Sample records for complex astronomical instruments

  1. Materials for VPHGs: practical considerations in the case of astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Bianco, Andrea; Pariani, Giorgio; Zanutta, Alessio; Bertarelli, Chiara

    2012-09-01

    Volume Phase Holographic Gratings are interesting dispersing elements for astronomical instrumentation. An important point, in the realization of the grating, is the choice of the holographic material. Dichromated Gelatines (DCGs) are the best candidate, but they show some drawback especially regarding their water sensitivity and the complex developing process required to enhance their performances. New holographic materials are becoming interesting, such as photopolymers and photochromic materials. An exhaustive review of these classes of materials will be reported and their performances compared to those of DCGs, focusing mainly to the astronomical instrumentation field.

  2. Nikolaev (Mykolayiv) Astronomical Observatory as the Object of the Ukrainian Tentative List WH UNESCO

    NASA Astrophysics Data System (ADS)

    Pinigin, Gennadiy; Pozhalova, Zhanna

    2012-09-01

    Nikolaev Astronomical Observatory (NAO), one of the oldest scientific institutions of the South-Eastern Europe, was founded as a naval observatory in 1821 for providing the needs of the Russian Black Sea Navy. It is a historical and astronomical complex with a reserved territory of total area 7.1 hectares, situated in the central part of Mykolaiv city, Ukraine. The beginning of scientific research at the Observatory is connected with the activity of Karl Knorre, its first director. From 1912 up to 1991, NAO was one of the Southern departments of Pulkovo Observatory with the main purpose to spread the system of absolute catalogs to the Southern hemisphere and to carry out regular observations of the Solar system bodies. Since 1992 NAO has become an independent leading institution of Ukraine in the field of positional astronomy, dynamics of Solar system bodies, research of near-Earth space, astronomical instrumentation. In 2007, it was inscribed in the Tentative UNESCO List of WH (#5116). The most significant part of the complex is the Main building, which was built in the style of Classicism in 1821--1829 (the monument of architecture #535 in the state registry). Also, the astronomical pavilions (1875, 1913, 1955, etc.) and instruments were preserved. Among them three Repsold instruments: meridian circle (1834), portable circle (1868) and vertical circle (1897). The unique astronomical and navigational devices, the collection of astronomical clocks are present in the observatory museum and the paper archive since the foundation of observatory is preserved.

  3. The Architectural and Instrumental Heritage of the Strasbourg University Observatory

    NASA Astrophysics Data System (ADS)

    Davoigneau, Jean

    When, in 1872, Alsace was handed over to Germany, Empperor Wilhelm I decided to make Strasbourg the showcase of his empire, and in particular to build a prestigious university and an observatory. The construction of the observatory was entrusted to the astronomer August Winnecke (1835-1897), former director of the Pulkovo observatory, and to the Baumeister Hermann Eggert. Begun in 1876, the work was completed in 1880. The astronomical instruments, ordered from German makers, were installed during the winter of 1880-1881, and the observatory was inaugurated on September 22, 1881 at the general assembly of the Astronomische Gesellschaft, the international association of astronomers, whose secretary was Winnecke. Marking the south-eastern extremity of the ‘imperial axis’, the architecture of the university observatory harmonizes perfectly with the new German city built on the former French parade grounds. The astronomical heritage operation conducted at the beginning of the present decade provides a richly docurnented and illustrated inventory of both the architecture and instruments of this institution. This work has also highlighted the unique quality of the collection of instruments, befitting the long and complex history of this institution.

  4. Control software and electronics architecture design in the framework of the E-ELT instrumentation

    NASA Astrophysics Data System (ADS)

    Di Marcantonio, P.; Coretti, I.; Cirami, R.; Comari, M.; Santin, P.; Pucillo, M.

    2010-07-01

    During the last years the European Southern Observatory (ESO), in collaboration with other European astronomical institutes, has started several feasibility studies for the E-ELT (European-Extremely Large Telescope) instrumentation and post-focal adaptive optics. The goal is to create a flexible suite of instruments to deal with the wide variety of scientific questions astronomers would like to see solved in the coming decades. In this framework INAF-Astronomical Observatory of Trieste (INAF-AOTs) is currently responsible of carrying out the analysis and the preliminary study of the architecture of the electronics and control software of three instruments: CODEX (control software and electronics) and OPTIMOS-EVE/OPTIMOS-DIORAMAS (control software). To cope with the increased complexity and new requirements for stability, precision, real-time latency and communications among sub-systems imposed by these instruments, new solutions have been investigated by our group. In this paper we present the proposed software and electronics architecture based on a distributed common framework centered on the Component/Container model that uses OPC Unified Architecture as a standard layer to communicate with COTS components of three different vendors. We describe three working prototypes that have been set-up in our laboratory and discuss their performances, integration complexity and ease of deployment.

  5. Reengineering observatory operations for the time domain

    NASA Astrophysics Data System (ADS)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo depicts a mockup of the ATM contamination monitor camera and photometer.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This angle view is of an ATM contamination monitor meter mockup.

  8. Astronomical Instrumentation System Markup Language

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  9. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    NASA Astrophysics Data System (ADS)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo depicts a side view is of a fully extended ATM contamination monitor mockup.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1967-08-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This photo of the ATM contamination monitor mockup offers an extended view of the sunshield interior.

  12. C++, objected-oriented programming, and astronomical data models

    NASA Technical Reports Server (NTRS)

    Farris, A.

    1992-01-01

    Contemporary astronomy is characterized by increasingly complex instruments and observational techniques, higher data collection rates, and large data archives, placing severe stress on software analysis systems. The object-oriented paradigm represents a significant new approach to software design and implementation that holds great promise for dealing with this increased complexity. The basic concepts of this approach will be characterized in contrast to more traditional procedure-oriented approaches. The fundamental features of objected-oriented programming will be discussed from a C++ programming language perspective, using examples familiar to astronomers. This discussion will focus on objects, classes and their relevance to the data type system; the principle of information hiding; and the use of inheritance to implement generalization/specialization relationships. Drawing on the object-oriented approach, features of a new database model to support astronomical data analysis will be presented.

  13. Project management for complex ground-based instruments: MEGARA plan

    NASA Astrophysics Data System (ADS)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  14. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  15. Skylab

    NASA Image and Video Library

    1969-12-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.

  16. Instrument control software requirement specification for Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Kiekebusch, Mario J.; Chiozzi, Gianluca

    2010-07-01

    Engineers in several observatories are now designing the next generation of optical telescopes, the Extremely Large Telescopes (ELT). These are very complex machines that will host sophisticated astronomical instruments to be used for a wide range of scientific studies. In order to carry out scientific observations, a software infrastructure is required to orchestrate the control of the multiple subsystems and functions. This paper will focus on describing the considerations, strategies and main issues related to the definition and analysis of the software requirements for the ELT's Instrument Control System using modern development processes and modelling tools like SysML.

  17. Korean Astronomical Calendar, Chiljeongsan

    NASA Astrophysics Data System (ADS)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  18. Visitor's Computer Guidelines | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments Logs Tololo Kaxis Webcam NOAO Newsletters NOAO Data Archive Astronomical Links Visitor's Computer ‹› You are here CTIO Home » Astronomers » Visitor's Computer Guidelines Visitor's Computer

  19. The Quito Astronomical Instruments Heritage

    NASA Astrophysics Data System (ADS)

    Lopez, Ericsson

    The Quito Astronomical Observatory was build in the 1873s thanks to the generous sponsoring of the president of the Republic of Ecuador Dr. Gabriel García Moreno who desire was to build a long-lasting monument to Ecuadorian science . Thanks to the collaboration of father J. B. Menten one of the leading german astronomer the President' s dream came true. The Observatory with its splendid buildings was in fact equipped with a series of very important instruments such as the 30-cm Mertz refractor a large Molteni meridian instrument and a Bamber of 10 cm. Other instruments were subsequently added in the course of the 20th century. Recently we have performed a detailed inventory of all the historical instruments still preserved at the Observatory. This paper is dedicated to briefly trace the history of the Quito Observatory and describe its most characteristic instruments. Moreover it is presented the work done for preserving this important scientific heritage and discuss some of the typical problems that the researchers the students amateur astronomers and the public find in a still active scientific institution in a developing country.

  20. Skylab

    NASA Image and Video Library

    1971-12-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image depicts the sun end and spar of the ATM flight unit showing individual telescopes. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into a complex frame named the rack, and was protected by the solar shield.

  1. Metrics of Justice. A Sundial's Nomological Figuration.

    PubMed

    Behrmann, Carolin

    2015-01-01

    This paper examines a polyhedral dial from the British Museum made by the instrument maker Ulrich Schniep, and discusses the status of multifunctional scientific instruments. It discerns a multifaceted iconic meaning considering different dimensions such as scientific functionality (astronomy), the complex allegorical figure of Justice (iconography), and the representation of the sovereign (politics), the court and the Kunstkammer of Albrecht v of Bavaria. As a numen mixtum the figure of "Justicia" touches different fields that go far beyond pure astronomical measurement and represents the power of the ruler as well as the rules of economic justice.

  2. MOEMs devices designed and tested for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Waldis, Severin; Noell, Wilfried; Conedera, Veronique; Fabre, Norbert; Viard, Thierry; Buisset, Christophe

    2017-11-01

    Next generation of astronomical instrumentation for space telescopes requires Micro-Opto-Electro- Mechanical Systems (MOEMS) with remote control capability and cryogenic operation. MOEMS devices have the capability to tailor the incoming light in terms of intensity and object selection with programmable slit masks, in terms of phase and wavefront control with micro-deformable mirrors, and finally in terms of spectrum with programmable diffraction gratings. Applications are multi-object spectroscopy (MOS), wavefront correction and programmable spectrographs. We are engaged since several years in the design, realization and characterization of MOEMS devices suited for astronomical instrumentation.

  3. The Future of Astronomy and the ALMA Archive

    NASA Astrophysics Data System (ADS)

    Stoehr, F.; Lacy, M.; Leon, S.; Muller, E.; Kawamura, A.

    2015-09-01

    Astronomy is changing as the amount and complexity of data taken grows. We argue that in the future observatories will compete for astronomers to work with their data, that observatories will have to reorient themselves to from providing good data only to providing an excellent end-to-end user-experience with all its implications, that science-grade data-reduction pipelines will become an integral part of the design of a new observatory or instrument and that all this evolution will have a deep impact on how astronomers will do science. We show how ALMA's general design principles are in line with this paradigm and how the ALMA archive fits into this picture.

  4. Remote control of astronomical instruments via the Internet

    NASA Astrophysics Data System (ADS)

    Ashley, M. C. B.; Brooks, P. W.; Lloyd, J. P.

    1996-01-01

    A software package called ERIC is described that provides a framework for allowing scientific instruments to be remotely controlled via the Internet. The package has been used to control four diverse astronomical instruments, and is now being made freely available to the community. For a description of ERIC's capabilities, and how to obtain a copy, see the conclusion to this paper.

  5. VLT/I Instrumentation: Lessons Learned FORUM

    NASA Astrophysics Data System (ADS)

    Monnet, G.; Bacon, R.

    2003-09-01

    This paper is the result of a joint effort by ESO and its Scientific and Technical Committee (STC) to extract the main lessons from last April's 'VLT/VLTI Instrumentation: Lessons learned' Forum and start applying them, in particular in the framework of the development of second generation VLT -and soon VLTI- instruments. This is but one step in a continuing effort to optimize these complex and challenging developments which involve a significant fraction of Europe's astronomical instrument builders in the near-UV to mid-IR range. With a major effort in the European radio community to build multiple receiver systems for ALMA now being pursued at an accelerated pace, it was also vital to revisit very quickly our whole procurement strategy in this area.

  6. John Flamsteed and the turn of the screw: mechanical uncertainty, the skilful astronomer and the burden of seeing correctly at the Royal Observatory, Greenwich.

    PubMed

    Spiegel, Richard J

    2015-03-01

    Centring on John Flamsteed (1646-1719), the first Astronomer Royal, this paper investigates the ways in which astronomers of the late seventeenth century worked to build and maintain their reputations by demonstrating, for their peers and for posterity, their proficiency in managing visual technologies. By looking at his correspondence and by offering a graphic and textual analysis of the preface to his posthumous Historia Coelestis Britannica (1725), I argue that Flamsteed based the legitimacy of his life's work on his capacity to serve as a skilful astronomer who could coordinate the production and proper use of astronomical sighting instruments. Technological advances in astrometry were, for Flamsteed, a necessary but not a sufficient condition for the advancement of astronomy. Technological resources needed to be used by the right person. The work of the skilful astronomer was a necessary precondition for the mobilization and proper management of astronomical technologies. Flamsteed's understanding of the astronomer as a skilled actor importantly shifted the emphasis in precision astronomical work away from the individual observer's ability to see well and toward the astronomer's ability to ensure that instruments guaranteed accurate vision.

  7. Scale Marking Method on the Circumference of Circle Elements for Astronomical Instruments in the Early Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Mihn, Byeong-Hee; Lee, Ki-Won; Ahn, Young Sook; Lee, Yong Sam

    2015-03-01

    During the reign of King Sejong (世宗, 1418-1450) in the Joseon Dynasty, there were lots of astronomical instruments, including miniaturized ones. Those instruments utilized the technical know-how acquired through building contemporary astronomical instruments previously developed in the Song(宋), Jin(金), and Yuan(元) dynasties of China. In those days, many astronomical instruments had circles, rings, and spheres carved with a scale of 365.25, 100, and 24 parts, respectively, on their circumference. These were called the celestial-circumference degree, hundred-interval (Baekgak), and 24 direction, respectively. These scales are marked by the angular distance, not by the angle. Therefore, these circles, rings, and spheres had to be optimized in size to accomodate proper scales. Assuming that the scale system is composed of integer multiples of unit length, we studied the sizes of circles by referring to old articles and investigating existing artifacts. We discovered that the star chart of Cheonsang yeolcha bunyajido was drawn with a royal standard ruler (周尺) based on the unit length of 207 mm. Interestingly, its circumference was marked by the unit scale of 3 puns per 1 du (or degree) like Honsang (a celestial globe). We also found that Hyeonju ilgu (a equatorial sundial) has a Baekgak disk on a scale of 1 pun per 1 gak (that is an interval of time similar to a quarter). This study contributes to the analysis of specifications of numerous circular elements from old Korean astronomical instruments.

  8. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  9. Astronomical Orientation in the Ancient Dacian Sanctuaries of Romania

    NASA Astrophysics Data System (ADS)

    Stănescu, Florin

    Sarmizegetusa Regia, the former capital city of the Dacians' kingdom, is situated in the Şureanu (Orăştie) Mountains in the Southern Carpathians, Romania. This chapter reviews, from the astronomical point of view, two of the monuments located on its Sacred Terrace - the altar known as the "Andesite Sun" and the Central Apse of the Great Round Sanctuary - as well as sanctuaries at the nearby site of Costeşti. Astronomical analyses taking into consideration (a) the astronomical-geometrical methods of the time (the analemma of a sundial after Vitruvius and the stereographical projection in the sense of Hipparchus), (b) astronomical instruments of the time (the gnomon, the sundial and the astrolabe), and (c) other instruments known to the Dacians (the compass), have concluded that these monuments may have enabled the Dacians to carry out a number of astronomical observations. This would confirm several reports by contemporary historians regarding the Dacians' knowledge of astronomy.

  10. Astronomical large projects managed with MANATEE: management tool for effective engineering

    NASA Astrophysics Data System (ADS)

    García-Vargas, M. L.; Mujica-Alvarez, E.; Pérez-Calpena, A.

    2012-09-01

    This paper describes MANATEE, which is the Management project web tool developed by FRACTAL, specifically designed for managing large astronomical projects. MANATEE facilitates the management by providing an overall view of the project and the capabilities to control the three main projects parameters: scope, schedule and budget. MANATEE is one of the three tools of the FRACTAL System & Project Suite, which is composed also by GECO (System Engineering Tool) and DOCMA (Documentation Management Tool). These tools are especially suited for those Consortia and teams collaborating in a multi-discipline, complex project in a geographically distributed environment. Our Management view has been applied successfully in several projects and currently is being used for Managing MEGARA, the next instrument for the GTC 10m telescope.

  11. Tycho Brahe and Egnazio Danti. Observations and astronomical research at Prague and Florence at the end of the 16th century

    NASA Astrophysics Data System (ADS)

    Triarico, Carlo

    The paper aims at pointing out the similarities between the astronomical research of Tycho Brahe and Egnazio Danti. The main issue is the comparison between the researches of the two astronomers about the measurement of the ecliptic's obliquity and its possible variation. The books published by the two scientists about the use and building up of the astronomical instruments will be also compared. Finally, will be given some examples of instruments of the Medici Family collection in the Istituto e Museo di Storia della Scienza in Florence, which come from Praha and were built by the technicians who worked for Tycho.

  12. Forty Years at ESO - Bernard Delabre and Optical Designs

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.; Lévêque, S.; Pasquini, L.; Péron, M.; Spyromilio, J.

    2017-09-01

    The optical designer Bernard Delabre has retired from ESO after 40 years at the forefront of telescope and instrument optics. A short overview of his achievements and his legacy of astronomical telescopes and instrumenta-tion is presented. Bernard Delabre was awarded the 2017 Tycho Brahe Prize by the European Astronomical Society.

  13. Design and control of the precise tracking bed based on complex electromechanical design theory

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  14. Issues and Challenges in the Protection of Different Categories of Astronomical Heritage: A Report from Beijing 2012

    NASA Astrophysics Data System (ADS)

    Schechner, Sara

    2013-01-01

    On the occasion of the IAU’s General Assembly in Beijing in 2012, the Working Groups for Astronomy and World Heritage (WG-AWH) and Historical Instruments (WG-HI) of Commission 41 (History of Astronomy)—led by Clive Ruggles and Sara Schechner—held a joint science meeting concerning shared issues in the “Conservation and Protection of Different Categories of Astronomical Heritage.” Since 2008, the WG-AWH had been working with UNESCO and its advisory bodies to identify and safeguard significant astronomical sites and assist in their eventual nomination for inclusion on the World Heritage List. That initiative was restricted to fixed sites and monuments. Moveable, tangible objects, such as scientific instruments, could not be included even though their significance was often interconnected with that of immovable sites. To address this concern, the 2012 joint science meeting convened international experts in the history, scientific, and cultural value of astronomical buildings, instruments, photographic plates, archives, and meteorites in order to discuss ways to develop and coordinate integrated approaches to the documentation and protection of these valuable things. A wide range of materials was discussed. It was evident that the historical, scientific, and cultural value assigned to any particular item might differ from one community to the next, and that the question of whom or what ultimately will determine how any heritage item is treated is complex, political, and negotiated. An important point of agreement was the idea of developing a “science heritage” (rather than “architectural heritage”) approach in which the value is enhanced (rather than diminished) by changes to a facility that could lead to further scientific discoveries. It was hoped that such an approach would make observatory directors and others more comfortable with outside recognition of the heritage value of their working institutions.

  15. Applications of Digital Micromirror Devices to Astronomical Instrumentation

    NASA Astrophysics Data System (ADS)

    Robberto, M.

    MEMS devices are among the major technological breakthroughs of the last two decades. Besides finding widespread use in high-tech and consumer market electronics, MEMS enable new types of astronomical instruments. I concentrate on Digital Micromirror Devices, which have been already adopted in astronomy and can enable scientific investigations that would otherwise remain beyond our technical capabilities.

  16. Astronomical Instrumentation Systems Quality Management Planning: AISQMP

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse

    2017-06-01

    The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  17. The Astronomical Instrument, So-Gahui Invented During King Sejong Period

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Sam Lee; Kim, Sang-Hyuk

    2002-09-01

    So-ganui, namely small simplified armillary sphere, was invented as an astronomical instrument by Lee Cheon, Jeong Cho, Jung In-Ji under 16 years' rule of King Sejong. We collect records and observed data on So-ganui. It is designed to measure position of celestial sphere and to determine time. It also can be transformed equatorial to horizontal, and horizontal to equatorial coordinate. It can measure the right ascension, declination, altitude and azimuth. It is composed of Sayu-hwan (Four displacements), Jeokdo-hwan (Equatorial dial), Baekgak-hwan (Ring with one hundred-interval quarters), Gyuhyeong (Sighting aliadade), Yongju (Dragon-pillar) and Bu (Stand). So-ganui was used conveniently portable surveying as well as astronomical instrument and possible to determine time during day and night.

  18. Astronomical Instrumentation Systems Quality Management Planning: AISQMP (Abstract)

    NASA Astrophysics Data System (ADS)

    Goldbaum, J.

    2017-12-01

    (Abstract only) The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  19. Scientific and technological Challenges in the development of astronomical instrumentation: E-ELT & ALMA

    NASA Astrophysics Data System (ADS)

    Barrado, David; Gallego, Jesús

    2009-12-01

    The answers to the present astrophysical questions require the development of highly sophisticated instrumentation, which needs long-term scheduling and large assets of human and material resources, managed by consortia of several institutions. Spain has carried in the last years serious efforts in this direction (GTC, ESO, ESA), but there is still a notable offset between astronomical research at the theoretical and observational levels and the development of instrumentation. Now, the incorporation of new countries to ESO (in particular Spain) to ESO and several future big projects (ALMA, E-ELT, Cosmic Vision), raise the level of exigency. The goal of this workshop is to gather the scientific teams and the industries of the sector to expose their needs and projects, and share experiences. The workshop is aimed as well at serving as an echo to convince financing agencies and the astronomical community in general of the need to promote with decision the development of astrophysical instrumentation and the tools for the analysis of related data. The formation and acknowledgement of instrumentation astronomers will be a key factor for Spain to meet the requirements of its position in Astronomy in the next decades. Here, we present the contributions most closely related to the development of E-ELT, ALMA and ESA missions.

  20. Reducing the Requirements and Cost of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, W. Scott; Whitakter, Ann F. (Technical Monitor)

    2002-01-01

    Limits on astronomical telescope apertures are being rapidly approached. These limits result from logistics, increasing complexity, and finally budgetary constraints. In an historical perspective, great strides have been made in the area of aperture, adaptive optics, wavefront sensors, detectors, stellar interferometers and image reconstruction. What will be the next advances? Emerging data analysis techniques based on communication theory holds the promise of yielding more information from observational data based on significant computer post-processing. This paper explores some of the current telescope limitations and ponders the possibilities increasing the yield of scientific data based on the migration computer post-processing techniques to higher dimensions. Some of these processes hold the promise of reducing the requirements on the basic telescope hardware making the next generation of instruments more affordable.

  1. HAWC+/SOFIA Instrumental Polarization Calibration

    NASA Astrophysics Data System (ADS)

    Michail, Joseph M.; Chuss, David; Dowell, Charles D.; Santos, Fabio; Siah, Javad; Vaillancourt, John; HAWC+ Instrument Team

    2018-01-01

    HAWC+ is a new far-infrared polarimeter for the NASA/DLR SOFIA (Stratospheric Observatory for Infrared Astronomy) telescope. HAWC+ has the capability to measure the polarization of astronomical sources with unprecedented sensitivity and angular resolution in four bands from 50-250 microns. Using data obtained during commissioning flights, we implemented a calibration strategy that separates the astronomical polarization signal from the induced instrumental polarization. The result of this analysis is a map of the instrumental polarization as a function of position in the instrument's focal plane in each band. The results show consistency between bands, as well as with other methods used to determine preliminary instrumental polarization values.

  2. Scientific and technical collaboration between Russian and Ukranian researchers and manufacturers on the development of astronomical instruments equipped with advanced detection services

    NASA Astrophysics Data System (ADS)

    Vishnevsky, G. I.; Galyatkin, I. A.; Zhuk, A. A.; Iblyaminova, A. F.; Kossov, V. G.; Levko, G. V.; Nesterov, V. K.; Rivkind, V. L.; Rogalev, Yu. N.; Smirnov, A. V.; Gumerov, R. I.; Bikmaev, I. F.; Pinigin, G. I.; Shulga, A. V.; Kovalchyk, A. V.; Protsyuk, Yu. I.; Malevinsky, S. V.; Abrosimov, V. M.; Mironenko, V. N.; Savchenko, V. V.; Ivaschenko, Yu. N.; Andruk, V. M.; Dalinenko, I. N.; Vydrevich, M. G.

    2003-01-01

    The paper presents the possibilities and a list of tasks that are solved by collaboration between research and production companies, and astronomical observatories of Russia and Ukraine in the field of development, modernization and equipping of various telescopes (the AMC, RTT-150, Zeiss-600 and quantum-optical system Sazhen-S types) with advanced charge-coupled device (CCD) cameras. CCD imagers and ditital CCD cameras designed and manufactured by the "Electron-Optronic" Research & Production Company, St Petersburg, to equip astronomical telescopes and scientific instruments are described.

  3. Astronomical imaging Fourier spectroscopy at far-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Brad G.; van der Wiel, Matthijs H. D.; Makiwa, Gibion

    2013-11-01

    The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach–Zehnder (MZ) interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the MZ design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel–SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.

  4. Space telescope scientific instruments

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.

    1979-01-01

    The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.

  5. Rocket instrument for far-UV spectrophotometry of faint astronomical objects.

    PubMed

    Hartig, G F; Fastie, W G; Davidsen, A F

    1980-03-01

    A sensitive sounding rocket instrument for moderate (~10-A) resolution far-UV (lambda1160-lambda1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employs a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.

  6. ARCoIRIS | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments ‹› You are here CTIO Home » Astronomers » Instruments » IR Instruments » ARCoIRIS ARCoIRIS

  7. TMT in the Astronomical Landscape of the 2020s

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark; Inami, Hanae

    2014-07-01

    Thirty Meter Telescope Observatory and NOAO will host the second TMT Science Forum at Loews Ventana Canyon Resort in Tucson, Arizona. The TMT Science Forum is an an annual gathering of astronomers, educators, and observatory staff, who meet to explore TMT science, instrumentation, observatory operations, archiving and data processing, astronomy education, and science, technology, engineering, and math (STEM) issues. It is an opportunity for astronomers from the international TMT partners and from the US-at-large community to learn about the observatory status, discuss and plan cutting-edge science, establish collaborations, and to help shape the future of TMT. One important theme for this year's Forum will be the synergy between TMT and other facilities in the post-2020 astronomical landscape. There will be plenary sessions, an instrumentation workshop, topical science sessions and meetings of the TMT International Science Development Teams (ISDTs).

  8. al-Sufi, Abu al-Rahman (903-86)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Persian astronomer, published works on astronomical instruments. Revised PTOLEMY's star catalog as the Book of the Constellations of the Fixed Stars, with improved magnitudes, stars named by reference to constellation figures (much copied, for example by ALFONSO X as Libros del Saber de Astronomìa), and nebulae, including the Andromeda Galaxy (M31). However, the work was not entirely original sin...

  9. Reverend Doctor William Pearson in South Kilworth, Leicestershire

    NASA Astrophysics Data System (ADS)

    Frost, M. A.

    2006-12-01

    William Pearson (1767-1847) was a 19th-century astronomer, renowned for his work in positional astronomy and the design of astronomical instruments, both practical and instructional. He was a co-founder in 1820 of the Astronomical Society of London, which later became the Royal Astronomical Society, where his portrait hangs. For 30 years of his astronomical career he was the Rector of South Kilworth, a village in Leicestershire, England, where he erected several observatory buildings, as well as extending the village church and building the village schoolroom. This paper documents his activities in South Kilworth.

  10. Automated microdensitometer for digitizing astronomical plates

    NASA Technical Reports Server (NTRS)

    Angilello, J.; Chiang, W. H.; Elmegreen, D. M.; Segmueller, A.

    1984-01-01

    A precision microdensitometer was built under control of an IBM S/1 time-sharing computer system. The instrument's spatial resolution is better than 20 microns. A raster scan of an area of 10x10 sq mm (500x500 raster points) takes 255 minutes. The reproducibility is excellent and the stability is good over a period of 30 hours, which is significantly longer than the time required for most scans. The intrinsic accuracy of the instrument was tested using Kodak standard filters, and it was found to be better than 3%. A comparative accuracy was tested measuring astronomical plates of galaxies for which absolute photoelectric photometry data were available. The results showed an accuracy excellent for astronomical applications.

  11. Deriving the polarization behavior of many-layer mirror coatings

    NASA Astrophysics Data System (ADS)

    White, Amanda J.; Harrington, David M.; Sueoka, Stacey R.

    2018-06-01

    End-to-end models of astronomical instrument performance are becoming commonplace to demonstrate feasibility and guarantee performance at large observatories. Astronomical techniques like adaptive optics and high contrast imaging have made great strides towards making detailed performance predictions, however, for polarimetric techniques, fundamental tools for predicting performance do not exist. One big missing piece is predicting the wavelength and field of view dependence of a many-mirror articulated optical system particularly with complex protected metal coatings. Predicting polarization performance of instruments requires combining metrology of mirror coatings, tools to create mirror coating models, and optical modeling software for polarized beam propagation. The inability to predict instrument induced polarization or to define polarization performance expectations has far reaching implications for up and coming major observatories, such as the Daniel K. Inouye Solar Telescope (DKIST), that aim to take polarization measurements at unprecedented sensitivity and resolution.Here we present a method for modelling the wavelength dependent refractive index of an optic using Berreman calculus - a mathematical formalism that describes how an electromagnetic field propagates through a birefringent medium. From Berreman calculus, we can better predict the Mueller matrix, diattenuation, and retardance of an arbitrary thicknesses of amorphous many-layer coatings as well as stacks of birefringent crystals from laboratory measurements. This will allow for the wavelength dependent refractive index to be accurately determined and the polarization behavior to be derived for a given optic.

  12. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  13. Use of the transect method in satellite survey missions with application to the infrared astronomical satellite /IRAS/

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.; Lundy, S. A.; Ling, H. Y.; Stroberg, M. W.

    1980-01-01

    The coverage of the celestial sphere or the surface of the earth with a narrow-field instrument onboard a satellite can be described by a set of swaths on the sphere. A transect is a curve on this sphere constructed to sample the coverage. At each point on the transect the number of times that the field-of-view of the instrument has passed over the point is recorded. This information is conveniently displayed as an integer-valued histogram over the length of the transect. The effectiveness of the transect method for a particular observing plan and the best placement of the transects depends upon the structure of the set of observations. Survey missions are usually characterized by a somewhat parallel alignment of the instrument swaths. Using autocorrelation and cross-correlation functions among the histograms the structure of a survey has been analyzed into two components, and each is illustrated by a simple mathematical model. The complex, all-sky survey to be performed by the Infrared Astronomical Satellite (IRAS) is synthesized in some detail utilizing the objectives and constraints of that mission. It is seen that this survey possesses the components predicted by the simple models and this information is useful in characterizing the properties of the IRAS survey and the placement of the transects as a function of celestial latitude and certain structural properties of the coverage.

  14. Exploring the Birth and Evolution of the Universe: How Detectors Have Revolutionized Space Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2012-01-01

    The past century has seen tremendous advances in the capability of instruments used for astronomical imaging and spectroscopy. Capabilities of instruments have expanded in many dimensions; the scale of telescopes has grown tremendously, the wavelengths used for astronomy have grown from visible light to the full electromagnetic spectrum, extending from gamma rays to low frequency radio waves. Additional advances have been enabled by the availability of space facilities, which eliminate the effects of the earths atmosphere and magnetosphere, and allow cooling of instruments to avoid instrumental thermal radiation. Even with all these advances, the increase in capability of detection systems has produced truly revolutionary improvements in capability. Today, I will describe the advances in astronomical detection from the photographic plates of the early 20th century to the giant high efficiency focal planes being developed for modern space and ground based astronomical instrument. I will review the demanding performance requirements set by space astronomy, and show how the detector community has risen to the challenge in producing high performance detectors for the Hubble Space Telescope, the Spitzer Space Telescope, and the James Webb Space Telescope, now under development.

  15. The Spectrum Landscape: Prospects for Terrestrial Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Liszt, Harvey Steven

    2018-01-01

    Radio astronomers work within broad constraints imposed by commercial and other non-astronomical uses of the radio spectrum, somewhat modified to accommodate astronomy’s particular needs through the provision of radio quiet zones, radio frequency allocations, coordination agreements and other devices of spectrum management. As radio astronomers increase the instantaneous bandwidth, frequency coverage and sensitivity of their instruments, these external constraints, and not the limitations of their own instruments, will increasingly be the greatest obstacles to radio astronomy’s ability to observe the cosmos from the surface of the Earth. Therefore, prospects for future radio astronomy operations are contingent on situational awareness and planning for the impact of non-astronomical uses of the radio frequency spectrum. New radio astronomy instruments will have to incorporate adaptive reactions to external developments, and radio astronomers should be encouraged to think in untraditional ways. Increased attention to spectrum management is one of these. In this talk I’ll recap some recent developments such as the proliferation of 76 – 81 GHz car radar and orbiting earth-mapping radars, either of which can burn out a radio astronomy receiver. I’ll summarize present trends for non-astronomical radio spectrum use that will be coming to fruition in the next decade or so, categorized into terrestrial fixed and mobile, airborne and space-borne uses, sub-divided by waveband from the cm to the sub-mm. I’ll discuss how they will impact terrestrial radio astronomy and the various ways in which radio astronomy should be prepared to react. Protective developments must occur both within radio astronomy’s own domain – designing, siting and constructing its instruments and mitigating unavoidable RFI – and facing outward toward the community of other spectrum users. Engagement with spectrum management is no panacea but it is an important means, and perhaps the only means, by which radio astronomy can take an active role in shaping its terrestrial environment.

  16. Improved instrumental magnitude prediction expected from version 2 of the NASA SKY2000 master star catalog

    NASA Technical Reports Server (NTRS)

    Sande, C. B.; Brasoveanu, D.; Miller, A. C.; Home, A. T.; Tracewell, D. A.; Warren, W. H., Jr.

    1998-01-01

    The SKY2000 Master Star Catalog (MC), Version 2 and its predecessors have been designed to provide the basic astronomical input data needed for satellite acquisition and attitude determination on NASA spacecraft. Stellar positions and proper motions are the primary MC data required for operations support followed closely by the stellar brightness observed in various standard astronomical passbands. The instrumental red-magnitude prediction subsystem (REDMAG) in the MMSCAT software package computes the expected instrumental color index (CI) [sensor color correction] from an observed astronomical stellar magnitude in the MC and the characteristics of the stellar spectrum, astronomical passband, and sensor sensitivity curve. The computation is more error prone the greater the mismatch of the sensor sensitivity curve characteristics and those of the observed astronomical passbands. This paper presents the preliminary performance analysis of a typical red-sensitive CCDST during acquisition of sensor data from the two Ball CT-601 ST's onboard the Rossi X-Ray Timing Explorer (RXTE). A comparison is made of relative star positions measured in the ST FOV coordinate system with the expected results computed from the recently released Tycho Catalogue. The comparison is repeated for a group of observed stars with nearby, bright neighbors in order to determine the tracker behavior in the presence of an interfering, near neighbor (NN). The results of this analysis will be used to help define a new photoelectric photometric instrumental sensor magnitude system (S) that is based on several thousand bright star magnitudes observed with the PXTE ST's. This new system will be implemented in Version 2 of the SKY2000 MC to provide improved predicted magnitudes in the mission run catalogs.

  17. Astronomy, New Instrumentation, and the News Media

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    2000-01-01

    Reporting of astronomical discoveries and events in the news media continues to expand to satisfy a seemingly voracious public interest. New telescopes, instruments, and facilities both up in space and on the ground, provide unique opportunities for media outreach on what scientists are accomplishing. And, new media such as website news providers, high-definition television, and video news walls help to fuel the growing activity. Ever since Tycho Brahe operated his own printing press, astronomers have striven to document their accomplishments for the wider world. In recent years, astronomers' media outreach has been successful in reaching the mass television audience through successful efforts at animation and scientific visualization, and through dramatic images acquired by some facilities, such as the solar physics satellites and ground observatories.

  18. Reviews in Modern Astronomy 12, Astronomical Instruments and Methods at the turn of the 21st Century

    NASA Astrophysics Data System (ADS)

    Schielicke, Reinhard E.

    The yearbook series Reviews in Modern Astronomy of the Astronomische Gesellschaft (AG) was established in 1988 in order to bring the scientific events of the meetings of the society to the attention of the worldwide astronomical community. Reviews in Modern Astronomy is devoted exclusively to the invited Reviews, the Karl Schwarzschild Lectures, the Ludwig Biermann Award Lectures, and the highlight contributions from leading scientists reporting on recent progress and scientific achievements at their respective research institutes. Volume 12 continues the yearbook series with 16 contributions which were presented during the International Scientific Conference of the AG on ``Astronomical Instruments and Methods at the Turn of the 21st Century'' at Heidelberg from September 14 to 19, 1998

  19. Astronomical Instruments with Two Scales Drawn on Their Common Circumference of Rings in the Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Mihn, Byeong-Hee; Choi, Goeun; Lee, Yong Sam

    2017-03-01

    This study examines the scale unique instruments used for astronomical observation during the Joseon dynasty. The Small Simplified Armillary Sphere (小簡儀, So-ganui) and the Sun-and-Stars Time-Determining Instrument (日星定時儀, Ilseong-jeongsi-ui) are minimized astronomical instruments, which can be characterized, respectively, as an observational instrument and a clock, and were influenced by the Simplified Armilla (簡儀, Jianyi) of the Yuan dynasty. These two instruments were equipped with several rings, and the rings of one were similar both in size and in scale to those of the other. Using the classic method of drawing the scale on the circumference of a ring, we analyze the scales of the Small Simplified Armillary Sphere and the Sun-and-Stars Time-Determining Instrument. Like the scale feature of the Simplified Armilla, we find that these two instruments selected the specific circumference which can be drawn by two kinds of scales. If Joseon`s astronomical instruments is applied by the dual scale drawing on one circumference, we suggest that 3.14 was used as the ratio of the circumference of circle, not 3 like China, when the ring`s size was calculated in that time. From the size of Hundred-interval disk of the extant Simplified Sundial in Korea, we make a conclusion that the three rings` diameter of the Sun-and-Stars Time-Determining Instrument described in the Sejiong Sillok (世宗實錄, Veritable Records of the King Sejong) refers to that of the middle circle of every ring, not the outer circle. As analyzing the degree of 28 lunar lodges (lunar mansions) in the equator written by Chiljeongsan-naepyeon (七政算內篇, the Inner Volume of Calculation of the Motions of the Seven Celestial Determinants), we also obtain the result that the scale of the Celestial-circumference-degree in the Small Simplified Armillary Sphere was made with a scale error about 0.1 du in root mean square (RMS).

