. cruzi infection. The purpose of this work was to design an improved vaccine for T. cruzi using a novel epitope capsid incorporation strategy. Thus, we evaluated the immunoprotection raised by co-immunization with Ad5-gp83 and an Ad vector containing an epitope (ASP-M) of the T. cruzi amastigote surface protein 2. Methods Protein IX (pIX)-modified Ad vector (Ad5-pIX-ASP-M) was generated, characterized, and validated. C3H/He mice were immunized with Ad5-pIX-ASP-M and Ad5-gp83 and the cell-mediated responses were evaluated by enzyme-linked immunospot (ELISPOT) assay and intracellular staining. Immunized mice were challenged with T. cruzi to evaluate the vaccine efficacy. Results Our findings indicate that Ad5-pIX-ASP-M was viable. Specific CD8+ T-cell mediated responses prior to the challenge show an increase in IFNγ and TNFα production. A single immunization with Ad5-pIX-ASP-M provided protection from T. cruzi infection, but co-immunizations with Ad5-pIX-ASP-M and Ad5-gp83 provided a higher immunoprotection and increased survival rate of mice. Conclusions Overall, these results suggest that the combination of gp83 and ASP-M specific epitopes onto the capsid-incorporated adenoviruses would provide superior protection against Chagas disease as compared with Ad5-gp83 alone. PMID:27709126

  18. Role of the Adenovirus DNA-Binding Protein in In Vitro Adeno-Associated Virus DNA Replication

    PubMed Central

    Ward, Peter; Dean, Frank B.; O’Donnell, Michael E.; Berns, Kenneth I.

    1998-01-01

    A basic question in adeno-associated virus (AAV) biology has been whether adenovirus (Ad) infection provided any function which directly promoted replication of AAV DNA. Previously in vitro assays for AAV DNA replication, using linear duplex AAV DNA as the template, uninfected or Ad-infected HeLa cell extracts, and exogenous AAV Rep protein, demonstrated that Ad infection provides a direct helper effect for AAV DNA replication. It was shown that the nature of this helper effect was to increase the processivity of AAV DNA replication. Left unanswered was the question of whether this effect was the result of cellular factors whose activity was enhanced by Ad infection or was the result of direct participation of Ad proteins in AAV DNA replication. In this report, we show that in the in vitro assay, enhancement of processivity occurs with the addition of either the Ad DNA-binding protein (Ad-DBP) or the human single-stranded DNA-binding protein (replication protein A [RPA]). Clearly Ad-DBP is present after Ad infection but not before, whereas the cellular level of RPA is not apparently affected by Ad infection. However, we have not measured possible modifications of RPA which might occur after Ad infection and affect AAV DNA replication. When the substrate for replication was an AAV genome inserted into a plasmid vector, RPA was not an effective substitute for Ad-DBP. Extracts supplemented with Ad-DBP preferentially replicated AAV sequences rather than adjacent vector sequences; in contrast, extracts supplemented with RPA preferentially replicated vector sequences. PMID:9420241

  19. Suppression of RNA Interference by Adenovirus Virus-Associated RNA†

    PubMed Central

    Andersson, M. Gunnar; Haasnoot, P. C. Joost; Xu, Ning; Berenjian, Saideh; Berkhout, Ben; Akusjärvi, Göran

    2005-01-01

    We show that human adenovirus inhibits RNA interference (RNAi) at late times of infection by suppressing the activity of two key enzyme systems involved, Dicer and RNA-induced silencing complex (RISC). To define the mechanisms by which adenovirus blocks RNAi, we used a panel of mutant adenoviruses defective in virus-associated (VA) RNA expression. The results show that the virus-associated RNAs, VA RNAI and VA RNAII, function as suppressors of RNAi by interfering with the activity of Dicer. The VA RNAs bind Dicer and function as competitive substrates squelching Dicer. Further, we show that VA RNAI and VA RNAII are processed by Dicer, both in vitro and during a lytic infection, and that the resulting short interfering RNAs (siRNAs) are incorporated into active RISC. Dicer cleaves the terminal stem of both VA RNAI and VA RNAII. However, whereas both strands of the VA RNAI-specific siRNA are incorporated into RISC, the 3′ strand of the VA RNAII-specific siRNA is selectively incorporated during a lytic infection. In summary, our work shows that adenovirus suppresses RNAi during a lytic infection and gives insight into the mechanisms of RNAi suppression by VA RNA. PMID:16014917

  20. Influence of adenovirus and MVA vaccines on the breadth and hierarchy of T cell responses.

    PubMed

    Rollier, Christine S; Hill, Adrian V S; Reyes-Sandoval, Arturo

    2016-08-31

    Viral-vectored vaccines are in clinical development for several infectious diseases where T-cell responses can mediate protection, and responses to sub-dominant epitopes is needed. Little is known about the influence of MVA or adenoviral vectors on the hierarchy of the dominant and sub-dominant T-cell epitopes. We investigated this aspect in mice using a malaria immunogen. Our results demonstrate that the T-cell hierarchy is influenced by the timing of analysis, rather than by the vector after a single immunization, with hierarchy changing over time. Repeated homologous immunization reduced the breadth of responses, while heterologous prime-boost induced the strongest response to the dominant epitope, albeit with only modest response to the sub-dominant epitopes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The Role of Hexon Protein as a Molecular Mold in Patterning the Protein IX Organization in Human Adenoviruses.

    PubMed

    Reddy, Vijay S

    2017-09-01

    Adenoviruses are respiratory, ocular and enteric pathogens that form complex capsids, which are assembled from seven different structural proteins and composed of several core proteins that closely interact with the packaged dsDNA genome. The recent near-atomic resolution structures revealed that the interlacing continuous hexagonal network formed by the protein IX molecules is conserved among different human adenoviruses (HAdVs), but not in non-HAdVs. In this report, we propose a distinct role for the hexon protein as a "molecular mold" in enabling the formation of such hexagonal protein IX network that has been shown to preserve the stability and infectivity of HAdVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adenovirus-Vectored Broadly Neutralizing Antibodies Directed Against gp120 Prevent Human Immunodeficiency Virus Type 1 Acquisition in Humanized Mice.

    PubMed

    Liu, Shan; Jackson, Andrew; Beloor, Jagadish; Kumar, Priti; Sutton, Richard E

    2015-09-01

    Despite nearly three decades of research, a safe and effective vaccine against human immunodeficiency virus type 1 (HIV-1) has yet to be achieved. More recently, the discovery of highly potent anti-gp160 broadly neutralizing antibodies (bNAbs) has garnered renewed interest in using antibody-based prophylactic and therapeutic approaches. Here, we encoded bNAbs in first-generation adenoviral (ADV) vectors, which have the distinctive features of a large coding capacity and ease of propagation. A single intramuscular injection of ADV-vectorized bNAbs in humanized mice generated high serum levels of bNAbs that provided protection against multiple repeated challenges with a high dose of HIV-1, prevented depletion of peripheral CD4(+) T cells, and reduced plasma viral loads to below detection limits. Our results suggest that ADV vectors may be a viable option for the prophylactic and perhaps therapeutic use of bNAbs in humans.

  3. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients

    PubMed Central

    Zhao, Hua; Xu, Can; Luo, Xiaoli; Wei, Feng; Wang, Ning; Shi, Huiying; Ren, Xiubao

    2018-01-01

    Since the preclinical results about chimpanzee adenovirus serotype-68 (AdC68)-based vaccine showed an encouraging results, it reminded us that AdC68 may be a suitable cancer vaccine vector. Previous study indicated that the seroprevalence of neutralizing antibodies (NAbs) against adenovirus was different between cancer patients and healthy volunteers. Knowledge regarding the prevalence rates of AdC68 NAbs for cancer patients is lacking. Therefore, assessing the preexistence of NAbs against AdC68 in cancer patients could provide useful insights for developing future AdC68-based cancer vaccines. In this study, 440 patients with different pathological types of tumors and 204 healthy adult volunteers were enrolled to evaluate the NAbs against AdC68 and human adenovirus serotype-5 (AdHu5). The seroprevalence of NAbs against AdC68 was much lower than that against AdHu5 in cancer subjects (43.64 vs. 67.05%, P < 0.01). The seroprevalence rates of NAbs to AdC68 in the cancer subjects were statistically higher than those detected in the healthy adult volunteers (43.64 vs. 23.53%, P = 0.000). The seroprevalence rates of AdC68 NAbs were much lower in lung, laryngeal, esophageal, and cervical cancer patients compared with oropharyngeal, colon, and rectal cancer patients. Furthermore, the seroprevalence rates of AdC68 NAbs were much lower in lung adenocarcinoma patients than in lung squamous cell carcinoma patients (35.00 vs. 70.00%, P < 0.05). No significant difference in the AdC68 NAbs among patients with different clinical stages of cancer was detected. The percentage of NAbs against AdC68 was significantly lower than that against AdHu5 (P < 0.05) in stage-I, -II, and -III cancer patients. No significant difference between the percentage of NAbs against AdC68 and AdHu5 in the subjects with stage-IV cancer was detected. The study also demonstrated the distribution of AdHu5 and AdC68 NAb titers for the positive samples. It showed that very low NAb titers against AdC68 with respect to AdHu5 in both healthy subjects and cancer subjects, especially in lung, laryngeal, esophageal, gastric, and cervical carcinomas. Also, the titer of NAbs against AdC68 was significantly lower than that against AdHu5 in the same clinical stage and age group (P < 0.05). Taken together, the present study showed that NAbs against AdC68 is much lower than AdHu5, especially in lung adenocarcinoma, laryngeal cancer, esophageal cancer, and cervical cancer patients. These results provided strong support for candidating AdC68 as a suitable vector of cancer vaccines. PMID:29563911

  4. Current Status of Gene Therapy for Inherited Lung Diseases

    PubMed Central

    Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    Gene therapy as a treatment modality for pulmonary disorders has attracted significant interest over the past decade. Since the initiation of the first clinical trials for cystic fibrosis lung disease using recombinant adenovirus in the early 1990s, the field has encountered numerous obstacles including vector inflammation, inefficient delivery, and vector production. Despite these obstacles, enthusiasm for lung gene therapy remains high. In part, this enthusiasm is fueled through the diligence of numerous researchers whose studies continue to reveal great potential of new gene transfer vectors that demonstrate increased tropism for airway epithelia. Several newly identified serotypes of adeno-associated virus have demonstrated substantial promise in animal models and will likely surface soon in clinical trials. Furthermore, an increased understanding of vector biology has also led to the development of new technologies to enhance the efficiency and selectivity of gene delivery to the lung. Although the promise of gene therapy to the lung has yet to be realized, the recent concentrated efforts in the field that focus on the basic virology of vector development will undoubtedly reap great rewards over the next decade in treating lung diseases. PMID:12524461

  5. A Partial E3 Deletion in Replication-Defective Adenoviral Vectors Allows for Stable Expression of Potentially Toxic Transgene Products.

    PubMed

    Haut, Larissa H; Gill, Amanda L; Kurupati, Raj K; Bian, Ang; Li, Yan; Giles-Davis, Wynetta; Xiang, Zhiquan; Zhou, Xiang Yang; Ertl, Hildegund C J

    2016-10-01

    Adenovirus (Ad) is used extensively for construction of viral vectors, most commonly with deletion in its E1 and/or E3 genomic regions. Previously, our attempts to insert envelope proteins (Env) of HIV-1 into such vectors based on chimpanzee-derived Ad (AdC) viruses were thwarted. Here, we describe that genetic instability of an E1- and E3-deleted AdC vector of serotype C6 expressing Env of HIV-1 can be overcome by reinsertion of E3 sequences with anti-apoptotic activities. This partial E3 deletion presumably delays premature death of HEK-293 packaging cell lines due to Env-induced cell apoptosis. The same partial E3 deletion also allows for the generation of stable glycoprotein 140 (gp140)- and gp160-expressing Ad vectors based on AdC7, a distinct AdC serotype. Env-expressing AdC vectors containing the partial E3 deletion are genetically stable upon serial cell culture passaging, produce yields comparable to those of other AdC vectors, and induce transgene product-specific antibody responses in mice. A partial E3 deletion thereby allows expansion of the repertoire of transgenes that can be expressed by Ad vectors.

  6. Adenovirus Core Protein VII Protects the Viral Genome from a DNA Damage Response at Early Times after Infection▿

    PubMed Central

    Karen, Kasey A.; Hearing, Patrick

    2011-01-01

    Adenovirus has a linear, double-stranded DNA genome that is perceived by the cellular Mre11-Rad50-Nbs1 (MRN) DNA repair complex as a double-strand break. If unabated, MRN elicits a double-strand break repair response that blocks viral DNA replication and ligates the viral genomes into concatemers. There are two sets of early viral proteins that inhibit the MRN complex. The E1B-55K/E4-ORF6 complex recruits an E3 ubiquitin ligase and targets MRN proteins for proteasome-dependent degradation. The E4-ORF3 protein inhibits MRN through sequestration. The mechanism that prevents MRN recognition of the viral genome prior to the expression of these early proteins was previously unknown. Here we show a temporal correlation between the loss of viral core protein VII from the adenovirus genome and a gain of checkpoint signaling due to the double-strand break repair response. While checkpoint signaling corresponds to the recognition of the viral genome, core protein VII binding to and checkpoint signaling at viral genomes are largely mutually exclusive. Transcription is known to release protein VII from the genome, and the inhibition of transcription shows a decrease in checkpoint signaling. Finally, we show that the nuclease activity of Mre11 is dispensable for the inhibition of viral DNA replication during a DNA damage response. These results support a model involving the protection of the incoming viral genome from checkpoint signaling by core protein VII and suggest that the induction of an MRN-dependent DNA damage response may inhibit adenovirus replication by physically masking the origins of DNA replication rather than altering their integrity. PMID:21345950

  7. Lack of Humoral Immune Response to the Tetracycline (Tet) Activator in Rats Injected Intracranially with Tet-off rAAV Vectors

    PubMed Central

    Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.

    2010-01-01

    The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859

  8. Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats.

    PubMed

    Widjojoatmodjo, Myra N; Bogaert, Lies; Meek, Bob; Zahn, Roland; Vellinga, Jort; Custers, Jerome; Serroyen, Jan; Radošević, Katarina; Schuitemaker, Hanneke

    2015-10-05

    RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Adenovirus-Associated Virus Vector–Mediated Gene Transfer in Hemophilia B

    PubMed Central

    Nathwani, Amit C.; Tuddenham, Edward G.D.; Rangarajan, Savita; Rosales, Cecilia; McIntosh, Jenny; Linch, David C.; Chowdary, Pratima; Riddell, Anne; Pie, Arnulfo Jaquilmac; Harrington, Chris; O’Beirne, James; Smith, Keith; Pasi, John; Glader, Bertil; Rustagi, Pradip; Ng, Catherine Y.C.; Kay, Mark A.; Zhou, Junfang; Spence, Yunyu; Morton, Christopher L.; Allay, James; Coleman, John; Sleep, Susan; Cunningham, John M.; Srivastava, Deokumar; Basner-Tschakarjan, Etiena; Mingozzi, Federico; High, Katherine A.; Gray, John T.; Reiss, Ulrike M.; Nienhuis, Arthur W.; Davidoff, Andrew M.

    2012-01-01

    BACKGROUND Hemophilia B, an X-linked disorder, is ideally suited for gene therapy. We investigated the use of a new gene therapy in patients with the disorder. METHODS We infused a single dose of a serotype-8–pseudotyped, self-complementary adenovirus-associated virus (AAV) vector expressing a codon-optimized human factor IX (FIX) transgene (scAAV2/8-LP1-hFIXco) in a peripheral vein in six patients with severe hemophilia B (FIX activity, <1% of normal values). Study participants were enrolled sequentially in one of three cohorts (given a high, intermediate, or low dose of vector), with two participants in each group. Vector was administered without immunosuppressive therapy, and participants were followed for 6 to 16 months. RESULTS AAV-mediated expression of FIX at 2 to 11% of normal levels was observed in all participants. Four of the six discontinued FIX prophylaxis and remained free of spontaneous hemorrhage; in the other two, the interval between prophylactic injections was increased. Of the two participants who received the high dose of vector, one had a transient, asymptomatic elevation of serum aminotransferase levels, which was associated with the detection of AAV8-capsid–specific T cells in the peripheral blood; the other had a slight increase in liver-enzyme levels, the cause of which was less clear. Each of these two participants received a short course of glucocorticoid therapy, which rapidly normalized aminotransferase levels and maintained FIX levels in the range of 3 to 11% of normal values. CONCLUSIONS Peripheral-vein infusion of scAAV2/8-LP1-hFIXco resulted in FIX transgene expression at levels sufficient to improve the bleeding phenotype, with few side effects. Although immune-mediated clearance of AAV-transduced hepatocytes remains a concern, this process may be controlled with a short course of glucocorticoids without loss of transgene expression. (Funded by the Medical Research Council and others; ClinicalTrials.gov number, NCT00979238.) PMID:22149959

  10. Single dose of an adenovirus vectored mouse interferon-α protects mice from lethal EV71 challenge.

    PubMed

    Sun, Jialei; Ennis, Jane; Turner, Jeffrey D; Chu, Justin Jang Hann

    2016-10-01

    Enterovirus 71 (EV71) causes hand-foot-and-mouth diseases as well as neurological complications in young children. Interferon (IFN) can inhibit the replication of many viruses with low cytotoxic effects. Previously, an adenovirus vectored mouse interferon-α (DEF201), subtype 5, was generated by Wu et al, 2007. In this study, the antiviral effects of DEF201 against EV71 were evaluated in a murine model. 6-day-old BALB/c mice were administered a single dose of DEF201 before or after infection with lethal dose of EV71. The survival rate, clinical symptoms, tissue viral loads and histology pathogenesis were evaluated. IFN gene expression following a single dose of DEF201 maintained high concentrations of 100-9000 pg/mL for more than 7 days in mice serum. Pre-infection administration of a single dose of 10 6  PFU of DEF201 offered full protection of the mice against EV71 infection compared with the empty Ad5 vector control. In addition, virus load in DEF201-treated mice muscle tissue was significantly decreased as compared with empty vector control. Histopathology analysis revealed that DEF201 significantly prevented the development of severe tissue damage with reduction of viral antigen in the murine muscle tissue. Post-infection treatment at 6 h offered full protection and partial protection at 12 h, indicating that DEF201 could be used as an anti-EV71 therapeutic agent in early stage of EV71 infection. In addition, our study showed that DEF201 enhanced the neutralization ability of serum in EV71-vaccinated mice, implying that DEF201 could promote the production of specific anti-EV71 antibodies. In conclusion, single dose of DEF201 is highly efficacious as a prophylactic agent against EV71 infection in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis.

