Rowe, Daniel B; Bruce, Iain P; Nencka, Andrew S; Hyde, James S; Kociuba, Mary C
2016-04-01
Achieving a reduction in scan time with minimal inter-slice signal leakage is one of the significant obstacles in parallel MR imaging. In fMRI, multiband-imaging techniques accelerate data acquisition by simultaneously magnetizing the spatial frequency spectrum of multiple slices. The SPECS model eliminates the consequential inter-slice signal leakage from the slice unaliasing, while maintaining an optimal reduction in scan time and activation statistics in fMRI studies. When the combined k-space array is inverse Fourier reconstructed, the resulting aliased image is separated into the un-aliased slices through a least squares estimator. Without the additional spatial information from a phased array of receiver coils, slice separation in SPECS is accomplished with acquired aliased images in shifted FOV aliasing pattern, and a bootstrapping approach of incorporating reference calibration images in an orthogonal Hadamard pattern. The aliased slices are effectively separated with minimal expense to the spatial and temporal resolution. Functional activation is observed in the motor cortex, as the number of aliased slices is increased, in a bilateral finger tapping fMRI experiment. The SPECS model incorporates calibration reference images together with coefficients of orthogonal polynomials into an un-aliasing estimator to achieve separated images, with virtually no residual artifacts and functional activation detection in separated images. Copyright © 2015 Elsevier Inc. All rights reserved.
De-aliasing for signal restoration in Propeller MR imaging.
Chiu, Su-Chin; Chang, Hing-Chiu; Chu, Mei-Lan; Wu, Ming-Long; Chung, Hsiao-Wen; Lin, Yi-Ru
2017-02-01
Objects falling outside of the true elliptical field-of-view (FOV) in Propeller imaging show unique aliasing artifacts. This study proposes a de-aliasing approach to restore the signal intensities in Propeller images without extra data acquisition. Computer simulation was performed on the Shepp-Logan head phantom deliberately placed obliquely to examine the signal aliasing. In addition, phantom and human imaging experiments were performed using Propeller imaging with various readouts on a 3.0 Tesla MR scanner. De-aliasing using the proposed method was then performed, with the first low-resolution single-blade image used to find out the aliasing patterns in all the single-blade images, followed by standard Propeller reconstruction. The Propeller images without and with de-aliasing were compared. Computer simulations showed signal loss at the image corners along with aliasing artifacts distributed along directions corresponding to the rotational blades, consistent with clinical observations. The proposed de-aliasing operation successfully restored the correct images in both phantom and human experiments. The de-aliasing operation is an effective adjunct to Propeller MR image reconstruction for retrospective restoration of aliased signals. Copyright © 2016 Elsevier Inc. All rights reserved.
Experimental Investigation of the Performance of Image Registration and De-aliasing Algorithms
2009-09-01
spread function In the literature these types of algorithms are sometimes hcluded under the broad umbrella of superresolution . However, in the current...We use one of these patterns to visually demonstrate successful de-aliasing 15. SUBJECT TERMS Image de-aliasing Superresolution Microscanning Image...undersampled point spread function. In the literature these types of algorithms are sometimes included under the broad umbrella of superresolution . However, in
Fourier Theory Explanation for the Sampling Theorem Demonstrated by a Laboratory Experiment.
ERIC Educational Resources Information Center
Sharma, A.; And Others
1996-01-01
Describes a simple experiment that uses a CCD video camera, a display monitor, and a laser-printed bar pattern to illustrate signal sampling problems that produce aliasing or moiri fringes in images. Uses the Fourier transform to provide an appropriate and elegant means to explain the sampling theorem and the aliasing phenomenon in CCD-based…
Anti-aliasing filter design on spaceborne digital receiver
NASA Astrophysics Data System (ADS)
Yu, Danru; Zhao, Chonghui
2009-12-01
In recent years, with the development of satellite observation technologies, more and more active remote sensing technologies are adopted in spaceborne system. The spaceborne precipitation radar will depend heavily on high performance digital processing to collect meaningful rain echo data. It will increase the complexity of the spaceborne system and need high-performance and reliable digital receiver. This paper analyzes the frequency aliasing in the intermediate frequency signal sampling of digital down conversion in spaceborne radar, and gives an effective digital filter. By analysis and calculation, we choose reasonable parameters of the half-band filters to suppress the frequency aliasing on DDC. Compared with traditional filter, the FPGA resources cost in our system are reduced by over 50%. This can effectively reduce the complexity in the spaceborne digital receiver and improve the reliability of system.
NASA Astrophysics Data System (ADS)
Yan, Feng-Gang; Cao, Bin; Rong, Jia-Jia; Shen, Yi; Jin, Ming
2016-12-01
A new technique is proposed to reduce the computational complexity of the multiple signal classification (MUSIC) algorithm for direction-of-arrival (DOA) estimate using a uniform linear array (ULA). The steering vector of the ULA is reconstructed as the Kronecker product of two other steering vectors, and a new cost function with spatial aliasing at hand is derived. Thanks to the estimation ambiguity of this spatial aliasing, mirror angles mathematically relating to the true DOAs are generated, based on which the full spectral search involved in the MUSIC algorithm is highly compressed into a limited angular sector accordingly. Further complexity analysis and performance studies are conducted by computer simulations, which demonstrate that the proposed estimator requires an extremely reduced computational burden while it shows a similar accuracy to the standard MUSIC.
Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins
2013-01-01
Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718
Aliasing Detection and Reduction Scheme on Angularly Undersampled Light Fields.
Xiao, Zhaolin; Wang, Qing; Zhou, Guoqing; Yu, Jingyi
2017-05-01
When using plenoptic camera for digital refocusing, angular undersampling can cause severe (angular) aliasing artifacts. Previous approaches have focused on avoiding aliasing by pre-processing the acquired light field via prefiltering, demosaicing, reparameterization, and so on. In this paper, we present a different solution that first detects and then removes angular aliasing at the light field refocusing stage. Different from previous frequency domain aliasing analysis, we carry out a spatial domain analysis to reveal whether the angular aliasing would occur and uncover where in the image it would occur. The spatial analysis also facilitates easy separation of the aliasing versus non-aliasing regions and angular aliasing removal. Experiments on both synthetic scene and real light field data sets (camera array and Lytro camera) demonstrate that our approach has a number of advantages over the classical prefiltering and depth-dependent light field rendering techniques.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-03-01
The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.
NASA Astrophysics Data System (ADS)
Abolfazl Hosseini, Seyed; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam
2015-06-01
Ground roll, which is a Rayleigh surface wave that exists in land seismic data, may mask reflections. Sometimes ground roll is spatially aliased. Attenuation of aliased ground roll is of importance in seismic data processing. Different methods have been developed to attenuate ground roll. The shearlet transform is a directional and multidimensional transform that generates subimages of an input image in different directions and scales. Events with different dips are separated in these subimages. In this study, the shearlet transform is used to attenuate the aliased ground roll. To do this, a shot record is divided into several segments, and the appropriate mute zone is defined for all segments. The shearlet transform is applied to each segment. The subimages related to the non-aliased and aliased ground roll are identified by plotting the energy distributions of subimages with visual checking. Then, muting filters are used on selected subimages. The inverse shearlet transform is applied to the filtered segment. This procedure is repeated for all segments. Finally, all filtered segments are merged using the Hanning window. This method of aliased ground roll attenuation was tested on a synthetic dataset and a field shot record from the west of Iran. The synthetic shot record included strong aliased ground roll, whereas the field shot record did not. To produce the strong aliased ground roll on the field shot record, the data were resampled in the offset direction from 30 to 60 m. To show the performance of the shearlet transform in attenuating the aliased ground roll, we compared the shearlet transform with the f-k filtering and curvelet transform. We showed that the performance of the shearlet transform in the aliased ground roll attenuation is better than that of the f-k filtering and curvelet transform in both the synthetic and field shot records. However, when the dip and frequency content of the aliased ground roll are the same as the reflections, ability of the shearlet transform is limited in attenuating the aliased ground roll.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... Engineering Physics.'' The changes included revising the entry to add additional aliases for that entry. The... listing the aliases as separate aliases for the Chinese Academy of Engineering Physics. China (1) Chinese Academy of Engineering Physics, a.k.a., the following nineteen aliases: --Ninth Academy; --Southwest...
Striping artifact reduction in lunar orbiter mosaic images
Mlsna, P.A.; Becker, T.
2006-01-01
Photographic images of the moon from the 1960s Lunar Orbiter missions are being processed into maps for visual use. The analog nature of the images has produced numerous artifacts, the chief of which causes a vertical striping pattern in mosaic images formed from a series of filmstrips. Previous methods of stripe removal tended to introduce ringing and aliasing problems in the image data. This paper describes a recently developed alternative approach that succeeds at greatly reducing the striping artifacts while avoiding the creation of ringing and aliasing artifacts. The algorithm uses a one dimensional frequency domain step to deal with the periodic component of the striping artifact and a spatial domain step to handle the aperiodic residue. Several variations of the algorithm have been explored. Results, strengths, and remaining challenges are presented. ?? 2006 IEEE.
Reduced aliasing artifacts using shaking projection k-space sampling trajectory
NASA Astrophysics Data System (ADS)
Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian
2014-03-01
Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.
Adaptive attenuation of aliased ground roll using the shearlet transform
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam
2015-01-01
Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.
Controlling aliased dynamics in motion systems? An identification for sampled-data control approach
NASA Astrophysics Data System (ADS)
Oomen, Tom
2014-07-01
Sampled-data control systems occasionally exhibit aliased resonance phenomena within the control bandwidth. The aim of this paper is to investigate the aspect of these aliased dynamics with application to a high performance industrial nano-positioning machine. This necessitates a full sampled-data control design approach, since these aliased dynamics endanger both the at-sample performance and the intersample behaviour. The proposed framework comprises both system identification and sampled-data control. In particular, the sampled-data control objective necessitates models that encompass the intersample behaviour, i.e., ideally continuous time models. Application of the proposed approach on an industrial wafer stage system provides a thorough insight and new control design guidelines for controlling aliased dynamics.
Shiota, T; Jones, M; Teien, D E; Yamada, I; Passafini, A; Ge, S; Sahn, D J
1995-08-01
The aim of the present study was to investigate dynamic changes in the mitral regurgitant orifice using electromagnetic flow probes and flowmeters and the color Doppler flow convergence method. Methods for determining mitral regurgitant orifice areas have been described using flow convergence imaging with a hemispheric isovelocity surface assumption. However, the shape of flow convergence isovelocity surfaces depends on many factors that change during regurgitation. In seven sheep with surgically created mitral regurgitation, 18 hemodynamic states were studied. The aliasing distances of flow convergence were measured at 10 sequential points using two ranges of aliasing velocities (0.20 to 0.32 and 0.56 to 0.72 m/s), and instantaneous flow rates were calculated using the hemispheric assumption. Instantaneous regurgitant areas were determined from the regurgitant flow rates obtained from both electromagnetic flowmeters and flow convergence divided by the corresponding continuous wave velocities. The regurgitant orifice sizes obtained using the electromagnetic flow method usually increased to maximal size in early to midsystole and then decreased in late systole. Patterns of dynamic changes in orifice area obtained by flow convergence were not the same as those delineated by the electromagnetic flow method. Time-averaged regurgitant orifice areas obtained by flow convergence using lower aliasing velocities overestimated the areas obtained by the electromagnetic flow method ([mean +/- SD] 0.27 +/- 0.14 vs. 0.12 +/- 0.06 cm2, p < 0.001), whereas flow convergence, using higher aliasing velocities, estimated the reference areas more reliably (0.15 +/- 0.06 cm2). The electromagnetic flow method studies uniformly demonstrated dynamic change in mitral regurgitant orifice area and suggested limitations of the flow convergence method.
Reconstruction of full high-resolution HSQC using signal split in aliased spectra.
Foroozandeh, Mohammadali; Jeannerat, Damien
2015-11-01
Resolution enhancement is a long-sought goal in NMR spectroscopy. In conventional multidimensional NMR experiments, such as the (1) H-(13) C HSQC, the resolution in the indirect dimensions is typically 100 times lower as in 1D spectra because it is limited by the experimental time. Reducing the spectral window can significantly increase the resolution but at the cost of ambiguities in frequencies as a result of spectral aliasing. Fortunately, this information is not completely lost and can be retrieved using methods in which chemical shifts are encoded in the aliased spectra and decoded after processing to reconstruct high-resolution (1) H-(13) C HSQC spectrum with full spectral width and a resolution similar to that of 1D spectra. We applied a new reconstruction method, RHUMBA (reconstruction of high-resolution using multiplet built on aliased spectra), to spectra obtained from the differential evolution for non-ambiguous aliasing-HSQC and the new AMNA (additional modulation for non-ambiguous aliasing)-HSQC experiments. The reconstructed spectra significantly facilitate both manual and automated spectral analyses and structure elucidation based on heteronuclear 2D experiments. The resolution is enhanced by two orders of magnitudes without the usual complications due to spectral aliasing. Copyright © 2015 John Wiley & Sons, Ltd.
Aliased tidal errors in TOPEX/POSEIDON sea surface height data
NASA Technical Reports Server (NTRS)
Schlax, Michael G.; Chelton, Dudley B.
1994-01-01
Alias periods and wavelengths for the M(sub 2, S(sub 2), N(sub 2), K(sub 1), O(sub 1), and P(sub 1) tidal constituents are calculated for TOPEX/POSEIDON. Alias wavelenghts calculated in previous studies are shown to be in error, and a correct method is presented. With the exception of the K(sub 1) constituent, all of these tidal aliases for TOPEX/POSEIDON have periods shorter than 90 days and are likely to be confounded with long-period sea surface height signals associated with real ocean processes. In particular, the correspondence between the periods and wavelengths of the M(sub 2) alias and annual baroclinic Rossby waves that plagued Geosat sea surface height data is avoided. The potential for aliasing residual tidal errors in smoothed estimates of sea surface height is calculated for the six tidal constituents. The potential for aliasing the lunar tidal constituents M(sub 2), N(sub 2) and O(sub 1) fluctuates with latitude and is different for estimates made at the crossovers of ascending and descending ground tracks than for estimates at points midway between crossovers. The potential for aliasing the solar tidal constituents S(sub 2), K(sub 1) and P(sub 1) varies smoothly with latitude. S(sub 2) is strongly aliased for latitudes within 50 degress of the equator, while K(sub 1) and P(sub 1) are only weakly aliased in that range. A weighted least squares method for estimating and removing residual tidal errors from TOPEX/POSEIDON sea surface height data is presented. A clear understanding of the nature of aliased tidal error in TOPEX/POSEIDON data aids the unambiguous identification of real propagating sea surface height signals. Unequivocal evidence of annual period, westward propagating waves in the North Atlantic is presented.
ERIC Educational Resources Information Center
Larney, Sarah; Burns, Lucy
2011-01-01
Individuals in contact with the criminal justice system are a key population of concern to public health. Record linkage studies can be useful for studying health outcomes for this group, but the use of aliases complicates the process of linking records across databases. This study was undertaken to determine the impact of aliases on sensitivity…
Cartographic symbol library considering symbol relations based on anti-aliasing graphic library
NASA Astrophysics Data System (ADS)
Mei, Yang; Li, Lin
2007-06-01
Cartographic visualization represents geographic information with a map form, which enables us retrieve useful geospatial information. In digital environment, cartographic symbol library is the base of cartographic visualization and is an essential component of Geographic Information System as well. Existing cartographic symbol libraries have two flaws. One is the display quality and the other one is relations adjusting. Statistic data presented in this paper indicate that the aliasing problem is a major factor on the symbol display quality on graphic display devices. So, effective graphic anti-aliasing methods based on a new anti-aliasing algorithm are presented and encapsulated in an anti-aliasing graphic library with the form of Component Object Model. Furthermore, cartographic visualization should represent feature relation in the way of correctly adjusting symbol relations besides displaying an individual feature. But current cartographic symbol libraries don't have this capability. This paper creates a cartographic symbol design model to implement symbol relations adjusting. Consequently the cartographic symbol library based on this design model can provide cartographic visualization with relations adjusting capability. The anti-aliasing graphic library and the cartographic symbol library are sampled and the results prove that the two libraries both have better efficiency and effect.
Color, contrast sensitivity, and the cone mosaic.
Williams, D; Sekiguchi, N; Brainard, D
1993-01-01
This paper evaluates the role of various stages in the human visual system in the detection of spatial patterns. Contrast sensitivity measurements were made for interference fringe stimuli in three directions in color space with a psychophysical technique that avoided blurring by the eye's optics including chromatic aberration. These measurements were compared with the performance of an ideal observer that incorporated optical factors, such as photon catch in the cone mosaic, that influence the detection of interference fringes. The comparison of human and ideal observer performance showed that neural factors influence the shape as well as the height of the foveal contrast sensitivity function for all color directions, including those that involve luminance modulation. Furthermore, when optical factors are taken into account, the neural visual system has the same contrast sensitivity for isoluminant stimuli seen by the middle-wavelength-sensitive (M) and long-wavelength-sensitive (L) cones and isoluminant stimuli seen by the short-wavelength-sensitive (S) cones. Though the cone submosaics that feed these chromatic mechanisms have very different spatial properties, the later neural stages apparently have similar spatial properties. Finally, we review the evidence that cone sampling can produce aliasing distortion for gratings with spatial frequencies exceeding the resolution limit. Aliasing can be observed with gratings modulated in any of the three directions in color space we used. We discuss mechanisms that prevent aliasing in most ordinary viewing conditions. Images Fig. 1 Fig. 8 PMID:8234313
NASA Astrophysics Data System (ADS)
Wiese, D. N.; McCullough, C. M.
2017-12-01
Studies have shown that both single pair low-low satellite-to-satellite tracking (LL-SST) and dual-pair LL-SST hypothetical future satellite gravimetry missions utilizing improved onboard measurement systems relative to the Gravity Recovery and Climate Experiment (GRACE) will be limited by temporal aliasing errors; that is, the error introduced through deficiencies in models of high frequency mass variations required for the data processing. Here, we probe the spatio-temporal characteristics of temporal aliasing errors to understand their impact on satellite gravity retrievals using high fidelity numerical simulations. We find that while aliasing errors are dominant at long wavelengths and multi-day timescales, improving knowledge of high frequency mass variations at these resolutions translates into only modest improvements (i.e. spatial resolution/accuracy) in the ability to measure temporal gravity variations at monthly timescales. This result highlights the reliance on accurate models of high frequency mass variations for gravity processing, and the difficult nature of reducing temporal aliasing errors and their impact on satellite gravity retrievals.
Viewing-zone enlargement method for sampled hologram that uses high-order diffraction.
Mishina, Tomoyuki; Okui, Makoto; Okano, Fumio
2002-03-10
We demonstrate a method of enlarging the viewing zone for holography that has holograms with a pixel structure. First, aliasing generated by the sampling of a hologram by pixel is described. Next the high-order diffracted beams reproduced from the hologram that contains aliasing are explained. Finally, we show that the viewing zone can be enlarged by combining these high-order reconstructed beams from the hologram with aliasing.
Digital Moiré based transient interferometry and its application in optical surface measurement
NASA Astrophysics Data System (ADS)
Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao
2017-10-01
Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.
NASA Technical Reports Server (NTRS)
Salby, M. L.
1982-01-01
An evaluation of the information content of asynoptic data taken in the form of nadir sonde and limb scan observations is presented, and a one-to-one correspondence is established between the alias-free data and twice-daily synoptic maps. Attention is given to space and time limitations of sampling and the orbital geometry is discussed. The sampling pattern is demonstrated to determine unique space-time spectra at all wavenumbers and frequencies. Spectral resolution and aliasing are explored, while restrictions on sampling and information content are defined. It is noted that irregular sampling at high latitudes produces spurious contamination effects. An Asynoptic Sampling Theorem is thereby formulated, as is a Synoptic Retrieval Theorem, in the second part of the article. In the latter, a procedure is developed for retrieving the unique correspondence between the asymptotic data and the synoptic maps. Applications examples are provided using data from the Nimbus-6 satellite.
NASA Astrophysics Data System (ADS)
Xiong, L.; Wang, G.; Wessel, P.
2017-12-01
Terrestrial laser scanning (TLS), also known as ground-based Light Detection and Ranging (LiDAR), has been frequently applied to build bare-earth digital elevation models (DEMs) for high-accuracy geomorphology studies. The point clouds acquired from TLS often achieve a spatial resolution at fingerprint (e.g., 3cm×3cm) to handprint (e.g., 10cm×10cm) level. A downsampling process has to be applied to decimate the massive point clouds and obtain portable DEMs. It is well known that downsampling can result in aliasing that causes different signal components to become indistinguishable when the signal is reconstructed from the datasets with a lower sampling rate. Conventional DEMs are mainly the results of upsampling of sparse elevation measurements from land surveying, satellite remote sensing, and aerial photography. As a consequence, the effects of aliasing have not been fully investigated in the open literature of DEMs. This study aims to investigate the spatial aliasing problem and implement an anti-aliasing procedure of regridding dense TLS data. The TLS data collected in the beach and dune area near Freeport, Texas in the summer of 2015 are used for this study. The core idea of the anti-aliasing procedure is to apply a low-pass spatial filter prior to conducting downsampling. This article describes the successful use of a fourth-order Butterworth low-pass spatial filter employed in the Generic Mapping Tools (GMT) software package as anti-aliasing filters. The filter can be applied as an isotropic filter with a single cutoff wavelength or as an anisotropic filter with different cutoff wavelengths in the X and Y directions. The cutoff wavelength for the isotropic filter is recommended to be three times the grid size of the target DEM.
RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Fabrycky, Daniel C., E-mail: rdawson@cfa.harvard.ed, E-mail: daniel.fabrycky@gmail.co
2010-10-10
Radial velocity measurements of stellar reflex motion have revealed many extrasolar planets, but gaps in the observations produce aliases, spurious frequencies that are frequently confused with the planets' orbital frequencies. In the case of Gl 581 d, the distinction between an alias and the true frequency was the distinction between a frozen, dead planet and a planet possibly hospitable to life. To improve the characterization of planetary systems, we describe how aliases originate and present a new approach for distinguishing between orbital frequencies and their aliases. Our approach harnesses features in the spectral window function to compare the amplitude andmore » phase of predicted aliases with peaks present in the data. We apply it to confirm prior alias distinctions for the planets GJ 876 d and HD 75898 b. We find that the true periods of Gl 581 d and HD 73526 b/c remain ambiguous. We revise the periods of HD 156668 b and 55 Cnc e, which were afflicted by daily aliases. For HD 156668 b, the correct period is 1.2699 days and the minimum mass is (3.1 {+-} 0.4) M{sub +}. For 55 Cnc e, the correct period is 0.7365 days-the shortest of any known planet-and the minimum mass is (8.3 {+-} 0.3) M{sub +}. This revision produces a significantly improved five-planet Keplerian fit for 55 Cnc, and a self-consistent dynamical fit describes the data just as well. As radial velocity techniques push to ever-smaller planets, often found in systems of multiple planets, distinguishing true periods from aliases will become increasingly important.« less
NASA Technical Reports Server (NTRS)
Spiegel, Seth C.; Huynh, H. T.; DeBonis, James R.
2015-01-01
High-order methods are quickly becoming popular for turbulent flows as the amount of computer processing power increases. The flux reconstruction (FR) method presents a unifying framework for a wide class of high-order methods including discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV). It offers a simple, efficient, and easy way to implement nodal-based methods that are derived via the differential form of the governing equations. Whereas high-order methods have enjoyed recent success, they have been known to introduce numerical instabilities due to polynomial aliasing when applied to under-resolved nonlinear problems. Aliasing errors have been extensively studied in reference to DG methods; however, their study regarding FR methods has mostly been limited to the selection of the nodal points used within each cell. Here, we extend some of the de-aliasing techniques used for DG methods, primarily over-integration, to the FR framework. Our results show that over-integration does remove aliasing errors but may not remove all instabilities caused by insufficient resolution (for FR as well as DG).
Aliasing errors in measurements of beam position and ellipticity
NASA Astrophysics Data System (ADS)
Ekdahl, Carl
2005-09-01
Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.
Cigada, Alfredo; Lurati, Massimiliano; Ripamonti, Francesco; Vanali, Marcello
2008-12-01
This paper introduces a measurement technique aimed at reducing or possibly eliminating the spatial aliasing problem in the beamforming technique. Beamforming main disadvantages are a poor spatial resolution, at low frequency, and the spatial aliasing problem, at higher frequency, leading to the identification of false sources. The idea is to move the microphone array during the measurement operation. In this paper, the proposed approach is theoretically and numerically investigated by means of simple sound propagation models, proving its efficiency in reducing the spatial aliasing. A number of different array configurations are numerically investigated together with the most important parameters governing this measurement technique. A set of numerical results concerning the case of a planar rotating array is shown, together with a first experimental validation of the method.
A Simple Application of Compressed Sensing to Further Accelerate Partially Parallel Imaging
Miao, Jun; Guo, Weihong; Narayan, Sreenath; Wilson, David L.
2012-01-01
Compressed Sensing (CS) and partially parallel imaging (PPI) enable fast MR imaging by reducing the amount of k-space data required for reconstruction. Past attempts to combine these two have been limited by the incoherent sampling requirement of CS, since PPI routines typically sample on a regular (coherent) grid. Here, we developed a new method, “CS+GRAPPA,” to overcome this limitation. We decomposed sets of equidistant samples into multiple random subsets. Then, we reconstructed each subset using CS, and averaging the results to get a final CS k-space reconstruction. We used both a standard CS, and an edge and joint-sparsity guided CS reconstruction. We tested these intermediate results on both synthetic and real MR phantom data, and performed a human observer experiment to determine the effectiveness of decomposition, and to optimize the number of subsets. We then used these CS reconstructions to calibrate the GRAPPA complex coil weights. In vivo parallel MR brain and heart data sets were used. An objective image quality evaluation metric, Case-PDM, was used to quantify image quality. Coherent aliasing and noise artifacts were significantly reduced using two decompositions. More decompositions further reduced coherent aliasing and noise artifacts but introduced blurring. However, the blurring was effectively minimized using our new edge and joint-sparsity guided CS using two decompositions. Numerical results on parallel data demonstrated that the combined method greatly improved image quality as compared to standard GRAPPA, on average halving Case-PDM scores across a range of sampling rates. The proposed technique allowed the same Case-PDM scores as standard GRAPPA, using about half the number of samples. We conclude that the new method augments GRAPPA by combining it with CS, allowing CS to work even when the k-space sampling pattern is equidistant. PMID:22902065
NASA Astrophysics Data System (ADS)
Quan, Shuxue
2009-02-01
Bayer patterns, in which a single value of red, green or blue is available for each pixel, are widely used in digital color cameras. The reconstruction of the full color image is often referred to as demosaicking. This paper introduced a new approach - morphological demosaicking. The approach is based on strong edge directionality selection and interpolation, followed by morphological operations to refine edge directionality selection and reduce color aliasing. Finally performance evaluation and examples of color artifacts reduction are shown.
The Influence of Gantry Geometry on Aliasing and Other Geometry Dependent Errors
NASA Astrophysics Data System (ADS)
Joseph, Peter M.
1980-06-01
At least three gantry geometries are widely used in medical CT scanners: (1) rotate-translate, (2) rotating detectors, (3) stationary detectors. There are significant geometrical differences between these designs, especially regarding (a) the region of space scanned by any given detector and (b) the sample density of rays which scan the patient. It is imperative to distinguish between "views" and "rays" in analyzing this situation. In particular, views are defined by the x-ray source in type 2 and by the detector in type 3 gantries. It is known that ray dependent errors are generally much more important than view dependent errors. It is shown that spatial resolution is primarily limited by the spacing between rays in any view, while the number of ray samples per beam width determines the extent of aliasing artifacts. Rotating detector gantries are especially susceptible to aliasing effects. It is shown that aliasing effects can distort the point spread function in a way that is highly dependent on the position of the point in the scanned field. Such effects can cause anomalies in the MTF functions as derived from points in machines with significant aliasing problems.
Exploring the Acoustic Nonlinearity for Monitoring Complex Aerospace Structures
2008-02-27
nonlinear elastic waves, embedded ultrasonics, nonlinear diagnostics, aerospace structures, structural joints. 16. SECURITY CLASSIFICATION OF: 17...sampling, 100 MHz bandwidth with noise and anti- aliasing filters, general-purpose alias-protected decimation for all sample rates and quad digital down...conversion ( DDC ) with up to 40 MHz IF bandwidth. Specified resolution of NI PXI 5142 is 14-bits with the noise floor approaching -85 dB. Such a
Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI.
Zhou, Ziwu; Han, Fei; Yan, Lirong; Wang, Danny J J; Hu, Peng
2017-12-01
To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Correia, Carlos M; Teixeira, Joel
2014-12-01
Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.
NASA Astrophysics Data System (ADS)
Xiong, Lin.; Wang, Guoquan; Wessel, Paul
2017-03-01
Terrestrial laser scanning (TLS), also known as ground-based Light Detection and Ranging (LiDAR), has been frequently applied to build bare-earth digital elevation models (DEMs) for high-accuracy geomorphology studies. The point clouds acquired from TLS often achieve a spatial resolution at fingerprint (e.g., 3 cm×3 cm) to handprint (e.g., 10 cm×10 cm) level. A downsampling process has to be applied to decimate the massive point clouds and obtain manageable DEMs. It is well known that downsampling can result in aliasing that causes different signal components to become indistinguishable when the signal is reconstructed from the datasets with a lower sampling rate. Conventional DEMs are mainly the results of upsampling of sparse elevation measurements from land surveying, satellite remote sensing, and aerial photography. As a consequence, the effects of aliasing caused by downsampling have not been fully investigated in the open literature of DEMs. This study aims to investigate the spatial aliasing problem of regridding dense TLS data. The TLS data collected from the beach and dune area near Freeport, Texas in the summer of 2015 are used for this study. The core idea of the anti-aliasing procedure is to apply a low-pass spatial filter prior to conducting downsampling. This article describes the successful use of a fourth-order Butterworth low-pass spatial filter employed in the Generic Mapping Tools (GMT) software package as an anti-aliasing filter. The filter can be applied as an isotropic filter with a single cutoff wavelength or as an anisotropic filter with two different cutoff wavelengths in the X and Y directions. The cutoff wavelength for the isotropic filter is recommended to be three times the grid size of the target DEM.
On the wave number 2 eastward propagating quasi 2 day wave at middle and high latitudes
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Pedatella, N. M.; Dou, Xiankang; Liu, Yu
2017-04-01
The temperature and wind data sets from the ensemble data assimilation version of the Whole Atmosphere Community Climate Model + Data Assimilation Research Testbed (WACCM + DART) developed at the National Center for Atmospheric Research (NCAR) are utilized to study the seasonal variability of the eastward quasi 2 day wave (QTDW) with zonal wave number 2 (E2) during 2007. The aliasing ratio of E2 from wave number 3 (W3) in the synoptic WACCM data set is a constant value of 4 × 10-6% due to its uniform sampling pattern, whereas the aliasing is latitudinally dependent if the WACCM fields are sampled asynoptically based on the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) sampling. The aliasing ratio based on SABER sampling is 75% at 40°S during late January, where and when W3 peaks. The analysis of the synoptic WACCM data set shows that the E2 is in fact a winter phenomenon, which peaks in the stratosphere and lower mesosphere at high latitudes. In the austral winter period, the amplitudes of E2 can reach 10 K, 20 m/s, and 30 m/s for temperature, zonal, and meridional winds, respectively. In the boreal winter period, the wave perturbations are only one third as strong as those in austral winter. Diagnostic analysis also shows that the mean flow instabilities in the winter upper mesosphere polar region provide sources for the amplification of E2. This is different from the westward QTDWs, whose amplifications are related to the summer easterly jet. In addition, the E2 also peaks at lower altitude than the westward modes.
Chappell, Nick A; Jones, Timothy D; Tych, Wlodek
2017-10-15
Insufficient temporal monitoring of water quality in streams or engineered drains alters the apparent shape of storm chemographs, resulting in shifted model parameterisations and changed interpretations of solute sources that have produced episodes of poor water quality. This so-called 'aliasing' phenomenon is poorly recognised in water research. Using advances in in-situ sensor technology it is now possible to monitor sufficiently frequently to avoid the onset of aliasing. A systems modelling procedure is presented allowing objective identification of sampling rates needed to avoid aliasing within strongly rainfall-driven chemical dynamics. In this study aliasing of storm chemograph shapes was quantified by changes in the time constant parameter (TC) of transfer functions. As a proportion of the original TC, the onset of aliasing varied between watersheds, ranging from 3.9-7.7 to 54-79 %TC (or 110-160 to 300-600 min). However, a minimum monitoring rate could be identified for all datasets if the modelling results were presented in the form of a new statistic, ΔTC. For the eight H + , DOC and NO 3 -N datasets examined from a range of watershed settings, an empirically-derived threshold of 1.3(ΔTC) could be used to quantify minimum monitoring rates within sampling protocols to avoid artefacts in subsequent data analysis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks
NASA Technical Reports Server (NTRS)
Zaal, Peter; Sweet, Barbara
2010-01-01
Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.
A Simple Approach to Fourier Aliasing
ERIC Educational Resources Information Center
Foadi, James
2007-01-01
In the context of discrete Fourier transforms the idea of aliasing as due to approximation errors in the integral defining Fourier coefficients is introduced and explained. This has the positive pedagogical effect of getting to the heart of sampling and the discrete Fourier transform without having to delve into effective, but otherwise long and…
NASA Astrophysics Data System (ADS)
Daras, Ilias; Pail, Roland
2017-09-01
Temporal aliasing effects have a large impact on the gravity field accuracy of current gravimetry missions and are also expected to dominate the error budget of Next Generation Gravimetry Missions (NGGMs). This paper focuses on aspects concerning their treatment in the context of Low-Low Satellite-to-Satellite Tracking NGGMs. Closed-loop full-scale simulations are performed for a two-pair Bender-type Satellite Formation Flight (SFF), by taking into account error models of new generation instrument technology. The enhanced spatial sampling and error isotropy enable a further reduction of temporal aliasing errors from the processing perspective. A parameterization technique is adopted where the functional model is augmented by low-resolution gravity field solutions coestimated at short time intervals, while the remaining higher-resolution gravity field solution is estimated at a longer time interval. Fine-tuning the parameterization choices leads to significant reduction of the temporal aliasing effects. The investigations reveal that the parameterization technique in case of a Bender-type SFF can successfully mitigate aliasing effects caused by undersampling of high-frequency atmospheric and oceanic signals, since their most significant variations can be captured by daily coestimated solutions. This amounts to a "self-dealiasing" method that differs significantly from the classical dealiasing approach used nowadays for Gravity Recovery and Climate Experiment processing, enabling NGGMs to retrieve the complete spectrum of Earth's nontidal geophysical processes, including, for the first time, high-frequency atmospheric and oceanic variations.
Undersampled digital holographic interferometry
NASA Astrophysics Data System (ADS)
Halaq, H.; Demoli, N.; Sović, I.; Šariri, K.; Torzynski, M.; Vukičević, D.
2008-04-01
In digital holography, primary holographic fringes are recorded using a matricial CCD sensor. Because of the low spatial resolution of currently available CCD arrays, the angle between the reference and object beams must be limited to a few degrees. Namely, due to the digitization involved, the Shannon's criterion imposes that the Nyquist sampling frequency be at least twice the highest signal frequency. This means that, in the case of the recording of an interference fringe pattern by a CCD sensor, the inter-fringe distance must be larger than twice the pixel period. This in turn limits the angle between the object and the reference beams. If this angle, in a practical holographic interferometry measuring setup, cannot be limited to the required value, aliasing will occur in the reconstructed image. In this work, we demonstrate that the low spatial frequency metrology data could nevertheless be efficiently extracted by careful choice of twofold, and even threefold, undersampling of the object field. By combining the time-averaged recording with subtraction digital holography method, we present results for a loudspeaker membrane interferometric study obtained under strong aliasing conditions. High-contrast fringes, as a consequence of the vibration modes of the membrane, are obtained.
Lacerda, Luis M; Sperl, Jonathan I; Menzel, Marion I; Sprenger, Tim; Barker, Gareth J; Dell'Acqua, Flavio
2016-12-01
Diffusion spectrum imaging (DSI) is an imaging technique that has been successfully applied to resolve white matter crossings in the human brain. However, its accuracy in complex microstructure environments has not been well characterized. Here we have simulated different tissue configurations, sampling schemes, and processing steps to evaluate DSI performances' under realistic biophysical conditions. A novel approach to compute the orientation distribution function (ODF) has also been developed to include biophysical constraints, namely integration ranges compatible with axial fiber diffusivities. Performed simulations identified several DSI configurations that consistently show aliasing artifacts caused by fast diffusion components for both isotropic diffusion and fiber configurations. The proposed method for ODF computation showed some improvement in reducing such artifacts and improving the ability to resolve crossings, while keeping the quantitative nature of the ODF. In this study, we identified an important limitation of current DSI implementations, specifically the presence of aliasing due to fast diffusion components like those from pathological tissues, which are not well characterized, and can lead to artifactual fiber reconstructions. To minimize this issue, a new way of computing the ODF was introduced, which removes most of these artifacts and offers improved angular resolution. Magn Reson Med 76:1837-1847, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Seismology and geodesy of the sun: Low-frequency oscillations.
Dicke, R H
1981-04-01
The hourly averages of the solar ellipticity measured from June 13 to Sept. 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 hr nu < 0.5 hr(-1). Nothing significant is found for frequencies nu > 0.1 hr(-1) but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-hr period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.
Fluid Motion and the Toroidal Magnetic Field Near the Top of Earth's Liquid Outer Core.
NASA Astrophysics Data System (ADS)
Celaya, Michael Augustine
This work considers two unresolved problems central to the study of Earth's deep interior: (1) What is the surface flow of the complete three dimensional motion sustaining the geomagnetic field in the fluid outer core? (2) How strong is the toroidal component of that field just beneath the mantle inside the core?. A solution of these problems is necessary to achieve even a basic understanding of magnetic field generation, and core-mantle interactions. Progress in solving (1) is made by extending previous attempts to resolve the core surface flow, and identifying obstacles which lead to distorted solutions. The extension relaxes the steady motions constraint. This permits more realistic solutions which should resemble more closely the real Earth flow. A difficulty with the assumption of steady flow is that if the real motion is unsteady, as it is likely to be, then steady models will suffer from aliasing. Aliased solutions can be highly corrupted. The effects of aliasing incurred through model underparametrization are explored. It is found that flow spectral energy must fall rapidly with increasing degree to escape aliasing's distortion. Damping does not appear to remedy the problem, but in fact obscures it by forcing the solution to converge upon a single, but possibly still aliased estimate. Inversions of a magnetic field model for unsteady motions, indicate steady flows are indeed aliased in time. By comparison, unsteady flows appear free of aliasing and show significant temporal variation, changing by about 30% of their magnitude over 20 years. However, it appears that noise in the high degree secular variation (SV) data used to determine the flow acts as a further impediment to solving (1). Damping is shown to be effective in removing noise, but only once aliasing is no longer a factor and noise is restricted to that part of the SV which makes only a small contribution to the solution. To solve (2) the radial component of Ohm's law is inverted for the toroidal field (B_{T }) near the top of the corp. The flow, obtained as a solution to (1), is treated as a known quantity, as is the poloidal field. Solutions are sought which minimize the difference between observed and predicted poloidal main field at Earth's surface. As in problem (1), aliasing in space and time stand as potential impediments to good resolution of the toroidal field. Steady degree 10 models of B_{T} are obtained which display convergence in space and time without damping. Poloidal field noise, as well as sensitivity to the flow model used in the inversions, limit resolution of toroidal field geometry. Nevertheless, estimates indicate the magnitude of B_{T } does not exceed 8times 10^ {-5}T, or about half that of the poloidal field near the core surface. Such a low value favors weak -field dynamo models but does not necessarily endorse a geostrophic force balance just beneath the mantle because partial_{r}B _{T} may be large enough to violate conditions required by geostrophy.
Signal Processing Algorithms for the Terminal Doppler Weather Radar: Build 2
2010-04-30
the various TDWR base data quality issues, range-velocity (RV) ambiguity was deemed to be the most severe challenge nationwide. Compared to S - band ... power is computed as PN = median(|5«| 2)/(ln 2), where s is the complex I&Q signal, k is the range gate number, and / is the pulse time index. The...frequencies to the ground-clutter band around zero, the clutter filtering also removes power from the aliased frequencies and distorts the phase response
On the aliasing of the solar cycle in the lower stratospheric tropical temperature
NASA Astrophysics Data System (ADS)
Kuchar, Ales; Ball, William T.; Rozanov, Eugene V.; Stenke, Andrea; Revell, Laura; Miksovsky, Jiri; Pisoft, Petr; Peter, Thomas
2017-09-01
The double-peaked response of the tropical stratospheric temperature profile to the 11 year solar cycle (SC) has been well documented. However, there are concerns about the origin of the lower peak due to potential aliasing with volcanic eruptions or the El Niño-Southern Oscillation (ENSO) detected using multiple linear regression analysis. We confirm the aliasing using the results of the chemistry-climate model (CCM) SOCOLv3 obtained in the framework of the International Global Atmospheric Chemisty/Stratosphere-troposphere Processes And their Role in Climate Chemistry-Climate Model Initiative phase 1. We further show that even without major volcanic eruptions included in transient simulations, the lower stratospheric response exhibits a residual peak when historical sea surface temperatures (SSTs)/sea ice coverage (SIC) are used. Only the use of climatological SSTs/SICs in addition to background stratospheric aerosols removes volcanic and ENSO signals and results in an almost complete disappearance of the modeled solar signal in the lower stratospheric temperature. We demonstrate that the choice of temporal subperiod considered for the regression analysis has a large impact on the estimated profile signal in the lower stratosphere: at least 45 consecutive years are needed to avoid the large aliasing effect of SC maxima with volcanic eruptions in 1982 and 1991 in historical simulations, reanalyses, and observations. The application of volcanic forcing compiled for phase 6 of the Coupled Model Intercomparison Project (CMIP6) in the CCM SOCOLv3 reduces the warming overestimation in the tropical lower stratosphere and the volcanic aliasing of the temperature response to the SC, although it does not eliminate it completely.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-21
... DEPARTMENT OF STATE [Public Notice 8527] In the Matter of the Review of the Designation of the Kurdistan Worker's Party (and Other Aliases) as a Foreign Terrorist Organization Pursuant to Section 219 of the Immigration and Nationality Act, as Amended Based upon a review of the Administrative Record...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-24
... DEPARTMENT OF STATE [Public Notice 7026] Review of the Designation of Ansar al-Islam (aka Ansar Al-Sunnah and Other Aliases) as a Foreign Terrorist Organization Pursuant to Section 219 of the Immigration and Nationality Act, as Amended Based upon a review of the Administrative Records assembled in these...
Anti-aliasing algorithm development
NASA Astrophysics Data System (ADS)
Bodrucki, F.; Davis, J.; Becker, J.; Cordell, J.
2017-10-01
In this paper, we discuss the testing image processing algorithms for mitigation of aliasing artifacts under pulsed illumination. Previously sensors were tested, one with a fixed frame rate and one with an adjustable frame rate, which results showed different degrees of operability when subjected to a Quantum Cascade Laser (QCL) laser pulsed at the frame rate of the fixe-rate sensor. We implemented algorithms to allow the adjustable frame-rate sensor to detect the presence of aliasing artifacts, and in response, to alter the frame rate of the sensor. The result was that the sensor output showed a varying laser intensity (beat note) as opposed to a fixed signal level. A MIRAGE Infrared Scene Projector (IRSP) was used to explore the efficiency of the new algorithms, introduction secondary elements into the sensor's field of view.
Effects of Spatio-Temporal Aliasing on Out-the-Window Visual Systems
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.; Stone, Leland S.; Liston, Dorion B.; Hebert, Tim M.
2014-01-01
Designers of out-the-window visual systems face a challenge when attempting to simulate the outside world as viewed from a cockpit. Many methodologies have been developed and adopted to aid in the depiction of particular scene features, or levels of static image detail. However, because aircraft move, it is necessary to also consider the quality of the motion in the simulated visual scene. When motion is introduced in the simulated visual scene, perceptual artifacts can become apparent. A particular artifact related to image motion, spatiotemporal aliasing, will be addressed. The causes of spatio-temporal aliasing will be discussed, and current knowledge regarding the impact of these artifacts on both motion perception and simulator task performance will be reviewed. Methods of reducing the impact of this artifact are also addressed
Seismology and geodesy of the sun: low-frequency oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dicke, R.H.
1981-04-01
The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ..nu.. < 0.5 h/sup -1/. Nothing significant is found for frequencies ..nu.. > 0.1 hr/sup -1/ but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers ofmore » hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.« less
Cho, Sanghee; Grazioso, Ron; Zhang, Nan; Aykac, Mehmet; Schmand, Matthias
2011-12-07
The main focus of our study is to investigate how the performance of digital timing methods is affected by sampling rate, anti-aliasing and signal interpolation filters. We used the Nyquist sampling theorem to address some basic questions such as what will be the minimum sampling frequencies? How accurate will the signal interpolation be? How do we validate the timing measurements? The preferred sampling rate would be as low as possible, considering the high cost and power consumption of high-speed analog-to-digital converters. However, when the sampling rate is too low, due to the aliasing effect, some artifacts are produced in the timing resolution estimations; the shape of the timing profile is distorted and the FWHM values of the profile fluctuate as the source location changes. Anti-aliasing filters are required in this case to avoid the artifacts, but the timing is degraded as a result. When the sampling rate is marginally over the Nyquist rate, a proper signal interpolation is important. A sharp roll-off (higher order) filter is required to separate the baseband signal from its replicates to avoid the aliasing, but in return the computation will be higher. We demonstrated the analysis through a digital timing study using fast LSO scintillation crystals as used in time-of-flight PET scanners. From the study, we observed that there is no significant timing resolution degradation down to 1.3 Ghz sampling frequency, and the computation requirement for the signal interpolation is reasonably low. A so-called sliding test is proposed as a validation tool checking constant timing resolution behavior of a given timing pick-off method regardless of the source location change. Lastly, the performance comparison for several digital timing methods is also shown.
Chang, Hing-Chiu; Chen, Nan-kuei
2016-01-01
Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI. PMID:27114342
Treatment of ocean tide aliasing in the context of a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Hauk, Markus; Pail, Roland
2018-07-01
Current temporal gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) suffer from temporal aliasing errors due to undersampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean) and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high-resolution temporal gravity fields from future gravity missions such as GRACE Follow-On and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parametrize ocean tide parameters of the eight main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from 1 to 3 yr leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.
Treatment of ocean tide aliasing in the context of a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Hauk, Markus; Pail, Roland
2018-04-01
Current temporal gravity field solutions from GRACE suffer from temporal aliasing errors due to under-sampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean), and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high resolution temporal gravity fields from future gravity missions such as GRACE Follow-on and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parameterize ocean tide parameters of the 8 main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from one to three years leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 per cent and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.
A simulation for gravity fine structure recovery from low-low GRAVSAT SST data
NASA Technical Reports Server (NTRS)
Estes, R. H.; Lancaster, E. R.
1976-01-01
Covariance error analysis techniques were applied to investigate estimation strategies for the low-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. A 5 degree by 5 degree surface density block representation of the high order geopotential was utilized with the drag-free low-low GRAVSAT configuration in a circular polar orbit at 250 km altitude. Recovery of local sets of density blocks from long data arcs was found not to be feasible due to strong aliasing effects. The error analysis for the recovery of local sets of density blocks using independent short data arcs demonstrated that the estimation strategy of simultaneously estimating a local set of blocks covered by data and two "buffer layers" of blocks not covered by data greatly reduced aliasing errors.
Context dependent anti-aliasing image reconstruction
NASA Technical Reports Server (NTRS)
Beaudet, Paul R.; Hunt, A.; Arlia, N.
1989-01-01
Image Reconstruction has been mostly confined to context free linear processes; the traditional continuum interpretation of digital array data uses a linear interpolator with or without an enhancement filter. Here, anti-aliasing context dependent interpretation techniques are investigated for image reconstruction. Pattern classification is applied to each neighborhood to assign it a context class; a different interpolation/filter is applied to neighborhoods of differing context. It is shown how the context dependent interpolation is computed through ensemble average statistics using high resolution training imagery from which the lower resolution image array data is obtained (simulation). A quadratic least squares (LS) context-free image quality model is described from which the context dependent interpolation coefficients are derived. It is shown how ensembles of high-resolution images can be used to capture the a priori special character of different context classes. As a consequence, a priori information such as the translational invariance of edges along the edge direction, edge discontinuity, and the character of corners is captured and can be used to interpret image array data with greater spatial resolution than would be expected by the Nyquist limit. A Gibb-like artifact associated with this super-resolution is discussed. More realistic context dependent image quality models are needed and a suggestion is made for using a quality model which now is finding application in data compression.