  20. IR Instruments | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments ‹› You are here CTIO Home » Astronomers » Instruments » IR Instruments IR Instruments Infrared Imaging ANDICAM - Ohio State Visual/IR Imager (on SMARTS 1.3m Telescope) OSIRIS - The Ohio State

  1. Radio data archiving system

    NASA Astrophysics Data System (ADS)

    Knapic, C.; Zanichelli, A.; Dovgan, E.; Nanni, M.; Stagni, M.; Righini, S.; Sponza, M.; Bedosti, F.; Orlati, A.; Smareglia, R.

    2016-07-01

    Radio Astronomical Data models are becoming very complex since the huge possible range of instrumental configurations available with the modern Radio Telescopes. What in the past was the last frontiers of data formats in terms of efficiency and flexibility is now evolving with new strategies and methodologies enabling the persistence of a very complex, hierarchical and multi-purpose information. Such an evolution of data models and data formats require new data archiving techniques in order to guarantee data preservation following the directives of Open Archival Information System and the International Virtual Observatory Alliance for data sharing and publication. Currently, various formats (FITS, MBFITS, VLBI's XML description files and ancillary files) of data acquired with the Medicina and Noto Radio Telescopes can be stored and handled by a common Radio Archive, that is planned to be released to the (inter)national community by the end of 2016. This state-of-the-art archiving system for radio astronomical data aims at delegating as much as possible to the software setting how and where the descriptors (metadata) are saved, while the users perform user-friendly queries translated by the web interface into complex interrogations on the database to retrieve data. In such a way, the Archive is ready to be Virtual Observatory compliant and as much as possible user-friendly.

  2. The ALMA archive and its place in the astronomy of the future

    NASA Astrophysics Data System (ADS)

    Stoehr, Felix; Lacy, Mark; Leon, Stephane; Muller, Erik; Manning, Alisdair; Moins, Christophe; Jenkins, Dustin

    2014-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international partnership of Europe, North America and East Asia in cooperation with the Republic of Chile, is the largest astronomical project in existence. While ALMA's capabilities are ramping up, Early Science observations have started. The ALMA Archive is at the center of the operations of the telescope array and is designed to manage the 200 TB of data that will be taken each year, once the observatory is in full operations. We briefly describe design principles. The second part of this paper focuses on how astronomy is likely to evolve as the amount and complexity of data taken grows. We argue that in the future observatories will compete for astronomers to work with their data, that observatories will have to reorient themselves to from providing good data only to providing an excellent end-to-end user-experience with all its implications, that science-grade data-reduction pipelines will become an integral part of the design of a new observatory or instrument and that all this evolution will have a deep impact on how astronomers will do science. We show how ALMA's design principles are in line with this paradigm.

  3. Marshal Wrubel and the Electronic Computer as an Astronomical Instrument

    NASA Astrophysics Data System (ADS)

    Mutschlecner, J. P.; Olsen, K. H.

    1998-05-01

    In 1960, Marshal H. Wrubel, professor of astrophysics at Indiana University, published an influential review paper under the title, "The Electronic Computer as an Astronomical Instrument." This essay pointed out the enormous potential of the electronic computer as an instrument of observational and theoretical research in astronomy, illustrated programming concepts, and made specific recommendations for the increased use of computers in astronomy. He noted that, with a few scattered exceptions, computer use by the astronomical community had heretofore been "timid and sporadic." This situation was to improve dramatically in the next few years. By the late 1950s, general-purpose, high-speed, "mainframe" computers were just emerging from the experimental, developmental stage, but few were affordable by or available to academic and research institutions not closely associated with large industrial or national defense programs. Yet by 1960 Wrubel had spent a decade actively pioneering and promoting the imaginative application of electronic computation within the astronomical community. Astronomy upper-level undergraduate and graduate students at Indiana were introduced to computing, and Ph.D. candidates who he supervised applied computer techniques to problems in theoretical astrophysics. He wrote an early textbook on programming, taught programming classes, and helped establish and direct the Research Computing Center at Indiana, later named the Wrubel Computing Center in his honor. He and his students created a variety of algorithms and subroutines and exchanged these throughout the astronomical community by distributing the Astronomical Computation News Letter. Nationally as well as internationally, Wrubel actively cooperated with other groups interested in computing applications for theoretical astrophysics, often through his position as secretary of the IAU commission on Stellar Constitution.

  4. The NSF ITR Project: Framework for the National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Szalay, A. S.; Williams, R. D.; NVO Collaboration

    2002-05-01

    Technological advances in telescope and instrument design during the last ten years, coupled with the exponential increase in computer and communications capability, have caused a dramatic and irreversible change in the character of astronomical research. Large-scale surveys of the sky from space and ground are being initiated at wavelengths from radio to x-ray, thereby generating vast amounts of high quality irreplaceable data. The potential for scientific discovery afforded by these new surveys is enormous. Entirely new and unexpected scientific results of major significance will emerge from the combined use of the resulting datasets, science that would not be possible from such sets used singly. However, their large size and complexity require tools and structures to discover the complex phenomena encoded within them. We plan to build the NVO framework both through coordinating diverse efforts already in existence and providing a focus for the development of capabilities that do not yet exist. The NVO we envisage will act as an enabling and coordinating entity to foster the development of further tools, protocols, and collaborations necessary to realize the full scientific potential of large astronomical datasets in the coming decade. The NVO must be able to change and respond to the rapidly evolving world of IT technology. In spite of its underlying complex software, the NVO should be no harder to use for the average astronomer, than today's brick-and-mortar observatories and telescopes. Development of these capabilities will require close interaction and collaboration with the information technology community and other disciplines facing similar challenges. We need to ensure that the tools that we need exist or are built, but we do not duplicate efforts, and rely on relevant experience of others.

  5. Diffraction-limited lucky imaging with a 12" commercial telescope

    NASA Astrophysics Data System (ADS)

    Baptista, Brian J.

    2014-08-01

    Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.

  6. Property and instrumental heritage of the Bordeaux Astronomical Observatory; What future?

    NASA Astrophysics Data System (ADS)

    de La Noë, J.; Charlot, P.; Grousset, F.

    2009-11-01

    In the years 1870, the Government of the Third Republic decided to develop scientific and technical research. Such an effort contributed to supporting and creating universities and other institutes such as astronomical observatories. The dual wish of the Bordeaux council and professors at the Faculté des Sciences de Bordeaux led to the foundation of the astronomical Observatory of Bordeaux. It was set up by Georges Rayet in the years 1880's. The observatory owns a property of 12 hectares with a dozen of buildings, five domes housing an instrument, a Würzburg radiotelescope, a 2.5 meter radiotelescope, and a large collection of about 250 instruments, 4 500 photographic plates, drawings, slides for teaching astronomy, maps of the Carte du Ciel and 200 files of archives. In addition, the library contains about a thousand books for the period 1600-1950. The future of the observatory is not clear at the present time, when the Laboratoire d'Astrophysique will leave to the campus in a few years.

  7. Photonic ring resonator filters for astronomical OH suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  8. Photonic ring resonator filters for astronomical OH suppression

    DOE PAGES

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.; ...

    2017-01-01

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  9. ANDICAM | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments ‹› You are here CTIO Home » Astronomers » Instruments » IR Instruments » ANDICAM ANDICAM the 1998B semester. The IR array was installed in July 1999, enabling simultaneous optical and

  10. Space Infrared Telescope Facility (SIRTF) science instruments

    NASA Technical Reports Server (NTRS)

    Ramos, R.; Hing, S. M.; Leidich, C. A.; Fazio, G.; Houck, J. R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem.

  11. Scientific investigations at a lunar base

    NASA Technical Reports Server (NTRS)

    Duke, M. B.; Mendell, W. W.

    1988-01-01

    Scientific investigations to be carried out at a lunar base can have significant impact on the location, extent, and complexity of lunar surface facilities. Among the potential research activities to be carried out are: (1) Lunar Science: Studies of the origin and history of the Moon and early solar system, based on lunar field investigations, operation of networks of seismic and other instruments, and collection and analysis of materials; (2) Space Plasma Physics: Studies of the time variation of the charged particles of the solar wind, solar flares and cosmic rays that impact the Moon as it moves in and out of the magnetotail of the Earth; (3) Astronomy: Utilizing the lunar environment and stability of the surface to emplace arrays of astronomical instruments across the electromagnetic spectrum to improve spectral and spatial resolution by several orders of magnitude beyond the Hubble Space Telescope and other space observatories; (4) Fundamental physics and chemistry: Research that takes advantage of the lunar environment, such as high vacuum, low magnetic field, and thermal properties to carry out new investigations in chemistry and physics. This includes material sciences and applications; (5) Life Sciences: Experiments, such as those that require extreme isolation, highly sterile conditions, or very low natural background of organic materials may be possible; and (6) Lunar environmental science: Because many of the experiments proposed for the lunar surface depend on the special environment of the Moon, it will be necessary to understand the mechanisms that are active and which determine the major aspects of that environment, particularly the maintenance of high-vacuum conditions. From a large range of experiments, investigations and facilities that have been suggested, three specific classes of investigations are described in greater detail to show how site selection and base complexity may be affected: (1) Extended geological investigation of a complex region up to 250 kilometers from the base requires long range mobility, with transportable life support systems and laboratory facilities for the analysis of rocks and soil. Selection of an optimum base site would depend heavily on an evaluation of the degree to which science objectives could be met. These objectives could include lunar cratering, volcanism, resource surveys or other investigations; (2) An astronomical observatory initially instrumented with a VLF radio telescope, but later expanding to include other instruments, requires site preparation capability, "line shack" life support systems, instrument maintenance and storage facilities, and sortie mode transportation. A site perpetually shielded from Earth is optimum for the advanced stages of a lunar observatory; (3) an experimental physics laboratory conducting studies requiring high vacuum facilities and heavily instrumented experiments, is not highly dependent on lunar location, but will require much more flexibility in experiment operation and EVA capability, and more sophisticated instrument maintenance and fabrication facilities.

  12. Instrumental Aid by Japanese Official Development Assistance for Astronomy in Developing Countries

    NASA Astrophysics Data System (ADS)

    Kitamura, Masatoshi

    In order to promote education and research in developing countries, the Japanese Government has been providing developing countries with high-grade equipment under the framework of the Official Development Assistance (ODA) cooperation programme since 1982. Under this successful cooperation programme, 24 astronomical instruments have been donated to 19 developing countries up to the end of the Japanese fiscal year 2003. The instruments donated included university-level reflecting telescopes, as well as modern planetaria used for educational purposes, together with various accessories. This paper describes a continuation of the previous ODA donations (Astronomical Herald 1997) and the subsequent follow-up programmes provided with the assistance of Japan International Cooperation Agency (JICA).

  13. CICADA -- Configurable Instrument Control and Data Acquisition

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Roberts, William H.; Sebo, Kim M.

    CICADA (Young et al. 1997) is a multi-process, distributed application for the control of astronomical data acquisition systems. It comprises elements that control the operation of, and data flow from CCD camera systems; and the operation of telescope instrument control systems. CICADA can be used to dynamically configure support for astronomical instruments that can be made up of multiple cameras and multiple instrument controllers. Each camera is described by a hierarchy of parts that are each individually configured and linked together. Most of CICADA is written in C++ and much of the configurability of CICADA comes from the use of inheritance and polymorphism. An example of a multiple part instrument configuration -- a wide field imager (WFI) -- is described here. WFI, presently under construction, is made up of eight 2k x 4k CCDs with dual SDSU II controllers and will be used at Siding Spring's ANU 40in and AAO 3.9m telescopes.

  14. AMBER instrument control software

    NASA Astrophysics Data System (ADS)

    Le Coarer, Etienne P.; Zins, Gerard; Gluck, Laurence; Duvert, Gilles; Driebe, Thomas; Ohnaka, Keiichi; Heininger, Matthias; Connot, Claus; Behrend, Jan; Dugue, Michel; Clausse, Jean Michel; Millour, Florentin

    2004-09-01

    AMBER (Astronomical Multiple BEam Recombiner) is a 3 aperture interferometric recombiner operating between 1 and 2.5 um, for the Very Large Telescope Interferometer (VLTI). The control software of the instrument, based on the VLT Common Software, has been written to comply with specific features of the AMBER hardware, such as the Infrared detector read out modes or piezo stage drivers, as well as with the very specific operation modes of an interferomtric instrument. In this respect, the AMBER control software was designed to insure that all operations, from the preparation of the observations to the control/command of the instrument during the observations, would be kept as simple as possible for the users and operators, opening the use of an interferometric instrument to the largest community of astronomers. Peculiar attention was given to internal checks and calibration procedures both to evaluate data quality in real time, and improve the successes of long term UV plane coverage observations.

  15. MOEMs devices for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Liotard, Arnaud; Lanzoni, Patrick; ElHadi, Kacem; Waldis, Severin; Noell, Wilfried; de Rooij, Nico; Conedera, Veronique; Fabre, Norbert; Muratet, Sylvaine; Camon, Henri

    2017-11-01

    Based on the micro-electronics fabrication process, Micro-Opto-Electro-Mechanical Systems (MOEMS) are under study in order to be integrated in next-generation astronomical instruments for ground-based and space telescopes. Their main advantages are their compactness, scalability, specific task customization using elementary building blocks, and remote control. At Laboratoire d'Astrophysique de Marseille, we are engaged since several years in the design, realization and characterization of programmable slit masks for multi-object spectroscopy and micro-deformable mirrors for wavefront correction. First prototypes have been developed and show results matching with the requirements.

  16. The First Years of Optics in Mexico and the role of the Boletín de los Observatorios de Tonantzintla y Tacubaya on its development

    NASA Astrophysics Data System (ADS)

    Cornejo, A.

    2011-04-01

    The field of Optics in Mexico, related with research projects, started at the Instituto de Astronomía, UNAM, since 1960. Therefore, the first projects and papers were mainly dedicated to astronomical instruments. After sometime, other projects started other areas of Optics as for example the production of He-Ne gas lasers, thin films deposits, experiments in holography, programs for general optical design, and theory and experiments for testing optical components and instruments.

  17. MOEMs, key optical components for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Dohlen, Kjetil; Burgarella, Denis; Ferrari, Marc; Buat, Veronique

    2017-11-01

    Based on the micro-electronics fabrication process, MicroOpto-Electro-Mechanical Systems (MOEMS) are under study, in order to be integrated in next-generation astronomical instruments and telescopes, especially for space missions. The main advantages of micro-optical components are their compactness, scalability, specific task customization using elementary building blocks, and they allows remote control. As these systems are easily replicable, the price of the components is decreasing dramatically when their number is increasing. The two major applications of MOEMS are Multi-Object Spectroscopy masks and Deformable Mirror systems.

  18. Far-infrared spectrophotometer for astronomical observations

    NASA Technical Reports Server (NTRS)

    Moseley, H.; Silverberg, R. F.

    1981-01-01

    A liquid-helium-cooled far infrared spectrophotometer was built and used to make low resolution observations of the continua of several kinds of astronomical objects using the Kuiper Airborne Observatory. This instrument fills a gap in both sensitivity to continuum sources and spectral resolution between the broadband photometers with lambda/Delta lambda approximately 1 and spectrometers with lambda/Delta lambda greater than 50. While designed primarily to study planetary nebulae, the instrument permits study of the shape of the continua of many weak sources which cannot easily be observed with high resolution systems.

  19. Future-oriented maintenance strategy based on automated processes is finding its way into large astronomical facilities at remote observing sites

    NASA Astrophysics Data System (ADS)

    Silber, Armin; Gonzalez, Christian; Pino, Francisco; Escarate, Patricio; Gairing, Stefan

    2014-08-01

    With expanding sizes and increasing complexity of large astronomical observatories on remote observing sites, the call for an efficient and recourses saving maintenance concept becomes louder. The increasing number of subsystems on telescopes and instruments forces large observatories, like in industries, to rethink conventional maintenance strategies for reaching this demanding goal. The implementation of full-, or semi-automatic processes for standard service activities can help to keep the number of operating staff on an efficient level and to reduce significantly the consumption of valuable consumables or equipment. In this contribution we will demonstrate on the example of the 80 Cryogenic subsystems of the ALMA Front End instrument, how an implemented automatic service process increases the availability of spare parts and Line Replaceable Units. Furthermore how valuable staff recourses can be freed from continuous repetitive maintenance activities, to allow focusing more on system diagnostic tasks, troubleshooting and the interchanging of line replaceable units. The required service activities are decoupled from the day-to-day work, eliminating dependencies on workload peaks or logistic constrains. The automatic refurbishing processes running in parallel to the operational tasks with constant quality and without compromising the performance of the serviced system components. Consequentially that results in an efficiency increase, less down time and keeps the observing schedule on track. Automatic service processes in combination with proactive maintenance concepts are providing the necessary flexibility for the complex operational work structures of large observatories. The gained planning flexibility is allowing an optimization of operational procedures and sequences by considering the required cost efficiency.

  20. Okayama Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Okayama Astrophysical Observatory (OAO) is a branch Observatory of the NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN. Its main facilities are 188 cm and 91 cm telescopes, equipped with newly built instruments with CCD/IR cameras (e.g. OASIS). OAO accepts nearly 300 astronomers a year, according to the observation program scheduled by the committee....

  1. Tycho Brahe: emperor of Hven and the heavens.

    PubMed

    Fara, Patricia

    2007-09-01

    Although the Danish astronomer Tycho Brahe reacted against Copernicus by restoring the earth to the centre of the cosmos, he built sophisticated instruments to compile massive sets of accurate data. A skilled self-publicist, he commissioned portraits of himself as he established a new type of astronomical research.

  2. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement

    NASA Technical Reports Server (NTRS)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, Thomas J. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched on January 26, 1983. During its 300-day mission, IRAS surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and data reduction.

  3. Architectures of astronomical observation: From Sternwarte Kassel (circa 1560) to the Radcliffe Observatory (1772)

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair Marcus

    Historical observatories did not merely shelter astronomers and their instruments, but interacted with them to shape the range and outcome of astronomical observations. This claim is demonstrated through both improvised and purpose-built observatories from the late sixteenth century to the late eighteenth. The improvised observatories involve various grades of architectural intervention from simple re-purposing of a generic space through to radical renovation and customisation. Some of the observatories examined were never built, and some survive only in textual and visual representations, but all nonetheless reflect astronomers' thinking about what observatories needed to provide, and allow us to reconstruct aspects of what it was like to work in them. Historical observatories hence offer a physical record of observational practices. Reconstructing lost practices and the tacit knowledge involved shows how observatories actively contributed to observations by accommodating, supporting and sheltering observers and instruments. We also see how observatories compromised observations by constraining views and free movement, by failing to provide sufficient support, by being expensive or otherwise difficult to obtain, modify or replace. Some observatories were modified many times, accumulating layers of renovation and addition that reflect both advancement and succession of multiple research programs. Such observatories materially and spatially manifest how observational astronomy developed and also also how observatories, like other buildings, respond to changing needs. Examining observatories for their architectural functions and functional shortcomings connects observational practices, spatial configurations and astronomical instrumentation. Such examination shows that spatial contexts, and hence the buildings that define them, are not passive: to the contrary, observatories are active protagonists in the development and practise of observational astronomy.

  4. Using Modern And Inexpensive Tools In the Classroom To Teach Spectroscopy And To Do Exciting Citizen Science On Astronomical Objects

    NASA Astrophysics Data System (ADS)

    Field, T.

    2014-12-01

    Spectroscopy is a key tool used in modern astronomical research. But, it's always been a difficult topic to teach or practice because the expense and complexity of the available tools. Over the past few years, there's been somewhat of a revolution in this field as new technologies have applied. In this presentation we'll review some new spectroscopy tools that enable educators, students and citizen scientists to do exciting spectroscopic work. With the addition of a simple, inexpensive grating, it's now possible to capture scientifically significant spectra of astronomical objects with small (6") telescopes and even just a DSLR. See the tools that citizen scientists are using to contribute data to pro-am collaborations around the world. We'll also examine a simple, surprisingly inexpensive, tripod-mounted spectrometer that can be used in the classroom for demonstrations and hands-on labs with gas tubes and other light sources. Both of the above instruments use a software program named RSpec, which is state of the art software suite that is easy to learn and easy to use. In this presentation we'll see these devices in operation and discuss how they can be used by educators to dramatically improve their teaching of this topic. You'll see how these tools can eliminate the frustration of hand-held rainbow foil and plastic spectrometers. And we'll review some exciting examples of astronomical spectra being collected by amateurs and educators.

  5. Using Machine Learning to Enable Big Data Analysis within Human Review Time Budgets

    NASA Astrophysics Data System (ADS)

    Bue, B.; Rebbapragada, U.; Wagstaff, K.; Thompson, D. R.

    2014-12-01

    The quantity of astronomical observations collected by today's instruments far exceeds the capability of manual inspection by domain experts. Scientists often have a fixed time budget of a few hours spend to perform the monotonous task of scanning through a live stream or data dump of candidates that must be prioritized for follow-up analysis. Today's and next generation astronomical instruments produce millions of candidate detection per day, and necessitate the use of automated classifiers that serve as "data triage" in order to filter out spurious signals. Automated data triage enables increased science return by prioritizing interesting or anomalous observations for follow-up inspection, while also expediting analysis by filtering out noisy or redundant observations. We describe three specific astronomical investigations that are currently benefiting from data triage techniques in their respective processing pipelines.

  6. ARNICA, the Arcetri near-infrared camera: Astronomical performance assessment.

    NASA Astrophysics Data System (ADS)

    Hunt, L. K.; Lisi, F.; Testi, L.; Baffa, C.; Borelli, S.; Maiolino, R.; Moriondo, G.; Stanga, R. M.

    1996-01-01

    The Arcetri near-infrared camera ARNICA was built as a users' instrument for the Infrared Telescope at Gornergrat (TIRGO), and is based on a 256x256 NICMOS 3 detector. In this paper, we discuss ARNICA's optical and astronomical performance at the TIRGO and at the William Herschel Telescope on La Palma. Optical performance is evaluated in terms of plate scale, distortion, point spread function, and ghosting. Astronomical performance is characterized by camera efficiency, sensitivity, and spatial uniformity of the photometry.

  7. Astronomy in Italy during the Middle Ages and the Renaissance

    NASA Astrophysics Data System (ADS)

    Truffa, Giancarlo

    I will present a chronological excursus from the XII century, from the time of the birth of the first universities in Europe, when the translations of Arabic and Greek texts promoted the first "renaissance" of philosophical and scientific studies, to the XVI century, when the second "renaissance" gave birth to modern science. I will consider only some personalities, representatives of the different aspects of astronomical research during this period: translations, commentaries, astronomical tables, astronomical instruments, observations, astrological forecasting.

  8. DMD-based multi-object spectrograph on Galileo telescope

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Bon, William; Riva, Marco; Nicastro, Luciano; Molinari, Emilio; Di Marcantonio, Paolo; Zerbi, Filippo; Valenziano, Luca

    2013-03-01

    Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014.

  9. Current and Future Capabilities of the 74-inch Telescope of Kottamia Astronomical Observatory in Egypt

    NASA Astrophysics Data System (ADS)

    Azzam, Y. A.; Ali, G. B.; Ismail, H. A.; Haroon, A.; Selim, I.

    In this paper, we are going to introduce the Kottamia Astronomical Observatory, KAO, to the astronomical community. The current status of the telescope together with the available instrumentations is described. An upgrade stage including a new optical system and a computer controlling of both the telescope and dome are achieved. The specifications of a set of CCD cameras for direct imaging and spectroscopy are given. A grating spectrograph is recently gifted to KAO from Okayama Astrophysical Observatory, OAO, of the National Astronomical Observatories in Japan. This spectrograph is successfully tested and installed at the F/18 Cassegrain focus of the KAO 74" telescope.

  10. America's foremost early astronomer. [David Rittenhouse

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Rubincam, Milton, II

    1995-01-01

    The life of 18th century astronomer, craftsman, and partriot David Rittenhouse is detailed. As a craftsman, he distinguished himself as one of the foremost builders of clocks. He also built magnetic compasses and surveying instruments. The finest examples of his craftsmanship are considered two orreries, mechanical solar systems. In terms of astronomical observations, his best-known contribution was his observation of the transit of Venus in 1769. Rittenhouse constructed the first diffraction grating. Working as Treasurer of Pennsylvania throughout the Revolution, he became the first director of the Mint in 1792. Astronomical observations in later life included charting the position of Uranus after its discovery.

  11. Cosmic Discovery

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    1984-04-01

    In the remarkable opening section of this book, a well-known Cornell astronomer gives precise thumbnail histories of the 43 basic cosmic discoveries - stars, planets, novae, pulsars, comets, gamma-ray bursts, and the like - that form the core of our knowledge of the universe. Many of them, he points out, were made accidentally and outside the mainstream of astronomical research and funding. This observation leads him to speculate on how many more major phenomena there might be and how they might be most effectively sought out in afield now dominated by large instruments and complex investigative modes and observational conditions. The book also examines discovery in terms of its political, financial, and sociological context - the role of new technologies and of industry and the military in revealing new knowledge; and methods of funding, of peer review, and of allotting time on our largest telescopes. It concludes with specific recommendations for organizing astronomy in ways that will best lead to the discovery of the many - at least sixty - phenomena that Harwit estimates are still waiting to be found.

  12. New Vistas Open with MIDI at the VLT Interferometer

    NASA Astrophysics Data System (ADS)

    2002-12-01

    "First Fringes" in Mid-Infrared Spectral Region with Two Giant Telescopes Summary Following several weeks of around-the-clock work, a team of astronomers and engineers from Germany, the Netherlands, France and ESO [2] has successfully performed the first observations with the MID-Infrared interferometric instrument (MIDI), a new, extremely powerful instrument just installed in the underground laboratory of the VLT Interferometer (VLTI) at the Paranal Observatory (Chile). In the early morning of December 15, 2002, two of the 8.2 m VLT unit telescopes (ANTU and MELIPAL) were pointed towards the southern star eta Carinae and the two light beams were directed via the complex intervening optics system towards MIDI. After a few hours of tuning and optimization, strong and stable interferometric fringes were obtained, indicating that all VLTI components - from telescopes to the new instrument - were working together perfectly. Two more stars were observed before sunrise, further proving the stability of the entire system. The first observations with MIDI mark one more important step towards full and regular operation of the VLT Interferometer [3] . They are a result of five years of determined efforts within a concerted technology project, based on a close collaboration between ESO and several European research institutes (see below). Now opening great research vistas, they also represent several "firsts" in observational astrophysics, together amounting to a real breakthrough in the field of astronomical interferometry . New views at mid-infrared wavelengths : MIDI is sensitive to light of a wavelength near 10 µm, i.e., in the mid-infrared spectral region ("thermal infrared"). This provides rich opportunities to study a wide range of otherwise inaccessible, crucial astrophysical phenomena, e.g., the formation of planets in dusty disks around newborn stars and the innermost regions around black holes. However, it is a great technical challenge to perform mid-IR observations. This is first of all because the terrestrial atmosphere, the telescopes, their mounts and, not least, the complicated optics system needed to guide the beams the long way from the telescopes to the MIDI instrument all glow bright at mid-IR wavelengths. Thus, even the most luminous mid-IR stellar sources "drown" in this bright background, calling for highly refined observational methods and data reduction procedures. Fainter objects with large telescopes : This is the first time telescopes with mirrors as large as these have been used for mid-IR interferometry. The use of the VLT giants at Paranal now allows observing much fainter objects than before. Sharper images with Interferometry : The distance between ANTU and MELIPAL during these observations, 102 metres, is a new world record for interferometry at this wavelength. The achieved angular resolution is indeed the one theoretically possible with this instrumental configuration, about 0.01 arcsec, better than what has ever been achieved before from ground or space at this wavelength. MIDI is the first of two instruments that will be placed at the focus of the VLT Interferometer. It is a collaborative project between several European research institutes: * European Southern Observatory (ESO) * Max Planck Institut für Astronomie (MPIA) (Heidelberg, Germany) * Netherlands Graduate School for Astronomy (NOVA) (Leiden, The Netherlands) * Department of Astronomy - Leiden Observatory (The Netherlands) * Kapteyn Astronomical Institute (Groningen, The Netherlands) * Astronomical Institute, Utrecht University (The Netherlands) * Netherlands Foundation for Research in Astronomy (NFRA) (Dwingeloo, The Netherlands) * Space Research Organization Netherlands (SRON) (Utrecht, Groningen; The Netherlands) * Thüringer Landessternwarte Tautenburg (TLS) (Germany) * Kiepenheuer-Institut für Sonnenphysik (KIS) (Freiburg, Germany) * Observatoire de Paris (OBSPM) (Paris, Meudon, Nancay; France) * Observatoire de la Côte d'Azur (OCA) (Nice, France) The first observations with MIDI will now be followed up by thorough tests of the new instrument before it enters into regular service. It is planned that the first community observations will be performed at the VLTI in mid-2003. Great efforts have gone into making observations with this complex science machine as user-friendly as possible and, contrary to what is normally the case in this technically demanding branch of astronomy, scientists will find interferometric work at the VLTI quite similar to that of using the many other, more conventional VLT instruments. PR Photo 30a/02: MIDI " First Fringes " of eta Carinae. PR Photo 30b/02: The happy team at the moment of "First Fringes". PR Photo 30c/02: MIDI in the Interferometric Laboratory at Paranal. PR Video Clip 03/02: Optical path scan with "First Fringes" appearing on the computer screen. A wonderful moment ESO PR Video Clip 03/02 [384x288 pix MPEG-version] ESO PR Video Clip 03/02 (480 frames/0:19 min) [MPEG; 384x288 pix; 6.6M] [RealMedia; streaming; 56kps] [RealMedia; streaming; 200kps] Another vital step has been accomplished as planned towards full operation of the ESO Very Large Telescope (VLT) and the associated VLT Interferometer (VLTI) at the Paranal Observatory in Chile, one of the world's foremost astronomical facilities. Indeed, plans had been made more than one year ago for this milestone event to take place at the end of 2002. In the early morning of December 15, 2002, at 02:45 local time (05:45 UT), a team of astronomers and engineers from Germany, Netherlands, France and ESO celebrated the first successful combination of mid-infrared "light" beams from ANTU and MELIPAL, two of the four 8.2-m VLT Unit Telescopes . This special moment, referred to as the "First Fringes" , occurred when infrared radiation at a wavelength of 8.7 µm from the bright star eta Carinae was captured simultaneously by the two telescopes (situated 102 metres apart) and then directed via a complex optics system towards the MID-Infrared interferometric instrument (MIDI), a new, extremely sensitive and versatile instrument just installed in the underground VLT Interferometric Laboratory. Strong interferometric fringes, well visible on the computer screen to the delighted team, cf. PR Photo 30a-b/02 and PR Video Clip 03/02 , were obtained repeatedly by the MIDI instrument and the recorded data were of excellent quality. A great achievement This is the first time ever interferometry in the near-infrared 8.7 µm-band (technically: the "N"-band") with large telescopes has been accomplished and the first time at 100-m baselines. For this to happen, it was necessary to keep the difference in the length of the light paths from the two telescopes to the focus of the MIDI instrument stable and equal to within a small fraction of this wavelength during the observations, in practice to about 1 µm (0.001 mm). The team spent the first few hours of the night tuning the system, positioning the many optical components and optimizing the various feed-back mechanisms that involve precision-guided mirrors below the two telescopes and the so-called "delay lines" in the underground Interferometric Tunnel [3]. After a few attempts and successive on-line optimization, modulated "fringes" - the typical signature of interferometric measurements - became visible on the screens of the instrument computers, demonstrating conclusively the validity of the overall concept, cf. PR Video Clip 03/02 . The rest of the night was used to further trim the VLTI and MIDI. The team also observed two other objects before sunrise, the young binary star Z Canis Majoris and the enigmatic Eta Carinae - for both, interferometric fringes were convincingly obtained. The perfection of all of the 32 optical elements needed to guide the starlight towards MIDI for these observations contributed to this, as did the availability of advanced user-friendly control software, specially developed for the VLTI and its instruments in order to facilitate the future observations, also by non-specialists. Advantages of MIDI With its high sensitivity to thermal radiation, MIDI is ideally suited to study cosmic material (dust and gas) near a central hot object and heated by its radiation . In the case of astronomical observations in the visible spectral region, such material is usually hidden from view because of a strong obscuring effect that is caused by the dust it contains. Most optical observations of star-forming clouds only show the dark contours of the cloud and nothing about the complex processes that happen inside. Contrarily, this obscuring effect of the dust is often entirely insignificant at the longer mid-infrared wavelengths around 10 µm (0.01 mm) at which MIDI observes, allowing direct studies of what is going on inside. MIDI science targets Thanks to interferometry and the large collecting surface of the VLT telescopes, MIDI achieves unsurpassed image sharpness (about 0.01 arcsec) and sensitivity at these "revealing" wavelengths, promising extremely detailed views, also of faint and distant objects. Clearly, the associated opportunities for exciting research are almost unlimited. Some of the first targets for the fully operational MIDI instrument will thus include the enigmatic dust rings now believed to be located around giant black holes at the centers of quasars and strong radio galaxies. Equally interesting will be in-depth studies of those disks of matter that are known to accompany the creation of new stars and from which exoplanets are forming . And with MIDI, it will now be possible to investigate the outer zones of the extended atmospheres of giant stars where the dust grains form in the first place - those complex particles that, loaded with water ice, minerals and simple organic molecules, eventually move into interstellar space and later play a crucial role in the formation of stars and planets. MIDI - a new and powerful instrument for the VLT Interferometer The MIDI instrument has been developed by a European consortium of astronomical institutes, under the leadership of the Max-Planck-Institut für Astronomie (MPIA) in Heidelberg (Germany). Following the installation in 2001 by ESO of the VLTI test instrument, VINCI, to verify and tune the exceedingly complex optical system [3], MIDI is the first of two scientific instruments that will be devoted to interferometric observations with the VLT Interferometer during the coming decade. The other is AMBER which will combine three beams from different telescopes and will be sensitive in the wavelength region of 1-2.5 µm. The MIDI instrument weighs about 1.5 tons and is mounted on a 1.5 x 2.1 m precision optical table, placed at the centre of the underground VLT Interferometric Laboratory at the top of the Paranal mountain, cf. PR Photo 30c/02 . The large cube at the back of the table is a vacuum vessel that allows cooling of the infrared detector and the surrounding optics to temperatures of -270 to -240 °C (4K to 35K on the absolute temperature scale), which is necessary for observations at these infrared wavelengths. Despite its large dimensions, MIDI has to be very carefully adjusted to the light beams arriving from the telescopes, with initial precision exceeding 0.01° (angles) and 0.1 mm (position). The electronic equipment necessary to run the instrument is installed in a separate room in order to reduce any disturbances from heat, noise and vibrations to the lowest possible level. During the observations, the astronomers operate the entire instrument, as well as the VLT Interferometer, from a building below the mountain top, more than one hundred metres away. This state-of-the-art instrument is the outcome of a close collaboration between several European research institutes [1], greatly profiting from their combined expertise in many different technological areas. This involves the construction of large astronomical instruments for infrared observations, involving operation in vacuum and at low temperatures (MPIA in Heidelberg, Germany), designing and manufacturing optics for the extreme cryogenic environment (ASTRON in Dwingeloo, The Netherlands), designing and creating the complex software needed to run the instrument in a user-friendly way (NEVEC in Leiden, The Netherlands, and MPIA), as well as other specialised contributions from the Kiepenheuer-Institut für Sonnenphysik in Freiburg (Germany), Observatoire de Paris-Meudon and Observatoire de la Côte d'Azur in Nice (France), and Thüringer Landessternwarte in Tautenburg (Germany). This wide collaboration was carried out in close cooperation with and profiting from the professional experience of ESO that has built and now operates the Paranal Observatory, ensuring the proper interfacing between MIDI and the VLTI needed for high-performance interferometric measurements. Brief history of the MIDI project Work on the mid-infraredinterferometric instrument MIDI started in 1997 when MPIA proposed to ESO to build such a facility that would conform with ESO's plans for interferometric observations with the VLT telescopes and which would most probably become the first of its kind worldwide. Soon thereafter, the Netherlands Science Organization NOVA with ASTRON and NEVEC and the other partner institutes in France, the Netherlands and Germany joined the project. With Christoph Leinert and Uwe Graser from MPIA teaming up to lead the project, more than two dozen engineers, astronomers and students worked intensively for three and a half years on the planning, design and production, before the integration of this highly complex instrument could start at the Max-Planck-Institut für Astronomie in Heidelberg. This took place in September 2001 and was followed by a period of extensive instrumental tests. Much preparatory work had to be done at Paranal in parallel, to be ready for a smooth installation of MIDI [3]. After a positive, concluding status review of MIDI by ESO in September 2002, the many parts of the complex instrument were packed into 32 big wooden boxes, with a total weight of 8 tons, and sent from Heidelberg to Paranal by air freight. The installation of MIDI in the VLT Interferometric Laboratory began as scheduled in early November. The first test measurements were carried out during the first days of December with two 40-cm siderostats, the same that were used to obtain "first fringes" with the VINCI test instrument in March 2001, cf. ESO PR 06/01. These initial measurements led to stable, good-quality fringes on the bright stars Alpha Orionis (Betelgeuse) and Omicron Ceti (Mira). The total cost of MIDI is of the order of 6 million Euros. Of this, 1.8 million Euros are for equipment, materials and optical parts, with the remaining for salaries during the extensive planning, construction and testing of this front-line instrument. Some related technical achievements Astronomical observations of electromagnetic radiation at mid-infrared wavelengths near 10 µm are difficult, because this is the spectral region of thermal radiation from our environment . If our eyes were sensitive to that radiation, everything around us would be brilliantly bright, including the sky at night, and no stars would then be visible to the naked eye. Sensitive imaging detectors for these wavelengths have become available during the past years, but to work satisfactorily, they must be cooled to a very low temperature around -265 °C (4K - 10K) during operation. Also the optics in front of the detector must be cooled to about -240 °C - otherwise all images would be immediately overexposed, due to the added thermal radiation from those lenses and mirrors. In practice, the technical solution to this fundamental problem is a so-called closed-cycle cooler that works with high-pressure helium gas and achieves the required low temperatures on several "cold fingers" inside the instrument. However, the associated moving pistons cause vibrations which must be reduced to a minimum by means of special damping materials and connections for the cooler and the instrument. Otherwise this motion would be detrimental to the sensitive measurements, which require near-perfect mechanical stability, to within a fraction of the infrared wavelength, i.e., to 0.001 mm (1 µm) or better. Similarly, slight bending effects of the instrument parts during cool-down from room temperature would also compromise the measurements. This has been avoided by manufacturing the support of all optical parts near the detector from one single, carefully selected block of special aluminium. Still, as the light from the star being observed falls on the detector inside MIDI, it will be surrounded by strong thermal radiation from the terrestrial atmosphere in this direction and all uncooled ("warm") mirrors in the light path. The transfer of the digitally recorded images from the detector to the computer data storage must therefore occur at very high speed, one image per 0.001 sec, and always be strictly synchronized with a modulation inherent in the measurement process. This requires powerful, highly specialized and yet flexible electronics - this crucial part of the new instrument was developed over the past years at MPIA. With this and many other technical innovations successfully completed, and with the first on-the-sky observations just accomplished to the full satisfaction of the MIDI team, this new, powerful instrument will soon be ready to enter into new and unknown research territory. Hundreds of astronomers in the ESO members countries and their colleagues all over the world are now eagerly waiting to get their hands on this new facility.