    PubMed

    Walsh, Douglas S; Owira, Victorine; Polhemus, Mark; Otieno, Lucas; Andagalu, Ben; Ogutu, Bernhards; Waitumbi, John; Hawkridge, Anthony; Shepherd, Barbara; Pau, Maria Grazia; Sadoff, Jerald; Douoguih, Macaya; McClain, J Bruce

    2016-05-05

    In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects. Published by Elsevier Ltd.

  12. Adenovirus E1a prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor.

    PubMed Central

    Zamanian, M; La Thangue, N B

    1992-01-01

    The retinoblastoma (Rb) gene product forms a complex with the cellular transcription factor DRTF1, a property assumed to be important for mediating negative growth control because certain viral oncogenes, such as adenovirus E1a, prevent this interaction and mutant Rb alleles, which have lost the capacity to regulate growth, encode proteins that fail to associate with DRTF1. In this study, we show that the wild-type Rb protein can specifically repress transcription from promoters driven by DRTF1 whereas a naturally occurring mutant Rb protein cannot. Furthermore, Rb-mediated transcriptional repression can be overridden by adenovirus E1a; this requires regions in E1a necessary for cellular transformation. The Rb protein therefore acts in trans to repress the transcriptional activity of DRTF1 whereas adenovirus E1a prevents this interaction and thus maintains DRTF1 in a constitutively active state. The Rb protein and adenovirus E1a therefore have opposite effects on the activity of a common molecular target. Transcriptional repression mediated by the Rb protein and inactivation of repression by the E1a protein are likely to play an important role in mediating their biological effects. Images PMID:1385776

  13. Undetectable Transcription of cap in a Clinical AAV Vector: Implications for Preformed Capsid in Immune Responses

    PubMed Central

    Hauck, Bernd; Murphy, Samuel L; Smith, Peter H; Qu, Guang; Liu, Xingge; Zelenaia, Olga; Mingozzi, Federico; Sommer, Jürg M; High, Katherine A; Wright, J. Fraser

    2008-01-01

    In a gene therapy clinical trial for hemophilia B, adeno-associated virus 2 (AAV2) capsid–specific CD8+ T cells were previously implicated in the elimination of vector-transduced hepatocytes, resulting in loss of human factor IX (hFIX) transgene expression. To test the hypothesis that expression of AAV2 cap DNA impurities in the AAV2-hFIX vector was the source of epitopes presented on transduced cells, transcription of cap was assessed by quantitative reverse transcription–PCR (Q-RT-PCR) following transduction of target cells with the vector used in the clinical trial. Transcriptional profiling was also performed for residual AmpR, and adenovirus E2A and E4. Although trace amounts of DNA impurities were present in the clinical vector, transcription of these sequences was not detected after transduction of human hepatocytes, nor in mice administered a dose 26-fold above the highest dose administered in the clinical study. Two methods used to minimize encapsidated DNA impurities in the clinical vector were: (i) a vector (cis) production plasmid with a backbone exceeding the packaging limit of AAV; and (ii) a vector purification step that achieved separation of the vector from vector-related impurities (e.g., empty capsids). In conclusion, residual cap expression was undetectable following transduction with AAV2-hFIX clinical vectors. Preformed capsid protein is implicated as the source of epitopes recognized by CD8+ T cells that eliminated vector-transduced cells in the clinical study. PMID:18941440

  14. Vasculature-Specific Adenovirus Vectors for Gene Therapy of Prostate Cancer

    DTIC Science & Technology

    2008-02-01

    Renata Pasqualini (University of Texas M.D. Anderson Cancer Center). This assay showed excellent binding of the wt fiber to sCAR and no binding...Bernasconi, R. Kain, D. Rajotte, S. Krajewski, H. M. Ellerby, D. E. Bredesen, R. Pasqualini , and E. Ruoslahti. 2002. Targeting the prostate for...D. Bucana, E. Koivunen, D. Cahill, P. Troncoso, K. A. Baggerly, R. D. Pentz, K. A. Do, C. J. Logothetis, and R. Pasqualini . 2002. Steps toward

  15. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    DTIC Science & Technology

    2013-02-14

    immunization, was severe (Grade 3), preventing daily activities . Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum...administering a drug selectively active against blood stage parasites such as chloroquine [4,5]. While the immunological mechanisms underlying the...promoter sequence activated within the host cell. Alternatively, the genes are inserted into a viral vector, which efficiently transports the DNA into

  16. Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents

    DTIC Science & Technology

    2016-04-12

    economy. Vaccine development is an important strategy to thwart the threat of these viral biothreat agents. There is an urgent need to improve...Alberta, Tl A 8K6. Canada E-mail: josh. wu@drdc-rddc.gc.ca .• 78 JoshQ.H. Wu existing vaccines against these agents and to develop new ones. Gene...of vaccines against viral biothreat agents. Genes encoding protective antigens of viral biothreat agents can be carried by these viral vectors and

  17. JPRS Report Science & Technology USSR: Life Sciences.

    DTIC Science & Technology

    1988-12-15

    genetic engi- neering studies employed in studies on the effects of antisense RNA ( asRNA ) on the reproduction of type 5 adenovirus in cultured...monkey Cos I cells. The asRNA was targeted against the EIA region of the adenoviral genome, which has a key role in the regulation of other adenoviral...genes. A recombinant vector designated ppS- NEO containing Moloney leukemia genome was employed in the synthesis of asRNA , as well as recom- binant

  18. JPRS Report, Science & Technology, USSR: Life Sciences

    DTIC Science & Technology

    1988-12-15

    neering studies employed in studies on the effects of antisense RNA ( asRNA ) on the reproduction of type 5 adenovirus in cultured monkey Cos I cells...The asRNA was targeted against the EIA region of the adenoviral genome, which has a key role in the regulation of other adenoviral genes. A...recombinant vector designated ppS- NEO containing Moloney leukemia genome was employed in the synthesis of asRNA , as well as recom- binant plasmid ppA in

  19. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  20. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays.

    PubMed

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D; Chorro, Laurent; Carlin, Leo M; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S

    2013-02-19

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.

  1. Novel Cocaine Vaccine Linked to a Disrupted Adenovirus Gene Transfer Vector Blocks Cocaine Psychostimulant and Reinforcing Effects

    PubMed Central

    Wee, Sunmee; Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Moreno, Amira Y; Kaminsky, Stephen M; Janda, Kim D; Crystal, Ronald G; Koob, George F

    2012-01-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexanoic acid). Three groups of rats were immunized with dAd5GNE. One group was injected with 3H-cocaine, and radioactivity in the blood and brain was determined. A second group was tested for cocaine-induced locomotor sensitization. A third group was examined for cocaine self-administration, extinction, and reinstatement of responding for cocaine. Antibody titers were determined at various time-points. In each experiment, we added a control group that was immunized with dAd5 without a hapten. The vaccination with dAd5GNE produced long-lasting high titers (>105) of anti-cocaine antibodies in all of the rats. The vaccination inhibited cocaine-induced hyperlocomotor activity and sensitization. Vaccinated rats acquired cocaine self-administration, but they showed less motivation to self-administer cocaine under a progressive-ratio schedule than control rats. When cocaine was not available in a session, control rats exhibited ‘extinction burst' responding, whereas vaccinated rats did not. Moreover, when primed with cocaine, vaccinated rats did not reinstate responding, suggesting a blockade of cocaine-seeking behavior. These data strongly suggest that our dAd5GNE vector-based vaccine may be effective in treating cocaine abuse and addiction. PMID:21918504

  2. Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects.

    PubMed

    Wee, Sunmee; Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Moreno, Amira Y; Kaminsky, Stephen M; Janda, Kim D; Crystal, Ronald G; Koob, George F

    2012-04-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexanoic acid). Three groups of rats were immunized with dAd5GNE. One group was injected with (3)H-cocaine, and radioactivity in the blood and brain was determined. A second group was tested for cocaine-induced locomotor sensitization. A third group was examined for cocaine self-administration, extinction, and reinstatement of responding for cocaine. Antibody titers were determined at various time-points. In each experiment, we added a control group that was immunized with dAd5 without a hapten. The vaccination with dAd5GNE produced long-lasting high titers (>10(5)) of anti-cocaine antibodies in all of the rats. The vaccination inhibited cocaine-induced hyperlocomotor activity and sensitization. Vaccinated rats acquired cocaine self-administration, but they showed less motivation to self-administer cocaine under a progressive-ratio schedule than control rats. When cocaine was not available in a session, control rats exhibited 'extinction burst' responding, whereas vaccinated rats did not. Moreover, when primed with cocaine, vaccinated rats did not reinstate responding, suggesting a blockade of cocaine-seeking behavior. These data strongly suggest that our dAd5GNE vector-based vaccine may be effective in treating cocaine abuse and addiction.

  3. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP

    PubMed Central

    Rampling, Tommy; Ewer, Katie J.; Bowyer, Georgina; Bliss, Carly M.; Edwards, Nick J.; Wright, Danny; Payne, Ruth O.; Venkatraman, Navin; de Barra, Eoghan; Snudden, Claudia M.; Poulton, Ian D.; de Graaf, Hans; Sukhtankar, Priya; Roberts, Rachel; Ivinson, Karen; Weltzin, Rich; Rajkumar, Bebi-Yassin; Wille-Reece, Ulrike; Lee, Cynthia K.; Ockenhouse, Christian F.; Sinden, Robert E.; Gerry, Stephen; Lawrie, Alison M.; Vekemans, Johan; Morelle, Danielle; Lievens, Marc; Ballou, Ripley W.; Cooke, Graham S.; Faust, Saul N.; Gilbert, Sarah; Hill, Adrian V. S.

    2016-01-01

    Background. The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. Method. Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara–vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. Results. No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. Conclusions. The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. Clinical Trials Registration. NCT01883609. PMID:27307573

  4. Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation.

    PubMed

    Kuball, Jürgen; Wen, Shu Fen; Leissner, Joachim; Atkins, Derek; Meinhardt, Patricia; Quijano, Erlinda; Engler, Heidrun; Hutchins, Beth; Maneval, Daniel C; Grace, Michael J; Fritz, Mary Ann; Störkel, Stefan; Thüroff, Joachim W; Huber, Christoph; Schuler, Martin

    2002-02-15

    To study safety, feasibility, and biologic activity of adenovirus-mediated p53 gene transfer in patients with bladder cancer. Twelve patients with histologically confirmed bladder cancer scheduled for cystectomy were treated on day 1 with a single intratumoral injection of SCH 58500 (rAd/p53) at cystoscopy at one dose level (7.5 x 10(11) particles) or a single intravesical instillation of SCH 58500 with a transduction-enhancing agent (Big CHAP) at three dose levels (7.5 x 10(11) to 7.5 x 10(13) particles). Cystectomies were performed in 11 patients on day 3, and transgene expression, vector distribution, and biologic markers of transgene activity were assessed by molecular and immunohistochemical methods in tumors and normal bladder samples. Specific transgene expression was detected in tissues from seven of eight assessable patients treated with intravesical instillation of SCH 58500 but in none of three assessable patients treated with intratumoral injection of SCH 58500. Induction of RNA and protein expression of the p53 target gene p21/WAF1 was demonstrated in samples from patients treated with SCH 58500 instillation at higher dose levels. Distribution studies after intravesical instillation of SCH 58500 revealed both high transduction efficacy and vector penetration throughout the whole urothelium and into submucosal tumor cells. No dose-limiting toxicity was observed, and side effects were local and of transient nature. Intravesical instillation of SCH 58500 combined with a transduction-enhancing agent is safe, feasible, and biologically active in patients with bladder cancer. Studies to evaluate the clinical efficacy of this treatment in patients with localized high-risk bladder cancer are warranted.

  5. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP.

    PubMed

    Rampling, Tommy; Ewer, Katie J; Bowyer, Georgina; Bliss, Carly M; Edwards, Nick J; Wright, Danny; Payne, Ruth O; Venkatraman, Navin; de Barra, Eoghan; Snudden, Claudia M; Poulton, Ian D; de Graaf, Hans; Sukhtankar, Priya; Roberts, Rachel; Ivinson, Karen; Weltzin, Rich; Rajkumar, Bebi-Yassin; Wille-Reece, Ulrike; Lee, Cynthia K; Ockenhouse, Christian F; Sinden, Robert E; Gerry, Stephen; Lawrie, Alison M; Vekemans, Johan; Morelle, Danielle; Lievens, Marc; Ballou, Ripley W; Cooke, Graham S; Faust, Saul N; Gilbert, Sarah; Hill, Adrian V S

    2016-09-01

    The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara-vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. NCT01883609. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  6. Safety profile of a replication-deficient human adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle.

    PubMed

    Barrera, J; Brake, D A; Kamicker, B J; Purcell, C; Kaptur, R; Schieber, T; Lechtenberg, K; Miller, T D; Ettyreddy, D; Brough, D E; Butman, B T; Colby, M; Neilan, J G

    2018-04-01

    The safety of a replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was evaluated in five independent safety studies. The target animal safety studies were designed in compliance with United States (U.S.) regulatory requirements (Title 9, U.S. Code of Federal Regulation [9CFR]) and international standard guidelines (VICH Topic GL-44) for veterinary live vaccines. The first three studies were conducted in a total of 22 vaccinees and demonstrated that the AdtA24 master seed virus (MSV) was safe, did not revert to virulence and was not shed or spread from vaccinees to susceptible cattle or pigs. The fourth safety study conducted in 10 lactating cows using an AdtA24 vaccine serial showed that the vaccine was completely absent from milk. The fifth safety study was conducted under typical U.S. production field conditions in 500 healthy beef and dairy cattle using two AdtA24 vaccine serials. These results demonstrated that the vaccine was safe when used per the product label recommendations. Additional data collected during these five studies confirmed that AdtA24 vaccinees developed FMDV A24 and the HAd5 vaccine vector serum neutralization antibodies that test negative in a FMDV non-structural protein antibody test, confirming AdtA24 vaccine's capability to differentiate infected from vaccinated animals (DIVA). In conclusion, results from this comprehensive set of cattle studies demonstrated the safety of the replication-deficient AdtA24 vaccine and fulfilled safety-related requirements for U.S. regulatory requirements. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  7. Detection of neuroendocrine tumors using promoter-specific secreted Gaussia luciferase.

    PubMed

    Tseng, Alan Wei-Shun; Akerstrom, Victoria; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-01-01

    Accurate detection of neuroendocrine (NE) tumors is critically important for better prognosis and treatment outcomes in patients. To demonstrate the efficacy of using an adenoviral vector for the detection of NE tumors, we have constructed a pair of adenoviral vectors which, in combination, can conditionally replicate and release Gaussia luciferase into the circulation after infecting the NE tumors. The expression of these two vectors is regulated upstream by an INSM1-promoter (insulinoma-associated-1) that is specifically active in NE tumors and developing NE tissues, but silenced in normal adult tissues. In order to retain the tumor-specificity of the INSM1 promoter, we have modified the promoter using the core insulator sequence from the chicken β-globin HS4 insulator and the neuronal restrictive silencing element (NRSE). This modified INSM1-promoter can retain NE tumor specificity in an adenoviral construct while driving a mutated adenovirus E1A gene (∆24E1A), the Metridia, or Gaussia luciferase gene. The in vitro cell line and mouse xenograft human tumor studies revealed the NE specificity of the INSM1-promoter in NE lung cancer, neuroblastoma, medulloblastoma, retinoblastoma, and insulinoma. When we combined the INSM1-promoter driven Gaussia luciferase with ∆24E1A, the co-infected NE tumor secreted higher levels of Gaussia luciferase as compared to the INSM1p-Gaussia virus alone. In a mouse subcutaneous xenograft tumor model, the combination viruses secreted detectable level of Gaussia luciferase after infecting an INSM1-positive NE lung tumor for ≥12 days. Therefore, the INSM1-promoter specific conditional replicating adenovirus represents a sensitive diagnostic tool to aid clinicians in the detection of NE tumors.

  8. Adenovirus-mediated human paraoxonase1 gene transfer to provide protection against the toxicity of the organophosphorus pesticide toxicant diazoxon.

    PubMed

    Duysen, E G; Parikh, K; Aleti, V; Manne, V; Lockridge, O; Chilukuri, N

    2011-03-01

    Human paraoxonase1 (hPON1) is a potential therapeutic against the toxicity of organophosphorus (OP) pesticides and chemical warfare nerve agents. We tested whether PON1 gene transfer using adenovirus provides protection against the toxicity of the OP diazoxon. Using an adenovirus construct containing hPON1 gene, we showed elevated levels of recombinant hPON1 in vitro in 293A cells and in vivo in mice. The recombinant enzyme was secreted by 293A cells into culture medium and into the systemic circulation of mice. Western blotting revealed that the virally expressed hPON1 had the expected molecular weight of 45 kDa. Recombinant hPON1 in mice was in complex with mouse high-density lipoprotein (HDL) and migrated more slowly than endogenous hPON1 in the human HDL complex. Mice injected with adenovirus expressed PON1 at 600-3480 U ml(-1) on day 5 post-treatment, which is 8-50-fold above endogenous. Six mice expressing hPON1 survived 2LD(50) doses of diazoxon. Four of the six mice survived a second dose of diazoxon (for a total of 4LD(50)) administered 24 h later. In contrast, none of the three mice in the control group survived one 2LD(50) dose. These results show that hPON1 in mice functions as a prophylactic and offers significant protection against lethal doses of diazoxon.

  9. Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy.