Smith, Matthew R.; Artz, Nathan S.; Koch, Kevin M.; Samsonov, Alexey; Reeder, Scott B.
2014-01-01
Purpose To demonstrate feasibility of exploiting the spatial distribution of off-resonance surrounding metallic implants for accelerating multispectral imaging techniques. Theory Multispectral imaging (MSI) techniques perform time-consuming independent 3D acquisitions with varying RF frequency offsets to address the extreme off-resonance from metallic implants. Each off-resonance bin provides a unique spatial sensitivity that is analogous to the sensitivity of a receiver coil, and therefore provides a unique opportunity for acceleration. Methods Fully sampled MSI was performed to demonstrate retrospective acceleration. A uniform sampling pattern across off-resonance bins was compared to several adaptive sampling strategies using a total hip replacement phantom. Monte Carlo simulations were performed to compare noise propagation of two of these strategies. With a total knee replacement phantom, positive and negative off-resonance bins were strategically sampled with respect to the B0 field to minimize aliasing. Reconstructions were performed with a parallel imaging framework to demonstrate retrospective acceleration. Results An adaptive sampling scheme dramatically improved reconstruction quality, which was supported by the noise propagation analysis. Independent acceleration of negative and positive off-resonance bins demonstrated reduced overlapping of aliased signal to improve the reconstruction. Conclusion This work presents the feasibility of acceleration in the presence of metal by exploiting the spatial sensitivities of off-resonance bins. PMID:24431210
Infrared Sensor Readout Design
1975-11-01
Line Replaceable Unit LT Level Translator MRT Minimum Resolvable Temperature MTF Modulation Transfer Function PC Printed Circuit SCCCD Surface...reduced, not only will the aliased noise increase, but signal aliasing will also start to occur. Atlbe display level this means that sharp edges could...converted from a quantity ol charge to a voltage- level shift by the action ol the precharge pulse that presets the potential on the output diode node to
Staggered Multiple-PRF Ultrafast Color Doppler.
Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien
2016-06-01
Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.
Välimäki, Vesa; Pekonen, Jussi; Nam, Juhan
2012-01-01
Digital subtractive synthesis is a popular music synthesis method, which requires oscillators that are aliasing-free in a perceptual sense. It is a research challenge to find computationally efficient waveform generation algorithms that produce similar-sounding signals to analog music synthesizers but which are free from audible aliasing. A technique for approximately bandlimited waveform generation is considered that is based on a polynomial correction function, which is defined as the difference of a non-bandlimited step function and a polynomial approximation of the ideal bandlimited step function. It is shown that the ideal bandlimited step function is equivalent to the sine integral, and that integrated polynomial interpolation methods can successfully approximate it. Integrated Lagrange interpolation and B-spline basis functions are considered for polynomial approximation. The polynomial correction function can be added onto samples around each discontinuity in a non-bandlimited waveform to suppress aliasing. Comparison against previously known methods shows that the proposed technique yields the best tradeoff between computational cost and sound quality. The superior method amongst those considered in this study is the integrated third-order B-spline correction function, which offers perceptually aliasing-free sawtooth emulation up to the fundamental frequency of 7.8 kHz at the sample rate of 44.1 kHz. © 2012 Acoustical Society of America.
DNS load balancing in the CERN cloud
NASA Astrophysics Data System (ADS)
Reguero Naredo, Ignacio; Lobato Pardavila, Lorena
2017-10-01
Load Balancing is one of the technologies enabling deployment of large-scale applications on cloud resources. A DNS Load Balancer Daemon (LBD) has been developed at CERN as a cost-effective way to balance applications accepting DNS timing dynamics and not requiring persistence. It currently serves over 450 load-balanced aliases with two small VMs acting as master and slave. The aliases are mapped to DNS subdomains. These subdomains are managed with DDNS according to a load metric, which is collected from the alias member nodes with SNMP. During the last years, several improvements were brought to the software, for instance: support for IPv6, parallelization of the status requests, implementing the client in Python to allow for multiple aliases with differentiated states on the same machine or support for application state. The configuration of the Load Balancer is currently managed by a Puppet type. It discovers the alias member nodes and gets the alias definitions from the Ermis REST service. The Aiermis self-service GUI for the management of the LB aliases has been produced and is based on the Ermis service above that implements a form of Load Balancing as a Service (LBaaS). The Ermis REST API has authorisation based in Foreman hostgroups. The CERN DNS LBD is Open Software with Apache 2 license.
Angular oversampling with temporally offset layers on multilayer detectors in computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjölin, Martin, E-mail: martin.sjolin@mi.physics.kth.se; Danielsson, Mats
2016-06-15
Purpose: Today’s computed tomography (CT) scanners operate at an increasingly high rotation speed in order to reduce motion artifacts and to fulfill the requirements of dynamic acquisition, e.g., perfusion and cardiac imaging, with lower angular sampling rate as a consequence. In this paper, a simple method for obtaining angular oversampling when using multilayer detectors in continuous rotation CT is presented. Methods: By introducing temporal offsets between the measurement periods of the different layers on a multilayer detector, the angular sampling rate can be increased by a factor equal to the number of layers on the detector. The increased angular samplingmore » rate reduces the risk of producing aliasing artifacts in the image. A simulation of a detector with two layers is performed to prove the concept. Results: The simulation study shows that aliasing artifacts from insufficient angular sampling are reduced by the proposed method. Specifically, when imaging a single point blurred by a 2D Gaussian kernel, the method is shown to reduce the strength of the aliasing artifacts by approximately an order of magnitude. Conclusions: The presented oversampling method is easy to implement in today’s multilayer detectors and has the potential to reduce aliasing artifacts in the reconstructed images.« less
Post-Fisherian Experimentation: From Physical to Virtual
Jeff Wu, C. F.
2014-04-24
Fisher's pioneering work in design of experiments has inspired further work with broader applications, especially in industrial experimentation. Three topics in physical experiments are discussed: principles of effect hierarchy, sparsity, and heredity for factorial designs, a new method called CME for de-aliasing aliased effects, and robust parameter design. The recent emergence of virtual experiments on a computer is reviewed. Here, some major challenges in computer experiments, which must go beyond Fisherian principles, are outlined.
Determining Aliasing in Isolated Signal Conditioning Modules
NASA Technical Reports Server (NTRS)
2009-01-01
The basic concept of aliasing is this: Converting analog data into digital data requires sampling the signal at a specific rate, known as the sampling frequency. The result of this conversion process is a new function, which is a sequence of digital samples. This new function has a frequency spectrum, which contains all the frequency components of the original signal. The Fourier transform mathematics of this process show that the frequency spectrum of the sequence of digital samples consists of the original signal s frequency spectrum plus the spectrum shifted by all the harmonics of the sampling frequency. If the original analog signal is sampled in the conversion process at a minimum of twice the highest frequency component contained in the analog signal, and if the reconstruction process is limited to the highest frequency of the original signal, then the reconstructed signal accurately duplicates the original analog signal. It is this process that can give birth to aliasing.
Simulation of sampling effects in FPAs
NASA Astrophysics Data System (ADS)
Cook, Thomas H.; Hall, Charles S.; Smith, Frederick G.; Rogne, Timothy J.
1991-09-01
The use of multiplexers and large focal plane arrays in advanced thermal imaging systems has drawn renewed attention to sampling and aliasing issues in imaging applications. As evidenced by discussions in a recent workshop, there is no clear consensus among experts whether aliasing in sensor designs can be readily tolerated, or must be avoided at all cost. Further, there is no straightforward, analytical method that can answer the question, particularly when considering image interpreters as different as humans and autonomous target recognizers (ATR). However, the means exist for investigating sampling and aliasing issues through computer simulation. The U.S. Army Tank-Automotive Command (TACOM) Thermal Image Model (TTIM) provides realistic sensor imagery that can be evaluated by both human observers and TRs. This paper briefly describes the history and current status of TTIM, explains the simulation of FPA sampling effects, presents validation results of the FPA sensor model, and demonstrates the utility of TTIM for investigating sampling effects in imagery.
NASA Technical Reports Server (NTRS)
Wu, Xiaoping; Argus, Donald F.; Heflin, Michael B.; Ivins, Erik R.; Webb, Frank H.
2002-01-01
Precise GPS measurements of elastic relative site displacements due to surface mass loading offer important constraints on global surface mass transport. We investigate effects of site distribution and aliasing by higher-degree (n greater than or equal 2) loading terms on inversion of GPS data for n = 1 load coefficients and geocenter motion. Covariance and simulation analyses are conducted to assess the sensitivity of the inversion to aliasing and mismodeling errors and possible uncertainties in the n = 1 load coefficient determination. We found that the use of center-of-figure approximation in the inverse formulation could cause 10- 15% errors in the inverted load coefficients. n = 1 load estimates may be contaminated significantly by unknown higher-degree terms, depending on the load scenario and the GPS site distribution. The uncertainty in n = 1 zonal load estimate is at the level of 80 - 95% for two load scenarios.
NASA Astrophysics Data System (ADS)
Hu, Bingbing; Li, Bing
2016-02-01
It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.
The effect of sampling rate and anti-aliasing filters on high-frequency response spectra
Boore, David M.; Goulet, Christine
2013-01-01
The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency fsaa corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above fsaa should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than fsaa . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using linear time interpolation for the resamplin
Pattern recognition invariant under changes of scale and orientation
NASA Astrophysics Data System (ADS)
Arsenault, Henri H.; Parent, Sebastien; Moisan, Sylvain
1997-08-01
We have used a modified method proposed by neiberg and Casasent to successfully classify five kinds of military vehicles. The method uses a wedge filter to achieve scale invariance, and lines in a multi-dimensional feature space correspond to each target with out-of-plane orientations over 360 degrees around a vertical axis. The images were not binarized, but were filtered in a preprocessing step to reduce aliasing. The feature vectors were normalized and orthogonalized by means of a neural network. Out-of-plane rotations of 360 degrees and scale changes of a factor of four were considered. Error-free classification was achieved.
NASA Technical Reports Server (NTRS)
Chelton, Dudley B.; Schlax, Michael G.
1994-01-01
A formalism is presented for determining the wavenumber-frequency transfer function associated with an irregularly sampled multidimensional dataset. This transfer function reveals the filtering characteristics and aliasing patterns inherent in the sample design. In combination with information about the spectral characteristics of the signal, the transfer function can be used to quantify the spatial and temporal resolution capability of the dataset. Application of the method to idealized Geosat altimeter data (i.e., neglecting measurement errors and data dropouts) concludes that the Geosat orbit configuration is capable of resolving scales of about 3 deg in latitude and longitude by about 30 days.
Graphics processing unit (GPU) real-time infrared scene generation
NASA Astrophysics Data System (ADS)
Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.
2007-04-01
VIRSuite, the GPU-based suite of software tools developed at DSTO for real-time infrared scene generation, is described. The tools include the painting of scene objects with radiometrically-associated colours, translucent object generation, polar plot validation and versatile scene generation. Special features include radiometric scaling within the GPU and the presence of zoom anti-aliasing at the core of VIRSuite. Extension of the zoom anti-aliasing construct to cover target embedding and the treatment of translucent objects is described.
Event Compression Using Recursive Least Squares Signal Processing.
1980-07-01
decimation of the Burstl signal with and without all-pole prefiltering to reduce aliasing . Figures 3.32a-c and 3.33a-c show the same examples but with 4/1...to reduce aliasing , w~t found that it did not improve the quality of the event compressed signals . If filtering must be performed, all-pole filtering...A-AO89 785 MASSACHUSETTS IN T OF TECH CAMBRIDGE RESEARCH LAB OF--ETC F/B 17/9 EVENT COMPRESSION USING RECURSIVE LEAST SQUARES SIGNAL PROCESSI-ETC(t
Sampling Frequency Optimisation and Nonlinear Distortion Mitigation in Subsampling Receiver
NASA Astrophysics Data System (ADS)
Castanheira, Pedro Xavier Melo Fernandes
Subsampling receivers utilise the subsampling method to down convert signals from radio frequency (RF) to a lower frequency location. Multiple signals can also be down converted using the subsampling receiver, but using the incorrect subsampling frequency could result in signals aliasing one another after down conversion. The existing method for subsampling multiband signals focused on down converting all the signals without any aliasing between the signals. The case considered initially was a dual band signal, and then it was further extended to a more general multiband case. In this thesis, a new method is proposed with the assumption that only one signal is needed to not overlap the other multiband signals that are down converted at the same time. The proposed method will introduce unique formulas using the said assumption to calculate the valid subsampling frequencies, ensuring that the target signal is not aliased by the other signals. Simulation results show that the proposed method will provide lower valid subsampling frequencies for down conversion compared to the existing methods.
NASA Technical Reports Server (NTRS)
Parke, Michael E.; Born, George; Mclaughlin, Craig
1994-01-01
The advantages of having Geosat Follow-On in a Geosat orbit flying simultaneously with Topex Follow-On in a Topex/Poseidon orbit are examined. The orbits are evaluated using two criteria. The first is the acute crossover angle. This angle should be at least 40 degrees in order to accurately resolve the slope of sea level at crossover locations. The second is tidal aliasing. In order to solve for tides, the largest constituents should not be aliased to a frequency lower than two cycles/year and should be at least one cycle discrete from one another and from exactly two cycles/year over the mission life. The results show that TFO and GFO in these orbits complement each other. Both satellites have large crossover angles over a wide latitude range. In addition, the Topex orbit has good aliasing characteristics for the M2 and P1 tides for which the Geosat orbit has difficulty.
Harmonic analysis of electrified railway based on improved HHT
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-04-01
In this paper, the causes and harms of the current electric locomotive electrical system harmonics are firstly studied and analyzed. Based on the characteristics of the harmonics in the electrical system, the Hilbert-Huang transform method is introduced. Based on the in-depth analysis of the empirical mode decomposition method and the Hilbert transform method, the reasons and solutions to the endpoint effect and modal aliasing problem in the HHT method are explored. For the endpoint effect of HHT, this paper uses point-symmetric extension method to extend the collected data; In allusion to the modal aliasing problem, this paper uses the high frequency harmonic assistant method to preprocess the signal and gives the empirical formula of high frequency auxiliary harmonic. Finally, combining the suppression of HHT endpoint effect and modal aliasing problem, an improved HHT method is proposed and simulated by matlab. The simulation results show that the improved HHT is effective for the electric locomotive power supply system.
NASA Astrophysics Data System (ADS)
Chappell, N. A.; Jones, T.; Young, P.; Krishnaswamy, J.
2015-12-01
There is increasing awareness that under-sampling may have resulted in the omission of important physicochemical information present in water quality signatures of surface waters - thereby affecting interpretation of biogeochemical processes. For dissolved organic carbon (DOC) and nitrogen this under-sampling can now be avoided using UV-visible spectroscopy measured in-situ and continuously at a fine-resolution e.g. 15 minutes ("real time"). Few methods are available to extract biogeochemical process information directly from such high-frequency data. Jones, Chappell & Tych (2014 Environ Sci Technol: 13289-97) developed one such method using optically-derived DOC data based upon a sophisticated time-series modelling tool. Within this presentation we extend the methodology to quantify the minimum sampling interval required to avoid distortion of model structures and parameters that describe fundamental biogeochemical processes. This shifting of parameters which results from under-sampling is called "aliasing". We demonstrate that storm dynamics at a variety of sites dominate over diurnal and seasonal changes and that these must be characterised by sampling that may be sub-hourly to avoid aliasing. This is considerably shorter than that used by other water quality studies examining aliasing (e.g. Kirchner 2005 Phys Rev: 069902). The modelling approach presented is being developed into a generic tool to calculate the minimum sampling for water quality monitoring in systems driven primarily by hydrology. This is illustrated with fine-resolution, optical data from watersheds in temperate Europe through to the humid tropics.
Image-plane processing of visual information
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.
1984-01-01
Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.
Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum.
Yasuma, Fumihito; Mitsunaga, Tomoo; Iso, Daisuke; Nayar, Shree K
2010-09-01
We propose the concept of a generalized assorted pixel (GAP) camera, which enables the user to capture a single image of a scene and, after the fact, control the tradeoff between spatial resolution, dynamic range and spectral detail. The GAP camera uses a complex array (or mosaic) of color filters. A major problem with using such an array is that the captured image is severely under-sampled for at least some of the filter types. This leads to reconstructed images with strong aliasing. We make four contributions in this paper: 1) we present a comprehensive optimization method to arrive at the spatial and spectral layout of the color filter array of a GAP camera. 2) We develop a novel algorithm for reconstructing the under-sampled channels of the image while minimizing aliasing artifacts. 3) We demonstrate how the user can capture a single image and then control the tradeoff of spatial resolution to generate a variety of images, including monochrome, high dynamic range (HDR) monochrome, RGB, HDR RGB, and multispectral images. 4) Finally, the performance of our GAP camera has been verified using extensive simulations that use multispectral images of real world scenes. A large database of these multispectral images has been made available at http://www1.cs.columbia.edu/CAVE/projects/gap_camera/ for use by the research community.
Mapping GRACE Accelerometer Error
NASA Astrophysics Data System (ADS)
Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.
2017-12-01
After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.
Spectral analysis of highly aliased sea-level signals
NASA Astrophysics Data System (ADS)
Ray, Richard D.
1998-10-01
Observing high-wavenumber ocean phenomena with a satellite altimeter generally calls for "along-track" analyses of the data: measurements along a repeating satellite ground track are analyzed in a point-by-point fashion, as opposed to spatially averaging data over multiple tracks. The sea-level aliasing problems encountered in such analyses can be especially challenging. For TOPEX/POSEIDON, all signals with frequency greater than 18 cycles per year (cpy), including both tidal and subdiurnal signals, are folded into the 0-18 cpy band. Because the tidal bands are wider than 18 cpy, residual tidal cusp energy, plus any subdiurnal energy, is capable of corrupting any low-frequency signal of interest. The practical consequences of this are explored here by using real sea-level measurements from conventional tide gauges, for which the true oceanographic spectrum is known and to which a simulated "satellite-measured" spectrum, based on coarsely subsampled data, may be compared. At many locations the spectrum is sufficently red that interannual frequencies remain unaffected. Intra-annual frequencies, however, must be interpreted with greater caution, and even interannual frequencies can be corrupted if the spectrum is flat. The results also suggest that whenever tides must be estimated directly from the altimetry, response methods of analysis are preferable to harmonic methods, even in nonlinear regimes; this will remain so for the foreseeable future. We concentrate on three example tide gauges: two coastal stations on the Malay Peninsula where the closely aliased K1 and Ssa tides are strong and at Canton Island where trapped equatorial waves are aliased.
NASA Astrophysics Data System (ADS)
Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno
2018-04-01
The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.
GRAVSAT/GEOPAUSE covariance analysis including geopotential aliasing
NASA Technical Reports Server (NTRS)
Koch, D. W.
1975-01-01
A conventional covariance analysis for the GRAVSAT/GEOPAUSE mission is described in which the uncertainties of approximately 200 parameters, including the geopotential coefficients to degree and order 12, are estimated over three different tracking intervals. The estimated orbital uncertainties for both GRAVSAT and GEOPAUSE reach levels more accurate than presently available. The adjusted measurement bias errors approach the mission goal. Survey errors in the low centimeter range are achieved after ten days of tracking. The ability of the mission to obtain accuracies of geopotential terms to (12, 12) one to two orders of magnitude superior to present accuracy levels is clearly shown. A unique feature of this report is that the aliasing structure of this (12, 12) field is examined. It is shown that uncertainties for unadjusted terms to (12, 12) still exert a degrading effect upon the adjusted error of an arbitrarily selected term of lower degree and order. Finally, the distribution of the aliasing from the unestimated uncertainty of a particular high degree and order geopotential term upon the errors of all remaining adjusted terms is listed in detail.
Super-resolution for imagery from integrated microgrid polarimeters.
Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M
2011-07-04
Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.
A study of real-time computer graphic display technology for aeronautical applications
NASA Technical Reports Server (NTRS)
Rajala, S. A.
1981-01-01
The development, simulation, and testing of an algorithm for anti-aliasing vector drawings is discussed. The pseudo anti-aliasing line drawing algorithm is an extension to Bresenham's algorithm for computer control of a digital plotter. The algorithm produces a series of overlapping line segments where the display intensity shifts from one segment to the other in this overlap (transition region). In this algorithm the length of the overlap and the intensity shift are essentially constants because the transition region is an aid to the eye in integrating the segments into a single smooth line.
Spectral decontamination of a real-time helicopter simulation
NASA Technical Reports Server (NTRS)
Mcfarland, R. E.
1983-01-01
Nonlinear mathematical models of a rotor system, referred to as rotating blade-element models, produce steady-state, high-frequency harmonics of significant magnitude. In a discrete simulation model, certain of these harmonics may be incompatible with realistic real-time computational constraints because of their aliasing into the operational low-pass region. However, the energy is an aliased harmonic may be suppressed by increasing the computation rate of an isolated, causal nonlinearity and using an appropriate filter. This decontamination technique is applied to Sikorsky's real-time model of the Black Hawk helicopter, as supplied to NASA for handling-qualities investigations.
NASA Astrophysics Data System (ADS)
Shankar, A.; Russ, M.; Vijayan, S.; Bednarek, D. R.; Rudin, S.
2017-03-01
Apodized Aperture Pixel (AAP) design, proposed by Ismailova et.al, is an alternative to the conventional pixel design. The advantages of AAP processing with a sinc filter in comparison with using other filters include non-degradation of MTF values and elimination of signal and noise aliasing, resulting in an increased performance at higher frequencies, approaching the Nyquist frequency. If high resolution small field-of-view (FOV) detectors with small pixels used during critical stages of Endovascular Image Guided Interventions (EIGIs) could also be extended to cover a full field-of-view typical of flat panel detectors (FPDs) and made to have larger effective pixels, then methods must be used to preserve the MTF over the frequency range up to the Nyquist frequency of the FPD while minimizing aliasing. In this work, we convolve the experimentally measured MTFs of an Microangiographic Fluoroscope (MAF) detector, (the MAF-CCD with 35μm pixels) and a High Resolution Fluoroscope (HRF) detector (HRF-CMOS50 with 49.5μm pixels) with the AAP filter and show the superiority of the results compared to MTFs resulting from moving average pixel binning and to the MTF of a standard FPD. The effect of using AAP is also shown in the spatial domain, when used to image an infinitely small point object. For detectors in neurovascular interventions, where high resolution is the priority during critical parts of the intervention, but full FOV with larger pixels are needed during less critical parts, AAP design provides an alternative to simple pixel binning while effectively eliminating signal and noise aliasing yet allowing the small FOV high resolution imaging to be maintained during critical parts of the EIGI.
Bailón, Raquel; Garatachea, Nuria; de la Iglesia, Ignacio; Casajús, Jose Antonio; Laguna, Pablo
2013-07-01
The analysis and interpretation of heart rate variability (HRV) during exercise is challenging not only because of the nonstationary nature of exercise, the time-varying mean heart rate, and the fact that respiratory frequency exceeds 0.4 Hz, but there are also other factors, such as the component centered at the pedaling frequency observed in maximal cycling tests, which may confuse the interpretation of HRV analysis. The objectives of this study are to test the hypothesis that a component centered at the running stride frequency (SF) appears in the HRV of subjects during maximal treadmill exercise testing, and to study its influence in the interpretation of the low-frequency (LF) and high-frequency (HF) components of HRV during exercise. The HRV of 23 subjects during maximal treadmill exercise testing is analyzed. The instantaneous power of different HRV components is computed from the smoothed pseudo-Wigner-Ville distribution of the modulating signal assumed to carry information from the autonomic nervous system, which is estimated based on the time-varying integral pulse frequency modulation model. Besides the LF and HF components, the appearance is revealed of a component centered at the running SF as well as its aliases. The power associated with the SF component and its aliases represents 22±7% (median±median absolute deviation) of the total HRV power in all the subjects. Normalized LF power decreases as the exercise intensity increases, while normalized HF power increases. The power associated with the SF does not change significantly with exercise intensity. Consideration of the running SF component and its aliases is very important in HRV analysis since stride frequency aliases may overlap with LF and HF components.
On the choice of orbits for an altimetric satellite to study ocean circulation and tides
NASA Technical Reports Server (NTRS)
Parke, Michael E.; Stewart, Robert H.; Farless, David L.; Cartwright, David E.
1987-01-01
The choice of an orbit for satellite altimetric studies of the ocean's circulation and tides requires an understanding of the orbital characteristics that influence the accuracy of the satellite's measurements of sea level and the temporal and spatial distribution of the measurements. The orbital characteristics that influence accurate calculations of the satellite's position as a function of time are examined, and the pattern of ground tracks laid down on the ocean's surface as a function of the satellite's altitude and inclination is studied. The results are used to examine the aliases in the measurements of surface geostrophic currents and tides. Finally, these considerations are used to specify possible orbits that may be useful for the upcoming Topex/Poseidon mission.
Adapted random sampling patterns for accelerated MRI.
Knoll, Florian; Clason, Christian; Diwoky, Clemens; Stollberger, Rudolf
2011-02-01
Variable density random sampling patterns have recently become increasingly popular for accelerated imaging strategies, as they lead to incoherent aliasing artifacts. However, the design of these sampling patterns is still an open problem. Current strategies use model assumptions like polynomials of different order to generate a probability density function that is then used to generate the sampling pattern. This approach relies on the optimization of design parameters which is very time consuming and therefore impractical for daily clinical use. This work presents a new approach that generates sampling patterns by making use of power spectra of existing reference data sets and hence requires neither parameter tuning nor an a priori mathematical model of the density of sampling points. The approach is validated with downsampling experiments, as well as with accelerated in vivo measurements. The proposed approach is compared with established sampling patterns, and the generalization potential is tested by using a range of reference images. Quantitative evaluation is performed for the downsampling experiments using RMS differences to the original, fully sampled data set. Our results demonstrate that the image quality of the method presented in this paper is comparable to that of an established model-based strategy when optimization of the model parameter is carried out and yields superior results to non-optimized model parameters. However, no random sampling pattern showed superior performance when compared to conventional Cartesian subsampling for the considered reconstruction strategy.
Fast algorithm for the rendering of three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Pritt, Mark D.
1994-02-01
It is often desirable to draw a detailed and realistic representation of surface data on a computer graphics display. One such representation is a 3D shaded surface. Conventional techniques for rendering shaded surfaces are slow, however, and require substantial computational power. Furthermore, many techniques suffer from aliasing effects, which appear as jagged lines and edges. This paper describes an algorithm for the fast rendering of shaded surfaces without aliasing effects. It is much faster than conventional ray tracing and polygon-based rendering techniques and is suitable for interactive use. On an IBM RISC System/6000TM workstation it renders a 1000 X 1000 surface in about 7 seconds.
Image restoration techniques as applied to Landsat MSS and TM data
Meyer, David
1987-01-01
Two factors are primarily responsible for the loss of image sharpness in processing digital Landsat images. The first factor is inherent in the data because the sensor's optics and electronics, along with other sensor elements, blur and smear the data. Digital image restoration can be used to reduce this degradation. The second factor, which further degrades by blurring or aliasing, is the resampling performed during geometric correction. An image restoration procedure, when used in place of typical resampled techniques, reduces sensor degradation without introducing the artifacts associated with resampling. The EROS Data Center (EDC) has implemented the restoration proceed for Landsat multispectral scanner (MSS) and thematic mapper (TM) data. This capability, developed at the University of Arizona by Dr. Robert Schowengerdt and Lynette Wood, combines restoration and resampling in a single step to produce geometrically corrected MSS and TM imagery. As with resampling, restoration demands a tradeoff be made between aliasing, which occurs when attempting to extract maximum sharpness from an image, and blurring, which reduces the aliasing problem but sacrifices image sharpness. The restoration procedure used at EDC minimizes these artifacts by being adaptive, tailoring the tradeoff to be optimal for individual images.
Zhang, Jing; Yuan, Changan; Huang, Guohua; Zhao, Yinjun; Ren, Wenyi; Cao, Qizhi; Li, Jianying; Jin, Mingwu
2018-01-01
A snapshot imaging polarimeter using spatial modulation can encode four Stokes parameters allowing instantaneous polarization measurement from a single interferogram. However, the reconstructed polarization images could suffer a severe aliasing signal if the high-frequency component of the intensity image is prominent and occurs in the polarization channels, and the reconstructed intensity image also suffers reduction of spatial resolution due to low-pass filtering. In this work, a method using two anti-phase snapshots is proposed to address the two problems simultaneously. The full-resolution target image and the pure interference fringes can be obtained from the sum and the difference of the two anti-phase interferograms, respectively. The polarization information reconstructed from the pure interference fringes does not contain the aliasing signal from the high-frequency component of the object intensity image. The principles of the method are derived and its feasibility is tested by both computer simulation and a verification experiment. This work provides a novel method for spatially modulated imaging polarization technology with two snapshots to simultaneously reconstruct a full-resolution object intensity image and high-quality polarization components. PMID:29714224
Sampling and Reconstruction of the Pupil and Electric Field for Phase Retrieval
NASA Technical Reports Server (NTRS)
Dean, Bruce; Smith, Jeffrey; Aronstein, David
2012-01-01
This technology is based on sampling considerations for a band-limited function, which has application to optical estimation generally, and to phase retrieval specifically. The analysis begins with the observation that the Fourier transform of an optical aperture function (pupil) can be implemented with minimal aliasing for Q values down to Q = 1. The sampling ratio, Q, is defined as the ratio of the sampling frequency to the band-limited cut-off frequency. The analytical results are given using a 1-d aperture function, and with the electric field defined by the band-limited sinc(x) function. Perfect reconstruction of the Fourier transform (electric field) is derived using the Whittaker-Shannon sampling theorem for 1
NASA Astrophysics Data System (ADS)
Hasegawa, H.; Sonnerup, B.; Hu, Q.; Nakamura, T.
2013-12-01
We present a novel single-spacecraft data analysis method for decomposing spatial and temporal variations of physical quantities at points along the path of a spacecraft in spacetime. The method is designed for use in the reconstruction of slowly evolving two-dimensional, magneto-hydrostatic structures (Grad-Shafranov equilibria) in a space plasma. It is an extension of the one developed by Sonnerup and Hasegawa [2010] and Hasegawa et al. [2010], in which it was assumed that variations in the time series of data, recorded as the structures move past the spacecraft, are all due to spatial effects. In reality, some of the observed variations are usually caused by temporal evolution of the structure during the time it moves past the observing spacecraft; the information in the data about the spatial structure is aliased by temporal effects. The purpose here is to remove this time aliasing from the reconstructed maps of field and plasma properties. Benchmark tests are performed by use of synthetic data taken by a virtual spacecraft as it traverses, at a constant velocity, a slowly growing magnetic flux rope in a two-dimensional magnetohydrodynamic simulation of magnetic reconnection. These tests show that the new method can better recover the spacetime behavior of the flux rope than does the original version, in which time aliasing effects had not been removed. An application of the new method to a solar wind flux rope, observed by the ACE spacecraft, suggests that it was evolving in a significant way during the ~17 hour interval of the traversal. References Hasegawa, H., B. U. Ö. Sonnerup, and T. K. M. Nakamura (2010), Recovery of time evolution of Grad-Shafranov equilibria from single-spacecraft data: Benchmarking and application to a flux transfer event, J. Geophys. Res., 115, A11219, doi:10.1029/2010JA015679. Sonnerup, B. U. Ö., and H. Hasegawa (2010), On slowly evolving Grad-Shafranov equilibria, J. Geophys. Res., 115, A11218, doi:10.1029/2010JA015678. Magnetic field maps recovered from (a) the aliased (original) and (b) de-aliased (new) versions of the time evolution method. Colors show the out-of-plane (z) magnetic field component, and white arrows at points along y = 0 show the transverse velocities obtained from the reconstruction. The blue diamonds in panels (b) mark the location of the ACE spacecraft.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
NASA Astrophysics Data System (ADS)
Batailly, Alain; Meingast, Markus; Legrand, Mathias
2015-02-01
This contribution addresses the vibratory analysis of unilateral-contact induced structural interactions between a bladed impeller and its surrounding rigid casing. Such assemblies can be found in helicopter or small aircraft engines for instance and the interactions of interest shall arise due to the always tighter operating clearances between the rotating and stationary components. The investigation is conducted by extending to cyclically symmetric structures an in-house time-marching based tool dedicated to unilateral contact occurrences in turbomachines. The main components of the considered impeller together with the associated assumptions and modelling principles considered in this work are detailed. Typical dynamical features of cyclically symmetric structures, such as the aliasing effect and frequency clustering are explored in this nonlinear framework by means of thorough frequency-domain analyses and harmonic trackings of the numerically predicted impeller displacements. Additional contact maps highlight the existence of critical rotational velocities at which displacements potentially reach high amplitudes due to the synchronization of the bladed assembly vibratory pattern with the shape of the rigid casing. The proposed numerical investigations are also compared to a simpler and (almost) empirical criterion: it is suggested, based on nonlinear numerical simulations with a linear reduced order model of the impeller and a rigid casing, that this criterion may miss important critical velocities emanating from the unfavorable combination of aliasing and contact-induced higher harmonics in the vibratory response of the impeller. Overall, this work suggests a way to enhance guidelines to improve the design of impellers in the context of nonlinear and nonsmooth dynamics.
Space and time aliasing structure is monthly mean polar-orbiting satellite data
NASA Technical Reports Server (NTRS)
Zeng, Lixin; Levy, Gad
1995-01-01
Monthly mean wind fields from the European Remote Sensing Satellite (ERS1) scatterometer are presented. A banded structure which resembles the satellite subtrack is clearly and consistently apparent in the isotachs as well as the u and v components of the routinely produced fields. The structure also appears in the means of data from other polar-orbiting satellites and instruments. An experiment is designed to trace the cause of the banded structure. The European Centre for Medium-Range Weather Forecast (ECMWF) gridded surface wind analyses are used as a control set. These analyses are also sampled with the ERS1 temporal-spatial samplig pattern to form a simulated scatterometer wind set. Both sets are used to create monthly averages. The banded structures appear in the monthly mean simulated data but do not appear in the control set. It is concluded that the source of the banded structure lies in the spatial and temporal sampling of the polar-orbiting satellite which results in undersampling. The problem involves multiple timescales and space scales, oversampling and under-sampling in space, aliasing in the time and space domains, and preferentially sampled variability. It is shown that commonly used spatial smoothers (or filters), while producing visually pleasing results, also significantly bias the true mean. A three-dimensional spatial-temporal interpolator is designed and used to determine the mean field. It is found to produce satisfactory monthly means from both simulated and real ERS1 data. The implications to climate studies involving polar-orbiting satellite data are discussed.
Dating a tropical ice core by time-frequency analysis of ion concentration depth profiles
NASA Astrophysics Data System (ADS)
Gay, M.; De Angelis, M.; Lacoume, J.-L.
2014-09-01
Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and ice age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to ice core dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep ice core. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the core dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean ice cores.
An information theory of image gathering
NASA Technical Reports Server (NTRS)
Fales, Carl L.; Huck, Friedrich O.
1991-01-01
Shannon's mathematical theory of communication is extended to image gathering. Expressions are obtained for the total information that is received with a single image-gathering channel and with parallel channels. It is concluded that the aliased signal components carry information even though these components interfere with the within-passband components in conventional image gathering and restoration, thereby degrading the fidelity and visual quality of the restored image. An examination of the expression for minimum mean-square-error, or Wiener-matrix, restoration from parallel image-gathering channels reveals a method for unscrambling the within-passband and aliased signal components to restore spatial frequencies beyond the sampling passband out to the spatial frequency response cutoff of the optical aperture.
Spurious One-Month and One-Year Periods in Visual Observations of Variable Stars
NASA Astrophysics Data System (ADS)
Percy, J. R.
2015-12-01
Visual observations of variable stars, when time-series analyzed with some algorithms such as DC-DFT in vstar, show spurious periods at or close to one synodic month (29.5306 days), and also at about a year, with an amplitude of typically a few hundredths of a magnitude. The one-year periods have been attributed to the Ceraski effect, which was believed to be a physiological effect of the visual observing process. This paper reports on time-series analysis, using DC-DFT in vstar, of visual observations (and in some cases, V observations) of a large number of stars in the AAVSO International Database, initially to investigate the one-month periods. The results suggest that both the one-month and one-year periods are actually due to aliasing of the stars' very low-frequency variations, though they do not rule out very low-amplitude signals (typically 0.01 to 0.02 magnitude) which may be due to a different process, such as a physiological one. Most or all of these aliasing effects may be avoided by using a different algorithm, which takes explicit account of the window function of the data, and/or by being fully aware of the possible presence of and aliasing by very low-frequency variations.
Application of wavefield compressive sensing in surface wave tomography
NASA Astrophysics Data System (ADS)
Zhan, Zhongwen; Li, Qingyang; Huang, Jianping
2018-06-01
Dense arrays allow sampling of seismic wavefield without significant aliasing, and surface wave tomography has benefitted from exploiting wavefield coherence among neighbouring stations. However, explicit or implicit assumptions about wavefield, irregular station spacing and noise still limit the applicability and resolution of current surface wave methods. Here, we propose to apply the theory of compressive sensing (CS) to seek a sparse representation of the surface wavefield using a plane-wave basis. Then we reconstruct the continuous surface wavefield on a dense regular grid before applying any tomographic methods. Synthetic tests demonstrate that wavefield CS improves robustness and resolution of Helmholtz tomography and wavefield gradiometry, especially when traditional approaches have difficulties due to sub-Nyquist sampling or complexities in wavefield.
Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...
2016-12-05
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
NASA Astrophysics Data System (ADS)
Devaraju, B.; Weigelt, M.; Mueller, J.
2017-12-01
In order to suppress the impact of aliasing errors on the standard monthly GRACE gravity-field solutions, co-estimating sub-monthly (daily/two-day) low-degree solutions has been suggested as a solution. The maximum degree of the low-degree solutions is chosen via the Colombo-Nyquist rule of thumb. However, it is now established that the sampling of satellites puts a restriction on the maximum estimable order and not the degree - modified Colombo-Nyquist rule. Therefore, in this contribution, we co-estimate low-order sub-monthly solutions, and compare and contrast them with the low-degree sub-monthly solutions. We also investigate their efficacies in dealing with aliasing errors.
Lattice functions, wavelet aliasing, and SO(3) mappings of orthonormal filters
NASA Astrophysics Data System (ADS)
John, Sarah
1998-01-01
A formulation of multiresolution in terms of a family of dyadic lattices {Sj;j∈Z} and filter matrices Mj⊂U(2)⊂GL(2,C) illuminates the role of aliasing in wavelets and provides exact relations between scaling and wavelet filters. By showing the {DN;N∈Z+} collection of compactly supported, orthonormal wavelet filters to be strictly SU(2)⊂U(2), its representation in the Euler angles of the rotation group SO(3) establishes several new results: a 1:1 mapping of the {DN} filters onto a set of orbits on the SO(3) manifold; an equivalence of D∞ to the Shannon filter; and a simple new proof for a criterion ruling out pathologically scaled nonorthonormal filters.
NASA Astrophysics Data System (ADS)
Ortland, David A.
2017-04-01
Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.
Generalized Symbolic Execution for Model Checking and Testing
NASA Technical Reports Server (NTRS)
Khurshid, Sarfraz; Pasareanu, Corina; Visser, Willem; Kofmeyer, David (Technical Monitor)
2003-01-01
Modern software systems, which often are concurrent and manipulate complex data structures must be extremely reliable. We present a novel framework based on symbolic execution, for automated checking of such systems. We provide a two-fold generalization of traditional symbolic execution based approaches: one, we define a program instrumentation, which enables standard model checkers to perform symbolic execution; two, we give a novel symbolic execution algorithm that handles dynamically allocated structures (e.g., lists and trees), method preconditions (e.g., acyclicity of lists), data (e.g., integers and strings) and concurrency. The program instrumentation enables a model checker to automatically explore program heap configurations (using a systematic treatment of aliasing) and manipulate logical formulae on program data values (using a decision procedure). We illustrate two applications of our framework: checking correctness of multi-threaded programs that take inputs from unbounded domains with complex structure and generation of non-isomorphic test inputs that satisfy a testing criterion. Our implementation for Java uses the Java PathFinder model checker.
Off-resonance suppression for multispectral MR imaging near metallic implants.
den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens
2015-01-01
Metal artifact reduction in MRI within clinically feasible scan-times without through-plane aliasing. Existing metal artifact reduction techniques include view angle tilting (VAT), which resolves in-plane distortions, and multispectral imaging (MSI) techniques, such as slice encoding for metal artifact correction (SEMAC) and multi-acquisition with variable resonances image combination (MAVRIC), that further reduce image distortions, but significantly increase scan-time. Scan-time depends on anatomy size and anticipated total spectral content of the signal. Signals outside the anticipated spatial region may cause through-plane back-folding. Off-resonance suppression (ORS), using different gradient amplitudes for excitation and refocusing, is proposed to provide well-defined spatial-spectral selectivity in MSI to allow scan-time reduction and flexibility of scan-orientation. Comparisons of MSI techniques with and without ORS were made in phantom and volunteer experiments. Off-resonance suppressed SEMAC (ORS-SEMAC) and outer-region suppressed MAVRIC (ORS-MAVRIC) required limited through-plane phase encoding steps compared with original MSI. Whereas SEMAC (scan time: 5'46") and MAVRIC (4'12") suffered from through-plane aliasing, ORS-SEMAC and ORS-MAVRIC allowed alias-free imaging in the same scan-times. ORS can be used in MSI to limit the selected spatial-spectral region and contribute to metal artifact reduction in clinically feasible scan-times while avoiding slice aliasing. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Van Malderen, Stijn J. M.; van Elteren, Johannes T.; Šelih, Vid S.; Vanhaecke, Frank
2018-02-01
This work describes the aliasing effects induced by undersampling the high-frequency signal patterns generated by a laser ablation-inductively coupled plasma-mass spectrometer equipped with a low-dispersion ablation cell and sequential mass analyzer. By characterizing the width of the signal peak generated from a single shot on the sample, critical experimental parameters, such as the laser repetition rate and detector cycle timings for the individual nuclides can be matched so as to avoid these imaging artifacts (spectral skew) induced by an insufficient sampling rate. By increasing the laser repetition rate by a factor 2-3, masses at the end of the mass scan can be sampled at higher sensitivity. Furthermore, the dwell times can be redistributed over the nuclides of interest based on the signal-to-noise ratio to increase the image contrast.
Resolution for color photography
NASA Astrophysics Data System (ADS)
Hubel, Paul M.; Bautsch, Markus
2006-02-01
Although it is well known that luminance resolution is most important, the ability to accurately render colored details, color textures, and colored fabrics cannot be overlooked. This includes the ability to accurately render single-pixel color details as well as avoiding color aliasing. All consumer digital cameras on the market today record in color and the scenes people are photographing are usually color. Yet almost all resolution measurements made on color cameras are done using a black and white target. In this paper we present several methods for measuring and quantifying color resolution. The first method, detailed in a previous publication, uses a slanted-edge target of two colored surfaces in place of the standard black and white edge pattern. The second method employs the standard black and white targets recommended in the ISO standard, but records these onto the camera through colored filters thus giving modulation between black and one particular color component; red, green, and blue color separation filters are used in this study. The third method, conducted at Stiftung Warentest, an independent consumer organization of Germany, uses a whitelight interferometer to generate fringe pattern targets of varying color and spatial frequency.
Liu, Chunbo; Chen, Jingqiu; Liu, Jiaxin; Han, Xiang'e
2018-04-16
To obtain a high imaging frame rate, a computational ghost imaging system scheme is proposed based on optical fiber phased array (OFPA). Through high-speed electro-optic modulators, the randomly modulated OFPA can provide much faster speckle projection, which can be precomputed according to the geometry of the fiber array and the known phases for modulation. Receiving the signal light with a low-pixel APD array can effectively decrease the requirement on sampling quantity and computation complexity owing to the reduced data dimensionality while avoiding the image aliasing due to the spatial periodicity of the speckles. The results of analysis and simulation show that the frame rate of the proposed imaging system can be significantly improved compared with traditional systems.
The N/Rev phenomenon in simulating a blade-element rotor system
NASA Technical Reports Server (NTRS)
Mcfarland, R. E.
1983-01-01
When a simulation model produces frequencies that are beyond the bandwidth of a discrete implementation, anomalous frequencies appear within the bandwidth. Such is the case with blade element models of rotor systems, which are used in the real time, man in the loop simulation environment. Steady state, high frequency harmonics generated by these models, whether aliased or not, obscure piloted helicopter simulation responses. Since these harmonics are attenuated in actual rotorcraft (e.g., because of structural damping), a faithful environment representation for handling qualities purposes may be created from the original model by using certain filtering techniques, as outlined here. These include harmonic consideration, conventional filtering, and decontamination. The process of decontamination is of special interest because frequencies of importance to simulation operation are not attenuated, whereas superimposed aliased harmonics are.
Signal conditioning units for vibration measurement in HUMS
NASA Astrophysics Data System (ADS)
Wu, Kaizhi; Liu, Tingting; Yu, Zirong; Chen, Lijuan; Huang, Xinjie
2018-03-01
A signal conditioning units for vibration measurement in HUMS is proposed in the paper. Due to the frequency of vibrations caused by components in helicopter are different, two steps amplifier and programmable anti-aliasing filter are designed to meet the measurement of different types of helicopter. Vibration signals are converted into measurable electrical signals combing with ICP driver firstly. Then pre-amplifier and programmable gain amplifier is applied to magnify the weak electrical signals. In addition, programmable anti-aliasing filter is utilized to filter the interference of noise. The units were tested using function signal generator and oscilloscope. The experimental results have demonstrated the effectiveness of our proposed method in quantitatively and qualitatively. The method presented in this paper can meet the measurement requirement for different types of helicopter.
Luma-chroma space filter design for subpixel-based monochrome image downsampling.
Fang, Lu; Au, Oscar C; Cheung, Ngai-Man; Katsaggelos, Aggelos K; Li, Houqiang; Zou, Feng
2013-10-01
In general, subpixel-based downsampling can achieve higher apparent resolution of the down-sampled images on LCD or OLED displays than pixel-based downsampling. With the frequency domain analysis of subpixel-based downsampling, we discover special characteristics of the luma-chroma color transform choice for monochrome images. With these, we model the anti-aliasing filter design for subpixel-based monochrome image downsampling as a human visual system-based optimization problem with a two-term cost function and obtain a closed-form solution. One cost term measures the luminance distortion and the other term measures the chrominance aliasing in our chosen luma-chroma space. Simulation results suggest that the proposed method can achieve sharper down-sampled gray/font images compared with conventional pixel and subpixel-based methods, without noticeable color fringing artifacts.
Noise-Coupled Image Rejection Architecture of Complex Bandpass ΔΣAD Modulator
NASA Astrophysics Data System (ADS)
San, Hao; Kobayashi, Haruo
This paper proposes a new realization technique of image rejection function by noise-coupling architecture, which is used for a complex bandpass ΔΣAD modulator. The complex bandpass ΔΣAD modulator processes just input I and Q signals, not image signals, and the AD conversion can be realized with low power dissipation. It realizes an asymmetric noise-shaped spectra, which is desirable for such low-IF receiver applications. However, the performance of the complex bandpass ΔΣAD modulator suffers from the mismatch between internal analog I and Q paths. I/Q path mismatch causes an image signal, and the quantization noise of the mirror image band aliases into the desired signal band, which degrades the SQNDR (Signal to Quantization Noise and Distortion Ratio) of the modulator. In our proposed modulator architecture, an extra notch for image rejection is realized by noise-coupled topology. We just add some passive capacitors and switches to the modulator; the additional integrator circuit composed of an operational amplifier in the conventional image rejection realization is not necessary. Therefore, the performance of the complex modulator can be effectively raised without additional power dissipation. We have performed simulation with MATLAB to confirm the validity of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of image-rejection effectively, and improve the SQNDR of the complex bandpass ΔΣAD modulator.
Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)
NASA Astrophysics Data System (ADS)
Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael
2017-04-01
The study ;Geodesy and Time Reference in Space; (GETRIS), funded by European Space Agency (ESA), evaluates the potential and opportunities coming along with a global space-borne infrastructure for data transfer, clock synchronization and ranging. Gravity field recovery could be one of the first beneficiary applications of such an infrastructure. This paper analyzes and evaluates the two-way high-low satellite-to-satellite-tracking as a novel method and as a long-term perspective for the determination of the Earth's gravitational field, using it as a synergy of one-way high-low combined with low-low satellite-to-satellite-tracking, in order to generate adequate de-aliasing products. First planned as a constellation of geostationary satellites, it turned out, that an integration of European Union Global Navigation Satellite System (Galileo) satellites (equipped with inter-Galileo links) into a Geostationary Earth Orbit (GEO) constellation would extend the capability of such a mission constellation remarkably. We report about simulations of different Galileo and Low Earth Orbiter (LEO) satellite constellations, computed using time variable geophysical background models, to determine temporal changes in the Earth's gravitational field. Our work aims at an error analysis of this new satellite/instrument scenario by investigating the impact of different error sources. Compared to a low-low satellite-to-satellite-tracking mission, results show reduced temporal aliasing errors due to a more isotropic error behavior caused by an improved observation geometry, predominantly in near-radial direction within the inter-satellite-links, as well as the potential of an improved gravity recovery with higher spatial and temporal resolution. The major error contributors of temporal gravity retrieval are aliasing errors due to undersampling of high frequency signals (mainly atmosphere, ocean and ocean tides). In this context, we investigate adequate methods to reduce these errors. We vary the number of Galileo and LEO satellites and show reduced errors in the temporal gravity field solutions for this enhanced inter-satellite-links. Based on the GETRIS infrastructure, the multiplicity of satellites enables co-estimating short-period long-wavelength gravity field signals, indicating it as powerful method for non-tidal aliasing reduction.
Brayfield, Brad P.
2016-01-01
The navigation of bees and ants from hive to food and back has captivated people for more than a century. Recently, the Navigation by Scene Familiarity Hypothesis (NSFH) has been proposed as a parsimonious approach that is congruent with the limited neural elements of these insects’ brains. In the NSFH approach, an agent completes an initial training excursion, storing images along the way. To retrace the path, the agent scans the area and compares the current scenes to those previously experienced. By turning and moving to minimize the pixel-by-pixel differences between encountered and stored scenes, the agent is guided along the path without having memorized the sequence. An important premise of the NSFH is that the visual information of the environment is adequate to guide navigation without aliasing. Here we demonstrate that an image landscape of an indoor setting possesses ample navigational information. We produced a visual landscape of our laboratory and part of the adjoining corridor consisting of 2816 panoramic snapshots arranged in a grid at 12.7-cm centers. We show that pixel-by-pixel comparisons of these images yield robust translational and rotational visual information. We also produced a simple algorithm that tracks previously experienced routes within our lab based on an insect-inspired scene familiarity approach and demonstrate that adequate visual information exists for an agent to retrace complex training routes, including those where the path’s end is not visible from its origin. We used this landscape to systematically test the interplay of sensor morphology, angles of inspection, and similarity threshold with the recapitulation performance of the agent. Finally, we compared the relative information content and chance of aliasing within our visually rich laboratory landscape to scenes acquired from indoor corridors with more repetitive scenery. PMID:27119720
Receptoral and Neural Aliasing.
1993-01-30
standard psychophysical methods. Stereoscoptc capability makes VisionWorks ideal for investigating and simulating strabismus and amblyopia , or developing... amblyopia . OElectrophyslological and psychophysical response to spatio-temporal and novel stimuli for investipttion of visual field deficits
Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.
2014-01-01
Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099
Point target detection utilizing super-resolution strategy for infrared scanning oversampling system
NASA Astrophysics Data System (ADS)
Wang, Longguang; Lin, Zaiping; Deng, Xinpu; An, Wei
2017-11-01
To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches.
Measurement of pattern roughness and local size variation using CD-SEM: current status
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Kawasaki, Takahiro; Kawada, Hiroki; Sakai, Kei; Kato, Takashi; Yamaguchi, Satoru; Ikota, Masami; Momonoi, Yoshinori
2018-03-01
Measurement of line edge roughness (LER) is discussed from four aspects: edge detection, PSD prediction, sampling strategy, and noise mitigation, and general guidelines and practical solutions for LER measurement today are introduced. Advanced edge detection algorithms such as wave-matching method are shown effective for robustly detecting edges from low SNR images, while conventional algorithm with weak filtering is still effective in suppressing SEM noise and aliasing. Advanced PSD prediction method such as multi-taper method is effective in suppressing sampling noise within a line edge to analyze, while number of lines is still required for suppressing line to line variation. Two types of SEM noise mitigation methods, "apparent noise floor" subtraction method and LER-noise decomposition using regression analysis are verified to successfully mitigate SEM noise from PSD curves. These results are extended to LCDU measurement to clarify the impact of SEM noise and sampling noise on LCDU.
Application of digital image processing techniques to astronomical imagery 1980
NASA Technical Reports Server (NTRS)
Lorre, J. J.
1981-01-01
Topics include: (1) polar coordinate transformations (M83); (2) multispectral ratios (M82); (3) maximum entropy restoration (M87); (4) automated computation of stellar magnitudes in nebulosity; (5) color and polarization; (6) aliasing.
Kakita, Veera Mohana Rao; Rachineni, Kavitha; Hosur, Ramakrishna V
2017-07-21
The present manuscript focuses on fast and simultaneous determination of 1 H- 1 H and 1 H- 19 F scalar couplings in fluorinated complex steroid molecules. Incorporation of broadband PSYCHE homonuclear decoupling in the indirect dimension of zero-quantum filtered diagonal experiments (F1-PSYCHE-DIAG) suppresses 1 H- 1 H scalar couplings; however, it retains 1 H- 19 F scalar couplings (along F1 dimension) for the 19 F coupled protons while preserving the pure-shift nature for 1 H resonances uncoupled to 19 F. In such cases, along the direct dimensions, 1 H- 1 H scalar coupling multiplets deconvolute and they appear as duplicated multiplets for the 19 F coupled protons, which facilitates unambiguous discrimination of 19 F coupled 1 H chemical sites from the others. Further, as an added advantage, data acquisition has been accelerated by invoking the known ideas of spectral aliasing in the F1-PSYCHE-DIAG scheme and experiments demand only ~10 min of spectrometer times. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ruigrok, Elmer; Wapenaar, Kees
2014-05-01
In various application areas, e.g., seismology, astronomy and geodesy, arrays of sensors are used to characterize incoming wavefields due to distant sources. Beamforming is a general term for phased-adjusted summations over the different array elements, for untangling the directionality and elevation angle of the incoming waves. For characterizing noise sources, beamforming is conventionally applied with a temporal Fourier and a 2D spatial Fourier transform, possibly with additional weights. These transforms become aliased for higher frequencies and sparser array-element distributions. As a partial remedy, we derive a kernel for beamforming crosscorrelated data and call it cosine beamforming (CBF). By applying beamforming not directly to the data, but to crosscorrelated data, the sampling is effectively increased. We show that CBF, due to this better sampling, suffers less from aliasing and yields higher resolution than conventional beamforming. As a flip-side of the coin, the CBF output shows more smearing for spherical waves than conventional beamforming.
NASA Astrophysics Data System (ADS)
Liu, Wei; Sneeuw, Nico; Jiang, Weiping
2017-04-01
GRACE mission has contributed greatly to the temporal gravity field monitoring in the past few years. However, ocean tides cause notable alias errors for single-pair spaceborne gravimetry missions like GRACE in two ways. First, undersampling from satellite orbit induces the aliasing of high-frequency tidal signals into the gravity signal. Second, ocean tide models used for de-aliasing in the gravity field retrieval carry errors, which will directly alias into the recovered gravity field. GRACE satellites are in non-repeat orbit, disabling the alias error spectral estimation based on the repeat period. Moreover, the gravity field recovery is conducted in non-strictly monthly interval and has occasional gaps, which result in an unevenly sampled time series. In view of the two aspects above, we investigate the data-driven method to mitigate the ocean tide alias error in a post-processing mode.
Optoelectronic image scanning with high spatial resolution and reconstruction fidelity
NASA Astrophysics Data System (ADS)
Craubner, Siegfried I.
2002-02-01
In imaging systems the detector arrays deliver at the output time-discrete signals, where the spatial frequencies of the object scene are mapped into the electrical signal frequencies. Since the spatial frequency spectrum cannot be bandlimited by the front optics, the usual detector arrays perform a spatial undersampling and as a consequence aliasing occurs. A means to partially suppress the backfolded alias band is bandwidth limitation in the reconstruction low-pass, at the price of resolution loss. By utilizing a bilinear detector array in a pushbroom-type scanner, undersampling and aliasing can be overcome. For modeling the perception, the theory of discrete systems and multirate digital filter banks is applied, where aliasing cancellation and perfect reconstruction play an important role. The discrete transfer function of a bilinear array can be imbedded into the scheme of a second-order filter bank. The detector arrays already build the analysis bank and the overall filter bank is completed with the synthesis bank, for which stabilized inverse filters are proposed, to compensate for the low-pass characteristics and to approximate perfect reconstruction. The synthesis filter branch can be realized in a so-called `direct form,' or the `polyphase form,' where the latter is an expenditure-optimal solution, which gives advantages when implemented in a signal processor. This paper attempts to introduce well-established concepts of the theory of multirate filter banks into the analysis of scanning imagers, which is applicable in a much broader sense than for the problems addressed here. To the author's knowledge this is also a novelty.
Shiota, T; Jones, M; Yamada, I; Heinrich, R S; Ishii, M; Sinclair, B; Holcomb, S; Yoganathan, A P; Sahn, D J
1996-02-01
The aim of the present study was to evaluate dynamic changes in aortic regurgitant (AR) orifice area with the use of calibrated electromagnetic (EM) flowmeters and to validate a color Doppler flow convergence (FC) method for evaluating effective AR orifice area and regurgitant volume. In 6 sheep, 8 to 20 weeks after surgically induced AR, 22 hemodynamically different states were studied. Instantaneous regurgitant flow rates were obtained by aortic and pulmonary EM flowmeters balanced against each other. Instantaneous AR orifice areas were determined by dividing these actual AR flow rates by the corresponding continuous wave velocities (over 25 to 40 points during each diastole) matched for each steady state. Echo studies were performed to obtain maximal aliasing distances of the FC in a low range (0.20 to 0.32 m/s) and a high range (0.70 to 0.89 m/s) of aliasing velocities; the corresponding maximal AR flow rates were calculated using the hemispheric flow convergence assumption for the FC isovelocity surface. AR orifice areas were derived by dividing the maximal flow rates by the maximal continuous wave Doppler velocities. AR orifice sizes obtained with the use of EM flowmeters showed little change during diastole. Maximal and time-averaged AR orifice areas during diastole obtained by EM flowmeters ranged from 0.06 to 0.44 cm2 (mean, 0.24 +/- 0.11 cm2) and from 0.05 to 0.43 cm2 (mean, 0.21 +/- 0.06 cm2), respectively. Maximal AR orifice areas by FC using low aliasing velocities overestimated reference EM orifice areas; however, at high AV, FC predicted the reference areas more reliably (0.25 +/- 0.16 cm2, r = .82, difference = 0.04 +/- 0.07 cm2). The product of the maximal orifice area obtained by the FC method using high AV and the velocity time integral of the regurgitant orifice velocity showed good agreement with regurgitant volumes per beat (r = .81, difference = 0.9 +/- 7.9 mL/beat). This study, using strictly quantified AR volume, demonstrated little change in AR orifice size during diastole. When high aliasing velocities are chosen, the FC method can be useful for determining effective AR orifice size and regurgitant volume.
T-phase and tsunami signals recorded by IMS hydrophone triplets during the 2011 Tohoku earthquake
NASA Astrophysics Data System (ADS)
Matsumoto, H.; Haralabus, G.; Zampolli, M.; Ozel, N. M.; Yamada, T.; Mark, P. K.
2016-12-01
A hydrophone station of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is used to estimate the back-azimuth of T-phase signals generated by the 2011 Tohoku earthquake. Among the 6 IMS hydrophone stations required by the Treaty, 5 stations consist of two triplets, with the exception of HA1 (Australia), which has only one. The hydrophones of each triplet are suspended in the SOFAR channel and arranged to form an equilateral triangle with each side being approximately two kilometers long. The waveforms from the Tohoku earthquake were received at HA11, located on Wake Island, which is located approximately 3100 km south-east of the earthquake epicenter. The frequency range used in the array analysis was chosen to be less than 0.375 Hz, which assumed the target phase velocity to be 1.5 km/s for T-phases. The T-phase signals that originated from the seismic source however show peaks in the frequency band above one Hz. As a result of the inter-element distances of 2 km, spatial aliasing is observed in the frequency-wavenumber analysis (F-K analysis) if the entire 100 Hz bandwidth of the hydrophones is used. This spatial aliasing is significant because the distance between hydrophones in the triplet is large in comparison to the ratio between the phase velocity of T-phase signals and the frequency. To circumvent this spatial aliasing problem, a three-step processing technique used in seismic array analysis is applied: (1) high-pass filtering above 1 Hz to retrieve the T-phase, followed by (2) extraction of the envelope of this signal to highlight the T-phase contribution, and finally (3) low-pass filtering of the envelope below 0.375 Hz. The F-K analysis provides accurate back-azimuth and slowness estimations without spatial aliasing. Deconvolved waveforms are also processed to retrieve tsunami components by using a three-pole model of the frequency-amplitude-phase (FAP) response below 0.1 Hz and the measured sensor response for higher frequencies. It is also shown that short-period pressure fluctuations recorded by the IMS hydrophones correspond to theoretical dispersion curves of tsunamis. Thus, short-period dispersive tsunami signals can be identified by the IMS hydrophone triplets.
Noise power spectra of images from digital mammography detectors.
Williams, M B; Mangiafico, P A; Simoni, P U
1999-07-01
Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. We begin with a brief review of the fundamentals of NPS theory and measurement, derive explicit expressions for calculation of the one- and two-dimensional (1D and 2D) NPS, and discuss some of the considerations and tradeoffs when these concepts are applied to digital systems. Measurements of the NPS of two detectors for digital mammography are presented to illustrate some of the implications of the choices available. For both systems, two-dimensional noise power spectra obtained over a range of input fluence exhibit pronounced asymmetry between the orthogonal frequency dimensions. The 2D spectra of both systems also demonstrate dominant structures both on and off the primary frequency axes indicative of periodic noise components. Although the two systems share many common noise characteristics, there are significant differences, including markedly different dark-noise magnitudes, differences in NPS shape as a function of both spatial frequency and exposure, and differences in the natures of the residual fixed pattern noise following flat fielding corrections. For low x-ray exposures, quantum noise-limited operation may be possible only at low spatial frequency. Depending on the method of obtaining the 1D NPS (i.e., synthetic slit scanning or slice extraction from the 2D NPS), on-axis periodic structures can be misleadingly smoothed or missed entirely. Our measurements indicate that for these systems, 1D spectra useful for the purpose of detective quantum efficiency calculation may be obtained from thin cuts through the central portion of the calculated 2D NPS. On the other hand, low-frequency spectral values do not converge to an asymptotic value with increasing slit length when 1D spectra are generated using the scanned synthetic slit method. Aliasing can contribute significantly to the digital NPS, especially near the Nyquist frequency. Calculation of the theoretical presampling NPS and explicit inclusion of aliased noise power shows good agreement with measured values.
Anisotropic scene geometry resampling with occlusion filling for 3DTV applications
NASA Astrophysics Data System (ADS)
Kim, Jangheon; Sikora, Thomas
2006-02-01
Image and video-based rendering technologies are receiving growing attention due to their photo-realistic rendering capability in free-viewpoint. However, two major limitations are ghosting and blurring due to their sampling-based mechanism. The scene geometry which supports to select accurate sampling positions is proposed using global method (i.e. approximate depth plane) and local method (i.e. disparity estimation). This paper focuses on the local method since it can yield more accurate rendering quality without large number of cameras. The local scene geometry has two difficulties which are the geometrical density and the uncovered area including hidden information. They are the serious drawback to reconstruct an arbitrary viewpoint without aliasing artifacts. To solve the problems, we propose anisotropic diffusive resampling method based on tensor theory. Isotropic low-pass filtering accomplishes anti-aliasing in scene geometry and anisotropic diffusion prevents filtering from blurring the visual structures. Apertures in coarse samples are estimated following diffusion on the pre-filtered space, the nonlinear weighting of gradient directions suppresses the amount of diffusion. Aliasing artifacts from low density are efficiently removed by isotropic filtering and the edge blurring can be solved by the anisotropic method at one process. Due to difference size of sampling gap, the resampling condition is defined considering causality between filter-scale and edge. Using partial differential equation (PDE) employing Gaussian scale-space, we iteratively achieve the coarse-to-fine resampling. In a large scale, apertures and uncovered holes can be overcoming because only strong and meaningful boundaries are selected on the resolution. The coarse-level resampling with a large scale is iteratively refined to get detail scene structure. Simulation results show the marked improvements of rendering quality.
NASA Astrophysics Data System (ADS)
Arevalo-Lopez, H. S.; Levin, S. A.
2016-12-01
The vertical component of seismic wave reflections is contaminated by surface noise such as ground roll and secondary scattering from near surface inhomogeneities. A common method for attenuating these, unfortunately often aliased, arrivals is via velocity filtering and/or multichannel stacking. 3D-3C acquisition technology provides two additional sources of information about the surface wave noise that we exploit here: (1) areal receiver coverage, and (2) a pair of horizontal components recorded at the same location as the vertical component. Areal coverage allows us to segregate arrivals at each individual receiver or group of receivers by direction. The horizontal components, having much less compressional reflection body wave energy than the vertical component, provide a template of where to focus our energies on attenuating the surface wave arrivals. (In the simplest setting, the vertical component is a scaled 90 degree phase rotated version of the radial horizontal arrival, a potential third possible lever we have not yet tried to integrate.) The key to our approach is to use the magnitude of the horizontal components to outline a data-adaptive "velocity" filter region in the w-Kx-Ky domain. The big advantage for us is that even in the presence of uneven receiver geometries, the filter automatically tracks through aliasing without manual sculpting and a priori velocity and dispersion estimation. The method was applied to an aliased synthetic dataset based on a five layer earth model which also included shallow scatterers to simulate near-surface inhomogeneities and successfully removed both the ground roll and scatterers from the vertical component (Figure 1).
NASA Astrophysics Data System (ADS)
Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.
2017-12-01
The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.
Multiple Hypothesis Correlation for Space Situational Awareness
2011-08-29
formulations with anti-aliasing through hybrid approaches such as the Drizzle algorithm [43] all the way up through to image superresolution techniques. Most... superresolution techniques. Second, given a set of images, either directly from the sensor or preprocessed using the above techniques, we showed how
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... data elements: Full Name; Alias(es); Gender; Date of Birth; Country of Birth; Country of Citizenship... locked drawer behind a locked door. The records may be stored on magnetic disc, tape, or digital media...
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altube, Patricia; Bech, Joan; Argemí, Oriol
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Tri-linear color multi-linescan sensor with 200 kHz line rate
NASA Astrophysics Data System (ADS)
Schrey, Olaf; Brockherde, Werner; Nitta, Christian; Bechen, Benjamin; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.
2016-11-01
In this paper we present a newly developed linear CMOS high-speed line-scanning sensor realized in a 0.35 μm CMOS OPTO process for line-scan with 200 kHz true RGB and 600 kHz monochrome line rate, respectively. In total, 60 lines are integrated in the sensor allowing for electronic position adjustment. The lines are read out in rolling shutter manner. The high readout speed is achieved by a column-wise organization of the readout chain. At full speed, the sensor provides RGB color images with a spatial resolution down to 50 μm. This feature enables a variety of applications like quality assurance in print inspection, real-time surveillance of railroad tracks, in-line monitoring in flat panel fabrication lines and many more. The sensor has a fill-factor close to 100%, preventing aliasing and color artefacts. Hence the tri-linear technology is robust against aliasing ensuring better inspection quality and thus less waste in production lines.
Adaptive Wiener filter super-resolution of color filter array images.
Karch, Barry K; Hardie, Russell C
2013-08-12
Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.
Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing
Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang
2016-01-01
Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341
Turbulent Channel Flow Measurements with a Nano-scale Thermal Anemometry Probe
NASA Astrophysics Data System (ADS)
Bailey, Sean; Witte, Brandon
2014-11-01
Using a Nano-scale Thermal Anemometry Probe (NSTAP), streamwise velocity was measured in a turbulent channel flow wind tunnel at Reynolds numbers ranging from Reτ = 500 to Reτ = 4000 . Use of these probes results in the a sensing-length-to-viscous-length-scale ratio of just 5 at the highest Reynolds number measured. Thus measured results can be considered free of spatial filtering effects. Point statistics are compared to recently published DNS and LDV data at similar Reynolds numbers and the results are found to be in good agreement. However, comparison of the measured spectra provide further evidence of aliasing at long wavelengths due to application of Taylor's frozen flow hypothesis, with increased aliasing evident with increasing Reynolds numbers. In addition to conventional point statistics, the dissipative scales of turbulence are investigated with focus on the wall-dependent scaling. Results support the existence of a universal pdf distribution of these scales once scaled to account for large-scale anisotropy. This research is supported by KSEF Award KSEF-2685-RDE-015.
Potential and Pitfalls of High-Rate GPS
NASA Astrophysics Data System (ADS)
Smalley, R.
2008-12-01
With completion of the Plate Boundary Observatory (PBO), we are poised to capture a dense sampling of strong motion displacement time series from significant earthquakes in western North America with High-Rate GPS (HRGPS) data collected at 1 and 5 Hz. These data will provide displacement time series at potentially zero epicentral distance that, if valid, have great potential to contribute to understanding earthquake rupture processes. The caveat relates to whether or not the data are aliased: is the sampling rate fast enough to accurately capture the displacement's temporal history? Using strong motion recordings in the immediate epicentral area of several 6.77.5 events, which can be reasonably expected in the PBO footprint, even the 5 Hz data may be aliased. Some sort of anti-alias processing, currently not applied, will therefore necessary at the closest stations to guarantee the veracity of the displacement time series. We discuss several solutions based on a-priori knowledge of the expected ground motion and practicality of implementation.
USING LEAKED POWER TO MEASURE INTRINSIC AGN POWER SPECTRA OF RED-NOISE TIME SERIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, S. F.; Xue, Y. Q., E-mail: zshifu@mail.ustc.edu.cn, E-mail: xuey@ustc.edu.cn
Fluxes emitted at different wavebands from active galactic nuclei (AGNs) fluctuate at both long and short timescales. The variation can typically be characterized by a broadband power spectrum, which exhibits a red-noise process at high frequencies. The standard method of estimating the power spectral density (PSD) of AGN variability is easily affected by systematic biases such as red-noise leakage and aliasing, in particular when the observation spans a relatively short period and is gapped. Focusing on the high-frequency PSD that is strongly distorted due to red-noise leakage and usually not significantly affected by aliasing, we develop a novel and observablemore » normalized leakage spectrum (NLS), which sensitively describes the effects of leaked red-noise power on the PSD at different temporal frequencies. Using Monte Carlo simulations, we demonstrate how an AGN underlying PSD sensitively determines the NLS when there is severe red-noise leakage, and thereby how the NLS can be used to effectively constrain the underlying PSD.« less
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
Altube, Patricia; Bech, Joan; Argemí, Oriol; ...
2017-07-18
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
The 96-antenna multifrequency Siberian radioheliograph
NASA Astrophysics Data System (ADS)
Lesovoi, Sergey; Altyntsev, Alexander; Ivanov, Eugene; Kashapova, Larisa
2013-04-01
The 96-antenna multifrequency Siberian radioheliograph, which is under construction at present, is described. The frequency range of the radioheliograph is from 4 up to 8 GHz. The radioheliograph data are complex cross-correlations for both circular polarizations at a number of frequencies from a given list. The longest baseline is of 622 m. This provides an angular resolution down to 13 arcsec at 8 GHz. The shortest baseline (fundamental spacing) is of 4.9 m. Because of such fundamental spacing one can completely avoid the spatial aliasing at frequencies below 6 GHz. The images at frequencies between 6 GHz and 8 GHz are non-aliased during most of the observation time. We plan to reach the sensitivity about 100 K for the snapshot (1 s cadence) image. Wideband antennas with front-ends, analog back-ends, digital receivers and a correlator are described. A signal from each antenna is transmitted to a workroom by the analog fiber optical link. After mixing, all signals are digitized and processed by digital receivers before the data are transmitted to the correlator. The digital receivers and the correlator are virtually FPGA IP cores. So there are many ways to the delay tracking and fringe stopping. The fractional sample delay for delay tracking is described in detail. Also the choice of a number of quantization levels of the correlator is discussed. The joint analysis of HXR and microwave spectral data, recorded with the radioheliograph prototype at a number of frequencies is presented. It is shown that the dependence of brightness temperature on spatial size of microwave sources could be used to determine moments when particle acceleration occurs. The work is supported by the Ministry of education and science of the Russian Federation (State Contracts 16.518.11.7065 and 02.740.11.0576), and by the grants RFBR (12-02-91161-GFEN-a, 12-02-00616 and 12-02-00173-a
Local spatial frequency analysis for computer vision
NASA Technical Reports Server (NTRS)
Krumm, John; Shafer, Steven A.
1990-01-01
A sense of vision is a prerequisite for a robot to function in an unstructured environment. However, real-world scenes contain many interacting phenomena that lead to complex images which are difficult to interpret automatically. Typical computer vision research proceeds by analyzing various effects in isolation (e.g., shading, texture, stereo, defocus), usually on images devoid of realistic complicating factors. This leads to specialized algorithms which fail on real-world images. Part of this failure is due to the dichotomy of useful representations for these phenomena. Some effects are best described in the spatial domain, while others are more naturally expressed in frequency. In order to resolve this dichotomy, we present the combined space/frequency representation which, for each point in an image, shows the spatial frequencies at that point. Within this common representation, we develop a set of simple, natural theories describing phenomena such as texture, shape, aliasing and lens parameters. We show these theories lead to algorithms for shape from texture and for dealiasing image data. The space/frequency representation should be a key aid in untangling the complex interaction of phenomena in images, allowing automatic understanding of real-world scenes.
An image-based approach to understanding the physics of MR artifacts.
Morelli, John N; Runge, Val M; Ai, Fei; Attenberger, Ulrike; Vu, Lan; Schmeets, Stuart H; Nitz, Wolfgang R; Kirsch, John E
2011-01-01
As clinical magnetic resonance (MR) imaging becomes more versatile and more complex, it is increasingly difficult to develop and maintain a thorough understanding of the physical principles that govern the changing technology. This is particularly true for practicing radiologists, whose primary obligation is to interpret clinical images and not necessarily to understand complex equations describing the underlying physics. Nevertheless, the physics of MR imaging plays an important role in clinical practice because it determines image quality, and suboptimal image quality may hinder accurate diagnosis. This article provides an image-based explanation of the physics underlying common MR imaging artifacts, offering simple solutions for remedying each type of artifact. Solutions that have emerged from recent technologic advances with which radiologists may not yet be familiar are described in detail. Types of artifacts discussed include those resulting from voluntary and involuntary patient motion, magnetic susceptibility, magnetic field inhomogeneities, gradient nonlinearity, standing waves, aliasing, chemical shift, and signal truncation. With an improved awareness and understanding of these artifacts, radiologists will be better able to modify MR imaging protocols so as to optimize clinical image quality, allowing greater confidence in diagnosis. Copyright © RSNA, 2011.
Generalized Aliasing as a Basis for Program Analysis Tools
2000-11-01
5 W 5 X LV DQ HGJH LQ*7KHQWKHJUDSKLVSDUWLWLRQHGLQWRVWURQJO\\FRQQHFWHGFRPSRQHQWVFDOOHG FOXVWHUOHYHOV7KLVSDUWLWLRQLVZULWWHQ6...IRUPWEF XLVGLVSOD\\HGDVDVROLG HGJH IURPW¶VQRGHWRX¶VQRGHODEHOOHGZLWKEF$ FRQVWUDLQWRIWKHIRUPW )L XLVGLVSOD\\HGDVDGRWWHG HGJH ...0 1 )LVLQWKH935^ )RUHDFKQRGH1LQ*^ ,I0 1 )!0 1 LVLQWKH935^ ,IWKHUHLVQR HGJH IURP1
NASA Astrophysics Data System (ADS)
Zeng, Y. Y.; Guo, J. Y.; Shang, K.; Shum, C. K.; Yu, J. H.
2015-09-01
Two methods for computing gravitational potential difference (GPD) between the GRACE satellites using orbit data have been formulated based on energy integral; one in geocentric inertial frame (GIF) and another in Earth fixed frame (EFF). Here we present a rigorous theoretical formulation in EFF with particular emphasis on necessary approximations, provide a computational approach to mitigate the approximations to negligible level, and verify our approach using simulations. We conclude that a term neglected or ignored in all former work without verification should be retained. In our simulations, 2 cycle per revolution (CPR) errors are present in the GPD computed using our formulation, and empirical removal of the 2 CPR and lower frequency errors can improve the precisions of Stokes coefficients (SCs) of degree 3 and above by 1-2 orders of magnitudes. This is despite of the fact that the result without removing these errors is already accurate enough. Furthermore, the relation between data errors and their influences on GPD is analysed, and a formal examination is made on the possible precision that real GRACE data may attain. The result of removing 2 CPR errors may imply that, if not taken care of properly, the values of SCs computed by means of the energy integral method using real GRACE data may be seriously corrupted by aliasing errors from possibly very large 2 CPR errors based on two facts: (1) errors of bar C_{2,0} manifest as 2 CPR errors in GPD and (2) errors of bar C_{2,0} in GRACE data-the differences between the CSR monthly values of bar C_{2,0} independently determined using GRACE and SLR are a reasonable measure of their magnitude-are very large. Our simulations show that, if 2 CPR errors in GPD vary from day to day as much as those corresponding to errors of bar C_{2,0} from month to month, the aliasing errors of degree 15 and above SCs computed using a month's GPD data may attain a level comparable to the magnitude of gravitational potential variation signal that GRACE was designed to recover. Consequently, we conclude that aliasing errors from 2 CPR errors in real GRACE data may be very large if not properly handled; and therefore, we propose an approach to reduce aliasing errors from 2 CPR and lower frequency errors for computing SCs above degree 2.
Aliasing of the Schumann resonance background signal by sprite-associated Q-bursts
NASA Astrophysics Data System (ADS)
Guha, Anirban; Williams, Earle; Boldi, Robert; Sátori, Gabriella; Nagy, Tamás; Bór, József; Montanyà, Joan; Ortega, Pascal
2017-12-01
The Earth's naturally occurring Schumann resonances (SR) are composed of a quasi-continuous background component and a larger-amplitude, short-duration transient component, otherwise called 'Q-burst' (Ogawa et al., 1967). Sprites in the mesosphere are also known to accompany the energetic positive ground flashes that launch the Q-bursts (Boccippio et al., 1995). Spectra of the background Schumann Resonances (SR) require a natural stabilization period of ∼10-12 min for the three conspicuous modal parameters to be derived from Lorentzian fitting. Before the spectra are computed and the fitting process is initiated, the raw time series data need to be properly filtered for local cultural noise, narrow band interference as well as for large transients in the form of global Q-bursts. Mushtak and Williams (2009) describe an effective technique called Isolated Lorentzian (I-LOR), in which, the contributions from local cultural and various other noises are minimized to a great extent. An automated technique based on median filtering of time series data has been developed. These special lightning flashes are known to have greater contribution in the ELF range (below 1 kHz) compared to general negative CG strikes (Huang et al., 1999; Cummer et al., 2006). The global distributions of these Q-bursts have been studied by Huang et al. (1999) Rhode Island, USA by wave impedance methods from single station ELF measurements at Rhode Island, USA and from Japan Hobara et al. (2006). The present work aims to demonstrate the effect of Q-bursts on SR background spectra using GPS time-stamped observation of TLEs. It is observed that the Q-bursts selected for the present work do alias the background spectra over a 5-s period, though the amplitudes of these Q-bursts are far below the background threshold of 16 Core Standard Deviation (CSD) so that they do not strongly alias the background spectra of 10-12 min duration. The examination of one exceptional Q-burst shows that appreciable spectral aliasing can occur even when 12-min spectral integrations are considered. The statistical result shows that for a 12-min spectrum, events above 16 CSD are capable of producing significant frequency aliasing of the modal frequencies, although the intensity aliasing might have a negligible effect unless the events are exceptionally large (∼200 CSD). The spectral CSD methodology may be used to extract the time of arrival of the Q-burst transients. This methodology may be combined with a hyperbolic ranging, thus becoming an effective tool to detect TLEs globally with a modest number of networked observational stations.
76 FR 34720 - Chemical Facility Anti-Terrorism Standards Personnel Surety Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
...; Date of birth; Place of birth; Gender; Citizenship; Passport information; Visa information; Alien... birth; and c. Citizenship or Gender. The Department will require that high-risk chemical facilities.... Aliases; b. Gender (for Non-U.S. persons); c. Place of birth; and d. DHS Redress Number. In lieu of...
77 FR 28250 - Entity List Additions; Corrections
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... person who was added under the destination of Pakistan to clarify the text is the address of this person... follows: Pakistan (1) Jalaluddin Haqqani, a.k.a., the following seven aliases: --General Jalaluddin... Jalaluddin. --Miram Shah, Pakistan. United Arab Emirates (1) Al Maskah Used Car and Spare Parts, Maliha Road...
Android REST Client Application to View, Collect, and Exploit Video and Image Data
2013-09-01
Superresolution Image Reconstruction From a Sequence of Aliased Imagery. Applied Optics 2006, 45 (21), 5073–5085. 3, Driggers, R. G.; Krapels, K. A...Murrill, S.; Young, S. S.; Theilke, M.; Schuler, J. M. Superresolution Performance for Undersampled Imagers. Optical Engineering 2005, 44 (01). 4. Young
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... maintained. This determination shall be published in the Federal Register. Dated: September 28, 2010. Hillary Rodham Clinton, Secretary of State. [FR Doc. 2010-25333 Filed 10-6-10; 8:45 am] BILLING CODE 4710-10-P ...
Enhancing National Security by Strengthening the Legal Immigration System
2009-12-01
Ramzi Yousef traveled from Pakistan to New York’s John F. Kennedy ( JFK ) airport using aliases. Both men possessed a variety of documents, including...both Yousef and another conspirator, Eyad Ismoil, to JFK airport . Yousef used a false passport to escape to Pakistan, and Ismoil fled to Jordan
NASA Astrophysics Data System (ADS)
Bindiya T., S.; Elias, Elizabeth
2015-01-01
In this paper, multiplier-less near-perfect reconstruction tree-structured filter banks are proposed. Filters with sharp transition width are preferred in filter banks in order to reduce the aliasing between adjacent channels. When sharp transition width filters are designed as conventional finite impulse response filters, the order of the filters will become very high leading to increased complexity. The frequency response masking (FRM) method is known to result in linear-phase sharp transition width filters with low complexity. It is found that the proposed design method, which is based on FRM, gives better results compared to the earlier reported results, in terms of the number of multipliers when sharp transition width filter banks are needed. To further reduce the complexity and power consumption, the tree-structured filter bank is made totally multiplier-less by converting the continuous filter bank coefficients to finite precision coefficients in the signed power of two space. This may lead to performance degradation and calls for the use of a suitable optimisation technique. In this paper, gravitational search algorithm is proposed to be used in the design of the multiplier-less tree-structured uniform as well as non-uniform filter banks. This design method results in uniform and non-uniform filter banks which are simple, alias-free, linear phase and multiplier-less and have sharp transition width.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
...; (5) Chinese Academy of Engineering Physics, a.k.a., the following seventeen aliases: --Ninth Academy...; --Southwest Institute of Explosives and Chemical Engineering; --Southwest Institute of Fluid Physics...; --Southwest Institute of Materials; --Southwest Institute of Nuclear Physics and Chemistry (a.k.a., China...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-01
... place of birth; passport and other travel document information; nationality; aliases; Alien Registration... date and time of a successful collection and confirmation from the FBI that the sample was able to be... alleged violations of criminal or immigration law (location, date, time, event category, types of criminal...
ERIC Educational Resources Information Center
Ho, Chung-Cheng
2016-01-01
For decades, direction finding has been an important research topic in many applications such as radar, location services, and medical diagnosis for treatment. For those kinds of applications, the precision of location estimation plays an important role, since that, having a higher precision location estimate method is always desirable. Although…
Regional Characteristics for Interpreting Inverted Echo Sounder (IES) observations
1987-06-01
rounding the IESs. There are seasonal warming and and ideally, we should like to have a series of hydro- cooling effects which may be missed with...thermocline This shallo, sanabihlit\\ , Is lkck to be spatialk and temporall , aliased: it ma\\ 01 ." b assoi ated ws.ith internal \\ awes or frontal tluctua
Investigating prior probabilities in a multiple hypothesis test for use in space domain awareness
NASA Astrophysics Data System (ADS)
Hardy, Tyler J.; Cain, Stephen C.
2016-05-01
The goal of this research effort is to improve Space Domain Awareness (SDA) capabilities of current telescope systems through improved detection algorithms. Ground-based optical SDA telescopes are often spatially under-sampled, or aliased. This fact negatively impacts the detection performance of traditionally proposed binary and correlation-based detection algorithms. A Multiple Hypothesis Test (MHT) algorithm has been previously developed to mitigate the effects of spatial aliasing. This is done by testing potential Resident Space Objects (RSOs) against several sub-pixel shifted Point Spread Functions (PSFs). A MHT has been shown to increase detection performance for the same false alarm rate. In this paper, the assumption of a priori probability used in a MHT algorithm is investigated. First, an analysis of the pixel decision space is completed to determine alternate hypothesis prior probabilities. These probabilities are then implemented into a MHT algorithm, and the algorithm is then tested against previous MHT algorithms using simulated RSO data. Results are reported with Receiver Operating Characteristic (ROC) curves and probability of detection, Pd, analysis.
Non-Cartesian Parallel Imaging Reconstruction
Wright, Katherine L.; Hamilton, Jesse I.; Griswold, Mark A.; Gulani, Vikas; Seiberlich, Nicole
2014-01-01
Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be employed to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the non-homogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian GRAPPA, and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered. PMID:24408499
Ground roll attenuation by synchrosqueezed curvelet transform
NASA Astrophysics Data System (ADS)
Liu, Zhao; Chen, Yangkang; Ma, Jianwei
2018-04-01
Ground roll is a type of coherent noise in land seismic data that has low frequency, low velocity and high amplitude. It damages reflection events that contain important information about subsurface structures, hence the removal of ground roll is a crucial step in seismic data processing. A suitable transform is needed for removal of ground roll. Curvelet transform is an effective sparse transform that optimally represents seismic events. In addition, the curvelets can provide a multiscale and multidirectional decomposition of the input data in time-frequency and angular domain, which can help distinguish between ground roll and useful signals. In this paper, we apply synchrosqueezed curvelet transform (SSCT) for ground roll attenuation. The synchrosqueezing technique in SSCT is used to precisely reallocate the energy of local wave vectors in order to separate ground roll from the original data with higher resolution and higher fidelity. Examples of synthetic and field seismic data reveal that SSCT performs well in the suppression of aliased and non-aliased ground roll while preserving reflection waves, in comparison with high-pass filtering, wavelet and curvelet methods.
Low-dimensional and Data Fusion Techniques Applied to a Rectangular Supersonic Multi-stream Jet
NASA Astrophysics Data System (ADS)
Berry, Matthew; Stack, Cory; Magstadt, Andrew; Ali, Mohd; Gaitonde, Datta; Glauser, Mark
2017-11-01
Low-dimensional models of experimental and simulation data for a complex supersonic jet were fused to reconstruct time-dependent proper orthogonal decomposition (POD) coefficients. The jet consists of a multi-stream rectangular single expansion ramp nozzle, containing a core stream operating at Mj , 1 = 1.6 , and bypass stream at Mj , 3 = 1.0 with an underlying deck. POD was applied to schlieren and PIV data to acquire the spatial basis functions. These eigenfunctions were projected onto their corresponding time-dependent large eddy simulation (LES) fields to reconstruct the temporal POD coefficients. This reconstruction was able to resolve spectral peaks that were previously aliased due to the slower sampling rates of the experiments. Additionally, dynamic mode decomposition (DMD) was applied to the experimental and LES datasets, and the spatio-temporal characteristics were compared to POD. The authors would like to acknowledge AFOSR, program manager Dr. Doug Smith, for funding this research, Grant No. FA9550-15-1-0435.
Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas
2015-07-01
The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P < 0.001; anatomical precision, P ≤ 0.005). Simultaneous multislice EPI with blipped controlled aliasing in parallel imaging results in higher acceleration can remarkably reduce acquisition time in DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.
A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping
NASA Astrophysics Data System (ADS)
Saad, Ashraf A.; Shapiro, Linda G.
2008-03-01
Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.
Lensfree Computational Microscopy Tools and their Biomedical Applications
NASA Astrophysics Data System (ADS)
Sencan, Ikbal
Conventional microscopy has been a revolutionary tool for biomedical applications since its invention several centuries ago. Ability to non-destructively observe very fine details of biological objects in real time enabled to answer many important questions about their structures and functions. Unfortunately, most of these advance microscopes are complex, bulky, expensive, and/or hard to operate, so they could not reach beyond the walls of well-equipped laboratories. Recent improvements in optoelectronic components and computational methods allow creating imaging systems that better fulfill the specific needs of clinics or research related biomedical applications. In this respect, lensfree computational microscopy aims to replace bulky and expensive optical components with compact and cost-effective alternatives through the use of computation, which can be particularly useful for lab-on-a-chip platforms as well as imaging applications in low-resource settings. Several high-throughput on-chip platforms are built with this approach for applications including, but not limited to, cytometry, micro-array imaging, rare cell analysis, telemedicine, and water quality screening. The lack of optical complexity in these lensfree on-chip imaging platforms is compensated by using computational techniques. These computational methods are utilized for various purposes in coherent, incoherent and fluorescent on-chip imaging platforms e.g. improving the spatial resolution, to undo the light diffraction without using lenses, localization of objects in a large volume and retrieval of the phase or the color/spectral content of the objects. For instance, pixel super resolution approaches based on source shifting are used in lensfree imaging platforms to prevent under sampling, Bayer pattern, and aliasing artifacts. Another method, iterative phase retrieval, is utilized to compensate the lack of lenses by undoing the diffraction and removing the twin image noise of in-line holograms. This technique enables recovering the complex optical field from its intensity measurement(s) by using additional constraints in iterations, such as spatial boundaries and other known properties of objects. Another computational tool employed in lensfree imaging is compressive sensing (or decoding), which is a novel method taking advantage of the fact that natural signals/objects are mostly sparse or compressible in known bases. This inherent property of objects enables better signal recovery when the number of measurement is low, even below the Nyquist rate, and increases the additive noise immunity of the system.
On the use of kinetic energy preserving DG-schemes for large eddy simulation
NASA Astrophysics Data System (ADS)
Flad, David; Gassner, Gregor
2017-12-01
Recently, element based high order methods such as Discontinuous Galerkin (DG) methods and the closely related flux reconstruction (FR) schemes have become popular for compressible large eddy simulation (LES). Element based high order methods with Riemann solver based interface numerical flux functions offer an interesting dispersion dissipation behavior for multi-scale problems: dispersion errors are very low for a broad range of scales, while dissipation errors are very low for well resolved scales and are very high for scales close to the Nyquist cutoff. In some sense, the inherent numerical dissipation caused by the interface Riemann solver acts as a filter of high frequency solution components. This observation motivates the trend that element based high order methods with Riemann solvers are used without an explicit LES model added. Only the high frequency type inherent dissipation caused by the Riemann solver at the element interfaces is used to account for the missing sub-grid scale dissipation. Due to under-resolution of vortical dominated structures typical for LES type setups, element based high order methods suffer from stability issues caused by aliasing errors of the non-linear flux terms. A very common strategy to fight these aliasing issues (and instabilities) is so-called polynomial de-aliasing, where interpolation is exchanged with projection based on an increased number of quadrature points. In this paper, we start with this common no-model or implicit LES (iLES) DG approach with polynomial de-aliasing and Riemann solver dissipation and review its capabilities and limitations. We find that the strategy gives excellent results, but only when the resolution is such, that about 40% of the dissipation is resolved. For more realistic, coarser resolutions used in classical LES e.g. of industrial applications, the iLES DG strategy becomes quite inaccurate. We show that there is no obvious fix to this strategy, as adding for instance a sub-grid-scale models on top doesn't change much or in worst case decreases the fidelity even more. Finally, the core of this work is a novel LES strategy based on split form DG methods that are kinetic energy preserving. The scheme offers excellent stability with full control over the amount and shape of the added artificial dissipation. This premise is the main idea of the work and we will assess the LES capabilities of the novel split form DG approach when applied to shock-free, moderate Mach number turbulence. We will demonstrate that the novel DG LES strategy offers similar accuracy as the iLES methodology for well resolved cases, but strongly increases fidelity in case of more realistic coarse resolutions.
NASA Astrophysics Data System (ADS)
Scheidhauer, M.; Dupuy, D.; Marillier, F.; Beres, M.
2003-04-01
For better understanding of geologic processes in complex lacustrine settings, detailed information on geologic features is required. In many cases, the 3D seismic method may be the only appropriate approach. The aim of this work is to develop an efficient very high-resolution 3D seismic reflection system for lake studies. In Lake Geneva, Switzerland, near the city of Lausanne, past high-resolution investigations revealed a complex fault zone, which was subsequently chosen for testing our new system of three 24-channel streamers and integrated differential GPS (dGPS) positioning. A survey, carried out in 9 days in August 2001, covered an area of 1500^om x 675^om and comprised 180 CMP lines sailed perpendicular to the fault strike always updip, since otherwise the asymmetric system would result in different stacks for opposite directions. Accurate navigation and shot spacing of 5^om is achieved with a specially developed navigation and shot-triggering software that uses differential GPS onboard and a reference base close to the lake shore. Hydrophone positions could be accurately (<^o0.5^om) calculated with the aid of three additional dGPS antennas mounted on rafts attached to the streamer tails. Towed at a distance of only 75^om behind the vessel, they allowed determination of possible feathering due to cross-line currents or small course variations. The multi-streamer system uses two retractable booms deployed on each side of the boat and rest on floats. They separate the two outer streamers from the one in the center by a distance of 7.5^om. Combined with a receiver spacing of 2.5^om, the bin dimension of the 3D data becomes 3.75^om in cross-line and 1.25^om in inline direction. Potential aliasing problems from steep reflectors up to 30^o within the fault zone motivated the use of a 15/15 cu. in. double-chamber bubble-canceling Mini G.I. air gun (operated at 80^obars and 1^om depth). Although its frequencies do not exceed 650^o Hz, it combines a penetration of non-aliased signal to depths of 400^om with a best vertical resolution of 1.15^om. The multi-streamer system allows acquisition of high quality data, which already after conventional 3D processing show particularly clear images of the fault zone and the overlying sediments in all directions. Prestack depth migration can further improve data quality and is more appropriate for subsequent geologic interpretation.
New insights into biogeochemical processing gained from sub-daily river monitoring
NASA Astrophysics Data System (ADS)
Halliday, S. J.; Wade, A. J.; Skeffington, R. A.; Bowes, M.; Palmer-Felgate, E.; Loewenthal, M.; Jarvie, H.; Neal, C.; Reynolds, B.; Gozzard, E.; Newman, J.
2012-12-01
This talk will focus on the insights obtained from sub-daily hydrochemical monitoring for a sustained time periods (> 1 year), at multiple sites within a catchment and across different catchment types. Sub-daily instream hydrochemical dynamics were investigated, using non-stationary time-series analysis techniques, for two catchments representative of upland and lowland UK. The River Hafren at Plynlimon, mid-Wales drains an upland catchment where half the land cover is unmanaged moorland and the other half is first generation plantation forestry. The Hafren was monitored at two sites on a 7-hourly basis, between March 2007 and January 2009, using a Xian automatic sampler. The River Enborne, Berkshire, southeast England, is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works discharges. The Enborne was monitored on an hourly basis between November 2009 and February 2012, using in situ field deployable analytical equipment to measure: Total Reactive Phosphorus (TRP: Systea Micromac C), Nitrate (Hach-Lange Nitratax), pH, dissolved oxygen, conductivity and water temperature (YSI 6600 Multi-parameter sonde). The results reveal complex diurnal patterns which exhibit seasonal changes in phase and amplitude, and are influenced by both flow conditions and nutrient sources. The comparison of the upland and lowland nitrate time series highlights how the different nitrogen sources within each system results in marked differences in the seasonal and diurnal dynamics, with a seasonal maximum in winter and a single peak diurnal cycle in the upland system, compared to a summer maximum and a two peak diurnal cycle in the lowland system. The analysis of TRP and nitrate concentrations in the Enborne catchment, in combination with flow, pH, dissolved oxygen, conductivity and water temperature, allowed the main processes controlling the observed sub-daily nutrient dynamics to be investigated. The different monitoring approaches adopted revealed the complexities involved in the accurate extraction of diurnal dynamics under lower frequency sampling, and the inherent issues of aliasing. Monitoring for 2 years also allowed an initial assessment of the inter-annual variability in the observed dynamics.