  13. Using XML and Java for Astronomical Instrument Control

    NASA Astrophysics Data System (ADS)

    Koons, L.; Ames, T.; Evans, R.; Warsaw, C.; Sall, K.

    1999-12-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests. Instrument description is too tightly coupled with details of implementation. NASA/Goddard Space Flight Center and AppNet, Inc. are developing a very general and highly extensible framework that applies to virtually any kind of instrument that can be controlled by a computer (e.g., telescopes, microscopes and printers). A key aspect of the object-oriented architecture, implemented in Java, involves software that is driven by an instrument description. The Astronomical Instrument Markup Language (AIML) is a domain-specific implementation of the more generalized Instrument Markup Language (IML). The software architecture combines the platform-independent processing capabilities of Java with the vendor-independent data description syntax of Extensible Markup Language (XML), a human-readable and machine-understandable way to describe structured data. IML is used to describe command sets (including parameters, datatypes, and constraints) and their associated formats, telemetry, and communication mechanisms. The software uses this description to present graphical user interfaces to control and monitor the instrument. Recent efforts have extended to command procedures (scripting) and representation of data pipeline inputs, outputs, and connections. Near future efforts are likely to include an XML description of data visualizations, as well as the potential use of XSL (Extensible Stylesheet Language) to permit astronomers to customize the user interface on several levels: per user, instrument, subsystem, or observatory-wide. Our initial prototyping effort was targeted for HAWC (High-resolution Airborne Wideband Camera), a first-light instrument of SOFIA (the Stratospheric Observatory for Infrared Astronomy). A production-level application of this technology is for one of the three candidate detectors of SPIRE (Spectral and Photometric Imaging REceiver), a focal plane instrument proposed for the European Space Agency's Far Infrared Space Telescope. The detectors are being developed by the Infrared Astrophysics Branch of NASA/GSFC.

  14. The South African Astronomical Observatory instrumentation software architecture and the SHOC instruments

    NASA Astrophysics Data System (ADS)

    van Gend, Carel; Lombaard, Briehan; Sickafoose, Amanda; Whittal, Hamish

    2016-07-01

    Until recently, software for instruments on the smaller telescopes at the South African Astronomical Observatory (SAAO) has not been designed for remote accessibility and frequently has not been developed using modern software best-practice. We describe a software architecture we have implemented for use with new and upgraded instruments at the SAAO. The architecture was designed to allow for multiple components and to be fast, reliable, remotely- operable, support different user interfaces, employ as much non-proprietary software as possible, and to take future-proofing into consideration. Individual component drivers exist as standalone processes, communicating over a network. A controller layer coordinates the various components, and allows a variety of user interfaces to be used. The Sutherland High-speed Optical Cameras (SHOC) instruments incorporate an Andor electron-multiplying CCD camera, a GPS unit for accurate timing and a pair of filter wheels. We have applied the new architecture to the SHOC instruments, with the camera driver developed using Andor's software development kit. We have used this to develop an innovative web-based user-interface to the instrument.

  15. The Hard X-ray experiment on the Astronomical Netherlands Satellite

    NASA Technical Reports Server (NTRS)

    Gursky, H.; Schnopper, H.; Parsignault, D.

    1975-01-01

    The Hard X-ray Experiment flown on the Astronomical Netherlands Satellite is described. The instrument consists of two parts. One is a large-area detector of about 60 sq cm in total area, sensitive in the energy range between 1.5 and 30 keV. Two counters comprise this detector, each collimated 10 min by 3 deg and offset in the narrow direction by 4 min. The other part is a Bragg-crystal assembly consisting of two PET crystals and counters aligned to search for the silicon emission lines near 2 keV. Instrument characteristics and orbital operations are described.

  16. Temperature control system for optical elements in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  17. MAISIE: a multipurpose astronomical instrument simulator environment

    NASA Astrophysics Data System (ADS)

    O'Brien, Alan; Beard, Steven; Geers, Vincent; Klaassen, Pamela

    2016-07-01

    Astronomical instruments often need simulators to preview their data products and test their data reduction pipelines. Instrument simulators have tended to be purpose-built with a single instrument in mind, and at- tempting to reuse one of these simulators for a different purpose is often a slow and difficult task. MAISIE is a simulator framework designed for reuse on different instruments. An object-oriented design encourages reuse of functionality and structure, while offering the flexibility to create new classes with new functionality. MAISIE is a set of Python classes, interfaces and tools to help build instrument simulators. MAISIE can just as easily build simulators for single and multi-channel instruments, imagers and spectrometers, ground and space based instruments. To remain easy to use and to facilitate the sharing of simulators across teams, MAISIE is written in Python, a freely available and open-source language. New functionality can be created for MAISIE by creating new classes that represent optical elements. This approach allows new and novel instruments to add functionality and take advantage of the existing MAISIE classes. MAISIE has recently been used successfully to develop the simulator for the JWST/MIRI- Medium Resolution Spectrometer.

  18. TIRGO and its instrumentation

    NASA Astrophysics Data System (ADS)

    Baffa, Carlo; Gennari, Sandro; Hunt, Leslie K.; Lisi, Franco; Tofani, Gianni; Vanzi, Leonardo

    1995-09-01

    We describe the general characteristics of the TIRGO infrared telescope, located on Gornergrat (Switzerland), and its most recent instrumentation. This telescope is specifically designed for infrared astronomical observations. Two newly designed instruments are presented: the imaging camera Arnica and the long-slit spectrometer LonGSp, both based on two-dimensional array detectors.

  19. The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiyuki

    This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.

  20. ISPI | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments ‹› You are here CTIO Home » Astronomers » Instruments » IR Instruments » ISPI ISPI The CTIO matched to f/8 IR image quality of ~0.6 arcsec 10.25 x 10.25 arcmin field of view, broad band J,H and Ks

  1. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance learning center, and enhancements to the atmospheric and earth science suite of instrumentation.

  2. Pro-Am Collaborations with research grade robotic instruments and their contribution to outreach

    NASA Astrophysics Data System (ADS)

    Howes, N.

    2014-04-01

    Robotic telescopes in both the commercial sector and outreach area have increasingly provided both professional and amateur astronomers with high quality data. Projects like the Faulkes Telescope, which is an educational and research arm of the Las Cumbres Observatory Global Telescope Network (LCOGTN) with their network of 1 and 2-metre robotic telescopes, have been directly involved in support for missions such as the European Space Agency Rosetta and Gaia missions, as well as involvement in a variety of NASA Comet missions such as the EPOXI/Comet 103P encounter. These telescope networks are unique in that they provide school students and high end amateur astronomers, with access to research grade instrumentation and equipment which may not have been affordable to them in many instances. With social media collaboration and dedicated websites, increasingly bridging the gap between the professional and amateur community, more and more amateurs are working as collaborators with scientists in not only providing data, but also in data reduction. Amateur astronomers have increasingly also been working with schools suggesting projects which have provided valuable scientific input to professional astronomers, whilst also giving young scientists in secondary education, an opportunity to work with professional instrumentation and methods, albeit at an entry level. We aim to demonstrate the long term value of these collaborations, and propose better working methodologies to help the professional community get more from amateur input. We will cite some examples of research paper collaborations, and scientifically valuable data sharing between professional and amateur astronomers, • Observations and results from the global campaign on Comet C/2007 Q3; Ref.[1] • Observations of the fragmentation of Comet 168P; Ref.[2] • Observations relating to the evolution of Comet C/2012 S1; Ref.[3

  3. Space astronomical telescopes and instruments; Proceedings of the Meeting, Orlando, FL, Apr. 1-4, 1991

    NASA Astrophysics Data System (ADS)

    Bely, Pierre Y.; Breckinridge, James B.

    The present volume on space astronomical telescopes and instruments discusses lessons from the HST, telescopes on the moon, future space missions, and mirror fabrication and active control. Attention is given to the in-flight performance of the Goddard high-resolution spectrograph of the HST, the initial performance of the high-speed photometer, results from HST fine-guidance sensors, and reconstruction of the HST mirror figure from out-of-focus stellar images. Topics addressed include system concepts for a large UV/optical/IR telescope on the moon, optical design considerations for next-generation space and lunar telescopes, the implications of lunar dust for astronomical observatories, and lunar liquid-mirror telescopes. Also discussed are space design considerations for the Space Infrared Telescope Facility, the Hubble extrasolar planet interferometer, Si:Ga focal-plane arrays for satellite and ground-based telescopes, microchannel-plate detectors for space-based astronomy, and a method for making ultralight primary mirrors.

  4. A Further Survey of Multiple Authorship in the Astronomical Literature

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.

    2017-11-01

    Authorship trends within the astronomical community have been studied using data drawn from the publication records of 12 refereed journals. The period covered by the study is 1991-2015. Across all journals, the annual fraction of papers with one or two authors has decreased with time, typically accompanied by an increased propensity for papers to have six or more co-authors. There is considerable variability in the behavior of three-to-five author papers. Reports on instrumentation developments within Publications of the Astronomical Society of the Pacific (PASP), a journal that places specific emphasis on publishing instrumentation papers, have a higher number of authors than average. The trends away from one-to-two author papers and toward papers with six or more authors show no correlation with either the annual number of papers per journal or the geographical diversity of the contributing author pools.

  5. Australian sites of astronomical heritage

    NASA Astrophysics Data System (ADS)

    Stevenson, T.; Lomb, N.

    2015-03-01

    The heritage of astronomy in Australia has proven an effective communication medium. By interpreting science as a social and cultural phenomenon new light is thrown on challenges, such as the dispersal of instruments and problems identifying contemporary astronomy heritage. Astronomers are asked to take note and to consider the communication of astronomy now and in the future through a tangible heritage legacy.

  6. Photopolymer based VPHGs: from materials to sky results

    NASA Astrophysics Data System (ADS)

    Zanutta, A.; Orselli, E.; Fäcke, T.; Bianco, A.

    2016-07-01

    Volume Phase Holographic Gratings cover a relevant position as transmission dispersing elements in astronomical spectrographs and each astronomical observation could take advantage of specific dispersive elements with features tailored for achieving the best performances. The design and manufacturing of high efficiency and reliable VPHGs require photosensitive materials where it is possible to control both the refractive index modulation and the film thickness. By means of Bayfol® HX photopolymers, we designed and manufactured six VPHGs for astronomical instrumentation in a GRISM configuration. We demonstrated how photopolymers are reliable holographic materials for making astronomical VPHGs with performances comparable to those provided by VPHGs based on Dichromated Gelatins (DCGs), but with a much simpler production process.

  7. Odessa Observatory as a Cultural and Scientific Educational Center on the Black Sea

    NASA Astrophysics Data System (ADS)

    Karetnikov, V. G.; Dorokhova, T. N.

    2007-10-01

    Odessa is a large port city on the Black Sea. Historically, transport, economy and business problems call forth the necessity of a major astronomical center in the city. In 2006 the Astronomical Observatory of Odessa National University celebrates its 135th Anniversary. Some interesting astronomical buildings and instruments of the 19th and 20th centuries, and the extensive scientific investigations which are reflected in numerous publications make the Observatory not only a scientific and educational establishment but also an historical and cultural center.

  8. Coronagraph for astronomical imaging and spectrophotometry

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Smith, Bradford A.

    1987-01-01

    A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.

  9. BATMAN: a DMD-based multi-object spectrograph on Galileo telescope

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Ramarijaona, Harald; Moschetti, Manuele; Riva, Marco; Bon, William; Nicastro, Luciano; Molinari, Emilio; Cosentino, Rosario; Ghedina, Adriano; Gonzalez, Manuel; Di Marcantonio, Paolo; Coretti, Igor; Cirami, Roberto; Zerbi, Filippo; Valenziano, Luca

    2014-07-01

    Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We are developing a 2048x1080 Digital-Micromirror-Device-based (DMD) MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The field of view (FOV) is 6.8 arcmin x 3.6 arcmin with a plate scale of 0.2 arcsec per micromirror. The wavelength range is in the visible and the spectral resolution is R=560 for 1 arcsec object (typical slit size). The two arms will have 2k x 4k CCD detectors. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images and spectra have been obtained and measured: typical spot diameters are within 1.5 detector pixels, and spectra generated by one micro-mirror slits are displayed with this optical quality over the whole visible wavelength range. Observation strategies are studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo mid-2015.

  10. Operational challenges for astronomical instrumentation in Antarctica: results from five years of environmental monitoring of AMICA at Dome C

    NASA Astrophysics Data System (ADS)

    Dolci, Mauro; Valentini, Angelo; Tavagnacco, Daniele; Di Cianno, Amico; Straniero, Oscar

    2016-08-01

    The Antarctic Plateau is one of the best observing sites on Earth, especially for infrared astronomy. The extremely low temperatures (down to -80°C), the low pressure (around 650 mbar) and the very dry atmosphere (PWV less than 1 mm) allow for a very clear and dark sky, as well as for a very low instrumental background. These unique properties, however, make it also very difficult to install and operate astronomical instrumentation. AMICA (Antarctic Multiband Infrared CAmera) is an instrument especially designed for Antarctic operation, whose installation at Dome C has been completed in 2013. Since then it has been continuously working over the last five years, monitoring and controlling in particular the environmental and operating conditions through a dedicated application, its Environmental Control System (ECS). The recorded behavior of AMICA highlighted a set of peculiar aspects of the site that are hard to consider a priori. Although mechanical and electronic COTS components can reliably work in thermally insulated and controlled boxes, simple insulation causes their overheating because of the air dryness and rarefaction which make the heat transfer extremely inefficient. Heat removal is also a real problem when managing heavy-duty devices like cryocoolers, whose excess power removal needs to be fast and efficient. Finally, the lack of an electrical ground generates a wide variety of transient electrical and electromagnetic phenomena which often make electronic instrumentation very unstable. A list of new recommendations is therefore presented, as a guideline for future astronomical instruments operating in Antarctica.

  11. Interaction design challenges and solutions for ALMA operations monitoring and control

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar

    2012-09-01

    The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.

  12. Which future for electromagnetic Astronomy: Ground Based vs Space Borne Large Astrophysical Facilities

    NASA Astrophysics Data System (ADS)

    Ubertini, Pietro

    2015-08-01

    The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.

  13. The first astronomical hypothesis based on cinematographical observations: Costa Lobo's 1912 evidence for polar flattening of the moon

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor; Malaquias, Isabel; Fernandes, João

    2010-07-01

    Acceptance by the scientific community of results obtained with new technology can be a complex process. A particularly good example is provided by the unexpected hypothesis raised by Francisco Miranda da Costa Lobo upon examination of the cinematographic film obtained during the solar eclipse of 17 April 1912. Contrary to contemporary practice this eclipse was eagerly awaited in view of its astrometrical rather than astrophysical scientific interest. The observation of this hybrid eclipse provided, in theory, a good opportunity to improve several astrometric parameters, and in particular the Moon's apparent diameter. Observations were performed from Portugal to Russia and, for the first time, movie cameras were widely deployed to register astronomical phenomena. Upon analysing the film obtained at Ovar (Portugal), Costa Lobo realised that during totality Baily's Beads were not symmetrically distributed around the Moon. As an explanation and opposing current belief he proposed a lunar flattening in the range 1/1156 to 1/380. Initially other eclipse observers supported Costa Lobo's claim. In particular, Father Willaert obtained a flattening value of 1/2050 from his cinematographic film taken at Namur (Belgium). However, these results were quickly disregarded by the international astronomical community which favoured an explanation based upon the irregularities of the lunar profile. In this paper we recall the characteristics of the 17 April 1912 eclipse and the cinematographic observations, and review the results obtained. We conclude that the lack of attention paid by the astronomical community to the new cinematographical results and Camille Flammarion's superficial analysis of the data were instrumental in the rejection of Costa Lobo's hypothesis.

  14. EUV spectroscopy of high-redshift x-ray objects

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.; Barstow, M. A.

    2010-07-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGN for example, will be redshifted into the EUV waveband. Consequently, a wealth of critical spectral diagnostics, provided by, for example, the Fe L-shell complex and the O VII/VIII lines, will be lost to future planned X-ray missions (e.g., IXO, Gen-X) if operated at traditional X-ray energies. This opens up a critical gap in performance located at short EUV wavelengths, where critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nanolaminate replication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs. We conclude with a discussion of a breakthrough technology, nanolaminate replication, which enables such instruments.

  15. Telescopes, Mounts and Control Systems

    NASA Astrophysics Data System (ADS)

    Mobberley, M.; Murdin, P.

    2003-04-01

    The amateur astronomer used to have a relatively basic choice of equipment: a refractor (see REFRACTING TELESCOPES), or a Newtonian reflector (see REFLECTING TELESCOPES); there were few other options. The refractor has always been the stereotype astronomer's instrument: a spy glass, with a lens at one end and an eyepiece at the other. However, in practice, the reflector has always been better aper...

  16. ABISM: an interactive image quality assessment tool for adaptive optics instruments

    NASA Astrophysics Data System (ADS)

    Girard, Julien H.; Tourneboeuf, Martin

    2016-07-01

    ABISM (Automatic Background Interactive Strehl Meter) is a interactive tool to evaluate the image quality of astronomical images. It works on seeing-limited point spread functions (PSF) but was developed in particular for diffraction-limited PSF produced by adaptive optics (AO) systems. In the VLT service mode (SM) operations framework, ABISM is designed to help support astronomers or telescope and instruments operators (TIOs) to quickly measure the Strehl ratio (SR) during or right after an observing block (OB) to evaluate whether it meets the requirements/predictions or whether is has to be repeated and will remain in the SM queue. It's a Python-based tool with a graphical user interface (GUI) that can be used with little AO knowledge. The night astronomer (NA) or Telescope and Instrument Operator (TIO) can launch ABISM in one click and the program is able to read keywords from the FITS header to avoid mistakes. A significant effort was also put to make ABISM as robust (and forgiven) with a high rate of repeatability. As a matter of fact, ABISM is able to automatically correct for bad pixels, eliminate stellar neighbours and estimate/fit properly the background, etc.

  17. 3 Things Your Robot Should Know

    NASA Astrophysics Data System (ADS)

    Seaman, Rob

    2011-03-01

    Observational astronomy is an ancient pursuit, following an exponential trend since Galileo of ever greater capabilities. Or rather, a series of exponentials of growing apertures, the opening of new windows on the electromagnetic universe, photographic to photoelectric to digital instrumentation, balloons and spacecraft rising above atmospheric murk, to more avant-garde empirical endeavors such as multi-messenger facilities no longer recognizable as telescopes. At the same time the operational logistics of astronomy have been evolving. New observing modes and new scheduling paradigms have multiplied. Multi-year surveys supply last minute targets-of-opportunity. Astronomical software has mutated and ramified a millionfold from FORTH and FORTRAN to the Virtual Observatory (http://www.usvao.org). The beat goes on, but with accelerating syncopation. The majority of astronomical data nonetheless continues to be collected more-or-less directly by humans. Perhaps not the bottleneck, we are often the cork. The next revolution (evidenced by this conference) is toward autonomous technologies such as telepresence, robotic control, and complex telescope networks - power tools for observers. These technologies are intrinsically complex and interdependent, emergent in nature and benefit from network externality - that is, the scientific value will increase with the number of interconnected nodes. Such a wholesale cybernetic re-imagining of astronomy will only succeed if layered on an upgraded foundation. Three key elements of this new infrastructure will be discussed, particularly in the context of the astronomical time domain. These are 1) standardized transient celestial event messaging (http://voevent.org), 2) the efficient representation of data via compression technologies (http://heasarc.gsfc.nasa.gov/fitsio/fpack), and 3) traceability in timekeeping signals - NTP, GPS, and the uncertain future of UTC (http://ucolick.org/~sla/leapsecs).

  18. Different Categories of Astronomical Heritage: Issues and Challenges

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive

    2012-09-01

    Since 2008 the AWHWG has, on behalf of the IAU, been working with UNESCO and its advisory bodies to help identify, safeguard and promote cultural properties relating to astronomy and, where possible, to try to facilitate the eventual nomination of key astronomical heritage sites onto the World Heritage List. Unfortunately, the World Heritage Convention only covers fixed sites (i.e., the tangible immovable heritage of astronomy), and a key question for the UNESCO-IAU Astronomy and World Heritage Initiative (AWHI) is the extent to which the tangible moveable and intangible heritage of astronomy (e.g. moveable instruments; ideas and theories) influence the assessment of the tangible immovable heritage. Clearly, in an ideal world we should be concerned not only with tangible immovable heritage but, to quote the AWHWG's own Terms of Reference, ``to help ensure that cultural properties and artefacts significant in the development of astronomy, together with the intangible heritage of astronomy, are duly studied, protected and maintained, both for the greater benefit of humankind and to the potential benefit of future historical research''. With this in mind, the IAU/INAF symposium on ``Astronomy and its Instruments before and after Galileo'' held in Venice in Sep-Oct 2009 recommended that urgent steps should be taken 1. to sensitise astronomers and the general public, and particularly observatory directors and others with direct influence and control over astronomical resources, to the importance of identifying, protecting and preserving the various material products of astronomical research and discovery that already have, or have significant potential to acquire, universal value; (N.B. National or regional interests and concerns have no relevance in the assessment of ``universal value'', which, by definition, extends beyond cultural boundaries and, by reasonable expectation, down the generations into the future. 2. to identify modes of interconnectivity between different forms of astronomical heritage, including its intangible aspects, that will help in the development of more integrated approaches to identification and cataloguing, protection and preservation; and 3. to increase global awareness of regional, national and local initiatives relating to astronomical heritage in all its forms. In pursuance of these aims, the meeting also recommended that the AWHWG, working in collaboration with the WGs on Astronomical Instruments and Archives, and other bodies as appropriate, should develop the following additional projects: 1. to establish guidelines to help in the identification and safeguarding of tangible and intangible astronomical heritage in all its forms; 2. to gather examples of existing best practice, and to make these available as case studies on their website; and 3. to develop the website of the Astronomy and World Heritage Initiative (AWHI) as a portal to existing on-line catalogues and thesauri. It also recommended that the WGs should work together to: 1. formulate recommendations about the ways in which links and common approaches should be developed in the future; and 2. organise a meeting of international experts in the historical and heritage aspects of astronomical structures, instruments, and archives, focussed specifically upon the task of developing more integrated approaches to identification and cataloguing, protection and preservation. This joint session will attempt to make headway on as many as possible of these issues. In this opening talk I will attempt to lay out some of the main challenges that we face, and outline what we hope to achieve in this session.

  19. Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony John

    2015-08-01

    The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.

  20. Cook, Green, Maskelyne and the 1769 transit of Venus: the legacy of the Tahitian observations

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    2017-04-01

    The 1769 transit of Venus was seen by astronomers as an important opportunity to pin down a figure for the solar parallax (P), and thus establish the Astronomical Unit and the size of the Solar System. Britain therefore mounted a number of expeditions, the most important of which was led by Lieutenant James Cook in the Endeavour, with Tahiti as the intended observing location. In this paper we trace the planning that preceded this expedition; provide biographical accounts of the Endeavour's two astronomers and others who also carried out astronomical observations; describe the astronomical instruments taken on the voyage; document the various transit observations; and track the post-transit path of the Endeavour as it returned to England. We then discuss the values of P that derived from this expedition and others, and end the paper by examining a number of research issues relating to the astronomical aspects of Cook's voyage that have yet to be resolved.

  1. Happy Anniversary, VLT !

    NASA Astrophysics Data System (ADS)

    2004-04-01

    Five years at the service of Europe's astronomers VLT 5 Years One of the world's most advanced astronomical research facilities, the ESO Very Large Telescope (VLT) at the Paranal Observatory in the Chilean Atacama desert, celebrates an important anniversary today. On April 1, 1999, and following almost one year of extensive tests and careful trimming of its numerous high-tech parts, the first 8.2-m VLT Unit Telescope, Antu (UT1), was "handed over" to the astronomers. Since that date, science operations with this marvellous research tool have been continuous and intensive. Kueyen (UT2) started normal operations exactly one year later. Yepun (UT4) was offered to the scientific community in June 2001, while Melipal (UT3) followed in August 2001 [1]. Ever since, all four VLT Unit Telescopes, with an ever-growing suite of highly specialised, extremely powerful astronomical instruments have been in full operation, 365 nights a year. And this with unequalled success, as demonstrated by a long list of important scientific results, including a substantial number of exciting discoveries that are now opening new horizons in astrophysics. Moreover, thanks to heroic and persistent efforts by the dedicated teams of ESO scientists and engineers, the "downtime" due to technical problems has been very small, about 3 per cent, a number that is unequalled among the world's large telescope facilities. In addition, the weather conditions at the Paranal site in the dry Atacama desert in Northern Chile are truly excellent - this is indeed one of the best locations for astronomical observations on the surface of the Earth - and the corresponding "weather downtime" has only been around 10 per cent. This has resulted in an unbelievably low value of total downtime, most likely a new world record for ground-based 8-10 m class telescopes. VLT strong points The Very Large Telescope (VLT) is the world's largest and most advanced optical telescope. It comprises four 8.2-m reflecting Unit Telescopes (UTs) and will in due time also include four moving 1.8-m Auxiliary Telescopes (ATs), the first one of which successfully passed its first tests in January of this year (see ESO PR 01/04). With unprecedented optical resolution and unsurpassed surface area, the VLT produces extremely sharp images and can record light from the faintest and most remote objects in the Universe. It works at the limit of modern technology, regularly allowing the scientists to peer into new and unknown territories in the immense Universe. Contrary to other large astronomical telescopes, the VLT was designed from the beginning with the use of interferometry as a major goal. For this reason, the four 8.2-m Unit Telescopes were positioned in a quasi-trapezoidal configuration. The light beams from these telescopes, at this moment two-by-two, can be combined in the VLT Interferometer (VLTI). It provides the European scientific community with a ground-based telescope array with collecting power significantly greater than any other facilities available at present or being planned, offering imaging and spectroscopy capabilities at visible and infrared wavelengths. Seven of the planned ten first-generation astronomical instruments are now in operation at the VLT. They cover all major observing modes required to tackle current "hot", front-line research topics: * the multi-mode instrument FORS1 (FOcal Reducer and Spectrograph) and its twin, FORS2, * the Infrared Spectrometer And Array Camera (ISAAC) cryogenic infrared imager and spectrometer, * the UVES (Ultra-violet and Visible Echelle Spectrograph) high-dispersion spectrograph, * the NAOS-CONICA Adaptive Optics facility producing images as sharp as if taken in space [2], * the VIsible Multi-Object Spectrograph (VIMOS) four-channel multiobject spectrograph and imager - allowing to obtain low-resolution spectra of up to 1000 galaxies at a time * the Fibre Large Array Multi-Element Spectrograph (FLAMES) that offers the unique capability to study simultaneously and at high spectral resolution 100 individual stars in nearby galaxies. The remaining instruments - the high-resolution infrared spectrograph CRIRES, the Mid Infrared Spectrometer/Imager VISIR and the integral field spectrograph SINFONI - will be installed in 2004-2005. The observational statistics prove that these instruments are extremely efficient - they have some of the highest "shutter-open times" (i.e. percentage of the maximum possible observing time during which the instruments are collecting light from the astronomical objects) ever achieved. The astronomers are well served in this respect: the ISAAC instrument, for example, continues to be in the highest demand and has now performed smoothly during more than 1000 nights and two others, UVES and FORS, are now approaching the same number. Working together with astronomers and engineers at many research institutes in the ten ESO member countries, ESO is now in the process of defining second generation instruments and feasibility studies are well under way. Among the prime projects in this direction are a cryogenic multi-object spectrometer in the near-infrared 1 to 2.4 μm range ("KMOS"), a medium-resolution wide-band (0.32 to 2.4 μm) spectrometer ("X-shooter"), as well as a wide-field 3D optical spectrometer ("3D deep-field surveyor") and a high-contrast, adaptive optics assisted, imager ("planet finder"). In addition to these highly innovative instruments for the VLT UTs, specific instruments that will work with the combined light from several of the telescopes have also been conceived. The interferometric instrument MIDI will be offered to the astronomical community from today (April 1, 2004), fulfilling the VLTI promise. Great efforts have indeed gone into making observations with this very complex science machine as user-friendly as possible. Contrary to what is normally the case in this technically demanding branch of astronomy, scientists will find interferometric work at the VLTI quite similar to that of using the many other, more conventional VLT instruments. Science with the VLT The impressive battery of top-ranking instruments, coupled with the enormous light-collecting power of the VLT, has already provided a real research bonanza with many outstanding scientific results, some of which have been true breakthroughs. They include the amazing new knowledge about the Black Hole at the Galactic Centre, the farthest galaxy known, the most metal-poor and hence, oldest stars, accurate cosmochronological dating by means of Uranium and Thorium spectral lines, high-redshift galaxy rotation curves, micro-quasars, properties of the optical counterparts of gamma-ray bursts, high-redshift supernovae, etc. [3]. All of these advances attest to the power of the VLT and its mode of operational. Not to be forgotten is also the beauty of many of the stunning images obtained with this telescope, one of which was voted amongst the 10 most inspirational astronomical images of the past century [4]. Look at the numerous and detailed ESO Press Releases for more examples of research achievements from the VLT. This trend is also apparent in the productivity of the telescopes. The number of research publications resulting from VLT work in top ranking astronomical journals is steadily increasing with a total close to 700, hereof 250 in 2003 alone. Moreover, research articles based on VLT data are in the mean quoted twice as often as the average. The very high efficiency of the VLT "science machine" now generates huge amounts of data at a very high rate. These are stored in a permanent Science Archive Facility at ESO headquarters, which is jointly operated by ESO and the Space Telescope European Coordinating Facility (ST-ECF). From here, data are distributed daily to astronomers on DVDs and over the World Wide Web. The archive facility has been conceived and developed to enable astronomers to "mine" very efficiently the enormous volumes of data that is collected from the VLT. The archive now contains more than 1 million images or spectra taken by the four UTs with a total volume of about 50 Terabytes (50,000,000,000,000 bytes) of data. This corresponds to the content of about 25 million books of 1000 pages each; they would occupy more than 1000 kilometres of bookshelves! Looking towards the future Says Catherine Cesarsky, ESO Director General since 1999: " The Paranal Observatory has already given rise to an impressive number of scientific results, many of which could not have been obtained elsewhere. Overall, the VLT has been a most remarkable success, and will contribute to science at the highest level for years to come - a fantastic achievement of which we can all be justifiably proud." The work is now underway at full power to provide second-generation instruments for the VLT, to add three more Auxiliary Telescopes to the VLTI and to complement this unique research facility with the two wide-field survey ("pathfinding") telescopes - one to work in the visible part of the spectrum (the 2.5-m VST), the other in the infrared (the 4-m VISTA) - now being constructed at Paranal. Roberto Gilmozzi, director of Paranal Observatory, looks forward: " Ever more exciting times lie ahead for Paranal with new instruments like VISIR and SINFONI and the laser guide star, all of them coming this year. Five years after the start of operations on UT1, the observatory operates its telescopes with very little time set aside for engineering (less than 10%) and very low technical down time. Combined with excellent weather and great image quality, we provide the European community with unsurpassed observing capabilities. As director of this observatory since 1999, I have been privileged to be part of this adventure." The VLT is a fine example of the vast benefits of pooling resources from several countries and it is a flagship of contemporary European research. There is little doubt that for many years to come, ESO's Paranal Observatory with its powerful and efficient facilities will continue to play a leading role in astronomical research. Information for the media Associated material can be found on the corresponding Press Events webpage.

  2. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility instruments or user-provided instruments. Rapid turnaround will depend only on flight frequency. Data are stored on-board for retrieval when the spacecraft lands. We provide robust instrumentation that can survive suborbital spaceflight, assessment of the feasibility of the requested observations, rigorous scripting of the telescope operation, integration of the telescope plus instrument in a provider spacecraft, and periodic preventive maintenance for the telescope and instrument suite. XCOR Aerospace's Lynx III spacecraft is the best candidate vehicle to host a suborbital astronomical observatory. Unlike other similar vehicles, the Lynx will operate with only 1 or 2 people onboard (the pilot and an operator), allowing for each mission to be totally dedicated to the observation (no tourists will be bumping about; no other experiments will affect spacecraft pointing). A stable platform, the Lynx can point to an accuracy of ± 0.5o. Fine pointing is done by the telescope system. Best of all, the Lynx has a dorsal pod that opens directly to space. For astronomical observations, the best window is NO window. Currently, we plan to deploy a 20" diameter telescope in the Lynx III dorsal pod. XCOR Aerospace has the goal of eventually maintaining a Lynx flight frequency capability of 4 times/day. As with any observatory, Atsa will be available for observations by the community at large.

  3. Beyond MOS and fibers: Optical Fourier-transform Imaging Unit for Cananea Observatory (OFIUCO)

    NASA Astrophysics Data System (ADS)

    Nieto-Suárez, M. A.; Rosales-Ortega, F. F.; Castillo, E.; García, P.; Escobedo, G.; Sánchez, S. F.; González, J.; Iglesias-Páramo, J.; Mollá, M.; Chávez, M.; Bertone, E.; et al.

    2017-11-01

    Many physical processes in astronomy are still hampered by the lack of spatial and spectral resolution, and also restricted to the field-of-view (FoV) of current 2D spectroscopy instruments available worldwide. It is due to that, many of the ongoing or proposed studies are based on large-scale imaging and/or spectroscopic surveys. Under this philosophy, large aperture telescopes are dedicated to the study of intrinsically faint and/or distance objects, covering small FoVs, with high spatial resolution, while smaller telescopes are devoted to wide-field explorations. However, future astronomical surveys, should be addressed by acquiring un-biases, spatially resolved, high-quality spectroscopic information for a wide FoV. Therefore, and in order to improve the current instrumental offer in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE); and to explore a possible instrument for the future Telescopio San Pedro Mártir (6.5m), we are currently integrating at INAOE an instrument prototype that will provide us with un-biased wide-field (few arcmin) spectroscopic information, and with the flexibility of operating at different spectral resolutions (R 1-20000), with a spatial resolution limited by seeing, and therefore, to be used in a wide range of astronomical problems. This instrument called OFIUCO: Optical Fourier-transform Imaging Unit for Cananea Observatory, will make use of the Fourier Transform Spectroscopic technique, which has been proved to be feasible in the optical wavelength range (350-1000 nm) with designs such as SITELLE (CFHT). We describe here the basic technical description of a Fourier transform spectrograph with important modifications from previous astronomical versions, as well as the technical advantages and weakness, and the science cases in which this instrument can be implemented.

  4. When a Standard Candle Flickers

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Case, G. L.; Chaplin, V.; Connaughton, V.; Finger, M. H.; hide

    2010-01-01

    The Crab is the only bright steady source in the X-ray sky. The Crab consists of a pulsar wind nebula, a synchrotron nebula, and a cloud of expanding ejecta. On small scales, the Crab is extremely complex and turbulent. X-ray astronomers have often used the Crab as a standard candle to calibrate instruments, assuming its spectrum and overall flux remains constant over time. Four instruments (Fermi/GBM, RXTE/PCA, Swift/BAT, INTEGRAL/ISGRI) show a approx.5% (50 m Crab) decline in the Crab from 2008-2010. This decline appears to be larger with increasing energy and is not present in the pulsed flux, implying changes in the shock acceleration, electron population or magnetic field in the nebula. The Crab is known to be dynamic on small scales, so it is not too surprising that its total flux varies as well. Caution should be taken when using the Crab for in-orbit calibrations.

  5. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  6. Instrumentation for Infrared Astronomy in the Collections of the National Air and Space Museum, Smithsonian Institution

    NASA Astrophysics Data System (ADS)

    DeVorkin, David H.

    2017-01-01

    The National Air and Space Museum of the Smithsonian Institution is responsible for preserving the material heritage of modern astronomical history. We place emphasis on American accomplishments, on both airborne and spaceborne instrumentation, and on ground based instrumentation that stimulated and supported spaceborne efforts. At present the astronomical collection includes over 600 objects, of which approximately 40 relate to the history of infrared astronomy. This poster will provide a simple listing of our holdings in infrared and far-infrared astronomy, and will highlight particularly significant early objects, like Cashman and Ektron cells, Leighton and Neugebauer's Caltech 2.2 micron survey telescope, Low's Lear Jet Bolometer, Harwit's first Aerobee IR payload and Fazio's balloon-borne observatory. Elements from more recent missions will also be included, such as instruments from KAO, an IRAS focal plane instrument, FIRAS from COBE, the payload from Boomerang and Woody and Richards' balloonsonde payload. The poster author will invite AAS members to comment on these holdings, provide short stories of their experiences building and using them, and suggest candidates for possible collection.