    PubMed

    Chen, Jianhua; Gao, Pei; Yuan, Sujing; Li, Rongxin; Ni, Aimin; Chu, Liang; Ding, Li; Sun, Ying; Liu, Xin-Yuan; Duan, Yourong

    2016-12-27

    Oncolytic adenovirus (Onco Ad ) is a promising therapeutic agent for treating cancer. However, the therapeutic potential of Onco Ad is hindered by hepatic sequestration and the host immune response in vivo. Here, we constructed a PEG/Lipids/calcium phosphate (CaP)-Onco Ad (PLC-Onco Ad ) delivery system for ZD55-IL-24, an oncolytic adenovirus that carries the IL-24 gene. The negatively charged PLC-ZD55-IL-24 were disperse and resisted serum-induced aggregation. Compared to naked ZD55-IL-24, the systemic administration of PLC-ZD55-IL-24 in BALB/c mice resulted in reduced liver sequestration and systemic toxicity and evaded the innate immune response. In addition, masking the surface of Onco Ad protected it from neutralization by pre-existing neutralizing antibody. PLC-Onco Ad achieved efficient targeted delivery in Huh-7-bearing nude mice, and intravenous administration of a high dose of PLC-ZD55-IL-24 increased therapeutic efficacy without inducing toxicity. The developed PLC-Onco Ad delivery system represents a promising improvement for oncolytic adenovirus-based cancer gene therapy in vivo.

  10. Pre-Clinical Development of a Recombinant, Replication-Competent Adenovirus Serotype 4 Vector Vaccine Expressing HIV-1 Envelope 1086 Clade C

    PubMed Central

    Alexander, Jeff; Mendy, Jason; Vang, Lo; Avanzini, Jenny B.; Garduno, Fermin; Manayani, Darly J.; Ishioka, Glenn; Farness, Peggy; Ping, Li-Hua; Swanstrom, Ronald; Parks, Robert; Liao, Hua-Xin; Haynes, Barton F.; Montefiori, David C.; LaBranche, Celia; Smith, Jonathan; Gurwith, Marc; Mayall, Tim

    2013-01-01

    Background There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. Methods The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. Results Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. Conclusions The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials. PMID:24312658

  11. Antigen presentation by MART-1 adenovirus-transduced interleukin-10-polarized human monocyte-derived dendritic cells

    PubMed Central

    Mehrotra, Shikhar; Chhabra, Arvind; Chakraborty, Abolokita; Chattopadhyay, Subhasis; Slowik, Mark; Stevens, Robert; Zengou, Ryan; Mathias, Clinton; Butterfield, Lisa H; Dorsky, David I; Economou, James S; Mukherji, Bijay; Chakraborty, Nitya G

    2004-01-01

    Dendritic cells (DC) play critical roles in generating an immune response and in inducing tolerance. Diverse microenvironmental factors can ‘polarize’ DC toward an immunogenic or non-immunogenic phenotype. Among the various microenvironmental factors, interleukin-10 (IL-10) exhibits a potent immunosuppressive effect on antigen-presenting cells (APC). Here, we show that monocyte-derived DC generated in the presence of IL-10 exhibit a profound down-regulation of many genes that are associated with immune activation and show that the IL-10-grown DC are poor stimulators of CD8+ T cells in a strictly autologous and major histocompatibility complex (MHC) class I-restricted melanoma antigen recognized by T cells (MART-1) epitope presentation system. However, these IL-10-grown DC can efficiently activate the epitope-specific CD8+ T cells when they are made to present the epitope following transduction with an adenoviral vector expressing the MART-1 antigen. In addition, we show that the MART-1 protein colocalizes with the MHC class I protein, equally well, in the iDC and in the DC cultured in presence of IL-10 when both DC types are infected with the viral vector. We also show that the vector transduced DC present the MART-127–35 epitope for a sustained period compared to the peptide pulsed DC. These data suggest that although DCs generated in the presence of IL-10 tend to be non-immunogenic, they are capable of processing and presenting an antigen when the antigen is synthesized within the DC. PMID:15554925

  12. Selective Modification of Adenovirus Replication Can Be Achieved through Rational Mutagenesis of the Adenovirus Type 5 DNA Polymerase

    PubMed Central

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek

    2012-01-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates. PMID:22811532

  13. Germline incorporation of a replication-defective adenoviral vector in mice does not alter immune responses to adenoviral vectors.

    PubMed

    Camargo, F D; Huey-Louie, D A; Finn, A V; Sassani, A B; Cozen, A E; Moriwaki, H; Schneider, D B; Agah, R; Dichek, D A

    2000-11-01

    The utility of adenoviral vectors is limited by immune responses to adenoviral antigens. We sought to develop immune-competent mice in which the immune response to adenoviral antigens was selectively absent. To do so, we generated mice that were transgenic for a replication-defective vector. Adenoviral antigens might be seen as self-antigens by these mice, and the mice could exhibit immunologic tolerance after postnatal exposure to adenoviral vectors. In addition, characterization of these mice could reveal potential consequences of germline transmission of an adenoviral vector, as might occur in a gene therapy trial. Injection of a "null" (not containing a transgene) E1, E3-deleted vector genome into mouse zygotes yielded five founders that were capable of transmitting the vector genome. Among offspring of these mice, transgenic pups were significantly underrepresented: 108 of 255 pups (42%) were transgenic (P<0.02 versus expected frequency of 50%). Postnatal transgenic mice, however, had no apparent abnormalities. Persistence of an adenoviral vector after intravenous injection was equivalent in livers of transgenic mice and their nontransgenic littermates. Transgenic and nontransgenic mice also had equivalent humoral and cellular immune responses to adenoviral vector injection. Mice that are transgenic for an E1, E3-deleted adenoviral genome can be easily generated; however, they are not tolerant of adenovirus. Moreover, germline transmission of an adenoviral vector genome does not prevent generation of a robust immune response after exposure to adenoviral antigens.

  14. Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor.

    PubMed Central

    Ding, J; McGrath, W J; Sweet, R M; Mangel, W F

    1996-01-01

    The three-dimensional structure of the human adenovirus-2 proteinase complexed with its 11 amino acid cofactor, pVIc, was determined at 2.6 A resolution by X-ray crystallographic analysis. The fold of this protein has not been seen before. However, it represents an example of either subtly divergent or powerfully convergent evolution, because the active site contains a Cys-His-Glu triplet and oxyanion hole in an arrangement similar to that in papain. Thus, the adenovirus proteinase represents a new, fifth group of enzymes that contain catalytic triads. pVIc, which extends a beta-sheet in the main chain, is distant from the active site, yet its binding increases the catalytic rate constant 300-fold for substrate hydrolysis. The structure reveals several potential targets for antiviral therapy. Images PMID:8617222

  15. Adenoviral Gene Therapy Vectors Targeted to Prostate Cancer

    DTIC Science & Technology

    2004-06-01

    results from pre- clinical models into clinical trials . This problem has also been highlighted in Ad5 capsid mutation studies. Mutation of CAR and integrin...infectious eye disease in hospitals and eye 21. Harnett, G. B., and W. A. Newnham. 1981. Isolation of adenovirus type 19 clinics , from the male and female...promi- units or of large cDNAs such as the 7.1-kb ABCR gene nent in iris and ciliary body, with scattered positive cells involved in Stargardt disease

  16. SIV Infection-mediated Changes in Gastrointestinal Bacterial Microbiome and Virome are Associated With Immunodeficiency and Prevented by Vaccination

    PubMed Central

    Handley, Scott A.; Desai, Chandni; Zhao, Guoyan; Droit, Lindsay; Monaco, Cynthia L.; Schroeder, Andrew C.; Nkolola, Joseph P.; Norman, Megan E.; Miller, Andrew D.; Wang, David; Barouch, Dan H.; Virgin, Herbert W.

    2016-01-01

    SUMMARY AIDS caused by simian immunodeficiency virus (SIV) infection is associated with gastrointestinal disease, systemic immune activation and, in cross sectional studies, changes in the enteric virome. Here we performed a longitudinal study of a vaccine cohort to define the natural history of changes in the fecal metagenome in SIV-infected monkeys. Matched rhesus macaques were either uninfected or intrarectally challenged with SIV, with a subset receiving the Ad26 vaccine, an adenovirus vector expressing the viral Env/Gag/Pol antigens. Progression of SIV infection to AIDS was associated with increased detection of potentially pathogenic viruses and bacterial enteropathogens. Specifically, adenoviruses were associated with an increased incidence of gastrointestinal disease and AIDS-related mortality. Viral and bacterial enteropathogens were largely absent from animals protected by the vaccine. These data suggest that the SIV-associated gastrointestinal disease is associated with the presence of both viral and bacterial enteropathogens and protection against SIV infection by vaccination prevents enteropathogen emergence. PMID:26962943

  17. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    PubMed

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Vaccination with recombinant adenoviruses expressing Ebola virus glycoprotein elicits protection in the interferon alpha/beta receptor knock-out mouse.

    PubMed

    O'Brien, Lyn M; Stokes, Margaret G; Lonsdale, Stephen G; Maslowski, David R; Smither, Sophie J; Lever, Mark S; Laws, Thomas R; Perkins, Stuart D

    2014-03-01

    The resistance of adult immunocompetent mice to infection with ebolaviruses has led to the development of alternative small animal models that utilise immunodeficient mice, for example the interferon α/β receptor knock-out mouse (IFNR(-/-)). IFNR(-/-) mice have been shown to be susceptible to infection with ebolaviruses by multiple routes but it is not known if this murine model is suitable for testing therapeutics that rely on the generation of an immune response for efficacy. We have tested recombinant adenovirus vectors for their ability to protect IFNR(-/-) mice from challenge with Ebola virus and have analysed the humoral response generated after immunisation. The recombinant vaccines elicited good levels of protection in the knock-out mouse and the antibody response in IFNR(-/-) mice was similar to that observed in vaccinated wild-type mice. These results indicate that the IFNR(-/-) mouse is a relevant small animal model for studying ebolavirus-specific therapeutics. Copyright © 2014. Published by Elsevier Inc.

  19. Potency of a thermostabilised chimpanzee adenovirus Rift Valley Fever vaccine in cattle.

    PubMed

    Dulal, Pawan; Wright, Daniel; Ashfield, Rebecca; Hill, Adrian V S; Charleston, Bryan; Warimwe, George M

    2016-04-29

    Development of safe and efficacious vaccines whose potency is unaffected by long-term storage at ambient temperature would obviate major vaccine deployment hurdles and limit wastage associated with breaks in the vaccine cold chain. Here, we evaluated the immunogenicity of a novel chimpanzee adenovirus vectored Rift Valley Fever vaccine (ChAdOx1-GnGc) in cattle, following its thermostabilisation by slow desiccation on glass fiber membranes in the non-reducing sugars trehalose and sucrose. Thermostabilised ChAdOx1-GnGc vaccine stored for 6 months at 25, 37 or 45 ° C elicited comparable Rift Valley Fever virus neutralising antibody titres to those elicited by the 'cold chain' vaccine (stored at -80 ° C throughout) at the same dose, and these were within the range associated with protection against Rift Valley Fever in cattle. The results support the use of sugar-membrane thermostabilised vaccines in target livestock species. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Adenovirus Small E1A Employs the Lysine Acetylases p300/CBP and Tumor Suppressor Rb to Repress Select Host Genes and Promote Productive Virus Infection

    PubMed Central

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A.; Nava, Miguel; Su, Trent; Yousef, Ahmed F.; Zemke, Nathan R.; Pellegrini, Matteo; Kurdistani, Siavash K.; Berk, Arnold J.

    2015-01-01

    SUMMARY Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGFβ-, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. PMID:25525796

  1. A Method for Visualization of Incoming Adenovirus Chromatin Complexes in Fixed and Living Cells

    PubMed Central

    Komatsu, Tetsuro; Dacheux, Denis; Kreppel, Florian; Nagata, Kyosuke; Wodrich, Harald

    2015-01-01

    Inside the adenovirus virion, the genome forms a chromatin-like structure with viral basic core proteins. Core protein VII is the major DNA binding protein and was shown to remain associated with viral genomes upon virus entry even after nuclear delivery. It has been suggested that protein VII plays a regulatory role in viral gene expression and is a functional component of viral chromatin complexes in host cells. As such, protein VII could be used as a maker to track adenoviral chromatin complexes in vivo. In this study, we characterize a new monoclonal antibody against protein VII that stains incoming viral chromatin complexes following nuclear import. Furthermore, we describe the development of a novel imaging system that uses Template Activating Factor-I (TAF-I/SET), a cellular chromatin protein tightly bound to protein VII upon infection. This setup allows us not only to rapidly visualize protein VII foci in fixed cells but also to monitor their movement in living cells. These powerful tools can provide novel insights into the spatio-temporal regulation of incoming adenoviral chromatin complexes. PMID:26332038

  2. E1(-)E4(+) adenoviral gene transfer vectors function as a "pro-life" signal to promote survival of primary human endothelial cells.

    PubMed

    Ramalingam, R; Rafii, S; Worgall, S; Brough, D E; Crystal, R G

    1999-05-01

    Although endothelial cells are quiescent and long-lived in vivo, when they are removed from blood vessels and cultured in vitro they die within days to weeks. In studies of the interaction of E1(-)E4(+) replication-deficient adenovirus (Ad) vectors and human endothelium, the cells remained quiescent and were viable for prolonged periods. Evaluation of these cultures showed that E1(-)E4(+) Ad vectors provide an "antiapoptotic" signal that, in association with an increase in the ratio of Bcl2 to Bax levels, induces the endothelial cells to enter a state of "suspended animation," remaining viable for at least 30 days, even in the absence of serum and growth factors. Although the mechanisms initiating these events are unclear, the antiapoptoic signal requires the presence of E4 genes in the vector genome, suggesting that one or more E4 open reading frames of subgroup C Ad initiate a "pro-life" program that modifies cultured endothelial cells to survive for prolonged periods.

  3. Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents

    PubMed Central

    Del Papa, Joshua; Parks, Robin J.

    2017-01-01

    Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics. PMID:28106842

  4. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients.

    PubMed

    Zhao, Hua; Xu, Can; Luo, Xiaoli; Wei, Feng; Wang, Ning; Shi, Huiying; Ren, Xiubao

    2018-01-01

    Since the preclinical results about chimpanzee adenovirus serotype-68 (AdC68)-based vaccine showed an encouraging results, it reminded us that AdC68 may be a suitable cancer vaccine vector. Previous study indicated that the seroprevalence of neutralizing antibodies (NAbs) against adenovirus was different between cancer patients and healthy volunteers. Knowledge regarding the prevalence rates of AdC68 NAbs for cancer patients is lacking. Therefore, assessing the preexistence of NAbs against AdC68 in cancer patients could provide useful insights for developing future AdC68-based cancer vaccines. In this study, 440 patients with different pathological types of tumors and 204 healthy adult volunteers were enrolled to evaluate the NAbs against AdC68 and human adenovirus serotype-5 (AdHu5). The seroprevalence of NAbs against AdC68 was much lower than that against AdHu5 in cancer subjects (43.64 vs. 67.05%, P  < 0.01). The seroprevalence rates of NAbs to AdC68 in the cancer subjects were statistically higher than those detected in the healthy adult volunteers (43.64 vs. 23.53%, P  = 0.000). The seroprevalence rates of AdC68 NAbs were much lower in lung, laryngeal, esophageal, and cervical cancer patients compared with oropharyngeal, colon, and rectal cancer patients. Furthermore, the seroprevalence rates of AdC68 NAbs were much lower in lung adenocarcinoma patients than in lung squamous cell carcinoma patients (35.00 vs. 70.00%, P  < 0.05). No significant difference in the AdC68 NAbs among patients with different clinical stages of cancer was detected. The percentage of NAbs against AdC68 was significantly lower than that against AdHu5 ( P  < 0.05) in stage-I, -II, and -III cancer patients. No significant difference between the percentage of NAbs against AdC68 and AdHu5 in the subjects with stage-IV cancer was detected. The study also demonstrated the distribution of AdHu5 and AdC68 NAb titers for the positive samples. It showed that very low NAb titers against AdC68 with respect to AdHu5 in both healthy subjects and cancer subjects, especially in lung, laryngeal, esophageal, gastric, and cervical carcinomas. Also, the titer of NAbs against AdC68 was significantly lower than that against AdHu5 in the same clinical stage and age group ( P  < 0.05). Taken together, the present study showed that NAbs against AdC68 is much lower than AdHu5, especially in lung adenocarcinoma, laryngeal cancer, esophageal cancer, and cervical cancer patients. These results provided strong support for candidating AdC68 as a suitable vector of cancer vaccines.

  5. Induction of mesenchymal cell phenotypes in lung epithelial cells by adenovirus E1A.

    PubMed

    Behzad, A R; Morimoto, K; Gosselink, J; Green, J; Hogg, J C; Hayashi, S

    2006-12-01

    Epithelial-mesenchymal transformation is now recognised as an important feature of tissue remodelling. The present report concerns the role of adenovirus infection in inducing this transformation in an animal model of chronic obstructive pulmonary disease. Guinea pig primary peripheral lung epithelial cells (PLECs) transfected with adenovirus E1A (E1A-PLECs) were compared to guinea pig normal lung fibroblasts (NLFs) transfected with E1A (E1A-NLFs). These cells were characterised by PCR, immunocytochemistry, electron microscopy, and Western and Northern blot analyses. Electrophoretic mobility shift assays were performed in order to examine nuclear factor (NF)-kappaB and activator protein (AP)-1 binding activities. E1A-PLECs and E1A-NLFs positive for E1A DNA, mRNA and protein expressed cytokeratin and vimentin but not smooth muscle alpha-actin. Both exhibited cuboidal morphology and junctional complexes, but did not contain lamellar bodies or express surfactant protein A, B or C mRNAs. These two cell types differed, however, in their NF-kappaB and AP-1 binding after lipopolysaccharide stimulation, possibly due to differences in the expression of the subunits that comprise these transcriptional complexes. E1A transfection results in the transformation of peripheral lung epithelial cells and normal lung fibroblasts to a phenotype intermediate between that of the two primary cells. It is postulated that this intermediate phenotype may play a major role in the remodelling of the airways in chronic obstructive pulmonary disease associated with persistence of adenovirus E1A DNA.

  6. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice.