Huang, Chao-Tsung; Wang, Yu-Wen; Huang, Li-Ren; Chin, Jui; Chen, Liang-Gee
2017-02-01
Digital refocusing has a tradeoff between complexity and quality when using sparsely sampled light fields for low-storage applications. In this paper, we propose a fast physically correct refocusing algorithm to address this issue in a twofold way. First, view interpolation is adopted to provide photorealistic quality at infocus-defocus hybrid boundaries. Regarding its conventional high complexity, we devised a fast line-scan method specifically for refocusing, and its 1D kernel can be 30× faster than the benchmark View Synthesis Reference Software (VSRS)-1D-Fast. Second, we propose a block-based multi-rate processing flow for accelerating purely infocused or defocused regions, and a further 3- 34× speedup can be achieved for high-resolution images. All candidate blocks of variable sizes can interpolate different numbers of rendered views and perform refocusing in different subsampled layers. To avoid visible aliasing and block artifacts, we determine these parameters and the simulated aperture filter through a localized filter response analysis using defocus blur statistics. The final quadtree block partitions are then optimized in terms of computation time. Extensive experimental results are provided to show superior refocusing quality and fast computation speed. In particular, the run time is comparable with the conventional single-image blurring, which causes serious boundary artifacts.
Low Frequency Predictive Skill Despite Structural Instability and Model Error
2014-09-30
Majda, based on earlier theoretical work. 1. Dynamic Stochastic Superresolution of sparseley observed turbulent systems M. Branicki (Post doc...of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by...resolving subgridscale turbulence through Dynamic Stochastic Superresolution utilizing aliased grids is a potential breakthrough for practical online
Interactions between Brief Flashed Lines at Threshold.
1987-12-11
ORAIAIN 6 OFC ’PO 4 4M FMNTRIGOGNZTO lol in AFI, C 203 2- 44 . NAME OF PFN IG PORAIION lbOFFICE SYMBOL 7il PRO4MEN MINTRUNT INCNIATON NM ,.. .oAFOSR...Cass, P. C. (1986) Facilitatory interactionE between flashed lines. Perceptinn. jj,443-460. omith, P.A. and Cass, P C. (1967) Aliasing in the
Abandoned Uranium Mine (AUM) Surface Areas, Navajo Nation, 2016, US EPA Region 9
This GIS dataset contains polygon features that represent all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Attributes include mine names, aliases, Potentially Responsible Parties, reclaimation status, EPA mine status, links to AUM reports, and the region in which an AUM is located. This dataset contains 608 features.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... DEPARTMENT OF STATE [Public Notice 7965] In the Matter of the Review of the Designation of the Islamic Resistance Movement (Hamas and Other Aliases) As a Foreign Terrorist Organization pursuant to Section 219 of the Immigration and Nationality Act, as Amended Based upon a review of the Administrative...
32 CFR Appendix A to Part 270 - Application for Compensation of Vietnamese Commandos
Code of Federal Regulations, 2014 CFR
2014-07-01
... operative is the basis for applying for payment: (1) Current legal name or legal name at death: (a) Aliases: (b) Former, or other legal names used: (2) Current address or last address prior to death: (3... 1958 through 1975. I declare under penalty of perjury under the laws of the United States of America...
32 CFR Appendix A to Part 270 - Application for Compensation of Vietnamese Commandos
Code of Federal Regulations, 2013 CFR
2013-07-01
... operative is the basis for applying for payment: (1) Current legal name or legal name at death: (a) Aliases: (b) Former, or other legal names used: (2) Current address or last address prior to death: (3... 1958 through 1975. I declare under penalty of perjury under the laws of the United States of America...
32 CFR Appendix A to Part 270 - Application for Compensation of Vietnamese Commandos
Code of Federal Regulations, 2012 CFR
2012-07-01
... operative is the basis for applying for payment: (1) Current legal name or legal name at death: (a) Aliases: (b) Former, or other legal names used: (2) Current address or last address prior to death: (3... 1958 through 1975. I declare under penalty of perjury under the laws of the United States of America...
32 CFR Appendix A to Part 270 - Application for Compensation of Vietnamese Commandos
Code of Federal Regulations, 2011 CFR
2011-07-01
... operative is the basis for applying for payment: (1) Current legal name or legal name at death: (a) Aliases: (b) Former, or other legal names used: (2) Current address or last address prior to death: (3... 1958 through 1975. I declare under penalty of perjury under the laws of the United States of America...
Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1993-01-01
Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.
Fast myopic 2D-SIM super resolution microscopy with joint modulation pattern estimation
NASA Astrophysics Data System (ADS)
Orieux, François; Loriette, Vincent; Olivo-Marin, Jean-Christophe; Sepulveda, Eduardo; Fragola, Alexandra
2017-12-01
Super-resolution in structured illumination microscopy (SIM) is obtained through de-aliasing of modulated raw images, in which high frequencies are measured indirectly inside the optical transfer function. Usual approaches that use 9 or 15 images are often too slow for dynamic studies. Moreover, as experimental conditions change with time, modulation parameters must be estimated within the images. This paper tackles the problem of image reconstruction for fast super resolution in SIM, where the number of available raw images is reduced to four instead of nine or fifteen. Within an optimization framework, the solution is inferred via a joint myopic criterion for image and modulation (or acquisition) parameters, leading to what is frequently called a myopic or semi-blind inversion problem. The estimate is chosen as the minimizer of the nonlinear criterion, numerically calculated by means of a block coordinate optimization algorithm. The effectiveness of the proposed method is demonstrated for simulated and experimental examples. The results show precise estimation of the modulation parameters jointly with the reconstruction of the super resolution image. The method also shows its effectiveness for thick biological samples.
Pulse stuttering as a remedy for aliased ground backscatter
NASA Astrophysics Data System (ADS)
Bowhill, S. A.
1983-12-01
An algorithm that aides in the removal of ground scatter from low frequency Mesosphere, Stratosphere, Troposphere (MST) radar signals is examined. The unwanted ground scatter is shown as a sequence of velocity plots which are almost typical at the various altitudes. The interpulse period is changed in a cyclic way, thereby destroying the coherence of the unwanted signal. The interpulse period must be changed by an amount at least equal to the transmitted pulse width, and optimum performance is obtained when the number of different interpulse period occupies a time span greater than the coherence time of the unwanted signal. Since a 20-msec pulse width is used, it was found convenient to cycle through 50 pulses, the interpulse period changing from 2 msec to 3 msec during the 1/8-second time. This particular pattern of interpulse periods was provided by a software radar controller. With application of this algorithm, the unwanted scatter signal becomes incoherent from one pulse to the next, and therefore is perceived as noise by the coherent integrator and correlator.
Pulse stuttering as a remedy for aliased ground backscatter
NASA Technical Reports Server (NTRS)
Bowhill, S. A.
1983-01-01
An algorithm that aides in the removal of ground scatter from low frequency Mesosphere, Stratosphere, Troposphere (MST) radar signals is examined. The unwanted ground scatter is shown as a sequence of velocity plots which are almost typical at the various altitudes. The interpulse period is changed in a cyclic way, thereby destroying the coherence of the unwanted signal. The interpulse period must be changed by an amount at least equal to the transmitted pulse width, and optimum performance is obtained when the number of different interpulse period occupies a time span greater than the coherence time of the unwanted signal. Since a 20-msec pulse width is used, it was found convenient to cycle through 50 pulses, the interpulse period changing from 2 msec to 3 msec during the 1/8-second time. This particular pattern of interpulse periods was provided by a software radar controller. With application of this algorithm, the unwanted scatter signal becomes incoherent from one pulse to the next, and therefore is perceived as noise by the coherent integrator and correlator.
2005-07-01
Progress in Applied Computational Electro- magnetics. ACES, Syracuse, NY, 2004. 91. Mahafza, Bassem R. Radar Systems Analysis and Design Using MATLAB...Figure Page 4.5. RCS chamber coordinate system . . . . . . . . . . . . . . . . . 88 4.6. AFIT’s RCS Chamber...4.11. Frequency domain schematic of RCS data collection . . . . . . 98 4.12. Spherical coordinate system for RCS data calibration . . . . . . 102 4.13
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... DEPARTMENT OF STATE [Public Notice: 7250] In the Matter of the Review of the Designation of Islamic Movement of Uzbekistan (IMU and Other Aliases) as a Foreign Terrorist Organization Pursuant to Section 219 of the Immigration and Nationality Act, as Amended Based upon a review of the Administrative...
On removing interpolation and resampling artifacts in rigid image registration.
Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R; Fischl, Bruce
2013-02-01
We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.
On Removing Interpolation and Resampling Artifacts in Rigid Image Registration
Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R.; Fischl, Bruce
2013-01-01
We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration. PMID:23076044
Power cepstrum technique with application to model helicopter acoustic data
NASA Technical Reports Server (NTRS)
Martin, R. M.; Burley, C. L.
1986-01-01
The application of the power cepstrum to measured helicopter-rotor acoustic data is investigated. A previously applied correction to the reconstructed spectrum is shown to be incorrect. For an exact echoed signal, the amplitude of the cepstrum echo spike at the delay time is linearly related to the echo relative amplitude in the time domain. If the measured spectrum is not entirely from the source signal, the cepstrum will not yield the desired echo characteristics and a cepstral aliasing may occur because of the effective sample rate in the frequency domain. The spectral analysis bandwidth must be less than one-half the echo ripple frequency or cepstral aliasing can occur. The power cepstrum editing technique is a useful tool for removing some of the contamination because of acoustic reflections from measured rotor acoustic spectra. The cepstrum editing yields an improved estimate of the free field spectrum, but the correction process is limited by the lack of accurate knowledge of the echo transfer function. An alternate procedure, which does not require cepstral editing, is proposed which allows the complete correction of a contaminated spectrum through use of both the transfer function and delay time of the echo process.
Evaluation of slice accelerations using multiband echo planar imaging at 3 Tesla
Xu, Junqian; Moeller, Steen; Auerbach, Edward J.; Strupp, John; Smith, Stephen M.; Feinberg, David A.; Yacoub, Essa; Uğurbil, Kâmil
2013-01-01
We evaluate residual aliasing among simultaneously excited and acquired slices in slice accelerated multiband (MB) echo planar imaging (EPI). No in-plane accelerations were used in order to maximize and evaluate achievable slice acceleration factors at 3 Tesla. We propose a novel leakage (L-) factor to quantify the effects of signal leakage between simultaneously acquired slices. With a standard 32-channel receiver coil at 3 Tesla, we demonstrate that slice acceleration factors of up to eight (MB = 8) with blipped controlled aliasing in parallel imaging (CAIPI), in the absence of in-plane accelerations, can be used routinely with acceptable image quality and integrity for whole brain imaging. Spectral analyses of single-shot fMRI time series demonstrate that temporal fluctuations due to both neuronal and physiological sources were distinguishable and comparable up to slice-acceleration factors of nine (MB = 9). The increased temporal efficiency could be employed to achieve, within a given acquisition period, higher spatial resolution, increased fMRI statistical power, multiple TEs, faster sampling of temporal events in a resting state fMRI time series, increased sampling of q-space in diffusion imaging, or more quiet time during a scan. PMID:23899722
Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.
Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong
2011-09-01
Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.
Reachable Sets for Multiple Asteroid Sample Return Missions
2005-12-01
reduce the number of feasible asteroid targets. Reachable sets are defined in a reduced classical orbital element space. The boundary of this...Reachable sets are defined in a reduced classical orbital element space. The boundary of this reduced space is obtained by extremizing a family of...aliasing problems. Other coordinate elements , such as equinoctial elements , can provide a set of singularity-free slowly changing variables, but
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
...) David Khayam, Apt 1811 Manchester Tower, Dubai Marina, Dubai, U.A.E.; and PO Box 111831, Al Daghaya... Rashed, Apt 1811 Manchester Tower, Dubai Marina, Dubai, U.A.E.; and PO Box 111831, Al Daghaya, Dubai, U.A... following two aliases: --Baet Alhoreya Electronics Trading; and --Baet Alhoreya, Apt 1811 Manchester Tower...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... DEPARTMENT OF STATE [Public Notice: 7086] In the Matter of the Review of the Designation of the Communist Party of the Philippines/New People's Army (aka CPP/NPA and Other Aliases) as a Foreign Terrorist Organization Pursuant to Section 219 of the Immigration and Nationality Act, as Amended Based upon a review of...
Artifacts Of Spectral Analysis Of Instrument Readings
NASA Technical Reports Server (NTRS)
Wise, James H.
1995-01-01
Report presents experimental and theoretical study of some of artifacts introduced by processing outputs of two nominally identical low-frequency-reading instruments; high-sensitivity servo-accelerometers mounted together and operating, in conjunction with signal-conditioning circuits, as seismometers. Processing involved analog-to-digital conversion with anti-aliasing filtering, followed by digital processing including frequency weighting and computation of different measures of power spectral density (PSD).
Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Chrien, T.H.; Gorelick, N.S.
2003-01-01
Estimates of spectrometer band pass, sampling interval, and signal-to-noise ratio required for identification of pure minerals and plants were derived using reflectance spectra convolved to AVIRIS, HYDICE, MIVIS, VIMS, and other imaging spectrometers. For each spectral simulation, various levels of random noise were added to the reflectance spectra after convolution, and then each was analyzed with the Tetracorder spectra identification algorithm [Clark et al., 2003]. The outcome of each identification attempt was tabulated to provide an estimate of the signal-to-noise ratio at which a given percentage of the noisy spectra were identified correctly. Results show that spectral identification is most sensitive to the signal-to-noise ratio at narrow sampling interval values but is more sensitive to the sampling interval itself at broad sampling interval values because of spectral aliasing, a condition when absorption features of different materials can resemble one another. The band pass is less critical to spectral identification than the sampling interval or signal-to-noise ratio because broadening the band pass does not induce spectral aliasing. These conclusions are empirically corroborated by analysis of mineral maps of AVIRIS data collected at Cuprite, Nevada, between 1990 and 1995, a period during which the sensor signal-to-noise ratio increased up to sixfold. There are values of spectrometer sampling and band pass beyond which spectral identification of materials will require an abrupt increase in sensor signal-to-noise ratio due to the effects of spectral aliasing. Factors that control this threshold are the uniqueness of a material's diagnostic absorptions in terms of shape and wavelength isolation, and the spectral diversity of the materials found in nature and in the spectral library used for comparison. Array spectrometers provide the best data for identification when they critically sample spectra. The sampling interval should not be broadened to increase the signal-to-noise ratio in a photon-noise-limited system when high levels of accuracy are desired. It is possible, using this simulation method, to select optimum combinations of band-pass, sampling interval, and signal-to-noise ratio values for a particular application that maximize identification accuracy and minimize the volume of imaging data.
Analytical Formulation of Equatorial Standing Wave Phenomena: Application to QBO and ENSO
NASA Astrophysics Data System (ADS)
Pukite, P. R.
2016-12-01
Key equatorial climate phenomena such as QBO and ENSO have never been adequately explained as deterministic processes. This in spite of recent research showing growing evidence of predictable behavior. This study applies the fundamental Laplace tidal equations with simplifying assumptions along the equator — i.e. no Coriolis force and a small angle approximation. To connect the analytical Sturm-Liouville results to observations, a first-order forcing consistent with a seasonally aliased Draconic or nodal lunar period (27.21d aliased into 2.36y) is applied. This has a plausible rationale as it ties a latitudinal forcing cycle via a cross-product to the longitudinal terms in the Laplace formulation. The fitted results match the features of QBO both qualitatively and quantitatively; adding second-order terms due to other seasonally aliased lunar periods provides finer detail while remaining consistent with the physical model. Further, running symbolic regression machine learning experiments on the data provided a validation to the approach, as it discovered the same analytical form and fitted values as the first principles Laplace model. These results conflict with Lindzen's QBO model, in that his original formulation fell short of making the lunar connection, even though Lindzen himself asserted "it is unlikely that lunar periods could be produced by anything other than the lunar tidal potential".By applying a similar analytical approach to ENSO, we find that the tidal equations need to be replaced with a Mathieu-equation formulation consistent with describing a sloshing process in the thermocline depth. Adapting the hydrodynamic math of sloshing, we find a biennial modulation coupled with angular momentum forcing variations matching the Chandler wobble gives an impressive match over the measured ENSO range of 1880 until the present. Lunar tidal periods and an additional triaxial nutation of 14 year period provide additional fidelity. The caveat is a phase inversion of the biennial mode lasting from 1980 to 1996. The parsimony of these analytical models arises from applying only known cyclic forcing terms to fundamental wave equation formulations. This raises the possibility that both QBO and ENSO can be predicted years in advance, apart from a metastable biennial phase inversion in ENSO.
Non-Cartesian MRI Reconstruction With Automatic Regularization Via Monte-Carlo SURE
Weller, Daniel S.; Nielsen, Jon-Fredrik; Fessler, Jeffrey A.
2013-01-01
Magnetic resonance image (MRI) reconstruction from undersampled k-space data requires regularization to reduce noise and aliasing artifacts. Proper application of regularization however requires appropriate selection of associated regularization parameters. In this work, we develop a data-driven regularization parameter adjustment scheme that minimizes an estimate (based on the principle of Stein’s unbiased risk estimate—SURE) of a suitable weighted squared-error measure in k-space. To compute this SURE-type estimate, we propose a Monte-Carlo scheme that extends our previous approach to inverse problems (e.g., MRI reconstruction) involving complex-valued images. Our approach depends only on the output of a given reconstruction algorithm and does not require knowledge of its internal workings, so it is capable of tackling a wide variety of reconstruction algorithms and nonquadratic regularizers including total variation and those based on the ℓ1-norm. Experiments with simulated and real MR data indicate that the proposed approach is capable of providing near mean squared-error (MSE) optimal regularization parameters for single-coil undersampled non-Cartesian MRI reconstruction. PMID:23591478
Preliminary Examination of Pulse Shapes From GLAS Ocean Returns
NASA Astrophysics Data System (ADS)
Swift, T. P.; Minster, B.
2003-12-01
We have examined GLAS data collected over the Pacific ocean during the commission phase of the ICESat mission, in an area where sea state is well documented. The data used for this preliminary analysis were acquired during two passes along track 95, on March 18 and 26 of 2003, along the stretch offshore southern California. These dates were chosen for their lack of cloud cover; large (4.0 m) and small (0.7 m) significant wave heights, respectively; and the presence of waves emanating from single distant Pacific storms. Cloud cover may be investigated using MODIS images (http://acdisx.gsfc.nasa.gov/data/dataset/MODIS/), while models of significant wave heights and wave vectors for offshore California are archived by the Coastal Data Information Program (http://cdip.ucsd.edu/cdip_htmls/models.shtml). We find that the shape of deep-ocean GLAS pulse returns is diagnostic of the state of the ocean surface. A calm surface produces near-Gaussian, single-peaked shot returns. In contrast, a rough surface produces blurred shot returns which often feature multiple peaks; these peaks are typically separated by total path lengths on the order of one meter. Gaussian curves fit to rough-water returns are therefore less reliable and lead to greater measurement error; outliers in the ocean surface elevation product are mostly the result of poorly fit low-energy shot returns. Additionally, beat patterns and aliasing artifacts may arise from the sampling of deep-ocean wave trains by GLAS footprints separated by 140m. The apparent wavelength of such patterns depends not only on the wave frequency, but also on the angle between the ICESat ground track and the azimuth of the wave crests. We present a preliminary analysis of such patterns which appears to be consistent with a simple geometrical model.
Error analysis for spectral approximation of the Korteweg-De Vries equation
NASA Technical Reports Server (NTRS)
Maday, Y.; recent years.
1987-01-01
The conservation and convergence properties of spectral Fourier methods for the numerical approximation of the Korteweg-de Vries equation are analyzed. It is proved that the (aliased) collocation pseudospectral method enjoys the same convergence properties as the spectral Galerkin method, which is less effective from the computational point of view. This result provides a precise mathematical answer to a question raised by several authors in recent years.
Low Noise Infrasonic Sensor System with High Reduction of Natural Background Noise
2006-05-01
local processing allows a variety of options both in the array geometry and signal processing. A generic geometry is indicated in Figure 2. Geometric...higher frequency sound detected . Table 1 provides a comparison of piezocable and microbarograph based arrays . Piezocable Sensor Local Signal ...aliasing associated with the current infrasound sensors used at large spacing in the present designs of infrasound monitoring arrays , particularly in the
Finite Element Analysis of Lamb Waves Acting within a Thin Aluminum Plate
2007-09-01
signal to avoid time aliasing % LambWaveMode % lamb wave mode to simulate; use proper phase velocity curve % thickness % thickness of...analysis of the simulated signal response data demonstrated that elevated temperatures delay wave propagation, although the delays are minimal at the...Echo Techniques Ultrasonic NDE techniques are based on the propagation and reflection of elastic waves , with the assumption that damage in the
An Evaluation of the TRIPS Computer System (Extended Technical Report)
2008-07-08
Mario Marino Nitya Ranganathan Behnam Robatmili Aaron Smith James Burrill Stephen W. Keckler Doug Burger Kathryn S. McKinley Computer Architecture and...Marino, Nitya Ranganathan , Behnam Robatmili, Aaron Smith, James Burrill, Stephen W. Keckler, Doug Burger, Kathryn S. McKinley; ASPLOS 2009, Washington DC...aggressively register allo- cate more memory accesses by using programmer knowledge about pointer aliasing, much of which may be automated. They also
Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei
2014-01-01
Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325
A new discrete dipole kernel for quantitative susceptibility mapping.
Milovic, Carlos; Acosta-Cabronero, Julio; Pinto, José Miguel; Mattern, Hendrik; Andia, Marcelo; Uribe, Sergio; Tejos, Cristian
2018-09-01
Most approaches for quantitative susceptibility mapping (QSM) are based on a forward model approximation that employs a continuous Fourier transform operator to solve a differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim of this study was to reduce such errors using an alternative dipole kernel formulation based on the discrete Fourier transform and discrete operators. The impact of such an approach on forward model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation both with synthetic phantoms and in vivo MRI data. The discrete kernel demonstrated systematically better fits to analytic field solutions, and showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the use of the proposed discrete kernel resulted in error reduction and increased sharpness. This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. The impact on small or narrow structures such as the venous vasculature might by particularly relevant to high-resolution QSM applications with ultra-high field MRI - a topic for future investigations. The proposed dipole kernel has a straightforward implementation to existing QSM routines. Copyright © 2018 Elsevier Inc. All rights reserved.
A technology review of time-of-flight photon counting for advanced remote sensing
NASA Astrophysics Data System (ADS)
Lamb, Robert A.
2010-04-01
Time correlated single photon counting (TCSPC) has made tremendous progress during the past ten years enabling improved performance in precision time-of-flight (TOF) rangefinding and lidar. In this review the development and performance of several ranging systems is presented that use TCSPC for accurate ranging and range profiling over distances up to 17km. A range resolution of a few millimetres is routinely achieved over distances of several kilometres. These systems include single wavelength devices operating in the visible; multi-wavelength systems covering the visible and near infra-red; the use of electronic gating to reduce in-band solar background and, most recently, operation at high repetition rates without range aliasing- typically 10MHz over several kilometres. These systems operate at very low optical power (<100μW). The technique therefore has potential for eye-safe lidar monitoring of the environment and obvious military, security and surveillance sensing applications. The review will highlight the theoretical principles of photon counting and progress made in developing absolute ranging techniques that enable high repetition rate data acquisition that avoids range aliasing. Technology trends in TCSPC rangefinding are merging with those of quantum cryptography and its future application to revolutionary quantum imaging provides diverse and exciting research into secure covert sensing, ultra-low power active imaging and quantum rangefinding.
NASA Astrophysics Data System (ADS)
Nano, Tomi; Escartin, Terenz; Karim, Karim S.; Cunningham, Ian A.
2016-03-01
The ability to improve visualization of structural information in digital radiography without increasing radiation exposures requires improved image quality across all spatial frequencies, especially at high frequencies. The detective quantum efficiency (DQE) as a function of spatial frequency quantifies image quality given by an x-ray detector. We present a method of increasing DQE at high spatial frequencies by improving the modulation transfer function (MTF) and reducing noise aliasing. The Apodized Aperature Pixel (AAP) design uses a detector with micro-elements to synthesize desired pixels and provide higher DQE than conventional detector designs. A cascaded system analysis (CSA) that incorporates x-ray interactions is used for comparison of the theoretical MTF, noise power spectrum (NPS), and DQE. Signal and noise transfer through the converter material is shown to consist of correlated an uncorrelated terms. The AAP design was shown to improve the DQE of both material types that have predominantly correlated transfer (such as CsI) and predominantly uncorrelated transfer (such as Se). Improvement in the MTF by 50% and the DQE by 100% at the sampling cut-off frequency is obtained when uncorrelated transfer is prevalent through the converter material. Optimizing high-frequency DQE results in improved image contrast and visualization of small structures and fine-detail.
Are reconstruction filters necessary?
NASA Astrophysics Data System (ADS)
Holst, Gerald C.
2006-05-01
Shannon's sampling theorem (also called the Shannon-Whittaker-Kotel'nikov theorem) was developed for the digitization and reconstruction of sinusoids. Strict adherence is required when frequency preservation is important. Three conditions must be met to satisfy the sampling theorem: (1) The signal must be band-limited, (2) the digitizer must sample the signal at an adequate rate, and (3) a low-pass reconstruction filter must be present. In an imaging system, the signal is band-limited by the optics. For most imaging systems, the signal is not adequately sampled resulting in aliasing. While the aliasing seems excessive mathematically, it does not significantly affect the perceived image. The human visual system detects intensity differences, spatial differences (shapes), and color differences. The eye is less sensitive to frequency effects and therefore sampling artifacts have become quite acceptable. Indeed, we love our television even though it is significantly undersampled. The reconstruction filter, although absolutely essential, is rarely discussed. It converts digital data (which we cannot see) into a viewable analog signal. There are several reconstruction filters: electronic low-pass filters, the display media (monitor, laser printer), and your eye. These are often used in combination to create a perceived continuous image. Each filter modifies the MTF in a unique manner. Therefore image quality and system performance depends upon the reconstruction filter(s) used. The selection depends upon the application.
[Object Separation from Medical X-Ray Images Based on ICA].
Li, Yan; Yu, Chun-yu; Miao, Ya-jian; Fei, Bin; Zhuang, Feng-yun
2015-03-01
X-ray medical image can examine diseased tissue of patients and has important reference value for medical diagnosis. With the problems that traditional X-ray images have noise, poor level sense and blocked aliasing organs, this paper proposes a method for the introduction of multi-spectrum X-ray imaging and independent component analysis (ICA) algorithm to separate the target object. Firstly image de-noising preprocessing ensures the accuracy of target extraction based on independent component analysis and sparse code shrinkage. Then according to the main proportion of organ in the images, aliasing thickness matrix of each pixel was isolated. Finally independent component analysis obtains convergence matrix to reconstruct the target object with blind separation theory. In the ICA algorithm, it found that when the number is more than 40, the target objects separate successfully with the aid of subjective evaluation standard. And when the amplitudes of the scale are in the [25, 45] interval, the target images have high contrast and less distortion. The three-dimensional figure of Peak signal to noise ratio (PSNR) shows that the different convergence times and amplitudes have a greater influence on image quality. The contrast and edge information of experimental images achieve better effects with the convergence times 85 and amplitudes 35 in the ICA algorithm.
An integrated analysis-synthesis array system for spatial sound fields.
Bai, Mingsian R; Hua, Yi-Hsin; Kuo, Chia-Hao; Hsieh, Yu-Hao
2015-03-01
An integrated recording and reproduction array system for spatial audio is presented within a generic framework akin to the analysis-synthesis filterbanks in discrete time signal processing. In the analysis stage, a microphone array "encodes" the sound field by using the plane-wave decomposition. Direction of arrival of plane-wave components that comprise the sound field of interest are estimated by multiple signal classification. Next, the source signals are extracted by using a deconvolution procedure. In the synthesis stage, a loudspeaker array "decodes" the sound field by reconstructing the plane-wave components obtained in the analysis stage. This synthesis stage is carried out by pressure matching in the interior domain of the loudspeaker array. The deconvolution problem is solved by truncated singular value decomposition or convex optimization algorithms. For high-frequency reproduction that suffers from the spatial aliasing problem, vector panning is utilized. Listening tests are undertaken to evaluate the deconvolution method, vector panning, and a hybrid approach that combines both methods to cover frequency ranges below and above the spatial aliasing frequency. Localization and timbral attributes are considered in the subjective evaluation. The results show that the hybrid approach performs the best in overall preference. In addition, there is a trade-off between reproduction performance and the external radiation.
NASA Technical Reports Server (NTRS)
Mcclain, C. R.; Sambrotto, R. N.; Ray, G. C.; Muller-Karger, F. E.
1990-01-01
Twenty-one Coastal Zone Color Scanner (CZCS) images of the southeastern Bering Sea are examined in order to map the near-surface distribution of phytoplankton during 1979 and 1980. The information is compared with the mesoscale (100-1000 km) distribution of phytoplankton inferred from pooled ship sampling obtained during the Processes and Resources of the Bering Shelf (PROBES) intensive field study during the late 1970s and early 1980s. The imagery indicates that open-water phytoplankton blooms occur first in late April in coastal waters, peak in early May over the middle shelf, and decay rapidly afterwards, reaching concentration minima in June in both regions. These patterns show that the earlier ship observations are valid for most of the eastern Bering shelf. A very tight correlation is found between the PROBES surface chlorophyll a concentrations and mean mixed-layer chlorophyll concentrations. The significant discrepancies between CZCS and ship-based chlorophyll estimates may be due to aliasing in time by the CZCS. It is concluded that neither satellite nor ship alone can do an adequate job of characterizing the physics or biological dynamics of the ocean.
Membrane Vibration Analysis Above the Nyquist Limit with Fluorescence Videogrammetry
NASA Technical Reports Server (NTRS)
Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.
2004-01-01
A new method for generating photogrammetric targets by projecting an array of laser beams onto a membrane doped with fluorescent laser dye has recently been developed. In this paper we review this new fluorescence based technique, then proceed to show how it can be used for dynamic measurements, and how a short pulsed (10 ns) laser allows the measurement of vibration modes at frequencies several times the sampling frequency. In addition, we present experimental results showing the determination of fundamental and harmonic vibration modes of a drum style dye-doped polymer membrane tautly mounted on a 12-inch circular hoop and excited with 30 Hz and 62 Hz sinusoidal acoustic waves. The projected laser dot pattern was generated by passing the beam from a pulsed Nd:YAG laser though a diffractive optical element, and the resulting fluorescence was imaged with three digital video cameras, all of which were synchronized with a pulse and delay generator. Although the video cameras are capable of 240 Hz frame rates, the laser s output was limited to 30 Hz and below. Consequently, aliasing techniques were used to allow the measurement of vibration modes up to 186 Hz with a Nyquist limit of less than 15 Hz.
Visualization of 3D CT-based anatomical models
NASA Astrophysics Data System (ADS)
Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.
2018-04-01
Biomedical volumetric data visualization techniques for the exploration purposes are well developed. Most of the known methods are inappropriate for surgery simulation systems due to lack of realism. A segmented data visualization is a well-known approach for the visualization of the structured volumetric data. The research is focused on improvement of the segmented data visualization technique by the aliasing problems resolution and the use of material transparency modeling for better semitransparent structures rendering.
2003-12-01
POPL), pages 146–157, 1988 . 207 [HT01] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A million lines of C code in a second...provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently...RESPONSIBLE PERSON a . REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39
Range safety signal propagation through the SRM exhaust plume of the space shuttle
NASA Technical Reports Server (NTRS)
Boynton, F. P.; Davies, A. R.; Rajasekhar, P. S.; Thompson, J. A.
1977-01-01
Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence.
Ocean Surface Wave Optical Roughness: Analysis of Innovative Measurements
2013-12-16
relationship of MSS to wind speed, and at times has shown a reversal of the Cox-Munk linear relationship. Furthermore, we observe measurable changes in...1985]. The variable speed allocation method has the effect of aliasing (cb) to slower waves, thereby increasing the exponent –m. Our analysis based ...RaDyO) program. The primary research goals of the program are to (1) examine time -dependent oceanic radiance distribution in relation to dynamic
Perceptual Performance Impact of GPU-Based WARP and Anti-Aliasing for Image Generators
2016-06-29
with the Air Force Research Laboratory (AFRL) and NASA AMES, constructed the Operational Based Vision Assessment (OBVA) simulator. This 15-channel, 150...ABSTRACT In 2012 the U.S. Air Force School of Aerospace Medicine, in partnership with the Air Force Research Laboratory (AFRL) and NASA AMES...with the Air Force Research Laboratory (AFRL) and NASA AMES, constructed the Operational Based Vision Assessment (OBVA) simulator to evaluate the
Sampling and position effects in the Electronically Steered Thinned Array Radiometer (ESTAR)
NASA Technical Reports Server (NTRS)
Katzberg, Stephen J.
1993-01-01
A simple engineering level model of the Electronically Steered Thinned Array Radiometer (ESTAR) is developed that allows an identification of the major effects of the sampling process involved with this technique. It is shown that the ESTAR approach is sensitive to aliasing and has a highly non-uniform sensitivity profile. It is further shown that the ESTAR approach is strongly sensitive to position displacements of the low-density sampling antenna elements.
Mathematical and Numerical Analysis in Support of Scientific Research.
1980-06-30
Technical Information Service . .. . . . .. ... . . - ,, ,k . , .. SECURITY CLASSIFICATION OF THIS oAGE (Wet, noes Entered) I DOCUMENTATION PAGE REAV...problem of aliasing may (ccur in which the sampling rate is low enough to confuse two or more frequercies in the data. TFhe aiet restA is that they appear...variance provides a measure of the quality of the estimate. Should Al be large, one must consider obtaining R r by employing the FFT approach (Faster and
Chipman, Hugh A.; Hamada, Michael S.
2016-06-02
Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.
Electric Fuel Pump Condition Monitor System Using Electricalsignature Analysis
Haynes, Howard D [Knoxville, TN; Cox, Daryl F [Knoxville, TN; Welch, Donald E [Oak Ridge, TN
2005-09-13
A pump diagnostic system and method comprising current sensing probes clamped on electrical motor leads of a pump for sensing only current signals on incoming motor power, a signal processor having a means for buffering and anti-aliasing current signals into a pump motor current signal, and a computer having a means for analyzing, displaying, and reporting motor current signatures from the motor current signal to determine pump health using integrated motor and pump diagnostic parameters.
Learn, R; Feigenbaum, E
2016-06-01
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chipman, Hugh A.; Hamada, Michael S.
Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Learn, R.; Feigenbaum, E.
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
Learn, R.; Feigenbaum, E.
2016-05-27
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
2007-03-01
velocity and direction along with vertical velocities are derived from the measured time of flight for the ultrasonic signals (manufacture’s...data set. To prevent aliasing a wave must be sample at least twice per period so the Nyquist frequency is sn ff 2 = . 3. Sampling Requirements...an order of magnitude or more. To refine models or conduct climatologically studies for Cn2 requires direct measurements to identify the underlying
Correspondence Search Mitigation Using Feature Space Anti-Aliasing
2007-01-01
trackers are widely used in astro -inertial nav- igation systems for long-range aircraft, space navigation, and ICBM guidance. When ground images are to be...frequency domain representation of the point spread function, H( fx , fy), is called the optical transfer function. Applying the Fourier transform to the...frequency domain representation of the image: I( fx , fy, t) = O( fx , fy, t)H( fx , fy) (4) In most conditions, the projected scene can be treated as a
University of Glasgow at TREC 2009: Experiments with Terrier
2009-11-01
identify entities in the category B subset of the corpus, we resort to an efficient dictionary -based named en- tity recognition approach.4 In particular...we build a large dictio- nary of entity names using DBPedia,5 a structured representation of Wikipedia. Dictionary entries comprise all known...aliases for each unique entity, as obtained from DBPedia (e.g., ‘Barack Obama’ is represented by the dictionary entries ‘Barack Obama’ and ‘44th President
Cordes, Dietmar; Nandy, Rajesh R.; Schafer, Scott; Wager, Tor D.
2014-01-01
It has recently been shown that both high-frequency and low-frequency cardiac and respiratory noise sources exist throughout the entire brain and can cause significant signal changes in fMRI data. It is also known that the brainstem, basal forebrain and spinal cord area are problematic for fMRI because of the magnitude of cardiac-induced pulsations at these locations. In this study, the physiological noise contributions in the lower brain areas (covering the brainstem and adjacent regions) are investigated and a novel method is presented for computing both low-frequency and high-frequency physiological regressors accurately for each subject. In particular, using a novel optimization algorithm that penalizes curvature (i.e. the second derivative) of the physiological hemodynamic response functions, the cardiac -and respiratory-related response functions are computed. The physiological noise variance is determined for each voxel and the frequency-aliasing property of the high-frequency cardiac waveform as a function of the repetition time (TR) is investigated. It is shown that for the brainstem and other brain areas associated with large pulsations of the cardiac rate, the temporal SNR associated with the low-frequency range of the BOLD response has maxima at subject-specific TRs. At these values, the high-frequency aliased cardiac rate can be eliminated by digital filtering without affecting the BOLD-related signal. PMID:24355483
High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla
Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.
2012-01-01
The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941
Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus
2018-01-01
Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.
Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension
NASA Astrophysics Data System (ADS)
Rinehart, Benjamin S.; Cao, Caroline G. L.
2016-08-01
Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.
Hierarchical rendering of trees from precomputed multi-layer z-buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Max, N.
1996-02-01
Chen and Williams show how precomputed z-buffer images from different fixed viewing positions can be reprojected to produce an image for a new viewpoint. Here images are precomputed for twigs and branches at various levels in the hierarchical structure of a tree, and adaptively combined, depending on the position of the new viewpoint. The precomputed images contain multiple z levels to avoid missing pixels in the reconstruction, subpixel masks for anti-aliasing, and colors and normals for shading after reprojection.
NASA Technical Reports Server (NTRS)
Langland, R. A.; Stephens, P. L.; Pihos, G. G.
1980-01-01
The techniques used for ingesting SEASAT-A SASS wind retrievals into the existing operational software are described. The intent is to assess the impact of SEASAT data in he marine wind fields produced by the global marine wind/sea level pressure analysis. This analysis is performed on a 21/2 deg latitude/longitude global grid which executes at three hourly time increments. Wind fields with and without SASS winds are being compared. The problems of data volume reduction and aliased wind retrieval ambiquity are treated.
2011-10-31
designs with code division multiple access ( CDMA ). Analog chirp filters were used to produce an up-chirp, which is used as a radar waveform, coupled with...signals. A potential shortcoming of CDMA techniques is that the addition of two signals will result in a non-constant amplitude signal which will be...of low-frequency A/ Ds . As an example for a multiple carrier signal all the received signals from the multiple carriers are aliased onto the
ASPRS Digital Imagery Guideline Image Gallery Discussion
NASA Technical Reports Server (NTRS)
Ryan, Robert
2002-01-01
The objectives of the image gallery are to 1) give users and providers a simple means of identifying appropriate imagery for a given application/feature extraction; and 2) define imagery sufficiently to be described in engineering and acquisition terms. This viewgraph presentation includes a discussion of edge response and aliasing for image processing, and a series of images illustrating the effects of signal to noise ratio (SNR) on images. Another series of images illustrates how images are affected by varying the ground sample distances (GSD).
1999-11-01
represents the linear time invariant (LTI) response of the combined analysis /synthesis system while the second repre- sents the aliasing introduced into...effectively to implement voice scrambling systems based on time - frequency permutation . The most general form of such a system is shown in Fig. 22 where...92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RTO LECTURE SERIES 216 Application of Mathematical Signal Processing Techniques to Mission Systems (1
An interactive Doppler velocity dealiasing scheme
NASA Astrophysics Data System (ADS)
Pan, Jiawen; Chen, Qi; Wei, Ming; Gao, Li
2009-10-01
Doppler weather radars are capable of providing high quality wind data at a high spatial and temporal resolution. However, operational application of Doppler velocity data from weather radars is hampered by the infamous limitation of the velocity ambiguity. This paper reviews the cause of velocity folding and presents the unfolding method recently implemented for the CINRAD systems. A simple interactive method for velocity data, which corrects de-aliasing errors, has been developed and tested. It is concluded that the algorithm is very efficient and produces high quality velocity data.
Rational manipulation of digital EEG: pearls and pitfalls.
Seneviratne, Udaya
2014-12-01
The advent of digital EEG has provided greater flexibility and more opportunities in data analysis to optimize the diagnostic yield. Changing the filter settings, sensitivity, montages, and time-base are possible rational manipulations to achieve this goal. The options to use polygraphy, video, and quantification are additional useful features. Aliasing and loss of data are potential pitfalls in the use of digital EEG. This review illustrates some common clinical scenarios where rational manipulations can enhance the diagnostic EEG yield and potential pitfalls in the process.
Probleme bei der Digitalisierung analoger Messwerte
NASA Astrophysics Data System (ADS)
Plaßmann, Wilfried
Messwerte liegen häufig in analoger Form als Spannungswerte vor. Sie werden in eine digital kodierte Form umgesetzt, wenn eine (nahezu) fehlerfreie Übertragung erforderlich ist, wenn Signalverläufe gespeichert werden sollen, wenn eine Weiterverarbeitung erfolgen soll oder wenn Messungen mit sehr geringem Messfehler notwendig sind. Hier soll auf einige Probleme, die durch die Umsetzung entstehen, aus messtechnischer Sicht eingegangen werden. Stichworte: Fehler bei der Digitalisierung; Signal-Quantisierungsgeräusch-Abstand; Verbesserung des Signal-Rausch-Verhältnisses; Abtast-Halte-Glied; Aliasing; Erfassung von Momentanwerten.
Wiener-matrix image restoration beyond the sampling passband
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur; Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.
1991-01-01
A finer-than-sampling-lattice resolution image can be obtained using multiresponse image gathering and Wiener-matrix restoration. The multiresponse image gathering weighs the within-passband and aliased signal components differently, allowing the Wiener-matrix restoration filter to unscramble these signal components and restore spatial frequencies beyond the sampling passband of the photodetector array. A multiresponse images can be reassembled into a single minimum mean square error image with a resolution that is sq rt A times finer than the photodetector-array sampling lattice.
1992-06-01
system capabilities \\Jch as memory management and network communications are provided by a virtual machine-type operating environment. Various human ...thinking. The elements of this substrate include representational formality, genericity, a method of formal analysis, and augmentation of human analytical...the form of identifying: the data entity itself; its aliases (including how the data is presented th programs or human users in the form of copy
Hierarchical image coding with diamond-shaped sub-bands
NASA Technical Reports Server (NTRS)
Li, Xiaohui; Wang, Jie; Bauer, Peter; Sauer, Ken
1992-01-01
We present a sub-band image coding/decoding system using a diamond-shaped pyramid frequency decomposition to more closely match visual sensitivities than conventional rectangular bands. Filter banks are composed of simple, low order IIR components. The coder is especially designed to function in a multiple resolution reconstruction setting, in situations such as variable capacity channels or receivers, where images must be reconstructed without the entire pyramid of sub-bands. We use a nonlinear interpolation technique for lost subbands to compensate for loss of aliasing cancellation.
Minimal perceptrons for memorizing complex patterns
NASA Astrophysics Data System (ADS)
Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo
2016-11-01
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.
Plenoptic Image Motion Deblurring.
Chandramouli, Paramanand; Jin, Meiguang; Perrone, Daniele; Favaro, Paolo
2018-04-01
We propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene. Therefore, motion deblurring algorithms designed for standard cameras are not directly applicable. Moreover, many state of the art blind deconvolution algorithms are based on iterative schemes, where blurry images are synthesized through the imaging model. However, current imaging models for plenoptic images are impractical due to their high dimensionality. We observe that plenoptic cameras introduce periodic patterns that can be exploited to obtain highly parallelizable numerical schemes to synthesize images. These schemes allow extremely efficient GPU implementations that enable the use of iterative methods. We can then cast blind deconvolution of a blurry light field image as a regularized energy minimization to recover a sharp high-resolution scene texture and the camera motion. Furthermore, the proposed formulation can handle non-uniform motion blur due to camera shake as demonstrated on both synthetic and real light field data.
Szatmary, J; Hadani, I; Julesz, B
1997-01-01
Rogers and Graham (1979) developed a system to show that head-movement-contingent motion parallax produces monocular depth perception in random dot patterns. Their display system comprised an oscilloscope driven by function generators or a special graphics board that triggered the X and Y deflection of the raster scan signal. Replication of this system required costly hardware that is no longer on the market. In this paper the Rogers-Graham method is reproduced with an Intel processor based IBM PC compatible machine with no additional hardware cost. An adapted joystick sampled through the standard game-port can serve as a provisional head-movement sensor. Monitor resolution for displaying motion is effectively enhanced 16 times by the use of anti-aliasing, enabling the display of thousands of random dots in real-time with a refresh rate of 60 Hz or above. A color monitor enables the use of the anaglyph method, thus combining stereoscopic and monocular parallax on a single display without the loss of speed. The power of this system is demonstrated by a psychophysical measurement in which subjects nulled head-movement-contingent illusory parallax, evoked by a static stereogram, with real parallax. The amount of real parallax required to null the illusory stereoscopic parallax monotonically increased with disparity.
NASA Astrophysics Data System (ADS)
Bai, Nan
A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have been performed to reveal the time dependent nature of scattering patterns. The experimental work has been compared with simulation results and demonstrated the feasibility of extending this technique for microcolony identification. Lastly, a quantitative phase imaging technique based on the phase gradient driven intensity variation has been studied and implemented to render the 2D phase map of the colony sample.
NASA Astrophysics Data System (ADS)
Zhao, C.; Song, J.; Leng, H.
2017-12-01
The Tropical Cyclone(TC) center-finding technique plays an important role when diagnostic analyses of TC structure are performed, especially when dealing with low-wavenumber asymmetries. Previous works have already established that structure of TCs can vary greatly depending on the displacement induced by center-finding techniques. As it is difficult to define a true TC center in the real world, this work seeks to explore how low-wavenumber azimuthal Fourier analyses can vary with center displacement using idealized, parametric TC-like vortices with different perturbation structures. It is shown that the errors is sensitive to the location and radial structure of the adding perturbation. In the case of adding azimuthal wavenumber 1 and 3 asymmetries, the increasing radial shear of initial asymmetries will enhance the corresponding spectral energy around radius of maximum wind(RMW) significantly, and they also have a great effect on spectral energy of wavenumber 2. On the contrary, the wavenumber 2 cases show a reduction from 1RMW to outer radius when shear is increasing and has little effect on spectral energy of wavenumber 1 or 2. Pervious findings indicated that the aliasing is dependent on the placement of center relative to the location of the asymmetries, which is also valid in these shearing situations. Moreover, it is found that this aliasing caused by phase displacement is less sensitive with the radial shear in wavenumber 2 and 3 cases, while it shows an significant amplification and deformation when wavenumber 1 asymmetry is added.
Crosstalk in automultiscopic 3-D displays: blessing in disguise?
NASA Astrophysics Data System (ADS)
Jain, Ashish; Konrad, Janusz
2007-02-01
Most of 3-D displays suffer from interocular crosstalk, i.e., the perception of an unintended view in addition to intended one. The resulting "ghosting" at high-contrast object boundaries is objectionable and interferes with depth perception. In automultiscopic (no glasses, multiview) displays using microlenses or parallax barrier, the effect is compounded since several unintended views may be perceived at once. However, we recently discovered that crosstalk in automultiscopic displays can be also beneficial. Since spatial multiplexing of views in order to prepare a composite image for automultiscopic viewing involves sub-sampling, prior anti-alias filtering is required. To date, anti-alias filter design has ignored the presence of crosstalk in automultiscopic displays. In this paper, we propose a simple multiplexing model that takes crosstalk into account. Using this model we derive a mathematical expression for the spectrum of single view with crosstalk, and we show that it leads to reduced spectral aliasing compared to crosstalk-free case. We then propose a new criterion for the characterization of ideal anti-alias pre-filter. In the experimental part, we describe a simple method to measure optical crosstalk between views using digital camera. We use the measured crosstalk parameters to find the ideal frequency response of anti-alias filter and we design practical digital filters approximating this response. Having applied the designed filters to a number of multiview images prior to multiplexing, we conclude that, due to their increased bandwidth, the filters lead to visibly sharper 3-D images without increasing aliasing artifacts.