  7. Strategies for personnel sustainable lifecycle at astronomical observatories and local industry development

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo A.; Leatherbee, Michael; Smith, Heather; Strappa, Valentina; Zinnecker, Hans; Perez, Mario

    2014-08-01

    Specialized manpower required to efficiently operate world-class observatories requires large investments in time and resources to train personnel in very specific areas of engineering. Isolation and distances to mayor cities pose a challenge to retain motivated and qualified personnel on the mountain. This paper presents strategies that we believe may be effective for retaining this specific know-how in the astronomy field; while at the same time develop a local support industry for observatory operations and astronomical instrumentation development. For this study we choose Chile as a research setting because it will host more than 60% of the world's ground based astronomical infrastructure by the end of the decade, and because the country has an underdeveloped industry for astronomy services. We identify the astronomical infrastructure that exists in the country as well as the major research groups and industrial players. We further identify the needs of observatories that could be outsourced to the local economy. As a result, we suggest spin-off opportunities that can be started by former observatory employees and therefore retaining the knowhow of experienced people that decide to leave on-site jobs. We also identify tools to facilitate this process such as the creation of a centralized repository of local capabilities and observatory needs, as well as exchange programs within astronomical instrumentation groups. We believe that these strategies will contribute to a positive work environment at the observatories, reduce the operation and development costs, and develop a new industry for the host country.

  8. The Virtual Telescope Project: Enjoy the Universe from your desktop

    NASA Astrophysics Data System (ADS)

    Masi, G.

    2008-06-01

    The Virtual Telescope is a new robotic facility that makes possible for people worldwide to participate in real-time observations of the sky. Complete scientific instruments are made available, matching the needs of researchers, students and amateur astronomers. Instruments are controlled live and in real time by the remote user while qualified assistance is made available from a professional astronomer, to assist and address the observing experience. The project consists of several remote controlled and independent telescopes, including solar scopes for daytime observations. Their diameters range from 40-360 mm. The project and the technology involved are presented here, as well as the peculiar benefits for students and other users.

  9. Blind detection of giant pulses: GPU implementation

    NASA Astrophysics Data System (ADS)

    Ait-Allal, Dalal; Weber, Rodolphe; Dumez-Viou, Cédric; Cognard, Ismael; Theureau, Gilles

    2012-01-01

    Radio astronomical pulsar observations require specific instrumentation and dedicated signal processing to cope with the dispersion caused by the interstellar medium. Moreover, the quality of observations can be limited by radio frequency interference (RFI) generated by Telecommunications activity. This article presents the innovative pulsar instrumentation based on graphical processing units (GPU) which has been designed at the Nançay Radio Astronomical Observatory. In addition, for giant pulsar search, we propose a new approach which combines a hardware-efficient search method and some RFI mitigation capabilities. Although this approach is less sensitive than the classical approach, its advantage is that no a priori information on the pulsar parameters is required. The validation of a GPU implementation is under way.

  10. Supporting Evidence for the Astronomically Calibrated Age of Fish Canyon Sanidine

    NASA Astrophysics Data System (ADS)

    Rivera, T. A.; Storey, M.; Zeeden, C.; Kuiper, K.; Hilgen, F.

    2010-12-01

    The relative nature of the 40Ar/39Ar radio-isotopic dating technique requires that the age and error of the monitor mineral be accurately known. The most widely accepted monitor for Cenozoic geochronology is the Fish Canyon sanidine (FCs), whose recommended published ages have varied by up to 2% over the past two decades. To reconcile the discrepancy among recommended ages, researchers have turned to the use of (i) intercalibration experiments with primary argon standards, (ii) cross-calibration with U-Pb ages, and (iii) cross-calibration with sanidine-hosted tephras present in astronomically tuned stratigraphic sections. The increasingly robust quality of the astronomical timescale, with precision better than 0.1% for the last 10 million years, suggests this method of intercalibration as the best way to proceed with addressing the true age of FCs. Recently, Kuiper, et al. (2008) determined an astronomically calibrated age of 28.201 ± 0.046 Ma (2σ), based upon the Moroccan Melilla Basin Messâdit section. Here, we provide independent verification for the Kuiper, et al. (2008) FCs age using sanidines extracted from a tephra intercalated in another Mediterranean-based astronomically tuned section. The direct tuning of this section was achieved through correlation to long (~400 kyr) and short (~100 kyr) eccentricity, followed by tuning of basic sedimentary cycles to precession and summer insolation, using the La2004(1,1) astronomical solution (Laskar, et al., 2004). We employed a Nu Instruments Noblesse multi-collector noble gas mass spectrometer for the 40Ar/39Ar experiments, analyzing single crystals of FCs relative to sanidines from the astronomically dated tephra. The use of the multi-collector instrument allowed us to obtain high precision analyses with a level of precision for fully propagated external errors for FCs near the 0.1% goal of EARTHTIME. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 215458.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1983-01-01

    This is a photograph of a 1/15 scale model of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. Visualizing astronomy data using VRML

    NASA Astrophysics Data System (ADS)

    Beeson, Brett; Lancaster, Michael; Barnes, David G.; Bourke, Paul D.; Rixon, Guy T.

    2004-09-01

    Visualisation is a powerful tool for understanding the large data sets typical of astronomical surveys and can reveal unsuspected relationships and anomalous regions of parameter space which may be difficult to find programatically. Visualisation is a classic information technology for optimising scientific return. We are developing a number of generic on-line visualisation tools as a component of the Australian Virtual Observatory project. The tools will be deployed within the framework of the International Virtual Observatory Alliance (IVOA), and follow agreed-upon standards to make them accessible by other programs and people. We and our IVOA partners plan to utilise new information technologies (such as grid computing and web services) to advance the scientific return of existing and future instrumentation. Here we present a new tool - VOlume - which visualises point data. Visualisation of astronomical data normally requires the local installation of complex software, the downloading of potentially large datasets, and very often time-consuming and tedious data format conversions. VOlume enables the astronomer to visualise data using just a web browser and plug-in. This is achieved using IVOA standards which allow us to pass data between Web Services, Java Servlet Technology and Common Gateway Interface programs. Data from a catalogue server can be streamed in eXtensible Mark-up Language format to a servlet which produces Virtual Reality Modeling Language output. The user selects elements of the catalogue to map to geometry and then visualises the result in a browser plug-in such as Cortona or FreeWRL. Other than requiring an input VOTable format file, VOlume is very general. While its major use will likely be to display and explore astronomical source catalogues, it can easily render other important parameter fields such as the sky and redshift coverage of proposed surveys or the sampling of the visibility plane by a rotation-synthesis interferometer.

  13. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  19. VLT Data Flow System Begins Operation

    NASA Astrophysics Data System (ADS)

    1999-06-01

    Building a Terabyte Archive at the ESO Headquarters The ESO Very Large Telescope (VLT) is the sum of many sophisticated parts. The site at Cerro Paranal in the dry Atacama desert in Northern Chile is one of the best locations for astronomical observations from the surface of the Earth. Each of the four 8.2-m telescopes is a technological marvel with self-adjusting optics placed in a gigantic mechanical structure of the utmost precision, continuously controlled by advanced soft- and hardware. A multitude of extremely complex instruments with sensitive detectors capture the faint light from distant objects in the Universe and record the digital data fast and efficiently as images and spectra, with a minimum of induced noise. And now the next crucial link in this chain is in place. A few nights ago, following an extended test period, the VLT Data Flow System began providing the astronomers with a steady stream of high-quality, calibrated image and spectral data, ready to be interpreted. The VLT project has entered into a new phase with a larger degree of automation. Indeed, the first 8.2-m Unit Telescope, ANTU, with the FORS1 and ISAAC instruments, has now become a true astronomy machine . A smooth flow of data through the entire system ESO PR Photo 25a/99 ESO PR Photo 25a/99 [Preview - JPEG: 400 x 292 pix - 104k] [Normal - JPEG: 800 x 584 pix - 264k] [High-Res - JPEG: 3000 x 2189 pix - 1.5M] Caption to ESO PR Photo 25a/99 : Simplified flow diagramme for the VLT Data Flow System . It is a closed-loop software system which incorporates various subsystems that track the flow of data all the way from the submission of proposals to storage of the acquired data in the VLT Science Archive Facility. The DFS main components are: Program Handling, Observation Handling, Telescope Control System, Science Archive, Pipeline and Quality Control. Arrows indicate lines of feedback. Already from the start of this project more than ten years ago, the ESO Very Large Telescope was conceived as a complex digital facility to explore the Universe. In order for astronomers to be able to use this marvellous research tool in the most efficient manner possible, the VLT computer software and hardware systems must guarantee a smooth flow of scientific information through the entire system. This process starts when the astronomers submit well-considered proposals for observing time and it ends with large volumes of valuable astronomical data being distributed to the international astronomical community. For this, ESO has produced an integrated collection of software and hardware, known as the VLT Data Flow System (DFS) , that manages and facilitates the flow of scientific information within the VLT Observatory. Early information about this new concept was published as ESO Press Release 12/96 and extensive tests were first carried out at ESOs 3.5-m New Technology Telescope (NTT) at La Silla, cf. ESO Press Release 03/97 [1]. The VLT DFS is a complete (end-to-end) system that guarantees the highest data quality by optimization of the observing process and repeated checks that identify and eliminate any problems. It also introduces automatic calibration of the data, i.e. the removal of external effects introduced by the atmospheric conditions at the time of the observations, as well as the momentary state of the telescope and the instruments. From Proposals to Observations In order to obtain observing time with ESO telescopes, also with the VLT, astronomers must submit a detailed observing proposal to the ESO Observing Programmes Committee (OPC) . It meets twice a year and ranks the proposals according to scientific merit. More than 1000 proposals are submitted each year, mostly by astronomers from the ESO members states and Chile; the competition is fierce and only a fraction of the total demand for observing time can be fulfilled. During the submission of observing proposals, DFS software tools available over the World Wide Web enable the astronomers to simulate their proposed observations and provide accurate estimates of the amount of telescope time they will need to complete their particular scientific programme. Once the proposals have been reviewed by the OPC and telescope time is awarded by the ESO management according to the recommendation by this Committee, the successful astronomers begin to assemble detailed descriptions of their intended observations (e.g. position in the sky, time and duration of the observation, the instrument mode, etc.) in the form of computer files called Observation Blocks (OBs) . The software to make OBs is distributed by ESO and used by the astronomers at their home institutions to design their observing programs well before the observations are scheduled at the telescope. The OBs can then be directly executed by the VLT and result in an increased efficiency in the collection of raw data (images, spectra) from the science instruments on the VLT. The activation (execution) of OBs can be done by the astronomer at the telescope on a particular set of dates ( visitor mode operation) or it can be done by ESO science operations astronomers at times which are optimally suited for the particular scientific programme ( service mode operation). An enormous VLT Data Archive ESO PR Photo 25b/99 ESO PR Photo 25b/99 [Preview - JPEG: 400 x 465 pix - 160k] [Normal - JPEG: 800 x 929 pix - 568k] [High-Res - JPEG: 3000 x 3483 pix - 5.5M] Caption to ESO PR Photo 25b/99 : The first of several DVD storage robot at the VLT Data Archive at the ESO headquarters include 1100 DVDs (with a total capacity of about 16 Terabytes) that may be rapidly accessed by the archive software system, ensuring fast availbility of the requested data. The raw data generated at the telescope are stored by an archive system that sends these data regularly back to ESO headquarters in Garching (Germany) in the form of CD and DVD ROM disks. While the well-known Compact Disks (CD ROMs) store about 600 Megabytes (600,000,000 bytes) each, the new Digital Versatile Disks (DVD ROMs) - of the same physical size - can store up 3.9 Gigabytes (3,900,000,000 bytes) each, or over 6 times more. The VLT will eventually produce more than 20 Gigabytes (20,000,000,000 bytes) of astronomical data every night, corresponding to about 10 million pages of text [2]. Some of these data also pass through "software pipelines" that automatically remove the instrumental effects on the data and deliver data products to the astronomer that can more readily be turned into scientific results. Ultimately these data are stored in a permanent Science Archive Facility at ESO headquarters which is jointly operated by ESO and the Space Telescope European Coordinating Facility (ST-ECF). From here, data are distributed to astronomers on CD ROMs and over the World Wide Web. The archive facility is being developed to enable astronomers to "mine" the large volumes of data that will be collected from the VLT in the coming years. Within the first five years of operations the VLT is expected to produce around 100 Terabytes (100,000,000,000,000 bytes) of data. It is difficult to visualize this enormous amount of information. However, it corresponds to the content of 50 million books of 1000 pages each; they would occupy some 2,500 kilometres of bookshelves! The VLT Data Flow System enters into operation ESO PR Photo 25c/99 ESO PR Photo 25c/99 [Preview - JPEG: 400 x 444 pix - 164k] [Normal - JPEG: 800 x 887 pix - 552k] [High-Res - JPEG: 3000 x 3327 pix - 6.4M] Caption to ESO PR Photo 25c/99 : Astronomers from ESO Data Flow Operations Group at work with the VLT Archive. Science operations with the first VLT 8.2-m telescope ( ANTU ) began on April 1, 1999. Following the first call for proposals to use the VLT in October 1998, the OPC met in December and the observing schedule was finalized early 1999. The related Observation Blocks were prepared by the astronomers in February and March. Service-mode observations began in April and by late May the first scientific programs conducted by ESO science operations were completed. Raw data, instrument calibration information and the products of pipeline processing from these programs have now been assembled and packed onto CD ROMs by ESO science operations staff. On June 15 the first CD ROMs were delivered to astronomers in the ESO community. This event marks the closing of the data flow loop at the VLT for the first time and the successful culmination of more than 5 years of hard work by ESO engineers and scientists to implement a system for efficient and effective scientific data flow. This was achieved by a cross-organization science operations team involving staff in Chile and Europe. With the VLT Data Flow System, a wider research community will have access to the enormous wealth of data from the VLT. It will help astronomers to keep pace with the new technologies and extensive capabilities of the VLT and so obtain world-first scientific results and new insights into the universe. Notes [1] A more technical description of the VLT Data Flow System is available in Chapter 10 of the VLT Whitebook. [2] By definition, one "normal printed page" contains 2,000 characters. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  20. In memory of Eugene (Jenő) von Gothard: a pioneering nineteenth century Hungarian astrophysicist

    NASA Astrophysics Data System (ADS)

    Vincze, Ildikő J.; Jankovics, István

    2012-07-01

    Eugene von Gothard was a Hungarian engineer/scientist, instrument-maker and astrophysicist who founded the Herény Astrophysical Observatory in 1881 and carried out pioneering work in astronomical photography and spectroscopy. In this paper we provide biographical material about von Gothard and describe his observatory, before discussing his astronomical observations and the contribution that hemade to the early development of astrophysics.

  1. Astronomy Meets Biology: EFOSC2 and the Chirality of Life

    NASA Astrophysics Data System (ADS)

    Sterzik, M.; Bagnulo, S.; Azua, A.; Salinas, F.; Alfaro, J.; Vicuna, R.

    2010-12-01

    Homochirality, i.e., the exclusive use of L-amino acids and D-sugar in biological material, induces circular polarisation in the diffuse reflectance spectra of biotic material. Polarimetry may therefore become an interesting remote sensing technique in the future search for extraterrestrial life. We have explored this technique and performed a laboratory experiment making an exotic use of an astronomical instrument. During a period when EFOSC2 was detached from the Nasmyth focus to host a visitor instrument at the NTT, we have observed various samples of biotic and abiotic material and measured their linear and circular polarisation spectra. Among the various targets, we have included samples of the hypolithic cyanobacteria species Chroococcidiopsis isolated from the Coastal Range of the Atacama Desert. To our knowledge, these are the first and highest precision measurements of circular polarisation using living material and obtained with an astronomical instrument.

  2. The Role of Perspective Taking in How Children Connect Reference Frames When Explaining Astronomical Phenomena

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-01-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to…

  3. Space Telescope optics. [large aperture astronomical instrument

    NASA Technical Reports Server (NTRS)

    Jones, C. O.

    1979-01-01

    The paper reviews the optical technology that has been developed over the last decade for the Space Telescope. The optical design of the telescope, the optical performance control system, and the anticipated optical performance are all presented. Consideration is also given to the initial complement of focal plane instruments.

  4. Optomecatronic design and integration of a high resolution equipment Berkut to the 1-meter class telescopes

    NASA Astrophysics Data System (ADS)

    Granados, R.; López, R.; Farah, Alejandro

    2014-07-01

    It is proposed the development and implementation of a High Speed Resolution Camera instrument. The basic principle of this technique is to take several pictures of short exposure using different filters of an astronomical object of interest . These images are subsequently processed using specialized software to remove aberrations from atmosphere and from the instrument itself such as blur and scintillation among others. In this paper are described electronic and control systems implemented for BERKUT instrument based on FPGA (Field Programmable Gate Array) generated with VHDL description. An UART communication, using serial protocol, is used with a friendly User Interface providing an easy way for the astronomer to choose between different lenses and different filters for capturing the images. All the movements are produced by stepper motors that are driven by a circuit that powers all the electronics. The camera and the lenses are placed into a linear positioner with the help of a stepper motor which give us repeatable movements for positioning these optical components. Besides it is planned to integrate in the same system a pipeline for image data reduction to have one sturdy system that could fulfill any astronomer needs in the usage of this technique. With this instrument we pretend to confirm the Hipparcos catalogue of binary stars besides finding exoplanets. This technique requires more simple optical equipment and it is less sensitive to environmental noise, making it cheaper and provides good quality and great resolution images for scientific purposes. This equipment will be installed on different 1-m class telescopes in Mexico1 and probably other countries which makes it a wide application instrument.

  5. CFRP solutions for the innovative telescopes design

    NASA Astrophysics Data System (ADS)

    Rampini, Francesco; Marchiori, Gianpietro

    2006-02-01

    The new frontiers of the research in the astronomic field require the use of more and more advanced high-performance structures. Only an adequate technological innovation of conventional telescopes and radio-telescopes allow to obtain structures able to meet the new specification of the projects. Besides, technological innovation is founded not only on the identification of more and more sophisticated mechanisms and optical instruments, but also on the development of new materials and manufacturing processes for the entire structure that constitute an instrument such as a telescope or a radio-telescope. Among these materials, the use of the carbon fibre is highly important. This material, which is already widely used in the aerospace and automotive fields, shall join also the astronomic field for ground instruments. Thanks to the experience acquired with instruments like ALMA, the industry of composites is now able to guarantee different solutions at relatively low costs that allow the instruments of new generation to move extremely important steps in the development of scientific research. Not just materials, but also processes, through which the materials are worked and manufactured, are extremely important. The use of technologies, such as hand lay-up vacuum bag, compression moulding, table rolling of composite tubes, filament winding, poltrusion and Resin Transfer Moulding (RTM), allow to identify the ideal solution both for big dimension objects, such as backup structure, main mirror structure of quadripod legs, and relatively small objects, such as actuators, adjusters system, etc. The wide choice, concerning the use of composite materials, and their techniques of production, allow the technicians to satisfy the exigencies of astronomers be they addressed to simple control of the weights or of the stiffness of the structures, or to specific thermal behaviour of the piece itself.

  6. Space Telescope maintenance and refurbishment

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.

    1983-01-01

    The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.

  7. Photopolymers for holographic optical elements in astronomy

    NASA Astrophysics Data System (ADS)

    Zanutta, A.; Orselli, E.; Fäcke, T.; Bianco, A.

    2017-05-01

    Holographic Optical Elements (HOEs) cover nowadays a relevant position as dispersing elements in astronomical spectrographs because each astronomical observation could take advantage of specific devices with features tailored for achieving the best performances. The design and manufacturing of highly efficient and reliable dispersive elements require photosensitive materials as recording substrate where it is possible to precisely control the parameters that define the efficiency response (namely both the refractive index modulation and the film thickness). The most promising materials in this field are the photopolymers because, beside the ability to provide the tuning feature, they bring also advantages such as self-developing, high refractive index modulation and ease of use thanks to their simple thin structure, which is insensitive from the external environment. In particular, Bayfol HX photopolymers were characterized with the purpose to use them as new material for astronomical Volume Phase Holographic Gratings. We designed and manufactured VPHGs for astronomical instrumentation and we demonstrated how photopolymers are reliable holographic materials for making astronomical devices with performances comparable to those provided by VPHGs based on Dichromated Gelatins (DCGs), but with a much simpler production process. Moreover, the versatility of these materials allowed us to propose and realize novel architectures of the spectroscopic dispersive elements. A compact and unique single prism device was realized for a FOSC spectrograph and new multi-layered devices are proposed, stacking VPHGs one on top of the other to obtain many spectra in the instrument's detector, with advantages as increase of resolution and signal to noise ratio with respect to the classical single dispersive element.

  8. Thread safe astronomy

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    2008-03-01

    Observational astronomy is the beneficiary of an ancient chain of apprenticeship. Kepler's laws required Tycho's data. As the pace of discoveries has increased over the centuries, so has the cadence of tutelage (literally, "watching over"). Naked eye astronomy is thousands of years old, the telescope hundreds, digital imaging a few decades, but today's undergraduates will use instrumentation yet unbuilt - and thus, unfamiliar to their professors - to complete their doctoral dissertations. Not only has the quickening cadence of astronomical data-taking overrun the apprehension of the science within, but the contingent pace of experimental design threatens our capacity to learn new techniques and apply them productively. Virtual technologies are necessary to accelerate our human processes of perception and comprehension to keep up with astronomical instrumentation and pipelined dataflows. Necessary, but not sufficient. Computers can confuse us as efficiently as they illuminate. Rather, as with neural pathways evolved to meet competitive ecological challenges, astronomical software and data must become organized into ever more coherent `threads' of execution. These are the same threaded constructs as understood by computer science. No datum is an island.

  9. The 2013 Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Barker, T.

    2014-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the EMC Corporation, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 10 funded students participated. Mentors for the interns include PARI’s Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Students are encouraged to present their research at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors.

  10. Harvey Butcher: a passion for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Bhathal, Ragbir

    2014-11-01

    This paper covers some aspects of the scientific life of Harvey Butcher who was the Director of the Research School for Astronomy and Astrophysics at the Australian National University in Canberra from September 2007 to January 2013. He has made significant contributions to research on the evolution of galaxies, nucleosynthesis, and on the design and implementation of advanced astronomical instrumentation including LOFAR (Low Frequency Array Radio telescope). He is well known for his discovery of the Butcher-Oemler effect. Before coming to Australia he was the Director of the Netherlands Foundation for Research in Astronomy from September 1991 to January 2007. In 2005 he was awarded a Knighthood in the Order of the Netherlands Lion for contributions to interdisciplinary science, innovation and public outreach.This paper is based on an interview conducted by the author with Harvey Butcher for the National Project on Significant Australian Astronomers sponsored by the National Library of Australia. Except otherwise stated, all quotations used in this paper are from the Butcher interview which has been deposited in the Oral History Archives of the National Library.

  11. Wide-field ultraviolet imager for astronomical transient studies

    NASA Astrophysics Data System (ADS)

    Mathew, Joice; Ambily, S.; Prakash, Ajin; Sarpotdar, Mayuresh; Nirmal, K.; G. Sreejith, A.; Safonova, Margarita; Murthy, Jayant; Brosch, Noah

    2018-04-01

    Though the ultraviolet (UV) domain plays a vital role in the studies of astronomical transient events, the UV time-domain sky remains largely unexplored. We have designed a wide-field UV imager that can be flown on a range of available platforms, such as high-altitude balloons, CubeSats, and larger space missions. The major scientific goals are the variability of astronomical sources, detection of transients such as supernovae, novae, tidal disruption events, and characterizing active galactic nuclei variability. The instrument has a 80 mm aperture with a circular field of view of 10.8 degrees, an angular resolution of ˜22 arcsec, and a 240 - 390 nm spectral observation window. The detector for the instrument is a Microchannel Plate (MCP)-based image intensifier with both photon counting and integration capabilities. An FPGA-based detector readout mechanism and real time data processing have been implemented. The imager is designed in such a way that its lightweight and compact nature are well fitted for the CubeSat dimensions. Here we present various design and developmental aspects of this UV wide-field transient explorer.

  12. Megalithic Monument of Abuli, Georgia, and Possible Astronomical Signi cance

    NASA Astrophysics Data System (ADS)

    Jijelava, Badri; Simonia, Irakli

    2016-08-01

    Background/Objectives: In recent years, in purpose of investigation of the artefacts, the ancient culture and religion, based on the astronomy knowledge play significant role. The aim of this work is to identify the orientations of the religious megalithic complexes and their correlation to the celestial luminaries. Methods/Statistical Analysis: We harmonized the archeological data, ethnographical, historical information and restoration of ancient celestial sphere (using special astronomy application), which give us possibility to identify the correlations between the acronychal or helical rising/ set of luminaries and directions of megalithic objects. Very often such connections are stored in a current folklore too. Findings: This technique of investigations give us more clear understanding of ancient universe. Using this method, we can receive latent information about the ancient Gods - Luminaries, clarify current mythology, date of the megalithic complex. Application/Improvements: This method of investigation is an additional instrument for archeological investigations,

  13. The Effectiveness of Internet-Controlled Astronomical Research Instrumentation for Education

    ERIC Educational Resources Information Center

    Pratap, Preethi; Salah, Joseph

    2004-01-01

    Over the last decade, remote instruments have become widely used in astronomy. Educational applications are more recent. This paper describes a program to bring radio astronomy into the undergraduate classroom through the use of a remote research-grade radio telescope, the MIT Haystack Observatory 37 m telescope. We examine the effectiveness of…

  14. Measuring the Optical Properties of Astrophysical Dust Analogues: Instrumentation and Methods

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Benford, D. J.; Cataldo, G.; Dwek, E.; Henry, R.; Kinzer, R. E., Jr.; Nuth, J.; Silverberg, R.; Wheeler, C.; Wollack, E.

    2011-01-01

    Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new infrared facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-infrared through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools.

  15. An automated extinction and sky brightness monitor for the Indian Astronomical Observatory, Hanle

    NASA Astrophysics Data System (ADS)

    Sharma, Tarun Kumar; Parihar, Padmakar; Banyal, R. K.; Dar, Ajaz Ahmad; Kemkar, P. M. M.; Stanzin, Urgain; Anupama, G. C.

    2017-09-01

    We have developed a simple and portable device that makes precise and automated measurements of night sky extinction. Our instrument uses a commercially available telephoto lens for light collection, which is retrofitted to a custom-built telescope mount, a thermoelectrically cooled CCD for imaging, and a compact enclosure with electronic control to facilitate remote observations. The instrument is also capable of measuring the sky brightness and detecting the presence of thin clouds that otherwise would remain unnoticed. The measurements of sky brightness made by our simple device are more accurate than those made using a large telescope. Another capability of the device is that it can provide an instantaneous measurement of atmospheric extinction, which is extremely useful for exploring the nature of short-term extinction variation. The instrument was designed and developed primarily in order to characterize and investigate thoroughly the Indian Astronomical Observatory (IAO), Hanle for the establishment of India's future large-telescope project. The device was installed at the IAO, Hanle in 2014 May. In this paper, we present the instrument details and discuss the results of extinction data collected for about 250 nights.

  16. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  17. Blind Astronomers

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2011-01-01

    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  18. New Method for Data Treatment Developed at ESO

    NASA Astrophysics Data System (ADS)

    1996-08-01

    How Future Astronomical Observations Will be Done The past four centuries have seen dramatic improvements in astronomical equipment, in terms of better and larger telescopes, more accurate and sensitive detectors and, not the least, by advanced space instruments with access to new spectral regions. However, until recently there has been little progress on another equally important front, that of quantifying the unavoidable influence of this equipment on the astronomical data they produce . For a long time, astronomers have desired to remove efficiently these `instrumental effects' from their data, in order to give them a clearer understanding of the objects in the Universe and their properties. But it is only now that this fundamental problem can finally be tackled efficiently, with the advent of digital imaging techniques and powerful computers. Two researchers at the ESO Headquarters, Michael R. Rosa of the Space Telescope European Co-ordinating Facility (ST/ECF [1]) and Pascal Ballester of the Data Management Division (DMD) are now developing a new approach to this age-old problem. These results are important for the future use of the ESO Very Large Telescope (VLT) , the Hubble Space Telescope (HST) and other large facilities as well [2]. The observational process Observations are crucial to the progress of all natural sciences, including astronomy. Nevertheless, the properties of the observed objects are rarely revealed directly. First, observational data are gathered at the telescopes with instruments such as cameras and spectrophotometers. Then these `raw' data are processed with advanced computer programmes to produce scientifically meaningful data which are finally scrutinized by the astronomers in order to learn more about the observed celestial objects. A basic problem in this chain is the influence of the telescopes and instruments on the data they produce. The `raw' observational data carries the marks, not only of the celestial objects that are observed, but also of the `recording equipment' and, in the case of ground-based observations, of the atmospheric conditions as well. These disturbing effects, for example straylight in the telescope and light absorption in the atmosphere, are referred to as the instrumental and atmospheric `signatures'. Only when they have been `removed' from the data, can these be properly interpreted. In fact, unless these effects are completely known, an observation may not result in any new knowledge at all or, even worse, may lead to erroneous results. The history of astronomy contains many examples of the battle with instrumental effects; see also the Appendix. With the advent of new and advanced astronomical facilities like the VLT and HST, the need for an efficient solution of this fundamental problem has become particularly acute. The calibration challenge Until now, the usual procedure to tackle this common problem has been to observe socalled `reference sources' (celestial objects with well-known properties [3]) with exactly the same instrument and observational mode and under same atmospheric conditions as the celestial object under study, referred to as the `target'. A comparison between the `raw' observational data recorded for the reference sources and their known properties then allows to determine, more or less accurately, the instrumental and atmospheric signatures. Subsequently, these effects can be removed during the data processing from the raw data obtained for the programme targets. This leaves behind - at least in theory - `clean data' which only contain the desired information about the celestial object under investigation. This fundamental, observational procedure is known as `calibration'. Nevertheless, serious limitations are inherent in such a calibration procedure. In principle, it is only logically valid if the reference source has the same properties as the target and both are observed under identical instrumental and atmospheric conditions. These requirements, however, are never fulfilled in practice. One way around this obstacle is to observe a sufficient number of reference sources, the properties of which are supposed to bracket the properties of the targets. Likewise, repeated observations must be made whenever the observing conditions change. This way one hopes to obtain estimates of the instrumental and atmospheric signatures at the time of the observation of the target by means of interpolation. Until now, this empirical calibration process was the only one available. Unfortunately, it demands a lot of the valuable telescope time just for repeated observations of the reference sources, significantly diminishing the time available for observations of the scientifically important objects. Moreover, every time the instrument is even slightly changed or some condition is altered, a new calibration procedure must be carried through. Maximizing observational efficiency In just over one year from now, ESO will begin to operate the largest optical telescope ever built, the Very Large Telescope (VLT) at the new Paranal Observatory in Chile. Because of its enormous light-collecting area and superior optical quality, the VLT is destined to make a break-through in ground-based observational astronomy. The demand by astronomers for observing time at this unique facility is overwhelming. Even with the unsurpassed number of clear nights at Paranal, each available minute will be extremely precious and everything must be done to ensure that no time will be lost to unnecessary actions. This is a major challenge to the scientists. For instance, how long a time should an exposure last to ensure an optimum of new knowledge about the object observed? In addition, how much time should be spent to define in sufficient detail the `signatures' of the atmosphere, the telescope and the instruments which must be removed from the `raw' data before the resulting `clean' data can be interpreted in a trustworthy way? In short, how can the scientific return from the VLT and other telescopes such as the HST best be optimised? It is exactly for this reason that astronomers and engineers at ESO are now busy developing new methods of telescope operation and data analysis alongside with the VLT instrumental hardware itself. The new solution by means of models The appropriate strategy to make progress in the inherent conflict between calibration demand and time available for scientific observations is to obtain a physically correct understanding of the effects exerted on the data by different instruments . In this way, it is possible to decide which calibration data are actually required and on which timescale they have to be updated. One can then use computer models of these instruments to predict calibration solutions which are now valid for the full range of target properties and which handle environmental conditions properly. Such computer models can also be used to simulate observations. This brings a lot of benefits for the entire observational process. First, the astronomer can prepare observations and select instrumental modes and exposure times suited for optimal information return. Secondly, it provides confidence in the validity of the calibration process, and therefore in the cleanliness of the corrected data. Finally, once a theory about the target and its properties has been developed, one may simulate observations of a set of theoretical targets for which the properties are slightly modified in order to study their influence on the raw data. For the observatory there are also advantages. Optimization from the point of view of data analysis can now take place already during instrument design, calibration and data analysis procedures for any observational mode can be tested before real observations are obtained, and the maintenance staff can make sure that the instrument performs as expected and designed. How far have we come along this road? The present project consists of a close collaboration between the ESO Data Management Division (DMD) and Space Telescope European Co-ordinating Facility (ST/ECF). The VLT and the HST facilities have quite similar demands, because both astronomical observatories are committed to make data from a variety of instruments rapidly available to the world-wide community at a large scale. Once the basic concept had been defined, several groups at ESO started to develop models for particular instruments in order to study its general validity. One of the VLT instruments under construction is the high resolution echelle spectrograph UVES; first light is planned for 1999. The DMD model for this instrument now succeeds in predicting the geometrical aspects of observational data to better than one resolution element (pixel) of the detector. In parallel, the ST/ECF has produced a computer model for the low-resolution Faint Object Spectrograph (FOS) on HST. This software is tuned in particular to simulate the aspects of internally scattered light, which is a serious nuisance for observations of faint targets. A direct derivative of such models are accurate exposure time calculators , which the observer can use to estimate the length of each exposure when preparing his/her observing program. This is the time an electronic detector is exposed to the light of the astronomical object under study. If it is too short, the resulting image of the object will not contain enough information. On the other hand, if the exposure time is too long, the image may be degraded by too many artefacts from cosmic rays that hit the detector during the exposure, or it may saturate the detector completely. Clearly, this time may better be used to observe other objects. In order to correctly plan the length of the exposure time for each astronomical target during an observing program, it is necessary to estimate the total effect of the instrument and the atmosphere on the light produced by the target. For this it is necessary to take into account the effects of the colour-dependent atmospheric absorption and the spreading of light by turbulence (seeing), the complete propagation of the light by the telescope mirrors and by the different optical components of the instrumentation (reflection, diffusion, absorption), as well as the properties of the electronic detector. In order to allow a wide access of the scientific community to such tools, the software for these calculators is being made available on the Internet. In co-operation with a contractor, ESO has developed a complete computer model for each of the 8.2-m telescopes. This simulation model includes a large number of effects, for instance from atmospheric disturbances, wind shaking of the telescope and structural vibrations. Using this model, it is possible from simulations to predict the quality achievable, i.e. the signature of the telescope. Furthermore, the model can be used to study the effect of changes before they are implemented in practice. The success of these first modelling experiments has led to the definition of a common framework for the development of such models and the creation of a versatile software package and associated database. Within this environment, a slight modification of the UVES software was efficiently re-used to model an existing high-resolution spectrograph, CASPEC at the ESO 3.6-metre telescope, and is currently being transformed into a model for the STIS spectrograph on HST. The next steps will be to provide models for all those instruments that will become operational on the VLT and the HST in the coming years, and to study further the impact of the improved calibrations on new data analysis techniques. Appendix: Limits of observations Ever since the beginning of astronomical observations with instruments, the problem of the instrumental influence has played a significant role. Indeed, a key challenge for past and present astronomers has always been to convince critical colleagues that they have been able to achieve a clear separation in their data between the intrinsic properties of the celestial object observed on one side, and disturbing instrumental and atmospheric effects on the other side. Through the ages, many learned disputes have centered on this basic problem. For instance, the famous astronomer Tycho Brahe spent a major part of his time at the Uraniborg observatory (1576 - 1597) in trying to describe and understand the `errors' (i.e. `signatures') of his pointing instruments. This was a new approach among observers of his day which greatly contributed to his successful studies. Another early historical example is the first detection of a structure around the planet Saturn by Galileo in 1610. He was the first ever to point an optical telescope - albeit of very small size and rather bad optical quality by today's standards - towards celestial objects. To his great surprise, the disk of Saturn appeared to have two `handles' [4]. He had no means to know whether they were artifacts from light reflections inside the telescope or real objects, and in the latter case what kind of natural object this might be. In fact, it was only 50 years later that improved optical equipment which produced sharper images (`higher optical resolution') finally revealed the true nature, i.e. the well-known Saturnian rings of small particles. In this case, the issue could only be solved by awaiting the technical progress of the optical telescope. Today digital imaging and computer processing allows the astronomers to reach beyond the limits of the raw observations. But even though the equipment available to astronomers has recently made tremendous progress - the HST and VLT are prime examples - the basic problem of verifying the reality of results and correcting the `raw' data for instrumental and atmospheric signatures remains. Notes: [1] The ST/ECF is a joint undertaking of the European Space Agency (ESA) and the European Southern Observatory (ESO). [2] A presentation of the ideas and results described in this Press Release was made at the recent international workshop on `High Precision Data Analysis', held at the National Astronomical Observatory, Tokyo, Japan. [3] There exist, for instance, many `photometric standard stars' in the sky. The apparent brightness of these stars has been repeatedly measured with different instruments and is assumed known to a high degree of accuracy. [4] See also ESO Press Release 03/96 of 19 January 1996. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  19. Adapting Low-Tech Gear to Exoplanet Discovery

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    2014-01-01

    The discovery of 51 Peg b by Mayor and Queloz revealed (among other things) that discovering extrasolar planets, though certainly difficult, was not as hard as professional astronomers had previously thought. At the same time, the astronomical equipment available to amateurs -- including optics, mountings, and CCD detectors -- had become quite capable. This combination of factors led to successful exoplanet programs that leaned heavily on amateur-grade hardware, seeking faster development times and lower costs than were possible for traditional no-compromises astronomical instrument programs. I will describe two of these in which I played a role: the AFOE (Advanced Fiber Optic Echelle) spectrograph, and the STellar Astrophysics and Research on Exoplanets (STARE) transit-search wide-field imager.

  20. Precise Modelling of Telluric Features in Astronomical Spectra

    NASA Astrophysics Data System (ADS)

    Seifahrt, A.; Käufl, H. U.; Zängl, G.; Bean, J.; Richter, M.; Siebenmorgen, R.

    2010-12-01

    Ground-based astronomical observations suffer from the disturbing effects of the Earth's atmosphere. Oxygen, water vapour and a number of atmospheric trace gases absorb and emit light at discrete frequencies, shaping observing bands in the near- and mid-infrared and leaving their fingerprints - telluric absorption and emission lines - in astronomical spectra. The standard approach of removing the absorption lines is to observe a telluric standard star: a time-consuming and often imperfect solution. Alternatively, the spectral features of the Earth's atmosphere can be modelled using a radiative transfer code, often delivering a satisfying solution that removes these features without additional observations. In addition the model also provides a precise wavelength solution and an instrumental profile.