    PubMed

    Zinn, Kurt R; Chaudhuri, Tandra R; Krasnykh, Victor N; Buchsbaum, Donald J; Belousova, Natalya; Grizzle, William E; Curiel, David T; Rogers, Buck E

    2002-05-01

    To compare two systems for assessing gene transfer to cancer cells and xenograft tumors with noninvasive gamma camera imaging. A replication-incompetent adenovirus encoding the human type 2 somatostatin receptor (hSSTr2) and the herpes simplex virus thymidine kinase (TK) enzyme (Ad-hSSTr2-TK) was constructed. A-427 human lung cancer cells were infected in vitro and mixed with uninfected cells at different ratios. A-427 tumors in nude mice (n = 23) were injected with 1 x 10(6) to 5 x 10(8) plaque-forming units (pfu) of Ad-hSSTr2-TK. The expressed hSSTr2 and TK proteins were imaged owing to internally bound, or trapped, technetium 99m ((99m)Tc)-labeled hSSTr2-binding peptide (P2045) and radioiodinated 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl-5-iodouracil (FIAU), respectively. Iodine 125 ((125)I)-labeled FIAU was used in vitro and iodine 131 ((131)I)-labeled FIAU, in vivo. The (99m)Tc-labeled P2045 and (125)I- or (131)I-labeled FIAU were imaged simultaneously with different window settings with an Anger gamma camera. Treatment effects were tested with analysis of variance. Infected cells in culture trapped (125)I-labeled FIAU and (99m)Tc-labeled P2045; uptake correlated with the percentage of Ad-hSSTr2-TK-positive cells. For 100% of infected cells, 24% +/- 0.4 (mean +/- SD) of the added (99m)Tc-labeled P2045 was trapped, which is significantly lower (P <.05) than the 40% +/- 2 of (125)I-labeled FIAU that was trapped. For the highest Ad-hSSTr2-TK tumor dose (5 x 10(8) pfu), the uptake of (99m)Tc-labeled P2045 was 11.1% +/- 2.9 of injected dose per gram of tumor (thereafter, dose per gram), significantly higher (P <.05) than the uptake of (131)I-labeled FIAU at 1.6% +/- 0.4 dose per gram. (99m)Tc-labeled P2045 imaging consistently depicted hSSTr2 gene transfer in tumors at all adenovirus doses. Tumor uptake of (99m)Tc-labeled P2045 positively correlated with Ad-hSSTr2-TK dose; (131)I-labeled FIAU tumor uptake did not correlate with vector dose. The hSSTr2 and TK proteins were simultaneously imaged following dual gene transfer with an adenovirus vector. Copyright RSNA, 2002

  7. Immunogenicity of adenovirus vaccines expressing the PCV2 capsid protein in pigs.

    PubMed

    Li, Delong; Du, Qian; Wu, Bin; Li, Juejun; Chang, Lingling; Zhao, Xiaomin; Huang, Yong; Tong, Dewen

    2017-08-24

    Porcine circovirus type 2 (PCV2) is the main pathogen of porcine circovirus associated disease (PCVAD), causing great economic losses in pig industry. In previous study, we constructed adenovirus vector vaccines expressing PCV2 Cap either modified with Intron A and WPRE, or CD40L and GMCSF, and evaluated all of these vaccines in mice and in pigs. Although Ad-A-C-W and Ad-CD40L-Cap-GMCSF could induce stronger immune responses than Ad-Cap, neither of them was better than commercial inactivated vaccine PCV2 SH-strain. In this study, secretory recombinant adenoviruses (Ad-A-spCap-W and Ad-A-spCD40L-spCap-spGMCSF-W) and non-secretory recombinant adenovirus Ad-A-CD40L-Cap-GMCSF-W were constructed, and identified by western blot and confocal laser microscope observation. The results of ELISA and VN showed that humoral immune responses induced by Ad-A-spCap-W and Ad-A-CD40L-Cap-GMCSF-W were not significantly different from SH-strain, but Ad-A-spCD40L-spCap-spGMCSF-W could induce significantly higher humoral immune response than SH-strain. Lymphocytes proliferative and cytokines releasing levels of Ad-A-spCap-W and Ad-A-CD40L-Cap-GMCSF-W were not significantly different from SH-strain, but Ad-A-spCD40L-spCap-spGMCSF-W was significantly higher than SH-strain. PCV2-challenge experiment showed that virus loads were significantly reduced in Ad-A-spCD40L-spCap-spGMCSF-W vaccinated group, and no obviously clinical and microscopic lesions were observed in Ad-A-spCD40L-spCap-spGMCSF-W vaccinated group. Altogether, these results demonstrate that recombinant adenovirus vaccine Ad-A-spCD40L-spCap-spGMCSF-W induces stronger immune responses and provides better protection than commercial inactivated vaccine PCV2 SH-strain, and suggest that Ad-A-spCD40L-spCap-spGMCSF-W could be a potential vaccine candidate against PCVAD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    PubMed

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and other cancers, who are not sensitive to chemotherapy, radiotherapy, or who lost their chance for surgical treatment. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. An avian cell line designed for production of highly attenuated viruses.

    PubMed

    Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker

    2009-01-29

    Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.

  10. HIV vaccines: new frontiers in vaccine development.

    PubMed

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  11. A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition.

    PubMed

    Bagheri, Neda; Shiina, Marisa; Lauffenburger, Douglas A; Korn, W Michael

    2011-02-01

    Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions, are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to dramatically improve non-surgical cancer treatment, especially in locally advanced or metastatic cases where treatment options remain limited.

  12. p53 adenoviral vector (Ad-CMV-p53) induced prostatic growth inhibition of primary cultures of human prostate and an experimental rat model.

    PubMed

    Shirakawa, T; Gotoh, A; Gardner, T A; Kao, C; Zhang, Z J; Matsubara, S; Wada, Y; Hinata, N; Fujisawa, M; Hanioka, K; Matsuo, M; Kamidono, S

    2000-01-01

    Benign prostatic hyperplasia (BPH) is the most common proliferative disease affecting men. Numerous minimally invasive technologies are being developed or are currently in use to obviate the need for transurethral surgery. The goal of the present study was to develop a novel molecular based approach for the treatment of BPH using recombinant p53 adenoviral vector. The over-expression of wt-p53 can cause cell apoptosis or cell growth arrest, thus preventing the uncontrolled cell proliferation underlying BPH pathophysiology. Ad-CMV-p53, a replication-deficient recombinant adenovirus containing cytomegalovirus promoter driving p53 gene, was used. Human prostate stromal (PS) cells were evaluated for apoptosis (TUNEL assay), mRNA levels of key cell cycle regulators influencing apoptosis (p-53, Bax and Bcl-2) using quantitative RT-PCR and cytotoxicity after Ad-CMV-p53. Ad-CMV-p53 was unilaterally injected into rat ventral prostates and growth inhibition was measured by prostate weight 3 weeks after injection. In vitro exposure to Ad-CMV-p53 significantly inhibited the proliferation of PS cells, induced mRNA over-expression of both wt-p53 and Bax, and increased the proportion of apoptotic cells. A 30% decrease in average prostate weight was demonstrated in rodents after Ad-CMV-p53 injection. The results suggest that further investigation of molecular gene therapy with recombinant wt-p53 adenovirus for the treatment of BPH is warranted.

  13. Adenoviral production of interleukin-2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy.

    PubMed

    Santos, Joao Manuel; Havunen, Riikka; Siurala, Mikko; Cervera-Carrascon, Víctor; Tähtinen, Siri; Sorsa, Suvi; Anttila, Marjukka; Karell, Pauliina; Kanerva, Anna; Hemminki, Akseli

    2017-10-01

    Systemic high dose interleukin-2 (IL-2) postconditioning has long been utilized in boosting the efficacy of T cells in adoptive cell therapy (ACT) of solid tumors. The resulting severe off-target toxicity of these regimens renders local production at the tumor an attractive concept with possible safety gains. We evaluated the efficacy and safety of intratumorally administered IL-2-coding adenoviruses in combination with tumor-infiltrating lymphocyte therapy in syngeneic Syrian hamsters bearing HapT1 pancreatic tumors and with T cell receptor transgenic ACT in B16.OVA melanoma bearing C57BL/6 mice. The models are complementary: hamsters are semi-permissive for human oncolytic adenovirus, whereas detailed immunological analyses are possible in mice. In both models, local production of IL-2 successfully replaced the need for systemic recombinant IL-2 (rIL-2) administration and increased the efficacy of the cell therapy. Furthermore, vectored delivery of IL-2 significantly enhanced the infiltration of CD8+ T cells, M1-like macrophages, and B-cells while systemic rIL-2 increased CD25 + FoxP3+ T cells at the tumor. In contrast with vectored delivery, histopathological analysis of systemic rIL-2-treated animals revealed significant changes in lungs, livers, hearts, spleens, and kidneys. In summary, local IL-2 production results in efficacy and safety gains in the context of ACT. These preclinical assessments provide the rationale for ongoing clinical translation. © 2017 UICC.

  14. Configurations of a two-tiered amplified gene expression system in adenoviral vectors designed to improve the specificity of in vivo prostate cancer imaging

    PubMed Central

    Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L

    2009-01-01

    Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574

  15. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig

    PubMed Central

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-01-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  16. Development of renal-targeted vectors through combined in vivo phage display and capsid engineering of adenoviral fibers from serotype 19p.

    PubMed

    Denby, Laura; Work, Lorraine M; Seggern, Dan J Von; Wu, Eugene; McVey, John H; Nicklin, Stuart A; Baker, Andrew H

    2007-09-01

    The potential efficacy of gene delivery is dictated by the infectivity profile of existing vectors, which is often restrictive. In order to target cells and organs for which no efficient vector is currently available, a promising approach would be to engineer vectors with novel transduction profiles. Applications that involve injecting adenovirus (Ad) vectors into the bloodstream require that native tropism for the liver be removed, and that targeting moieties be engineered into the capsid. We previously reported that pseudotyping the Ad serotype 5 fiber for that of Ad19p results in reduced hepatic transduction. In this study we show that this may be caused, at least in part, by a reduction in the capacity of the Ad19p-based virus to bind blood coagulation factors. It is therefore a potential candidate for vector retargeting, focusing on the kidney as a therapeutic target. We used in vivo phage display in rats, and identified peptides HTTHREP and HITSLLS that homed to the kidneys following intravenous injection. We engineered the HI loop of Ad19p to accommodate peptide insertions and clones. Intravenous delivery of each peptide-modified virus resulted in selective renal targeting, with HTTHREP and HITSLLS-targeted viruses selectively transducing tubular epithelium and glomeruli, respectively. Our study has important implications for the use of genetic engineering of Ad fibers to produce targeted gene delivery vectors.

  17. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines

    PubMed Central

    Bish, Lawrence T.; Sleeper, Meg M.; Brainard, Benjamin; Cole, Stephen; Russell, Nicholas; Withnall, Elanor; Arndt, Jason; Reynolds, Caryn; Davison, Ellen; Sanmiguel, Julio; Wu, Di; Gao, Guangping; Wilson, James M.; Sweeney, H. Lee

    2011-01-01

    Achieving efficient cardiac gene transfer in a large animal model has proven to be technically challenging. Prior strategies have employed cardio-pulmonary bypass or dual catheterization with the aid of vasodilators to deliver vectors, such as adenovirus, adeno-associated virus or plasmid DNA. While single stranded adeno-associated virus vectors have shown the greatest promise, they suffer from delayed expression, which might be circumvented by using self-complementary vectors. We sought to optimize cardiac gene transfer using a percutaneous transendocardial injection catheter to deliver adeno-associated virus vectors to the canine myocardium. Four vectors were evaluated—single stranded adeno-associated virus 9, self-complementary adeno-associated virus 9, self-complementary adeno-associated virus 8, self-complementary adeno-associated virus 6—so that comparison could be made between single stranded and self complementary vectors as well as among serotypes 9, 8, and 6. We demonstrate that self-complementary adeno-associated virus is superior to single stranded adeno-associated virus and that adeno-associated virus 6 is superior to other serotypes evaluated. Biodistribution studies revealed that vector genome copies were 15 to 4000 times more abundant in the heart than in any other organ for self-complementary adeno-associated virus 6. Percutaneous transendocardial injection of self-complementary adeno-associated virus 6 is a safe, effective method for achieving efficient cardiac gene transfer. PMID:18813281

  18. Vaccines against Botulism.

    PubMed

    Sundeen, Grace; Barbieri, Joseph T

    2017-09-02

    Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin.

  19. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia.

    PubMed

    Tufail, Yusuf; Cook, Daniela; Fourgeaud, Lawrence; Powers, Colin J; Merten, Katharina; Clark, Charles L; Hoffman, Elizabeth; Ngo, Alexander; Sekiguchi, Kohei J; O'Shea, Clodagh C; Lemke, Greg; Nimmerjahn, Axel

    2017-02-08

    Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Vaccines against Botulism

    PubMed Central

    Sundeen, Grace; Barbieri, Joseph T.

    2017-01-01

    Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin. PMID:28869493

  1. Poxvirus-vectored vaccines for rabies--a review.

    PubMed

    Weyer, Jacqueline; Rupprecht, Charles E; Nel, Louis H

    2009-11-27

    Oral rabies vaccination of target reservoir species has proved to be one of the pillars of successful rabies elimination programs. The use of live attenuated rabies virus vaccines has been extensive but several limitations hamper its future use. A recombinant vaccinia-rabies vaccine has also been successfully used for the oral vaccination of several species. Nevertheless, its lack of efficacy in certain important rabies reservoirs and concerns on the use of this potent live virus as vaccine carrier (vector) impair the expansion of its use for new target species and new areas. Several attenuated and host-restricted poxvirus alternatives, which supposedly offer enhanced safety, have been investigated. Once again, efficacy in certain target species and innocuity through the oral route remain major limitations of these vaccines. Alternative recombinant vaccines using adenovirus as an antigen delivery vector have been extensively investigated and may provide an important addition to the currently available oral rabies vaccine repertoire, but are not the primary subject of this review.

  2. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons

    PubMed Central

    Morral, Núria; O’Neal, Wanda; Rice, Karen; Leland, Michele; Kaplan, Johanne; Piedra, Pedro A.; Zhou, Heshan; Parks, Robin J.; Velji, Rizwan; Aguilar-Córdova, Estuardo; Wadsworth, Samuel; Graham, Frank L.; Kochanek, Stefan; Carey, K. Dee; Beaudet, Arthur L.

    1999-01-01

    The efficiency of first-generation adenoviral vectors as gene delivery tools is often limited by the short duration of transgene expression, which can be related to immune responses and to toxic effects of viral proteins. In addition, readministration is usually ineffective unless the animals are immunocompromised or a different adenovirus serotype is used. Recently, adenoviral vectors devoid of all viral coding sequences (helper-dependent or gutless vectors) have been developed to avoid expression of viral proteins. In mice, liver-directed gene transfer with AdSTK109, a helper-dependent adenoviral (Ad) vector containing the human α1-antitrypsin (hAAT) gene, resulted in sustained expression for longer than 10 months with negligible toxicity to the liver. In the present report, we have examined the duration of expression of AdSTK109 in the liver of baboons and compared it to first-generation vectors expressing hAAT. Transgene expression was limited to approximately 3–5 months with the first-generation vectors. In contrast, administration of AdSTK109 resulted in transgene expression for longer than a year in two of three baboons. We have also investigated the feasibility of circumventing the humoral response to the virus by sequential administration of vectors of different serotypes. We found that the ineffectiveness of readministration due to the humoral response to an Ad5 first-generation vector was overcome by use of an Ad2-based vector expressing hAAT. These data suggest that long-term expression of transgenes should be possible by combining the reduced immunogenicity and toxicity of helper-dependent vectors with sequential delivery of vectors of different serotypes. PMID:10536005

  3. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. Trial Registration ClinicalTrials.govNCT00870987. PMID:23457473

  4. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    PubMed

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection.

    PubMed

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A; Nava, Miguel; Su, Trent; Yousef, Ahmed F; Zemke, Nathan R; Pellegrini, Matteo; Kurdistani, Siavash K; Berk, Arnold J

    2014-11-12

    Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGF-β, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer

    DOE PAGES

    Xu, Weidong; Neill, Thomas; Yang, Yuefeng; ...

    2014-12-11

    In an effort to develop a new therapy for prostate cancer bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/β- catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels, and inhibited tumor cell migration. To examine the anti-tumor response of Ad.dcn, PC-3-luc cells were inoculated in the left heart ventricle tomore » establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum TRACP 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia, and an increase in the animal survival. Finally, based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for prostate cancer bone metastasis.« less

  7. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy

    PubMed Central

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-01-01

    Despite adenovirus (Ad) vector’s numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. PMID:26437261

  8. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    PubMed

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  9. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis.

    PubMed

    Xing, Zhou; McFarland, Christine T; Sallenave, Jean-Michel; Izzo, Angelo; Wang, Jun; McMurray, David N

    2009-06-10

    Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n), AdAg85A intramuscularly (i.m), BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb). At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge. Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials.

  10. Systemic Delivery of Oncolytic Adenoviruses Targeting Transforming Growth Factor-β Inhibits Established Bone Metastasis in a Prostate Cancer Mouse Model

    PubMed Central

    Hu, Zebin; Gupta, Janhavi; Zhang, Zhenwei; Gerseny, Helen; Berg, Arthur; Chen, Yun Ju; Zhang, Zhiling; Du, Hongyan; Brendler, Charles B.; Xiao, Xianghui; Pienta, Kenneth J.; Guise, Theresa; Lee, Chung; Stern, Paula H.; Stock, Stuart

    2012-01-01

    Abstract We have examined whether Ad.sTβRFc and TAd.sTβRFc, two oncolytic viruses expressing soluble transforming growth factor-β receptor II fused with human Fc (sTGFβRIIFc), can be developed to treat bone metastasis of prostate cancer. Incubation of PC-3 and DU-145 prostate tumor cells with Ad.sTβRFc and TAd.sTβRFc produced sTGFβRIIFc and viral replication; sTGFβRIIFc caused inhibition of TGF-β-mediated SMAD2 and SMAD3 phosphorylation. Ad(E1-).sTβRFc, an E1– adenovirus, produced sTGFβRIIFc but failed to replicate in tumor cells. To examine the antitumor response of adenoviral vectors, PC-3-luc cells were injected into the left heart ventricle of nude mice. On day 9, mice were subjected to whole-body bioluminescence imaging (BLI). Mice bearing hind-limb tumors were administered viral vectors via the tail vein on days 10, 13, and 17 (2.5×1010 viral particles per injection per mouse, each injection in a 0.1-ml volume), and subjected to BLI and X-ray radiography weekly until day 53. Ad.sTβRFc, TAd.sTβRFc, and Ad(E1-).sTβRFc caused significant inhibition of tumor growth; however, Ad.sTβRFc was the most effective among all the vectors. Only Ad.sTβRFc and TAd.sTβRFc inhibited tumor-induced hypercalcemia. Histomorphometric and synchrotron micro-computed tomographic analysis of isolated bones indicated that Ad.sTβRFc induced significant reduction in tumor burden, osteoclast number, and trabecular and cortical bone destruction. These studies suggest that Ad.sTβRFc and TAd.sTβRFc can be developed as potential new therapies for prostate cancer bone metastasis. PMID:22551458

  11. Molecular design for recombinant adeno-associated virus (rAAV) vector production.

    PubMed

    Aponte-Ubillus, Juan Jose; Barajas, Daniel; Peltier, Joseph; Bardliving, Cameron; Shamlou, Parviz; Gold, Daniel

    2018-02-01

    Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 10 3 to 10 5 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization.Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.