Choi, Dong-hak; Yoshimura, Reiko; Ohbayashi, Kohji
2013-01-01
Monolithic Vernier tuned super-structure grating distributed Bragg reflector (SSG-DBR) lasers are expected to become one of the most promising sources for swept source optical coherence tomography (SS-OCT) with a long coherence length, reduced sensitivity roll-off, and potential capability for a very fast A-scan rate. However, previous implementations of the lasers suffer from four main problems: 1) frequencies deviate from the targeted values when scanned, 2) large amounts of noise appear associated with abrupt changes in injection currents, 3) optically aliased noise appears due to a long coherence length, and 4) the narrow wavelength coverage of a single chip limits resolution. We have developed a method of dynamical frequency tuning, a method of selective data sampling to eliminate current switching noise, an interferometer to reduce aliased noise, and an excess-noise-free connection of two serially scanned lasers to enhance resolution to solve these problems. An optical frequency comb SS-OCT system was achieved with a sensitivity of 124 dB and a dynamic range of 55-72 dB that depended on the depth at an A-scan rate of 3.1 kHz with a resolution of 15 μm by discretely scanning two SSG-DBR lasers, i.e., L-band (1.560-1.599 μm) and UL-band (1.598-1.640 μm). A few OCT images with excellent image penetration depth were obtained. PMID:24409394
Simplifying and enhancing the use of PyMOL with horizontal scripts
2016-01-01
Abstract Scripts are used in PyMOL to exert precise control over the appearance of the output and to ease remaking similar images at a later time. We developed horizontal scripts to ease script development. A horizontal script makes a complete scene in PyMOL like a traditional vertical script. The commands in a horizontal script are separated by semicolons. These scripts are edited interactively on the command line with no need for an external text editor. This simpler workflow accelerates script development. In using PyMOL, the illustration of a molecular scene requires an 18‐element matrix of view port settings. The default format spans several lines and is laborious to manually reformat for one line. This default format prevents the fast assembly of horizontal scripts that can reproduce a molecular scene. We solved this problem by writing a function that displays the settings on one line in a compact format suitable for horizontal scripts. We also demonstrate the mapping of aliases to horizontal scripts. Many aliases can be defined in a single script file, which can be useful for applying costume molecular representations to any structure. We also redefined horizontal scripts as Python functions to enable the use of the help function to print documentation about an alias to the command history window. We discuss how these methods of using horizontal scripts both simplify and enhance the use of PyMOL in research and education. PMID:27488983
NASA Astrophysics Data System (ADS)
Correia, Carlos M.; Bond, Charlotte Z.; Sauvage, Jean-François; Fusco, Thierry; Conan, Rodolphe; Wizinowich, Peter L.
2017-10-01
We build on a long-standing tradition in astronomical adaptive optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain. Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally filtered phase power spectral densities and variances. In addition, the fast simulation of AO-corrected point spread functions (PSFs) provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict post-coronagraphic contrast improvements for planet finder systems. We extend the previous results and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors whilst minimizing the overall residual variance. We discuss applications to (i) analytic AO-corrected PSF modeling in the spatial-frequency domain, (ii) post-coronagraphic contrast enhancement, (iii) filter optimization for real-time wavefront reconstruction, and (iv) PSF reconstruction from system telemetry. Under perfect knowledge of wind velocities, we show that $\\sim$60 nm rms error reduction can be achieved with the distributed Kalman filter embodying anti- aliasing reconstructors on 10 m class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few ${\\lambda}/D$ separations ($\\sim1-5{\\lambda}/D$) for a 0 magnitude star and reaching close to one order of magnitude for a 12 magnitude star.
Anti-aliasing techniques in photon-counting depth imaging using GHz clock rates
NASA Astrophysics Data System (ADS)
Krichel, Nils J.; McCarthy, Aongus; Collins, Robert J.; Buller, Gerald S.
2010-04-01
Single-photon detection technologies in conjunction with low laser illumination powers allow for the eye-safe acquisition of time-of-flight range information on non-cooperative target surfaces. We previously presented a photon-counting depth imaging system designed for the rapid acquisition of three-dimensional target models by steering a single scanning pixel across the field angle of interest. To minimise the per-pixel dwelling times required to obtain sufficient photon statistics for accurate distance resolution, periodic illumination at multi- MHz repetition rates was applied. Modern time-correlated single-photon counting (TCSPC) hardware allowed for depth measurements with sub-mm precision. Resolving the absolute target range with a fast periodic signal is only possible at sufficiently short distances: if the round-trip time towards an object is extended beyond the timespan between two trigger pulses, the return signal cannot be assigned to an unambiguous range value. Whereas constructing a precise depth image based on relative results may still be possible, problems emerge for large or unknown pixel-by-pixel separations or in applications with a wide range of possible scene distances. We introduce a technique to avoid range ambiguity effects in time-of-flight depth imaging systems at high average pulse rates. A long pseudo-random bitstream is used to trigger the illuminating laser. A cyclic, fast-Fourier supported analysis algorithm is used to search for the pattern within return photon events. We demonstrate this approach at base clock rates of up to 2 GHz with varying pattern lengths, allowing for unambiguous distances of several kilometers. Scans at long stand-off distances and of scenes with large pixel-to-pixel range differences are presented. Numerical simulations are performed to investigate the relative merits of the technique.
Multiresolution image gathering and restoration
NASA Technical Reports Server (NTRS)
Fales, Carl L.; Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1992-01-01
In this paper we integrate multiresolution decomposition with image gathering and restoration. This integration leads to a Wiener-matrix filter that accounts for the aliasing, blurring, and noise in image gathering, together with the digital filtering and decimation in signal decomposition. Moreover, as implemented here, the Wiener-matrix filter completely suppresses the blurring and raster effects of the image-display device. We demonstrate that this filter can significantly improve the fidelity and visual quality produced by conventional image reconstruction. The extent of this improvement, in turn, depends on the design of the image-gathering device.
2010-01-01
the northern flank of Georges Bank from east to west. As a result, annual stock estimates may be highly aliased in both time and space. One of the...transmitted signals from the source array for transmission loss and source level calibrations. Two calibrated acoustic targets made of air- filled rubber...region to the north is comprised of over 70106 individuals. Concurrent localized imaging of fish aggregations at OAWRS- directed locations was
Abandoned Uranium Mine (AUM) Points, Navajo Nation, 2016, US EPA Region 9
This GIS dataset contains point features of all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Points are centroids developed from the Navajo Nation production mines polygon dataset that comprise of productive or unproductive Abandoned Uranium Mines. Attributes include mine names, aliases, links to AUM reports, indicators whether an AUM was mined above or below ground, indicators whether an AUM was mined above or below the local water table, and the region in which an AUM is located. This dataset contains 608 features.
Tailoring the Statistical Experimental Design Process for LVC Experiments
2011-03-01
incredibly large test space, it is important to point out that Gray is presenting a simple case to demonstrate the application of an experimental...weapon’s effectiveness. Gray defines k1 = 4 factors in the whole plot and k2 = 3 factors in the sub plot with f1 and f2 as the number of factors...aliased with interaction terms in the whole plot and sub plot respectively. Gray uses the notation 2k1−f1 × 2k2−f2 [?] to represent the fractional
2010-09-21
Rolando R. Garcia ,3 Douglas E. Kinnison,3 Fabrizio Sassi,4 and Stacy Walters3 Received 26 August 2009; revised 15 April 2010; accepted 27 April 2010...constant sea surface temperatures, are discussed. Citation: Matthes, K., D. R. Marsh, R. R. Garcia , D. E. Kinnison, F. Sassi, and S. Walters (2010...Smith and Matthes, 2008] or to aliasing effects with tropical SSTs [Austin et al., 2008] and ENSO [Marsh and Garcia , 2007]. Note, however, that ENSO
Chèneby, Jeanne; Gheorghe, Marius; Artufel, Marie
2018-01-01
Abstract With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human. PMID:29126285
Chiva, M; Saperas, N; Ribes, E
2011-12-01
In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and conclude that the appearance of precursor (intermediate) molecules facilitated the development of complex patterns of condensation and, as a consequence, a great diversity of forms in the sperm cell nuclei Copyright © 2011 Elsevier Ltd. All rights reserved.
Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei
2018-05-01
Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Low-Cutoff, High-Pass Digital Filtering of Neural Signals
NASA Technical Reports Server (NTRS)
Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard
2004-01-01
The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).
Yang, Guang; Yu, Simiao; Dong, Hao; Slabaugh, Greg; Dragotti, Pier Luigi; Ye, Xujiong; Liu, Fangde; Arridge, Simon; Keegan, Jennifer; Guo, Yike; Firmin, David; Keegan, Jennifer; Slabaugh, Greg; Arridge, Simon; Ye, Xujiong; Guo, Yike; Yu, Simiao; Liu, Fangde; Firmin, David; Dragotti, Pier Luigi; Yang, Guang; Dong, Hao
2018-06-01
Compressed sensing magnetic resonance imaging (CS-MRI) enables fast acquisition, which is highly desirable for numerous clinical applications. This can not only reduce the scanning cost and ease patient burden, but also potentially reduce motion artefacts and the effect of contrast washout, thus yielding better image quality. Different from parallel imaging-based fast MRI, which utilizes multiple coils to simultaneously receive MR signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to reconstruct MRI images with much less required raw data. This paper provides a deep learning-based strategy for reconstruction of CS-MRI, and bridges a substantial gap between conventional non-learning methods working only on data from a single image, and prior knowledge from large training data sets. In particular, a novel conditional Generative Adversarial Networks-based model (DAGAN)-based model is proposed to reconstruct CS-MRI. In our DAGAN architecture, we have designed a refinement learning method to stabilize our U-Net based generator, which provides an end-to-end network to reduce aliasing artefacts. To better preserve texture and edges in the reconstruction, we have coupled the adversarial loss with an innovative content loss. In addition, we incorporate frequency-domain information to enforce similarity in both the image and frequency domains. We have performed comprehensive comparison studies with both conventional CS-MRI reconstruction methods and newly investigated deep learning approaches. Compared with these methods, our DAGAN method provides superior reconstruction with preserved perceptual image details. Furthermore, each image is reconstructed in about 5 ms, which is suitable for real-time processing.
New learning based super-resolution: use of DWT and IGMRF prior.
Gajjar, Prakash P; Joshi, Manjunath V
2010-05-01
In this paper, we propose a new learning-based approach for super-resolving an image captured at low spatial resolution. Given the low spatial resolution test image and a database consisting of low and high spatial resolution images, we obtain super-resolution for the test image. We first obtain an initial high-resolution (HR) estimate by learning the high-frequency details from the available database. A new discrete wavelet transform (DWT) based approach is proposed for learning that uses a set of low-resolution (LR) images and their corresponding HR versions. Since the super-resolution is an ill-posed problem, we obtain the final solution using a regularization framework. The LR image is modeled as the aliased and noisy version of the corresponding HR image, and the aliasing matrix entries are estimated using the test image and the initial HR estimate. The prior model for the super-resolved image is chosen as an Inhomogeneous Gaussian Markov random field (IGMRF) and the model parameters are estimated using the same initial HR estimate. A maximum a posteriori (MAP) estimation is used to arrive at the cost function which is minimized using a simple gradient descent approach. We demonstrate the effectiveness of the proposed approach by conducting the experiments on gray scale as well as on color images. The method is compared with the standard interpolation technique and also with existing learning-based approaches. The proposed approach can be used in applications such as wildlife sensor networks, remote surveillance where the memory, the transmission bandwidth, and the camera cost are the main constraints.
Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.
Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P
1995-01-01
Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.
GRACE AOD1B Product Release 06: Long-Term Consistency and the Treatment of Atmospheric Tides
NASA Astrophysics Data System (ADS)
Dobslaw, Henryk; Bergmann-Wolf, Inga; Dill, Robert; Poropat, Lea; Flechtner, Frank
2017-04-01
The GRACE satellites orbiting the Earth at very low altitudes are affected by rapid changes in the Earth's gravity field caused by mass redistribution in atmosphere and oceans. To avoid temporal aliasing of such high-frequency variability into the final monthly-mean gravity fields, those effects are typically modelled during the numerical orbit integration by appling the 6-hourly GRACE Atmosphere and Ocean De-Aliasing Level-1B (AOD1B) a priori model. In preparation of the next GRACE gravity field re-processing currently performed by the GRACE Science Data System, a new version of AOD1B has been calculated. The data-set is based on 3-hourly surface pressure anomalies from ECMWF that have been mapped to a common reference orography by means of ECMWF's mean sea-level pressure diagnostic. Atmospheric tides as well as the corresponding oceanic response at the S1, S2, S3, and L2 frequencies and its annual modulations have been fitted and removed in order to retain the non-tidal variability only. The data-set is expanded into spherical harmonics complete up to degree and order 180. In this contribution, we will demonstrate that AOD1B RL06 is now free from spurious jumps in the time-series related to occasional changes in ECMWF's operational numerical weather prediction system. We will also highlight the rationale for separating tidal signals from the AOD1B coefficients, and will finally discuss the current quality of the AOD1B forecasts that have been introduced very recently for GRACE quicklook or near-realtime applications.
NASA Astrophysics Data System (ADS)
Iorio, L.
2014-01-01
It has recently been proposed to combine the node drifts of the future constellation of 27 Galileo spacecraft together with those of the existing Laser Geodynamics Satellites (LAGEOS)-type satellites to improve the accuracy of the past and ongoing tests of the Lense-Thirring (LT) effect by removing the bias of a larger number of even zonal harmonics Jℓ than either done or planned so far. Actually, it seems a difficult goal to be achieved realistically for a number of reasons. First, the LT range signature of a Galileo-type satellite is as small as 0.5 mm over three-days arcs, corresponding to a node rate of just ˙ Ω LT = 2 milliarcseconds per year (mas yr-1). Some tesseral and sectorial ocean tides such as K1 and K2 induce long-period harmonic node perturbations with frequencies which are integer multiples of the extremely slow Galileo's node rate ˙ Ω completing a full cycle in about 40 yr. Thus, over time spans, T, of some years, they would act as superimposed semisecular aliasing trends. Since the coefficients of the Jℓ-free multisatellite linear combinations are determined only by the semimajor axis a, the eccentricity e and the inclination I, which are nominally equal for all the Galileo satellites, it is not possible to include all of them. Even using only one Galileo spacecraft together with the LAGEOS family would be unfeasible because of the fact that the resulting Galileo coefficient would be ≳ 1, thus enhancing the aliasing impact of the uncancelled nonconservative and tidal perturbations.
Fifty Years of Water Cycle Change expressed in Ocean Salinity
NASA Astrophysics Data System (ADS)
Durack, P. J.; Wijffels, S.
2010-12-01
Using over 1.6 million profiles of salinity, potential temperature and density from historical archives and Argo, we derive the global field of linear change for ocean state properties over the period 1950-2008, taking care to minimise aliasing associated with seasonal and El Nino Southern Oscillation modes. We find large, robust and spatially coherent multi-decadal linear trends in ocean surface salinities. Increases are found in evaporation-dominated regions and freshening in precipitation-dominated regions. The spatial patterns of surface change strongly resemble the climatological mean surface salinity field, consistent with an amplification of the global water cycle. A robust amplification of the mean salinity pattern of 8% (to 200m depth) is found globally and 5-9% is found in each of the 3 key ocean basins. 20th century runs from the CMIP3 model suite support the relationship between amplified patterns of freshwater flux driving an amplified pattern of ocean surface salinity only in models that warm substantially. Models with volcanic aerosols show a diminished warming response and a corresponding weak response in ocean surface salinity change, which implies dampened changes to the global water cycle. The warming response represented in realistic (when compared to observations) 20th century simulations appear quite similar in their broad zonal patterns to those of the projected 21st century simulations, these projected runs being strongly forced by greenhouse gases. This pattern amplification is mostly absent from 20th century simulations which include volcanic forcing. While we confirm that global mean precipitation only weakly change with surface warming (2-3% K-1), the pattern amplification rate in both the freshwater flux and ocean salinity fields indicate larger responses. Our new observed salinity estimates suggest a change of between 8-16% K-1, close to, or greater than, the theoretical response described by the Clausius-Clapeyron relation. The underestimation of change patterns by the CMIP3 model suite is well documented in recent literature describing changes to the atmospheric and terrestrial arms of the global water cycle. These new observational ocean results add emphasis to the conclusion that the rate of observed changes in the 20th century are larger than CMIP3 models, and simplified physical theories predict. A) The 50-year linear surface salinity trend (pss/50-years). Contours every 0.25 pss are plotted in white. B) Ocean-atmosphere freshwater flux (m3 yr-1) averaged over 1980-1993 (Josey et al., 1998). Contours every 1 m3 yr-1 are in white. On both panels, the 1975 surface mean salinity is contoured black (contour interval 0.5 pss for thin lines, 1 for thick lines).
Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.
Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L
2018-02-01
This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Seoane, L.; Ramillien, G.; Frappart, F.; Leblanc, M.
2013-04-01
Time series of regional 2°-by-2° GRACE solutions have been computed from 2003 to 2011 with a 10 day resolution by using an energy integral method over Australia [112° E 156° E; 44° S 10° S]. This approach uses the dynamical orbit analysis of GRACE Level 1 measurements, and specially accurate along-track K Band Range Rate (KBRR) residuals (1 μm s-1 level of error) to estimate the total water mass over continental regions. The advantages of regional solutions are a significant reduction of GRACE aliasing errors (i.e. north-south stripes) providing a more accurate estimation of water mass balance for hydrological applications. In this paper, the validation of these regional solutions over Australia is presented as well as their ability to describe water mass change as a reponse of climate forcings such as El Niño. Principal component analysis of GRACE-derived total water storage maps show spatial and temporal patterns that are consistent with independent datasets (e.g. rainfall, climate index and in-situ observations). Regional TWS show higher spatial correlations with in-situ water table measurements over Murray-Darling drainage basin (80-90%), and they offer a better localization of hydrological structures than classical GRACE global solutions (i.e. Level 2 GRGS products and 400 km ICA solutions as a linear combination of GFZ, CSR and JPL GRACE solutions).
An MF/HF radio array for radio and radar imaging of the ionosphere
NASA Astrophysics Data System (ADS)
Isham, Brett; Gustavsson, Bjorn; Belyey, Vasyl; Bullett, Terrence
2016-07-01
The Aguadilla Radio Array will be installed at the Interamerican University Aguadilla Campus, located in northwestern Puerto Rico. The array is intended for broad-band medium and high-frequency (MF/HF, roughly 2 to 25 MHz) radio and bistatic radar observations of the ionosphere. The main array consists of 20 antenna elements, arranged in a semi-random pattern providing a good distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. A relocatable 6-element array is also being developed, in which each element consists of a crossed pair of active electric dipoles and all associated electronics for phase-coherent radio measurements. A primary scientific goal of the array is to create images of the region of ionospheric radio emissions stimulated by the new Arecibo Observatory high-power high-frequency radio transmitter. A second primary goal is the study of ionospheric structure and dynamics via coherent radar imaging of the ionosphere in collaboration with the University of Colorado / NOAA Versatile Interferometric Pulsed Ionospheric Radar (VIPIR), located at the USGS San Juan Observatory in Cayey, Puerto Rico. In addition to ionospheric research in collaboration with the Cayey and Arecibo Observatories, the goals of the project include the development of radio sounding, polarization, interferometry, and imaging techniques, and training of students at the university and high school levels.
Compressed sensing reconstruction of cardiac cine MRI using golden angle spiral trajectories
NASA Astrophysics Data System (ADS)
Tolouee, Azar; Alirezaie, Javad; Babyn, Paul
2015-11-01
In dynamic cardiac cine Magnetic Resonance Imaging (MRI), the spatiotemporal resolution is limited by the low imaging speed. Compressed sensing (CS) theory has been applied to improve the imaging speed and thus the spatiotemporal resolution. The purpose of this paper is to improve CS reconstruction of under sampled data by exploiting spatiotemporal sparsity and efficient spiral trajectories. We extend k-t sparse algorithm to spiral trajectories to achieve high spatio temporal resolutions in cardiac cine imaging. We have exploited spatiotemporal sparsity of cardiac cine MRI by applying a 2D + time wavelet-Fourier transform. For efficient coverage of k-space, we have used a modified version of multi shot (interleaved) spirals trajectories. In order to reduce incoherent aliasing artifact, we use different random undersampling pattern for each temporal frame. Finally, we have used nonuniform fast Fourier transform (NUFFT) algorithm to reconstruct the image from the non-uniformly acquired samples. The proposed approach was tested in simulated and cardiac cine MRI data. Results show that higher acceleration factors with improved image quality can be obtained with the proposed approach in comparison to the existing state-of-the-art method. The flexibility of the introduced method should allow it to be used not only for the challenging case of cardiac imaging, but also for other patient motion where the patient moves or breathes during acquisition.
Spring onset variations and long-term trends from new hemispheric-scale products and remote sensing
NASA Astrophysics Data System (ADS)
Dye, D. G.; Li, X.; Ault, T.; Zurita-Milla, R.; Schwartz, M. D.
2015-12-01
Spring onset is commonly characterized by plant phenophase changes among a variety of biophysical transitions and has important implications for natural and man-managed ecosystems. Here, we present a new integrated analysis of variability in gridded Northern Hemisphere spring onset metrics. We developed a set of hemispheric temperature-based spring indices spanning 1920-2013. As these were derived solely from meteorological data, they are used as a benchmark for isolating the climate system's role in modulating spring "green up" estimated from the annual cycle of normalized difference vegetation index (NDVI). Spatial patterns of interannual variations, teleconnections, and long-term trends were also analyzed in all metrics. At mid-to-high latitudes, all indices exhibit larger variability at interannual to decadal time scales than at spatial scales of a few kilometers. Trends of spring onset vary across space and time. However, compared to long-term trend, interannual to decadal variability generally accounts for a larger portion of the total variance in spring onset timing. Therefore, spring onset trends identified from short existing records may be aliased by decadal climate variations due to their limited temporal depth, even when these records span the entire satellite era. Based on our findings, we also demonstrated that our indices have skill in representing ecosystem-level spring phenology and may have important implications in understanding relationships between phenology, atmosphere dynamics and climate variability.
NASA Technical Reports Server (NTRS)
Fabanich, William A., Jr.
2014-01-01
SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.
NASA Technical Reports Server (NTRS)
Fabanich, William
2014-01-01
SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.
Low-resolution simulations of vesicle suspensions in 2D
NASA Astrophysics Data System (ADS)
Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George
2018-03-01
Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.
Precise automatic differential stellar photometry
NASA Technical Reports Server (NTRS)
Young, Andrew T.; Genet, Russell M.; Boyd, Louis J.; Borucki, William J.; Lockwood, G. Wesley
1991-01-01
The factors limiting the precision of differential stellar photometry are reviewed. Errors due to variable atmospheric extinction can be reduced to below 0.001 mag at good sites by utilizing the speed of robotic telescopes. Existing photometric systems produce aliasing errors, which are several millimagnitudes in general but may be reduced to about a millimagnitude in special circumstances. Conventional differential photometry neglects several other important effects, which are discussed in detail. If all of these are properly handled, it appears possible to do differential photometry of variable stars with an overall precision of 0.001 mag with ground based robotic telescopes.
The impact of scatterometer wind data on global weather forecasting
NASA Technical Reports Server (NTRS)
Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.
1984-01-01
The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.
Hill, David P.
2015-01-01
Accumulating evidence, although still strongly spatially aliased, indicates that although remote dynamic triggering of small-to-moderate (Mw<5) earthquakes can occur in all tectonic settings, transtensional stress regimes with normal and subsidiary strike-slip faulting seem to be more susceptible to dynamic triggering than transpressional regimes with reverse and subsidiary strike-slip faulting. Analysis of the triggering potential of Love- and Rayleigh-wave dynamic stresses incident on normal, reverse, and strike-slip faults assuming Andersonian faulting theory and simple Coulomb failure supports this apparent difference for rapid-onset triggering susceptibility.
Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms.
Williams, Logan A; Nehmetallah, Georges; Aylo, Rola; Banerjee, Partha P
2015-02-20
Fresnel transform implementation methods using numerical preprocessing techniques are investigated in this paper. First, it is shown that up-sampling dramatically reduces the minimum reconstruction distance requirements and allows maximal signal recovery by eliminating aliasing artifacts which typically occur at distances much less than the Rayleigh range of the object. Second, zero-padding is employed to arbitrarily scale numerical resolution for the purpose of resolution matching multiple holograms, where each hologram is recorded using dissimilar geometric or illumination parameters. Such preprocessing yields numerical resolution scaling at any distance. Both techniques are extensively illustrated using experimental results.
An acoustic filter based on layered structure
Steer, Michael B.
2015-01-01
Acoustic filters (AFs) are key components to control wave propagation in multi-frequency systems. We present a design which selectively achieves acoustic filtering with a stop band and passive amplification at the high- and low-frequencies, respectively. Measurement results from the prototypes closely match the design predictions. The AF suppresses the high frequency aliasing echo by 14.5 dB and amplifies the low frequency transmission by 8.0 dB, increasing an axial resolution from 416 to 86 μm in imaging. The AF design approach is proved to be effective in multi-frequency systems. PMID:25829548
Precise and rapid isotopomic analysis by (1)H-(13)C 2D NMR: Application to triacylglycerol matrices.
Merchak, Noelle; Silvestre, Virginie; Rouger, Laetitia; Giraudeau, Patrick; Rizk, Toufic; Bejjani, Joseph; Akoka, Serge
2016-08-15
An optimized HSQC sequence was tested and applied to triacylglycerol matrices to determine their isotopic and metabolomic profiles. Spectral aliasing and non-uniform sampling approaches were used to decrease the experimental time and to improve the resolution, respectively. An excellent long-term repeatability of signal integrals was achieved enabling to perform isotopic measurements. Thirty-two commercial vegetable oils were analyzed by this methodology. The results show that this method can be used to classify oil samples according to their geographical and botanical origins. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for Pre-Conditioning a Measured Surface Height Map for Model Validation
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to eliminate the surface measurement noise or measurement errors can also suffer from aliasing effects. During re-sampling of a surface map, this software preserves the low spatial-frequency characteristic of a given surface map through the use of Zernike-polynomial fit coefficients, and maintains mid- and high-spatial-frequency characteristics of the given surface map by the use of a PSD model derived from the two-dimensional PSD data of the mid- and high-spatial-frequency components of the original surface map. Because this new method creates the new surface map in the desired sampling format from analytical expressions only, it does not encounter any aliasing effects and does not cause any discontinuity in the resultant surface map.
Complex-ordered patterns in shaken convection.
Rogers, Jeffrey L; Pesch, Werner; Brausch, Oliver; Schatz, Michael F
2005-06-01
We report and analyze complex patterns observed in a combination of two standard pattern forming experiments. These exotic states are composed of two distinct spatial scales, each displaying a different temporal dependence. The system is a fluid layer experiencing forcing from both a vertical temperature difference and vertical time-periodic oscillations. Depending on the parameters these forcing mechanisms produce fluid motion with either a harmonic or a subharmonic temporal response. Over a parameter range where these mechanisms have comparable influence the spatial scales associated with both responses are found to coexist, resulting in complex, yet highly ordered patterns. Phase diagrams of this region are reported and criteria to define the patterns as quasiperiodic crystals or superlattices are presented. These complex patterns are found to satisfy four-mode (resonant tetrad) conditions. The qualitative difference between the present formation mechanism and the resonant triads ubiquitously used to explain complex-ordered patterns in other nonequilibrium systems is discussed. The only exception to quantitative agreement between our analysis based on Boussinesq equations and laboratory investigations is found to be the result of breaking spatial symmetry in a small parameter region near onset.
Characteristics of pattern formation and evolution in approximations of Physarum transport networks.
Jones, Jeff
2010-01-01
Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.
Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.
Spröwitz, Alexander T; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan
2014-01-01
In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2-3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.
Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs
Spröwitz, Alexander T.; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan
2014-01-01
In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2–3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware. PMID:24639645
On the Retrieval of Geocenter Motion from Gravity Data
NASA Astrophysics Data System (ADS)
Rosat, S.; Mémin, A.; Boy, J. P.; Rogister, Y. J. G.
2017-12-01
The center of mass of the whole Earth, the so-called geocenter, is moving with respect to the Center of Mass of the solid Earth because of the loading exerted by the Earth's fluid layers on the solid crust. Space geodetic techniques tying satellites and ground stations (e.g. GNSS, SLR and DORIS) have been widely employed to estimate the geocenter motion. Harmonic degree-1 variations of the gravity field are associated to the geocenter displacement. We show that ground records of time-varying gravity from Superconducting Gravimeters (SGs) can be used to constrain the geocenter motion. Two major difficulties have to be tackled: (1) the sensitivity of surface gravimetric measurements to local mass changes, and in particular hydrological and atmospheric variabilities; (2) the spatial aliasing (spectral leakage) of spherical harmonic degrees higher than 1 induced by the under-sampling of station distribution. The largest gravity variations can be removed from the SG data by subtracting solid and oceanic tides as well as atmospheric and hydrologic effects using global models. However some hydrological signal may still remain. Since surface water content is well-modelled using GRACE observations, we investigate how the spatial aliasing in SG data can be reduced by employing GRACE solutions when retrieving geocenter motion. We show synthetic simulations using complete surface loading models together with GRACE solutions computed at SG stations. In order to retrieve the degree-one gravity variations that are associated with the geocenter motion, we use a multi-station stacking method that performs better than a classical spherical harmonic stacking when the station distribution is inhomogeneous. We also test the influence of the network configuration on the estimate of the geocenter motion. An inversion using SG and GRACE observations is finally presented and the results are compared with previous geocenter estimates.
Subdaily alias and draconitic errors in the IGS orbits
NASA Astrophysics Data System (ADS)
Griffiths, J.; Ray, J.
2011-12-01
Harmonic signals with a fundamental period near the GPS draconitic year (351.2 d) and overtones up to the 8th multiple have been observed in the power spectra of nearly all products of the International GNSS Service (IGS), including station position time series [Ray et al., 2008; Collilieux et al., 2007; Santamaría-Gómez et al., 2011], apparent geocenter motions [Hugentobler et al., 2008], and orbit jumps between successive days and midnight discontinuities in Earth orientation parameter (EOP) rates [Ray and Griffiths, 2009]. Ray et al. [2008] suggested two mechanisms for the harmonics: mismodeling of orbit dynamics and aliasing of near-sidereal local station multipath effects. King and Watson [2010] have studied the propagation of local multipath errors into draconitic position variations, but orbit-related processes have been less well examined. Here we elaborate our earlier analysis of GPS orbit jumps [Griffiths and Ray, 2009; Gendt et al., 2010] where we observed some draconitic features as well as prominent spectral bands near 29, 14, 9, and 7 d periods. Finer structures within the sub-seasonal bands fall close to the expected alias frequencies of subdaily EOP tide lines but do not coincide precisely. While once-per-rev empirical orbit parameters should strongly absorb any subdaily EOP tide errors due to near-resonance of their respective periods, the observed differences require explanation. This has been done by simulating known EOP tidal errors and checking their impact on a long series of daily GPS orbits. Indeed, simulated tidal aliases are found to be very similar to the observed orbital features in the sub-seasonal bands. Moreover and unexpectedly, some low draconitic harmonics were also stimulated, potentially a source for the widespread errors in most IGS products.
Li, Fei; Yu, Peicheng; Xu, Xinlu; ...
2017-01-12
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less
NASA Astrophysics Data System (ADS)
Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.; Dalichaouch, Thamine; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Mori, Warren B.
2017-05-01
In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 ˆ direction). We show that this eliminates the main NCI modes with moderate |k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher |k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1 ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
Fast repurposing of high-resolution stereo video content for mobile use
NASA Astrophysics Data System (ADS)
Karaoglu, Ali; Lee, Bong Ho; Boev, Atanas; Cheong, Won-Sik; Gotchev, Atanas
2012-06-01
3D video content is captured and created mainly in high resolution targeting big cinema or home TV screens. For 3D mobile devices, equipped with small-size auto-stereoscopic displays, such content has to be properly repurposed, preferably in real-time. The repurposing requires not only spatial resizing but also properly maintaining the output stereo disparity, as it should deliver realistic, pleasant and harmless 3D perception. In this paper, we propose an approach to adapt the disparity range of the source video to the comfort disparity zone of the target display. To achieve this, we adapt the scale and the aspect ratio of the source video. We aim at maximizing the disparity range of the retargeted content within the comfort zone, and minimizing the letterboxing of the cropped content. The proposed algorithm consists of five stages. First, we analyse the display profile, which characterises what 3D content can be comfortably observed in the target display. Then, we perform fast disparity analysis of the input stereoscopic content. Instead of returning the dense disparity map, it returns an estimate of the disparity statistics (min, max, meanand variance) per frame. Additionally, we detect scene cuts, where sharp transitions in disparities occur. Based on the estimated input, and desired output disparity ranges, we derive the optimal cropping parameters and scale of the cropping window, which would yield the targeted disparity range and minimize the area of cropped and letterboxed content. Once the rescaling and cropping parameters are known, we perform resampling procedure using spline-based and perceptually optimized resampling (anti-aliasing) kernels, which have also a very efficient computational structure. Perceptual optimization is achieved through adjusting the cut-off frequency of the anti-aliasing filter with the throughput of the target display.
Destroying Aliases from the Ground and Space: Super-Nyquist ZZ Cetis in K2 Long Cadence Data
NASA Astrophysics Data System (ADS)
Bell, Keaton J.; Hermes, J. J.; Vanderbosch, Z.; Montgomery, M. H.; Winget, D. E.; Dennihy, E.; Fuchs, J. T.; Tremblay, P.-E.
2017-12-01
With typical periods of the order of 10 minutes, the pulsation signatures of ZZ Ceti variables (pulsating hydrogen-atmosphere white dwarf stars) are severely undersampled by long-cadence (29.42 minutes per exposure) K2 observations. Nyquist aliasing renders the intrinsic frequencies ambiguous, stifling precision asteroseismology. We report the discovery of two new ZZ Cetis in long-cadence K2 data: EPIC 210377280 and EPIC 220274129. Guided by three to four nights of follow-up, high-speed (≤slant 30 s) photometry from the McDonald Observatory, we recover accurate pulsation frequencies for K2 signals that reflected four to five times off the Nyquist with the full precision of over 70 days of monitoring (∼0.01 μHz). In turn, the K2 observations enable us to select the correct peaks from the alias structure of the ground-based signals caused by gaps in the observations. We identify at least seven independent pulsation modes in the light curves of each of these stars. For EPIC 220274129, we detect three complete sets of rotationally split {\\ell }=1 (dipole mode) triplets, which we use to asteroseismically infer the stellar rotation period of 12.7 ± 1.3 hr. We also detect two sub-Nyquist K2 signals that are likely combination (difference) frequencies. We attribute our inability to match some of the K2 signals to the ground-based data to changes in pulsation amplitudes between epochs of observation. Model fits to SOAR spectroscopy place both EPIC 210377280 and EPIC 220274129 near the middle of the ZZ Ceti instability strip, with {T}{eff} =11590+/- 200 K and 11810 ± 210 K, and masses 0.57 ± 0.03 M ⊙ and 0.62 ± 0.03 M ⊙, respectively.
Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models
NASA Astrophysics Data System (ADS)
Jin, S. G.; Hassan, A. A.; Feng, G. P.
2012-12-01
The hydrological contribution to polar motion is a major challenge in explaining the observed geodetic residual of non-atmospheric and non-oceanic excitations since hydrological models have limited input of comprehensive global direct observations. Although global terrestrial water storage (TWS) estimated from the Gravity Recovery and Climate Experiment (GRACE) provides a new opportunity to study the hydrological excitation of polar motion, the GRACE gridded data are subject to the post-processing de-striping algorithm, spatial gridded mapping and filter smoothing effects as well as aliasing errors. In this paper, the hydrological contributions to polar motion are investigated and evaluated at seasonal and intra-seasonal time scales using the recovered degree-2 harmonic coefficients from all GRACE spherical harmonic coefficients and hydrological models data with the same filter smoothing and recovering methods, including the Global Land Data Assimilation Systems (GLDAS) model, Climate Prediction Center (CPC) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis products and European Center for Medium-Range Weather Forecasts (ECMWF) operational model (opECMWF). It is shown that GRACE is better in explaining the geodetic residual of non-atmospheric and non-oceanic polar motion excitations at the annual period, while the models give worse estimates with a larger phase shift or amplitude bias. At the semi-annual period, the GRACE estimates are also generally closer to the geodetic residual, but with some biases in phase or amplitude due mainly to some aliasing errors at near semi-annual period from geophysical models. For periods less than 1-year, the hydrological models and GRACE are generally worse in explaining the intraseasonal polar motion excitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fei; Yu, Peicheng; Xu, Xinlu
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less
Observational filter for limb sounders applied to convective gravity waves
NASA Astrophysics Data System (ADS)
Trinh, Quang Thai; Preusse, Peter; Riese, Martin; Kalisch, Silvio
Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.
Observational filter for limb sounders applied to convective gravity waves
NASA Astrophysics Data System (ADS)
Trinh, Thai; Kalisch, Silvio; Preusse, Peter; Riese, Martin
2014-05-01
Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.
The 3of5 web application for complex and comprehensive pattern matching in protein sequences.
Seiler, Markus; Mehrle, Alexander; Poustka, Annemarie; Wiemann, Stefan
2006-03-16
The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx) because of the user-friendly terminology. Limitations arise for queries with the increasing complexity of patterns and are accompanied by requirements for enhanced capabilities. This is especially true for patterns containing ambiguous characters and positions and/or length ambiguities. We have implemented the 3of5 web application in order to enable complex pattern matching in protein sequences. 3of5 is named after a special use of its main feature, the novel n-of-m pattern type. This feature allows for an extensive specification of variable patterns where the individual elements may vary in their position, order, and content within a defined stretch of sequence. The number of distinct elements can be constrained by operators, and individual characters may be excluded. The n-of-m pattern type can be combined with common regular expression terms and thus also allows for a comprehensive description of complex patterns. 3of5 increases the fidelity of pattern matching and finds ALL possible solutions in protein sequences in cases of length-ambiguous patterns instead of simply reporting the longest or shortest hits. Grouping and combined search for patterns provides a hierarchical arrangement of larger patterns sets. The algorithm is implemented as internet application and freely accessible. The application is available at http://dkfz.de/mga2/3of5/3of5.html. The 3of5 application offers an extended vocabulary for the definition of search patterns and thus allows the user to comprehensively specify and identify peptide patterns with variable elements. The n-of-m pattern type offers an improved accuracy for pattern matching in combination with the ability to find all solutions, without compromising the user friendliness of regular expression terms.
Chèneby, Jeanne; Gheorghe, Marius; Artufel, Marie; Mathelier, Anthony; Ballester, Benoit
2018-01-04
With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Piecewise-Planar StereoScan: Sequential Structure and Motion using Plane Primitives.
Raposo, Carolina; Antunes, Michel; P Barreto, Joao
2017-08-09
The article describes a pipeline that receives as input a sequence of stereo images, and outputs the camera motion and a Piecewise-Planar Reconstruction (PPR) of the scene. The pipeline, named Piecewise-Planar StereoScan (PPSS), works as follows: the planes in the scene are detected for each stereo view using semi-dense depth estimation; the relative pose is computed by a new closed-form minimal algorithm that only uses point correspondences whenever plane detections do not fully constrain the motion; the camera motion and the PPR are jointly refined by alternating between discrete optimization and continuous bundle adjustment; and, finally, the detected 3D planes are segmented in images using a new framework that handles low texture and visibility issues. PPSS is extensively validated in indoor and outdoor datasets, and benchmarked against two popular point-based SfM pipelines. The experiments confirm that plane-based visual odometry is resilient to situations of small image overlap, poor texture, specularity, and perceptual aliasing where the fast LIBVISO2 pipeline fails. The comparison against VisualSfM+CMVS/PMVS shows that, for a similar computational complexity, PPSS is more accurate and provides much more compelling and visually pleasant 3D models. These results strongly suggest that plane primitives are an advantageous alternative to point correspondences for applications of SfM and 3D reconstruction in man-made environments.
The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data.
Farjon, Jonathan; Milande, Clément; Martineau, Estelle; Akoka, Serge; Giraudeau, Patrick
2018-02-06
The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1 H, 13 C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.
Enabling complex nanoscale pattern customization using directed self-assembly.
Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P
2014-12-16
Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.
The evolution of pattern camouflage strategies in waterfowl and game birds.
Marshall, Kate L A; Gluckman, Thanh-Lan
2015-05-01
Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions ("bimodal" patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a "sit and hide" strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution.
The evolution of pattern camouflage strategies in waterfowl and game birds
Marshall, Kate L A; Gluckman, Thanh-Lan
2015-01-01
Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions (“bimodal” patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a “sit and hide” strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution. PMID:26045950
Complex Event Recognition Architecture
NASA Technical Reports Server (NTRS)
Fitzgerald, William A.; Firby, R. James
2009-01-01
Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.
Formation mechanism of complex pattern on fishes' skin
NASA Astrophysics Data System (ADS)
Li, Xia; Liu, Shuhua
2009-10-01
In this paper, the formation mechanism of the complex patterns observed on the skin of fishes has been investigated by a two-coupled reaction diffusion model. The effects of coupling strength between two layers play an important role in the pattern-forming process. It is found that only the epidermis layer can produce complicated patterns that have structures on more than one length scale. These complicated patterns including super-stripe pattern, mixture of spots and stripe, and white-eye pattern are similar to the pigmentation patterns on fishes' skin.
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
Table-driven image transformation engine algorithm
NASA Astrophysics Data System (ADS)
Shichman, Marc
1993-04-01
A high speed image transformation engine (ITE) was designed and a prototype built for use in a generic electronic light table and image perspective transformation application code. The ITE takes any linear transformation, breaks the transformation into two passes and resamples the image appropriately for each pass. The system performance is achieved by driving the engine with a set of look up tables computed at start up time for the calculation of pixel output contributions. Anti-aliasing is done automatically in the image resampling process. Operations such as multiplications and trigonometric functions are minimized. This algorithm can be used for texture mapping, image perspective transformation, electronic light table, and virtual reality.
Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data
NASA Astrophysics Data System (ADS)
Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach
2017-06-01
The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.
Thermodynamics of complexity and pattern manipulation.
Garner, Andrew J P; Thompson, Jayne; Vedral, Vlatko; Gu, Mile
2017-04-01
Many organisms capitalize on their ability to predict the environment to maximize available free energy and reinvest this energy to create new complex structures. This functionality relies on the manipulation of patterns-temporally ordered sequences of data. Here, we propose a framework to describe pattern manipulators-devices that convert thermodynamic work to patterns or vice versa-and use them to build a "pattern engine" that facilitates a thermodynamic cycle of pattern creation and consumption. We show that the least heat dissipation is achieved by the provably simplest devices, the ones that exhibit desired operational behavior while maintaining the least internal memory. We derive the ultimate limits of this heat dissipation and show that it is generally nonzero and connected with the pattern's intrinsic crypticity-a complexity theoretic quantity that captures the puzzling difference between the amount of information the pattern's past behavior reveals about its future and the amount one needs to communicate about this past to optimally predict the future.
Matching rendered and real world images by digital image processing
NASA Astrophysics Data System (ADS)
Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume
2010-05-01
Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, H.A.
1985-03-15
Individual modes of low-degree 5 minute oscillations have been identified in solar diameter observations. These modes have n-values in the range 12< or =n< or =27 and l-values in the range 0< or =l< or =6, where n and l represent the radial order and the spherical harmonic degree of the eigenfunction respectively. In total, 184 modes belonging to 83 multiplets have been resolved and classified. The study of these modes has been accomplished without superposed-frequency analysis. It has been possible to estimate observationally the number of mode identifications that are incorrect because of coincidental frequency alignment of real ormore » aliased peaks of two different modes; these results indicate that roughly-equal15 of the 184 modes identified are incorrectly classified. The firstorder rotational splitting in m is consistent with that found by Hill, Bos, and Goode (1982); the resolved members of the multiplets yield, for example, a rotational splitting that is first order in m of -1.80 +- 0.03 ..mu..Hz for n = 17, l = 2. The observed second-order effect in m is sufficiently small that relatively little deviation from a Zeeman pattern occurs. The observed width of the individual modes is roughly-equal1 ..mu..Hz. The observed symmetry properties confirm both the detection of multiplets and the axial symmetry of the Sun as seen by these oscillations.« less
Vergés, Adriana; Vanderklift, Mathew A.; Doropoulos, Christopher; Hyndes, Glenn A.
2011-01-01
Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems. PMID:21347254
On mining complex sequential data by means of FCA and pattern structures
NASA Astrophysics Data System (ADS)
Buzmakov, Aleksey; Egho, Elias; Jay, Nicolas; Kuznetsov, Sergei O.; Napoli, Amedeo; Raïssi, Chedy
2016-02-01
Nowadays data-sets are available in very complex and heterogeneous ways. Mining of such data collections is essential to support many real-world applications ranging from healthcare to marketing. In this work, we focus on the analysis of "complex" sequential data by means of interesting sequential patterns. We approach the problem using the elegant mathematical framework of formal concept analysis and its extension based on "pattern structures". Pattern structures are used for mining complex data (such as sequences or graphs) and are based on a subsumption operation, which in our case is defined with respect to the partial order on sequences. We show how pattern structures along with projections (i.e. a data reduction of sequential structures) are able to enumerate more meaningful patterns and increase the computing efficiency of the approach. Finally, we show the applicability of the presented method for discovering and analysing interesting patient patterns from a French healthcare data-set on cancer. The quantitative and qualitative results (with annotations and analysis from a physician) are reported in this use-case which is the main motivation for this work.
Lucas, Lauren K; Nice, Chris C; Gompert, Zachariah
2018-03-13
Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems. © 2018 John Wiley & Sons Ltd.
Shearlet-based measures of entropy and complexity for two-dimensional patterns
NASA Astrophysics Data System (ADS)
Brazhe, Alexey
2018-06-01
New spatial entropy and complexity measures for two-dimensional patterns are proposed. The approach is based on the notion of disequilibrium and is built on statistics of directional multiscale coefficients of the fast finite shearlet transform. Shannon entropy and Jensen-Shannon divergence measures are employed. Both local and global spatial complexity and entropy estimates can be obtained, thus allowing for spatial mapping of complexity in inhomogeneous patterns. The algorithm is validated in numerical experiments with a gradually decaying periodic pattern and Ising surfaces near critical state. It is concluded that the proposed algorithm can be instrumental in describing a wide range of two-dimensional imaging data, textures, or surfaces, where an understanding of the level of order or randomness is desired.
Complex-valued Multidirectional Associative Memory
NASA Astrophysics Data System (ADS)
Kobayashi, Masaki; Yamazaki, Haruaki
Hopfield model is a representative associative memory. It was improved to Bidirectional Associative Memory(BAM) by Kosko and Multidirectional Associative Memory(MAM) by Hagiwara. They have two layers or multilayers. Since they have symmetric connections between layers, they ensure to converge. MAM can deal with multiples of many patterns, such as (x1, x2,…), where xm is the pattern on layer-m. Noest, Hirose and Nemoto proposed complex-valued Hopfield model. Lee proposed complex-valued Bidirectional Associative Memory. Zemel proved the rotation invariance of complex-valued Hopfield model. It means that the rotated pattern also stored. In this paper, the complex-valued Multidirectional Associative Memory is proposed. The rotation invariance is also proved. Moreover it is shown by computer simulation that the differences of angles of given patterns are automatically reduced. At first we define complex-valued Multidirectional Associative Memory. Then we define the energy function of network. By using energy function, we prove that the network ensures to converge. Next, we define the learning law and show the characteristic of recall process. The characteristic means that the differences of angles of given patterns are automatically reduced. Especially we prove the following theorem. In case that only a multiple of patterns is stored, if patterns with different angles are given to each layer, the differences are automatically reduced. Finally, we invest that the differences of angles influence the noise robustness. It reduce the noise robustness, because input to each layer become small. We show that by computer simulations.