  1. Achieving design reuse: a case study

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Nielsen, Jon J.; Roberts, William H.; Wilson, Greg M.

    2008-08-01

    The RSAA CICADA data acquisition and control software package uses an object-oriented approach to model astronomical instrumentation and a layered architecture for implementation. Emphasis has been placed on building reusable C++ class libraries and on the use of attribute/value tables for dynamic configuration. This paper details how the approach has been successfully used in the construction of the instrument control software for the Gemini NIFS and GSAOI instruments. The software is again being used for the new RSAA SkyMapper and WiFeS instruments.

  2. The Scientific Uplink and User Support System for SIRTF

    NASA Astrophysics Data System (ADS)

    Heinrichsen, I.; Chavez, J.; Hartley, B.; Mei, Y.; Potts, S.; Roby, T.; Turek, G.; Valjavec, E.; Wu, X.

    The Space Infrared Telescope Facility (SIRTF) is one of NASA's Great Observatory missions, scheduled for launch in 2001. As such its ground segment design is driven by the requirement to provide strong support for the entire astronomical community starting with the call for Legacy Proposals in early 2000. In this contribution, we present the astronomical user interface and the design of the server software that comprises the Scientific Uplink System for SIRTF. The software architecture is split into three major parts: A front-end Java application deployed to the astronomical community providing the capabilities to visualize and edit proposals and the associated lists of observations. This observer toolkit provides templates to define all parameters necessary to carry out the required observations. A specialized version of this software, based on the same overall architecture, is used internal to the SIRTF Science Center to prepare calibration and engineering observations. A Weblogic (TM) based middleware component brokers the transactions with the servers, astronomical image and catalog sources as well as the SIRTF operational databases. Several server systems perform the necessary computations, to obtain resource estimates, target visibilities and to access the instrument models for signal to noise calculations. The same server software is used internally at a later stage to derive the detailed command sequences needed by the SIRTF instruments and spacecraft to execute a given observation.

  3. HISTORIA Alexandri Magni: Astronomy, Astrology and Tradition

    NASA Astrophysics Data System (ADS)

    Papathanassiou, M.

    A popular text on the birth, life and death of Alexander the Great is that attributed to Pseudo-Callisthenes. According to this Byzantine text Alexander is the son of the last king of Egypt, the Pharao Nectanebo, who left his country and following Apollo's oracle visited Macedonia. Nectanebo was famous for his astronomical, astrological and magical knowledge which he used to prevent Alexander's birth for some hours until a favoured time comes. In only one manuscript (Paris. gr. 1711, 11th century) of this work there is a unique passage in which astronomical information is given regarding the positions of the Sun, the Moon, and the five planets at the time of Alexander's birth. In this paper I attempt a study of all information related to the astronomical instruments and their use as mentioned in the text as well as of the astronomical information regarding Alexander's birth.

  4. Developing Generic Image Search Strategies for Large Astronomical Data Sets and Archives using Convolutional Neural Networks and Transfer Learning

    NASA Astrophysics Data System (ADS)

    Peek, Joshua E. G.; Hargis, Jonathan R.; Jones, Craig K.

    2018-01-01

    Astronomical instruments produce petabytes of images every year, vastly more than can be inspected by a member of the astronomical community in search of a specific population of structures. Fortunately, the sky is mostly black and source extraction algorithms have been developed to provide searchable catalogs of unconfused sources like stars and galaxies. These tools often fail for studies of more diffuse structures like the interstellar medium and unresolved stellar structures in nearby galaxies, leaving astronomers interested in observations of photodissociation regions, stellar clusters, diffuse interstellar clouds without the crucial ability to search. In this work we present a new path forward for finding structures in large data sets similar to an input structure using convolutional neural networks, transfer learning, and machine learning clustering techniques. We show applications to archival data in the Mikulski Archive for Space Telescopes (MAST).

  5. Galileo's wondrous telescope

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2008-06-01

    If you need reminding of just how wrong the great and the good can be, take a trip to the Museum of the History of Science in Florence, Italy. The museum is staging an exhibition entitled "Galileo's telescope - the instrument that changed the world" to mark the 400th anniversary this year of Galileo Galilei's revolutionary astronomical discoveries, which were made possible by the invention of the telescope. At the start of the 17th century, astronomers assumed that all the planets and the stars in the heavens had been identified and that there was nothing new for them to discover, as the exhibition's curator, Giorgio Strano, points out. "No-one could have imagined what wondrous new things were about to be revealed by an instrument created by inserting two eyeglass lenses into the ends of a tube," he adds.

  6. The BAA observatories and the origins of the instrument collection

    NASA Astrophysics Data System (ADS)

    Marriott, R. A.

    2007-12-01

    Within a few months of the founding of the Association in 1890 October, the membership numbered several hundred amateur and professional astronomers in Britain and around the world. International recognition was also marked by a number of eminent speakers at meetings, including the instrument maker John A. Brashear, of Allegheny, Pennsylvania. In 1888 Brashear had toured the British Isles and Europe, visiting observatories and meeting many eminent astronomers. He seems to have been impressed with everyone he met - particularly British amateurs - and during his second visit to England in 1892 he spoke at the Association's meeting on April 27. In 1890 December he presented to the Association a speculum-metal diffraction grating which had been prepared at his own works and ruled on Henry Rowland's engine at Johns Hopkins University, Baltimore.

  7. Optical Comb from a Whispering Gallery Mode Resonator for Spectroscopy and Astronomy Instruments Calibration

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.

    2012-01-01

    The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.

  8. Spanish participation in the development of HARMONI, the first light integral field spectrograph for the E-ELT.

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, B.; HARMONI Consortium

    2015-05-01

    HARMONI is the visible and near infrared integral field spectrograph (IFS) selected as a first-light instrument for the European Extremely Large Telescope (E-ELT). With four spatial scales and a range of spectral resolving powers, astronomers will optimally configure the instrument to overtake a wide range of scientific programs and to address many of the E-ELT science cases. The Centro de Astrobiología del CSIC/INTA (CAB-CSIC) and the Instituto de Astrofísica de Canarias (IAC) form part of the international consortium developing HARMONI, participation that will constitute an unique scientific opportunity for the Spanish astronomical community, allowing the access to the E-ELT as soon as it were operative via the guaranteed time. We describe here the instrument and its capabilities with special attention to the Spanish contribution to HARMONI. At the current stage of the project, HARMONI design is being revised due to significant modifications of the Nasmyth platform affecting the interface with HARMONI.

  9. Chinese Armillary Spheres

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.

  10. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  11. Meeting Archival Standards in the Astronomical Photographic Data Archive at PARI

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.; Barker, T.; Rottler, L.

    2013-01-01

    The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 400 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 200,000 photographic plates and films from more than 40 collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. GAMMA II has been rebuilt and we will report on its status as an astrometric measuring instrument.

  12. Introduction to the Infrared Space Observatory (ISO)

    NASA Technical Reports Server (NTRS)

    Kessler, M. F.; Sibille, F.

    1989-01-01

    The Infrared Space Observatory (ISO) is an astronomical satellite, which will operate at infrared wavelengths (2.5 to 200 microns) for a period of at least 18 months. Imaging, spectroscopic, photometric and polarimetric observations will be obtained by four scientific instruments in the focal plane of its 60-cm diameter, cryogenically-cooled telescope. Two-thirds of ISO's observing time will be available to the astronomical community. ISO is a fully approved and funded project of the European Space Agency (ESA) with a foreseen launch date of May 1993.

  13. British Observations of the 18 August 1868 Total Solar Eclipse from Guntoor, India

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Lee, Eun-Hee; Ahn, Young-Sook

    The total solar eclipse of 18 August 1868 was observed in Aden, India, Siam (present-day Thailand) and the Dutch East Indies (present-day Indonesia). One Indian expedition was sponsored by the Royal Astronomical Society, and led by Major J.F. Tennant. In this chapter we describe the observing team and instruments, discuss their observations, and conclude with some remarks on the place of the 1868 eclipse in solar studies and later nineteenth century European astronomical expeditions to India.

  14. Going Public

    NASA Astrophysics Data System (ADS)

    Krupp, E. C.

    2011-06-01

    Galileo's astronomical innovations leveraged the public imagination. Public astronomy relies on our capacity to learn and also on our emotional and aesthetic responses to inspire wonder and a passion for discovery. Griffith Observatory, in Los Angeles, a pioneer of public astronomy, has relied on the principle of "the building as instrument" since 1935. A recent renovation and expansion preserves and advances that initiative. Putting visitors eyeball to the cosmos, the Observatory transforms them into observers and demonstrates how astronomical inspiration works on behalf of our survival.

  15. Determination of astronomical refraction near the horizon in different seasons of the year

    NASA Technical Reports Server (NTRS)

    Vasilenko, N. A.

    1974-01-01

    The results are presented of astronomical refraction measurements for zenith distances of 80-90 degrees performed in different seasons with a two inch universal instrument. The differences between observed and calculated refraction were found to exhibit seasonal variations, and the results were compared with data of atmospheric aerologic soundings. The great departures in observed refraction from that calculated with the Pulkovo tables were ascribed to temperature gradient changes within the ground kilometer layer of atmosphere.

  16. ISO science - observations of dusty discs.

    NASA Astrophysics Data System (ADS)

    Heske, A.

    1992-12-01

    ISO, the Infrared Space Observatory, will be an infrared observing facility in space. Via submission of observing proposals, use of this facility will be open to the astronomical community. The scientific payload consists of two spectrometers, a camera and a photo-polarimeter. Following an overview of the ISO mission, this paper describes the highlights of the Central Programme - proposals which are being prepared by the instrument groups, the mission scientists and the astronomers of the ISO Science Operations Team - with special emphasis on the proposals concerned with dusty discs.

  17. The Past, Present, and Future of Astronomical Data Formats

    NASA Astrophysics Data System (ADS)

    Mink, J.; Mann, R. G.; Hanisch, R.; Rots, A.; Seaman, R.; Jenness, T.; Thomas, B.; O'Mullane, W.

    2015-09-01

    The future of astronomy is inextricably entwined with the care and feeding of astronomical data products. Community standards such as FITS and NDF have been instrumental in the success of numerous astronomy projects. Their very success challenges us to entertain pragmatic strategies to adapt and evolve the standards to meet the aggressive data-handling requirements of facilities now being designed and built. We discuss characteristics that have made standards successful in the past, as well as desirable features for the future, and an open discussion follows.

  18. Early Astronomical Sequential Photography, 1873-1923

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor

    2011-11-01

    In 1873 Jules Janssen conceived the first automatic sequential photographic apparatus to observe the eagerly anticipated 1874 transit of Venus. This device, the 'photographic revolver', is commonly considered today as the earliest cinema precursor. In the following years, in order to study the variability or the motion of celestial objects, several instruments, either manually or automatically actuated, were devised to obtain as many photographs as possible of astronomical events in a short time interval. In this paper we strive to identify from the available documents the attempts made between 1873 and 1923, and discuss the motivations behind them and the results obtained. During the time period studied astronomical sequential photography was employed to determine the time of the instants of contact in transits and occultations, and to study total solar eclipses. The technique was seldom used but apparently the modern film camera invention played no role on this situation. Astronomical sequential photographs were obtained both before and after 1895. We conclude that the development of astronomical sequential photography was constrained by the reduced number of subjects to which the technique could be applied.

  19. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  20. A balloon-borne 102-cm telescope for far-infrared astronomy

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1990-01-01

    In the early 1970's, the Smithsonian Astrophysical Observatory and the University of Arizona engaged in a cooperative program to develop a balloon-borne 102-cm telescope capable of carrying out far infrared (40 to 250 micron) observations of astronomical interest above the earth's atmosphere. Since 1972, the telescope has flown and successfully recovered a total of nineteen times. Thirteen of the flights produced high-quality astronomical data, resulting in more than 92.5 hours of photometric and spectroscopic observations of numerous objects, such as H 2 regions, dark clouds, molecular clouds, a planetary nebula, a galaxy, the galactic center, the planets, and an asteroid. From the launch site in Palestine, Texas, sources as far south as -50 degrees declination were observed. The balloon-borne telescope was one of the most sensitive instruments ever used for observation in the far infrared region of the spectrum. It was most productive in producing high resolution maps of large areas (typically square degrees) centered on known H 2 regions, molecular clouds, and dark cloud complexes. In many cases, these scans produced the first far infrared maps of these regions, and many new sources were discovered. The results have led to a better understanding of the distribution of gas and dust in these regions, the evolution of H 2 regions, and the processes of star formation in giant molecular clouds. The following topics are presented: (1) the focal plane instrumentation; (2) the history and flight record; (3) scientific results and publications; (4) eduational aspects; and (5) future planes.

  1. Exorcising the Ghost in the Machine: Synthetic Spectral Data Cubes for Assessing Big Data Algorithms

    NASA Astrophysics Data System (ADS)

    Araya, M.; Solar, M.; Mardones, D.; Hochfärber, T.

    2015-09-01

    The size and quantity of the data that is being generated by large astronomical projects like ALMA, requires a paradigm change in astronomical data analysis. Complex data, such as highly sensitive spectroscopic data in the form of large data cubes, are not only difficult to manage, transfer and visualize, but they make traditional data analysis techniques unfeasible. Consequently, the attention has been placed on machine learning and artificial intelligence techniques, to develop approximate and adaptive methods for astronomical data analysis within a reasonable computational time. Unfortunately, these techniques are usually sub optimal, stochastic and strongly dependent of the parameters, which could easily turn into “a ghost in the machine” for astronomers and practitioners. Therefore, a proper assessment of these methods is not only desirable but mandatory for trusting them in large-scale usage. The problem is that positively verifiable results are scarce in astronomy, and moreover, science using bleeding-edge instrumentation naturally lacks of reference values. We propose an Astronomical SYnthetic Data Observations (ASYDO), a virtual service that generates synthetic spectroscopic data in the form of data cubes. The objective of the tool is not to produce accurate astrophysical simulations, but to generate a large number of labelled synthetic data, to assess advanced computing algorithms for astronomy and to develop novel Big Data algorithms. The synthetic data is generated using a set of spectral lines, template functions for spatial and spectral distributions, and simple models that produce reasonable synthetic observations. Emission lines are obtained automatically using IVOA's SLAP protocol (or from a relational database) and their spectral profiles correspond to distributions in the exponential family. The spatial distributions correspond to simple functions (e.g., 2D Gaussian), or to scalable template objects. The intensity, broadening and radial velocity of each line is given by very simple and naive physical models, yet ASYDO's generic implementation supports new user-made models, which potentially allows adding more realistic simulations. The resulting data cube is saved as a FITS file, also including all the tables and images used for generating the cube. We expect to implement ASYDO as a virtual observatory service in the near future.

  2. GUIs in the MIDAS environment

    NASA Technical Reports Server (NTRS)

    Ballester, P.

    1992-01-01

    MIDAS (Munich Image Data Analysis System) is the image processing system developed at ESO for astronomical data reduction. MIDAS is used for off-line data reduction at ESO and many astronomical institutes all over Europe. In addition to a set of general commands, enabling to process and analyze images, catalogs, graphics and tables, MIDAS includes specialized packages dedicated to astronomical applications or to specific ESO instruments. Several graphical interfaces are available in the MIDAS environment: XHelp provides an interactive help facility, and XLong and XEchelle enable data reduction of long-slip and echelle spectra. GUI builders facilitate the development of interfaces. All ESO interfaces comply to the ESO User Interfaces Common Conventions which secures an identical look and feel for telescope operations, data analysis, and archives.

  3. Spectrographs and Large Telescopes: A Study of Instrumentation

    NASA Astrophysics Data System (ADS)

    Fica, Haley Diane; Crane, Jeffrey D.; Uomoto, Alan K.; Hare, Tyson

    2017-01-01

    It is a truth universally acknowledged, that a telescope in possession of a large aperture, must be in want of a high resolution spectrograph. Subsystems of these instruments require testing and upgrading to ensure that they can continue to be scientifically productive and usher in a new era of astronomical research. The Planet Finder Spectrograph (PFS) and Magellan Inamori Kyocera Echelle (MIKE), both on the Magellan II Clay telescope at Las Campanas Observatory, and the Giant Magellan Telescope (GMT) Consortium Large Earth Finder (G-CLEF) are examples of such instruments. Bluer flat field lamps were designed for PFS and MIKE to replace lamps no longer available in order to ensure continued, efficient functionality. These newly designed lamps will result in better flat fielding and calibration of data, and thus result in increased reduction of instrument noise. When it is built and installed in 2022, G-CLEF will be be fed by a tertiary mirror on the GMT. Stepper motors attached to the back of this mirror will be used to correct misalignments in the optical relay system. These motors were characterized to ensure that they function as expected to an accuracy of a few microns. These projects incorporate several key aspects of astronomical instrumentation: designing, building, and testing.

  4. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  5. Divulgación del Programa Consolider-GTC

    NASA Astrophysics Data System (ADS)

    Ruiz Zelmanovitch, N.; Mass Hesse, M.; Alfaro, E.

    2013-05-01

    The Gran Telescopio Canarias (GTC) is the biggest telescope of its class in the world. The CONSOLIDER INGENIO 2010-GTC project, First Science with the GTC: Spanish Astron- omy on the Forefront of the European Astronomy, funded by the Spanish Ministry of Science and Innovation, MICINN (now the Ministry of Economy and competitiveness, MINECO) has used the GTC to: (i) obtain leading science with its data, (ii) increase the involvement of the Spanish astronomical community in developing astronomical instrumentation, (iii) get an important Spanish participation in the new extremely large telescopes generation (ELTs), and (iv) make outreach and communicating to the society the main results. The project CONSOLIDER INGENIO 2010-GTC is structured and defined by objectives: 1) GTC: To optimize the GTC and its instruments; 2) SCIENCE: To develop leading science with the GTC; 3) E-ELT: To take advantage of the technological experience obtained with the GTC for the new generation of giant telescopes; 4) INSTRUMENTATION: To promote the Spanish participation in the new instrument developments for the GTC, VLT and the future ELTs; 5) EDUCATION: International School for Advanced Instrumentation (IScAI); and 6) OUTREACH: Outreach and communication of the project scientific results. This poster resumes five years of science communication around the Consolider-GTC project.

  6. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the theme "Contemporary Astronomy" - Crimean Astrophysical Observatory. Also on the basis of collaboration between Ukraine and Russia the Russian-Ukrainian network of astronomical observatories was organized. The participation in Paris conference, on September 20-22, will be a good opportunity to present and to discuss some questions of selection, protection and preparation of Russian-Ukrainian -network to the List of UNESCO within the topic of the Project "Route of European astronomical observatories ".

  7. Most Efficient Spectrograph to Shoot the Southern Skies

    NASA Astrophysics Data System (ADS)

    2009-05-01

    ESO's Very Large Telescope -- Europe's flagship facility for ground-based astronomy -- has been equipped with the first of its second generation instruments: X-shooter. It can record the entire spectrum of a celestial object in one shot -- from the ultraviolet to the near-infrared -- with high sensitivity. This unique new instrument will be particularly useful for the study of distant exploding objects called gamma-ray bursts. ESO PR Photo 20a/09 An X-shooter spectrum ESO PR Photo 20b/09 The X-shooter instrument ESO PR Photo 20c/09 First Light of X-shooter "X-shooter offers a capability that is unique among astronomical instruments installed at large telescopes," says Sandro D'Odorico, who coordinated the Europe-wide consortium of scientists and engineers that built this remarkable instrument. "Until now, different instruments at different telescopes and multiple observations were needed to cover this kind of wavelength range, making it very difficult to compare data, which, even though from the same object, could have been taken at different times and under different sky conditions." X-shooter collects the full spectrum from the ultraviolet (300 nm) to the near-infrared (2400 nm) in parallel, capturing up to half of all the light from an object that passes through the atmosphere and the various elements of the telescope. "All in all, X-shooter can save us a factor of three or more in terms of precious telescope time and opens a new window of opportunity for the study of many, still poorly understood, celestial sources," says D'Odorico. The name of the 2.5-ton instrument was chosen to stress its capacity to capture data highly efficiently from a source whose nature and energy distribution are not known in advance of the observation. This property is particularly crucial in the study of gamma-ray bursts, the most energetic explosions known to occur in the Universe (ESO 17/09). Until now, a rough estimate of the distance of the target was needed, so as to know which instrument to use for a detailed study. Thanks to X-shooter, astronomers won't have to go through this first observing step. This is particularly relevant for gamma-ray bursts, which fade away very quickly and where being fast is the key to understanding the nature of these elusive cosmic sources. "I am very confident that X-shooter will discover the most distant gamma-ray bursts in the Universe, or in other words, the first objects that formed in the young Universe," says François Hammer, who leads the French efforts in X-shooter. X-shooter was built by a consortium of 11 institutes in Denmark, France, Italy and the Netherlands, together with ESO. In total 68 person-years of work by engineers, technicians and astronomers and a global budget of six million Euros were required. The development time was remarkably fast for a project of this complexity, which was completed in just over five years, starting from the kick-off meeting held in December 2003. "The success of X-shooter and its relatively short completion time are a tribute to the quality and dedication of the many people involved in the project," says Alan Moorwood, ESO Director of Programmes. The instrument was installed at the telescope at the end of 2008 and the first observations in its full configuration were made on 14 March 2009, demonstrating that the instrument works efficiently over the full spectral range with unprecedented resolution and quality. X-shooter has already proved its full capability by obtaining the complete spectra of low metallicity stars, of X-ray binaries, of distant quasars and galaxies, of the nebulae associated with Eta Carinae and the supernova 1987A, as well as with the observation of a distant gamma-ray burst that coincidently exploded at the time of the commissioning run. X-shooter will be offered to the astronomical community from 1 October 2009. The instrument is clearly answering a need in the scientific community as about 150 proposals were received for the first runs of X-shooter, for a total of 350 observing nights, making it the second most requested instrument at the Very Large Telescope in this period. More information ESO's Very Large Telescope (VLT) is the world's most advanced optical instrument. It is an ensemble of four 8.2-metre telescopes located at the Paranal Observatory on an isolated mountain peak in the Atacama Desert in North Chile. The four 8.2-metre telescopes have a total of 12 focal stations where different instruments for imaging and spectroscopic observations are installed and a special station where the light of the four telescopes is combined for interferometric observations. The first VLT instrument was installed in 1998 and has been followed by 12 more in the last 10 years, distributed at the different focal stations. X-shooter is the first of the second generation of VLT instruments and replaces the workhorse-instrument FORS1, which has been successfully used for more than ten years by hundreds of astronomers. X-shooter operates at the Cassegrain focus of the Kueyen telescope (UT2). In response to an ESO Call for Proposals for second generation VLT instrumentation, ESO received three proposals for an intermediate resolution, high efficiency spectrograph. These were eventually merged into a single proposal around the present concept of X-shooter, which was approved for construction in November 2003. The Final Design Review, at which the instrument design is finalised and declared ready for construction, took place in April 2006. The first observations with the instrument at the telescope in its full configuration were on 14 March 2009. X-shooter is a joint project by Denmark, France, Italy, the Netherlands and ESO. The collaborating institutes in Denmark are the Niels Bohr and the DARK Institutes of the University of Copenhagen and the National Space Institute (Technical University of Denmark); in France GEPI at the Observatoire de Paris and APC at the Université D. Diderot, with contributions from the CEA and the CNRS; in Italy the Osservatorio di Brera, Trieste, Palermo and Catania; and in the Netherlands, the University of Amsterdam, the University of Nijmegen and ASTRON. Beside the participating institutes and ESO, the project was supported by the National Agencies of Italy (INAF), the Italian Ministry for Education, University and Research (MIUR), the Netherlands (NOVA and NWO) and by the Carlsberg Foundation in Denmark. The project was also supported in Denmark and the Netherlands with funds from the EU Descartes prize, the highest European prize for science, awarded in 2002 to the European collaboration on gamma-ray burst research headed by Professor Ed van den Heuvel. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.

  8. Batman flies: a compact spectro-imager for space observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane

    2017-11-01

    Multi-object spectroscopy (MOS) is a key technique for large field of view surveys. MOEMS programmable slit masks could be next-generation devices for selecting objects in future infrared astronomical instrumentation for space telescopes. MOS is used extensively to investigate astronomical objects by optimizing the Signal-to-Noise Ratio (SNR): high precision spectra are obtained and the problem of spectral confusion and background level occurring in slitless spectroscopy is cancelled. Fainter limiting fluxes are reached and the scientific return is maximized both in cosmology and in legacy science. Major telescopes around the world are equipped with MOS in order to simultaneously record several hundred spectra in a single observation run. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multislit configuration in real time. During the early-phase studies of the European Space Agency (ESA) EUCLID mission, a MOS instrument based on a MOEMS device has been assessed. Due to complexity and cost reasons, slitless spectroscopy was chosen for EUCLID, despite a much higher efficiency with slit spectroscopy. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. In Europe an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy (collaboration LAM / EPFL-CSEM) [5,6]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and from the sky background is blocked. To get more than 2 millions independent micromirrors, the only available component is a Digital Micromirror Device (DMD) chip from Texas Instruments (TI) that features 2048 x 1080 mirrors and a 13.68μm pixel pitch. DMDs have been tested in space environment (-40°C, vacuum, radiations) by LAM and no showstopper has been revealed [7]. We are presenting in this paper a DMD-based spectrograph called BATMAN, including two arms, one spectroscopic channel and one imaging channel. This instrument is designed for getting breakthrough results in several science cases, from high-z galaxies to nearby galaxies and Trans-Neptunian Objects of Kuiper Belt.

  9. Performance of the EGRET astronomical gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hofstadter, R.; Hughes, E. B.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.

    1992-01-01

    On April 5, 1991, the Space Shuttle Atlantis carried the Compton Gamma Ray Observatory (CGRO) into orbit, deploying the satellite on April 7. The EGRET instrument was activated on April 15, and the first month of operations was devoted to verification of the instrument performance. Measurements made during that month and in the subsequent sky survey phase have verified that the instrument time resolution, angular resolution, and gamma ray detection efficiency are all within nominal limits.

  10. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  11. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  12. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  13. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  14. Ultra-smooth finishing of aspheric surfaces using CAST technology

    NASA Astrophysics Data System (ADS)

    Kong, John; Young, Kevin

    2014-06-01

    Growing applications for astronomical ground-based adaptive systems and air-born telescope systems demand complex optical surface designs combined with ultra-smooth finishing. The use of more sophisticated and accurate optics, especially aspheric ones, allows for shorter optical trains with smaller sizes and a reduced number of components. This in turn reduces fabrication and alignment time and costs. These aspheric components include the following: steep surfaces with large aspheric departures; more complex surface feature designs like stand-alone off-axis-parabola (OAP) and free form optics that combine surface complexity with a requirement for ultra-high smoothness, as well as special optic materials such as lightweight silicon carbide (SiC) for air-born systems. Various fabrication technologies for finishing ultra-smooth aspheric surfaces are progressing to meet these growing and demanding challenges, especially Magnetorheological Finishing (MRF) and ion-milling. These methods have demonstrated some good success as well as a certain level of limitations. Amongst them, computer-controlled asphere surface-finishing technology (CAST), developed by Precision Asphere Inc. (PAI), plays an important role in a cost effective manufacturing environment and has successfully delivered numerous products for the applications mentioned above. One of the most recent successes is the Gemini Planet Imager (GPI), the world's most powerful planet-hunting instrument, with critical aspheric components (seven OAPs and free form optics) made using CAST technology. GPI showed off its first images in a press release on January 7, 2014 . This paper reviews features of today's technologies in handling the ultra-smooth aspheric optics, especially the capabilities of CAST on these challenging products. As examples, three groups of aspheres deployed in astronomical optics systems, both polished and finished using CAST, will be discussed in detail.

  15. Commissioning Instrument for the GTC

    NASA Astrophysics Data System (ADS)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  16. A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument

    NASA Astrophysics Data System (ADS)

    Spencer, Locke D.; Naylor, David A.; Scott, Jeremy P.; Weiler, Vince F.; MacCrimmon, Roderick K.; Sitwell, Geoffrey R. H.; Ade, Peter A. R.

    2016-07-01

    We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.

  17. Studying Atomic Physics Using the Nighttime Atmosphere as a Laboratory

    NASA Technical Reports Server (NTRS)

    Sharpee, B. D.; Slanger, T. G.; Huestis, D. L.; Cosby, P. C.

    2006-01-01

    A summary of our recent work using terrestrial nightglow spectra, obtained from astronomical instrumentation, to directly measure, or evaluate theoretical values for fundamental parameters of astrophysically important atomic lines.

  18. ISO successfully launched

    NASA Astrophysics Data System (ADS)

    1995-11-01

    ISO is a high-technology telescope facility designed and built in Europe for use by the scientific community in Europe, Japan and the USA. It will provide astronomers with an unprecedented opportunity - the only one in the next decade - to make scientific observations of a wide variety of weak infrared radiation sources such as cold gases, galaxies and stars dying and being born. ISO represents a leap forward in space technology harnessed for astronomical observation of the universe. ISO is the world's first astronomical observatory in space operating at infrared wavelengths. To observe the weakest heat sources in the universe, its four scientific instruments have to be cooled to extremely low temperatures, using superfluid helium which evaporates slowly at minus 271 or about 2 degrees above absolute zero. The scientific instruments, telescope and liquid helium are all contained in a cryostat, which has been likened to an extraordinarily well insulated thermos flask. It is the first such cryogenically cooled satellite developed in Europe and employs very advanced technologies, notably for the scientific instruments, telescope and attitude control system. ISO will be controlled from the ESA's Space Operations Centre (ESOC) in Darmstadt, Germany, for the first few days, until the final orbit is achieved, and then operational control will be passed to a dedicated ESA operations centre in Villafranca, Spain. The first 21/2 months of operations will be given over to commissioning the satellite and verifying the performance of the scientific instruments. The observation programme is planned to start in early February 1996. ISO's lifetime is expected to be 20 months, by the end of which the helium, steadily evaporating as it cools the cryostat, should be exhausted.

  19. An innovative alt-alt telescope for small observatories and amateur astronomers

    NASA Astrophysics Data System (ADS)

    Riva, M.; Basso, S.; Canestrari, R.; Conconi, P.; Fugazza, D.; Ghigo, M.; Landoni, M.; Pareschi, G.; Spanó, P.; Tomelleri, R.; Zerbi, F. M.

    2012-09-01

    This paper want to show an innovative amateur oriented telescope with an unconventional alt-alt conguration. The goal is to make a telescope with good optical quality reducing production costs by adopting a gimbal based mounting to develop an alt-alt conguration suitable for a telescope. Reduce costs while preserving the optical quality is a necessary condition to allow small groups of amateur astronomers, schools and cultural clubs, with reduced economic resources, to acquire an astronomical instrument that encourages learning and advancing astrophysical knowledge. This unconventional mechanism for the realization of a telescope alt-alt provides signicant advantages. The traditional rotary motors coupled with expensive precision bearings are replaced with two simple linear actuators coupled to a properly preloaded gimbal joint and the cell becomes the primary structure of the telescope. A second advantage would be secured by mechanical simplicity evident in the easy portability of the instrument. The frame alt-alt has some limitations on the horizon pointing but does not show the zenith blind spot of the alt-az mount. A dedicated alt-alt pointing and tracking model is under development to be compatible with commercial telescope softwares and with the proposed new mounting.

  20. Fleet Astronomy

    NASA Astrophysics Data System (ADS)

    Klebe, D. I.; Colorado College Student Astronomy Instrument Team; Pikes Peak Observatory Team

    1999-12-01

    The Colorado College Student Astronomy Instrument Team (CCSAIT) and the Pikes Peak Observatory (PPO) present preliminary optical and mechanical designs as well as discussion on a fleet of small research-class 0.4-0.5-meter telescopes. Each telescope is being designed to accommodate a variety of visible and near-infrared instrumentation, ranging from wide-field imaging cameras to moderate resolution spectrometers. The design of these telescopes is predicated on the use of lightweight primary mirrors, which will enable the entire optical telescope assembly (OTA) including instrumentation to come in under 50 kilograms. The lightweight OTA’s will further allow the use of inexpensive high-quality off-the-shelf robotic telescope mounts for future access and computer control of these telescopes over the Internet. The basic idea is to provide astronomers with a comprehensive arsenal of modest instrumentation at their fingertips in order to conduct a wide variety of interesting scientific research programs. Some of these research programs are discussed and input from the astronomical community is strongly encouraged. Connectivity and Internet control issues are also briefly discussed as development in this area is already underway through a collaborative effort between the PPO and the Cowan-Fouts Foundation of Woodland Park, Colorado.

  1. Freeform diamond machining of complex monolithic metal optics for integral field systems

    NASA Astrophysics Data System (ADS)

    Dubbeldam, Cornelis M.; Robertson, David J.; Preuss, Werner

    2004-09-01

    Implementation of the optical designs of image slicing Integral Field Systems requires accurate alignment of a large number of small (and therefore difficult to manipulate) optical components. In order to facilitate the integration of these complex systems, the Astronomical Instrumentation Group (AIG) of the University of Durham, in collaboration with the Labor für Mikrozerspanung (Laboratory for Precision Machining - LFM) of the University of Bremen, have developed a technique for fabricating monolithic multi-faceted mirror arrays using freeform diamond machining. Using this technique, the inherent accuracy of the diamond machining equipment is exploited to achieve the required relative alignment accuracy of the facets, as well as an excellent optical surface quality for each individual facet. Monolithic arrays manufactured using this freeform diamond machining technique were successfully applied in the Integral Field Unit for the GEMINI Near-InfraRed Spectrograph (GNIRS IFU), which was recently installed at GEMINI South. Details of their fabrication process and optical performance are presented in this paper. In addition, the direction of current development work, conducted under the auspices of the Durham Instrumentation R&D Program supported by the UK Particle Physics and Astronomy Research Council (PPARC), will be discussed. The main emphasis of this research is to improve further the optical performance of diamond machined components, as well as to streamline the production and quality control processes with a view to making this technique suitable for multi-IFU instruments such as KMOS etc., which require series production of large quantities of optical components.

  2. Quasars, pulsars, black holes and HEAO's

    NASA Technical Reports Server (NTRS)

    Doolitte, R. F.; Moritz, K.; Whilden, R. D. C.

    1974-01-01

    Astronomical surveys are discussed by large X-ray, gamma ray, and cosmic ray instruments carried onboard high-energy astronomy observatories. Quasars, pulsars, black holes, and the ultimate benefits of the new astronomy are briefly discussed.

  3. Hubble Space Telescope-Concept

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-04-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  6. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  7. Cracking the Code of Faraway Worlds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared data from NASA's Spitzer Space Telescope - called a spectrum - tells astronomers that a distant gas planet, a so-called 'hot Jupiter' called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world.

    A spectrum is created when an instrument called a spectrograph spreads light from an object apart into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object.

    Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called 'transiting' hot-Jupiter planets using the 'secondary eclipse' technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors.

    When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. Theorists though the spectra for hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules. It is what astronomers call 'flat.' For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not seen there might indicate that the water is hidden under a thick blanket of high, dry clouds.

    This spectrum was produced by Dr. Mark R. Swain of NASA's Jet Propulsion Laboratory in Pasadena, Calif., using a complex set of mathematical tools. It was derived using two different methods, both of which led to the same result. The data were taken on July 6 and 13, 2005, by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center and his team using Spitzer's infrared spectrograph.

  8. Interim Report of the Astronomy Spacelab Payloads Study. Volume 2; Ultraviolet and Optical Astronomy

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Space Shuttle will comprise NASA's primary transportation system into near-earth orbit during the 1980s. The Shuttle will provide the astronomical community with a major new capability to send a wide variety of instrumentation into orbit, to utilize it there under manned or automatic control for periods from seven to thirty days, and to return it to the ground. To this end the European Space Research Organization (ESRO) is developing Spacelab, an array of interchangeable components -pressurized manned modules, unpressurized pallets and related support systems - to be mounted in the Shuttle payload bay. Spacelab will offer important opportunities to carry out astronomical research with instruments optimized for specific objectives. With a high flight frequency and with the ability to modify or interchange telescopes and instruments between flights, one will not need to make rigid long-term commitments to specific and compromised telescope/instrument/ detector combinations as is the case for automated satellites. Observational techniques demanding the physical return of data and equipment - in particular the use of photographic film, instruments requiring tight calibration controls, cryogens, high-risk detectors and degradeable optical coatings -will open research areas not readily addressed by automated satellites. Although Shuttle flight duration will be limited to periods from seven to thirty days, substantial data can be obtained with a single instrument on short missions, if targets are carefully selected and prioritized, and a large number of instruments can be accommodated on a single flight. Important astronomical data are regularly obtained on sounding rocket flights of five minutes duration. Spacelab will provide far longer observing periods for large and small telescopes, with resources greatly exceeding those of sounding rockets, while retaining much of the sounding rocket philosophy in terms of instrument flexibility, simplicity, reliability assurance and development costs. The Ultraviolet and Optical Astronomy Program on Spacelab is being planned to provide optical astronomers with relatively simple and regular access to the extended wavelength coverage, the superior image quality and the darkness of the night sky available above the earth's atmosphere. In a rapidly evolving science one cannot predict what problems will be timely in the 1980s. Extrapolating from the current epoch, however, one can envision a continuing interest in such areas as the structure, composition and phenomenology of planetary surfaces and atmospheres; the composition and physical nature of the interstellar medium; the composition, structure and life history of stars, especially those in advanced stages of evolution; the stellar population of other galaxies; such enigmatic phenomena as X-ray binary black holes, pulsars, active galactic nuclei and quasars; large scale interactions between galaxies and the nature of the intergalactic medium; precise calibration of the Hubble law for the expansion of the universe; the average density of the universe; and the existence of extraterrestrial life.