  12. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A., E-mail: mab@mayo.ed

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereasmore » Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.« less

  13. Localization of neutralization epitopes on adenovirus fiber knob from species C.

    PubMed

    Lang, Shuai; Wang, Lizheng; Wang, Zixuan; Zhu, Rui; Yan, Jingyi; Wang, Baoming; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Zhou, Yan; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-04-01

    Although potential neutralization epitopes on the fiber knob of adenovirus (AdV) serotype 2 (Ad2) and Ad5 have been revealed, few studies have been carried out to identify neutralization epitopes on the knob from a broader panel of AdV serotypes. In this study, based on sequence and structural analysis of knobs from Ad1, Ad2, Ad5 and Ad6 (all from species C), several trimeric chimeric knob proteins were expressed in Escherichia coli to identify the locations of neutralization epitopes on the knobs by analysing their reactivity with mouse and rabbit polyclonal sera raised against AdVs and human sera with natural AdV infection. The dominant neutralization epitopes were located mainly in the N-terminal part of knobs from Ad1, Ad2 and Ad5, but they seemed to be located in the C-terminal part of the Ad6 knob, with some individual differences in rabbit and human populations. Our study adds to our understanding of humoral immune responses to AdVs and will facilitate the construction of more desirable capsid-modified recombinant Ad5 vectors.

  14. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome.

    PubMed

    Weiss, Yoram G; Maloyan, Alina; Tazelaar, John; Raj, Nichelle; Deutschman, Clifford S

    2002-09-01

    The acute respiratory distress syndrome (ARDS) provokes three pathologic processes: unchecked inflammation, interstitial/alveolar protein accumulation, and destruction of pulmonary epithelial cells. The highly conserved heat shock protein HSP-70 can limit all three responses but is not appropriately expressed in the lungs after cecal ligation and double puncture (2CLP), a clinically relevant model of ARDS. We hypothesize that restoring expression of HSP-70 using adenovirus-mediated gene therapy will limit pulmonary pathology following 2CLP. We administered a vector containing the porcine HSP-70 cDNA driven by a CMV promoter (AdHSP) into the lungs of rats subjected to 2CLP or sham operation. Administration of AdHSP after either sham operation or 2CLP increased HSP-70 protein expression in lung tissue, as determined by immunohistochemistry and Western blot hybridization. Administration of AdHSP significantly attenuated interstitial and alveolar edema and protein exudation and dramatically decreased neutrophil accumulation, relative to a control adenovirus. CLP-associated mortality at 48 hours was reduced by half. Modulation of HSP-70 production reduces pathologic changes and may improve outcome in experimental ARDS.

  15. Three-year serologic immunity against canine parvovirus type 2 and canine adenovirus type 2 in dogs vaccinated with a canine combination vaccine.

    PubMed

    Larson, L J; Schultz, R D

    2007-01-01

    A group of client-owned dogs and a group of dogs at a commercial kennel were evaluated for duration of antibody responses against canine parvovirus type 2 (CPV-2) and canine adenovirus type 1 (CAV-1) after receiving a combination vaccine containing recombinant canarypox-vectored canine distemper virus (CDV) and modified-live CPV-2, CAV-2, and canine parainfluenza virus, with (C6) or without (C4) two serovars of Leptospira (Recombitek C4 or C6, Merial). Duration of antibody, which correlates with protective immunity, was found to be at least 36 months in both groups. Recombitek combination vaccines can confidently be given every 3 years with assurance of protection in immunocompetent dogs against CPV-2 and CAV-1 as well as CDV. This allows this combination vaccine, like other, similar modified- live virus combination products containing CDV, CAV-2, and CPV-2, to be administered in accordance with the recommendations of the American Animal Hospital Association Canine Vaccine Task Force.

  16. Structure, function and dynamics in adenovirus maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangel, Walter F.; San Martín, Carmen

    2014-11-21

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core ismore » more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. In conclusion, possible roles for maturation of the terminal protein are discussed.« less

  17. Mechanism of inhibition of adenovirus DNA replication by the acyclic nucleoside triphosphate analogue (S)-HPMPApp: influence of the adenovirus DNA binding protein.

    PubMed Central

    Mul, Y M; van Miltenburg, R T; De Clercq, E; van der Vliet, P C

    1989-01-01

    The acyclic adenosine analogue (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [S]-HPMPA) is a potent and selective inhibitor of adenovirus (Ad) replication in cell culture. We studied the mechanism of inhibition using a reconstituted in vitro DNA replication system. The diphosphoryl derivative (S)-HPMPApp, but not (S)-HPMPA, inhibited the DNA replication of origin containing fragments strongly. The inhibitory effect was exerted at the level of elongation, while initiation was resistant to the drug. Remarkably, the elongation of short strands was only slightly impaired, while inhibition was maximal upon synthesis of long DNA fragments. (S)-HPMPApp appeared to be competitive with dATP, suggesting that the Ad DNA polymerase is the prime target for the drug. We purified the Ad DNA polymerase in complex to the precursor terminal protein to homogeneity from cells infected with overproducing recombinant vaccinia viruses. Employing gapped DNA or poly(dT).oligo(dA) templates, only a weak inhibition was observed. However, inhibition was strongly enhanced in the presence of the adenovirus DNA binding protein (DBP). We interpret this to mean that the increased processivity of the polymerization reaction in the presence of DBP leads to increased drug sensitivity. Images PMID:2587248

  18. Use of adenovirus as a model system to illustrate a simple method using standard equipment and inexpensive excipients to remove live virus dependence on the cold-chain.

    PubMed

    Stewart, M; Ward, S J; Drew, J

    2014-05-19

    Thermolability of complex biological molecules is a major consideration for the long-term maintenance of titer during periods of storage. The development of a simple, cost effective method for long term storage of virus samples, which maintains viral titer would prove useful for a wide variety of applications including the preservation of viral vaccines, and is paramount for alleviating the reliance upon the cold chain. We have investigated the potential use of a method adapted for this purpose originating from a natural mechanism used by plants which helps to maintain the integrity of seeds, enabling them to overcome extensive periods of temperature elevation and desiccation. As maturation of a seed progresses, many complex biological macromolecules are laid down which maintain the germination potential. Sucrose and raffinose (in addition to other oligosaccharides) are commonly found to accumulate. In addition highly charged protein molecules accumulate, Late Embryogenesis Abundant (LEA) proteins, reaching their maximal level when the seed is most desiccation and thermally tolerant, and indeed are among the first molecules to be lost when germination is initiated. We have examined the potential use of sucrose and raffinose in concert with chemical replacements for the LEA, which when dried with the active product forms an amorphous solid able to maintain the titer of infectious Adenovirus at elevated temperatures for extended periods, in the case of lyophilized presentations several months at 37 °C, or as liquid, stability for several weeks at 37 °C was achieved. We demonstrate that after embedding the active product in the matrix, the viral titer is preserved even at temperatures for relatively extended periods at temperatures significantly greater than ambient. In addition we believe that these results could open the way for a new type of vaccine which we refer to as a hybrid stability vaccine, whereby for the first time the same excipient components are used to confer stability in both liquid and solid forms (albeit at different concentrations) which may ultimately result in a stable vaccine which has a very high stability index whilst dry, whereas upon reconstitution using nothing more than WFI at proscribed volumes, the vaccine would benefit from having much improved stability during the administration procedures. This paper describes the use of Adenovirus (itself fast becoming a vector of choice for a new generation of vaccines) as a model system, and identifies non-toxic, inexpensive excipients which are compatible with current manufacturing processes which could be instrumental in removing the dependence upon the cold chain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  20. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  1. Adenovirus Vector E4 Gene Regulates Connexin 40 and 43 Expression in Endothelial Cells via PKA and PI3K Signal Pathways

    PubMed Central

    Zhang, Fan; Cheng, Joseph; Lam, George; Jin, David K.; Vincent, Loïc; Hackett, Neil R.; Wang, Shiyang; Young, Lauren M.; Hempstead, Barbara; Crystal, Ronald G.; Rafii, Shahin

    2010-01-01

    Connexins (Cxs) provide a means for intercellular communication and play important roles in the pathophysiology of vascular cardiac diseases. Infection of endothelial cells (ECs) with first-generation E1/E3-deleted E4+ adenovirus (AdE4+) selectively modulates the survival and angiogenic potential of ECs by as of yet unrecognized mechanisms. We show here that AdE4+ vectors potentiate Cx expression in ECs in vitro and in mouse heart tissue. Infection of ECs with AdE4+, but not AdE4−, resulted in a time- and dose-dependent induction of junctional Cx40 expression and suppression of Cx43 protein and mRNA expression. Treatment of ECs with PKA inhibitor H89 or PI3K inhibitor LY294002 prevented the AdE4+-mediated regulation of Cx40 and Cx43 that was associated with diminished AdE4+-mediated survival of ECs. Moreover, both PKA activity and cAMP-response element (CRE)-binding activity were enhanced by treatment of ECs with AdE4+. However, there is no causal evidence of a cross-talk between the 2 modulatory pathways, PKA and PI3K. Remarkably, Cx40 immunostaining was markedly increased and Cx43 was decreased in the heart tissue of mice treated with intratracheal AdE4+. Taken together, these results suggest that AdE4+ may play an important role in the regulation of Cx expression in ECs, and that these effects are mediated by both the PKA/CREB and PI3K signaling pathways. PMID:15831817

  2. Adenovirus vector covalently conjugated to polyethylene glycol with a cancer-specific promoter suppresses the tumor growth through systemic administration.

    PubMed

    Yao, Xinglei; Yoshioka, Yasuo; Morishige, Tomohiro; Eto, Yusuke; Narimatsu, Shogo; Mizuguchi, Hiroyuki; Mukai, Yohei; Okada, Naoki; Nakagawa, Shinsaku

    2010-01-01

    Cancer gene therapy with adenovirus vectors (Adv) is limited to local administration because systemic administration of Adv produces a weak therapeutic effect and severe side effects. Previously, we generated a dual cancer-specific Adv system by using Adv covalently conjugated to polyethylene glycol (PEG) for transductional targeting and the telomere reverse transcriptase (TERT) promoter as a cancer-specific promoter for transcriptional targeting (PEG-Ad-TERT). We demonstrated that systemic administration of PEG-Ad-TERT showed superior antitumor effects against lung metastatic cancer with negligible side effects. Here, we investigated the therapeutic efficacy of systemic administration of PEG-Ad-TERT for the treatment of primary tumors. We first evaluated the transgene expression of PEG-Ad-TERT containing the luciferase gene (PEG-Ad-TERT/Luc) in primary tumors. Systemic administration of PEG-Ad-TERT/Luc resulted high transgene expression, similar to that observed in tumors for the conventional cytomegalovirus (CMV) promoter-driven Adv containing the luciferase gene (Ad-CMV/Luc). By comparison, transgene expression was 2500-fold lower than that of Ad-CMV/Luc in liver. We then examined the therapeutic effect of systemic administration of PEG-Ad-TERT containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk) for the treatment of primary tumors. We showed that PEG-Ad-TERT/HSVtk produced a notable antitumor effect against primary tumors with negligible side effects. These results demonstrated that PEG-Ad-TERT can be regarded as a prototype Adv with suitable efficacy and safety for systemic cancer gene therapy against both metastatic and primary tumors.

  3. Analysis of Foxo1-regulated genes using Foxo1-deficient pancreatic β cells.

    PubMed

    Miyazaki, Satsuki; Minamida, Rie; Furuyama, Tatsuo; Tashiro, Fumi; Yamato, Eiji; Inagaki, Shinobu; Miyazaki, Jun-ichi

    2012-09-01

    Several reports have suggested that Foxo1, a key regulator in differentiation, growth and metabolism, is involved in pancreatic β-cell function. However, detailed analyses have been hampered by a lack of Foxo1-deficient β cells. To elucidate Foxo1's function in β cells, we produced a β-cell line with inducible Foxo1 deletion. We generated a conditional knockout mouse line, in which Cre recombinase deletes the Foxo1 gene. We then established a β-cell line from an insulinoma induced in this knockout mouse by the β-cell-specific expression of simian virus 40 T antigen. In this cell line, designated MIN6-Foxo1flox/flox, adenovirus-mediated Cre expression ablates the Foxo1 gene, generating MIN6-Foxo1-KO cells. Using these knockout and floxed cell lines, we found that Foxo1 ablation enhanced the glucose-stimulated insulin secretion (GSIS) at high glucose concentrations and enhanced β-cell proliferation. We also conducted DNA microarray analyses of MIN6-Foxo1-KO cells infected with either an adenovirus vector expressing a constitutively active FOXO1 or a control vector and identified several Foxo1-regulated genes, including some known to be related to β-cell function. These cells should be useful for further studies on Foxo1's roles in β-cells and may lead to novel strategies for treating the impaired insulin secretion in type 2 diabetes mellitus. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Wiley Publishing Ltd.

  4. S1 of distinct IBV population expressed from recombinant adenovirus confers protection against challenge.

    PubMed

    Toro, H; Zhang, J F; Gallardo, R A; van Santen, V L; van Ginkel, F W; Joiner, K S; Breedlove, C

    2014-06-01

    Protective properties of three distinct infectious bronchitis virus (IBV) Ark Delmarva poultry industry (ArkDPI) S1 proteins encoded from replication-defective recombinant adenovirus vectors were investigated. Using a suboptimal dose of each recombinant virus, we demonstrated that IBV S1 amino acid sequences showing > or = 95.8% amino acid identity to the S1 of the challenge strain differed in their ability at conferring protection. Indeed, the S1 sequence of the IBV population previously designated C4 (AdIBVS1.C4), which protected the most poorly, differs from the S1 sequence of population C2 (AdIBVS1.C2), which provided the highest protection, only at amino acid position 56. The fact that a change in one amino acid in this region significantly altered the induction of a protective immune response against this protein provides evidence that the first portion of S1 displays relevant immunoprotective epitopes. Use of an optimal dose of AdIBVS1.C2 effectively protected chickens from clinical signs and significantly reduced viral load after IBV Ark virulent challenge. Moreover, increased numbers of both IgA and IgG IBV-specific antibody secreting lymphocytes were detected in the spleen after challenge. The increased response detected for both IgA and IgG lymphocytes after challenge might be explained by vaccine-induced B memory cells. The fact that a single vaccination with Ad/IBVS1.C2 provides protection against IBV challenge is promising, because Ad-vectored vaccines can be mass delivered by in ovo inoculation using automated in ovo injectors.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Shunying; Chen Yundai; Li Libing

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrastmore » echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 +- 9.01 vs. 41.94 +- 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 +- 1303 vs. 1667 +- 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 +- 1084 vs. 1566 +- 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.« less

  6. Transduction of rat pancreatic islets with pseudotyped adeno-associated virus vectors

    PubMed Central

    Craig, Anthony T; Gavrilova, Oksana; Dwyer, Nancy K; Jou, William; Pack, Stephanie; Liu, Eric; Pechhold, Klaus; Schmidt, Michael; McAlister, Victor J; Chiorini, John A; Blanchette-Mackie, E Joan; Harlan, David M; Owens, Roland A

    2009-01-01

    Background Pancreatic islet transplantation is a promising treatment for type I diabetes mellitus, but current immunosuppressive strategies do not consistently provide long-term survival of transplanted islets. We are therefore investigating the use of adeno-associated viruses (AAVs) as gene therapy vectors to transduce rat islets with immunosuppressive genes prior to transplantation into diabetic mice. Results We compared the transduction efficiency of AAV2 vectors with an AAV2 capsid (AAV2/2) to AAV2 vectors pseudotyped with AAV5 (AAV2/5), AAV8 (AAV2/8) or bovine adeno-associated virus (BAAV) capsids, or an AAV2 capsid with an insertion of the low density lipoprotein receptor ligand from apolipoprotein E (AAV2apoE), on cultured islets, in the presence of helper adenovirus infection to speed expression of a GFP transgene. Confocal microscopy and flow cytometry were used. The AAV2/5 vector was superior to AAV2/2 and AAV2/8 in rat islets. Flow cytometry indicated AAV2/5-mediated gene expression in approximately 9% of rat islet cells and almost 12% of insulin-positive cells. The AAV2/8 vector had a higher dependence on the helper virus multiplicity of infection than the AAV 2/5 vector. In addition, the BAAV and AAV2apoE vectors were superior to AAV2/2 for transducing rat islets. Rat islets (300 per mouse) transduced with an AAV2/5 vector harboring the immunosuppressive transgene, tgfβ1, retain the ability to correct hyperglycemia when transplanted into immune-deficient diabetic mice. Conclusion AAV2/5 vectors may therefore be useful for pre-treating donor islets prior to transplantation. PMID:19450275

  7. Detectable reporter gene expression following transduction of adenovirus and adeno-associated virus serotype 2 vectors within full-thickness osteoarthritic and unaffected canine cartilage in vitro and unaffected guinea pig cartilage in vivo.