Street, Nichola; Forsythe, Alexandra M; Reilly, Ronan; Taylor, Richard; Helmy, Mai S
2016-01-01
Fractal patterns offer one way to represent the rough complexity of the natural world. Whilst they dominate many of our visual experiences in nature, little large-scale perceptual research has been done to explore how we respond aesthetically to these patterns. Previous research (Taylor et al., 2011) suggests that the fractal patterns with mid-range fractal dimensions (FDs) have universal aesthetic appeal. Perceptual and aesthetic responses to visual complexity have been more varied with findings suggesting both linear (Forsythe et al., 2011) and curvilinear (Berlyne, 1970) relationships. Individual differences have been found to account for many of the differences we see in aesthetic responses but some, such as culture, have received little attention within the fractal and complexity research fields. This two-study article aims to test preference responses to FD and visual complexity, using a large cohort (N = 443) of participants from around the world to allow universality claims to be tested. It explores the extent to which age, culture and gender can predict our preferences for fractally complex patterns. Following exploratory analysis that found strong correlations between FD and visual complexity, a series of linear mixed-effect models were implemented to explore if each of the individual variables could predict preference. The first tested a linear complexity model (likelihood of selecting the more complex image from the pair of images) and the second a mid-range FD model (likelihood of selecting an image within mid-range). Results show that individual differences can reliably predict preferences for complexity across culture, gender and age. However, in fitting with current findings the mid-range models show greater consistency in preference not mediated by gender, age or culture. This article supports the established theory that the mid-range fractal patterns appear to be a universal construct underlying preference but also highlights the fragility of universal claims by demonstrating individual differences in preference for the interrelated concept of visual complexity. This highlights a current stalemate in the field of empirical aesthetics.
Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.
Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil
2007-11-28
The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.
Fluid dynamic instabilities: theory and application to pattern forming in complex media
Brun, P.-T.
2017-01-01
In this review article, we exemplify the use of stability analysis tools to rationalize pattern formation in complex media. Specifically, we focus on fluid flows, and show how the destabilization of their interface sets the blueprint of the patterns they eventually form. We review the potential use and limitations of the theoretical methods at the end, in terms of their applications to practical settings, e.g. as guidelines to design and fabricate structures while harnessing instabilities. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373378
Thermodynamics of complexity and pattern manipulation
NASA Astrophysics Data System (ADS)
Garner, Andrew J. P.; Thompson, Jayne; Vedral, Vlatko; Gu, Mile
2017-04-01
Many organisms capitalize on their ability to predict the environment to maximize available free energy and reinvest this energy to create new complex structures. This functionality relies on the manipulation of patterns—temporally ordered sequences of data. Here, we propose a framework to describe pattern manipulators—devices that convert thermodynamic work to patterns or vice versa—and use them to build a "pattern engine" that facilitates a thermodynamic cycle of pattern creation and consumption. We show that the least heat dissipation is achieved by the provably simplest devices, the ones that exhibit desired operational behavior while maintaining the least internal memory. We derive the ultimate limits of this heat dissipation and show that it is generally nonzero and connected with the pattern's intrinsic crypticity—a complexity theoretic quantity that captures the puzzling difference between the amount of information the pattern's past behavior reveals about its future and the amount one needs to communicate about this past to optimally predict the future.
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
A Practical Measure for the Complexity of Evolving Seismicity Patterns
NASA Astrophysics Data System (ADS)
Goltz, C.
2005-12-01
Earthquakes are a "complex" phenomenon. There is, however, no clear definition of what complexity actually is. Yet, it is important to distinguish between what is merely complicated and what is complex in the sense that simple rules can give rise to very rich behaviour. Seismicity is certainly a complicated phenomenon (difficult to understand) but simple models such as cellular automata indicate that earthquakes are truly complex. From the observational point of view, there exists the problem of quantification of complexity in real world seismicity patterns. Such a measurement is desirable, not only for fundamental understanding but also for monitoring and possibly for forecasting. Maybe the most workable definitions of complexity exist in informatics, summarised under the topic of algorithmic complexity. Here, after introducing the concepts, I apply such a measure of complexity to temporally evolving real-world seismicity patterns. Finally, I discuss the usefulness of the approach and regard the results in view of the occurrence of large earthquakes.
ERIC Educational Resources Information Center
Dagne, Getachew A.; Brown, C. Hendricks; Howe, George W.
2007-01-01
This article presents new methods for modeling the strength of association between multiple behaviors in a behavioral sequence, particularly those involving substantively important interaction patterns. Modeling and identifying such interaction patterns becomes more complex when behaviors are assigned to more than two categories, as is the case…
Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.
Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben
2017-06-06
Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.
When does a system become phonological? Handshape production in gesturers, signers, and homesigners
Coppola, Marie; Mazzoni, Laura; Goldin-Meadow, Susan
2013-01-01
Sign languages display remarkable crosslinguistic consistencies in the use of handshapes. In particular, handshapes used in classifier predicates display a consistent pattern in finger complexity: classifier handshapes representing objects display more finger complexity than those representing how objects are handled. Here we explore the conditions under which this morphophonological phenomenon arises. In Study 1, we ask whether hearing individuals in Italy and the United States, asked to communicate using only their hands, show the same pattern of finger complexity found in the classifier handshapes of two sign languages: Italian Sign Language (LIS) and American Sign Language (ASL). We find that they do not: gesturers display more finger complexity in handling handshapes than in object handshapes. The morphophonological pattern found in conventional sign languages is therefore not a codified version of the pattern invented by hearing individuals on the spot. In Study 2, we ask whether continued use of gesture as a primary communication system results in a pattern that is more similar to the morphophonological pattern found in conventional sign languages or to the pattern found in gesturers. Homesigners have not acquired a signed or spoken language and instead use a self-generated gesture system to communicate with their hearing family members and friends. We find that homesigners pattern more like signers than like gesturers: their finger complexity in object handshapes is higher than that of gesturers (indeed as high as signers); and their finger complexity in handling handshapes is lower than that of gesturers (but not quite as low as signers). Generally, our findings indicate two markers of the phonologization of handshape in sign languages: increasing finger complexity in object handshapes, and decreasing finger complexity in handling handshapes. These first indicators of phonology appear to be present in individuals developing a gesture system without benefit of a linguistic community. Finally, we propose that iconicity, morphology and phonology each play an important role in the system of sign language classifiers to create the earliest markers of phonology at the morphophonological interface. PMID:23723534
Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.
Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A
2010-08-10
Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).
Sub-Nyquist Sampling and Moire-Like Waveform Distortions
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
2000-01-01
Investigations of aliasing effects in digital waveform sampling have revealed the existence of a mathematical field and a pseudo-alias domain lying to the left of a "Nyquist line" in a plane defining the boundary between two domains of sampling. To the right of the line lies the classic alias domain. For signals band-limited below the Nyquist limit, displayed output may show a false modulation envelope. The effect occurs whenever the sample rate and the signal frequency are related by ratios of mutually prime integers. Belying the principal of a 10:1 sampling ratio being "good enough", this distortion easily occurs in graphed one-dimensional waveforms and two-dimensional images and occurs daily on television.
Interpolating seismic data via the POCS method based on shearlet transform
NASA Astrophysics Data System (ADS)
Jicheng, Liu; Yongxin, Chou; Jianjiang, Zhu
2018-06-01
A method based on shearlet transform and the projection onto convex sets with L0-norm constraint is proposed to interpolate irregularly sampled 2D and 3D seismic data. The 2D directional filter of shearlet transform is constructed by modulating a low-pass diamond filter pair to minimize the effect of additional edges introduced by the missing traces. In order to abate the spatial aliasing and control the maximal gap between missing traces for a 3D data cube, a 2D separable jittered sampling strategy is discussed. Finally, numerical experiments on 2D and 3D synthetic and real data with different under-sampling rates prove the validity of the proposed method.
2nd Generation Airborne Precipitation Radar (APR-2)
NASA Technical Reports Server (NTRS)
Durden, S.; Tanelli, S.; Haddad, Z.; Im, E.
2012-01-01
Dual-frequency operation with Ku-band (13.4 GHz) and Ka-band (35.6 GHz). Geometry and frequencies chosen to simulate GPM radar. Measures reflectivity at co- and cross-polarizations, and Doppler. Range resolution is approx. 60 m. Horizontal resolution at surface is approx. 1 km. Reflectivity calibration is within 1.5 dB, based on 10 deg sigmaO at Ku-band and Mie scattering calculations in light rain at Ka-band. LDR measurements are OK to near -20 dB; LDR lower than this is likely contaminated by system cross-polarization isolation. Velocity is motion-corrected total Doppler, including particle fall speed. Aliasing can be seen in some places; can usually be dealiased with an algorithm. .
A microprocessor based anti-aliasing filter for a PCM system
NASA Technical Reports Server (NTRS)
Morrow, D. C.; Sandlin, D. R.
1984-01-01
Described is the design and evaluation of a microprocessor based digital filter. The filter was made to investigate the feasibility of a digital replacement for the analog pre-sampling filters used in telemetry systems at the NASA Ames-Dryden Flight Research Facility (DFRF). The digital filter will utilize an Intel 2920 Analog Signal Processor (ASP) chip. Testing includes measurements of: (1) the filter frequency response and, (2) the filter signal resolution. The evaluation of the digital filter was made on the basis of circuit size, projected environmental stability and filter resolution. The 2920 based digital filter was found to meet or exceed the pre-sampling filter specifications for limited signal resolution applications.
Reaction-diffusion controlled growth of complex structures
NASA Astrophysics Data System (ADS)
Noorduin, Willem; Mahadevan, L.; Aizenberg, Joanna
2013-03-01
Understanding how the emergence of complex forms and shapes in biominerals came about is both of fundamental and practical interest. Although biomineralization processes and organization strategies to give higher order architectures have been studied extensively, synthetic approaches to mimic these self-assembled structures are highly complex and have been difficult to emulate, let alone replicate. The emergence of solution patterns has been found in reaction-diffusion systems such as Turing patterns and the BZ reaction. Intrigued by this spontaneous formation of complexity we explored if similar processes can lead to patterns in the solid state. We here identify a reaction-diffusion system in which the shape of the solidified products is a direct readout of the environmental conditions. Based on insights in the underlying mechanism, we developed a toolbox of engineering strategies to deterministically sculpt patterns and shapes, and combine different morphologies to create a landscape of hierarchical multi scale-complex tectonic architectures with unprecedented levels of complexity. These findings may hold profound implications for understanding, mimicking and ultimately expanding upon nature's morphogenesis strategies, allowing the synthesis of advanced highly complex microscale materials and devices. WLN acknowledges the Netherlands Organization for Scientific Research for financial support
Measuring the Complexity of Seismicity Pattern Evolution
NASA Astrophysics Data System (ADS)
Goltz, C.
2004-12-01
``Complexity'' has become an ubiquitous term in science. However, there is, much as with ``fractality'', no clear definition of what complexity actually means. Yet, it is important to distinguish between what is merely complicated and what is complex in the sense that simple rules can give rise to very rich behaviour. Seismicity is certainly a complicated phenomenon (difficult to understand) but simple models such as cellular automata indicate that earthquakes are truly complex. From the observational point of view, there exists the problem of quantification of complexity in real world seismicity patterns (in the absence of even a rigid definition of complexity). Such a measurement is desirable, however, not only for fundamental understanding but also for monitoring and possibly for prediction purposes. Maybe the most workable definitions of complexity exist in informatics, summarised under the topic of algorithmic complexity. Here, after introducing the concepts, I apply such measures of complexity to temporally evolving seismicity patterns from different geographic regions. Finally, I discuss the usefulness of the approach and discuss results in view of the occurrence of large earthquakes.
Peng, Zhen; Braun, Daniel A.
2015-01-01
In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity. PMID:26733896
Li, Jie; Li, Rui; You, Leiming; Xu, Anlong; Fu, Yonggui; Huang, Shengfeng
2015-01-01
Switching between different alternative polyadenylation (APA) sites plays an important role in the fine tuning of gene expression. New technologies for the execution of 3’-end enriched RNA-seq allow genome-wide detection of the genes that exhibit significant APA site switching between different samples. Here, we show that the independence test gives better results than the linear trend test in detecting APA site-switching events. Further examination suggests that the discrepancy between these two statistical methods arises from complex APA site-switching events that cannot be represented by a simple change of average 3’-UTR length. In theory, the linear trend test is only effective in detecting these simple changes. We classify the switching events into four switching patterns: two simple patterns (3’-UTR shortening and lengthening) and two complex patterns. By comparing the results of the two statistical methods, we show that complex patterns account for 1/4 of all observed switching events that happen between normal and cancerous human breast cell lines. Because simple and complex switching patterns may convey different biological meanings, they merit separate study. We therefore propose to combine both the independence test and the linear trend test in practice. First, the independence test should be used to detect APA site switching; second, the linear trend test should be invoked to identify simple switching events; and third, those complex switching events that pass independence testing but fail linear trend testing can be identified. PMID:25875641
Advanced Signal Processing for Integrated LES-RANS Simulations: Anti-aliasing Filters
NASA Technical Reports Server (NTRS)
Schlueter, J. U.
2003-01-01
Currently, a wide variety of flow phenomena are addressed with numerical simulations. Many flow solvers are optimized to simulate a limited spectrum of flow effects effectively, such as single parts of a flow system, but are either inadequate or too expensive to be applied to a very complex problem. As an example, the flow through a gas turbine can be considered. In the compressor and the turbine section, the flow solver has to be able to handle the moving blades, model the wall turbulence, and predict the pressure and density distribution properly. This can be done by a flow solver based on the Reynolds-Averaged Navier-Stokes (RANS) approach. On the other hand, the flow in the combustion chamber is governed by large scale turbulence, chemical reactions, and the presence of fuel spray. Experience shows that these phenomena require an unsteady approach. Hence, for the combustor, the use of a Large Eddy Simulation (LES) flow solver is desirable. While many design problems of a single flow passage can be addressed by separate computations, only the simultaneous computation of all parts can guarantee the proper prediction of multi-component phenomena, such as compressor/combustor instability and combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the compressor sections, an LES flow solver for the combustor, and again a RANS flow solver for the turbine section.
Street, Nichola; Forsythe, Alexandra M.; Reilly, Ronan; Taylor, Richard; Helmy, Mai S.
2016-01-01
Fractal patterns offer one way to represent the rough complexity of the natural world. Whilst they dominate many of our visual experiences in nature, little large-scale perceptual research has been done to explore how we respond aesthetically to these patterns. Previous research (Taylor et al., 2011) suggests that the fractal patterns with mid-range fractal dimensions (FDs) have universal aesthetic appeal. Perceptual and aesthetic responses to visual complexity have been more varied with findings suggesting both linear (Forsythe et al., 2011) and curvilinear (Berlyne, 1970) relationships. Individual differences have been found to account for many of the differences we see in aesthetic responses but some, such as culture, have received little attention within the fractal and complexity research fields. This two-study article aims to test preference responses to FD and visual complexity, using a large cohort (N = 443) of participants from around the world to allow universality claims to be tested. It explores the extent to which age, culture and gender can predict our preferences for fractally complex patterns. Following exploratory analysis that found strong correlations between FD and visual complexity, a series of linear mixed-effect models were implemented to explore if each of the individual variables could predict preference. The first tested a linear complexity model (likelihood of selecting the more complex image from the pair of images) and the second a mid-range FD model (likelihood of selecting an image within mid-range). Results show that individual differences can reliably predict preferences for complexity across culture, gender and age. However, in fitting with current findings the mid-range models show greater consistency in preference not mediated by gender, age or culture. This article supports the established theory that the mid-range fractal patterns appear to be a universal construct underlying preference but also highlights the fragility of universal claims by demonstrating individual differences in preference for the interrelated concept of visual complexity. This highlights a current stalemate in the field of empirical aesthetics. PMID:27252634
Famoso, Nicholas A; Davis, Edward Byrd
2014-01-01
Four groups of equids, "Anchitheriinae," Merychippine-grade Equinae, Hipparionini, and Equini, coexisted in the middle Miocene, but only the Equini remains after 16 Myr of evolution and extinction. Each group is distinct in its occlusal enamel pattern. These patterns have been compared qualitatively but rarely quantitatively. The processes influencing the evolution of these occlusal patterns have not been thoroughly investigated with respect to phylogeny, tooth position, and climate through geologic time. We investigated Occlusal Enamel Index, a quantitative method for the analysis of the complexity of occlusal patterns. We used analyses of variance and an analysis of co-variance to test whether equid teeth increase resistive cutting area for food processing during mastication, as expressed in occlusal enamel complexity, in response to increased abrasion in their diet. Results suggest that occlusal enamel complexity was influenced by climate, phylogeny, and tooth position through time. Occlusal enamel complexity in middle Miocene to Modern horses increased as the animals experienced increased tooth abrasion and a cooling climate.
Famoso, Nicholas A.; Davis, Edward Byrd
2014-01-01
Four groups of equids, “Anchitheriinae,” Merychippine-grade Equinae, Hipparionini, and Equini, coexisted in the middle Miocene, but only the Equini remains after 16 Myr of evolution and extinction. Each group is distinct in its occlusal enamel pattern. These patterns have been compared qualitatively but rarely quantitatively. The processes influencing the evolution of these occlusal patterns have not been thoroughly investigated with respect to phylogeny, tooth position, and climate through geologic time. We investigated Occlusal Enamel Index, a quantitative method for the analysis of the complexity of occlusal patterns. We used analyses of variance and an analysis of co-variance to test whether equid teeth increase resistive cutting area for food processing during mastication, as expressed in occlusal enamel complexity, in response to increased abrasion in their diet. Results suggest that occlusal enamel complexity was influenced by climate, phylogeny, and tooth position through time. Occlusal enamel complexity in middle Miocene to Modern horses increased as the animals experienced increased tooth abrasion and a cooling climate. PMID:24587267
McKay, B E; Persinger, M A
2003-04-18
Acute post-training exposures to weak intensity theta-burst stimulation (TBS) patterned complex magnetic fields attenuated the magnitude of conditioned fear learning for contextual stimuli. A similar learning impairment was evoked in a linear and dose-dependent manner by pre-conditioning injections of the polyamine agmatine. The present study examined the hypothesis that whole-body applications of the TBS complex magnetic field pattern when co-administered with systemic agmatine treatment may combine to evoke impairments in contextual fear learning. Within minutes of 4 mg/kg agmatine injections, male Wistar rats were fear conditioned to contextual stimuli and immediately exposed for 30 min to the TBS patterned complex magnetic field or to sham conditions. TBS patterned complex magnetic field treatment was found to linearly summate with the contextual fear learning impairment evoked by agmatine treatment alone. Furthermore, we report for sham-treated rats, but not rats exposed to the synthetic magnetic field pattern, that the magnitude of learned fear decreased and the amount of variability in learning increased, as the K-index (a measure of change in intensity of the time-varying ambient geomagnetic field) increased during the 3-hr intervals over which conditioning and testing sessions were conducted.
Extended quantification of the generalized recurrence plot
NASA Astrophysics Data System (ADS)
Riedl, Maik; Marwan, Norbert; Kurths, Jürgen
2016-04-01
The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing structures, turbulent spatial plankton patterns, and fractals. But, it is also successfully applied to the description of spatio-temporal dynamics and the detection of regime shifts, such as in the complex Ginzburg-Landau- equation. The recurrence plot based determinism is a central measure in this framework quantifying the level of regularities in temporal and spatial structures. We extend this measure for the generalized recurrence plot considering additional operations of symmetry than the simple translation. It is tested not only on two-dimensional regular patterns and noise but also on complex spatial patterns reconstructing the parameter space of the complex Ginzburg-Landau-equation. The extended version of the determinism resulted in values which are consistent to the original recurrence plot approach. Furthermore, the proposed method allows a split of the determinism into parts which based on laminar and non-laminar regions of the two-dimensional pattern of the complex Ginzburg-Landau-equation. A comparison of these parts with a standard method of image classification, the co-occurrence matrix approach, shows differences especially in the description of patterns associated with turbulence. In that case, it seems that the extended version of the determinism allows a distinction of phase turbulence and defect turbulence by means of their spatial patterns. This ability of the proposed method promise new insights in other systems with turbulent dynamics coming from climatology, biology, ecology, and social sciences, for example.
Chimera states in networks of logistic maps with hierarchical connectivities
NASA Astrophysics Data System (ADS)
zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard
2018-04-01
Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.
Pappenberger, B; Geier, M; Boeckh, J
1996-01-01
Recent behavioural studies have demonstrated that human body odours which female Aedes aegypti find attractive exert their effects as complex mixtures of synergistically acting components. We have attempted to clarify the sensory mechanisms underlying the perception of these complex host odours by studying the responses of sensory cells underneath the A3-type sensilla of the mosquito antenna to both a human skin wash extract and the extract's active chromatographic fractions. The reaction patterns show that the host stimuli elicit responses from several types of receptor cells in a typical across-fibre pattern mode. It seems as if this is another case where the essential message in a biologically significant odour consists of a complex pattern of compounds that is encoded in an according complex response pattern by a cooperating set of primary sensory neurons of different odour specificities.
Gait patterns in hemiplegic patients with equinus foot deformity.
Manca, M; Ferraresi, G; Cosma, M; Cavazzuti, L; Morelli, M; Benedetti, M G
2014-01-01
Equinus deformity of the foot is a common feature of hemiplegia, which impairs the gait pattern of patients. The aim of the present study was to explore the role of ankle-foot deformity in gait impairment. A hierarchical cluster analysis was used to classify the gait patterns of 49 chronic hemiplegic patients with equinus deformity of the foot, based on temporal-distance parameters and joint kinematic measures obtained by an innovative protocol for motion assessment in the sagittal, frontal, and transverse planes, synthesized by parametrical analysis. Cluster analysis identified five subgroups of patients with homogenous levels of dysfunction during gait. Specific joint kinematic abnormalities were found, according to the speed of progression in each cluster. Patients with faster walking were those with less ankle-foot complex impairment or with reduced range of motion of ankle-foot complex, that is with a stiff ankle-foot complex. Slow walking was typical of patients with ankle-foot complex instability (i.e., larger motion in all the planes), severe equinus and hip internal rotation pattern, and patients with hip external rotation pattern. Clustering of gait patterns in these patients is helpful for a better understanding of dysfunction during gait and delivering more targeted treatment.
Artistic forms and complexity.
Boon, J-P; Casti, J; Taylor, R P
2011-04-01
We discuss the inter-relationship between various concepts of complexity by introducing a complexity 'triangle' featuring objective complexity, subjective complexity and social complexity. Their connections are explored using visual and musical compositions of art. As examples, we quantify the complexity embedded within the paintings of the Jackson Pollock and the musical works of Johann Sebastian Bach. We discuss the challenges inherent in comparisons of the spatial patterns created by Pollock and the sonic patterns created by Bach, including the differing roles that time plays in these investigations. Our results draw attention to some common intriguing characteristics suggesting 'universality' and conjecturing that the fractal nature of art might have an intrinsic value of more general significance.
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few lines of shader code (provided in supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.102), is high performance, and has a negligible memory footprint.
The efficiency of geophysical adjoint codes generated by automatic differentiation tools
NASA Astrophysics Data System (ADS)
Vlasenko, A. V.; Köhl, A.; Stammer, D.
2016-02-01
The accuracy of numerical models that describe complex physical or chemical processes depends on the choice of model parameters. Estimating an optimal set of parameters by optimization algorithms requires knowledge of the sensitivity of the process of interest to model parameters. Typically the sensitivity computation involves differentiation of the model, which can be performed by applying algorithmic differentiation (AD) tools to the underlying numerical code. However, existing AD tools differ substantially in design, legibility and computational efficiency. In this study we show that, for geophysical data assimilation problems of varying complexity, the performance of adjoint codes generated by the existing AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN 90-95 elements such as structures and pointers, which are new elements that either combine groups of variables or provide aliases to memory addresses, respectively. We show that, while operator overloading tools are the only ones suitable for modern codes written in object-oriented programming languages, their computational efficiency lags behind source transformation by orders of magnitude, rendering the application of these modern tools to practical assimilation problems prohibitive. In contrast, the application of source transformation tools appears to be the most efficient choice, allowing handling even large geophysical data assimilation problems. However, they can only be applied to numerical models written in earlier generations of programming languages. Our study indicates that applying existing AD tools to realistic geophysical problems faces limitations that urgently need to be solved to allow the continuous use of AD tools for solving geophysical problems on modern computer architectures.
Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data
Batal, Iyad; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos
2015-01-01
Improving the performance of classifiers using pattern mining techniques has been an active topic of data mining research. In this work we introduce the recent temporal pattern mining framework for finding predictive patterns for monitoring and event detection problems in complex multivariate time series data. This framework first converts time series into time-interval sequences of temporal abstractions. It then constructs more complex temporal patterns backwards in time using temporal operators. We apply our framework to health care data of 13,558 diabetic patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing adverse medical conditions that are associated with diabetes. PMID:25937993
A Graph Approach to Mining Biological Patterns in the Binding Interfaces.
Cheng, Wen; Yan, Changhui
2017-01-01
Protein-RNA interactions play important roles in the biological systems. Searching for regular patterns in the Protein-RNA binding interfaces is important for understanding how protein and RNA recognize each other and bind to form a complex. Herein, we present a graph-mining method for discovering biological patterns in the protein-RNA interfaces. We represented known protein-RNA interfaces using graphs and then discovered graph patterns enriched in the interfaces. Comparison of the discovered graph patterns with UniProt annotations showed that the graph patterns had a significant overlap with residue sites that had been proven crucial for the RNA binding by experimental methods. Using 200 patterns as input features, a support vector machine method was able to classify protein surface patches into RNA-binding sites and non-RNA-binding sites with 84.0% accuracy and 88.9% precision. We built a simple scoring function that calculated the total number of the graph patterns that occurred in a protein-RNA interface. That scoring function was able to discriminate near-native protein-RNA complexes from docking decoys with a performance comparable with that of a state-of-the-art complex scoring function. Our work also revealed possible patterns that might be important for binding affinity.
NASA Astrophysics Data System (ADS)
Beskardes, G. D.; Hole, J. A.; Wang, K.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Michaelides, M.; Brown, L. D.; Quiros, D. A.
2016-12-01
Back-projection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. Back-projection is scalable to earthquakes with a wide range of magnitudes from very tiny to very large. Local dense arrays provide the opportunity to capture very tiny events for a range applications, such as tectonic microseismicity, source scaling studies, wastewater injection-induced seismicity, hydraulic fracturing, CO2 injection monitoring, volcano studies, and mining safety. While back-projection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed to overcome imaging issues. We compare the performance of back-projection using four previously used data pre-processing methods: full waveform, envelope, short-term averaging / long-term averaging (STA/LTA), and kurtosis. The goal is to identify an optimized strategy for an entirely automated imaging process that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the energy imaged at the source, preserves magnitude information, and considers computational cost. Real data issues include aliased station spacing, low signal-to-noise ratio (to <1), large noise bursts and spatially varying waveform polarity. For evaluation, the four imaging methods were applied to the aftershock sequence of the 2011 Virginia earthquake as recorded by the AIDA array with 200-400 m station spacing. These data include earthquake magnitudes from -2 to 3 with highly variable signal to noise, spatially aliased noise, and large noise bursts: realistic issues in many environments. Each of the four back-projection methods has advantages and disadvantages, and a combined multi-pass method achieves the best of all criteria. Preliminary imaging results from the 2011 Virginia dataset will be presented.
Jamil, Muhammad; Ahmad, Omar; Poh, Kian Keong; Yap, Choon Hwai
2017-07-01
Current Doppler echocardiography quantification of mitral regurgitation (MR) severity has shortcomings. Proximal isovelocity surface area (PISA)-based methods, for example, are unable to account for the fact that ultrasound Doppler can measure only one velocity component: toward or away from the transducer. In the present study, we used ultrasound-based computational fluid dynamics (Ub-CFD) to quantify mitral regurgitation and study its advantages and disadvantages compared with 2-D and 3-D PISA methods. For Ub-CFD, patient-specific mitral valve geometry and velocity data were obtained from clinical ultrasound followed by 3-D CFD simulations at an assumed flow rate. We then obtained the average ratio of the ultrasound Doppler velocities to CFD velocities in the flow convergence region, and scaled CFD flow rate with this ratio as the final measured flow rate. We evaluated Ub-CFD, 2-D PISA and 3-D PISA with an in vitro flow loop, which featured regurgitation flow through (i) a simplified flat plate with round orifice and (ii) a 3-D printed realistic mitral valve and regurgitation orifice. The Ub-CFD and 3-D PISA methods had higher precision than the 2-D PISA method. Ub-CFD had consistent accuracy under all conditions tested, whereas 2-D PISA had the lowest overall accuracy. In vitro investigations indicated that the accuracy of 2-D and 3-D PISA depended significantly on the choice of aliasing velocity. Evaluation of these techniques was also performed for two clinical cases, and the dependency of PISA on aliasing velocity was similarly observed. Ub-CFD was robustly accurate and precise and has promise for future translation to clinical practice. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
The Martian atmospheric planetary boundary layer stability, fluxes, spectra, and similarity
NASA Technical Reports Server (NTRS)
Tillman, James E.
1994-01-01
This is the first analysis of the high frequency data from the Viking lander and spectra of wind, in the Martian atmospheric surface layer, along with the diurnal variation of the height of the mixed surface layer, are calculated for the first time for Mars. Heat and momentum fluxes, stability, and z(sub O) are estimated for early spring, from a surface temperature model and from Viking Lander 2 temperatures and winds at 44 deg N, using Monin-Obukhov similarity theory. The afternoon maximum height of the mixed layer for these seasons and conditions is estimated to lie between 3.6 and 9.2 km. Estimations of this height is of primary importance to all models of the boundary layer and Martian General Circulation Models (GCM's). Model spectra for two measuring heights and three surface roughnesses are calculated using the depth of the mixed layer, and the surface layer parameters and flow distortion by the lander is also taken into account. These experiments indicate that z(sub O), probably lies between 1.0 and 3.0 cm, and most likely is closer to 1.0 cm. The spectra are adjusted to simulate aliasing and high frequency rolloff, the latter caused both by the sensor response and the large Kolmogorov length on Mars. Since the spectral models depend on the surface parameters, including the estimated surface temperature, their agreement with the calculated spectra indicates that the surface layer estimates are self consistent. This agreement is especially noteworthy in that the inertial subrange is virtually absent in the Martian atmosphere at this height, due to the large Kolmogorov length scale. These analyses extend the range of applicability of terrestrial results and demonstrate that it is possible to estimate the effects of severe aliasing of wind measurements, to produce a models which agree well with the measured spectra. The results show that similarity theory developed for Earth applies to Mars, and that the spectral models are universal.
Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide
2018-03-13
Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.
NASA Astrophysics Data System (ADS)
Daras, Ilias; Visser, Pieter; Sneeuw, Nico; van Dam, Tonie; Pail, Roland; Gruber, Thomas; Tabibi, Sajad; Chen, Qiang; Liu, Wei; Tourian, Mohammad; Engels, Johannes; Saemian, Peyman; Siemes, Christian; Haagmans, Roger
2017-04-01
Next Generation Gravity Missions (NGGMs) expected to be launched in the mid-term future have set high anticipations for an enhanced monitoring of mass transport in the Earth system, establishing their products applicable to new scientific fields and serving societal needs. The European Space Agency (ESA) has issued several studies on concepts of NGGMs. Following this tradition, the project "Additional Constellations & Scientific Analysis Studies of the Next Generation Gravity Mission" picks up where the previous study ESA-SC4MGV left off. One of the ESA-ADDCON project objectives is to investigate the impact of different orbit configurations and parameters on the gravity field retrieval. Given a two-pair Bender-type constellation, consisting of a polar and an inclined pair, choices for orbit design such as the altitude profile during mission lifetime, the length of retrieval period, the value of sub-cycles and the choice of a prograde over a retrograde orbit are investigated. Moreover, the problem of aliasing due to ocean tide model inaccuracies, as well as methods for mitigating their effect on gravity field solutions are investigated in the context of NGGMs. The performed simulations make use of the gravity field processing approach where low-resolution gravity field solutions are co-parameterized in short-term periods (e.g. daily) together with the long-term solutions (e.g. 11-day solution). This method proved to be beneficial for NGGMs (ESA-SC4MGV project) since the enhanced spatio-temporal sampling enables a self-de-aliasing of high-frequency atmospheric and oceanic signals, which may now be a part of the retrieved signal. The potential added value of having such signals for the first time in near real-time is assessed within the project. This paper demonstrates the preliminary results of the ESA-ADDCON project focusing on aspects of orbit design choices for NGGMs.
Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro, Ricardo
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.
Alam, M S; Bognar, J G; Cain, S; Yasuda, B J
1998-03-10
During the process of microscanning a controlled vibrating mirror typically is used to produce subpixel shifts in a sequence of forward-looking infrared (FLIR) images. If the FLIR is mounted on a moving platform, such as an aircraft, uncontrolled random vibrations associated with the platform can be used to generate the shifts. Iterative techniques such as the expectation-maximization (EM) approach by means of the maximum-likelihood algorithm can be used to generate high-resolution images from multiple randomly shifted aliased frames. In the maximum-likelihood approach the data are considered to be Poisson random variables and an EM algorithm is developed that iteratively estimates an unaliased image that is compensated for known imager-system blur while it simultaneously estimates the translational shifts. Although this algorithm yields high-resolution images from a sequence of randomly shifted frames, it requires significant computation time and cannot be implemented for real-time applications that use the currently available high-performance processors. The new image shifts are iteratively calculated by evaluation of a cost function that compares the shifted and interlaced data frames with the corresponding values in the algorithm's latest estimate of the high-resolution image. We present a registration algorithm that estimates the shifts in one step. The shift parameters provided by the new algorithm are accurate enough to eliminate the need for iterative recalculation of translational shifts. Using this shift information, we apply a simplified version of the EM algorithm to estimate a high-resolution image from a given sequence of video frames. The proposed modified EM algorithm has been found to reduce significantly the computational burden when compared with the original EM algorithm, thus making it more attractive for practical implementation. Both simulation and experimental results are presented to verify the effectiveness of the proposed technique.
Yang, Albert C; Hong, Chen-Jee; Liou, Yin-Jay; Huang, Kai-Lin; Huang, Chu-Chung; Liu, Mu-En; Lo, Men-Tzung; Huang, Norden E; Peng, Chung-Kang; Lin, Ching-Po; Tsai, Shih-Jen
2015-06-01
Schizophrenia is characterized by heterogeneous pathophysiology. Using multiscale entropy (MSE) analysis, which enables capturing complex dynamics of time series, we characterized MSE patterns of blood-oxygen-level-dependent (BOLD) signals across different time scales and determined whether BOLD activity in patients with schizophrenia exhibits increased complexity (increased entropy in all time scales), decreased complexity toward regularity (decreased entropy in all time scales), or decreased complexity toward uncorrelated randomness (high entropy in short time scales followed by decayed entropy as the time scale increases). We recruited 105 patients with schizophrenia with an age of onset between 18 and 35 years and 210 age- and sex-matched healthy volunteers. Results showed that MSE of BOLD signals in patients with schizophrenia exhibited two routes of decreased BOLD complexity toward either regular or random patterns. Reduced BOLD complexity toward regular patterns was observed in the cerebellum and temporal, middle, and superior frontal regions, and reduced BOLD complexity toward randomness was observed extensively in the inferior frontal, occipital, and postcentral cortices as well as in the insula and middle cingulum. Furthermore, we determined that the two types of complexity change were associated differently with psychopathology; specifically, the regular type of BOLD complexity change was associated with positive symptoms of schizophrenia, whereas the randomness type of BOLD complexity was associated with negative symptoms of the illness. These results collectively suggested that resting-state dynamics in schizophrenia exhibit two routes of pathologic change toward regular or random patterns, which contribute to the differences in syndrome domains of psychosis in patients with schizophrenia. © 2015 Wiley Periodicals, Inc.
Development of an integrated sub-picometric SWIFTS-based wavelength meter
NASA Astrophysics Data System (ADS)
Duchemin, Céline; Thomas, Fabrice; Martin, Bruno; Morino, Eric; Puget, Renaud; Oliveres, Robin; Bonneville, Christophe; Gonthiez, Thierry; Valognes, Nicolas
2017-02-01
SWIFTSTM technology has been known for over five years to offer compact and high-resolution laser spectrum analyzers. The increase of wavelength monitoring demand with even better accuracy and resolution has pushed the development of a wavelength meter based on SWIFTSTM technology, named LW-10. As a reminder, SWIFTSTM principle consists in a waveguide in which a stationary wave is created, sampled and read out by a linear image sensor array. Due to its inherent properties (non-uniform subsampling) and aliasing signal (as presented in Shannon-Nyquist criterion), the system offers short spectral window bandwidths thus needs an a priori on the working wavelength and thermal monitoring. Although SWIFTSTM-based devices are barely sensitive to atmospheric pressure, temperature control is a key factor to master both high accuracy and wavelength meter resolution. Temperature control went from passive (temperature probing only) to active control (Peltier thermoelectric cooler) with milli-degree accuracy. The software part consists in dropping the Fourier-like transform, for a least-squares method directly on the interference pattern. Moreover, the consideration of the system's chromatic behavior provides a "signature" for automated wavelength detection and discrimination. This SWIFTSTM-based new device - LW-10 - shows outstanding results in terms of absolute accuracy, wavelength meter resolution as well as calibration robustness within a compact device, compared to other existing technologies. On the 630 - 1100 nm range, the final device configuration allows pulsed or CW lasers monitoring with 20 MHz resolution and 200 MHz absolute accuracy. Non-exhaustive applications include tunable laser control and frequency locking experiments
Comparing the imaging performance of computed super resolution and magnification tomosynthesis
NASA Astrophysics Data System (ADS)
Maidment, Tristan D.; Vent, Trevor L.; Ferris, William S.; Wurtele, David E.; Acciavatti, Raymond J.; Maidment, Andrew D. A.
2017-03-01
Computed super-resolution (SR) is a method of reconstructing images with pixels that are smaller than the detector element size; superior spatial resolution is achieved through the elimination of aliasing and alteration of the sampling function imposed by the reconstructed pixel aperture. By comparison, magnification mammography is a method of projection imaging that uses geometric magnification to increase spatial resolution. This study explores the development and application of magnification digital breast tomosynthesis (MDBT). Four different acquisition geometries are compared in terms of various image metrics. High-contrast spatial resolution was measured in various axes using a lead star pattern. A modified Defrise phantom was used to determine the low-frequency spatial resolution. An anthropomorphic phantom was used to simulate clinical imaging. Each experiment was conducted at three different magnifications: contact (1.04x), MAG1 (1.3x), and MAG2 (1.6x). All images were taken on our next generation tomosynthesis system, an in-house solution designed to optimize SR. It is demonstrated that both computed SR and MDBT (MAG1 and MAG2) provide improved spatial resolution over non-SR contact imaging. To achieve the highest resolution, SR and MDBT should be combined. However, MDBT is adversely affected by patient motion at higher magnifications. In addition, MDBT requires more radiation dose and delays diagnosis, since MDBT would be conducted upon recall. By comparison, SR can be conducted with the original screening data. In conclusion, this study demonstrates that computed SR and MDBT are both viable methods of imaging the breast.
Knoll, Florian; Hammernik, Kerstin; Kobler, Erich; Pock, Thomas; Recht, Michael P; Sodickson, Daniel K
2018-05-17
Although deep learning has shown great promise for MR image reconstruction, an open question regarding the success of this approach is the robustness in the case of deviations between training and test data. The goal of this study is to assess the influence of image contrast, SNR, and image content on the generalization of learned image reconstruction, and to demonstrate the potential for transfer learning. Reconstructions were trained from undersampled data using data sets with varying SNR, sampling pattern, image contrast, and synthetic data generated from a public image database. The performance of the trained reconstructions was evaluated on 10 in vivo patient knee MRI acquisitions from 2 different pulse sequences that were not used during training. Transfer learning was evaluated by fine-tuning baseline trainings from synthetic data with a small subset of in vivo MR training data. Deviations in SNR between training and testing led to substantial decreases in reconstruction image quality, whereas image contrast was less relevant. Trainings from heterogeneous training data generalized well toward the test data with a range of acquisition parameters. Trainings from synthetic, non-MR image data showed residual aliasing artifacts, which could be removed by transfer learning-inspired fine-tuning. This study presents insights into the generalization ability of learned image reconstruction with respect to deviations in the acquisition settings between training and testing. It also provides an outlook for the potential of transfer learning to fine-tune trainings to a particular target application using only a small number of training cases. © 2018 International Society for Magnetic Resonance in Medicine.
Navarro, Pedro J.; Fernández, Carlos; Weiss, Julia; Egea-Cortines, Marcos
2012-01-01
Plant development is the result of an endogenous morphogenetic program that integrates environmental signals. The so-called circadian clock is a set of genes that integrates environmental inputs into an internal pacing system that gates growth and other outputs. Study of circadian growth responses requires high sampling rates to detect changes in growth and avoid aliasing. We have developed a flexible configurable growth chamber comprising a computer vision system that allows sampling rates ranging between one image per 30 s to hours/days. The vision system has a controlled illumination system, which allows the user to set up different configurations. The illumination system used emits a combination of wavelengths ensuring the optimal growth of species under analysis. In order to obtain high contrast of captured images, the capture system is composed of two CCD cameras, for day and night periods. Depending on the sample type, a flexible image processing software calculates different parameters based on geometric calculations. As a proof of concept we tested the system in three different plant tissues, growth of petunia- and snapdragon (Antirrhinum majus) flowers and of cladodes from the cactus Opuntia ficus-indica. We found that petunia flowers grow at a steady pace and display a strong growth increase in the early morning, whereas Opuntia cladode growth turned out not to follow a circadian growth pattern under the growth conditions imposed. Furthermore we were able to identify a decoupling of increase in area and length indicating that two independent growth processes are responsible for the final size and shape of the cladode. PMID:23202214
Complex genetic patterns in closely related colonizing invasive species
Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, par...
Weaving and neural complexity in symmetric quantum states
NASA Astrophysics Data System (ADS)
Susa, Cristian E.; Girolami, Davide
2018-04-01
We study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.
Simulation Study of a Follow-on Gravity Mission to GRACE
NASA Technical Reports Server (NTRS)
Loomis, Bryant D.; Nerem, R. S.; Luthcke, Scott B.
2012-01-01
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.
Pattern formation based on complex coupling mechanism in dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Weibo; College of Aeronautical Engineering, Binzhou University, Binzhou 256603; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com
2016-08-15
The pattern formation of cinque-dice square superlattice pattern (CDSSP) is investigated based on the complex coupling mechanism in a dielectric barrier discharge (DBD) system. The spatio-temporal structure of CDSSP obtained by using an intensified-charge coupled device indicates that CDSSP is an interleaving of two kinds of subpatterns (mixture of rectangle and square, and dot-line square) which discharge twice in one half voltage, respectively. Selected by the complex coupling of two subpatterns, the CDSSP can be formed and shows good stability. This investigation based on gas discharge theory together with nonlinear theory may provide a deeper understanding for the nonlinear characteristicsmore » and even the formation mechanism of patterns in DBD.« less
Pattern recognition tool based on complex network-based approach
NASA Astrophysics Data System (ADS)
Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir
2013-02-01
This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.
Complex monitoring performance and the coronary-prone Type A behavior pattern.
DOT National Transportation Integrated Search
1986-03-01
The present study examined the possible relationship of the coronary-prone Type A behavior pattern to performance of a complex monitoring task. The task was designed to functionally simulate the general task characteristics of future, highly automate...
Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.
2015-03-01
During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.
Pattern dynamics of the reaction-diffusion immune system.
Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie
2018-01-01
In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.
Light-Directed Particle Patterning by Evaporative Optical Marangoni Assembly.
Varanakkottu, Subramanyan Namboodiri; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Baigl, Damien
2016-01-13
Controlled particle deposition on surfaces is crucial for both exploiting collective properties of particles and their integration into devices. Most available methods depend on intrinsic properties of either the substrate or the particles to be deposited making them difficult to apply to complex, naturally occurring or industrial formulations. Here we describe a new strategy to pattern particles from an evaporating drop, regardless of inherent particle characteristics and suspension composition. We use light to generate Marangoni surface stresses resulting in flow patterns that accumulate particles at predefined positions. Using projected images, we generate a broad variety of complex patterns, including multiple spots, lines and letters. Strikingly, this method, which we call evaporative optical Marangoni assembly (eOMA), allows us to pattern particles regardless of their size or surface properties, in model suspensions as well as in complex, real-world formulations such as commercial coffee.
Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs
Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall
2012-01-01
Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312
Module-based complexity formation: periodic patterning in feathers and hairs.
Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall
2013-01-01
Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. © 2012 Wiley Periodicals, Inc.
Weaving and neural complexity in symmetric quantum states
Susa, Cristian E.; Girolami, Davide
2017-12-27
Here, we study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.
Weaving and neural complexity in symmetric quantum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susa, Cristian E.; Girolami, Davide
Here, we study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.
Gauvrit, Nicolas; Soler-Toscano, Fernando; Guida, Alessandro
2017-03-01
In two experiments, Friedenberg and Liby (2016) studied how a diversity of complexity estimates such as density, number of blocks, GIF compression rate and edge length impact the perception of beauty of semi-random two-dimensional patterns. They concluded that aesthetics ratings are positively linked with GIF compression metrics and edge length, but not with the number of blocks. They also found an inverse U-shaped link between aesthetic judgments and density. These mixed results originate in the variety of metrics used to estimate what is loosely called "complexity" in psychology and indeed refers to conflicting notions. Here, we reanalyze their data adding two more conventional and normative mathematical measures of complexity: entropy and algorithmic complexity. We show that their results can be interpreted as an aesthetic preference for low redundancy, balanced patterns and "crooked" figures, but not for high algorithmic complexity. We conclude that participants tend to have a preference for some types of complexity, but not for all. These findings may help understand divergent results in the study of perceived beauty and complexity, and illustrate the need to specify the notion of complexity used in psychology. The field would certainly benefit from a precise taxonomy of complexity measures. Copyright © 2017 Elsevier B.V. All rights reserved.
Termination Patterns of Complex Partial Seizures: An Intracranial EEG Study
Afra, Pegah; Jouny, Christopher C.; Bergey, Gregory K.
2015-01-01
Purpose While seizure onset patterns have been the subject of many reports, there have been few studies of seizure termination. In this study we report the incidence of synchronous and asynchronous termination patterns of partial seizures recorded with intracranial arrays. Methods Data were collected from patients with intractable complex partial seizures undergoing presurgical evaluations with intracranial electrodes. Patients with seizures originating from mesial temporal and neocortical regions were grouped into three groups based on patterns of seizure termination: synchronous only (So), asynchronous only (Ao), or mixed (S/A, with both synchronous and asynchronous termination patterns). Results 88% of the patients in the MT group had seizures with a synchronous pattern of termination exclusively (38%) or mixed (50%). 82% of the NC group had seizures with synchronous pattern of termination exclusively (52%) or mixed (30%). In the NC group, there was a significant difference of the range of seizure durations between So and Ao groups, with Ao exhibiting higher variability. Seizures with synchronous termination had low variability in both groups. Conclusions Synchronous seizure termination is a common pattern for complex partial seizures of both mesial temporal or neocortical onset. This may reflect stereotyped network behavior or dynamics at the seizure focus. PMID:26552555
Dynamic Skin Patterns in Cephalopods
How, Martin J.; Norman, Mark D.; Finn, Julian; Chung, Wen-Sung; Marshall, N. Justin
2017-01-01
Cephalopods are unrivaled in the natural world in their ability to alter their visual appearance. These mollusks have evolved a complex system of dermal units under neural, hormonal, and muscular control to produce an astonishing variety of body patterns. With parallels to the pixels on a television screen, cephalopod chromatophores can be coordinated to produce dramatic, dynamic, and rhythmic displays, defined collectively here as “dynamic patterns.” This study examines the nature, context, and potential functions of dynamic patterns across diverse cephalopod taxa. Examples are presented for 21 species, including 11 previously unreported in the scientific literature. These range from simple flashing or flickering patterns, to highly complex passing wave patterns involving multiple skin fields. PMID:28674500
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios
2017-07-01
We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.
Development of flight testing techniques
NASA Technical Reports Server (NTRS)
Sandlin, D. R.
1984-01-01
A list of students involved in research on flight analysis and development is given along with abstracts of their work. The following is a listing of the titles of each work: Longitudinal stability and control derivatives obtained from flight data of a PA-30 aircraft; Aerodynamic drag reduction tests on a box shaped vehicle; A microprocessor based anti-aliasing filter for a PCM system; Flutter prediction of a wing with active aileron control; Comparison of theoretical and flight measured local flow aerodynamics for a low aspect ratio fin; In flight thrust determination on a real time basis; A comparison of computer generated lift and drag polars for a Wortmann airfoil to flight and wind tunnel results; and Deep stall flight testing of the NASA SGS 1-36.