  9. Cosmic "Dig" Reveals Vestiges of the Milky Way's Building Blocks

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Peering through the thick dust clouds of our galaxy's "bulge" (the myriads of stars surrounding its centre), and revealing an amazing amount of detail, a team of astronomers has unveiled an unusual mix of stars in the stellar grouping known as Terzan 5. Never observed anywhere in the bulge before, this peculiar "cocktail" of stars suggests that Terzan 5 is in fact one of the bulge's primordial building blocks, most likely the relic of a proto-galaxy that merged with the Milky Way during its very early days. "The history of the Milky Way is encoded in its oldest fragments, globular clusters and other systems of stars that have witnessed the entire evolution of our galaxy," says Francesco Ferraro from the University of Bologna, lead author of a paper appearing in this week's issue of the journal Nature. "Our study opens a new window on yet another piece of our galactic past." Like archaeologists, who dig through the dust piling up on top of the remains of past civilisations and unearth crucial pieces of the history of mankind, astronomers have been gazing through the thick layers of interstellar dust obscuring the bulge of the Milky Way and have unveiled an extraordinary cosmic relic. The target of the study is the star cluster Terzan 5. The new observations show that this object, unlike all but a few exceptional globular clusters, does not harbour stars which are all born at the same time - what astronomers call a "single population" of stars. Instead, the multitude of glowing stars in Terzan 5 formed in at least two different epochs, the earliest probably some 12 billion years ago and then again 6 billion years ago. "Only one globular cluster with such a complex history of star formation has been observed in the halo of the Milky Way: Omega Centauri," says team member Emanuele Dalessandro. "This is the first time we see this in the bulge." The galactic bulge is the most inaccessible region of our galaxy for astronomical observations: only infrared light can penetrate the dust clouds and reveal its myriads of stars. "It is only thanks to the outstanding instruments mounted on ESO's Very Large Telescope," says co-author Barbara Lanzoni, "that we have finally been able to 'disperse the fog' and gain a new perspective on the origin of the galactic bulge itself." A technical jewel lies behind the scenes of this discovery, namely the Multi-conjugate Adaptive Optics Demonstrator (MAD), a cutting-edge instrument that allows the VLT to achieve superbly detailed images in the infrared. Adaptive optics is a technique through which astronomers can overcome the blurring that the Earth's turbulent atmosphere inflicts on astronomical images obtained from ground-based telescopes; MAD is a prototype of even more powerful, next-generation adaptive optics instruments [1]. Through the sharp eye of the VLT, the astronomers also found that Terzan 5 is more massive than previously thought: along with the complex composition and troubled star formation history of the system, this suggests that it might be the surviving remnant of a disrupted proto-galaxy, which merged with the Milky Way during its very early stages and thus contributed to form the galactic bulge. "This could be the first of a series of further discoveries shedding light on the origin of bulges in galaxies, which is still hotly debated," concludes Ferraro. "Several similar systems could be hidden behind the bulge's dust: it is in these objects that the formation history of our Milky Way is written." Notes [1] Telescopes on the ground suffer from a blurring effect introduced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets but frustrates astronomers, since it smears out the fine details of the images. However, with adaptive optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e. approaching conditions in space. Adaptive optics systems work by means of a computer-controlled deformable mirror that counteracts the image distortion introduced by atmospheric turbulence. It is based on real-time optical corrections computed at very high speed (many hundreds of times each second) from image data obtained by a wavefront sensor (a special camera) that monitors light from a reference star, Present AO systems can only correct the effect of atmospheric turbulence in a very small region of the sky - typically 15 arcseconds or less - the correction degrading very quickly when moving away from the reference star. Engineers have therefore developed new techniques to overcome this limitation, one of which is multi-conjugate adaptive optics. MAD uses up to three guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques (eso0719). More information This research was presented in a paper that appears in the 26 November 2009 issue of Nature , "The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge", by F. R. Ferraro et al.. The team is composed of Francesco Ferraro, Emanuele Dalessandro, Alessio Mucciarelli and Barbara Lanzoni (Department of Astronomy, University of Bologna, Italy), Giacomo Beccari (ESA, Space Science Department, Noordwijk, Netherlands), Mike Rich (Department of Physics and Astronomy, UCLA, Los Angeles, USA), Livia Origlia, Michele Bellazzini and Gabriele Cocozza (INAF - Osservatorio Astronomico di Bologna, Italy), Robert T. Rood (Astronomy Department, University of Virginia, Charlottesville, USA), Elena Valenti (ESO and Pontificia Universidad Catolica de Chile, Departamento de Astronomia, Santiago, Chile) and Scott Ransom (National Radio Astronomy Observatory, Charlottesville, USA). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  10. Image dissector control and data system, part 1. [instrument packages and equipment specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A general description of the image dissector control and data system is presented along with detailed design information, operating instructions, and maintenance and trouble-shooting procedures for the four instrumentation packages. The four instrumentation packages include a 90 inch telescope, a simplified telescope module for use on the 90 inch or other telescopes, a photographic plate scanner module which permits the scanning of astronomical photographic plates in the laboratory, and the lunar experiment package module.

  11. The database of the Nikolaev Astronomical Observatory as a unit of an international virtual observatory

    NASA Astrophysics Data System (ADS)

    Protsyuk, Yu.; Pinigin, G.; Shulga, A.

    2005-06-01

    Results of the development and organization of the digital database of the Nikolaev Astronomical Observatory (NAO) are presented. At present, three telescopes are connected to the local area network of NAO. All the data obtained, and results of data processing are entered into the common database of NAO. The daily average volume of new astronomical information obtained from the CCD instruments ranges from 300 MB up to 2 GB, depending on the purposes and conditions of observations. The overwhelming majority of the data are stored in the FITS format. Development and further improvement of storage standards, procedures of data handling and data processing are being carried out. It is planned to create an astronomical web portal with the possibility to have interactive access to databases and telescopes. In the future, this resource may become a part of an international virtual observatory. There are the prototypes of search tools with the use of PHP and MySQL. Efforts for getting more links to the Internet are being made.

  12. Contributions of the observatory of New Mexico State University, Volume 1, no. 4, April 4

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers are presented dealing with astronomical observations of the Jupiter Red Spot, Corona Borealis Constellation, and Meteoroids. Calibration of instruments and reduction and analysis of data are discussed.

  13. Multichannel spectral mode of the ALOHA up-conversion interferometer

    NASA Astrophysics Data System (ADS)

    Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-06-01

    In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high-resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.

  14. ALOHA—Astronomical Light Optical Hybrid Analysis - From experimental demonstrations to a MIR instrument proposal

    NASA Astrophysics Data System (ADS)

    Lehmann, L.; Darré, P.; Szemendera, L.; Gomes, J. T.; Baudoin, R.; Ceus, D.; Brustlein, S.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-04-01

    This paper gives an overview of the Astronomical Light Optical Hybrid Analysis (ALOHA) project dedicated to investigate a new method for high resolution imaging in mid infrared astronomy. This proposal aims to use a non-linear frequency conversion process to shift the thermal infrared radiation to a shorter wavelength domain compatible with proven technology such as guided optics and detectors. After a description of the principle, we summarise the evolution of our study from the high flux seminal experiments to the latest results in the photon counting regime.

  15. NASA astronomical findings highlighted on This Week @NASA – January 8, 2016

    NASA Image and Video Library

    2016-01-08

    New NASA astrophysics findings were highlighted at the 227th American Astronomical Society meeting, Jan. 4-8 in Kissimmee, Florida. The findings, which ranged from runaway stars to a burping galaxy, were made with the help of several NASA observation instruments, including the Spitzer Space Telescope, the Wide-field Infrared Survey Explorer, the Chandra X-ray Observatory, the Nuclear Spectroscopic Telescope Array and others. Also, Next space station crew preparing for mission, Economical new era of aviation, A new level of coral reef studies and more!

  16. The Astronomical Photographic Data Archive

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Barker, T.; Castelaz, M.

    2010-01-01

    Pisgah Astronomical Research Institute is the home of the Astronomical Photographic Data Archive (APDA), a national effort to preserve, archive, and digitize astronomical photographic plate collections. APDA was formed in 2007 and presently holds more than 100,000 plates and films from more than a dozen observatory collections. While the photographic data pre-dates modern observational data taken with electronic instruments, it is nevertheless of extremely high quality. When one considers 100,000 plates and films in the APDA collection, some with 100's or 1000's of objects per plate, and plates taken over 100 years the value of the data in APDA becomes apparent. In addition to the astronomical photographic data collections, APDA also possesses two high precision glass plate measuring machines, GAMMA I and GAMMA II that were built for NASA and the Space Telescope Science Institute. The measuring machines were used by a team of scientists under the leadership of the late Dr. Barry Lasker to develop the Guide Star Catalog and Digitized Sky Survey that guide and direct the Hubble Space Telescope. We will describe the current set of collections, plans for the measuring machines, and the efforts that have been made to assure preservation of plate collections.

  17. Einstein's Jury -The Race to Test Relativity

    NASA Astrophysics Data System (ADS)

    Crelinsten, Jeffrey

    2006-12-01

    It is common belief that Einstein’s general theory of relativity won worldwide acceptance after British astronomers announced in November 1919 that the sun’s gravitational field bends starlight by an amount predicted by Einstein. This paper demonstrates that the case for Einstein was not settled until much later and that there was considerable confusion and debate about relativity during this period. Most astronomers considered Einstein’s general theory too metaphysical and abstruse, and many tried to find more conventional explanations of the astronomical observations. Two American announcements before the British results appeared had been contrary to Einstein’s prediction. They came from Lick and Mt. Wilson observatories, which enjoyed international reputations as two of the most advanced astrophysical research establishments in the world. Astronomers at these renowned institutions were instrumental in swaying the court of scientific opinion during the decade of the 1920s, which saw numerous attempts to measure light-bending, as well as solar line displacements and even ether-drift. How astronomers approached the “Einstein problem” in these early years before and after the First World War, and how the public reacted to what they reported, helped to shape attitudes we hold today about Einstein and his ideas.

  18. FLARE: The Far Side Lunar Research Expedition. A design of a far side lunar observatory

    NASA Technical Reports Server (NTRS)

    Bishop, David W.; Chakrabarty, Rudhmala P.; Hannula, Dawn M.; Hargus, William A., Jr.; Melendrez, A. Dean; Niemann, Christopher J.; Neuenschwander, Amy L.; Padgett, Brett D.; Patel, Sanjiv R.; Wiesehuegel, Leland J.

    1991-01-01

    This document outlines the design completed by members of Lone Star Aerospace, Inc. (L.S.A.) of a lunar observatory on the far side of the Moon. Such a base would not only establish a long term human presence on the Moon, but would also allow more accurate astronomical data to be obtained. A lunar observatory is more desirable than an Earth based observatory for the following reasons: instrument weight is reduced due to the Moon's weaker gravity; near vacuum conditions exist on the Moon; the Moon has slow rotation to reveal the entire sky; and the lunar surface is stable for long baseline instruments. All the conditions listed above are favorable for astronomical data recording. The technical aspects investigated in the completion of this project included site selection, mission scenario, scientific instruments, communication and power systems, habitation and transportation, cargo spacecraft design, thermal systems, robotic systems, and trajectory analysis. The site selection group focused its efforts on finding a suitable location for the observatory. Hertzsprung, a large equatorial crater on the eastern limb, was chosen as the base site.

  19. Space Telescope Systems Description Handbook

    NASA Technical Reports Server (NTRS)

    Carter, R. E.

    1985-01-01

    The objective of the Space Telescope Project is to orbit a high quality optical 2.4-meter telescope system by the Space Shuttle for use by the astronomical community in conjunction with NASA. The scientific objectives of the Space Telescope are to determine the constitution, physical characteristics, and dynamics of celestial bodies; the nature of processes which occur in the extreme physical conditions existing in stellar objects; the history and evolution of the universe; and whether the laws of nature are universal in the space-time continuum. Like ground-based telescopes, the Space Telescope was designed as a general-purpose instrument, capable of utilizing a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic will allow the Space Telescope to be effectively used as a national facility, capable of supporting the astronomical needs for an international user community and hence making contributions to man's needs. By using the Space Shuttle to provide scientific instrument upgrading and subsystems maintenance, the useful and effective operational lifetime of the Space Telescope will be extended to a decade or more.

  20. WFIRST Science Operations at STScI

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; STScI WFIRST Team

    2018-06-01

    With sensitivity and resolution comparable the Hubble Space Telescope, and a field of view 100 times larger, the Wide Field Instrument (WFI) on WFIRST will be a powerful survey instrument. STScI will be the Science Operations Center (SOC) for the WFIRST Mission, with additional science support provided by the Infrared Processing and Analysis Center (IPAC) and foreign partners. STScI will schedule and archive all WFIRST observations, calibrate and produce pipeline-reduced data products for imaging with the Wide Field Instrument, support the High Latitude Imaging and Supernova Survey Teams, and support the astronomical community in planning WFI imaging observations and analyzing the data. STScI has developed detailed concepts for WFIRST operations, including a data management system integrating data processing and the archive which will include a novel, cloud-based framework for high-level data processing, providing a common environment accessible to all users (STScI operations, Survey Teams, General Observers, and archival investigators). To aid the astronomical community in examining the capabilities of WFIRST, STScI has built several simulation tools. We describe the functionality of each tool and give examples of its use.

  1. Multifrequency data analysis software on STARLINK

    NASA Technical Reports Server (NTRS)

    Allan, P. M.

    1992-01-01

    Although the STARLINK project was set up to provide image processing facilities to UK astronomers, it has grown over the last 12 years to the extent that it now provides most of the data analysis facilities for UK astronomers. One aspect of the growth of the STARLINK network is that it now has to cater for astronomers working in a diverse range of wavelengths. Since a given individual may be working with data obtained in a variety of wavelengths, it is most convenient if the data can be stored in a common format and the programs that analyze the data have a similar 'look and feel'. What is known as 'STARLINK software' is obtained from many sources: STARLINK funded programmers; astronomers; foreign projects such as AIPS; generally available shareware; and commercial sources when this proves cost effective. This means that the ideal situation of a completely integrated system cannot be realized in practice. Nevertheless, many of the major packages written by STARLINK application programmers and by astronomers do use a common data format, based on the Hierarchical Data System, so that interchange of data between packages designed separately from each other is simply a matter of using the same file names. For example, as astronomer might use KAPPA to read some optical spectra off a FITS tape, then use CCDPACK to debias and flat field the data (it is easy to set up an overnight batch job to do this if there is a lot of data), then use KAPPA to have a quick look at the data and then use Figaro to reduce the spectra. It is useful to divide data analysis packages into wavelength specific packages, or even instrument specific packages, and general purpose ones. Once the instrumental signature has been removed from some data, any appropriate general purpose package can be used to analyze te data. For example, the ASTERIX package deals with x-ray data reduction, but after dealing with all of the x-ray specific processing, an astronomer may well want to find the brightness of objects in a given frame. Since ASTERIX uses the standard STARLINK data format, the astronomer can use PHOTOM or DAOPHOT 2 to measure the brightness of the objects. Although DAOPHOT was written with optical astronomy in mind, it is useful for analyzing data from several wavelengths. The ability of DAOPHOT 2 to handle non-standard point spread functions can be especially useful in many areas of astronomy.

  2. Jupiter from the Ground

    NASA Image and Video Library

    2011-08-03

    Ground-based astronomers will be playing a vital role in NASA Juno mission. Images from the amateur astronomy community are needed to help the JunoCam instrument team predict what features will be visible when the camera images are taken.

  3. Detection of quasars in the time domain

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Stern, Daniel J.; Drake, Andrew; Mahabal, Ashish

    2017-06-01

    The time domain is the emerging forefront of astronomical research with new facilities and instruments providing unprecedented amounts of data on the temporal behavior of astrophysical populations. Dealing with the size and complexity of this requires new techniques and methodologies. Quasars are an ideal work set for developing and applying these: they vary in a detectable but not easily quantifiable manner whose physical origins are poorly understood. In this paper, we will review how quasars are identified by their variability and how these techniques can be improved, what physical insights into their variability can be gained from studying extreme examples of variability, and what approaches can be taken to increase the number of quasars known. These will demonstrate how astroinformatics is essential to discovering and understanding this important population.

  4. Creating Data that Never Die: Building a Spectrograph Data Pipeline in the Virtual Observatory Era

    NASA Astrophysics Data System (ADS)

    Mink, D. J.; Wyatt, W. F.; Roll, J. B.; Tokarz, S. P.; Conroy, M. A.; Caldwell, N.; Kurtz, M.; Geller, M. J.

    2005-12-01

    Data pipelines for modern complex astronomical instruments do not begin when the data is taken and end when it is delivered to the user. Information must flow between the observatory and the observer from the time a project is conceived and between the observatory and the world well past the time when the original observers have extracted all the information they want from the data. For the 300-fiber Hectospec low dispersion spectrograph on the MMT, the SAO Telescope Data Center is constructing a data pipeline which provides assistance from preparing and submitting observing proposals through observation, reduction, and analysis to publication and an afterlife in the Virtual Observatory. We will describe our semi-automatic pipeline and how it has evolved over the first nine months of operation.

  5. An Information Retrieval and Recommendation System for Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Mukund, Nikhil; Thakur, Saurabh; Abraham, Sheelu; Aniyan, A. K.; Mitra, Sanjit; Sajeeth Philip, Ninan; Vaghmare, Kaustubh; Acharjya, D. P.

    2018-03-01

    We present a machine-learning-based information retrieval system for astronomical observatories that tries to address user-defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are simultaneously at work, the ability to supply people with the right information helps speed up the tasks for detector operation, maintenance, and upgradation. The proposed method analyzes existing documented efforts at the site to intelligently group related information to a query and to present it online to the user. The user in response can probe the suggested content and explore previously developed solutions or probable ways to address the present situation optimally. We demonstrate natural language-processing-backed knowledge rediscovery by making use of the open source logbook data from the Laser Interferometric Gravitational Observatory (LIGO). We implement and test a web application that incorporates the above idea for LIGO Livingston, LIGO Hanford, and Virgo observatories.

  6. Here Be Dragons: Effective (X-ray) Timing with the Cospectrum

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela; Bachetti, Matteo

    2018-01-01

    In recent years, the cross spectrum has received considerable attention as a means of characterising the variability of astronomical sources as a function of wavelength. While much has been written about the statistics of time and phase lags, the cospectrum—the real part of the cross spectrum—has only recently been understood as means of mitigating instrumental effects dependent on temporal frequency in astronomical detectors, as well as a method of characterizing the coherent variability in two wavelength ranges on different time scales. In this talk, I will present recent advances made in understanding the statistical properties of cospectra, leading to much improved inferences for periodic and quasi-periodic signals. I will also present a new method to reliably mitigate instrumental effects such as dead time in X-ray detectors, and show how we can use the cospectrum to model highly variable sources such as X-ray binaries or Active Galactic Nuclei.

  7. Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Astrophysics Data System (ADS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-09-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  8. Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Technical Reports Server (NTRS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-01-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  9. The instrument control software package for the Habitable-Zone Planet Finder spectrometer

    NASA Astrophysics Data System (ADS)

    Bender, Chad F.; Robertson, Paul; Stefansson, Gudmundur Kari; Monson, Andrew; Anderson, Tyler; Halverson, Samuel; Hearty, Frederick; Levi, Eric; Mahadevan, Suvrath; Nelson, Matthew; Ramsey, Larry; Roy, Arpita; Schwab, Christian; Shetrone, Matthew; Terrien, Ryan

    2016-08-01

    We describe the Instrument Control Software (ICS) package that we have built for The Habitable-Zone Planet Finder (HPF) spectrometer. The ICS controls and monitors instrument subsystems, facilitates communication with the Hobby-Eberly Telescope facility, and provides user interfaces for observers and telescope operators. The backend is built around the asynchronous network software stack provided by the Python Twisted engine, and is linked to a suite of custom hardware communication protocols. This backend is accessed through Python-based command-line and PyQt graphical frontends. In this paper we describe several of the customized subsystem communication protocols that provide access to and help maintain the hardware systems that comprise HPF, and show how asynchronous communication benefits the numerous hardware components. We also discuss our Detector Control Subsystem, built as a set of custom Python wrappers around a C-library that provides native Linux access to the SIDECAR ASIC and Hawaii-2RG detector system used by HPF. HPF will be one of the first astronomical instruments on sky to utilize this native Linux capability through the SIDECAR Acquisition Module (SAM) electronics. The ICS we have created is very flexible, and we are adapting it for NEID, NASA's Extreme Precision Doppler Spectrometer for the WIYN telescope; we will describe this adaptation, and describe the potential for use in other astronomical instruments.

  10. POST WWII Astronomy and Rebuilding U.S. Astronomical Institutions--The U.S. Perspective

    NASA Astrophysics Data System (ADS)

    Howard, W. E.

    1993-12-01

    A belief that technology contributed substantially to the winning of World War II spurred the formation of ONR, then NSF which was formed in ONR's image. NASA's space support, cold war competition, and ARPA's funding of high risk, high payoff technologies led to state-of-the-art instrumentation in astronomy. Limits on funding for instrumentation at individual institutions led to the concept and growth of national astronomy observatories that made observing time available to the best ideas from astronomers who had no access to big telescopes at home. Success of these major observatories lay also in their treatment of visitors who were made to feel a part of the institution. As federal funding became available, several issues were heavily debated, among which were overhead costs on grant awards, what the breakdown of responsibility should be for institutional vs. federal funding, spreading vs. concentrating the available funding, the role of the AAS and advisory groups, federal vs. researcher specification of the research program, and the roots of the modern debate concerning research relevance. U.S. astronomers are unique because of our eclecticism, our development of a winning system of workplaces, our peer review system, our united front presented by our projective planning and our periodic decade reviews, our international orientation, all in the context of national support that is preeminent in the world. These features operate within an economic system that enables us to communicate and travel easily, and scientific and academic administrations that permit astronomers to concentrate on their research without excess internal or external politics.

  11. First Images from the PIONIER/VLTI optical interferometry imaging survey of Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Kluska, Jacques; Malbet, Fabien; Berger, Jean-Philippe; Benisty, Myriam; Lazareff, Bernard; Le Bouquin, Jean-Baptiste; Baron, Fabien; Dominik, Carsten; Isella, Andrea; Juhasz, Attila; Kraus, Stefan; Lachaume, Régis; Ménard, François; Millan-Gabet, Rafael; Monnier, John; Pinte, Christophe; Thi, Wing-Fai; Thiébaut, Eric; Zins, Gérard

    2013-07-01

    The morphology of the close environment of herbig stars is being revealed step by step and appears to be quite complex. Many physical phenomena could interplay : the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, getting images at the first Astronomical Unit scale is crucial. This has become possible with near infrared instruments on the VLTi. We are carrying out the first Large Program survey of HAeBe stars with statistics on the geometry of these objects at the first astronomical unit scale and the first images of the very close environment of some of them. We have developed a new numerical method specific to young stellar objects which removes the stellar component reconstructing an image of the environment only. To do so we are using the differences in the spectral behaviour between the star and its environment. The images reveal the environement which is not polluted by the star and allow us to derive the best fit for the flux ratio and the spectral slope between the two components (stellar and environmental). We present the results of the survey with some statistics and the frist images of Herbig stars made by PIONIER on the VLTi.

  12. Spectrographs for astrophotonics.

    PubMed

    Blind, N; Le Coarer, E; Kern, P; Gousset, S

    2017-10-30

    The next generation of extremely large telescopes (ELT), with diameters up to 39 meters, is planned to begin operation in the next decade and promises new challenges in the development of instruments since the instrument size increases in proportion to the telescope diameter D, and the cost as D 2 or faster. The growing field of astrophotonics (the use of photonic technologies in astronomy) could solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. Astrophotonics allows for a broad range of new optical functions, with applications ranging from sky background filtering, high spatial and spectral resolution imaging and spectroscopy. In this paper, we want to provide astronomers with valuable keys to understand how photonics solutions can be implemented (or not) according to the foreseen applications. The paper introduces first key concepts linked to the characteristics of photonics technologies, placed in the framework of astronomy and spectroscopy. We then describe a series of merit criteria that help us determine the potential of a given micro-spectrograph technology for astronomy applications, and then take an inventory of the recent developments in integrated micro-spectrographs with potential for astronomy. We finally compare their performance, to finally draw a map of typical science requirements and pin the identified integrated technologies on it. We finally emphasize the necessary developments that must support micro-spectrograph in the coming years.

  13. A Handbook of Descriptive and Practical Astronomy

    NASA Astrophysics Data System (ADS)

    Chambers, George Frederick

    2010-06-01

    Book I. A Sketch of the Solar System: 1. The sun; 2. The planets; 3. Vulcan; 4. Mercury; 5. Venus; 6. The earth; 7. The moon; 8. Mars; 9. The minor planets; 10. Jupiter; 11. Saturn; 12. Uranus; 13. Neptune; Book II. Eclipses and their Associated Phenomena: 1. General outlines; 2. Eclipses of the sun; 3. The total eclipse of the sun of July 28, 1851; 4. The annular eclipse of the sun of March 14-15, 1858; 5. The total eclipse of the sun of July 18, 1860; 6. Historical notices; 7. Eclipses of the moon; 8. Suggestions for observing annular eclipses of the sun; 9. Transits of the inferior planets; 10. Occultations; Book III. The Tides: 1. Introduction; 2. Local disturbing influences; Book IV. Miscellaneous Astronomical Phenomena: 1. Variation in the obliquity of the ecliptic; 2. Aberration; 3. Refraction; Book V. Comets: 1. General remarks; 2. Periodic comets; 3. Remarkable comets; 4. Cometary statistics; 5. Historical notices; Book VI. Chronological Astronomy: 1. What time is; 2. Hours; 3. Means of measuring time; 4. The Dominical or Sunday letter; 5. Tables for the conversion of time; Book VII. The Starry Heavens: 1. The Pole-Star; 2. Double stars; 3. Variable stars; 4. Clusters and nebulae; 5. The Milky Way; 6. The constellations; Book VIII. Astronomical Instruments: 1. Telescopes; 2. Telescope stands; 3. The equatorial; 4. The transit instrument; 5. Other astronomical instruments; 6. History of the telescope; Book IX. A Sketch of the History of Astronomy; Book X. Meteoric Astronomy: 1. Classification of the subject; 2. The origin of aërolites; 3. Shooting stars; Appendices; Index.

  14. Stardial -- an autonomous astronomical camera on the WWW

    NASA Astrophysics Data System (ADS)

    McCullough, P. R.; Thakkar, U.

    1997-05-01

    The use of an autonomous electronic camera, called ``Stardial,'' for undergraduate instruction is described. Stardial delivers images of the night sky nearly in real-time to the world wide web (www.astro.uiuc.edu/stardial/). The remote instrumentation of Stardial is robust, inexpensive, and accomodates many students asynchronously with respect to the instructor(s). The guiding philosophy of the curriculum is to provide students with authentic astronomical data so that they may learn about science by doing it themselves on the internet. Students respond favorably to the opportunity to learn from their own experiences with genuine data, complete with its irregularities and its surprises. Perhaps surprisingly, 9 of 10 self-selected student volunteers in our pilot project were female. Stardial's instrumentation is similar to that of Gaustad et al., and to that of Richmond, Droege, et al. (both at this same meeting). Stardial has benefitted from contributions from students, especially Lawrence Tan, Troy Klyber, Jim Pulokas, Jim Waldemer, and Diana Lopez, and from a number of professionals, especially G.T. Becker, Mike Newberry, John Dolby, Tom Droege, Bob Mutel, Mike Richmond, John Thorstensen, and Rick White. Stardial is funded by the University of Illinois, primarily from the office of the Vice President for Academic Affairs. We welcome participation from amateur astronomers and other educators.

  15. A Binary Offset Effect in CCD Readout and Its Impact on Astronomical Data

    NASA Astrophysics Data System (ADS)

    Boone, K.; Aldering, G.; Copin, Y.; Dixon, S.; Domagalski, R. S.; Gangler, E.; Pecontal, E.; Perlmutter, S.

    2018-06-01

    We have discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications. An offset in the digitization of the CCD output voltage that depends on the binary encoding of one pixel is added to pixels that are read out one, two, and/or three pixels later. One result of this effect is the introduction of a differential offset in the background when comparing regions with and without flux from science targets. Conventional data reduction methods do not correct for this offset. We find this effect in 16 of 22 instruments investigated, covering a variety of telescopes and many different front-end electronics systems. The affected instruments include LRIS and DEIMOS on the Keck telescopes, WFC3 UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. The amplitude of the introduced offset is up to 4.5 ADU per pixel, and it is not directly proportional to the measured ADU level. We have developed a model that can be used to detect this “binary offset effect” in data, and correct for it. Understanding how data are affected and applying a correction for the effect is essential for precise astronomical measurements.

  16. The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Whitworth, C.; Clavier, D.; Owen, L.; Barker, T.

    2012-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 7 funded students participated in 2011. Mentors for the interns include PARI's Science, Education, and Information Technology Directors and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.

  17. The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Cline, J.; Whitworth, C.; Clavier, D.

    2011-01-01

    Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 9 funded students participated in 2010. Mentors for the interns include PARI's Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and applets for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.

  18. Photogenic Venus. The "cinematographic turn" and its alternatives in nineteenth-century France

    NASA Astrophysics Data System (ADS)

    Canales, Jimena

    2002-12-01

    During the late nineteenth century, scientists around the world disagreed as to the types of instruments and methods that should be used for determining the most important constant of celestial mechanics: the solar parallax. Venus's 1874 transit across the sun was seen as the best opportunity for ending decades of debate. However, a mysterious "black drop" that appeared between Venus and the sun and individual differences in observations of the phenomenon brought traditional methods into disrepute. To combat these difficulties, the astronomer Jules Janssen devised a controversial new instrument, the "photographic revolver", that photographed Venus at regular intervals. Another solution came from physicists, who rivaled the astronomers' dominance in precision measurements by deducing the solar parallax from physical measurements of the speed of light. Yet other astronomers relied on drawings and well-trained observers. The new space emerging from this debate was characterized by a decline in faith in (nonstandardized, nonreproducible) photography and in (pure) geometry and by the growing realization of the importance of alternative elements needed for establishing scientific truths: power and authority, skill and discipline, standardization, mechanical reproducibility, and theoreticality. By examining the "cinematographic turn" in science and its alternatives, this essay brings to light unexplored multi-disciplinary connections that contribute to the histories of psychology, philosophy, physics, and film studies.

  19. THz Spectroscopy and Spectroscopic Database for Astrophysics

    NASA Technical Reports Server (NTRS)

    Pearson, John C.; Drouin, Brian J.

    2006-01-01

    Molecule specific astronomical observations rely on precisely determined laboratory molecular data for interpretation. The Herschel Heterodyne Instrument for Far Infrared, a suite of SOFIA instruments, and ALMA are each well placed to expose the limitations of available molecular physics data and spectral line catalogs. Herschel and SOFIA will observe in high spectral resolution over the entire far infrared range. Accurate data to previously unimagined frequencies including infrared ro-vibrational and ro-torsional bands will be required for interpretation of the observations. Planned ALMA observations with a very small beam will reveal weaker emission features requiring accurate knowledge of higher quantum numbers and additional vibrational states. Historically, laboratory spectroscopy has been at the front of submillimeter technology development, but now astronomical receivers have an enormous capability advantage. Additionally, rotational spectroscopy is a relatively mature field attracting little interest from students and funding agencies. Molecular database maintenance is tedious and difficult to justify as research. This severely limits funding opportunities even though data bases require the same level of expertise as research. We report the application of some relatively new receiver technology into a simple solid state THz spectrometer that has the performance required to collect the laboratory data required by astronomical observations. Further detail on the lack of preparation for upcoming missions by the JPL spectral line catalog is given.

  20. THz Spectroscopy and Spectroscopic Database for Astrophysics

    NASA Technical Reports Server (NTRS)

    Pearson, John C.; Drouin, Brian J.

    2006-01-01

    Molecule specific astronomical observations rely on precisely determined laboratory molecular data for interpretation. The Herschel Heterodyne Instrument for Far Infrared, a suite of SOFIA instruments, and ALMA are each well placed to expose the limitations of available molecular physics data and spectral line catalogs. Herschel and SOFIA will observe in high spectral resolution over the entire far infrared range. Accurate data to previously unimagined frequencies including infrared ro-vibrational and ro-torsional bands will be required for interpretation of the observations. Planned ALMA observations with a very small beam will reveal weaker emission features requiring accurate knowledge of higher quantum numbers and additional vibrational states. Historically, laboratory spectroscopy has been at the front of submillimeter technology development, but now astronomical receivers have an enormous capability advantage. Additionally, rotational spectroscopy is a relatively mature field attracting little interest from students and funding agencies. Molecular data base maintenance is tedious and difficult to justify as research. This severely limits funding opportunities even though data bases require the same level of expertise as research. We report the application of some relatively new receiver technology into a simple solid state THz spectrometer that has the performance required to collect the laboratory data required by astronomical observations. Further detail on the lack of preparation for upcoming missions by the JPL spectral line catalog is given.

  1. Fast multichannel astronomical photometer based on silicon photo multipliers mounted at the Telescopio Nazionale Galileo

    NASA Astrophysics Data System (ADS)

    Ambrosino, Filippo; Meddi, Franco; Rossi, Corinne; Sclavi, Silvia; Nesci, Roberto; Bruni, Ivan; Ghedina, Adriano; Riverol, Luis; Di Fabrizio, Luca

    2014-07-01

    The realization of low-cost instruments with high technical performance is a goal that deserves efforts in an epoch of fast technological developments. Such instruments can be easily reproduced and therefore allow new research programs to be opened in several observatories. We realized a fast optical photometer based on the SiPM (Silicon Photo Multiplier) technology, using commercially available modules. Using low-cost components, we developed a custom electronic chain to extract the signal produced by a commercial MPPC (Multi Pixel Photon Counter) module produced by Hamamatsu Photonics to obtain sub-millisecond sampling of the light curve of astronomical sources (typically pulsars). We built a compact mechanical interface to mount the MPPC at the focal plane of the TNG (Telescopio Nazionale Galileo), using the space available for the slits of the LRS (Low Resolution Spectrograph). On February 2014 we observed the Crab pulsar with the TNG with our prototype photometer, deriving its period and the shape of its light curve, in very good agreement with the results obtained in the past with other much more expensive instruments. After the successful run at the telescope we describe here the lessons learned and the ideas that burst to optimize this instrument and make it more versatile.

  2. Measurement of duration and signal-to-noise ratio of astronomical transients using a Spectral Kurtosis spectrometer

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Gary, Dale E.

    2016-08-01

    Following our prior theoretical and instrumental work addressing the problem of automatic real-time radio frequency interference (RFI) detection and excision from astronomical signals, the wideband Spectral Kurtosis (SK) spectrometer design we proposed is currently being considered as an alternative to the traditional spectrometers when building the new generation of radio instruments. The unique characteristic of an SK spectrometer is that it accumulates both power and power-squared, which are then used to compute an SK statistical estimator proven to be very effective in detecting and excising certain types of RFI signals. In this paper we introduce a novel measurement technique that exploits the power and power square statistics of an SK spectrometer to determine durations and signal-to-noise ratios of transient signals, whether they are RFI or natural signals, even when they are below the time resolution of the instrument. We demonstrate this novel experimental technique by analyzing a segment of data recorded by the Expanded Owens Valley Solar Array Subsystem Testbed (EST) during a solar radio burst in which microwave spike bursts occurred with durations shorter than the 20 ms time resolution of the instrument. The duration of one well-observed spike is quantitatively shown to be within a few percent of 8 ms despite the 20 ms resolution of the data.

  3. Easily cracked: scientific instruments in states of disrepair.

    PubMed

    Schaffer, Simon

    2011-12-01

    There has been much scholarly attention to definitions of the term "scientific instrument." Rather more mundane work by makers, curators, and users is devoted to instruments' maintenance and repair. A familiar argument holds that when a tool breaks, its character and recalcitrance become evident. Much can be gained from historical study of instruments' breakages, defects, and recuperation. Maintenance and repair technologies have been a vital aspect of relations between makers and other users. Their history illuminates systems of instruction, support, and abuse. These systems were, for example, evident in the development of astronomical instruments around 1800 within and beyond the European sphere. Episodes from that milieu are used to explore how instrument users sought autonomy, how instruments' mutable character was defined, and how judgments of instruments' failure or success were ever secured.

  4. Covering Jupiter from Earth and Space

    NASA Image and Video Library

    2011-08-03

    Ground-based astronomers will be playing a vital role in NASA Juno mission. Images from the amateur astronomy community are needed to help the JunoCam instrument team predict what features will be visible when the camera images are taken.

  5. The Ninth-Century Renaissance in Astronomy.

    ERIC Educational Resources Information Center

    Farrell, Charlotte

    1996-01-01

    Discusses the events in the ninth century that moved astronomy away from the pursuit of mystical hermetic sciences and astrology back toward observation and measurement. Describes the achievements of astronomers and the instruments and calculations used during that period. (JRH)

  6. Astroinformatics, data mining and the future of astronomical research

    NASA Astrophysics Data System (ADS)

    Brescia, Massimo; Longo, Giuseppe

    2013-08-01

    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies.

  7. A star-and-sky chopping polarimeter - Design and performance

    NASA Astrophysics Data System (ADS)

    Jain, S. K.; Srinivasulu, G.

    1991-09-01

    A star-and-sky chopping polarimeter is developed for accurate measurements of linear polarization of starlight in the standard astronomical photometric U, B, V, R, and I bands. The instrumental polarization, as determined by observing the standard unpolarized stars, is 0.04 percent. It is possible to use the instrument for the measurements of circular polarization as well. A Unicorn microcomputer controls the various operations of the instrument, acquires the data, and does the on-line data reduction. This paper describes the design and performance of the polarimeter.

  8. The Calar Alto Observatory: current status and future instrumentation

    NASA Astrophysics Data System (ADS)

    Barrado, D.; Thiele, U.; Aceituno, J.; Pedraz, S.; Sánchez, S. F.; Aguirre, A.; Alises, M.; Bergond, G.; Galadí, D.; Guijarro, A.; Hoyo, F.; Mast, D.; Montoya, L.; Sengupta, Ch.; de Guindos, E.; Solano, E.

    2011-11-01

    The Calar Alto Observatory, located at 2168 m height above the sea level in continental Europe, holds a significant number of astronomical telescopes and experiments, covering a large range of the electromagnetic domain, from gamma-ray to near-infrared. It is a very well characterized site, with excellent logistics. Its main telescopes includes a large suite of instruments. At the present time, new instruments, namely CAFE, PANIC and Carmenes, are under development. We are also planning a new operational scheme in order to optimize the observatory resources.

  9. Formation Flying and Deformable Instruments

    NASA Astrophysics Data System (ADS)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  10. 20th National Solar Physics Meeting

    NASA Astrophysics Data System (ADS)

    Dorotovic, Ivan

    2010-12-01

    These proceedings (ISBN: 978-80-85221-68-8) provide an overview of current research on solar physics, geophysics and space weather in the astronomical, geophysical and space physics institutions in the Slovak Republic and the Czech Republic. Several researchers from other countries participated in the meeting as well. The different parts address: solar interior, solar photosphere, chromosphere, corona, total solar eclipses, space weather, instrumentation. Most of the papers are published in Slovak and Czech, respectively. The proceedings are intended for researchers, graduate and PhD. students, workers of astronomical observatories interested in solar physics, geophysics and space weather.