    PubMed

    Santangelo, Kelly S; Baker, Sarah A; Nuovo, Gerard; Dyce, Jonathan; Bartlett, Jeffrey S; Bertone, Alicia L

    2010-02-01

    This study quantified and compared the transduction efficiencies of adenoviral (Ad), Arg-Gly-Asp (RGD)-modified Ad, adeno-associated viral serotype 2 (AAV2), and self-complementary AAV2 (scAAV2) vectors within full-thickness osteoarthritic (OA) and unaffected canine cartilage explants in vitro. Intraarticular administration of Ad and scAAV2 vectors was performed to determine the ability of these vectors to transduce unaffected guinea pig cartilage in vivo. Following explant exposure to vector treatment or control, the onset and surface distribution of reporter gene expression was monitored daily with fluorescent microscopy. At termination, explants were divided: one half was digested for analysis using flow cytometry; the remaining portion was used for histology and immunohistochemistry (IHC). Intact articular joints were collected for real-time RT-PCR and IHC to detect reporter gene expression following injection of selected vectors. Ad vector transduced focal areas along the perimeters of explants; the remaining vectors transduced chondrocytes across 100% of the surface. Greater mean transduction efficiencies were found with both AAV2 vectors as compared to the Ad vector (p < or = 0.026). Ad and Ad-RGD vectors transduced only superficial chondrocytes of OA and unaffected cartilage. Uniform reporter gene expression from AAV2 and scAAV2 was detected in the tangential and transitional zones of OA cartilage, but not deeper zones. AAV2 and scAAV2 vectors achieved partial and full-thickness transduction of unaffected cartilage. In vivo work revealed that scAAV2 vector, but not Ad vector, transduced deeper zones of cartilage and menisci. This study demonstrates that AAV2 and scAAV2 are reliable vectors for use in cartilage in vitro and in vivo. (c) 2009 Orthopaedic Research Society.

  8. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  9. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  10. Identification of a novel aviadenovirus, designated pigeon adenovirus 2 in domestic pigeons (Columba livia).

    PubMed

    Teske, L; Rubbenstroth, D; Meixner, M; Liere, K; Bartels, H; Rautenschlein, S

    2017-01-02

    The young pigeon disease syndrome (YPDS) affects mainly young pigeons of less than one year of age and leads to crop stasis, vomitus, diarrhea, anorexia and occasionally death. This disease is internationally a major health problem because of its seasonal appearance during competitions such as homing pigeon races or exhibitions of ornamental birds. While the etiology of YPDS is still unclear, adenoviruses are frequently discussed as potential causative agents. Electron microscopy of feces from a YPDS outbreak revealed massive shedding of adenovirus-like particles. Whole genome sequencing of this sample identified a novel adenovirus tentatively named pigeon adenovirus 2 (PiAdV-2). Phylogenetic and comparative genome analysis suggest PiAdV-2 to belong to a new species within the genus Aviadenovirus, for which we propose the name Pigeon aviadenovirus B. The PiAdV-2 genome shares 54.9% nucleotide sequence identity with pigeon adenovirus 1 (PiAdV-1). In a screening of further YPDS-affected flocks two variants of PiAdV-2 (variant A and B) were detected which shared 97.6% nucleotide identity of partial polymerase sequences, but only 79.7% nucleotide identity of partial hexon sequences. The distribution of both PiAdV-2 variants was further investigated in fecal samples collected between 2008 and 2015 from healthy or YPDS-affected racing pigeons of different lofts. Independent of their health status, approximately 20% of young and 13% of adult pigeon flocks harbored PiAdV-2 variants. Birds were free of PiAdV-1 or other aviadenoviruses as determined by PCRs targeting the aviadenovirus polymerase or the PiAdV-1 fiber gene, respectively. In conclusion, there is no indication of a correlation between YPDS outbreaks and the presence of PiAdV-2 or other aviadenoviruses, arguing against an causative role in this disease complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M

    2014-08-01

    Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.

  12. Complex matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    DOEpatents

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2014-02-11

    Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.

  13. "Triplet" polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors.

    PubMed

    Mathison, Megumi; Singh, Vivek P; Gersch, Robert P; Ramirez, Maricela O; Cooney, Austin; Kaminsky, Stephen M; Chiuchiolo, Maria J; Nasser, Ahmed; Yang, Jianchang; Crystal, Ronald G; Rosengart, Todd K

    2014-10-01

    The in situ reprogramming of cardiac fibroblasts into induced cardiomyocytes by the administration of gene transfer vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) has been shown to improve ventricular function in myocardial infarction models. The efficacy of this strategy could, however, be limited by the need for fibroblast targets to be infected 3 times--once by each of the 3 transgene vectors. We hypothesized that a polycistronic "triplet" vector encoding all 3 transgenes would enhance postinfarct ventricular function compared with use of "singlet" vectors. After validation of the polycistronic vector expression in vitro, adult male Fischer 344 rats (n=6) underwent coronary ligation with or without intramyocardial administration of an adenovirus encoding all 3 major vascular endothelial growth factor (VEGF) isoforms (AdVEGF-All6A positive), followed 3 weeks later by the administration to AdVEGF-All6A-positive treated rats of singlet lentivirus encoding G, M, or T (1×10(5) transducing units each) or the same total dose of a GMT "triplet" lentivirus vector. Western blots demonstrated that triplet and singlet vectors yielded equivalent GMT transgene expression, and fluorescence activated cell sorting demonstrated that triplet vectors were nearly twice as potent as singlet vectors in generating induced cardiomyocytes from cardiac fibroblasts. Echocardiography demonstrated that GMT triplet vectors were more effective than the 3 combined singlet vectors in enhancing ventricular function from postinfarct baselines (triplet, 37%±10%; singlet, 13%±7%; negative control, 9%±5%; P<.05). These data have confirmed that the in situ administration of G, M, and T induces postinfarct ventricular functional improvement and that GMT polycistronic vectors enhance the efficacy of this strategy. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  14. Virus immobilization on biomaterial scaffolds through biotin-avidin interaction for improving bone regeneration.

    PubMed

    Hu, Wei-Wen; Wang, Zhuo; Krebsbach, Paul H

    2016-02-01

    To spatially control therapeutic gene delivery for potential tissue engineering applications, a biotin-avidin interaction strategy was applied to immobilize viral vectors on biomaterial scaffolds. Both adenoviral vectors and gelatin sponges were biotinylated and avidin was applied to link them in a virus-biotin-avidin-biotin-material (VBABM) arrangement. The tethered viral particles were stably maintained within scaffolds and SEM images illustrated that viral particles were evenly distributed in three-dimensional (3D) gelatin sponges. An in vivo study demonstrated that transgene expression was restricted to the implant sites only and transduction efficiency was improved using this conjugation method. For an orthotopic bone regeneration model, adenovirus encoding BMP-2 (AdBMP2) was immobilized to gelatin sponges before implanting into critical-sized bone defects in rat calvaria. Compared to gelatin sponges with AdBMP2 loaded in a freely suspended form, the VBABM method enhanced gene transfer and bone regeneration was significantly improved. These results suggest that biotin-avidin immobilization of viral vectors to biomaterial scaffolds may be an effective strategy to facilitate tissue regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Clinical development of Ebola vaccines

    PubMed Central

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  16. Genetic modification of cells for transplantation.

    PubMed

    Lai, Yi; Drobinskaya, Irina; Kolossov, Eugen; Chen, Chunguang; Linn, Thomas

    2008-01-14

    Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.

  17. Image-aided Suicide Gene Therapy Utilizing Multifunctional hTERT-targeting Adenovirus for Clinical Translation in Hepatocellular Carcinoma.

    PubMed

    Kim, Yun-Hee; Kim, Kyung Tae; Lee, Sang-Jin; Hong, Seung-Hee; Moon, Ju Young; Yoon, Eun Kyung; Kim, Sukyoung; Kim, Eun Ok; Kang, Se Hun; Kim, Seok Ki; Choi, Sun Il; Goh, Sung Ho; Kim, Daehong; Lee, Seong-Wook; Ju, Mi Ha; Jeong, Jin Sook; Kim, In-Hoo

    2016-01-01

    Trans-splicing ribozyme enables to sense and reprogram target RNA into therapeutic transgene and thereby becomes a good sensing device for detection of cancer cells, judging from transgene expression. Previously we proposed PEPCK-Rz-HSVtk (PRT), hTERT targeting trans-splicing ribozyme (Rz) driven by liver-specific promoter phosphoenolpyruvate carboxykinase (PEPCK) with downstream suicide gene, herpes simplex virus thymidine kinase (HSVtk) for hepatocellular carcinoma (HCC) gene therapy. Here, we describe success of a re-engineered adenoviral vector harboring PRT in obtaining greater antitumor activity with less off-target effect for clinical application as a theranostics. We introduced liver-selective apolipoprotein E (ApoE) enhancer to the distal region of PRT unit to augment activity and liver selectivity of PEPCK promoter, and achieved better transduction into liver cancer cells by replacement of serotype 35 fiber knob on additional E4orf1-4 deletion of E1&E3-deleted serotype 5 back bone. We demonstrated that our refined adenovirus harboring PEPCK/ApoE-Rz-HSVtk (Ad-PRT-E) achieved great anti-tumor efficacy and improved ability to specifically target HCC without damaging normal hepatocytes. We also showed noninvasive imaging modalities were successfully employed to monitor both how well a therapeutic gene (HSVtk) was expressed inside tumor and how effectively a gene therapy took an action in terms of tumor growth. Collectively, this study suggests that the advanced therapeutic adenoviruses Ad-PRT-E and its image-aided evaluation system may lead to the powerful strategy for successful clinical translation and the development of clinical protocols for HCC therapy.

  18. Functional characterization of adenoviral/retroviral chimeric vectors and their use for efficient screening of retroviral producer cell lines.

    PubMed

    Duisit, G; Salvetti, A; Moullier, P; Cosset, F L

    1999-01-20

    We have generated three different E1-deleted replication-defective adenoviral vectors expressing either Moloney murine leukemia virus (Mo-MuLV) Gag-Pol core particle proteins, gibbon ape leukemia virus (GALV) envelope glycoproteins, or an MuLV-derived retroviral vector genome encoding mCD2 antigen, a murine cell surface marker easily detectable by flow cytometry. Each of the three vectors was first characterized individually by infection of cells providing the complementary retroviral function(s) and able to induce the production of retroviral vectors with an efficiency similar to or higher than that of FLY stable retroviral packaging cells [Cosset, F.-L., Takeuchi, Y., Battini, J.-L., Weiss, R.A., and Collins, M.K.L., (1995). J. Virol. 69, 7430-7436]. In small-scale pilot experiments, TE671 cells simultaneously coinfected with the three adenoviral vectors efficiently released helper-free retroviral vectors in their supernatant, with titers greater than 10(6) infectious particles per milliliter by end-point titrations. Our results also indicated that in contrast to retroviral vector-packageable RNAs, the adenovirus-mediated overexpression of both Gag-Pol and Env packaging functions had limited impact on retroviral titers. The primary mechanism suspected is the premature intracellular cleavage of the Pr65gag precursor that we found in gag-pol-expressing cells, which in turn may impair the normal incorporation of high loads of functional Env. Last, the characterization of the adenoviral/retroviral chimeric vectors allowed the screening of various primate cells for retroviral production and we found that three hepatocyte-derived cell lines were highly efficient in the assembly and release of infectious retroviral particles.

  19. Viruses - from pathogens to vaccine carriers.

    PubMed

    Small, Juliana C; Ertl, Hildegund C J

    2011-10-01

    Vaccination is mankind's greatest public health success story. By now vaccines to many of the viruses that once caused fatal childhood diseases are routinely used throughout the world. Traditional methods of vaccine development through inactivation or attenuation of viruses have failed for some of the most deadly human pathogens, necessitating new approaches. Genetic modification of viruses not only allows for their attenuation but also for incorporation of sequences from other viruses, turning one pathogen into a vaccine carrier for another. Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors based on adenovirus, herpesvirus, flavivirus, and rhabdovirus as examples.

  20. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    PubMed

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.

  1. Heterologous Prime-Boost Regimens with a Recombinant Chimpanzee Adenoviral Vector and Adjuvanted F4 Protein Elicit Polyfunctional HIV-1-Specific T-Cell Responses in Macaques

    PubMed Central

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation. PMID:25856308

  2. Characterization of a new adenovirus isolated from black-tailed deer in California.

    PubMed

    Lehmkuhl, H D; Hobbs, L A; Woods, L W

    2001-01-01

    An adenovirus associated with systemic and localized vascular damage was demonstrated by transmission electron microscopy and immunohistochemistry in a newly recognized epizootic hemorrhagic disease in California black-tailed deer. In this study, we describe the cultural, physicochemical and serological characteristics of a virus isolated from lung using neonatal white-tail deer lung and turbinate cell cultures. The virus had the cultural, morphological and physicochemical characteristics of members of the Adenoviridae family. The virus would not replicate in low passage fetal bovine, caprine or ovine cells. Antiserum to the deer adenovirus, strain D94-2569, neutralized bovine adenovirus type-6 (BAdV-6), BAdV-7, and caprine adenovirus type-1 (GAdV-1). Antiserum to BAdV-6 did not neutralize the deer adenovirus but antiserum to BAdV-7 and GAdV-1 neutralized the deer adenovirus. Cross-neutralization with the other bovine, caprine and ovine adenovirus species was not observed. Restriction endonuclease patterns generated for the deer adenovirus were unique compared to those for the currently recognized bovine, caprine and ovine adenovirus types. Amino acid sequence alignments of the hexon gene from the deer adenovirus strain D94-2569 indicate that it is a member of the proposed new genus (Atadenovirus) of the Adenoviridae family. While closely related antigenically to BAdV-7 and GAdV-1, the deer adenovirus appears sufficiently distinct culturally and molecularly to justify consideration as a new adenovirus type.

  3. Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection

    PubMed Central

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity. PMID:24349306

  4. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    PubMed

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression.

    PubMed

    Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A

    2015-11-01

    Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.

  6. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    PubMed

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  7. Protective Immunity Against a Lethal Respiratory Yersinia pestis Challenge Induced by V Antigen or the F1 Capsular Antigen Incorporated into Adenovirus Capsid

    PubMed Central

    Boyer, Julie L.; Sofer-Podesta, Carolina; Ang, John; Hackett, Neil R.; Chiuchiolo, Maria J.; Senina, Svetlana; Perlin, David

    2010-01-01

    Abstract The aerosol form of the bacterium Yersinia pestis causes pneumonic plague, a rapidly fatal disease that is a biothreat if deliberately released. At present, no plague vaccines are available for use in the United States, but subunit vaccines based on the Y. pestis V antigen and F1 capsular protein show promise when administered with adjuvants. In the context that adenovirus (Ad) gene transfer vectors have a strong adjuvant potential related to the ability to directly infect dendritic cells, we hypothesized that modification of the Ad5 capsid to display either the Y. pestis V antigen or the F1 capsular antigen on the virion surface would elicit high V antigen- or F1-specific antibody titers, permit boosting with the same Ad serotype, and provide better protection against a lethal Y. pestis challenge than immunization with equivalent amounts of V or F1 recombinant protein plus conventional adjuvant. We constructed AdYFP-pIX/V and AdLacZ-pIX/F1, E1–, E3– serotype 5 Ad gene transfer vectors containing a fusion of the sequence for either the Y. pestis V antigen or the F1 capsular antigen to the carboxy-terminal sequence of pIX, a capsid protein that can accommodate the entire V antigen (37 kDa) or F1 protein (15 kDa) without disturbing Ad function. Immunization with AdYFP-pIX/V followed by a single repeat administration of the same vector at the same dose resulted in significantly better protection of immunized animals compared with immunization with a molar equivalent amount of purified recombinant V antigen plus Alhydrogel adjuvant. Similarly, immunization with AdLacZ-pIX/F1 in a prime–boost regimen resulted in significantly enhanced protection of immunized animals compared with immunization with a molar-equivalent amount of purified recombinant F1 protein plus adjuvant. These observations demonstrate that Ad vaccine vectors containing pathogen-specific antigens fused to the pIX capsid protein have strong adjuvant properties and stimulate more robust protective immune responses than equivalent recombinant protein-based subunit vaccines administered with conventional adjuvant, suggesting that F1-and/or V-modified capsid Ad-based recombinant vaccines should be considered for development as anti-plague vaccines. PMID:20180652

  8. [Mechanism of protective effects of tumor necrosis factor receptor associated protein 1 on hypoxic cardiomyocytes of rats].