Filtering of non-linear instabilities
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1978-01-01
For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown that these problems can be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate filtering can reduce the intensity of these oscillations and possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and nonconservation differencing. The entire spectrum of filtered equations retains a three point character as well as second order spatial accuracy. Burgers equation was considered as a model.
Analysis of single ion channel data incorporating time-interval omission and sampling
The, Yu-Kai; Timmer, Jens
2005-01-01
Hidden Markov models are widely used to describe single channel currents from patch-clamp experiments. The inevitable anti-aliasing filter limits the time resolution of the measurements and therefore the standard hidden Markov model is not adequate anymore. The notion of time-interval omission has been introduced where brief events are not detected. The developed, exact solutions to this problem do not take into account that the measured intervals are limited by the sampling time. In this case the dead-time that specifies the minimal detectable interval length is not defined unambiguously. We show that a wrong choice of the dead-time leads to considerably biased estimates and present the appropriate equations to describe sampled data. PMID:16849220
NASA Technical Reports Server (NTRS)
Young, Andrew T.
1988-01-01
Atmospheric extinction in wideband photometry is examined both analytically and through numerical simulations. If the derivatives that appear in the Stromgren-King theory are estimated carefully, it appears that wideband measurements can be transformed to outside the atmosphere with errors no greater than a millimagnitude. A numerical analysis approach is used to estimate derivatives of both the stellar and atmospheric extinction spectra, avoiding previous assumptions that the extinction follows a power law. However, it is essential to satify the requirements of the sampling theorem to keep aliasing errors small. Typically, this means that band separations cannot exceed half of the full width at half-peak response. Further work is needed to examine higher order effects, which may well be significant.
Phase retrieval algorithm for JWST Flight and Testbed Telescope
NASA Astrophysics Data System (ADS)
Dean, Bruce H.; Aronstein, David L.; Smith, J. Scott; Shiri, Ron; Acton, D. Scott
2006-06-01
An image-based wavefront sensing and control algorithm for the James Webb Space Telescope (JWST) is presented. The algorithm heritage is discussed in addition to implications for algorithm performance dictated by NASA's Technology Readiness Level (TRL) 6. The algorithm uses feedback through an adaptive diversity function to avoid the need for phase-unwrapping post-processing steps. Algorithm results are demonstrated using JWST Testbed Telescope (TBT) commissioning data and the accuracy is assessed by comparison with interferometer results on a multi-wave phase aberration. Strategies for minimizing aliasing artifacts in the recovered phase are presented and orthogonal basis functions are implemented for representing wavefronts in irregular hexagonal apertures. Algorithm implementation on a parallel cluster of high-speed digital signal processors (DSPs) is also discussed.
Efficient matrix approach to optical wave propagation and Linear Canonical Transforms.
Shakir, Sami A; Fried, David L; Pease, Edwin A; Brennan, Terry J; Dolash, Thomas M
2015-10-05
The Fresnel diffraction integral form of optical wave propagation and the more general Linear Canonical Transforms (LCT) are cast into a matrix transformation form. Taking advantage of recent efficient matrix multiply algorithms, this approach promises an efficient computational and analytical tool that is competitive with FFT based methods but offers better behavior in terms of aliasing, transparent boundary condition, and flexibility in number of sampling points and computational window sizes of the input and output planes being independent. This flexibility makes the method significantly faster than FFT based propagators when only a single point, as in Strehl metrics, or a limited number of points, as in power-in-the-bucket metrics, are needed in the output observation plane.
Ambient occlusion effects for combined volumes and tubular geometry.
Schott, Mathias; Martin, Tobias; Grosset, A V Pascal; Smith, Sean T; Hansen, Charles D
2013-06-01
This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.
Ambient Occlusion Effects for Combined Volumes and Tubular Geometry
Schott, Mathias; Martin, Tobias; Grosset, A.V. Pascal; Smith, Sean T.; Hansen, Charles D.
2013-01-01
This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed. PMID:23559506
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
Bursting Transition Dynamics Within the Pre-Bötzinger Complex
NASA Astrophysics Data System (ADS)
Duan, Lixia; Chen, Xi; Tang, Xuhui; Su, Jianzhong
The pre-Bötzinger complex of the mammalian brain stem plays a crucial role in the respiratory rhythms generation. Neurons within the pre-Bötzinger complex have been found experimentally to yield different firing activities. In this paper, we study the spiking and bursting activities related to the respiratory rhythms in the pre-Bötzinger complex based on a mathematical model proposed by Butera. Using the one-dimensional first recurrence map induced by dynamics, we investigate the different bursting patterns and their transition of the pre-Bötzinger complex neurons based on the Butera model, after we derived a one-dimensional map from the dynamical characters of the differential equations, and we obtained conditions for the transition of different bursting patterns. These analytical results were verified through numerical simulations. We conclude that the one-dimensional map contains similar rhythmic patterns as the Butera model and can be used as a simpler modeling tool to study fast-slow models like pre-Bötzinger complex neural circuit.
Automated Discovery and Modeling of Sequential Patterns Preceding Events of Interest
NASA Technical Reports Server (NTRS)
Rohloff, Kurt
2010-01-01
The integration of emerging data manipulation technologies has enabled a paradigm shift in practitioners' abilities to understand and anticipate events of interest in complex systems. Example events of interest include outbreaks of socio-political violence in nation-states. Rather than relying on human-centric modeling efforts that are limited by the availability of SMEs, automated data processing technologies has enabled the development of innovative automated complex system modeling and predictive analysis technologies. We introduce one such emerging modeling technology - the sequential pattern methodology. We have applied the sequential pattern methodology to automatically identify patterns of observed behavior that precede outbreaks of socio-political violence such as riots, rebellions and coups in nation-states. The sequential pattern methodology is a groundbreaking approach to automated complex system model discovery because it generates easily interpretable patterns based on direct observations of sampled factor data for a deeper understanding of societal behaviors that is tolerant of observation noise and missing data. The discovered patterns are simple to interpret and mimic human's identifications of observed trends in temporal data. Discovered patterns also provide an automated forecasting ability: we discuss an example of using discovered patterns coupled with a rich data environment to forecast various types of socio-political violence in nation-states.
Smart printing technology for counterfeit deterrence
NASA Astrophysics Data System (ADS)
Harrop, Peter J.
1996-03-01
Smart (intelligent) printing is the creation of useful patterns beyond alphanumerics and graphics immediately obvious to the human eye. It employs smart inks, patterns, surfaces and substrates. Recent proliferation of color copiers, personal computers and scanners has facilitated a tenfold increase in counterfeiting in many countries over the past three years. Banknotes, cheques, academic certificates, art work, visitors passes, venue tickets and many other artifacts have been compromised. Paradoxically, the best counterfeits produced by some foreign governments and organized crime are rarely the main problem. The secret services of many countries use forensic science to great effect in pursuing these fairly readily identified sources of limited number. Bad counterfeits usually made on color copiers or computers, with or without color scanners, are the most difficult to combat because they are made by very large numbers of casual counterfeiters who may never commit crime again. For instance, counterfeit banknotes intercepted by the Bundesbank have been photocopies in a fluctuating range of 50 - 84% of cases in the last four reported years. Cheque and other document fraud is also inflated by these burgeoning bad copies and here we must add amateurish alterations using copiers or scanners. For instance, a better academic degree can mean a better job, an interbank transfer form can be 'raised' in value by enormous amounts. The issuer of a 'bad' counterfeit does not mind that it is usually picked up on a second transferral. They are long gone by then or, with banknotes, they can deny that they issued it. First priority in reversing the upward trend of counterfeiting must not therefore be the creation of better secret features traceable by forensic laboratories over extended periods of time. Rather we need better and more obvious optically unique features, not easily emulated, that can be spotted in the split second when several, say, banknotes are handed over in a dimly lit surrounding. It is usually impractical for the recipient to use a portable optical or electronic checker. Nevertheless, better, cheaper, smaller and faster validating instruments would also be a help, particularly for small shops. Here the new Mars Electronics Cashguard banknote validator is great progress. It performs rapid complex analysis on banknotes yet costs well under $500. Designs must improve though. Advanced aliasing takes advantage of the fact that copiers and computer scanners have poor resolution and scan in a certain way. So far it has been useful on color documents: gray versions are particularly effective making words like ILLEGAL COPY appear on all copies. However, smart patterns such as Kalamazoo Copyvoid have been of less use against monochrome counterfeits -- photocopied expensive books, vehicle insurance forms and sheet music for instance. This is because the contrast controls can be used to wipe it out (with color the colors would be ruined by such action). However, the Kalamazoo Laboratories in the UK have just announced a new version of Copyvoid that works at both high and low contrast photocopying or scanning. Indeed, it is also milder and more even to look at so even sheet music can be printed over it using conventional inks and still read clearly. The problem of 'bad ' counterfeits is very severe with 1 in 100 counterfeit banknotes being suffered in some UK locations and Northern Ireland seeing a tenfold increase in counterfeits overall in the last 12 months. Cheque fraud doubles each year in some countries. The solution here must be for the authorities to totally redesign both far more often -- say at least every five years -- and follow best practice in totally withdrawing/invalidating the old ones.
Blanes-Mira, Clara; Merino, Jaime M; Valera, Elvira; Fernández-Ballester, Gregorio; Gutiérrez, Luis M; Viniegra, Salvador; Pérez-Payá, Enrique; Ferrer-Montiel, Antonio
2004-01-01
Synthetic peptides patterned after the C-terminus of synaptosomal associated protein of 25 kDa (SNAP25) efficiently abrogate regulated exocytosis. In contrast, the use of SNAP25 N-terminal-derived peptides to modulate SNAP receptors (SNARE) complex assembly and neurosecretion has not been explored. Here, we show that the N-terminus of SNAP25, specially the segment that encompasses 22Ala-44Ile, is essential for the formation of the SNARE complex. Peptides patterned after this protein domain are potent inhibitors of SNARE complex formation. The inhibitory activity correlated with their propensity to adopt an alpha-helical secondary structure. These peptides abrogated SNARE complex formation only when added previous to the onset of aggregate assembly. Analysis of the mechanism of action revealed that these peptides disrupted the binary complex formed by SNAP25 and syntaxin. The identified peptides inhibited Ca2+-dependent exocytosis from detergent-permeabilized excitable cells. Noteworthy, these amino acid sequences markedly protected intact hippocampal neurones against hypoglycaemia-induced, glutamate-mediated excitotoxicity with a potency that rivalled that displayed by botulinum neurotoxins. Our findings indicate that peptides patterned after the N-terminus of SNAP25 are potent inhibitors of SNARE complex formation and neuronal exocytosis. Because of their activity in intact neurones, these cell permeable peptides may be hits for antispasmodic and analgesic drug development.
Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile
NASA Astrophysics Data System (ADS)
Hervé, F.; Fanning, C. M.; Pankhurst, R. J.
2003-05-01
Zircon SHRIMP U-Pb age patterns are reported for 13 metasedimentary rocks from the low grade metamorphic complexes of the Patagonian Andes. Combined with four recently published patterns, these provide the first detailed survey of the provenance of these complexes. The youngest dated zircons, corresponding to maximum sedimentation ages, are Devonian-Late Triassic in the eastern Andes metamorphic complex, Carboniferous in the main range metamorphic complex, Permian in the Duque de York complex, and Late Triassic in the Chonos metamorphic complex. In the last two cases, these ages are in agreement with their respective fossil ages. Older components in the eastern Andes metamorphic complex include a large proportion of Proterozoic (predominantly 1000-1200 Ma) zircons, which may indicate distribution, probably by rivers, of detrital material from regions currently in northern South America, Africa, or east Antarctica. The abundance of Proterozoic zircons is very much less in the Duque de York complex, possibly because of the rise of an inferred Permian magmatic arc related to the Gondwanan orogeny and consequent westward migration of the watershed. A Late Triassic magmatic episode is registered in the Chonos metamorphic complex, where reappearance of significant Proterozoic zircons indicates exhumation of the cratonic areas or of recycled sedimentary material.
Leder, Helmut
2017-01-01
Visual complexity is relevant for many areas ranging from improving usability of technical displays or websites up to understanding aesthetic experiences. Therefore, many attempts have been made to relate objective properties of images to perceived complexity in artworks and other images. It has been argued that visual complexity is a multidimensional construct mainly consisting of two dimensions: A quantitative dimension that increases complexity through number of elements, and a structural dimension representing order negatively related to complexity. The objective of this work is to study human perception of visual complexity utilizing two large independent sets of abstract patterns. A wide range of computational measures of complexity was calculated, further combined using linear models as well as machine learning (random forests), and compared with data from human evaluations. Our results confirm the adequacy of existing two-factor models of perceived visual complexity consisting of a quantitative and a structural factor (in our case mirror symmetry) for both of our stimulus sets. In addition, a non-linear transformation of mirror symmetry giving more influence to small deviations from symmetry greatly increased explained variance. Thus, we again demonstrate the multidimensional nature of human complexity perception and present comprehensive quantitative models of the visual complexity of abstract patterns, which might be useful for future experiments and applications. PMID:29099832
Mechanisms Mediating the Perception of Complex Acoustic Patterns
1990-11-09
units stimulated by the louder sound include the units stimulated by the fainter sound. Thus, auditory induction corresponds to a rather sophisticated...FIELD GRU - auditory perception, complex sounds I. I 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Five studies were...show how auditory mechanisms employed for the processing of complex nonverbal patterns have been modified for the perception of speech. 2 Richard M
ERIC Educational Resources Information Center
Eoyang, Glenda H.
2007-01-01
Complex human interactions involve more than just performance toward pre-determined goals. For this reason, systems that measure and seek to improve performance must adapt to a wide range of ever-changing patterns of individual and group behavior. Historically, HPT professionals have recognized these complexities and responded in a variety of…
Fractal Analysis of Radiologists Visual Scanning Pattern in Screening Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alamudun, Folami T; Yoon, Hong-Jun; Hudson, Kathy
2015-01-01
Several investigators have investigated radiologists visual scanning patterns with respect to features such as total time examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the complexity of the radiologists visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant). The radiologists scanpaths across the 4 mammographic views were mapped to a single 2-D image plane. Then,more » fractal analysis was applied on the derived scanpaths using the box counting method. For each case, the complexity of each radiologist s scanpath was estimated using fractal dimension. The association between gaze complexity, case pathology, case density, and radiologist experience was evaluated using 3 factor fixed effects ANOVA. ANOVA showed that case pathology, breast density, and experience level are all independent predictors of the visual scanning pattern complexity. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases as well as when breast parenchyma density changes.« less
Complexity of cardiovascular rhythms during head-up tilt test by entropy of patterns.
Wejer, Dorota; Graff, Beata; Makowiec, Danuta; Budrejko, Szymon; Struzik, Zbigniew R
2017-05-01
The head-up tilt (HUT) test, which provokes transient dynamical alterations in the regulation of cardiovascular system, provides insights into complex organization of this system. Based on signals with heart period intervals (RR-intervals) and/or systolic blood pressure (SBP), differences in the cardiovascular regulation between vasovagal patients (VVS) and the healthy people group (CG) are investigated. Short-term relations among signal data represented symbolically by three-beat patterns allow to qualify and quantify the complexity of the cardiovascular regulation by Shannon entropy. Four types of patterns: permutation, ordinal, deterministic and dynamical, are used, and different resolutions of signal values in the the symbolization are applied in order to verify how entropy of patterns depends on a way in which values of signals are preprocessed. At rest, in the physiologically important signal resolution ranges, independently of the type of patterns used in estimates, the complexity of SBP signals in VVS is different from the complexity found in CG. Entropy of VVS is higher than CG what could be interpreted as substantial presence of noisy ingredients in SBP of VVS. After tilting this relation switches. Entropy of CG occurs significantly higher than VVS for SBP signals. In the case of RR-intervals and large resolutions, the complexity after the tilt becomes reduced when compared to the complexity of RR-intervals at rest for both groups. However, in the case of VVS patients this reduction is significantly stronger than in CG. Our observations about opposite switches in entropy between CG and VVS might support a hypothesis that baroreflex in VVS affects stronger the heart rate because of the inefficient regulation (possibly impaired local vascular tone alternations) of the blood pressure.
Biological pattern formation: from basic mechanisms to complex structures
NASA Astrophysics Data System (ADS)
Koch, A. J.; Meinhardt, H.
1994-10-01
The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns? Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of Drosophila and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.
Pérez I de Lanuza, G; Font, E
2016-05-01
Many animals display complex colour patterns that comprise several adjacent, often contrasting colour patches. Combining patches of complementary colours increases the overall conspicuousness of the complex pattern, enhancing signal detection. Therefore, selection for conspicuousness may act not only on the design of single colour patches, but also on their combination. Contrasting long- and short-wavelength colour patches are located on the ventral and lateral surfaces of many lacertid lizards. As the combination of long- and short-wavelength-based colours generates local chromatic contrast, we hypothesized that selection may favour the co-occurrence of lateral and ventral contrasting patches, resulting in complex colour patterns that maximize the overall conspicuousness of the signal. To test this hypothesis, we performed a comparative phylogenetic study using a categorical colour classification based on spectral data and descriptive information on lacertid coloration collected from the literature. Our results demonstrate that conspicuous ventral (long-wavelength-based) and lateral (short-wavelength-based) colour patches co-occur throughout the lacertid phylogeny more often than expected by chance, especially in the subfamily Lacertini. These results suggest that selection promotes the evolution of the complex pattern rather than the acquisition of a single conspicuous colour patch, possibly due to the increased conspicuousness caused by the combination of colours with contrasting spectral properties. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Extended generalized recurrence plot quantification of complex circular patterns
NASA Astrophysics Data System (ADS)
Riedl, Maik; Marwan, Norbert; Kurths, Jürgen
2017-03-01
The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing patterns, turbulent spatial plankton patterns, and fractals. Determinism is a central measure in this framework quantifying the level of regularity of spatial structures. We show by basic examples of fully regular patterns of different symmetries that this measure underestimates the orderliness of circular patterns resulting from rotational symmetries. We overcome this crucial problem by checking additional structural elements of the generalized recurrence plot which is demonstrated with the examples. Furthermore, we show the potential of the extended quantity of determinism applying it to more irregular circular patterns which are generated by the complex Ginzburg-Landau-equation and which can be often observed in real spatially extended dynamical systems. So, we are able to reconstruct the main separations of the system's parameter space analyzing single snapshots of the real part only, in contrast to the use of the original quantity. This ability of the proposed method promises also an improved description of other systems with complicated spatio-temporal dynamics typically occurring in fluid dynamics, climatology, biology, ecology, social sciences, etc.
Interference-mediated synaptonemal complex formation with embedded crossover designation
Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.
2014-01-01
Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597
Robust pattern decoding in shape-coded structured light
NASA Astrophysics Data System (ADS)
Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai
2017-09-01
Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.
Termination patterns of complex partial seizures: An intracranial EEG study.
Afra, Pegah; Jouny, Christopher C; Bergey, Gregory K
2015-11-01
While seizure onset patterns have been the subject of many reports, there have been few studies of seizure termination. In this study we report the incidence of synchronous and asynchronous termination patterns of partial seizures recorded with intracranial arrays. Data were collected from patients with intractable complex partial seizures undergoing presurgical evaluations with intracranial electrodes. Patients with seizures originating from mesial temporal and neocortical regions were grouped into three groups based on patterns of seizure termination: synchronous only (So), asynchronous only (Ao), or mixed (S/A, with both synchronous and asynchronous termination patterns). 88% of the patients in the MT group had seizures with a synchronous pattern of termination exclusively (38%) or mixed (50%). 82% of the NC group had seizures with synchronous pattern of termination exclusively (52%) or mixed (30%). In the NC group, there was a significant difference of the range of seizure durations between So and Ao groups, with Ao exhibiting higher variability. Seizures with synchronous termination had low variability in both groups. Synchronous seizure termination is a common pattern for complex partials seizures of both mesial temporal or neocortical onset. This may reflect stereotyped network behavior or dynamics at the seizure focus. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Objective evaluation of slanted edge charts
NASA Astrophysics Data System (ADS)
Hornung, Harvey (.
2015-01-01
Camera objective characterization methodologies are widely used in the digital camera industry. Most objective characterization systems rely on a chart with specific patterns, a software algorithm measures a degradation or difference between the captured image and the chart itself. The Spatial Frequency Response (SFR) method, which is part of the ISO 122331 standard, is now very commonly used in the imaging industry, it is a very convenient way to measure a camera Modulation transfer function (MTF). The SFR algorithm can measure frequencies beyond the Nyquist frequency thanks to super-resolution, so it does provide useful information on aliasing and can provide modulation for frequencies between half Nyquist and Nyquist on all color channels of a color sensor with a Bayer pattern. The measurement process relies on a chart that is simple to manufacture: a straight transition from a bright reflectance to a dark one (black and white for instance), while a sine chart requires handling precisely shades of gray which can also create all sort of issues with printers that rely on half-toning. However, no technology can create a perfect edge, so it is important to assess the quality of the chart and understand how it affects the accuracy of the measurement. In this article, I describe a protocol to characterize the MTF of a slanted edge chart, using a high-resolution flatbed scanner. The main idea is to use the RAW output of the scanner as a high-resolution micro-densitometer, since the signal is linear it is suitable to measure the chart MTF using the SFR algorithm. The scanner needs to be calibrated in sharpness: the scanner MTF is measured with a calibrated sine chart and inverted to compensate for the modulation loss from the scanner. Then the true chart MTF is computed. This article compares measured MTF from commercial charts and charts printed on printers, and also compares how of the contrast of the edge (using different shades of gray) can affect the chart MTF, then concludes on what distance range and camera resolution the chart can reliably measure the camera MTF.
Biennial-Aligned Lunisolar-Forcing of ENSO: Implications for Simplified Climate Models
NASA Astrophysics Data System (ADS)
Pukite, P. R.
2017-12-01
By solving Laplace's tidal equations along the equatorial Pacific thermocline, assuming a delayed-differential effective gravity forcing due to a combined lunar+solar (lunisolar) stimulus, we are able to precisely match ENSO periodic variations over wide intervals. The underlying pattern is difficult to decode by conventional means such as spectral analysis, which is why it has remained hidden for so long, despite the excellent agreement in the time-domain. What occurs is that a non-linear seasonal modulation with monthly and fortnightly lunar impulses along with a biennially-aligned "see-saw" is enough to cause a physical aliasing and thus multiple folding in the frequency spectrum. So, instead of a conventional spectral tidal decomposition, we opted for a time-domain cross-validating approach to calibrate the amplitude and phasing of the lunisolar cycles. As the lunar forcing consists of three fundamental periods (draconic, anomalistic, synodic), we used the measured Earth's length-of-day (LOD) decomposed and resolved at a monthly time-scale [1] to align the amplitude and phase precisely. Even slight variations from the known values of the long-period tides will degrade the fit, so a high-resolution calibration is possible. Moreover, a narrow training segment from 1880-1920 using NINO34/SOI data is adequate to extrapolate the cycles of the past 100 years (see attached figure). To further understand the biennial impact of a yearly differential-delay, we were able to also decompose using difference equations the historical sea-level-height readings at Sydney harbor to clearly expose the ENSO behavior. Finally, the ENSO lunisolar model was validated by back-extrapolating to Unified ENSO coral proxy (UEP) records dating to 1650. The quasi-biennial oscillation (QBO) behavior of equatorial stratospheric winds derives following a similar pattern to ENSO via the tidal equations, but with an emphasis on draconic forcing. This improvement in ENSO and QBO understanding has implications for vastly simplifying global climate models due to the straightforward application of a well-known and well-calibrated forcing. [1] Na, Sung-Ho, et al. "Characteristics of Perturbations in Recent Length of Day and Polar Motion." Journal of Astronomy and Space Sciences 30 (2013): 33-41.
NASA Astrophysics Data System (ADS)
Szadkowski, Zbigniew
2015-06-01
The surface detector (SD) array of the Pierre Auger Observatory needs an upgrade which allows space for more complex triggers with higher bandwidth and greater dynamic range. To this end this paper presents a front-end board (FEB) with the largest Cyclone V E FPGA 5CEFA9F31I7N. It supports eight channels sampled with max. 250 MSps@14-bit resolution. Considered sampling for the SD is 120 MSps; however, the FEB has been developed with external anti-aliasing filters to retain maximal flexibility. Six channels are targeted at the SD, two are reserved for other experiments like: Auger Engineering Radio Array and additional muon counters. The FEB is an intermediate design plugged into a unified board communicating with a micro-controller at 40 MHz; however, it provides 250 MSPs sampling with an 18-bit dynamic range, is equipped with a virtual NIOS processor and supports 256 MB of SDRAM as well as an implemented spectral trigger based on the discrete cosine transform for detection of very inclined “old” showers. The FEB can also support neural network development for detection of “young” showers, potentially generated by neutrinos. A single FEB was already tested in the Auger surface detector in Malargüe (Argentina) for 120 and 160 MSps. Preliminary tests showed perfect stability of data acquisition for sampling frequency three or four times greater. They allowed optimization of the design before deployment of seven or eight FEBs for several months of continuous tests in the engineering array.
An optical systems analysis approach to image resampling
NASA Technical Reports Server (NTRS)
Lyon, Richard G.
1997-01-01
All types of image registration require some type of resampling, either during the registration or as a final step in the registration process. Thus the image(s) must be regridded into a spatially uniform, or angularly uniform, coordinate system with some pre-defined resolution. Frequently the ending resolution is not the resolution at which the data was observed with. The registration algorithm designer and end product user are presented with a multitude of possible resampling methods each of which modify the spatial frequency content of the data in some way. The purpose of this paper is threefold: (1) to show how an imaging system modifies the scene from an end to end optical systems analysis approach, (2) to develop a generalized resampling model, and (3) empirically apply the model to simulated radiometric scene data and tabulate the results. A Hanning windowed sinc interpolator method will be developed based upon the optical characterization of the system. It will be discussed in terms of the effects and limitations of sampling, aliasing, spectral leakage, and computational complexity. Simulated radiometric scene data will be used to demonstrate each of the algorithms. A high resolution scene will be "grown" using a fractal growth algorithm based on mid-point recursion techniques. The result scene data will be convolved with a point spread function representing the optical response. The resultant scene will be convolved with the detection systems response and subsampled to the desired resolution. The resultant data product will be subsequently resampled to the correct grid using the Hanning windowed sinc interpolator and the results and errors tabulated and discussed.
Seismic Reflection Imaging of Detachment Faulting at 13°N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Falder, M.; Reston, T. J.; Peirce, C.; Simão, N.; MacLeod, C. J.; Searle, R. C.
2016-12-01
The observation of domal corrugated surfaces at slow spreading ridges less than two decades ago, has dramatically challenged our understanding of seafloor spreading. These `oceanic core complexes' are believed to be caused by large-scale detachment faults which accommodate plate separation during periods when melt supply is low or absent entirely. Despite increasing recognition of their importance, the mechanics of, and interactions between, detachment faults at OCCs is not well understood. In Jan-Feb 2016, seismic reflection and refraction data were acquired across the 13N OCCs. The twelve-airgun array seismic source was recorded by a 3000m-long streamer, with shots fired with the full array at either 20 s intervals, or with half the array in a "flip flop" fashion every 10 s. A shorter firing rate results in significantly less spatial aliasing and enhances the performance of the F-K domain filtering. Here we present preliminary seismic reflection images of the 13N region. The currently active 13° 20'N detachment fault is imaged continuing downwards from the smooth fault plane exposed at the seabed. Away from the fault, and between the two OCCs in the area, fewer subsurface structures are observed, which may either represent an actual lack of sharp acoustic contrasts or be as a result of the challenging imaging conditions. Acoustic energy scattered by rough bathymetry both within and out of plane of section is the main challenge of seismic reflection imaging in this area and various strategies are being investigated for its attenuation, including prediction based on high-resolution bathymetry acquired.
Perceived beauty of random texture patterns: A preference for complexity.
Friedenberg, Jay; Liby, Bruce
2016-07-01
We report two experiments on the perceived aesthetic quality of random density texture patterns. In each experiment a square grid was filled with a progressively larger number of elements. Grid size in Experiment 1 was 10×10 with elements added to create a variety of textures ranging from 10%-100% fill levels. Participants rated the beauty of the patterns. Average judgments across all observers showed an inverted U-shaped function that peaked near middle densities. In Experiment 2 grid size was increased to 15×15 to see if observers preferred patterns with a fixed density or a fixed number of elements. The results of the second experiment were nearly identical to that of the first showing a preference for density over fixed element number. Ratings in both studies correlated positively with a GIF compression metric of complexity and with edge length. Within the range of stimuli used, observers judge more complex patterns to be more beautiful. Copyright © 2016 Elsevier B.V. All rights reserved.
An Efficient Pattern Mining Approach for Event Detection in Multivariate Temporal Data
Batal, Iyad; Cooper, Gregory; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos
2015-01-01
This work proposes a pattern mining approach to learn event detection models from complex multivariate temporal data, such as electronic health records. We present Recent Temporal Pattern mining, a novel approach for efficiently finding predictive patterns for event detection problems. This approach first converts the time series data into time-interval sequences of temporal abstractions. It then constructs more complex time-interval patterns backward in time using temporal operators. We also present the Minimal Predictive Recent Temporal Patterns framework for selecting a small set of predictive and non-spurious patterns. We apply our methods for predicting adverse medical events in real-world clinical data. The results demonstrate the benefits of our methods in learning accurate event detection models, which is a key step for developing intelligent patient monitoring and decision support systems. PMID:26752800
NASA Astrophysics Data System (ADS)
Zhou, Ping; Barkhaus, Paul E.; Zhang, Xu; Zev Rymer, William
2011-10-01
This paper presents a novel application of the approximate entropy (ApEn) measurement for characterizing spontaneous motor unit activity of amyotrophic lateral sclerosis (ALS) patients. High-density surface electromyography (EMG) was used to record spontaneous motor unit activity bilaterally from the thenar muscles of nine ALS subjects. Three distinct patterns of spontaneous motor unit activity (sporadic spikes, tonic spikes and high-frequency repetitive spikes) were observed. For each pattern, complexity was characterized by calculating the ApEn values of the representative signal segments. A sliding window over each segment was also introduced to quantify the dynamic changes in complexity for the different spontaneous motor unit patterns. We found that the ApEn values for the sporadic spikes were the highest, while those of the high-frequency repetitive spikes were the lowest. There is a significant difference in mean ApEn values between two arbitrary groups of the three spontaneous motor unit patterns (P < 0.001). The dynamic ApEn curve from the sliding window analysis is capable of tracking variations in EMG activity, thus providing a vivid, distinctive description for different patterns of spontaneous motor unit action potentials in terms of their complexity. These findings expand the existing knowledge of spontaneous motor unit activity in ALS beyond what was previously obtained using conventional linear methods such as firing rate or inter-spike interval statistics.
Dual binding mode in cohesin-dockerin complexes as assessed through stretching studies
NASA Astrophysics Data System (ADS)
Wojciechowski, Michał; Cieplak, Marek
2016-10-01
A recent experimental study by Jobst et al. of stretching of a wild-type (WT) cohesin-dockerin complex has identified two kinds of the force-displacement patterns, with a single or double-peaked final rupture, which are termed "short" and "long" here. This duality has been interpreted as arising from the existence of two kinds of binding. Here, we analyze the separation of two cohesin-dockerin complexes of C. thermocellum theoretically. We use a coarse-grained structure-based model and the values of the pulling speeds are nearly experimental. In their native states, the two systems differ in the mutual binding orientations of the molecules in the complex. We demonstrate that the WT complex (PDB:1OHZ) unravels along two possible pathways that are qualitatively consistent with the presence of the short and long patterns observed experimentally. On the other hand, the mutated complex (PDB:2CCL) leads only to short trajectories. The short and long stretching pathways also appear in the cohesin-dockerin-Xmodule complex (PDB:4IU3, WT) of R. flavefaciens. Thus the duality in the stretching patterns need not be necessarily due to the duality in binding.
Duran, Ivan; Martin, Jorge H.; Weis, Mary Ann; Krejci, Pavel; Konik, Peter; Li, Bing; Alanay, Yasemin; Lietman, Caressa; Lee, Brendan; Eyre, David; Cohn, Daniel H.; Krakow, Deborah
2017-01-01
Lysine hydroxylation of type I collagen telopeptides varies from tissue to tissue and these distinct hydroxylation patterns modulate collagen crosslinking to generate a unique extracellular matrix. Abnormalities in these patterns contribute to pathologies that include osteogenesis imperfecta (OI), fibrosis and cancer. Telopeptide procollagen modifications are carried out by lysyl hydroxylase 2 (LH2), however, little is known regarding how this enzyme regulates hydroxylation patterns. We identified an ER complex of resident chaperones that includes HSP47, FKBP65 and BiP regulating the activity of LH2. Our findings show that FKBP65 and HSP47 modulate the activity of LH2 to either favor or repress its activity. BiP was also identified as a member of the complex, playing a role in enhancing the formation of the complex. This newly identified ER chaperone complex contributes to our understanding of how LH2 regulates lysyl hydroxylation of type I collagen C-telopeptides to affect the quality of connective tissues. PMID:28177155
EEG Patterns Related to Cognitive Tasks of Varying Complexity.
ERIC Educational Resources Information Center
Dunn, Denise A.; And Others
A study was conducted that attempted to show changes in electroencephalographic (EEG) patterns (identified using topographic EEG mapping) when children were required to perform the relatively simple task of button pressing during an eyes-open baseline session of low cognitive demand and a complex reaction time (RT) task of high cognitive demand.…
Micro Language Planning and Cultural Renaissance in Botswana
ERIC Educational Resources Information Center
Alimi, Modupe M.
2016-01-01
Many African countries exhibit complex patterns of language use because of linguistic pluralism. The situation is often compounded by the presence of at least one foreign language that is either the official or second language. The language situation in Botswana depicts this complex pattern. Out of the 26 languages spoken in the country, including…
Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics.
Farraj, Yousef; Grouchko, Michael; Magdassi, Shlomo
2015-01-31
Highly conductive copper patterns on low-cost flexible substrates are obtained by inkjet printing a metal complex based ink. Upon heating the ink, the soluble complex, which is composed of copper formate and 2-amino-2-methyl-1-propanol, decomposes under nitrogen at 140 °C and is converted to pure metallic copper. The decomposition process of the complex is investigated and a suggested mechanism is presented. The ink is stable in air for prolonged periods, with no sedimentation or oxidation problems, which are usually encountered in copper nanoparticle based inks.
Peng, Zhen; Genewein, Tim; Braun, Daniel A.
2014-01-01
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects' self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories. PMID:24744716
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
Huang, C. -K.; Zeng, Y.; Wang, Y.; ...
2016-10-01
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less
Observation of Bernstein Waves Excited by Newborn Interstellar Pickup Ions in the Solar Wind
NASA Technical Reports Server (NTRS)
Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Gary, S. Peter; Murphy, Neil; Gray, Perry C.; Burlaga, Leonard F.
2012-01-01
A recent examination of 1.9 s magnetic field data recorded by the Voyager 2 spacecraft in transit to Jupiter revealed several instances of strongly aliased spectra suggestive of unresolved high-frequency magnetic fluctuations at 4.4 AU. A closer examination of these intervals using the highest resolution data available revealed one clear instance of wave activity at spacecraft frame frequencies from 0.2 to 1 Hz. Using various analysis techniques, we have characterized these fluctuations as Bernstein mode waves excited by newborn interstellar pickup ions. We can find no other interpretation or source consistent with the observations, but this interpretation is not without questions. In this paper, we report a detailed analysis of the waves, including their frequency and polarization, that supports our interpretation.
Lifetime criminal history of sex offenders seen for psychological assessment in five decades.
Langevin, Ron; Curnoe, Suzanne
2012-10-01
A sample of 2,190 sex offenders seen between 1966 and 2009 was compared on lifetime sexual and all offending, using charges, convictions, court appearances, and self-report as criteria. Of these various criteria, between 47.4% and 81.1% reoffended. Canadian child abuse reporting laws, which came into effect in the 1980s, were associated with increased charges and convictions for offenders, who victimized children, and with a reduction in their longer term reoffense rates. Immigration and population mobility, use of aliases, study follow-up time, and self-reported undetected sex crimes influenced reoffense rates. Results indicate that sex offenders continued to have short prison sentences and/or spend little or no time incarcerated during the latter part of the 20th century.
Atmospheric Pressure Corrections in Geodesy and Oceanography: a Strategy for Handling Air Tides
NASA Technical Reports Server (NTRS)
Ponte, Rui M.; Ray, Richard D.
2003-01-01
Global pressure data are often needed for processing or interpreting modern geodetic and oceanographic measurements. The most common source of these data is the analysis or reanalysis products of various meteorological centers. Tidal signals in these products can be problematic for several reasons, including potentially aliased sampling of the semidiurnal solar tide as well as the presence of various modeling or timing errors. Building on the work of Van den Dool and colleagues, we lay out a strategy for handling atmospheric tides in (re)analysis data. The procedure also offers a method to account for ocean loading corrections in satellite altimeter data that are consistent with standard ocean-tide corrections. The proposed strategy has immediate application to the on-going Jason-1 and GRACE satellite missions.
STEM_CELL: a software tool for electron microscopy: part 2--analysis of crystalline materials.
Grillo, Vincenzo; Rossi, Francesca
2013-02-01
A new graphical software (STEM_CELL) for analysis of HRTEM and STEM-HAADF images is here introduced in detail. The advantage of the software, beyond its graphic interface, is to put together different analysis algorithms and simulation (described in an associated article) to produce novel analysis methodologies. Different implementations and improvements to state of the art approach are reported in the image analysis, filtering, normalization, background subtraction. In particular two important methodological results are here highlighted: (i) the definition of a procedure for atomic scale quantitative analysis of HAADF images, (ii) the extension of geometric phase analysis to large regions up to potentially 1μm through the use of under sampled images with aliasing effects. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sargent, Garrett C.; Ratliff, Bradley M.; Asari, Vijayan K.
2017-08-01
The advantage of division of focal plane imaging polarimeters is their ability to obtain temporally synchronized intensity measurements across a scene; however, they sacrifice spatial resolution in doing so due to their spatially modulated arrangement of the pixel-to-pixel polarizers and often result in aliased imagery. Here, we propose a super-resolution method based upon two previously trained extreme learning machines (ELM) that attempt to recover missing high frequency and low frequency content beyond the spatial resolution of the sensor. This method yields a computationally fast and simple way of recovering lost high and low frequency content from demosaicing raw microgrid polarimetric imagery. The proposed method outperforms other state-of-the-art single-image super-resolution algorithms in terms of structural similarity and peak signal-to-noise ratio.
Subband directional vector quantization in radiological image compression
NASA Astrophysics Data System (ADS)
Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel
1992-05-01
The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.
On the effect of using the Shapiro filter to smooth winds on a sphere
NASA Technical Reports Server (NTRS)
Takacs, L. L.; Balgovind, R. C.
1984-01-01
Spatial differencing schemes which are not enstrophy conserving nor implicitly damping require global filtering of short waves to eliminate the build-up of energy in the shortest wavelengths due to aliasing. Takacs and Balgovind (1983) have shown that filtering on a sphere with a latitude dependent damping function will cause spurious vorticity and divergence source terms to occur if care is not taken to ensure the irrotationality of the gradients of the stream function and velocity potential. Using a shallow water model with fourth-order energy-conserving spatial differencing, it is found that using a 16th-order Shapiro (1979) filter on the winds and heights to control nonlinear instability also creates spurious source terms when the winds are filtered in the meridional direction.
A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation
NASA Astrophysics Data System (ADS)
Luo, Ji-An; Zhang, Xiao-Ping; Wang, Zhi
2017-12-01
Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM) problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus, the number of unknowns is reduced greatly. We show that the system error can be neglected under certain conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV's components, we develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the proposed method.
Rodrigues, Nils; Weiskopf, Daniel
2018-01-01
Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.
Combining Static Analysis and Model Checking for Software Analysis
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Visser, Willem; Clancy, Daniel (Technical Monitor)
2003-01-01
We present an iterative technique in which model checking and static analysis are combined to verify large software systems. The role of the static analysis is to compute partial order information which the model checker uses to reduce the state space. During exploration, the model checker also computes aliasing information that it gives to the static analyzer which can then refine its analysis. The result of this refined analysis is then fed back to the model checker which updates its partial order reduction. At each step of this iterative process, the static analysis computes optimistic information which results in an unsafe reduction of the state space. However we show that the process converges to a fired point at which time the partial order information is safe and the whole state space is explored.
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C. -K.; Zeng, Y.; Wang, Y.
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less
VizieR Online Data Catalog: Hα velocity curves of IM Eri (Armstrong+, 2013)
NASA Astrophysics Data System (ADS)
Armstrong, E.; Patterson, J.; Michelsen, E.; Thorstensen, J.; Uthas, H.; Vanmunster, T.; Hambsch, F.-J.; Roberts, G.; Dvorak, S.
2015-01-01
All data reported here were obtained by the globally distributed small telescopes of the Center for Backyard Astrophysics [see Skillman & Patterson (1993ApJ...417..298S) for details of the CBA instrumentation and observing procedure]. We obtained differential photometry of the CV with respect to a comparison star on the same field, and spliced overlapping data from different longitudes by adding small constants to establish a consistent instrumental scale. With an excellent span of longitudes, we essentially eliminated the possibility of daily aliasing of frequencies in the power spectra. In order to reach good signal-to-noise ratio with good time resolution, we generally observe in unfiltered light. This practice, however, eliminates the possibility of transforming to a standard magnitude. (2 data files).
Time and space integrating acousto-optic folded spectrum processing for SETI
NASA Technical Reports Server (NTRS)
Wagner, K.; Psaltis, D.
1986-01-01
Time and space integrating folded spectrum techniques utilizing acousto-optic devices (AOD) as 1-D input transducers are investigated for a potential application as wideband, high resolution, large processing gain spectrum analyzers in the search for extra-terrestrial intelligence (SETI) program. The space integrating Fourier transform performed by a lens channels the coarse spectral components diffracted from an AOD onto an array of time integrating narrowband fine resolution spectrum analyzers. The pulsing action of a laser diode samples the interferometrically detected output, aliasing the fine resolution components to baseband, as required for the subsequent charge coupled devices (CCD) processing. The raster scan mechanism incorporated into the readout of the CCD detector array is used to unfold the 2-D transform, reproducing the desired high resolution Fourier transform of the input signal.
Spatial Complexity Due to Bulk Electronic Liquid Crystals in Superconducting Dy-Bi2212
NASA Astrophysics Data System (ADS)
Carlson, Erica; Phillabaum, Benjamin; Dahmen, Karin
2012-02-01
Surface probes such as scanning tunneling microscopy (STM) have detected complex electronic patterns at the nanoscale in many high temperature superconductors. In cuprates, the pattern formation is associated with the pseudogap phase, a precursor to the high temperature superconducting state. Rotational symmetry breaking of the host crystal (i.e. from C4 to C2) in the form of electronic nematicity has recently been proposed as a unifying theme of the pseudogap phase [Lawler Nature 2010]. However, the fundamental physics governing the nanoscale pattern formation has not yet been identified. Here we use universal cluster properties extracted from STM studies of cuprate superconductors to identify the funda- mental physics controlling the complex pattern formation. We find that due to a delicate balance between disorder, interactions, and material anisotropy, the rotational symmetry breaking is fractal in nature, and that the electronic liquid crystal extends throughout the bulk of the material.
Fabrication of 10 μm-scale conductive Cu patterns by selective laser sintering of Cu complex ink
NASA Astrophysics Data System (ADS)
Min, Hyungsuk; Lee, Byoungyoon; Jeong, Sooncheol; Lee, Myeongkyu
2017-02-01
A Cu complex ink was synthesized using copper formate as a precursor and its potential for laser patterning was investigated. The Cu ink was spin-coated onto a substrate and the coated film was space-selectively sintered using a nanosecond-pulsed ultraviolet laser. The unexposed Cu ink could be removed from the film by rinsing it with the dispersing agent used to synthesize the ink, disclosing a conductive Cu pattern. A minimum resistivity of 8.46×10-5 Ω cm was obtained for the Cu lines with 10-20 μm widths. The feasibility of this method for metallization was demonstrated by fabricating a complex Cu electric circuit on an indium tin oxide-coated glass substrate. The selective laser sintering approach provides a simple, cost-effective alternative to conventional lithography for the production of electrode or metallization patterns.
The effects of monitoring environment on problem-solving performance.
Laird, Brian K; Bailey, Charles D; Hester, Kim
2018-01-01
While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.
Four not six: Revealing culturally common facial expressions of emotion.
Jack, Rachael E; Sun, Wei; Delis, Ioannis; Garrod, Oliver G B; Schyns, Philippe G
2016-06-01
As a highly social species, humans generate complex facial expressions to communicate a diverse range of emotions. Since Darwin's work, identifying among these complex patterns which are common across cultures and which are culture-specific has remained a central question in psychology, anthropology, philosophy, and more recently machine vision and social robotics. Classic approaches to addressing this question typically tested the cross-cultural recognition of theoretically motivated facial expressions representing 6 emotions, and reported universality. Yet, variable recognition accuracy across cultures suggests a narrower cross-cultural communication supported by sets of simpler expressive patterns embedded in more complex facial expressions. We explore this hypothesis by modeling the facial expressions of over 60 emotions across 2 cultures, and segregating out the latent expressive patterns. Using a multidisciplinary approach, we first map the conceptual organization of a broad spectrum of emotion words by building semantic networks in 2 cultures. For each emotion word in each culture, we then model and validate its corresponding dynamic facial expression, producing over 60 culturally valid facial expression models. We then apply to the pooled models a multivariate data reduction technique, revealing 4 latent and culturally common facial expression patterns that each communicates specific combinations of valence, arousal, and dominance. We then reveal the face movements that accentuate each latent expressive pattern to create complex facial expressions. Our data questions the widely held view that 6 facial expression patterns are universal, instead suggesting 4 latent expressive patterns with direct implications for emotion communication, social psychology, cognitive neuroscience, and social robotics. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
BLÜTHNER, R.; SEIDEL, H.; HINZ, B.
2002-05-01
Back muscle forces contribute essentially to the whole-body vibration-induced spinal load. The electromyogram (EMG) can help to estimate these forces during whole-body vibration (WBV). Thirty-eight subjects were exposed to identical random low-frequency WBV (0·7, 1·0 and 1·4 m/s-2 r.m.s. weighted acceleration) at a relaxed, erect and bent forward postures. The acceleration of the seat and the force between the seat and the buttocks were measured. Six EMGs were derived from the right side of the m. trapezius pars descendens, m. ileocostalis lumborum pars thoracis, m. ileocostalis lumborum pars lumborum; m. longissimus thoracis pars thoracis, m. longissimus thoracis pars lumborum, and lumbar multifidus muscle. All data were filtered for anti-aliasing and sampled with 1000 Hz. Artefacts caused by the ECG in the EMG were identified and eliminated in the time domain using wavelets. The individually rectified and normalized EMGs were averaged across subjects. The EMGs without WBV exhibited characteristic patterns for the three postures examined. The coherence and transfer functions indicated characteristic myoelectric responses to random WBV with several effects of posture and WBV magnitude. A comprehensive set of transfer functions from the seat acceleration or the mean normalized input force to the mean processed EMG was presented.The results can be used for the development of more sophisticated models with a separate control of various back muscle groups. However, the EMG-force relationship under dynamic conditions needs to be examined in more detail before the results can be implemented. Since different reflex mechanisms depending on the frequency of WBV are linked with different types of active muscle fibres, various time delays between the EMG and muscle force may be necessary.
GRAPPA reconstructed wave-CAIPI MP-RAGE at 7 Tesla.