  11. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  12. “MODAL NOISE” IN SINGLE-MODE FIBERS: A CAUTIONARY NOTE FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath

    2015-12-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes.more » Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.« less

  13. Progress on the New York State Observatory: a new 12-meter astronomical telescope

    NASA Astrophysics Data System (ADS)

    Sebring, T.; O'Dea, C.; Baum, S.; Teran, J.; Loewen, N.; Stutzki, C.; Egerman, R.; Bonomi, G.

    2014-07-01

    Over the past two years, the New York Astronomical Corporation (NYAC), the business arm of the Astronomical Society of New York (ASNY), has continued planning and technical studies toward construction of a 12-meter class optical telescope for the use of all New York universities and research institutions. Four significant technical studies have been performed investigating design opportunities for the facility, the dome, the telescope optics, and the telescope mount. The studies were funded by NYAC and performed by companies who have provided these subsystems for large astronomical telescopes in the past. In each case, innovative and cost effective approaches were identified, developed, analyzed, and initial cost estimates developed. As a group, the studies show promise that this telescope could be built at historically low prices. As the project continues forward, NYAC intends to broaden the collaboration, pursue funding, to continue to develop the telescope and instrument designs, and to further define the scientific mission. The vision of a historically large telescope dedicated to all New York institutions continues to grow and find new adherents.

  14. The extreme ultraviolet spectrograph: A radial groove grating, sounding rocket-borne, astronomical instrument

    NASA Technical Reports Server (NTRS)

    Wilkinson, Erik; Green, James C.; Cash, Webster

    1993-01-01

    The design, calibration, and sounding rocket flight performance of a novel spectrograph suitable for moderate-resolution EUV spectroscopy are presented. The sounding rocket-borne instrument uses a radial groove grating to maintain a high system efficiency while controlling the aberrations induced when doing spectroscopy in a converging beam. The instrument has a resolution of approximately 2 A across the 200-330 A bandpass with an average effective area of 2 sq cm. The instrument, called the Extreme Ultraviolet Spectrograph, acquired the first EUV spectra in this wavelength region of the hot white dwarf G191-B2B and the late-type star Capella.

  15. Generic control software connecting astronomical instruments to the reflective memory data recording system of VLTI - bossvlti

    NASA Astrophysics Data System (ADS)

    Pozna, E.; Ramirez, A.; Mérand, A.; Mueller, A.; Abuter, R.; Frahm, R.; Morel, S.; Schmid, C.; Duc, T. Phan; Delplancke-Ströbele, F.

    2014-07-01

    The quality of data obtained by VLTI instruments may be refined by analyzing the continuous data supplied by the Reflective Memory Network (RMN). Based on 5 years experience providing VLTI instruments (PACMAN, AMBER, MIDI) with RMN data, the procedure has been generalized to make the synchronization with observation trouble-free. The present software interface saves not only months of efforts for each instrument but also provides the benefits of software frameworks. Recent applications (GRAVITY, MATISSE) supply feedback for the software to evolve. The paper highlights the way common features been identified to be able to offer reusable code in due course.

  16. Instrumental images: the visual rhetoric of self-presentation in Hevelius's Machina Coelestis.

    PubMed

    Vertesi, Janet

    2010-06-01

    This article places the famous images of Johannes Hevelius's instruments in his Machina Coelestis (1673) in the context of Hevelius's contested cometary observations and his debate with Hooke over telescopic sights. Seen thus, the images promote a crafted vision of Hevelius's astronomical practice and skills, constituting a careful self-presentation to his distant professional network and a claim as to which instrumental techniques guarantee accurate observations. Reviewing the reception of the images, the article explores how visual rhetoric may be invoked and challenged in the context of controversy, and suggests renewed analytical attention to the role of laboratory imagery in instrumental cultures in the history of science.

  17. Jesse Ramsden: the craftsman who believed that big was beautiful

    NASA Astrophysics Data System (ADS)

    McConnell, A.

    2013-03-01

    Ramsden was renowned for the design, craftsmanship and accuracy of his larger instruments, and for his workforce of up to fifty people, unusual in the scientific instrument workshops of his day. The workshop also produced a variety of lesser instruments. Following in the footsteps of Jonathan Sisson and John Bird, he built up an enduring reputation for design and precision of manufacture. Ramsden's own business archive does not survive, but correspondence with his various customers and letters between third parties illuminate his working life. These documents also reveal that there were several major astronomical instruments for which he accepted commissions but failed to deliver.

  18. Astronomy, New Instrumentation, and the News Media

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    2001-01-01

    The early work of Bob Tull who invented a photoelectric spectral scanner comprised a crucial phase in the development of astronomical instrumentation. The relationship between the academic astronomy/astrophysics community and journalists has been in flux since the early 1960s. Scientists should recognize that they rely on the press to disseminate scientific information. Public citizens and policy makers are interested in the pursuits of scientific research for which taxes and other public monies are used.

  19. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700-1200 GHz frequency range.

  20. SpecViz: Interactive Spectral Data Analysis

    NASA Astrophysics Data System (ADS)

    Earl, Nicholas Michael; STScI

    2016-06-01

    The astronomical community is about to enter a new generation of scientific enterprise. With next-generation instrumentation and advanced capabilities, the need has arisen to equip astronomers with the necessary tools to deal with large, multi-faceted data. The Space Telescope Science Institute has initiated a data analysis forum for the creation, development, and maintenance of software tools for the interpretation of these new data sets. SpecViz is a spectral 1-D interactive visualization and analysis application built with Python in an open source development environment. A user-friendly GUI allows for a fast, interactive approach to spectral analysis. SpecViz supports handling of unique and instrument-specific data, incorporation of advanced spectral unit handling and conversions in a flexible, high-performance interactive plotting environment. Active spectral feature analysis is possible through interactive measurement and statistical tools. It can be used to build wide-band SEDs, with the capability of combining or overplotting data products from various instruments. SpecViz sports advanced toolsets for filtering and detrending spectral lines; identifying, isolating, and manipulating spectral features; as well as utilizing spectral templates for renormalizing data in an interactive way. SpecViz also includes a flexible model fitting toolset that allows for multi-component models, as well as custom models, to be used with various fitting and decomposition routines. SpecViz also features robust extension via custom data loaders and connection to the central communication system underneath the interface for more advanced control. Incorporation with Jupyter notebooks via connection with the active iPython kernel allows for SpecViz to be used in addition to a user’s normal workflow without demanding the user drastically alter their method of data analysis. In addition, SpecViz allows the interactive analysis of multi-object spectroscopy in the same straight-forward, consistent way. Through the development of such tools, STScI hopes to unify astronomical data analysis software for JWST and other instruments, allowing for efficient, reliable, and consistent scientific results.

  1. Astronomy from the Moon: A New Frontier for 21st Century Astrophysics

    NASA Astrophysics Data System (ADS)

    Durst, Steve

    2018-06-01

    The International Lunar Observatory Association of Hawai'i USA continues into its second decade with research and development of South Pole instruments for astronomy, observation and communication from the Moon. Since the pioneering first astronomy observations from the Moon by Apollo 16 Commander John Young (an ILOA founding-emeritus director until his recent passing), with China Lunar Ultraviolet Telescope LUT operations and current American and European considerations for far-side radio telescopes, today's climate is most promising for a diversity of lunar-based astronomy locations, instruments and technologies. ILOA is aiming to advance this frontier through its Galaxy First Light Imaging program, being developed through contracts with Moon Express and Canadensys Aerospace Corp.A wide variety of extreme and unique lunar conditions enable many astronomy activities and installations, on the Moon's near-side, far-side, north pole, and south pole: The extremely thin lunar exosphere favors observations in millimeter / submillimeter to optical, UV, X-ray, and gamma-ray wavelengths; the highly stable platform that is the Moon provides for long-duration observations; ultra cold, shaded areas for cryogenic infrared instruments; far-side radio-quiet environment for radio telescopes and VLF astronomy; 1/6-Earth gravity for production and utilization of new, very lightweight materials and instruments, including large refractors, 100-m class liquid mirror telescopes, and possibly 1,000-m class radio telescopes and interferometer antenna arrays vastly larger than Atacama LMA; North and especially South Pole sites, with high peaks and long solar power windows, offer perhaps the widest variety of lunar conditions and opportunities for astronomical innovation on the Moon: a veritable "condominium of observatories".21st century astrophysics seems likely to find Luna a very busy and productive new frontier, as American Astronomical Society and IAU members will validate, with astronomers providing rationale and direction for lunar outpost build-out, while offering Galaxy / Cosmos perspective on the human advance towards a multi world civilization.

  2. Double Engine for a Nebula

    NASA Astrophysics Data System (ADS)

    2009-08-01

    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations, from the panoramic WFI image to the fine detail of the VLTI observations, corresponds to a zoom-in factor of 60 000 between the two extremes. The astronomers found that HD 87643 has a companion located at about 50 times the Earth-Sun distance and is embedded in a compact dust shell. The two stars probably orbit each other in a period between 20 and 50 years. A dusty disc may also be surrounding the two stars. The presence of the companion could be an explanation for the regular ejection of matter from the star and the formation of the nebula: as the companion moves on a highly elliptical orbit, it would regularly come very close to HD 87643, triggering an ejection. Notes [1]: B[e] stars are stars of spectral type B, with emission lines in their spectra, hence the "e". They are surrounded by a large amount of dust. More information The work on HD 87643 has been published in a paper to appear in Astronomy and Astrophysics: A binary engine fueling HD 87643's complex circumstellar environment using AMBER/VLTI imaging, by F. Millour et al. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  3. MARXS: A Modular Software to Ray-trace X-Ray Instrumentation

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam

    2017-12-01

    To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.

  4. Future Sky Surveys: New Discovery Frontiers

    NASA Astrophysics Data System (ADS)

    Tyson, J. Anthony; Borne, Kirk D.

    2012-03-01

    Driven by the availability of new instrumentation, there has been an evolution in astronomical science toward comprehensive investigations of new phenomena. Major advances in our understanding of the Universe over the history of astronomy have often arisen from dramatic improvements in our capability to observe the sky to greater depth, in previously unexplored wavebands, with higher precision, or with improved spatial, spectral, or temporal resolution. Substantial progress in the important scientific problems of the next decade (determining the nature of dark energy and dark matter, studying the evolution of galaxies and the structure of our own Milky Way, opening up the time domain to discover faint variable objects, and mapping both the inner and outer Solar System) can be achieved through the application of advanced data mining methods and machine learning algorithms operating on the numerous large astronomical databases that will be generated from a variety of revolutionary future sky surveys. Over the next decade, astronomy will irrevocably enter the era of big surveys and of really big telescopes. New sky surveys (some of which will produce petabyte-scale data collections) will begin their operations, and one or more very large telescopes (ELTs = Extremely Large Telescopes) will enter the construction phase. These programs and facilities will generate a remarkable wealth of data of high complexity, endowed with enormous scientific knowledge discovery potential. New parameter spaces will be opened, in multiple wavelength domains as well as the time domain, across wide areas of the sky, and down to unprecedented faint source flux limits. The synergies of grand facilities, massive data collections, and advanced machine learning algorithms will come together to enable discoveries within most areas of astronomical science, including Solar System, exo-planets, star formation, stellar populations, stellar death, galaxy assembly, galaxy evolution, quasar evolution, and cosmology. Current and future sky surveys, comprising an alphabet soup of project names (e.g., Pan- STARRS, WISE, Kepler, DES, VST, VISTA, GAIA, EUCLID, SKA, LSST, and WFIRST; some of which are discussed in Chapters 17, 18, and 20),will contribute to the exponential explosion of complex data in astronomy. The scientific goals of these projects are as monumental as the programs themselves. The core scientific output of all of these will be their scientific data collection. Consequently, data mining and machine learning algorithms and specialists will become a common component of future astronomical research with these facilities. This synergistic combination and collaboration among multiple disciplines are essential in order to maximize the scientific discovery potential, the science output, the research efficiency, and the success of these projects.

  5. EMCCD calibration for astronomical imaging: Wide FastCam at the Telescopio Carlos Sánchez

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Oscoz, A.; López, R. L.; Puga, M.; Pérez-Garrido, A.; Pallé, E.; Ricci, D.; Ayuso, I.; Hernández-Sánchez, M.; Vázquez-Martín, S.; Protasio, C.; Béjar, V.; Truant, N.

    2017-03-01

    The evident benefits of Electron Multiplying CCDs (EMCCDs) -speed, high sensitivity, low noise and their capability of detecting single photon events whilst maintaining high quantum efficiency- are bringing these kinds of detectors to many state-of-the-art astronomical instruments (Velasco et al. 2016; Oscoz et al. 2008). The EMCCDs are the perfect answer to the need for great sensitivity levels as they are not limited by the readout noise of the output amplifier, while conventional CCDs are, even when operated at high readout frame rates. Here we present a quantitative on-sky method to calibrate EMCCD detectors dedicated to astronomical imaging, developed during the commissioning process (Velasco et al. 2016) and first observations (Ricci et al. 2016, in prep.) with Wide FastCam (Marga et al. 2014) at Telescopio Carlos Sánchez (TCS) in the Observatorio del Teide.

  6. The Development of Astronomy and Emergence of Astrophysics in Thailand

    NASA Astrophysics Data System (ADS)

    Soonthornthum, Boonrucksar

    Astronomy was introduced to Siam (present-day Thailand) over 300 years ago during the reign of King Narai, the Great. The first astronomical observatory was built in Loburi province by French missionary-astronomers and various astronomical instruments were brought to Siam at that time. After King Narai died, astronomy was neglected for over 180 years until the reign of King Rama IV when astronomy became more popular. Members of the Royal Family, King Rama IV in particular, were very interested in astronomy and hence became patrons of modern astronomy in Siam. King Rama IV himself made a precise calculation of the time and location of a total solar eclipse which could be observed from Siam on 18 August 1868. However, modern astronomy in Siam did not evolve rapidly at this time, due in part to the slow development of the educational system.

  7. Kharkiv Meteor Radar System (the XX Age)

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2012-09-01

    Kharkiv meteor radar research are of historic value (Kolomiyets and Sidorov 2007). Kharkiv radar observations of meteors proved internationally as the best in the world, it was noted at the IAU General Assembly in 1958. In the 1970s Kharkiv meteor automated radar system (MARS) was recommended at the international level as a successful prototype for wide distribution. Until now, this radar system is one of the most sensitive instruments of meteor radars in the world for astronomical observations. In 2004 Kharkiv meteor radar system is included in the list of objects which compose the national property of Ukraine. Kharkiv meteor radar system has acquired the status of the important historical astronomical instrument in world history. Meteor Centre for researching meteors in Kharkiv is a analogue of the observatory and performs the same functions of a generator and a battery of special knowledge and skills (the world-famous studio). Kharkiv and the location of the instrument were brand points on the globe, as the place where the world-class meteor radar studies were carried out. They are inscribed in the history of meteor astronomy, in large letters and should be immortalized on a world-wide level.

  8. A New Astronomical Facility for Peru: Converting a Telecommunication's 32 Meter Parabolic Antenna into a Radio Telescope

    NASA Astrophysics Data System (ADS)

    Ishitsuka, J. K.; Ishitsuka, M.; Inoue, M.; Kaifu, N.; Miyama, S.; Tsuboi, M.; Ohishi, M.; Fujisawa, K.; Kasuga, T.; Kondo, T.; Horiuchi, S.; Umemoto, T.; Miyoshi, M.; Miyazawa, K.; Bushimata, T.; Vidal, E. D.

    2006-08-01

    In 1984 Nippon Electric Company constructed an INTELSAT antenna at 3,370 meters above the sea level on the Peruvian Andes. Entel Peru, the Peruvian telecommunications company, managed the antenna station until 1993. This year the government transferred the station to a private telecommunications company, Telefónica del Peru. Since the satellite communications were rapidly replaced by transoceanic fiber optics, the beautiful 32 meters parabolic antenna has been unused since 2002.. In cooperation with the National Astronomical Observatory of Japan we began to convert the antenna into a radio telescope. Because researches on interstellar medium around Young Stellar Objects (YSO) will be able to observe the methanol masers that emit at 6.7 GHz, initially we will monitor the 6.7 GHz methanol masers and survey the southern sky. An ambient temperature receiver with Trx= 60 K was developed at Nobeyama Radio Observatory and is ready to be installed. The antenna control system is the Field System FS9 software installed in a Linux PC. An interface between the antenna and the PC was developed at Kashima Space Research Center in Japan. In the near future we plan to install the 2 GHz, 8 GHz, 12 GHz and 22 GHz receivers. The unique location and altitude of the Peruvian Radio Observatory will be useful for VLBI observations in collaboration with global arrays such as the VLBA array for astronomical observation and geodetic measurements. For Peru where few or almost no astronomical observational instruments are available for research, the implementation of the first radio observatory is a big and challenging step, and foster sciences at graduate and postgraduate levels of universities. Worldwide telecommunications antennas possibly are unused and with relative few investment could be transformed into a useful observational instrument.

  9. Obituary: Richard Joseph Elston, 1960-2004

    NASA Astrophysics Data System (ADS)

    Jannuzi, Buell Tomasson; Bechtold, Jill

    2004-12-01

    Richard Joseph Elston, known for his development of innovative astronomical instrumentation, died on 26 January 2004 in Gainesville, Florida, after a four-year battle with Hodgkin's lymphoma. A professor of astronomy at the University of Florida, Richard had an unusually broad range of interests and skills, and a willingness to share his passion for astronomy with others, which made him a highly valued member of the astronomical community. Born 1 July 1960, in Albuquerque, New Mexico, Richard was the son of a geologist father and journalist mother. His childhood interest in astronomy and instrumentation matured as he majored in physics and astronomy at the University of New Mexico (BS, 1983) under the mentorship of Michael Zeilik. Richard pursued his PhD in astronomy at the University of Arizona and earned his degree in 1988. He pioneered the use of IR arrays for deep imaging surveys of the sky to study galaxy formation, and completed his thesis Search for Rapidly Forming Galaxies at High Redshift under the direction of George Rieke. Richard's graduate work included the first detection of galaxies at intermediate redshifts with evolved populations too red to have been identifiable from optical imaging surveys alone. In the Astrophysical Journal Letters in 1988, he, George Rieke, and Marcia Rieke reported the discovery of this new class of galaxies, now known as EROs (Extremely Red Objects), important as the possible progenitors of present day elliptical galaxies. Following post-doctoral positions at Kitt Peak National Observatory from 1988 to 1991 and at the Observatories of the Carnegie Institution of Washington from 1991 to 1992, Richard joined the scientific staff of Cerro Tololo Inter-American Observatory in Chile, part of the NSF's National Optical Astronomy Observatory. By 1994, he had become head of CTIO's IR instrumentation program and was leading the development of new instruments for the US astronomical community. In 1996, Richard married astronomer Elizabeth Lada, and both joined the faculty of the University of Florida. They worked closely together and with their colleagues to develop the department into a leading center for astronomical research. Richard assembled a strong near-IR instrument team whose most recently completed instrument was FLAMINGOS, the FLoridA Multi-object Imaging Near-IR Grism Observational Spectrometer. FLAMINGOS serves as both a wide-field IR imager and multi-object spectrograph. Successfully used at the 6.5-m MMT Observatory, 8-m Gemini South telescope, and KPNO 2.1-m and Mayall 4-m telescopes, FLAMINGOS allows scientists to complete observations in one night that would previously have required 100 nights. FLAMINGOS is the primary instrument for several major survey programs that are studying topics ranging from how individual stars and planets form to how the largest structures in the Universe evolve. One of Richard's innovations with FLAMINGOS was the use of a separate "pre-dewar" that maintains at cryogenic temperatures the multi-slit masks required to select the targets for observation, but can be thermally cycled more quickly than the entire instrument. This feature allows the changing of masks on a nightly basis. New instruments having the innovations pioneered with FLAMINGOS are under construction and are to be used at several of the world's largest telescopes in the decades ahead. Richard was involved in getting both the University of Florida and the U.S. astronomical community on the path toward larger telescope facilities. He played a crucial role in the University of Florida's joining the team building the10.4-m Grand Telescope of the Canary Islands. As a member of the panel that studied optical/near-IR astronomy from the ground for the most recent (2000) National Academies decadal review of astronomy, Richard was a passionate advocate for open access to the next large (30-m class) telescope to be built. The final report included a recommendation for a public role in such a telescope. Richard's work as a researcher and educator was recognized in 2000, when he was named a recipient of the Presidential Early Career Awards for Scientists and Engineers. With the birth of his son, Joseph, in 1999, Richard's life reached an important milestone. During his battle with cancer, Richard awed everyone with his ability to be productive professionally and still be so devoted to his family. He and his son shared a love for the outdoors and adventure. Richard was an expert SCUBA instructor, skier, hiker, wind surfer, airplane pilot, and sailor. Joseph is already a "proto-naturalist." Richard will be best remembered as a wonderful father, beloved husband, loving brother, son, uncle, friend and inspiration to all whose lives he touched. Reprinted with permission from Physics Today, Vol. 57, No.7, pp. 76-77. Copyright 2004, American Institute of Physics.

  10. Gascoigne, William (1621-44)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    English astronomer and instrument-maker, died on the battlefield of Marston Moor, Yorkshire. Invented the eyepiece micrometer, using a screw to measure the distance between two wires inside the eyepiece, so as to measure small angles with precision, and made telescopes, including one with two convex lenses....

  11. Fish-Eye Observing with Phased Array Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Wijnholds, S. J.

    The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototype show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.

  12. Fully optimized shaped pupils: preparation for a test at the Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Carlotti, Alexis; Kasdin, N. Jeremy; Martinache, Frantz; Vanderbei, Robert J.; Young, Elizabeth J.; Che, George; Groff, Tyler D.; Guyon, Olivier

    2012-09-01

    The SCExAO instrument at the Subaru telescope, mainly based on a PIAA coronagraph can benefit from the addition of a robust and simple shaped pupil coronagraph. New shaped pupils, fully optimized in 2 dimensions, make it possible to design optimal apodizers for arbitrarily complex apertures, for instance on-axis telescopes such as the Subaru telescope. We have designed several masks with inner working angles as small as 2.5 λ / D, and for high-contrast regions with different shapes. Using Princeton University nanofabrication facilities, we have manufactured two masks by photolithography. These masks have been tested in the laboratory, both in Princeton and in the facilities of the National Astronomical Observatory of Japan (NAOJ) in Hilo. The goal of this work is to prepare tests on the sky of a shaped pupil coronagraph in 2012.

  13. Continent-Spanning Radio Telescope Blazes Trails At the Frontiers of Astrophysics

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The supersharp radio "vision" of the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) is revealing unprecedented details of astronomical objects from stars in our own cosmic neighborhood to galaxies billions of light-years away. Astronomers from across North America and beyond are presenting the results of VLBA research at the American Astronomical Society's (AAS) meeting in Chicago. "The VLBA is one of the most powerful tools in the world for astronomy," said Paul Vanden Bout, Director of the National Radio Astronomy Observatory (NRAO), which operates the VLBA. "It can produce images hundreds of times more detailed than those produced by the Hubble Space Telescope, and that capability has yielded some spectacular scientific results." Examples of VLBA research presented at the AAS meeting include the most accurate measurement ever made of the distance to another galaxy; the detection of our Solar System's orbital motion around the center of our own Galaxy; a "movie" showing the expansion of debris from a star's explosion in a galaxy 11 million light-years away; and a "movie" of gas motions in the atmosphere of a star more than 1,000 light-years away -- the first time gas motions have ever been tracked in a star other than the Sun. With ten giant dish antennas spread from Hawaii in the Pacific to St. Croix in the Caribbean, all working together as a single telescope, the VLBA is "the world's biggest astronomical instrument," Vanden Bout said. The VLBA has been in full operation for more than five years. A pair of sessions at the AAS meeting is devoted to reports of research using the VLBA. In more than 40 scientific presentations, astronomers tell how they used the VLBA to gain valuable new information about nearly every area from the frontiers of astrophysics. Some of those reporting on their VLBA research are graduate students working on their Ph.D degrees. "We are particularly proud that this instrument, one of the world's premier facilities for astronomy, is being used by the next generation of astronomers," said Miller Goss, NRAO's Director for VLA/VLBA Operations. "In addition, we are telling astronomers who have not yet used the VLBA how we can help them use it for their own research." As a national facility provided by the NSF, the VLBA is available free of charge to scientists, based on peer review of their proposed observing projects. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  14. Interference in astronomical speckle patterns

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1976-01-01

    Astronomical speckle patterns are examined in an atmospheric-optics context in order to determine what kind of image quality is to be expected from several different imaging techniques. The model used to describe the instantaneous complex field distribution across the pupil of a large telescope regards the pupil as a deep phase grating with a periodicity given by the size of the cell of uniform phase or the refractive index structure function. This model is used along with an empirical formula derived purely from the physical appearance of the speckle patterns to discuss the orders of interference in astronomical speckle patterns.

  15. The Role in the Virtual Astronomical Observatory in the Era of Massive Data Sets

    NASA Technical Reports Server (NTRS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  16. The role in the Virtual Astronomical Observatory in the era of massive data sets

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-09-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  17. Next Generation Astronomical Data Processing using Big Data Technologies from the Apache Software Foundation

    NASA Astrophysics Data System (ADS)

    Mattmann, Chris

    2014-04-01

    In this era of exascale instruments for astronomy we must naturally develop next generation capabilities for the unprecedented data volume and velocity that will arrive due to the veracity of these ground-based sensor and observatories. Integrating scientific algorithms stewarded by scientific groups unobtrusively and rapidly; intelligently selecting data movement technologies; making use of cloud computing for storage and processing; and automatically extracting text and metadata and science from any type of file are all needed capabilities in this exciting time. Our group at NASA JPL has promoted the use of open source data management technologies available from the Apache Software Foundation (ASF) in pursuit of constructing next generation data management and processing systems for astronomical instruments including the Expanded Very Large Array (EVLA) in Socorro, NM and the Atacama Large Milimetre/Sub Milimetre Array (ALMA); as well as for the KAT-7 project led by SKA South Africa as a precursor to the full MeerKAT telescope. In addition we are funded currently by the National Science Foundation in the US to work with MIT Haystack Observatory and the University of Cambridge in the UK to construct a Radio Array of Portable Interferometric Devices (RAPID) that will undoubtedly draw from the rich technology advances underway. NASA JPL is investing in a strategic initiative for Big Data that is pulling in these capabilities and technologies for astronomical instruments and also for Earth science remote sensing. In this talk I will describe the above collaborative efforts underway and point to solutions in open source from the Apache Software Foundation that can be deployed and used today and that are already bringing our teams and projects benefits. I will describe how others can take advantage of our experience and point towards future application and contribution of these tools.

  18. The Binary Offset Effect in CCDs: an Anomalous Readout Artifact Affecting Most Astronomical CCDs in Use

    NASA Astrophysics Data System (ADS)

    Boone, Kyle Robert; Aldering, Gregory; Copin, Yannick; Dixon, Samantha; Domagalski, Rachel; Gangler, Emmanuel; Pecontal, Emmanuel; Perlmutter, Saul; Nearby Supernova Factory Collaboration

    2018-01-01

    We discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications, which we call the “binary offset effect”. Due to feedback in the readout electronics, an offset is introduced in the values read out for each pixel that depends on the binary encoding of the previously read-out pixel values. One consequence of this effect is that a pathological local background offset can be introduced in images that only appears where science data are present on the CCD. The amplitude of this introduced offset does not scale monotonically with the amplitude of the objects in the image, and can be up to 4.5 ADU per pixel for certain instruments. Additionally, this background offset will be shifted by several pixels from the science data, potentially distorting the shape of objects in the image. We tested 22 instruments for signs of the binary offset effect and found evidence of it in 16 of them, including LRIS and DEIMOS on the Keck telescopes, WFC3-UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. A large amount of archival data is therefore affected by the binary offset effect, and conventional methods of reducing CCD images do not measure or remove the introduced offsets. As a demonstration of how to correct for the binary offset effect, we have developed a model that can accurately predict and remove the introduced offsets for the SNIFS instrument on the UH88 telescope. Accounting for the binary offset effect is essential for precision low-count astronomical observations with CCDs.

  19. LST and instrument considerations. [modular design

    NASA Technical Reports Server (NTRS)

    Levin, G. M.

    1974-01-01

    In order that the LST meet its scientific objectives and also be a National Astronomical Space Facility during the 1980's and 1990's, broad requirements have been levied by the scientific community. These scientific requirements can be directly translated into design requirements and specifications for the scientific instruments. The instrument ensemble design must be consistent with a 15-year operational lifetime. Downtime for major repair/refurbishment or instrument updating must be minimized. The overall efficiency and performance of the instruments should be maximized. Modularization of instruments and instrument subsystems, some degree of on-orbit servicing (both repair and replacement), on-axis location, minimizing the number of reflections within instruments, minimizing polarization effects, and simultaneous operation of the F/24 camera with other instruments, are just a few of the design guidelines and specifications which can and will be met in order that these broader scientific requirements be satisfied.-

  20. A new approach for instrument software at Gemini

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Nunez, Arturo; Dunn, Jennifer

    2008-07-01

    Gemini Observatory is now developing its next generation of astronomical instruments, the Aspen instruments. These new instruments are sophisticated and costly requiring large distributed, collaborative teams. Instrument software groups often include experienced team members with existing mature code. Gemini has taken its experience from the previous generation of instruments and current hardware and software technology to create an approach for developing instrument software that takes advantage of the strengths of our instrument builders and our own operations needs. This paper describes this new software approach that couples a lightweight infrastructure and software library with aspects of modern agile software development. The Gemini Planet Imager instrument project, which is currently approaching its critical design review, is used to demonstrate aspects of this approach. New facilities under development will face similar issues in the future, and the approach presented here can be applied to other projects.

  1. Emerging Conceptual Understanding of Complex Astronomical Phenomena by Using a Virtual Solar System

    ERIC Educational Resources Information Center

    Gazit, Elhanan; Yair, Yoav; Chen, David

    2005-01-01

    This study describes high school students' conceptual development of the basic astronomical phenomena during real-time interactions with a Virtual Solar System (VSS). The VSS is a non-immersive virtual environment which has a dynamic frame of reference that can be altered by the user. Ten 10th grade students were given tasks containing a set of…

  2. Imaging Young Stellar Objects with VLTi/PIONIER

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Malbet, F.; Berger, J.-P.; Benisty, M.; Lazareff, B.; Le Bouquin, J.-B.; Baron, F.; Dominik, C.; Isella, A.; Juhasz, A.; Kraus, S.; Lachaume, R.; Ménard, F.; Millan-Gabet, R.; Monnier, J.; Pinte, C.; Soulez, F.; Tallon, M.; Thi, W.-F.; Thiébaut, É.; Zins, G.

    2014-04-01

    Optical interferometry imaging is designed to help us to reveal complex astronomical sources without a prior model. Among these complex objects are the young stars and their environments, which have a typical morphology with a point-like source, surrounded by circumstellar material with unknown morphology. To image them, we have developed a numerical method that removes completely the stellar point source and reconstructs the rest of the image, using the differences in the spectral behavior between the star and its circumstellar material. We aim to reveal the first Astronomical Units of these objects where many physical phenomena could interplay: the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, we carried out the first Large Program survey of HAeBe stars with two main goals: statistics on the geometry of these objects at the first astronomical unit scale and imaging their very close environment. The images reveal the environment, which is not polluted by the star and allows us to derive the best fit for the flux ratio and the spectral slope. We present the first images from this survey and the application of the imaging method on other astronomical objects.

  3. First Steps on the Design of the Optical Differentiation Coronagraph

    NASA Astrophysics Data System (ADS)

    Cagigal, M. P.; Canales, V. F.; Valle, P. J.; Sanchez-Blanco, E.; Maldonado, M.; Garcia-Vargas, M. L.; Sanchez-Blanco, E.; Maldonado, M.; Garcia-Vargas, M. L.

    2010-10-01

    We present the UC coronagraph, an instrument designed for exoplanet detection. It is based on a standard coronagraph where the occulting disc is substituted by a differentiation mask. The instrument includes the coronagraph itself, a star generator, and a telescope simulator. The coronagraph is mechanically independent of both auxiliary subsystems, to allow its use in an actual astronomical telescope. The turbulence generation will be simulated with a spatial light modulator (SLM) placed at the nominal pupil.

  4. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  5. Cosmochemistry: Understanding the Solar System through analysis of extraterrestrial materials.

    PubMed

    MacPherson, Glenn J; Thiemens, Mark H

    2011-11-29

    Cosmochemistry is the chemical analysis of extraterrestrial materials. This term generally is taken to mean laboratory analysis, which is the cosmochemistry gold standard because of the ability for repeated analysis under highly controlled conditions using the most advanced instrumentation unhindered by limitations in power, space, or environment. Over the past 40 y, advances in technology have enabled telescopic and spacecraft instruments to provide important data that significantly complement the laboratory data. In this special edition, recent advances in the state of the art of cosmochemistry are presented, which range from instrumental analysis of meteorites to theoretical-computational and astronomical observations.

  6. Application of fiber tapers in astronomy

    NASA Astrophysics Data System (ADS)

    Marcel, Jaclyn; Haynes, Roger; Bland-Hawthorn, Joss

    2006-06-01

    Fiber tapers have the potential to significantly advance instrument technology into the realm of fully integrated optical systems. Our initial investigation was directed at the use of fiber tapers as f-ratio transformation devices. Using a technique developed for testing focal ratio degradation (FRD), a collimated light source was injected at different angles into various fiber taper samples and the far-field profile of the fiber output was observed. We compare the FRD present in the optical fiber tapers with conventional fibers and determine how effectively fiber tapers perform as image converters. We demonstrate that while silica fiber tapers may have slightly more intrinsic FRD than conventional fibers they still show promise as adiabatic mode transformers and are worth investigating further for their potential use in astronomical instruments. In this paper we present a brief review of the current status of fiber tapers with particular focus on the astronomical applications. We demonstrate the conservation of etendue in the taper transformation process and present the experimental results for a number of different taper profiles and manufacturers.

  7. A tale of two telescopes: North Queensland and the 1882 transit of Venus

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Darlington, Vicki

    2017-08-01

    The 1882 transit of Venus offered the final opportunity for astronomers to use these rare events to pin down the distance from the Earth to the Sun. A British party based itself in southern Queensland, but total cloud cover prevented any observations being made on the critical day. In this paper we trace the preparations of the British party, and then show how they laid the foundations for the development of astronomy in Queensland by selling their two 6-in Cooke refractors before returning to Britain. Both instruments were purchased by a Townsville amateur astronomer, Edwin Norris, and although he installed one in an observatory, he made little use of it. However, he subsequently sold the other telescope to J. Ewen Davidson of Mackay, who also erected an obser-vatory for it. Davidson then used his instrument for cometary astronomy, in the process discovering two new comets, one of which now bears his name. Unfortunately, recent attempts to track down the present whereabouts of the two telescopes have failed.

  8. Perfecting 'a sharper image': telescope-making and the dissemination of technical knowledge, 1700-1820

    NASA Astrophysics Data System (ADS)

    Cameron, Gary L.

    2012-07-01

    Telescopes, reflecting telescopes in particular, underwent considerable development during the eighteenth century. Two classes of telescope maker, the for-profit artisan and the amateur 'gentleman-philosopher,' learned techniques of optical fabrication and testing and produced usable astronomical instruments. One means of disseminating technical knowledge was via the book. The year 1738 saw the publication of a highly-influential book, Robert Smith's A Compleat System of Opticks, a work that included detailed information on telescope-making. It was this book that helped spark the astronomical career of William Herschel, and with Smith's information Herschel produced large reflecting telescopes of exquisite quality. However, artisan-opticians, even the renowned James Short, appear to have cut corners on a portion of their production, thus permitting the sale of some instruments of inferior quality. The reasons for this were clearly economical in nature: artisans depending on telescope sales to earn a living simply could not afford the time required for perfection. The mere presence of written works disseminating technical

  9. AMICA: The First camera for Near- and Mid-Infrared Astronomical Imaging at Dome C

    NASA Astrophysics Data System (ADS)

    Straniero, O.; Dolci, M.; Valentini, A.; Valentini, G.; di Rico, G.; Ragni, M.; Giuliani, C.; di Cianno, A.; di Varano, I.; Corcione, L.; Bortoletto, F.; D'Alessandro, M.; Magrin, D.; Bonoli, C.; Giro, E.; Fantinel, D.; Zerbi, F. M.; Riva, A.; de Caprio, V.; Molinari, E.; Conconi, P.; Busso, M.; Tosti, G.; Abia, C. A.

    AMICA (Antarctic Multiband Infrared CAmera) is an instrument designed to perform astronomical imaging in the near- (1{-}5 μm) and mid- (5 27 μm) infrared wavelength regions. Equipped with two detectors, an InSb 2562 and a Si:As 1282 IBC, cooled at 35 and 7 K respectively, it will be the first instrument to investigate the potential of the Italian-French base Concordia for IR astronomy. The main technical challenge is represented by the extreme conditions of Dome C (T ˜ -90 °C, p ˜640 mbar). An environmental control system ensures the correct start-up, shut-down and housekeeping of the various components of the camera. AMICA will be mounted on the IRAIT telescope and will perform survey-mode observations in the Southern sky. The first task is to provide important site-quality data. Substantial contributions to the solution of fundamental astrophysical quests, such as those related to late phases of stellar evolution and to star formation processes, are also expected.

  10. The Strasbourg Large Refractor and Dome: Significant Improvements and Failed Attempts

    NASA Astrophysics Data System (ADS)

    Heck, Andre

    2009-01-01

    Founded by the German Empire in the late 19th century, Strasbourg Astronomical Observatory featured several novelties from the start. According to Mueller (1978), the separation of observing buildings from the study area and from the astronomers' residence was a revolution in observatory construction. The instruments were, as much as possible, isolated from the vibrations of the buildings themselves. "Gas flames" and water were used to reduce temperature effects. Thus the Large Dome (ca 11m diameter), housing the Large Refractor (ca 49cm, then the largest in Germany) and covered by zinc over wood, could be cooled down by water running from the top. Reports (including by the French who took over the observatory after World War I) are however somehow nonexistent on the effective usage and actual efficiency of such a system (which must have generated locally a significant amount of humidity). The paper will detail these technical attempts as well as the specificities of the instruments installed in that new observatory intended as a showcase of German astronomy.