    PubMed

    Xiang, F; Zhang, D X; Ma, S Y; Huang, Y S

    2016-12-20

    Objective: To investigate the mechanism of protective effects of tumor necrosis factor receptor associated protein 1 (TRAP1) on hypoxic cardiomyocytes of rats. Methods: Primary cultured cardiomyocytes were obtained from neonatal Sprague-Dawley rats (aged 1 to 3 days) and then used in the following experiments. (1) Cells were divided into group TRAP1 and control group according to the random number table (the same grouping method below), and then the total protein of cells was extracted. Total protein of cells in group TRAP1 was added with mouse anti-rat TRAP1 monoclonal antibody, while that in control group was added with the same type of IgG from mouse. Co-immunoprecipitation and protein mass spectrography analysis were used to determine the possible proteins interacted with TRAP1. (2) Cells were divided into normoxia blank control group (NBC), normoxia+ TRAP1 interference control group (NTIC), normoxia+ TRAP1 interference group (NTI), normoxia+ TRAP1 over-expression control group (NTOC), and normoxia+ TRAP1 over-expression group (NTO), with 1 well in each group. Cells in group NBC were routinely cultured, while cells in the latter four groups were respectively added with TRAP1 RNA interference empty virus vector, TRAP1 RNA interference adenovirus vector, TRAP1 over-expression empty virus vector, and TRAP1 over-expression adenovirus vector. Another batch of cells were divided into group NBC, hypoxic blank control group (HBC), hypoxic+ TRAP1 interference control group (HTIC), hypoxic+ TRAP1 interference group (HTI), hypoxic+ TRAP1 over-expression control group (HTOC), and hypoxic+ TRAP1 over-expression group (HTO), with 1 well in each group. Cells in hypoxic groups were under hypoxic condition for 6 hours after being treated as those in the corresponding normoxia groups, respectively. The mRNA expression of cytochrome c oxidase subunit Ⅱ (COXⅡ) of cells in each group was detected by real time fluorescent quantitive reverse transcription polymerase chain reaction. Experiments were repeated for three times. (3) Cells were divided into group NBC, group HBC, group HTOC, group HTO, hypoxic+ TRAP1 over-expression+ COXⅡinterference control group (HTOCIC), and hypoxic+ TRAP1 over-expression+ COXⅡinterference group (HTOCI), with 3 wells in each group. Cells in the previous 4 groups were treated as those in experiment (2). Cells in group HTOCIC and HTOCI were respectively transfected with COXⅡ RNA interference empty virus vector and COXⅡ RNA interference adenovirus vector, and then both added with TRAP1 over-expression adenovirus vector. The proliferation activity of cells was determined by cell counting kit 8 and microplate reader, and the ratio of death cells was measured by propidium lodide and Hoechst 33342 staining. Another batch of cells were divided into group NBC, group HBC, group HTIC, group HTI, hypoxic+ TRAP1 interference+ COXⅡover-expression control group (HTICOC), and hypoxic+ TRAP1 interference+ COXⅡ over-expression group (HTICO), with 3 wells in each group. Cells in the previous 4 groups were treated as those in experiment (2). Cells in group HTICOC and HTICO were both transfected with TRAP1 RNA interference adenovirus vector, and then respectively added with COXⅡ over-expression empty virus vector and COXⅡ over-expression adenovirus vector. The proliferation activity of cells and the ratio of death cells were detected as before. Experiments were repeated for three times. Data were processed with one-way analysis of variance and LSD test. Results: (1) The expression of TRAP1 was found in cells of group TRAP1, while that was not found in cells of control group. The possible proteins interacted with TRAP1 were keratin, COXⅡ, and an unknown protein with predicted molecular weight 13×10 3 . (2) Compared with that in group NBC, the mRNA expression of COXⅡof cells had no significant change in group NTIC and group NTOC (with P values above 0.05), but significantly decreased in group NTI ( P <0.01), and significantly increased in group NTO ( P <0.01). Compared with that in group NBC, the mRNA expression of COXⅡof cells in group HBC was significantly decreased ( P <0.01). Compared with that in group HBC, the mRNA expression of COXⅡof cells had no significant change in group HTIC and group HTOC (with P values above 0.05), but significantly decreased in group HTI ( P <0.01), and significantly increased in group HTO ( P <0.01). (3) The proliferation activity of cells in group NBC, group HBC, group HTOC, group HTO, group HTOCIC, and group HTOCI was respectively 0.498±0.022, 0.303±0.018, 0.313±0.032, 0.456±0.031, 0.448±0.034, and 0.335±0.026, and the ratios of death cells in above groups were respectively (4.7±1.5)%, (24.7±3.1)%, (26.0±2.7)%, (13.3±2.5)%, (12.7±2.1)%, and (21.0±1.7)%. Compared with those in group NBC, the proliferation activity of cells in HBC was decreased, while the ratio of death cells was increased (with P values below 0.01). Compared with those in group HBC, the proliferation activity of cells and the ratio of death cells in group HTOC had no significant change (with P values above 0.05), while the proliferation activity of cells was increased and the ratio of death cells was decreased in group HTO (with P values below 0.01). Compared with those in group HTO, the proliferation activity of cells and the ratio of death cells in group HTOCIC had no significant change (with P values above 0.05), while the proliferation activity of cells was decreased and the ratio of death cells was increased in group HTOCI (with P values below 0.01). (4) The proliferation activity of cells in group NBC, group HBC, group HTIC, group HTI, group HTICOC, and group HTICO was respectively 0.444±0.025, 0.275±0.016, 0.283±0.021, 0.150±0.009, 0.135±0.011, and 0.237±0.017, and the ratios of death cells in above groups were respectively (3.7±0.6)%, (21.0±2.7)%, (20.3±3.1)%, (31.7±2.5)%, (33.3±3.2)%, and (19.3±1.5)%. Compared with those in group HBC, the proliferation activity of cells and the ratio of death cells in group HTIC had no significant change (with P values above 0.05). Compared with those in group HBC and group HTIC, the proliferation activity of cells was decreased and the ratio of death cells was significantly increased in group HTI (with P values below 0.01). Compared with those in group HTI, the proliferation activity of cells and the ratio of death cells in group HTICOC had no significant change (with P values above 0.05), while the proliferation activity of cells was increased and the ratio of death cells was significantly decreased in group HTICO (with P values below 0.01). Conclusions: TRAP1 can up-regulate the expression of COXⅡ mRNA, and COXⅡ is one of the downstream effector molecules that TRAP1 mediates its protective effects on hypoxic cardiomyocytes.

  9. pH-sensitive oncolytic adenovirus hybrid targeting acidic tumor microenvironment and angiogenesis

    PubMed Central

    Choi, Joung-Woo; Jung, Soo-Jung; Kasala, Dayananda; Hwang, June Kyu; Hu, Jun; Bae, You Han; Yun, Chae-Ok

    2015-01-01

    Although oncolytic adenoviruses (Ads) are an attractive option for cancer gene therapy, the intravenous administration of naked Ad still encounters unfavorable host responses, non-specific interactions, and heterogeneity in targeted cancer cells. To overcome these obstacles and achieve specific targeting of the tumor microenvironment, Ad was coated with the pH-sensitive block copolymer, methoxy poly(ethylene glycol)-b-poly(l-histidine-co-l-phenylalanine) (PEGbPHF). The physicochemical properties of the generated nanocomplex, Ad/PEGbPHF, were assessed. At pH 6.4, GFP-expressing Ad/PEGbPHF induced significantly higher GFP expression than naked Ad in both coxsackie and adenovirus receptor (CAR)-positive and -negative cells. To assess the therapeutic efficacy of the Ad/PEGbPHF complex platform, an oncolytic Ad expressing VEGF promoter-targeting transcriptional repressor (KOX) was used to form complexes. At pH 6.4, KOX/PEGbPHF significantly suppressed VEGF gene expression, cancer cell migration, vessel sprouting, and cancer cell killing effect compared to naked KOX or KOX/PEGbPHF at pH 7.4, demonstrating that KOX/PEGbPHF can overcome the lack of CAR that is frequently observed in tumor tissues. The antitumor activity of KOX/PEGbPHF systemically administered to a tumor xenograft model was significantly higher than that of naked KOX. Furthermore, KOX/PEGbPHF showed lower hepatic toxicity and did not induce an innate immune response against Ad. Altogether, these results demonstrate that pH-sensitive polymer-coated Ad complex significantly increases net positive charge upon exposure to hypoxic tumor microenvironment, allowing passive targeting to the tumor tissue. It may offer superior potential for systemic therapy, due to its improved tumor selectivity, increased therapeutic efficacy, and lower toxicity compared to naked KOX. PMID:25575865

  10. The complete genome sequence of human adenovirus 84, a highly recombinant new Human mastadenovirus D type with a unique fiber gene.

    PubMed

    Kaján, Győző L; Kajon, Adriana E; Pinto, Alexis Castillo; Bartha, Dániel; Arnberg, Niklas

    2017-10-15

    A novel human adenovirus was isolated from a pediatric case of acute respiratory disease in Panama City, Panama in 2011. The clinical isolate was initially identified as an intertypic recombinant based on hexon and fiber gene sequencing. Based on the analysis of its complete genome sequence, the novel complex recombinant Human mastadenovirus D (HAdV-D) strain was classified into a new HAdV type: HAdV-84, and it was designated Adenovirus D human/PAN/P309886/2011/84[P43H17F84]. HAdV-D types possess usually an ocular or gastrointestinal tropism, and respiratory association is scarcely reported. The virus has a novel fiber type, most closely related to, but still clearly distant from that of HAdV-36. The predicted fiber is hypothesised to bind sialic acid with lower affinity compared to HAdV-37. Bioinformatic analysis of the complete genomic sequence of HAdV-84 revealed multiple homologous recombination events and provided deeper insight into HAdV evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A quasi-atomic model of human adenovirus type 5 capsid

    PubMed Central

    Fabry, Céline M S; Rosa-Calatrava, Manuel; Conway, James F; Zubieta, Chloé; Cusack, Stephen; Ruigrok, Rob W H; Schoehn, Guy

    2005-01-01

    Adenoviruses infect a wide range of vertebrates including humans. Their icosahedral capsids are composed of three major proteins: the trimeric hexon forms the facets and the penton, a noncovalent complex of the pentameric penton base and trimeric fibre proteins, is located at the 12 capsid vertices. Several proteins (IIIa, VI, VIII and IX) stabilise the capsid. We have obtained a 10 Å resolution map of the human adenovirus 5 by image analysis from cryo-electron micrographs (cryoEMs). This map, in combination with the X-ray structures of the penton base and hexon, was used to build a quasi-atomic model of the arrangement of the two major capsid components and to analyse the hexon–hexon and hexon–penton interactions. The secondary proteins, notably VIII, were located by comparing cryoEM maps of native and pIX deletion mutant virions. Minor proteins IX and IIIa are located on the outside of the capsid, whereas protein VIII is organised with a T=2 lattice on the inner face of the capsid. The capsid organisation is compared with the known X-ray structure of bacteriophage PRD1. PMID:15861131

  12. Mesenchymal stem cells are efficiently transduced with adenoviruses bearing type 35-derived fibers and the transduced cells with the IL-28A gene produces cytotoxicity to lung carcinoma cells co-cultured.

    PubMed

    Suzuki, Takeo; Kawamura, Kiyoko; Li, Quanhai; Okamoto, Shinya; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Yamaguchi, Naoto; Tagawa, Masatoshi

    2014-09-25

    Transduction of human mesenchymal stem cells (MSCs) with type 5 adenoviruses (Ad5) is limited in the efficacy because of the poor expression level of the coxsackie adenovirus receptor (CAR) molecules. We examined a possible improvement of Ad-mediated gene transfer in MSCs by substituting the fiber region of type 5 Ad with that of type 35 Ad. Expression levels of CAR and CD46 molecules, which are the major receptors for type 5 and type 35 Ad, respectively, were assayed with flow cytometry. We constructed vectors expressing the green fluorescent protein gene with Ad5 or modified Ad5 bearing the type 35 fiber region (AdF35), and examined the infectivity to MSCs with flow cytometry. We investigated anti-tumor effects of MSCs transduced with interleukin (IL)-28A gene on human lung carcinoma cells with a colorimetric assay. Expression of IL-28A receptors was tested with the polymerase chain reaction. A promoter activity of transcriptional regulatory regions in MSCs was determined with a luciferase assay and a tumor growth-promoting ability of MSCs was tested with co-injection of human tumor cells in nude mice. MSCs expressed CD46 but scarcely CAR molecules, and subsequently were transduced with AdF35 but not with Ad5. Growth of MSCs transduced with the IL-28A gene remained the same as that of untransduced cells since MSCs were negative for the IL-28A receptors. The IL-28A-transduced MSCs however suppressed growth of lung carcinoma cells co-cultured, whereas MSCs transduced with AdF35 expressing the β-galactosidase gene did not. A regulatory region of the cyclooygenase-2 gene possessed transcriptional activities greater than other tumor promoters but less than the cytomegalovirus promoter, and MSCs themselves did not support tumor growth in vivo. AdF35 is a suitable vector to transduce MSCs that are resistant to Ad5-mediated gene transfer. MSCs infected with AdF35 that activate an exogenous gene by the cytomegalovirus promoter can be a vehicle to deliver the gene product to targeted cells.

  13. Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes?

    PubMed

    Brown, Nolan; Song, Liujiang; Kollu, Nageswara R; Hirsch, Matthew L

    2017-06-01

    The infusion of healthy stem cells into a patient-termed "stem-cell therapy"-has shown great promise for the treatment of genetic and non-genetic diseases, including mucopolysaccharidosis type 1, Parkinson's disease, multiple sclerosis, numerous immunodeficiency disorders, and aplastic anemia. Stem cells for cell therapy can be collected from the patient (autologous) or collected from another "healthy" individual (allogeneic). The use of allogenic stem cells is accompanied with the potentially fatal risk that the transplanted donor T cells will reject the patient's cells-a process termed "graft-versus-host disease." Therefore, the use of autologous stem cells is preferred, at least from the immunological perspective. However, an obvious drawback is that inherently as "self," they contain the disease mutation. As such, autologous cells for use in cell therapies often require genetic "correction" (i.e., gene addition or editing) prior to cell infusion and therefore the requirement for some form of nucleic acid delivery, which sets the stage for the AAV controversy discussed herein. Despite being the most clinically applied gene delivery context to date, unlike other more concerning integrating and non-integrating vectors such as retroviruses and adenovirus, those based on adeno-associated virus (AAV) have not been employed in the clinic. Furthermore, published data regarding AAV vector transduction of stem cells are inconsistent in regards to vector transduction efficiency, while the pendulum swings far in the other direction with demonstrations of AAV vector-induced toxicity in undifferentiated cells. The variation present in the literature examining the transduction efficiency of AAV vectors in stem cells may be due to numerous factors, including inconsistencies in stem-cell collection, cell culture, vector preparation, and/or transduction conditions. This review summarizes the controversy surrounding AAV vector transduction of stem cells, hopefully setting the stage for future elucidation and eventual therapeutic applications.

  14. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  15. Oncolytic adenovirus that overproduces ADP and replicates selectively in tumors due to hTERT promoter-regulated E4 gene expression.

    PubMed

    Kuppuswamy, M; Spencer, J F; Doronin, K; Tollefson, A E; Wold, W S M; Toth, K

    2005-11-01

    We have constructed a novel oncolytic adenovirus (Ad) vector, named VRX-011, in which the replication of the vector is targeted to cancer cells by the replacement of the wild-type Ad E4 promoter with the human telomerase reverse transcriptase (hTERT) promoter. Genes in the Ad E4 transcription unit are essential for Ad replication; therefore, VRX-011 will grow efficiently only in cells in which the hTERT promoter is active, that is, in a wide range of cancer and immortalized cells but not in most somatic cells. Consistent with these expectations, VRX-011 replicated efficiently in all cancer cell lines examined, while its growth was restricted in various primary and normal cells. VRX-011 overexpresses ADP (also known as E3-11.6K), an Ad protein required for efficient cell lysis and release of virions from cells at late stages of infection. This overexpression enhances cell-to-cell spread and could significantly increase antitumor efficacy. In a xenograft model in nude mice, both intratumoral and intravenous administration of VRX-011 effectively suppressed the growth of subcutaneous Hep3B human liver tumors. Also, intravenous delivery of VRX-011 greatly reduced the number and size of A549 human lung cancer cell nodules in a disseminated lung tumor model in nude mice. Importantly, tail vein administration of different doses of VRX-011 in C57BL/6 mice showed minimal liver toxicity. Considering its broad range of lytic replication in cancer cells, its attenuated phenotype in primary cells, its efficacy in suppressing xenografts, and its low toxicity in mouse liver, VRX-011 is a promising candidate for further evaluation as an anticancer therapeutic.

  16. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Martin, Cameron L; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R; Mwangi, Duncan; Dominowski, Paul J; Foss, Dennis L; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2016-11-01

    The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ + ) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    PubMed

    Alexander, Jeff; Ward, Simone; Mendy, Jason; Manayani, Darly J; Farness, Peggy; Avanzini, Jenny B; Guenther, Ben; Garduno, Fermin; Jow, Lily; Snarsky, Victoria; Ishioka, Glenn; Dong, Xin; Vang, Lo; Newman, Mark J; Mayall, Tim

    2012-01-01

    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis. The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus. Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  18. Myocardial protective effect of extracellular superoxide dismutase gene modified bone marrow mesenchymal stromal cells on infarcted mice hearts.

    PubMed

    Pan, Qiao; Qin, Xing; Ma, Sai; Wang, Haichang; Cheng, Kang; Song, Xinxing; Gao, Haokao; Wang, Qiang; Tao, Rannie; Wang, Yabin; Li, Xiujuan; Xiong, Lize; Cao, Feng

    2014-01-01

    Extracellular superoxide dismutase (ecSOD) is a unique scavenger of superoxide anions and a promising target of gene therapy for ischemia/reperfusion injury (I/R). However, conventional gene therapies have limitation in effectiveness and efficiency. This study aimed to investigate the protective effects of ecSOD gene modified bone marrow mesenchymal stromal cells (BMSCs) on cardiac function improvement in mice infarcted heart. BMSCs were isolated from Fluc(+) transgenic mice (Tg FVB[Fluc(+)]) and transfected by adenovirus combined with human ecSOD gene. ELISA was performed to determine ecSOD protein level. Female syngeneic FVB mice were randomized into 5 groups: (1) Sham group (sham); (2) MI group (MI); (3) MI+BMSCs group (BMSC); (4) MI+BMSCs-vector group (BMSC-vector); (5) MI+ BMSCs-ecSOD group (BMSC-ecSOD). MI was accomplished by ligation of the left anterior descending artery. BMSCs (2 x 10(6)) were injected into the border zone of infarction. In vivo bioluminescence imaging (BLI) was performed to monitor transplanted BMSCs viability. Echocardiography and histological staining revealed that BMSCs-ecSOD significantly reduced myocardial infarction size and improved cardiac function. Lucigenin chemiluminescence, DHE and TUNEL staining demonstrated that BMSCs-ecSOD delivery reduced ROS level and cell apoptosis both in vivo and in vitro. Western blot assay revealed that ecSOD supplementation increased FoxO3a phosphorylation in cardiomyocytes. Moreover, quantitative real-time PCR showed that pro-apoptotic factors (bim and bax) were decreased while the anti-apoptotic factor mir-21 expression was increased after ecSOD intervention. Intra-myocardial transplantation of adenovirus-ecSOD transfected BMSCs could exert potential cardiac protection against MI, which may be partly through reduction of oxidative stress and improvement of BMSCs survival.

  19. Treatment of yellow fever virus with an adenovirus-vectored interferon, DEF201, in a hamster model.

    PubMed

    Julander, Justin G; Ennis, Jane; Turner, Jeffrey; Morrey, John D

    2011-05-01

    Interferon (IFN) is an innate immune response protein that is involved in the antiviral response during viral infection. Treatment of acute viral infections with exogenous interferon may be effective but is generally not feasible for clinical use due to many factors, including cost, stability, and availability. To overcome these limitations, an adenovirus type 5-vectored consensus alpha IFN, termed DEF201, was constructed as a potential way to deliver sustained therapeutic levels of systemic IFN. To demonstrate the efficacy of DEF201 against acute flaviviral disease, various concentrations of the construct were administered as a single intranasal dose prior to virus infection, which resulted in a dose-responsive, protective effect in a hamster model of yellow fever virus (YFV) disease. A DEF201 dose of 5×10(7) PFU/animal administered intranasally just prior to YFV challenge protected 100% of the animals, while a 10-fold lower DEF201 dose exhibited lower, although significant, levels of protection. Virus titers in the liver and serum and levels of serum alanine aminotransferase were all significantly reduced as a result of DEF201 administration at all doses tested. No toxicity, as indicated by weight loss or gross morbidity, was observed in non-YFV-infected animals treated with DEF201. Protection of YFV-infected animals was observed when DEF201 was delivered as early as 7 days prior to virus challenge and as late as 2 days after virus challenge, demonstrating effective prophylaxis and therapy in a hamster model of disease. Overall, it appears that DEF201 is effective in the treatment of YFV in a hamster model.