Schwarz, Jolanda M; Pracht, Eberhard D; Brenner, Daniel; Reuter, Martin; Stöcker, Tony
2018-04-16
The aim of this project was to develop a GRAPPA-based reconstruction for wave-CAIPI data. Wave-CAIPI fully exploits the 3D coil sensitivity variations by combining corkscrew k-space trajectories with CAIPIRINHA sampling. It reduces artifacts and limits reconstruction induced spatially varying noise enhancement. The GRAPPA-based wave-CAIPI method is robust and does not depend on the accuracy of coil sensitivity estimations. We developed a GRAPPA-based, noniterative wave-CAIPI reconstruction algorithm utilizing multiple GRAPPA kernels. For data acquisition, we implemented a fast 3D magnetization-prepared rapid gradient-echo wave-CAIPI sequence tailored for ultra-high field application. The imaging results were evaluated by comparing the g-factor and the root mean square error to Cartesian CAIPIRINHA acquisitions. Additionally, to assess the performance of subcortical segmentations (calculated by FreeSurfer), the data were analyzed across five subjects. Sixteen-fold accelerated whole brain magnetization-prepared rapid gradient-echo data (1 mm isotropic resolution) were acquired in 40 seconds at 7T. A clear improvement in image quality compared to Cartesian CAIPIRINHA sampling was observed. For the chosen imaging protocol, the results of 16-fold accelerated wave-CAIPI acquisitions were comparable to results of 12-fold accelerated Cartesian CAIPIRINHA. In comparison to the originally proposed SENSitivity Encoding reconstruction of Wave-CAIPI data, the GRAPPA approach provided similar image quality. High-quality, wave-CAIPI magnetization-prepared rapid gradient-echo images can be reconstructed by means of a GRAPPA-based reconstruction algorithm. Even for high acceleration factors, the noniterative reconstruction is robust and does not require coil sensitivity estimations. By altering the aliasing pattern, ultra-fast whole-brain structural imaging becomes feasible. © 2018 International Society for Magnetic Resonance in Medicine.
Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.
2016-01-15
Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less
An exploratory statistical approach to depression pattern identification
NASA Astrophysics Data System (ADS)
Feng, Qing Yi; Griffiths, Frances; Parsons, Nick; Gunn, Jane
2013-02-01
Depression is a complex phenomenon thought to be due to the interaction of biological, psychological and social factors. Currently depression assessment uses self-reported depressive symptoms but this is limited in the degree to which it can characterise the different expressions of depression emerging from the complex causal pathways that are thought to underlie depression. In this study, we aimed to represent the different patterns of depression with pattern values unique to each individual, where each value combines all the available information about an individual’s depression. We considered the depressed individual as a subsystem of an open complex system, proposed Generalized Information Entropy (GIE) to represent the general characteristics of information entropy of the system, and then implemented Maximum Entropy Estimates to derive equations for depression patterns. We also introduced a numerical simulation method to process the depression related data obtained by the Diamond Cohort Study which has been underway in Australia since 2005 involving 789 people. Unlike traditional assessment, we obtained a unique value for each depressed individual which gives an overall assessment of the depression pattern. Our work provides a novel way to visualise and quantitatively measure the depression pattern of the depressed individual which could be used for pattern categorisation. This may have potential for tailoring health interventions to depressed individuals to maximize health benefit.
Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation
Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian
2016-01-01
Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex–concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex–concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing. PMID:27910852
Intelligent classifier for dynamic fault patterns based on hidden Markov model
NASA Astrophysics Data System (ADS)
Xu, Bo; Feng, Yuguang; Yu, Jinsong
2006-11-01
It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.
Vegetation changes associated with a population irruption by Roosevelt elk
Starns, H D; Weckerly, Floyd W.; Ricca, Mark; Duarte, Adam
2015-01-01
Interactions between large herbivores and their food supply are central to the study of population dynamics. We assessed temporal and spatial patterns in meadow plant biomass over a 23-year period for meadow complexes that were spatially linked to three distinct populations of Roosevelt elk (Cervus elaphus roosevelti) in northwestern California. Our objectives were to determine whether the plant community exhibited a tolerant or resistant response when elk population growth became irruptive. Plant biomass for the three meadow complexes inhabited by the elk populations was measured using Normalized Difference Vegetation Index (NDVI), which was derived from Landsat 5 Thematic Mapper imagery. Elk populations exhibited different patterns of growth through the time series, whereby one population underwent a complete four-stage irruptive growth pattern while the other two did not. Temporal changes in NDVI for the meadow complex used by the irruptive population suggested a decline in forage biomass during the end of the dry season and a temporal decline in spatial variation of NDVI at the peak of plant biomass in May. Conversely, no such patterns were detected in the meadow complexes inhabited by the nonirruptive populations. Our findings suggest that the meadow complex used by the irruptive elk population may have undergone changes in plant community composition favoring plants that were resistant to elk grazing.
MatLab program for precision calibration of optical tweezers
NASA Astrophysics Data System (ADS)
Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik
2004-06-01
Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for which the program is designed and others on which it has been tested: General computer running MatLab (MathWorks Inc.). Programming language used: MatLab (MathWorks Inc.). Uses "Optimization Toolbox" and "Statistics Toolbox". Memory required to execute with typical data: Of order 4 times the size of the data file. High speed storage required: None No. of lines in distributed program, including test data, etc.: 133 183 No. of bytes in distributed program, including test data, etc.: 1 043 674 Distribution format: tar gzip file Nature of physical problem: Calibrate optical tweezers with precision by fitting theory to experimental power spectrum of position of bead doing Brownian motion in incompressible fluid, possibly near microscope cover slip, while trapped in optical tweezers. Thereby determine spring constant of optical trap and conversion factor for arbitrary-units-to-nanometers for detection system. Method of solution: Elimination of cross-talk between quadrant photo-diode's output channels for positions (optional). Check that distribution of recorded positions agrees with Boltzmann distribution of bead in harmonic trap. Data compression and noise reduction by blocking method applied to power spectrum. Full accounting for hydrodynamic effects: Frequency-dependent drag force and interaction with nearby cover slip (optional). Full accounting for electronic filters (optional), for "virtual filtering" caused by detection system (optional). Full accounting for aliasing caused by finite sampling rate (optional). Standard non-linear least-squares fitting. Statistical support for fit is given, with several plots suitable for inspection of consistency and quality of data and fit. Restrictions on the complexity of the problem: Data should be positions of bead doing Brownian motion while held by optical tweezers. For high precision in final results, data should be time series measured over a long time, with sufficiently high experimental sampling rate: The sampling rate should be well above the characteristic frequency of the trap, the so-called corner frequency. Thus, the sampling frequency should typically be larger than 10 kHz. The Fast Fourier Transform applied requires the time series to contain 2 n data points, and long measurement time is obtained with n>12-15. Finally, the optics should be set to ensure a harmonic trapping potential in the range of positions visited by the bead. The fitting procedure checks for harmonic potential. Typical running time: (Tens of) minutes Unusual features of the program: None References: The theoretical underpinnings for the procedure are found in [K. Berg-Sørensen, H. Flyvbjerg, Rev. Sci. Instrum. 75 (3) (2004) 594].
Urwin, Samuel George; Griffiths, Bridget; Allen, John
2017-02-01
This study aimed to quantify and investigate differences in the geometric and algorithmic complexity of the microvasculature in nailfold capillaroscopy (NFC) images displaying a scleroderma pattern and those displaying a 'normal' pattern. 11 NFC images were qualitatively classified by a capillary specialist as indicative of 'clear microangiopathy' (CM), i.e. a scleroderma pattern, and 11 as 'not clear microangiopathy' (NCM), i.e. a 'normal' pattern. Pre-processing was performed, and fractal dimension (FD) and Kolmogorov complexity (KC) were calculated following image binarisation. FD and KC were compared between groups, and a k-means cluster analysis (n = 2) on all images was performed, without prior knowledge of the group assigned to them (i.e. CM or NCM), using FD and KC as inputs. CM images had significantly reduced FD and KC compared to NCM images, and the cluster analysis displayed promising results that the quantitative classification of images into CM and NCM groups is possible using the mathematical measures of FD and KC. The analysis techniques used show promise for quantitative microvascular investigation in patients with systemic sclerosis.
An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.
Albert, Isabell; Böhm, Hannah; Albert, Markus; Feiler, Christina E; Imkampe, Julia; Wallmeroth, Niklas; Brancato, Caterina; Raaymakers, Tom M; Oome, Stan; Zhang, Heqiao; Krol, Elzbieta; Grefen, Christopher; Gust, Andrea A; Chai, Jijie; Hedrich, Rainer; Van den Ackerveken, Guido; Nürnberger, Thorsten
2015-10-05
Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.
Patterns, Probabilities, and People: Making Sense of Quantitative Change in Complex Systems
ERIC Educational Resources Information Center
Wilkerson-Jerde, Michelle Hoda; Wilensky, Uri J.
2015-01-01
The learning sciences community has made significant progress in understanding how people think and learn about complex systems. But less is known about how people make sense of the quantitative patterns and mathematical formalisms often used to study these systems. In this article, we make a case for attending to and supporting connections…
Multi-segmental movement patterns reflect juggling complexity and skill level.
Zago, Matteo; Pacifici, Ilaria; Lovecchio, Nicola; Galli, Manuela; Federolf, Peter Andreas; Sforza, Chiarella
2017-08-01
The juggling action of six experts and six intermediates jugglers was recorded with a motion capture system and decomposed into its fundamental components through Principal Component Analysis. The aim was to quantify trends in movement dimensionality, multi-segmental patterns and rhythmicity as a function of proficiency level and task complexity. Dimensionality was quantified in terms of Residual Variance, while the Relative Amplitude was introduced to account for individual differences in movement components. We observed that: experience-related modifications in multi-segmental actions exist, such as the progressive reduction of error-correction movements, especially in complex task condition. The systematic identification of motor patterns sensitive to the acquisition of specific experience could accelerate the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.
Combined mining: discovering informative knowledge in complex data.
Cao, Longbing; Zhang, Huaifeng; Zhao, Yanchang; Luo, Dan; Zhang, Chengqi
2011-06-01
Enterprise data mining applications often involve complex data such as multiple large heterogeneous data sources, user preferences, and business impact. In such situations, a single method or one-step mining is often limited in discovering informative knowledge. It would also be very time and space consuming, if not impossible, to join relevant large data sources for mining patterns consisting of multiple aspects of information. It is crucial to develop effective approaches for mining patterns combining necessary information from multiple relevant business lines, catering for real business settings and decision-making actions rather than just providing a single line of patterns. The recent years have seen increasing efforts on mining more informative patterns, e.g., integrating frequent pattern mining with classifications to generate frequent pattern-based classifiers. Rather than presenting a specific algorithm, this paper builds on our existing works and proposes combined mining as a general approach to mining for informative patterns combining components from either multiple data sets or multiple features or by multiple methods on demand. We summarize general frameworks, paradigms, and basic processes for multifeature combined mining, multisource combined mining, and multimethod combined mining. Novel types of combined patterns, such as incremental cluster patterns, can result from such frameworks, which cannot be directly produced by the existing methods. A set of real-world case studies has been conducted to test the frameworks, with some of them briefed in this paper. They identify combined patterns for informing government debt prevention and improving government service objectives, which show the flexibility and instantiation capability of combined mining in discovering informative knowledge in complex data.
A Design Principle for an Autonomous Post-translational Pattern Formation.
Sugai, Shuhei S; Ode, Koji L; Ueda, Hiroki R
2017-04-25
Previous autonomous pattern-formation models often assumed complex molecular and cellular networks. This theoretical study, however, shows that a system composed of one substrate with multisite phosphorylation and a pair of kinase and phosphatase can generate autonomous spatial information, including complex stripe patterns. All (de-)phosphorylation reactions are described with a generic Michaelis-Menten scheme, and all species freely diffuse without pre-existing gradients. Computational simulation upon >23,000,000 randomly generated parameter sets revealed the design motifs of cyclic reaction and enzyme sequestration by slow-diffusing substrates. These motifs constitute short-range positive and long-range negative feedback loops to induce Turing instability. The width and height of spatial patterns can be controlled independently by distinct reaction-diffusion processes. Therefore, multisite reversible post-translational modification can be a ubiquitous source for various patterns without requiring other complex regulations such as autocatalytic regulation of enzymes and is applicable to molecular mechanisms for inducing subcellular localization of proteins driven by post-translational modifications. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Aesthetic Responses to Exact Fractals Driven by Physical Complexity
Bies, Alexander J.; Blanc-Goldhammer, Daryn R.; Boydston, Cooper R.; Taylor, Richard P.; Sereno, Margaret E.
2016-01-01
Fractals are physically complex due to their repetition of patterns at multiple size scales. Whereas the statistical characteristics of the patterns repeat for fractals found in natural objects, computers can generate patterns that repeat exactly. Are these exact fractals processed differently, visually and aesthetically, than their statistical counterparts? We investigated the human aesthetic response to the complexity of exact fractals by manipulating fractal dimensionality, symmetry, recursion, and the number of segments in the generator. Across two studies, a variety of fractal patterns were visually presented to human participants to determine the typical response to exact fractals. In the first study, we found that preference ratings for exact midpoint displacement fractals can be described by a linear trend with preference increasing as fractal dimension increases. For the majority of individuals, preference increased with dimension. We replicated these results for other exact fractal patterns in a second study. In the second study, we also tested the effects of symmetry and recursion by presenting asymmetric dragon fractals, symmetric dragon fractals, and Sierpinski carpets and Koch snowflakes, which have radial and mirror symmetry. We found a strong interaction among recursion, symmetry and fractal dimension. Specifically, at low levels of recursion, the presence of symmetry was enough to drive high preference ratings for patterns with moderate to high levels of fractal dimension. Most individuals required a much higher level of recursion to recover this level of preference in a pattern that lacked mirror or radial symmetry, while others were less discriminating. This suggests that exact fractals are processed differently than their statistical counterparts. We propose a set of four factors that influence complexity and preference judgments in fractals that may extend to other patterns: fractal dimension, recursion, symmetry and the number of segments in a pattern. Conceptualizations such as Berlyne’s and Redies’ theories of aesthetics also provide a suitable framework for interpretation of our data with respect to the individual differences that we detect. Future studies that incorporate physiological methods to measure the human aesthetic response to exact fractal patterns would further elucidate our responses to such timeless patterns. PMID:27242475
NASA Astrophysics Data System (ADS)
Marsac, R.; Davranche, M.; Gruau, G.; Dia, A.
2009-04-01
In natural organic-rich waters, rare earth elements (REE) speciation is mainly controlled by organic colloids such as humic acid (HA). Different series of REE-HA complexation experiments performed at several metal loading (REE/C) displayed two pattern shapes (i) at high metal loading, a middle-REE (MREE) downward concavity, and (ii) at low metal loading, a regular increase from La to Lu (e.g. Sonke and Salters, 2006; Pourret et al., 2007). Both REE patterns might be related to REE binding with different surface sites on HA. To understand REE-HA binding, REE-HA complexation experiments at various metals loading were carried out using ultrafiltration combined with ICP-MS measurements, for the 14 REE simultaneously. The patterns of the apparent coefficients of REE partition between HA and the inorganic solution (log Kd) evolved regularly according to the metal loading. The REE patterns presented a MREE downward concavity at low loading and a regular increase from La to Lu at high loading. The dataset was modelled with Model VI by adjusting two specific parameters, log KMA, the apparent complexation constant of HA low affinity sites and DLK2, the parameter increasing high affinity sites binding strength. Experiments and modelling provided evidence that HA high affinity sites controlled the REE binding with HA at low metal loading. The REE-HA complex could be as multidentate complexes with carboxylic or phenolic sites or potentially with sites constituted of N, P or S as donor atoms. Moreover, these high affinity sites could be different for light and heavy REE, because heavy REE have higher affinity for these sites, in low density, and could saturate them. These new Model VI parameter sets allowed the prediction of the REE-HA pattern shape evolution on a large range of pH and metal loading. According to the metal loading, the evolution of the calculated REE patterns was similar to the various REE pattern observed in natural acidic organic-rich waters (pH<7 and DOC>10 mg L-1). As a consequence, the metal loading could be the key parameter controlling the REE pattern in organic-rich waters.
Reese, Timothy G.; Jackowski, Marcel P.; Cauley, Stephen F.; Setsompop, Kawin; Bhat, Himanshu; Sosnovik, David E.
2017-01-01
Purpose To develop a clinically feasible whole-heart free-breathing diffusion-tensor (DT) magnetic resonance (MR) imaging approach with an imaging time of approximately 15 minutes to enable three-dimensional (3D) tractography. Materials and Methods The study was compliant with HIPAA and the institutional review board and required written consent from the participants. DT imaging was performed in seven healthy volunteers and three patients with pulmonary hypertension by using a stimulated echo sequence. Twelve contiguous short-axis sections and six four-chamber sections that covered the entire left ventricle were acquired by using simultaneous multisection (SMS) excitation with a blipped-controlled aliasing in parallel imaging readout. Rate 2 and rate 3 SMS excitation was defined as two and three times accelerated in the section axis, respectively. Breath-hold and free-breathing images with and without SMS acceleration were acquired. Diffusion-encoding directions were acquired sequentially, spatiotemporally registered, and retrospectively selected by using an entropy-based approach. Myofiber helix angle, mean diffusivity, fractional anisotropy, and 3D tractograms were analyzed by using paired t tests and analysis of variance. Results No significant differences (P > .63) were seen between breath-hold rate 3 SMS and free-breathing rate 2 SMS excitation in transmural myofiber helix angle, mean diffusivity (mean ± standard deviation, [0.89 ± 0.09] × 10−3 mm2/sec vs [0.9 ± 0.09] × 10−3 mm2/sec), or fractional anisotropy (0.43 ± 0.05 vs 0.42 ± 0.06). Three-dimensional tractograms of the left ventricle with no SMS and rate 2 and rate 3 SMS excitation were qualitatively similar. Conclusion Free-breathing DT imaging of the entire human heart can be performed in approximately 15 minutes without section gaps by using SMS excitation with a blipped-controlled aliasing in parallel imaging readout, followed by spatiotemporal registration and entropy-based retrospective image selection. This method may lead to clinical translation of whole-heart DT imaging, enabling broad application in patients with cardiac disease. © RSNA, 2016 Online supplemental material is available for this article. PMID:27681278
Mekkaoui, Choukri; Reese, Timothy G; Jackowski, Marcel P; Cauley, Stephen F; Setsompop, Kawin; Bhat, Himanshu; Sosnovik, David E
2017-03-01
Purpose To develop a clinically feasible whole-heart free-breathing diffusion-tensor (DT) magnetic resonance (MR) imaging approach with an imaging time of approximately 15 minutes to enable three-dimensional (3D) tractography. Materials and Methods The study was compliant with HIPAA and the institutional review board and required written consent from the participants. DT imaging was performed in seven healthy volunteers and three patients with pulmonary hypertension by using a stimulated echo sequence. Twelve contiguous short-axis sections and six four-chamber sections that covered the entire left ventricle were acquired by using simultaneous multisection (SMS) excitation with a blipped-controlled aliasing in parallel imaging readout. Rate 2 and rate 3 SMS excitation was defined as two and three times accelerated in the section axis, respectively. Breath-hold and free-breathing images with and without SMS acceleration were acquired. Diffusion-encoding directions were acquired sequentially, spatiotemporally registered, and retrospectively selected by using an entropy-based approach. Myofiber helix angle, mean diffusivity, fractional anisotropy, and 3D tractograms were analyzed by using paired t tests and analysis of variance. Results No significant differences (P > .63) were seen between breath-hold rate 3 SMS and free-breathing rate 2 SMS excitation in transmural myofiber helix angle, mean diffusivity (mean ± standard deviation, [0.89 ± 0.09] × 10 -3 mm 2 /sec vs [0.9 ± 0.09] × 10 -3 mm 2 /sec), or fractional anisotropy (0.43 ± 0.05 vs 0.42 ± 0.06). Three-dimensional tractograms of the left ventricle with no SMS and rate 2 and rate 3 SMS excitation were qualitatively similar. Conclusion Free-breathing DT imaging of the entire human heart can be performed in approximately 15 minutes without section gaps by using SMS excitation with a blipped-controlled aliasing in parallel imaging readout, followed by spatiotemporal registration and entropy-based retrospective image selection. This method may lead to clinical translation of whole-heart DT imaging, enabling broad application in patients with cardiac disease. © RSNA, 2016 Online supplemental material is available for this article.
[Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].
Berényi, Marianne; Katona, Ferenc; Sanchez, Carmen; Mandujano, Mario
2011-07-30
The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the "primitive reflex profile." All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor patterns during human ontogenesis reflect phylogenetic develpoment of species specific human functions. During ontogenesis spontaneous motor development gradually arises from these early specific sensorimotor predecessors.. The regular use of the elementary neuromotor patterns for diagnostic puposes has several distinct advantages. The neuromotor patterns have a natural stereotypy in normal infants and, therefore, deflections from this regular pattern may be detected easily, thus, the activation of the elementary neuromotor pattern is a more suitable method for identifying defects in the motor activity of the neonate or young infant than the assessment of the primitive reflexes. The "stiumulus positions," which activate specific movements according to how the human neonate or young infant is positioned, do not activate such motor patterns in neonate or young primates including apes. The characteristic locomotor pattern in these adult primates, including the apes, is swinging and involves brachiation with an extreme prehensility. This species specific motor activity is reflected in the orangutan and gibbon neonates by an early extensive grasp. However, according to our investigations, no crawling, creeping, elementary walk, or sitting up can be activated in them. Neonates grasp the hair of the mother, a vital function for the survival of the young. In contemporary nonhuman primates including apes, the neonate brain is more mature. Thus, pronounced differences can be observed between early motor ontogenesis in the human and all other primates. The earliest human movements are complex performances rather than simple reflexes. The distinction between primitive reflexes and elementary neuromotor patterns is essential. Primitive reflexes are controlled by the brainstem. All can be activated in primates. These reflexes have short durations and contrary to elementary sensorimotor patterns occur only once in response to one stimulus, e.g., one head drop elicits one abduction-adduction of the upper extremities correlated to adduction and flexion of the lower extremities to a lesser degree with the Moro reflex. Elementary neuromotor patterns are much more complex and most of them including elementary walk may be elicited as early as the 19th-20th gestational week, though less perfectly than later.
Page Oriented Holographic Memories And Optical Pattern Recognition
NASA Astrophysics Data System (ADS)
Caulfield, H. J.
1987-08-01
In the twenty-two years since VanderLugt's introduction of holographic matched filtering, the intensive research carried out throughout the world has led to no applications in complex environment. This leads one to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering operation. We introduce here an approach to the real time filter assembly: use of page oriented holographic memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a 10 4 to 10 6 stored pattern base.
Complexity analysis of human physiological signals based on case studies
NASA Astrophysics Data System (ADS)
Angelova, Maia; Holloway, Philip; Ellis, Jason
2015-04-01
This work focuses on methods for investigation of physiological time series based on complexity analysis. It is a part of a wider programme to determine non-invasive markers for healthy ageing. We consider two case studies investigated with actigraphy: (a) sleep and alternations with insomnia, and (b) ageing effects on mobility patterns. We illustrate, using these case studies, the application of fractal analysis to the investigation of regulation patterns and control, and change of physiological function. In the first case study, fractal analysis techniques were implemented to study the correlations present in sleep actigraphy for individuals suffering from acute insomnia in comparison with healthy controls. The aim was to investigate if complexity analysis can detect the onset of adverse health-related events. The subjects with acute insomnia displayed significantly higher levels of complexity, possibly a result of too much activity in the underlying regulatory systems. The second case study considered mobility patterns during night time and their variations with age. It showed that complexity metrics can identify change in physiological function with ageing. Both studies demonstrated that complexity analysis can be used to investigate markers of health, disease and healthy ageing.
Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?
Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter
2006-01-01
To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.
Robust autoassociative memory with coupled networks of Kuramoto-type oscillators
NASA Astrophysics Data System (ADS)
Heger, Daniel; Krischer, Katharina
2016-08-01
Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.
NASA Astrophysics Data System (ADS)
Barada, Daisuke; Yatagai, Toyohiko
2016-09-01
Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.
2016-01-01
Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to natural and anthropogenic disturbances therefore require quantification of spatial pattern (Asselman and Middelkoop, 1995; Walling and He, 1998). Quantifying these patterns also provides insights into the spatial and temporal domains of structuring processes as well as enabling the detection of self-emergent phenomena, environmental constraints or anthropogenic interference (Turner et al., 1990; Holling, 1992; De Jager and Rohweder, 2012). Thus, quantifying spatial pattern is an important building block on which to examine floodplains as complex adaptive systems (Levin, 1998). Approaches to measuring spatial pattern in floodplains must be cognisant of scale, self-emergent phenomena, spatial organisation, and location. Fundamental problems may arise when patterns observed at a site or transect scale are scaled-up to infer processes and patterns over entire floodplain surfaces (Wiens, 2002; Thorp et al., 2008). Likewise, patterns observed over the entire spatial extent of a landscape can mask important variation and detail at finer scales (Riitters et al., 2002). Indeed, different patterns often emerge at different scales (Turner et al., 1990) because of hierarchical structuring processes (O'Neill et al., 1991). Categorising data into discrete, homogeneous and predefined spatial units at a particular scale (e.g. polygons) creates issues and errors associated with scale and subjective classification (McGarigal et al., 2009; Cushman et al., 2010). These include, loss of information within classified ‘patches’, as well as the ability to detect the emergence of new features that do not fit the original classification scheme. Many of these issues arise because floodplains are highly heterogeneous and have complex spatial organizations (Carbonneau et al., 2012; Legleiter, 2013). As a result, the scale and location at which measurements are made can influence the observed spatial patterns; and patterns may not be scale independent or applicable in different geomorp
Production and perception rules underlying visual patterns: effects of symmetry and hierarchy.
Westphal-Fitch, Gesche; Huber, Ludwig; Gómez, Juan Carlos; Fitch, W Tecumseh
2012-07-19
Formal language theory has been extended to two-dimensional patterns, but little is known about two-dimensional pattern perception. We first examined spontaneous two-dimensional visual pattern production by humans, gathered using a novel touch screen approach. Both spontaneous creative production and subsequent aesthetic ratings show that humans prefer ordered, symmetrical patterns over random patterns. We then further explored pattern-parsing abilities in different human groups, and compared them with pigeons. We generated visual plane patterns based on rules varying in complexity. All human groups tested, including children and individuals diagnosed with autism spectrum disorder (ASD), were able to detect violations of all production rules tested. Our ASD participants detected pattern violations with the same speed and accuracy as matched controls. Children's ability to detect violations of a relatively complex rotational rule correlated with age, whereas their ability to detect violations of a simple translational rule did not. By contrast, even with extensive training, pigeons were unable to detect orientation-based structural violations, suggesting that, unlike humans, they did not learn the underlying structural rules. Visual two-dimensional patterns offer a promising new formally-grounded way to investigate pattern production and perception in general, widely applicable across species and age groups.
Production and perception rules underlying visual patterns: effects of symmetry and hierarchy
Westphal-Fitch, Gesche; Huber, Ludwig; Gómez, Juan Carlos; Fitch, W. Tecumseh
2012-01-01
Formal language theory has been extended to two-dimensional patterns, but little is known about two-dimensional pattern perception. We first examined spontaneous two-dimensional visual pattern production by humans, gathered using a novel touch screen approach. Both spontaneous creative production and subsequent aesthetic ratings show that humans prefer ordered, symmetrical patterns over random patterns. We then further explored pattern-parsing abilities in different human groups, and compared them with pigeons. We generated visual plane patterns based on rules varying in complexity. All human groups tested, including children and individuals diagnosed with autism spectrum disorder (ASD), were able to detect violations of all production rules tested. Our ASD participants detected pattern violations with the same speed and accuracy as matched controls. Children's ability to detect violations of a relatively complex rotational rule correlated with age, whereas their ability to detect violations of a simple translational rule did not. By contrast, even with extensive training, pigeons were unable to detect orientation-based structural violations, suggesting that, unlike humans, they did not learn the underlying structural rules. Visual two-dimensional patterns offer a promising new formally-grounded way to investigate pattern production and perception in general, widely applicable across species and age groups. PMID:22688636
The power of fission: yeast as a tool for understanding complex splicing.
Fair, Benjamin Jung; Pleiss, Jeffrey A
2017-06-01
Pre-mRNA splicing is an essential component of eukaryotic gene expression. Many metazoans, including humans, regulate alternative splicing patterns to generate expansions of their proteome from a limited number of genes. Importantly, a considerable fraction of human disease causing mutations manifest themselves through altering the sequences that shape the splicing patterns of genes. Thus, understanding the mechanistic bases of this complex pathway will be an essential component of combating these diseases. Dating almost to the initial discovery of splicing, researchers have taken advantage of the genetic tractability of budding yeast to identify the components and decipher the mechanisms of splicing. However, budding yeast lacks the complex splicing machinery and alternative splicing patterns most relevant to humans. More recently, many researchers have turned their efforts to study the fission yeast, Schizosaccharomyces pombe, which has retained many features of complex splicing, including degenerate splice site sequences, the usage of exonic splicing enhancers, and SR proteins. Here, we review recent work using fission yeast genetics to examine pre-mRNA splicing, highlighting its promise for modeling the complex splicing seen in higher eukaryotes.
Foundations for Streaming Model Transformations by Complex Event Processing.
Dávid, István; Ráth, István; Varró, Dániel
2018-01-01
Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.
NASA Astrophysics Data System (ADS)
Balasis, G.; Daglis, I. A.; Papadimitriou, C.; Kalimeri, M.; Anastasiadis, A.; Eftaxias, K.
2008-12-01
Dynamical complexity detection for output time series of complex systems is one of the foremost problems in physics, biology, engineering, and economic sciences. Especially in magnetospheric physics, accurate detection of the dissimilarity between normal and abnormal states (e.g. pre-storm activity and magnetic storms) can vastly improve space weather diagnosis and, consequently, the mitigation of space weather hazards. Herein, we examine the fractal spectral properties of the Dst data using a wavelet analysis technique. We show that distinct changes in associated scaling parameters occur (i.e., transition from anti- persistent to persistent behavior) as an intense magnetic storm approaches. We then analyze Dst time series by introducing the non-extensive Tsallis entropy, Sq, as an appropriate complexity measure. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). The Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization.
ERIC Educational Resources Information Center
Speirs, Samantha J.; Rinehart, Nicole J.; Robinson, Stephen R.; Tonge, Bruce J.; Yelland, Gregory W.
2014-01-01
Autism spectrum disorders (ASD) are characterised by a unique pattern of preserved abilities and deficits within and across cognitive domains. The Complex Information Processing Theory proposes this pattern reflects an altered capacity to respond to cognitive demands. This study compared how complexity induced by time constraints on processing…
Localized states in a triangular set of linearly coupled complex Ginzburg-Landau equations.
Sigler, Ariel; Malomed, Boris A; Skryabin, Dmitry V
2006-12-01
We introduce a pattern-formation model based on a symmetric system of three linearly coupled cubic-quintic complex Ginzburg-Landau equations, which form a triangular configuration. This is the simplest model of a multicore fiber laser. We identify stability regions for various types of localized patterns possible in this setting, which include stationary and breathing triangular vortices.
Complex Life Course Patterns and the Risk of Divorce in Second Marriages
ERIC Educational Resources Information Center
Teachman, Jay
2008-01-01
In this article, I use data on women (N= 655) from the 2002 National Survey of Family Growth to examine the correlates of second marital dissolution. I update the limited number of previous studies on this topic by focusing on the relationships between divorce and the complex life course patterns that characterize respondents in second marriages.…
ERIC Educational Resources Information Center
Deutsch, Avital; Dank, Maya
2011-01-01
A common characteristic of subject-predicate agreement errors (usually termed attraction errors) in complex noun phrases is an asymmetrical pattern of error distribution, depending on the inflectional state of the nouns comprising the complex noun phrase. That is, attraction is most likely to occur when the head noun is the morphologically…
Douglas J. Shinneman; Meredith W. Cornett; Brian J. Palik
2010-01-01
Restoring altered forest landscapes toward their ranges of natural variability (RNV) may enhance ecosystem sustainability and resiliency, but such efforts can be hampered by complex land ownership and management patterns. We evaluated restoration potential for southern-boreal forests in the ~2.1 million ha Border Lakes Region of northern Minnesota (U.S.A.) and...
A reusability and efficiency oriented software design method for mobile land inspection
NASA Astrophysics Data System (ADS)
Cai, Wenwen; He, Jun; Wang, Qing
2008-10-01
Aiming at the requirement from the real-time land inspection domain, a land inspection handset system was presented in this paper. In order to increase the reusability of the system, a design pattern based framework was presented. Encapsulation for command like actions by applying COMMAND pattern was proposed for the problem of complex UI interactions. Integrating several GPS-log parsing engines into a general parsing framework was archived by introducing STRATEGY pattern. A network transmission module based network middleware was constructed. For mitigating the high coupling of complex network communication programs, FACTORY pattern was applied to facilitate the decoupling. Moreover, in order to efficiently manipulate huge GIS datasets, a VISITOR pattern and Quad-tree based multi-scale representation method was presented. It had been proved practically that these design patterns reduced the coupling between the subsystems, and improved the expansibility.
NASA Astrophysics Data System (ADS)
Oh, Seonghyeon; Han, Dandan; Shim, Hyeon Bo; Hahn, Jae W.
2018-01-01
Subwavelength features have been successfully demonstrated in near-field lithography. In this study, the point spread function (PSF) of a near-field beam spot from a plasmonic ridge nanoaperture is discussed with regard to the complex decaying characteristic of a non-propagating wave and the asymmetry of the field distribution for pattern design. We relaxed the shape complexity of the field distribution with pixel-based optical proximity correction (OPC) for simplifying the pattern image distortion. To enhance the pattern fidelity for a variety of arbitrary patterns, field-sectioning structures are formulated via convolutions with a time-modulation function and a transient PSF along the near-field dominant direction. The sharpness of corners and edges, and line shortening can be improved by modifying the original target pattern shape using the proposed approach by considering both the pattern geometry and directionality of the field decay for OPC in near-field lithography.
Oh, Seonghyeon; Han, Dandan; Shim, Hyeon Bo; Hahn, Jae W
2018-01-26
Subwavelength features have been successfully demonstrated in near-field lithography. In this study, the point spread function (PSF) of a near-field beam spot from a plasmonic ridge nanoaperture is discussed with regard to the complex decaying characteristic of a non-propagating wave and the asymmetry of the field distribution for pattern design. We relaxed the shape complexity of the field distribution with pixel-based optical proximity correction (OPC) for simplifying the pattern image distortion. To enhance the pattern fidelity for a variety of arbitrary patterns, field-sectioning structures are formulated via convolutions with a time-modulation function and a transient PSF along the near-field dominant direction. The sharpness of corners and edges, and line shortening can be improved by modifying the original target pattern shape using the proposed approach by considering both the pattern geometry and directionality of the field decay for OPC in near-field lithography.
On the uniqueness of color patterns in raptor feathers
Ellis, D.H.
2009-01-01
For this study, I compared sequentially molted feathers for a few captive raptors from year to year and symmetrically matched feathers (left/right pairs) for many raptors to see if color patterns of sequential feather pairs were identical or if symmetrical pairs were mirror-image identical. Feather pairs were found to be identical only when without color pattern (e.g., the all-white rectrices of Bald Eagles [Haliaeetus leucocephalus]). Complex patterns were not closely matched, but some simple patterns were sometimes closely matched, although not identical. Previous claims that complex color patterns in feather pairs are fingerprint-identical (and therefore that molted feathers from wild raptors can be used to identify breeding adults from year to year with certainty) were found to be untrue: each feather is unique. Although it is unwise to be certain of bird of origin using normal feathers, abnormal feathers can often be so used. ?? 2009 The Raptor Research Foundation, Inc.
Task-phase-specific dynamics of basal forebrain neuronal ensembles
Tingley, David; Alexander, Andrew S.; Kolbu, Sean; de Sa, Virginia R.; Chiba, Andrea A.; Nitz, Douglas A.
2014-01-01
Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases. PMID:25309352
Topics in Complexity: Dynamical Patterns in the Cyberworld
NASA Astrophysics Data System (ADS)
Qi, Hong
Quantitative understanding of mechanism in complex systems is a common "difficult" problem across many fields such as physical, biological, social and economic sciences. Investigation on underlying dynamics of complex systems and building individual-based models have recently been fueled by big data resulted from advancing information technology. This thesis investigates complex systems in social science, focusing on civil unrests on streets and relevant activities online. Investigation consists of collecting data of unrests from open digital source, featuring dynamical patterns underlying, making predictions and constructing models. A simple law governing the progress of two-sided confrontations is proposed with data of activities at micro-level. Unraveling the connections between activity of organizing online and outburst of unrests on streets gives rise to a further meso-level pattern of human behavior, through which adversarial groups evolve online and hyper-escalate ahead of real-world uprisings. Based on the patterns found, noticeable improvement of prediction of civil unrests is achieved. Meanwhile, novel model created from combination of mobility dynamics in the cyberworld and a traditional contagion model can better capture the characteristics of modern civil unrests and other contagion-like phenomena than the original one.
An evaluation of space time cube representation of spatiotemporal patterns.
Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine
2009-01-01
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.
Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo
2011-01-01
Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375
Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo
2011-07-01
Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.
Multi-INT Complex Event Processing using Approximate, Incremental Graph Pattern Search
2012-06-01
graph pattern search and SPARQL queries . Total execution time for 10 executions each of 5 random pattern searches in synthetic data sets...01/11 1000 10000 100000 RDF triples Time (secs) 10 20 Graph pattern algorithm SPARQL queries Initial Performance Comparisons 09/18/11 2011 Thrust Area
Diffraction Correlation to Reconstruct Highly Strained Particles
NASA Astrophysics Data System (ADS)
Brown, Douglas; Harder, Ross; Clark, Jesse; Kim, J. W.; Kiefer, Boris; Fullerton, Eric; Shpyrko, Oleg; Fohtung, Edwin
2015-03-01
Through the use of coherent x-ray diffraction a three-dimensional diffraction pattern of a highly strained nano-crystal can be recorded in reciprocal space by a detector. Only the intensities are recorded, resulting in a loss of the complex phase. The recorded diffraction pattern therefore requires computational processing to reconstruct the density and complex distribution of the diffracted nano-crystal. For highly strained crystals, standard methods using HIO and ER algorithms are no longer sufficient to reconstruct the diffraction pattern. Our solution is to correlate the symmetry in reciprocal space to generate an a priori shape constraint to guide the computational reconstruction of the diffraction pattern. This approach has improved the ability to accurately reconstruct highly strained nano-crystals.
Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons
Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.
2012-01-01
Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464
Weiss, Michael; Hultsch, Henrike; Adam, Iris; Scharff, Constance; Kipper, Silke
2014-06-22
The singing of song birds can form complex signal systems comprised of numerous subunits sung with distinct combinatorial properties that have been described as syntax-like. This complexity has inspired inquiries into similarities of bird song to human language; but the quantitative analysis and description of song sequences is a challenging task. In this study, we analysed song sequences of common nightingales (Luscinia megarhynchos) by means of a network analysis. We translated long nocturnal song sequences into networks of song types with song transitions as connectors. As network measures, we calculated shortest path length and transitivity and identified the 'small-world' character of nightingale song networks. Besides comparing network measures with conventional measures of song complexity, we also found a correlation between network measures and age of birds. Furthermore, we determined the numbers of in-coming and out-going edges of each song type, characterizing transition patterns. These transition patterns were shared across males for certain song types. Playbacks with different transition patterns provided first evidence that these patterns are responded to differently and thus play a role in singing interactions. We discuss potential functions of the network properties of song sequences in the framework of vocal leadership. Network approaches provide biologically meaningful parameters to describe the song structure of species with extremely large repertoires and complex rules of song retrieval.
Weiss, Michael; Hultsch, Henrike; Adam, Iris; Scharff, Constance; Kipper, Silke
2014-01-01
The singing of song birds can form complex signal systems comprised of numerous subunits sung with distinct combinatorial properties that have been described as syntax-like. This complexity has inspired inquiries into similarities of bird song to human language; but the quantitative analysis and description of song sequences is a challenging task. In this study, we analysed song sequences of common nightingales (Luscinia megarhynchos) by means of a network analysis. We translated long nocturnal song sequences into networks of song types with song transitions as connectors. As network measures, we calculated shortest path length and transitivity and identified the ‘small-world’ character of nightingale song networks. Besides comparing network measures with conventional measures of song complexity, we also found a correlation between network measures and age of birds. Furthermore, we determined the numbers of in-coming and out-going edges of each song type, characterizing transition patterns. These transition patterns were shared across males for certain song types. Playbacks with different transition patterns provided first evidence that these patterns are responded to differently and thus play a role in singing interactions. We discuss potential functions of the network properties of song sequences in the framework of vocal leadership. Network approaches provide biologically meaningful parameters to describe the song structure of species with extremely large repertoires and complex rules of song retrieval. PMID:24807258
Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla
2010-12-01
The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Santangelo, Andrea; Provensi, Gustavo; Costa, Alessia; Blandina, Patrizio; Ricca, Valdo; Crescimanno, Giuseppe; Casarrubea, Maurizio; Passani, M Beatrice
2017-02-01
Markers of histaminergic dysregulation were found in several neuropsychiatric disorders characterized by repetitive behaviours, thoughts and stereotypies. We analysed the effect of acute histamine depletion by means of i. c.v. injections of alpha-fluoromethylhistidine, a blocker of histidine decarboxylase, on the temporal organization of motor sequences of CD1 mice behaviour in the open-field test. An ethogram encompassing 9 behavioural components was employed. Durations and frequencies were only slightly affected by treatments. However, as revealed by multivariate t-pattern analysis, histamine depletion was associated with a striking increase in the number of behavioural patterns. We found 42 patterns of different composition occurring, on average, 520.90 ± 50.23 times per mouse in the histamine depleted (HD) group, whereas controls showed 12 different patterns occurring on average 223.30 ± 20.64 times. Exploratory and grooming behaviours clustered separately, and the increased pattern complexity involved exclusively exploratory patterns. To test the hypothesis of a histamine-dopamine interplay on behavioural pattern phenotype, non-sedative doses of the D2/D3 antagonist sulpiride (12.5-25-50 mg/kg) were additionally administered to different groups of HD mice. Sulpiride counterbalanced the enhancement of exploratory patterns of different composition, but it did not affect the mean number of patterns at none of the doses used. Our results provide new insights on the role of histamine on repetitive behavioural sequences of freely moving mice. Histamine deficiency is correlated with a general enhancement of pattern complexity. This study supports a putative involvement of histamine in the pathophysiology of tics and related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatial acoustic signal processing for immersive communication
NASA Astrophysics Data System (ADS)
Atkins, Joshua
Computing is rapidly becoming ubiquitous as users expect devices that can augment and interact naturally with the world around them. In these systems it is necessary to have an acoustic front-end that is able to capture and reproduce natural human communication. Whether the end point is a speech recognizer or another human listener, the reduction of noise, reverberation, and acoustic echoes are all necessary and complex challenges. The focus of this dissertation is to provide a general method for approaching these problems using spherical microphone and loudspeaker arrays.. In this work, a theory of capturing and reproducing three-dimensional acoustic fields is introduced from a signal processing perspective. In particular, the decomposition of the spatial part of the acoustic field into an orthogonal basis of spherical harmonics provides not only a general framework for analysis, but also many processing advantages. The spatial sampling error limits the upper frequency range with which a sound field can be accurately captured or reproduced. In broadband arrays, the cost and complexity of using multiple transducers is an issue. This work provides a flexible optimization method for determining the location of array elements to minimize the spatial aliasing error. The low frequency array processing ability is also limited by the SNR, mismatch, and placement error of transducers. To address this, a robust processing method is introduced and used to design a reproduction system for rendering over arbitrary loudspeaker arrays or binaurally over headphones. In addition to the beamforming problem, the multichannel acoustic echo cancellation (MCAEC) issue is also addressed. A MCAEC must adaptively estimate and track the constantly changing loudspeaker-room-microphone response to remove the sound field presented over the loudspeakers from that captured by the microphones. In the multichannel case, the system is overdetermined and many adaptive schemes fail to converge to the true impulse response. This forces the need to track both the near and far end room responses. A transform domain method that mitigates this problem is derived and implemented. Results with a real system using a 16-channel loudspeaker array and 32-channel microphone array are presented.
Large-scale patterns formed by solar active regions during the ascending phase of cycle 21
NASA Astrophysics Data System (ADS)
Gaizauskas, V.; Harvey, K. L.; Harvey, J. W.; Zwaan, C.
1983-02-01
Synoptic maps of photospheric magnetic fields prepared at the Kitt Peak National Observatory are used in investigating large-scale patterns in the spatial and temporal distribution of solar active regions for 27 solar rotations between 1977 and 1979. The active regions are found to be distributed in 'complexes of activity' (Bumba and Howard, 1965). With the working definition of a complex of activity based on continuity and proximity of the constituent active regions, the phenomenology of complexes is explored. It is found that complexes of activity form within one month and that they are typically maintained for 3 to 6 solar rotations by fresh injections of magnetic flux. During the active lifetime of a complex of activity, the total magnetic flux in the complex remains steady to within a factor of 2. The magnetic polarities are closely balanced, and each complex rotates about the sun at its own special, constant rate. In certain cases, the complexes form two diverging branches.
Chandra ACIS Sub-pixel Resolution
NASA Astrophysics Data System (ADS)
Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.
2011-05-01
We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy
Continuously differentiable PIC shape functions for triangular meshes
Barnes, D. C.
2018-03-21
In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less
Demosaicing images from colour cameras for digital image correlation
NASA Astrophysics Data System (ADS)
Forsey, A.; Gungor, S.
2016-11-01
Digital image correlation is not the intended use for consumer colour cameras, but with care they can be successfully employed in such a role. The main obstacle is the sparsely sampled colour data caused by the use of a colour filter array (CFA) to separate the colour channels. It is shown that the method used to convert consumer camera raw files into a monochrome image suitable for digital image correlation (DIC) can have a significant effect on the DIC output. A number of widely available software packages and two in-house methods are evaluated in terms of their performance when used with DIC. Using an in-plane rotating disc to produce a highly constrained displacement field, it was found that the bicubic spline based in-house demosaicing method outperformed the other methods in terms of accuracy and aliasing suppression.
NASA Astrophysics Data System (ADS)
D'Astous, Y.; Blanchard, M.
1982-05-01
In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)
Two-dimensional mesh embedding for Galerkin B-spline methods
NASA Technical Reports Server (NTRS)
Shariff, Karim; Moser, Robert D.
1995-01-01
A number of advantages result from using B-splines as basis functions in a Galerkin method for solving partial differential equations. Among them are arbitrary order of accuracy and high resolution similar to that of compact schemes but without the aliasing error. This work develops another property, namely, the ability to treat semi-structured embedded or zonal meshes for two-dimensional geometries. This can drastically reduce the number of grid points in many applications. Both integer and non-integer refinement ratios are allowed. The report begins by developing an algorithm for choosing basis functions that yield the desired mesh resolution. These functions are suitable products of one-dimensional B-splines. Finally, test cases for linear scalar equations such as the Poisson and advection equation are presented. The scheme is conservative and has uniformly high order of accuracy throughout the domain.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.
Continuously differentiable PIC shape functions for triangular meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, D. C.
In this study, a new class of continuously-differentiable shape functions is developed and applied to two-dimensional electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome aliasing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative, have compact support, and partition unity. They are given explicitly by cubic expressions in the usual triangle logical (areal) coordinates. The shape functions are not finite elements because their structure depends on the topology of themore » mesh, in particular, the number of triangles neighboring each mesh vertex. Nevertheless, they may be useful as approximations to solution of other problems in which continuity of derivatives is required or desired.« less
HOWDY: an integrated database system for human genome research
Hirakawa, Mika
2002-01-01
HOWDY is an integrated database system for accessing and analyzing human genomic information (http://www-alis.tokyo.jst.go.jp/HOWDY/). HOWDY stores information about relationships between genetic objects and the data extracted from a number of databases. HOWDY consists of an Internet accessible user interface that allows thorough searching of the human genomic databases using the gene symbols and their aliases. It also permits flexible editing of the sequence data. The database can be searched using simple words and the search can be restricted to a specific cytogenetic location. Linear maps displaying markers and genes on contig sequences are available, from which an object can be chosen. Any search starting point identifies all the information matching the query. HOWDY provides a convenient search environment of human genomic data for scientists unsure which database is most appropriate for their search. PMID:11752279
Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source.
Choma, Michael A; Hsu, Kevin; Izatt, Joseph A
2005-01-01
The increased sensitivity of spectral domain optical coherence tomography (OCT) has driven the development of a new generation of technologies in OCT, including rapidly tunable, broad bandwidth swept laser sources and spectral domain OCT interferometer topologies. In this work, the operation of a turnkey 1300-nm swept laser source is demonstrated. This source has a fiber ring cavity with a semiconductor optical amplifier gain medium. Intracavity mode selection is achieved with an in-fiber tunable fiber Fabry-Perot filter. A novel optoelectronic technique that allows for even sampling of the swept source OCT signal in k space also is described. A differential swept source OCT system is presented, and images of in vivo human cornea and skin are presented. Lastly, the effects of analog-to-digital converter aliasing on image quality in swept source OCT are discussed.
Buchner, Peter; Hawkesford, Malcolm J.
2014-01-01
NPF (formerly referred to as low-affinity NRT1) and ‘high-affinity’ NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling. PMID:24913625