  20. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Martin, Cameron L.; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R.; Mwangi, Duncan; Dominowski, Paul J.; Foss, Dennis L.; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John

    2016-01-01

    The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ+) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. PMID:27628166

  1. A Novel Adenovirus in Chinstrap Penguins (Pygoscelis antarctica) in Antarctica

    PubMed Central

    Lee, Sook-Young; Kim, Jeong-Hoon; Park, Yon Mi; Shin, Ok Sarah; Kim, Hankyeom; Choi, Han-Gu; Song, Jin-Won

    2014-01-01

    Adenoviruses (family Adenoviridae) infect various organ systems and cause diseases in a wide range of host species. In this study, we examined multiple tissues from Chinstrap penguins (Pygoscelis antarctica), collected in Antarctica during 2009 and 2010, for the presence of novel adenoviruses by PCR. Analysis of a 855-bp region of the hexon gene of a newly identified adenovirus, designated Chinstrap penguin adenovirus 1 (CSPAdV-1), showed nucleotide (amino acid) sequence identity of 71.8% (65.5%) with South Polar skua 1 (SPSAdV-1), 71% (70%) with raptor adenovirus 1 (RAdV-1), 71.4% (67.6%) with turkey adenovirus 3 (TAdV-3) and 61% (61.6%) with frog adenovirus 1 (FrAdV-1). Based on the genetic and phylogenetic analyses, CSPAdV-1 was classified as a member of the genus, Siadenovirus. Virus isolation attempts from kidney homogenates in the MDTC-RP19 (ATCC® CRL-8135™) cell line were unsuccessful. In conclusion, this study provides the first evidence of new adenovirus species in Antarctic penguins. PMID:24811321

  2. Detection of Bovine and Porcine Adenoviruses for Tracing the Source of Fecal Contamination

    PubMed Central

    Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina

    2004-01-01

    In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies. PMID:15006765

  3. Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination.

    PubMed

    Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina

    2004-03-01

    In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies.

  4. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.

    PubMed

    Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S

    2017-03-01

    Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.

  5. Human Papillomavirus E6E7-Mediated Adenovirus Cell Killing: Selectivity of Mutant Adenovirus Replication in Organotypic Cultures of Human Keratinocytes

    PubMed Central

    Balagué, Cristina; Noya, Francisco; Alemany, Ramon; Chow, Louise T.; Curiel, David T.

    2001-01-01

    Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells. PMID:11462032

  6. Incidence of adenoviruses in raw and treated water.

    PubMed

    Van Heerden, Juanita; Ehlers, Marthie M; Van Zyl, Walda B; Grabow, Wilhelm O K

    2003-09-01

    Adenoviruses are of major public health importance and are associated with a variety of clinical manifestations, i.e. gastroenteritis, eye infections and respiratory infections. The importance of water in the epidemiology of adenoviruses and the potential health risks constituted by adenoviruses in water sources and supplies are widely recognised. This study was conducted to assess the incidence of human adenoviruses in raw and treated water systems. Various raw and treated water were routinely monitored for the presence of adenoviruses, over a 1-year period (July 2000-June 2001). The supplies were derived from acceptable quality surface water sources using treatment processes, which conform to international standards for the production of safe drinking water. Adenoviruses were detected by firstly amplifying the viruses in cell cultures and then amplifying the extracted nucleic acids of these viruses using molecular techniques (nested PCR). The results indicated human adenoviruses present in 13 (12.75%) of the raw and 9 (4.41%) of the treated water samples tested. The combination of cell culture and nested PCR has proved to be a quick and reliable method for the detection of adenoviruses in water environments.

  7. Optimization and scale-up of cell culture and purification processes for production of an adenovirus-vectored tuberculosis vaccine candidate.

    PubMed

    Shen, Chun Fang; Jacob, Danielle; Zhu, Tao; Bernier, Alice; Shao, Zhongqi; Yu, Xuefeng; Patel, Mehul; Lanthier, Stephane; Kamen, Amine

    2016-06-17

    Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  8. Prevention of autoantibody-mediated Graves'-like hyperthyroidism in mice with IL-4, a Th2 cytokine.

    PubMed

    Nagayama, Yuji; Mizuguchi, Hiroyuki; Hayakawa, Takao; Niwa, Masami; McLachlan, Sandra M; Rapoport, Basil

    2003-04-01

    Graves' hyperthyroidism has long been considered to be a Th2-type autoimmune disease because it is directly mediated by autoantibodies against the thyrotropin receptor (TSHR). However, several lines of evidence have recently challenged this concept. The present study evaluated the Th1/Th2 paradigm in Graves' disease using a recently established murine model involving injection of adenovirus expressing the TSHR (AdCMVTSHR). Coinjection with adenovirus expressing IL-4 (AdRGDCMVIL-4) decreased the ratio of Th1/Th2-type anti-TSHR Ab subclasses (IgG2a/IgG1) and suppressed the production of IFN-gamma by splenocytes in response to TSHR Ag. Importantly, immune deviation toward Th2 was accompanied by significant inhibition of thyroid-stimulating Ab production and reduction in hyperthyroidism. However, in a therapeutic setting, injection of AdRGDCMVIL-4 alone or in combination with AdCMVTSHR into hyperthyroid mice had no beneficial effect. In contrast, coinjection of adenoviruses expressing IL-12 and the TSHR promoted the differentiation of Th1-type anti-TSHR immune responses as demonstrated by augmented Ag-specific IFN-gamma secretion from splenocytes without changing disease incidence. Coinjection of adenoviral vectors expressing IL-4 or IL-12 had no effect on the titers of anti-TSHR Abs determined by ELISA or thyroid-stimulating hormone-binding inhibiting Ig assays, suggesting that Ab quality, not quantity, is responsible for disease induction. Our observations demonstrate the critical role of Th1 immune responses in a murine model of Graves' hyperthyroidism. These data may raise a cautionary note for therapeutic strategies aimed at reversing Th2-mediated autoimmune responses in Graves' disease in humans.

  9. Oncolytic Adenoviruses Targeted to Human Papilloma Virus-Positive Head and Neck Squamous Cell Carcinomas

    PubMed Central

    LaRocca, Christopher J.; Han, Joohee; Oliveira, Amanda R.; Davydova, Julia; Herzberg, Mark; Gopalakrishnan, Rajaram; Yamamoto, Masato

    2016-01-01

    Objectives In recent years, the incidence of Human Papilloma Virus (HPV)-positive head and neck squamous cell carcinomas (HNSCC) has markedly increased. Our aim was to design a novel therapeutic agent through the use of conditionally replicative adenoviruses (CRAds) that are targeted to the HPV E6 and E7 oncoproteins. Methods Each adenovirus included small deletion(s) in the E1a region of the genome (Δ24 or CB016) intended to allow for selective replication in HPV-positive cells. In vitro assays were performed to analyze the transduction efficiency of the vectors and the cell viability following viral infection. Then, the UPCI SCC 090 cell line (HPV-positive) was used to establish subcutaneous tumors in the flanks of nude mice. The tumors were then treated with either one dose of the virus or four doses (injected every fourth day). Results The transduction analysis with luciferase-expressing viruses demonstrated that the 5/3 fiber modification maximized virus infectivity. In vitro, both viruses (5/3Δ24 and 5/3CB016) demonstrated profound oncolytic effects. The 5/3CB016 virus was selective for only HPV-positive HNSCC cells, whereas the 5/3Δ24 virus killed HNSCC cells regardless of HPV status. In vivo, single injections of both viruses demonstrated anti-tumor effects until only 6–8 days following viral inoculation. However, after four viral injections, there was statistically significant reduction in tumor growth when compared to the control group (p<0.05). Conclusion CRAds targeted to HPV-positive HNSCCs demonstrated excellent in vitro and in vivo therapeutic effects, and they have the potential to be clinically translated as a novel treatment modality for this emerging disease. PMID:27086483

  10. Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro.

    PubMed

    He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.

  11. Genetic Retargeting of Adenovirus: Novel Strategy Employing “Deknobbing” of the Fiber

    PubMed Central

    Magnusson, Maria K.; Hong, Saw See; Boulanger, Pierre; Lindholm, Leif

    2001-01-01

    For efficient and versatile use of adenovirus (Ad) as an in vivo gene therapy vector, modulation of the viral tropism is highly desirable. In this study, a novel method to genetically alter the Ad fiber tropism is described. The knob and the last 15 shaft repeats of the fiber gene were deleted and replaced with an external trimerization motif and a new cell-binding ligand, in this case the integrin-binding motif RGD. The corresponding recombinant fiber retained the basic biological functions of the natural fiber, i.e., trimerization, nuclear import, penton formation, and ligand binding. The recombinant fiber bound to integrins but failed to react with antiknob antibody. For virus production, the recombinant fiber gene was rescued into the Ad genome at the exact position of the wild-type (WT) fiber to make use of the native regulation of fiber expression. The recombinant virus Ad5/FibR7-RGD yielded plaques on 293 cells, but the spread through the monolayer was two to three times delayed compared to WT, and the ratio of infectious to physical particles was 20 times lower. Studies on virus tropism showed that Ad5/FibR7-RGD was able to infect cells which did not express the coxsackie-adenovirus receptor (CAR), but did express integrins. Ad5/FibR7-RGD virus infectivity was unchanged in the presence of antiknob antibody, which neutralized the WT virus. Ad5/FibR7-RGD virus showed an expanded tropism, which is useful when gene transfer to cells not expressing CAR is needed. The described method should also make possible the construction of Ad genetically retargeted via ligands other than RGD. PMID:11462000

  12. Rational design of gene-based vaccines.

    PubMed

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1.

    PubMed

    Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha

    2013-10-29

    Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers without prior knowledge of their antigen-specificity, using a subunit vaccine for proof-of-concept. Whether, whole parasite or adjuvanted protein vaccines will also induce {CD38 and HLA-DRhi}+ CD8+ T cell populations reflective of the antigen-specific response will the subject of future investigations.

  14. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection.

    PubMed

    Takayama, Eiji; Ono, Takeshi; Carnero, Elena; Umemoto, Saori; Yamaguchi, Yoko; Kanayama, Atsuhiro; Oguma, Takemi; Takashima, Yasuhiro; Tadakuma, Takushi; García-Sastre, Adolfo; Miyahira, Yasushi

    2010-11-01

    We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  15. Genetic and Molecular Epidemiological Characterization of a Novel Adenovirus in Antarctic Penguins Collected between 2008 and 2013

    PubMed Central

    Lee, Sook-Young; Kim, Jeong-Hoon; Seo, Tae-Kun; No, Jin Sun; Kim, Hankyeom; Kim, Won-keun; Choi, Han-Gu; Kang, Sung-Ho; Song, Jin-Won

    2016-01-01

    Antarctica is considered a relatively uncontaminated region with regard to the infectious diseases because of its extreme environment, and isolated geography. For the genetic characterization and molecular epidemiology of the newly found penguin adenovirus in Antarctica, entire genome sequencing and annual survey of penguin adenovirus were conducted. The entire genome sequences of penguin adenoviruses were completed for two Chinstrap penguins (Pygoscelis antarctica) and two Gentoo penguins (Pygoscelis papua). The whole genome lengths and G+C content of penguin adenoviruses were found to be 24,630–24,662 bp and 35.5–35.6%, respectively. Notably, the presence of putative sialidase gene was not identified in penguin adenoviruses by Rapid Amplification of cDNA Ends (RACE-PCR) as well as consensus specific PCR. The penguin adenoviruses were demonstrated to be a new species within the genus Siadenovirus, with a distance of 29.9–39.3% (amino acid, 32.1–47.9%) in DNA polymerase gene, and showed the closest relationship with turkey adenovirus 3 (TAdV-3) in phylogenetic analysis. During the 2008–2013 study period, the penguin adenoviruses were annually detected in 22 of 78 penguins (28.2%), and the molecular epidemiological study of the penguin adenovirus indicates a predominant infection in Chinstrap penguin population (12/30, 40%). Interestingly, the genome of penguin adenovirus could be detected in several internal samples, except the lymph node and brain. In conclusion, an analysis of the entire adenoviral genomes from Antarctic penguins was conducted, and the penguin adenoviruses, containing unique genetic character, were identified as a new species within the genus Siadenovirus. Moreover, it was annually detected in Antarctic penguins, suggesting its circulation within the penguin population. PMID:27309961

  16. Approaches to utilize mesenchymal progenitor cells as cellular vehicles.

    PubMed

    Pereboeva, L; Komarova, S; Mikheeva, G; Krasnykh, V; Curiel, D T

    2003-01-01

    Mammalian cells represent a novel vector approach for gene delivery that overcomes major drawbacks of viral and nonviral vectors and couples cell therapy with gene delivery. A variety of cell types have been tested in this regard, confirming that the ideal cellular vector system for ex vivo gene therapy has to comply with stringent criteria and is yet to be found. Several properties of mesenchymal progenitor cells (MPCs), such as easy access and simple isolation and propagation procedures, make these cells attractive candidates as cellular vehicles. In the current work, we evaluated the potential utility of MPCs as cellular vectors with the intent to use them in the cancer therapy context. When conventional adenoviral (Ad) vectors were used for MPC transduction, the highest transduction efficiency of MPCs was 40%. We demonstrated that Ad primary-binding receptors were poorly expressed on MPCs, while the secondary Ad receptors and integrins presented in sufficient amounts. By employing Ad vectors with incorporated integrin-binding motifs (Ad5lucRGD), MPC transduction was augmented tenfold, achieving efficient genetic loading of MPCs with reporter and anticancer genes. MPCs expressing thymidine kinase were able to exert a bystander killing effect on the cancer cell line SKOV3ip1 in vitro. In addition, we found that MPCs were able to support Ad replication, and thus can be used as cell vectors to deliver oncolytic viruses. Our results show that MPCs can foster expression of suicide genes or support replication of adenoviruses as potential anticancer therapeutic payloads. These findings are consistent with the concept that MPCs possess key properties that ensure their employment as cellular vehicles and can be used to deliver either therapeutic genes or viruses to tumor sites.

  17. A model system for testing gene vectors using murine tumor cells on the chorioallantoic membrane of the chick embryo.

    PubMed

    Dani, Sergio U; Espindola, Rachel

    2002-06-30

    We developed a model system for testing gene vectors, based on the growth of murine tumors on the chorioallantoic membrane (CAM) of embryonic chickens. The ability of selected murine cells to grow on the CAM was rated according to the following criteria: i) formation of tumor masses; ii) metastasis formation; iii) reproducibility; iv) yield, indicated as the number of embryos surviving to assessment time with visible tumors on the CAM; v) maintainability of the cell, both in the original host and the embryonic chick, or 'shuttle maintainability'; vi) detection by the naked eye, and vii) cost/benefit relation. The murine melanoma cell lineage, B16F10, which efficiently forms distinct, pigmented tumor masses and metastases on the CAM, performed better in this model than the murine B61 cell line. In vitro transduction of B16F10 cells with a recombinant adenovirus carrying a construct of the E. coli LacZ gene followed by inoculation onto the CAM resulted in beta-galactosidase expression in the tumor mass growing on the CAM. This model is potentially applicable to preclinical evaluation of gene vectors, especially for gene therapy of cancer.

  18. A Potent, Imaging Adenoviral Vector Driven by the Cancer-selective Mucin-1 Promoter That Targets Breast Cancer Metastasis

    PubMed Central

    Huyn, Steven T.; Burton, Jeremy B.; Sato, Makoto; Carey, Michael; Gambhir, Sanjiv S.; Wu, Lily

    2009-01-01

    Purpose With breast cancer, early detection and proper staging are critical, and will often influence both the treatment regimen and the therapeutic outcome for those affected with this disease. Improvements in these areas will play a profound role in reducing mortality from breast cancer. Experimental Design In this work we developed a breast cancer – targeted serotype 5 adenoviral vector, utilizing the tumor-specific mucin-1 promoter in combination with the two-step transcriptional amplification system, a system used to augment the activity of weak tissue – specific promoters. Results We showed the strong specificity of this tumor-selective adenovirus to express the luciferase optical imaging gene, leading to diagnostic signals that enabled detection of sentinel lymph node metastasis of breast cancer. Furthermore, we were able to target hepatic metastases following systemic administration of this mucin-1 selective virus. Conclusions Collectively, we showed that the amplified mucin-1 promoter – driven vector is able to deliver to and selectively express a desirable transgene in metastatic lesions of breast tumors. This work has strong clinical relevance to current diagnostic staging approaches, and could add to targeted therapeutic strategies to advance the fight against breast cancer. PMID:19366829

  19. Phylogenetic and pathogenic characterization of novel adenoviruses from long-tailed ducks (Clangula hyemalis)

    USGS Publications Warehouse

    Counihan, Katrina; Skerratt, Lee; Franson, J. Christian; Hollmen, Tuula E.

    2015-01-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections.

  20. Novel adenoviruses detected in British mustelids, including a unique Aviadenovirus in the tissues of pine martens (Martes martes)

    PubMed Central

    Gregory, William F.; Turnbull, Dylan; Rocchi, Mara; Meredith, Anna L.; Philbey, Adrian W.; Sharp, Colin P.

    2017-01-01

    Several adenoviruses are known to cause severe disease in veterinary species. Recent evidence suggests that canine adenovirus type 1 (CAV-1) persists in the tissues of healthy red foxes (Vulpes vulpes), which may be a source of infection for susceptible species. It was hypothesized that mustelids native to the UK, including pine martens (Martes martes) and Eurasian otters (Lutra lutra), may also be persistently infected with adenoviruses. Based on high-throughput sequencing and additional Sanger sequencing, a novel Aviadenovirus, tentatively named marten adenovirus type 1 (MAdV-1), was detected in pine marten tissues. The detection of an Aviadenovirus in mammalian tissue has not been reported previously. Two mastadenoviruses, tentatively designated marten adenovirus type 2 (MAdV-2) and lutrine adenovirus type 1 (LAdV-1), were also detected in tissues of pine martens and Eurasian otters, respectively. Apparently healthy free-ranging animals may be infected with uncharacterized adenoviruses with possible implications for translocation of wildlife. PMID:28749327

Top