  11. ARNICA, the Arcetri Near-Infrared Camera

    NASA Astrophysics Data System (ADS)

    Lisi, F.; Baffa, C.; Bilotti, V.; Bonaccini, D.; del Vecchio, C.; Gennari, S.; Hunt, L. K.; Marcucci, G.; Stanga, R.

    1996-04-01

    ARNICA (ARcetri Near-Infrared CAmera) is the imaging camera for the near-infrared bands between 1.0 and 2.5 microns that the Arcetri Observatory has designed and built for the Infrared Telescope TIRGO located at Gornergrat, Switzerland. We describe the mechanical and optical design of the camera, and report on the astronomical performance of ARNICA as measured during the commissioning runs at the TIRGO (December, 1992 to December 1993), and an observing run at the William Herschel Telescope, Canary Islands (December, 1993). System performance is defined in terms of efficiency of the camera+telescope system and camera sensitivity for extended and point-like sources. (SECTION: Astronomical Instrumentation)

  12. Light pollution generated by laser guide star at Canarian Observatories

    NASA Astrophysics Data System (ADS)

    Chueca, Sergio; Fuensalida, Jesus J.

    2004-11-01

    A new generation of instrument using a launching laser is been developed to correct the atmospheric image blurring and to establish optical communication with space. Then, light pollution generated by laser will be a serious operational problem in next years. This laser could affect astronomical works of adjacent telescopes when the laser lay across the field of view of the observing telescope, this is a kind of light pollution. This could be avoided with an adequate operational politic to detect possible interference between the laser and the astronomical telescopes. In this paper is analysed the mathematical probability of a cross-event happen.

  13. The Chandra X-ray Observatory: An Astronomical Facility Available to the World

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.

    2006-01-01

    The Chandra X-ray observatory, one of NASA's "Great Observatories," provides high angular and spectral resolution X-ray data which is freely available to all. In this review I describe the instruments on chandra along with their current calibration, as well as the chandra proposal system, the freely-available Chandra analysis software package CIAO, and the Chandra archive. As Chandra is in its 6th year of operation, the archive already contains calibrated observations of a large range of X-ray sources. The Chandra X-ray Center is committed to assisting astronomers from any country who wish to use data from the archive or propose for observations

  14. An infrared upconverter for astronomical imaging

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An imaging upconverter has been constructed which is suitable for use in the study of the thermal 10-micron radiation from astronomical sources. The infrared radiation is converted to visible radiation by mixing in a 1-cm-long proustite crystal. The phase-matched 2-kayser bandpass is tunable from 9 to 11 microns. The conversion efficiency is 2 by 10 to the -7th power and the field of view of 40 arc seconds on the sky contains several hundred picture elements, approximately diffraction-limited resolution in a large telescope. The instrument has been used in studies of the sun, moon, Mercury, and VY Canis Majoris.

  15. Radio-Astronomical Instruments Observations (Selected Articles),

    DTIC Science & Technology

    1982-08-02

    NL SIIDAUG 82 L I MATVEYENKO, G S MISEZHNIKOV UNCLASSIFIED FTO_ ID(RS) -0564-82 N FTD-ID(RS) T -0564-82 FOREIGN TECHNOLOGY DIVISION RADIO-ASTRONOMICAL...INSTR1ThMNTS OBSERVATIONS (Selected Articles) 3 71982 Approved for public release; LAJ distribuion~ urJA’nited. • I . FTD- ID(RS) T -0564-82 UNEDITED... T , t * r a yy y y 7, u F, f E # Ye, ye; E, e* X x X x Kh, kh X C Zh, zn .4 u L q Ts, ts - -. Z ,. 4 f 14 Ch ,ch U 7 H u I , i w Sh, sh 2 R ia Y, y

  16. Building on ruins: Copernicus' defense of ancient astronomers against modern critics.

    PubMed

    Galle, Karl

    2008-09-01

    Nicholas Copernicus'De revolutionibus (1543) is a frequent starting point for histories of the Scientific Revolution on account of his dramatic reversal of the cosmic order handed down from antiquity. Nevertheless, Copernicus also mounted a surprisingly sharp attack on one of his contemporaries who tried to correct ancient astronomers. This uneasy balance between respecting and criticizing ancient works was part of broader contemporaneous attempts to grapple with the fragmentary legacies of past generations. Debates over stone ruins as well as manuscript texts shaped the evolution of early printed books, and artists, printers and instrument makers joined natural philosophers in pursuing novelties even while emulating tradition.

  17. NASA seeks to revive lost probe that traced solar storms

    NASA Astrophysics Data System (ADS)

    Voosen, Paul

    2018-02-01

    NASA's Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), a satellite that failed in 2005, was recently discovered to be reactivated by an amateur astronomer. Until its demise, IMAGE provided unparalleled views of solar storms crashing into Earth's magnetosphere, a capability that has not been replaced since. The amateur astronomer was on the search for Zuma, a classified U.S. satellite that's believed to have failed after launch. He instead discovered IMAGE, broadcasting again, likely thanks to a reboot that occurred after its batteries drained during a past solar eclipse. NASA scientists are now working to communicate with the satellite in the hopes of reviving its six scientific instruments.

  18. Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 7: The small scale structure catalog

    NASA Technical Reports Server (NTRS)

    Helou, George (Editor); Walker, D. W. (Editor)

    1988-01-01

    The Infrared Astronomical Satellite (IRAS) was launched January 26, 1983. During its 300-day mission, it surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and the data reduction process. Volumes 2 through 6 present the observations of the approximately 245,000 individual point sources detected by IRAS; each volume gives sources within a specified range of declination. Volume 7 gives the observations of the approximately 16,000 sources spatially resolved by IRAS and smaller than 8'. This is Volume 7, The Small Scale Structure Catalog.

  19. Amplitude and intensity spatial interferometry; Proceedings of the Meeting, Tucson, AZ, Feb. 14-16, 1990

    NASA Technical Reports Server (NTRS)

    Breckinridge, Jim B. (Editor)

    1990-01-01

    Attention is given to such topics as ground interferometers, space interferometers, speckle-based and interferometry-based astronomical observations, adaptive and atmospheric optics, speckle techniques, and instrumentation. Particular papers are presented concerning recent progress on the IR Michelson array; the IOTA interferometer project; a space interferometer concept for the detection of extrasolar earth-like planets; IR speckle imaging at Palomar; optical diameters of stars measured with the Mt. Wilson Mark III interferometer; the IR array camera for interferometry with the cophased Multiple Mirror Telescope; optimization techniques appliesd to the bispectrum of one-dimensional IR astronomical speckle data; and adaptive optical iamging for extended objects.

  20. Towards a dynamical scheduler for ALMA: a science - software collaboration

    NASA Astrophysics Data System (ADS)

    Avarias, Jorge; Toledo, Ignacio; Espada, Daniel; Hibbard, John; Nyman, Lars-Ake; Hiriart, Rafael

    2016-07-01

    State-of-the art astronomical facilities are costly to build and operate, hence it is essential that these facilities must be operated as much efficiently as possible, trying to maximize the scientific output and at the same time minimizing overhead times. Over the latest decades the scheduling problem has drawn attention of research because new facilities have been demonstrated that is unfeasible to try to schedule observations manually, due the complexity to satisfy the astronomical and instrumental constraints and the number of scientific proposals to be reviewed and evaluated in near real-time. In addition, the dynamic nature of some constraints make this problem even more difficult. The Atacama Large Millimeter/submillimeter Array (ALMA) is a major collaboration effort between European (ESO), North American (NRAO) and East Asian countries (NAOJ), under operations on the Chilean Chajnantor plateau, at 5.000 meters of altitude. During normal operations at least two independent arrays are available, aiming to achieve different types of science. Since ALMA does not observe in the visible spectrum, observations are not limited to night time only, thus a 24/7 operation with little downtime as possible is expected when full operations state will have been reached. However, during preliminary operations (early-science) ALMA has been operated on tied schedules using around half of the whole day-time to conduct scientific observations. The purpose of this paper is to explain how the observation scheduling and its optimization is done within ALMA, giving details about the problem complexity, its similarities and differences with traditional scheduling problems found in the literature. The paper delves into the current recommendation system implementation and the difficulties found during the road to its deployment in production.

  1. Advanced Technologies and Instrumentation at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  2. The Extreme Ultraviolet Explorer mission

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Battel, S. J.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) mission will be the first user of NASA's new Explorer platform. The instrumentation included on this mission consists of three grazing incidence scanning telescopes, a deep survey instrument and an EUV spectrometer. The bandpass covered is 80 to 900 A. During the first six months of the mission, the scanning telescopes will be used to make all-sky maps in four bandpasses; astronomical sources wil be detected and their positions determined to an accuracy of 0.1 deg. The deep survey instrument will survey the sky with higher sensitivity along the ecliptic in two bandpasses between 80 and 500 A. Engineering and design aspects of the science payload and features of the instrument design are described.

  3. AstroML: Python-powered Machine Learning for Astronomy

    NASA Astrophysics Data System (ADS)

    Vander Plas, Jake; Connolly, A. J.; Ivezic, Z.

    2014-01-01

    As astronomical data sets grow in size and complexity, automated machine learning and data mining methods are becoming an increasingly fundamental component of research in the field. The astroML project (http://astroML.org) provides a common repository for practical examples of the data mining and machine learning tools used and developed by astronomical researchers, written in Python. The astroML module contains a host of general-purpose data analysis and machine learning routines, loaders for openly-available astronomical datasets, and fast implementations of specific computational methods often used in astronomy and astrophysics. The associated website features hundreds of examples of these routines being used for analysis of real astronomical datasets, while the associated textbook provides a curriculum resource for graduate-level courses focusing on practical statistics, machine learning, and data mining approaches within Astronomical research. This poster will highlight several of the more powerful and unique examples of analysis performed with astroML, all of which can be reproduced in their entirety on any computer with the proper packages installed.

  4. OpenCluster: A Flexible Distributed Computing Framework for Astronomical Data Processing

    NASA Astrophysics Data System (ADS)

    Wei, Shoulin; Wang, Feng; Deng, Hui; Liu, Cuiyin; Dai, Wei; Liang, Bo; Mei, Ying; Shi, Congming; Liu, Yingbo; Wu, Jingping

    2017-02-01

    The volume of data generated by modern astronomical telescopes is extremely large and rapidly growing. However, current high-performance data processing architectures/frameworks are not well suited for astronomers because of their limitations and programming difficulties. In this paper, we therefore present OpenCluster, an open-source distributed computing framework to support rapidly developing high-performance processing pipelines of astronomical big data. We first detail the OpenCluster design principles and implementations and present the APIs facilitated by the framework. We then demonstrate a case in which OpenCluster is used to resolve complex data processing problems for developing a pipeline for the Mingantu Ultrawide Spectral Radioheliograph. Finally, we present our OpenCluster performance evaluation. Overall, OpenCluster provides not only high fault tolerance and simple programming interfaces, but also a flexible means of scaling up the number of interacting entities. OpenCluster thereby provides an easily integrated distributed computing framework for quickly developing a high-performance data processing system of astronomical telescopes and for significantly reducing software development expenses.

  5. Using an artificial neural network to classify multicomponent emission lines with integral field spectroscopy from SAMI and S7

    NASA Astrophysics Data System (ADS)

    Hampton, E. J.; Medling, A. M.; Groves, B.; Kewley, L.; Dopita, M.; Davies, R.; Ho, I.-T.; Kaasinen, M.; Leslie, S.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Allen, J.; Bland-Hawthorn, J.; Brough, S.; Bryant, J. J.; Croom, S.; Goodwin, M.; Green, A.; Konstantantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Owers, M. S.; Richards, S. N.; Shastri, P.

    2017-09-01

    Integral field spectroscopy (IFS) surveys are changing how we study galaxies and are creating vastly more spectroscopic data available than before. The large number of resulting spectra makes visual inspection of emission line fits an infeasible option. Here, we present a demonstration of an artificial neural network (ANN) that determines the number of Gaussian components needed to describe the complex emission line velocity structures observed in galaxies after being fit with lzifu. We apply our ANN to IFS data for the S7 survey, conducted using the Wide Field Spectrograph on the ANU 2.3 m Telescope, and the SAMI Galaxy Survey, conducted using the SAMI instrument on the 4 m Anglo-Australian Telescope. We use the spectral fitting code lzifu (Ho et al. 2016a) to fit the emission line spectra of individual spaxels from S7 and SAMI data cubes with 1-, 2- and 3-Gaussian components. We demonstrate that using an ANN is comparable to astronomers performing the same visual inspection task of determining the best number of Gaussian components to describe the physical processes in galaxies. The advantage of our ANN is that it is capable of processing the spectra for thousands of galaxies in minutes, as compared to the years this task would take individual astronomers to complete by visual inspection.

  6. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  7. The Frontiers of the Astronomical Universe

    ERIC Educational Resources Information Center

    Pecker, Jean-Claude

    1977-01-01

    Reviews the current state of knowledge obtained by means of observations using the increasingly powerful or proficient instruments of astrophysics, radio astronomy, and space astronomy by satellite. In conclusion, he refers to certain mathematical entities introduced into the theory of the origins and evolution of the cosmos. (Author/MA)

  8. Polarimetry

    NASA Astrophysics Data System (ADS)

    Nagendra, K. N.; Bagnulo, Stefano; Centeno, Rebecca; Jesús Martínez González, María.

    2015-08-01

    Preface; 1. Solar and stellar surface magnetic fields; 2. Future directions in astrophysical polarimetry; 3. Physical processes; 4. Instrumentation for astronomical polarimetry; 5. Data analysis techniques for polarization observations; 6. Polarization diagnostics of atmospheres and circumstellar environments; 7. Polarimetry as a tool for discovery science; 8. Numerical modeling of polarized emission; Author index.

  9. Astronomy research in Bolivia

    NASA Astrophysics Data System (ADS)

    Polojentsev, Dmitry D.; Zalles, R.

    1. An astronomical expedition from Pulkovo observatory in Bolivia, near Tarija was organized in 1982. The first telscope was an astrograph ( D=23 cm, F=230 cm, field = 5x5 degrees ). Sucsessful observations on this instrument are still being made. In all 7 astronomical instuments were installed. Now they are the National Bolivian Observatory. 2. The main results of astrophysical investigations were devoted to 4-color photometry of supernova 1987A and the creation of a Spectrophotometric Catalogue of 60 Selected Southern Stars. 3. The main results of astrometrical investigations were made on two catalogue problems: Photographical Catalogue for Southern Star (FOCAT-S) and Equatorial Catalogue (ECAT). The first was the foundation for southern part of PPM Catalogue. 4. A time Service was organized in 1988 in Tarija at the National Astronomical Observatory "Santa Ana". In 1997 Pulkovo observatory assisted to reconstract it. 5. The only Planetarium in Bolivia "Max Schreider"in La Paz was founded in 1976. 6. The Associacion Boliviana de Astronomia (ABA) was organized in 1969 in accordance with a Goverment Resolution. It has branches in Potosy, Santa Cruz, Sucre, Tarija etc. 7. The development of the astronomy in Bolivia depends directly on cooperation with the astronomically developed countries.

  10. Early Dutch radio astronomy (1940-1970) : the people and the politics

    NASA Astrophysics Data System (ADS)

    Elbers, Astrid

    2015-12-01

    Radio astronomy was born during the Second World War. The early post-war radio astronomy group in the Netherlands was one of the most important radio astronomy groups in the world. There are several reasons for this. Firstly: Dutch radio astronomers were trained as (optical) astronomers, while in most countries engineers and physicists with a background in wartime radar research were the first radio 'astronomers'. This was because radio telescopes shared the technology of wartime radar installations. Because Dutch astronomers were not familiar with the new kind of instrumentation, they had to conclude strategic alliances with industrial partners such as Philips, the PTT and the KNMI. These alliances would offer much more than merely technical know-how, which means that the disadvantage would prove to be an advantage in the end. Secondly: astronomy was still a very small-scale undertaking in the early post-war period. Even so, ZWO was still a very small organisation. The fact that so few people were involved meant that the impact of a personal network could be enormous. Thirdly: the Dutch post-war context was remarkably favourable to science: it was considered to be a key factor in the rebuilding of the country.

  11. The ultraviolet imaging telescope: Instrument and data characteristics

    NASA Astrophysics Data System (ADS)

    Stecher, Theodore P.; Ultraviolet Imaging Telescope Team

    1997-05-01

    The Ultraviolet Imaging Telescope (UIT) was flown as part of the Astro Observatory on the Space Shuttle Columbia in December 1990 (see Figure 1) and again on the Space Shuttle Endeavour in March 1995. Ultraviolet (1200-3300 Å) images of a wide variety of astronomical objects were detected with UV image intensifiers and recorded on photographic film. Typical angular resolutions were 2-3 arcsec over a 40 arcmin field of view. The reduced and calibrated images from the first flight are available to the astronomical community through the National Space Science Data Center (NSSDC); the data recorded during the second flight will soon be available as well. UIT's design, operation, data reduction, and calibration are described in detail in Stecher et al. (1997), including a comprehensive description of the data characteristics. This publication provides UIT data users with information for understanding and using the data, as well as guidelines for analyzing other astronomical imagery made with image intensifiers and photographic film. Further information on the Astro missions and the UIT science program is available at the following website http://fondue.gsfc.nasa.gov/UIT/UIT_HomePage.html and in an educational slideset that is available from the Astronomical Society of the Pacific (Waller & Offenberg 1994).

  12. The Galway astronomical Stokes polarimeter: an all-Stokes optical polarimeter with ultra-high time resolution

    NASA Astrophysics Data System (ADS)

    Collins, Patrick; Kyne, Gillian; Lara, David; Redfern, Michael; Shearer, Andy; Sheehan, Brendan

    2013-12-01

    Many astronomical objects emit polarised light, which can give information both about their source mechanisms, and about (scattering) geometry in their source regions. To date (mostly) only the linearly polarised components of the emission have been observed in stellar sources. Observations have been constrained because of instrumental considerations to periods of excellent observing conditions, and to steady, slowly or periodically-varying sources. This leaves a whole range of interesting objects beyond the range of observation at present. The Galway Astronomical Stokes Polarimeter (GASP) has been developed to enable us to make observations on these very sources. GASP measures the four components of the Stokes Vector simultaneously over a broad wavelength range 400-800 nm., with a time resolution of order microseconds given suitable detectors and a bright source - this is possible because the optical design contains no moving or modulating components. The initial design of GASP is presented and we include some preliminary observational results demonstrating that components of the Stokes vector can be measured to % in conditions of poor atmospheric stability. Issues of efficiency and stability are addressed. An analysis of suitable astronomical targets, demanding the unique properties of GASP, is also presented.

  13. KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-22

    KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.

  14. The Victorian Amateur Astronomer: Independent Astronomical Research in Britain 1820-1920

    NASA Astrophysics Data System (ADS)

    Chapman, Allan

    1999-01-01

    This is the first book to look in detail at amateur astronomy in Victorian Britain. It deals with the technical issues that were active in Victorian astronomy, and reviews the problems of finance, patronage and the dissemination of scientific ideas. It also examines the relationship between the amateur and professional in Britain. It contains a wealth of previously unpublished biographical and anecdotal material, and an extended bibliography with notes incorporating much new scholarship. In The Victorian Amateur Astronomer, Allan Chapman shows that while on the continent astronomical research was lavishly supported by the state, in Britain such research was paid for out of the pockets of highly educated, wealthy gentlemen the so-called Grand Amateurs . It was these powerful individuals who commissioned the telescopes, built the observatories, ran the learned societies, and often stole discoveries from their state-employed colleagues abroad. In addition to the Grand Amateurs , Victorian Britain also contained many self-taught amateurs. Although they belonged to no learned societies, these people provide a barometer of the popularity of astronomy in that age. In the late 19th century, the comfortable middle classes clergymen, lawyers, physicians and retired military officers took to astronomy as a serious hobby. They formed societies which focused on observation, lectures and discussions, and it was through this medium that women first came to play a significant role in British astronomy. Readership: Undergraduate and postgraduate students studying the history of science or humanities, professional historians of science, engineering and technology, particularly those with an interest in astronomy, the development of astronomical ideas, scientific instrument makers, and amateur astronomers.

  15. Astronomical and Cosmological Aspects of Maya Architecture and Urbanism

    NASA Astrophysics Data System (ADS)

    Šprajc, I.

    2009-08-01

    Archaeoastronomical studies carried out so far have shown that the orientations in the ancient Maya architecture were, like elsewhere in Mesoamerica, largely astronomical, mostly referring to sunrises and sunsets on particular dates and allowing the use of observational calendars that facilitated a proper scheduling of agricultural activities. However, the astronomical alignments cannot be understood in purely utilitarian terms. Since the repeatedly occurring directions are most consistently incorporated in monumental architecture of civic and ceremonial urban cores, they must have had an important place in religion and worldview. The characteristics of urban layouts, as well as architectural and other elements associated with important buildings, reveal that the Maya architectural and urban planning was dictated by a complex set of rules, in which astronomical considerations related to practical needs were embedded in a broader framework of cosmological concepts substantiated by political ideology.

  16. Astronomical Data and Information Visualization

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa A.

    2010-01-01

    As the size and complexity of data sets increases, the need to "see" them more clearly increases as well. In the past, many scientists saw "fancy" data and information visualization as necessary for "outreach," but not for research. In this talk, I wlll demonstrate, using specific examples, why more and more scientists--not just astronomers--are coming to rely upon the development of new visualization strategies not just to present their data, but to understand it. Principal examples will be drawn from the "Astronomical Medicine" project at Harvard's Initiative in Innovative Computing, and from the "Seamless Astronomy" effort, which is co-sponsored by the VAO (NASA/NSF) and Microsoft Research.

  17. NASA’s Kuiper Airborne Observatory 1974-1995 - Twenty One Years of Discovery

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    The Gerard P. Kuiper Airborne Observatory (KAO) forged a unique record in the annals of astronomy. Teams of scientists developed and flew with their specialized, state-of-the-art instruments to make observations not possible from the ground, at wavelengths from 0.3 µm to 1.6 mm. The talk will describe the KAO and its legacy of scientific findings, infrared instrumentation technology, experience for young astronomers and their impact on the field of infrared astronomy - and the rationale for SOFIA.

  18. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  19. The many transformations of the University of Illinois Observatory Annex

    NASA Astrophysics Data System (ADS)

    Svec, Michael

    2018-04-01

    The University of Illinois Observatory acquired a second-hand 30-inch Brashear reflector in 1912 with the intent of dedicating it to photoelectric photometry. A small observatory annex was built adjacent to the main observatory. This smaller observatory and its telescope underwent multiple transitions and instrument changes over the next 70 years, reflecting the research interests of Joel Stebbins and Robert H. Baker. The story of this observatory telescope illustrates changes in astronomical instrumentation and research over the course of the twentieth century.

  20. The ORAC-DR data reduction pipeline

    NASA Astrophysics Data System (ADS)

    Cavanagh, B.; Jenness, T.; Economou, F.; Currie, M. J.

    2008-03-01

    The ORAC-DR data reduction pipeline has been used by the Joint Astronomy Centre since 1998. Originally developed for an infrared spectrometer and a submillimetre bolometer array, it has since expanded to support twenty instruments from nine different telescopes. By using shared code and a common infrastructure, rapid development of an automated data reduction pipeline for nearly any astronomical data is possible. This paper discusses the infrastructure available to developers and estimates the development timescales expected to reduce data for new instruments using ORAC-DR.

  1. Overview of Submm Single Dish: From Observations to Useful Data

    NASA Astrophysics Data System (ADS)

    Stanke, Thomas

    2018-03-01

    Observing with single dish telescopes at submillimetre wavelengths adds a number of challenges. The Earth's atmosphere not only absorbs the sky signal with varying amounts as a function of frequency and weather conditions, but it also emits a signal that is many orders of magnitude brighter than the astronomical signal one is interested in. Additional challenges come in the calibration and removal of certain instrumental effects. I will give an overview of present and planned submillimetre telescopes, instrument types, and observing strategies.

  2. 40+ Years of Instrumentation for the La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    2018-03-01

    As ESO Period 100 comes to a close, I look back at the development of ESO's instrumentation programme over more than 40 years. Instrumentation and detector activities were initially started by a small group of designers, engineers, technicians and astronomers while ESO was still at CERN in Geneva in the late 1970s. They have since led to the development of a successful suite of optical and infrared instruments for the La Silla Paranal Observatory, as testified by the continuous growth in the number of proposals for observing time and in the publications based on data from ESO telescopes. The instrumentation programme evolved significantly with the VLT and most instruments were developed by national institutes in close cooperation with ESO. This policy was a cornerstone of the VLT programme from the beginning and a key to its success.

  3. Astrometry and early astrophysics at Kuffner Observatory in the late 19th century

    NASA Astrophysics Data System (ADS)

    Habison, Peter

    The astronomer and mathematician Norbert Herz encouraged Moriz von Kuffner, owner of the beer brewery in Ottakring, to finance a private scientific observatory in the western parts of Vienna. In the years 1884-87 the Kuffner Observatory was built at the Gallitzinberg in Wien-Ottakring. It was an example of enlighted patronage and noted at the time for its rapid acquisition of new instruments and by increasing international recognition. It contained the largest heliometer in the world and the largest meridian circle in the Austrian-Hungarian Empire. Of the many scientists who worked here we mention Leo de Ball, Gustav Eberhard, Johannes Hartmann and we should not forget Karl Schwarzschild. Here in Vienna he published papers on celestial mechanics, measuring techniques, optics and his fundamental papers concerning photographic photometry, in particular the quantitative determination of the departure of the reciprocity law. The telescope and the associated camera with which he carried out his measurements are still in existence at the observatory. The observatory houses important astronomical instruments from the 19th century. All telescopes were made by Repsold und Söhne in Hamburg, and Steinheil in Munich. These two German companies were best renowned for quality and precision in high standard astronomical instruments. The Great Refractor (270/3500 mm) is still the third largest refractor in Austria. It was installed at the observatory in 1886 and was used together with the Schwarzschild Refractor for early astrophysical work including photography. It is this double refractor, where Schwarzschild carried out his measurements on photographic photometry. The Meridian Circle (132/1500 mm) was the largest meridian passage instrument of the Austro-Hungarian Empire. Today it is the largest meridian circle in Austria and still one of the largest in Europe. The telescope is equipped with one of the first impersonal micrometers of that time. First observations were carried out in 1886, followed by an international program called the ``Zonenunternehmen der Astronomischen Gesellschaft''. During this program 8468 stars were measured at the meridian circle. The Vertical Circle (81/1200 mm) was used as an auxiliary instrument for the meridian circle and for measuring polar motion. It is a rare instrument and only very few are still in existence at European observatories. Originally the Heliometer (217/3000 mm) was an instrument for measuring very small distances at the celestial sphere. Of this type of instrument, the Vienna heliometer was the largest in the world. It was installed at the observatory in 1896 and was mainly used for measuring the trigonometric parallaxes of the stars. Of 108 known parallaxes in 1910, 16 stars were measured at Kuffner Observatory at that time.

  4. HEAO Science Symposium

    NASA Technical Reports Server (NTRS)

    Dailey, C. (Editor); Johnson, W. (Editor)

    1979-01-01

    Scientific results from the early analysis of data from the HEAO 1 mission are presented. Development of astronomical catalogs and maps, X-ray variability, extragalactic astronomy, X-ray iron line emission, and optical identification and spectroscopy of X-ray sources are among the topics discussed. Results from HEAO 2 imaging and nonimaging instruments are included.

  5. The Parallel Globe: A Powerful Instrument to Perform Investigations of Earth's Illumination

    ERIC Educational Resources Information Center

    Rossi, Sabrina; Giordano, Enrica; Lanciano, Nicoletta

    2015-01-01

    Many researchers have documented the difficulties for learners of different ages and preparations in understanding basic astronomical concepts. Traditional instructional strategies and communication media do not seem to be effective in producing meaningful understanding, or even induce misconceptions and misinterpretations. In line with recent…

  6. A Question and Answer Guide to Astronomy

    NASA Astrophysics Data System (ADS)

    Christian, Carol; Roy, Jean-René

    2017-03-01

    Preface; 1. The sky viewed from Earth; 2. The Earth and Moon system; 3. The Solar System; 4. Stars and stellar systems; 5. Galaxies and the Universe; 6. Life in the Universe; 7. Amateur astronomy; 8. Telescopes and instruments; Unit conversion and basic physical and astronomical measurements; References; Bibliography; Index.

  7. The Navy Precision Optical Interferometer (NPOI): An Update

    DTIC Science & Technology

    2013-01-01

    IOTA1. Since that time, four of these have closed: I2T, COAST, GI2T, and IOTA . Three others have opened and closed: PTI, MIRA-I.2,2 and 1Corresponding...public release; distribution unlimited 13. SUPPLEMENTARY NOTES Journal of Astronomical Instrumentation 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY

  8. Pipeline Processing for VISTA

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Irwin, M.; Bunclark, P.

    2010-12-01

    The VISTA telescope is a 4 metre instrument which has recently been commissioned at Paranal, Chile. Equipped with an infrared camera, 16 2Kx2K Raytheon detectors and a 1.7 square degree field of view, VISTA represents a huge leap in infrared survey capability in the southern hemisphere. Pipeline processing of IR data is far more technically challenging than for optical data. IR detectors are inherently more unstable, while the sky emission is over 100 times brighter than most objects of interest, and varies in a complex spatial and temporal manner. To compensate for this, exposure times are kept short, leading to high nightly data rates. VISTA is expected to generate an average of 250 GB of data per night over the next 5-10 years, which far exceeds the current total data rate of all 8m-class telescopes. In this presentation we discuss the pipelines that have been developed to deal with IR imaging data from VISTA and discuss the primary issues involved in an end-to-end system capable of: robustly removing instrument and night sky signatures; monitoring data quality and system integrity; providing astrometric and photometric calibration; and generating photon noise-limited images and science-ready astronomical catalogues.

  9. New portrait of Omega Nebula's glistening watercolours

    NASA Astrophysics Data System (ADS)

    2009-07-01

    The Omega Nebula, sometimes called the Swan Nebula, is a dazzling stellar nursery located about 5500 light-years away towards the constellation of Sagittarius (the Archer). An active star-forming region of gas and dust about 15 light-years across, the nebula has recently spawned a cluster of massive, hot stars. The intense light and strong winds from these hulking infants have carved remarkable filigree structures in the gas and dust. When seen through a small telescope the nebula has a shape that reminds some observers of the final letter of the Greek alphabet, omega, while others see a swan with its distinctive long, curved neck. Yet other nicknames for this evocative cosmic landmark include the Horseshoe and the Lobster Nebula. Swiss astronomer Jean-Philippe Loys de Chéseaux discovered the nebula around 1745. The French comet hunter Charles Messier independently rediscovered it about twenty years later and included it as number 17 in his famous catalogue. In a small telescope, the Omega Nebula appears as an enigmatic ghostly bar of light set against the star fields of the Milky Way. Early observers were unsure whether this curiosity was really a cloud of gas or a remote cluster of stars too faint to be resolved. In 1866, William Huggins settled the debate when he confirmed the Omega Nebula to be a cloud of glowing gas, through the use of a new instrument, the astronomical spectrograph. In recent years, astronomers have discovered that the Omega Nebula is one of the youngest and most massive star-forming regions in the Milky Way. Active star-birth started a few million years ago and continues through today. The brightly shining gas shown in this picture is just a blister erupting from the side of a much larger dark cloud of molecular gas. The dust that is so prominent in this picture comes from the remains of massive hot stars that have ended their brief lives and ejected material back into space, as well as the cosmic detritus from which future suns form. The newly released image, obtained with the EMMI instrument attached to the ESO 3.58-metre New Technology Telescope (NTT) at La Silla, Chile, shows the central region of the Omega Nebula in exquisite detail. In 2000, another instrument on the NTT, called SOFI, captured another striking image of the nebula (ESO Press Photo 24a/00) in the near-infrared, giving astronomers a penetrating view through the obscuring dust, and clearly showing many previously hidden stars. The NASA/ESA Hubble Space Telescope has also imaged small parts of this nebula (heic0305a and heic0206d) in fine detail. At the left of the image a huge and strangely box-shaped cloud of dust covers the glowing gas. The fascinating palette of subtle colour shades across the image comes from the presence of different gases (mostly hydrogen, but also oxygen, nitrogen and sulphur) that are glowing under the fierce ultraviolet light radiated by the hot young stars. More Information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  10. Okayama optical polarimetry and spectroscopy system (OOPS) II. Network-transparent control software.

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Kurakami, T.; Shimizu, Y.; Yutani, M.

    Control system of the OOPS (Okayama Optical Polarimetry and Spectroscopy system) is designed to integrate several instruments whose controllers are distributed over a network; the OOPS instrument, a CCD camera and data acquisition unit, the 91 cm telescope, an autoguider, a weather monitor, and an image display tool SAOimage. With the help of message-based communication, the control processes cooperate with related processes to perform an astronomical observation under supervising control by a scheduler process. A logger process collects status data of all the instruments to distribute them to related processes upon request. Software structure of each process is described.

  11. Hubble Space Telescope: High speed photometer instrument handbook. Version 2.0

    NASA Technical Reports Server (NTRS)

    White, Richard L. (Editor)

    1990-01-01

    This manual is a guide for astronomers who intend to use the High Speed Photometer (HSP), one of the scientific instruments onboard the Hubble Space Telescope (HST). All the information needed for ordinary uses of the HSP is presented, including: (1) an overview of the instrument; (2) a detailed description of some details of the HSP-ST system that may be important for some observations; (3) tables and figures describing the sensitivity and limitations of the HSP; (4) how to go about planning an observation with the HSP; and (5) a description of the standard calibration to be applied to HSP data and the resulting data products.

  12. The space shuttle payload planning working groups. Volume 1: Astronomy

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The space astronomy missions to be accomplished by the space shuttle are discussed. The principal instrument is the Large Space Telescope optimized for the ultraviolet and visible regions of the spectrum, but usable also in the infrared. Two infrared telescopes are also proposed and their characteristics are described. Other instruments considered for the astronomical observations are: (1) a very wide angle ultraviolet camera, (2) a grazing incidence telescope, (3) Explorer-class free flyers to measure the cosmic microwave background, and (4) rocket-class instruments which can fly frequently on a variety of missions. The stability requirements of the space shuttle for accomplishing the astronomy mission are defined.

  13. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Zavlin, V.; Swartz, D.; Elsner, R. F.; ODell, S.; Kilaru, K.; Atkins, C.; McCracken, J.; Pavlinsky, M.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  14. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  15. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approx. 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  16. Cosmochemistry: Understanding the Solar System through analysis of extraterrestrial materials

    PubMed Central

    MacPherson, Glenn J.; Thiemens, Mark H.

    2011-01-01

    Cosmochemistry is the chemical analysis of extraterrestrial materials. This term generally is taken to mean laboratory analysis, which is the cosmochemistry gold standard because of the ability for repeated analysis under highly controlled conditions using the most advanced instrumentation unhindered by limitations in power, space, or environment. Over the past 40 y, advances in technology have enabled telescopic and spacecraft instruments to provide important data that significantly complement the laboratory data. In this special edition, recent advances in the state of the art of cosmochemistry are presented, which range from instrumental analysis of meteorites to theoretical–computational and astronomical observations. PMID:22128323

  17. Experience with the UKIRT InSb array camera

    NASA Technical Reports Server (NTRS)

    Mclean, Ian S.; Casali, Mark M.; Wright, Gillian S.; Aspin, Colin

    1989-01-01

    The cryogenic infrared camera, IRCAM, has been operating routinely on the 3.8 m UK Infrared Telescope on Mauna Kea, Hawaii for over two years. The camera, which uses a 62x58 element Indium Antimonide array from Santa Barbara Research Center, was designed and built at the Royal Observatory, Edinburgh which operates UKIRT on behalf of the UK Science and Engineering Research Council. Over the past two years at least 60% of the available time on UKIRT has been allocated for IRCAM observations. Described here are some of the properties of this instrument and its detector which influence astronomical performance. Observational techniques and the power of IR arrays with some recent astronomical results are discussed.

  18. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  19. Hands on the sun: Teaching SEC science through hands on inquiery and direct observation

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Cline, T.; Lewis, E.

    2003-04-01

    Hands on the Sun is a model partnership between the NASA Sun Earth Connection Education Forum (SECEF), Coronado Instruments, Space Science Institute, NOAO/Kitt Peak, Flandrau Planetarium, Astronomical League, and professional astronomers. This joint venture uses experiential learning, provocative talks, and direct observation in both formal and informal education venues to teach participants (K-12 educators, amateur astronomers, and the general public) about the sun, its impact on the Earth, and the importance of understanding the sun-Earth system. The program consists of three days of workshops and activities including tours and observing sessions on Kitt Peak including the National Solar Observatory, planetarium shows, exhibits on space weather, and professional development workshops targeted primarily at Hispanic public school science teachers which are intended to provide hands on activities demonstrating solar and SEC science that can be integrated into the classroom science curriculum. This talk will describe the many facets of this program and discuss our plans for future events.

  20. Laboratory Heterodyne Spectrometers Operating at 100 and 300 GHZ

    NASA Astrophysics Data System (ADS)

    Maßen, Jakob; Wehres, Nadine; Hermanns, Marius; Lewen, Frank; Heyne, Bettina; Endres, Christian; Graf, Urs; Honingh, Netty; Schlemmer, Stephan

    2017-06-01

    Two new laboratory heterodyne emission spectrometers are presented that are currently used for high-resolution rotational spectroscopy of complex organic molecules. The room temperature heterodyne receiver operating between 80-110 GHz, as well as the SIS heterodyne receiver operating between 270-370 GHz allow access to two very important frequency regimes, coinciding with Bands 3 and 7 of the ALMA (Atacama Large Millimeter Array) telescope. Taking advantage of recent progresses in the field of mm/submm technology, we build these two spectrometers using an XFFFTS (eXtended Fast Fourier Transform Spectrometer) for spectral acquisition. The instantaneous bandwidth is 2.5 GHz in a single sideband, spread over 32768 channels. Thus, the spectral resolution is about 76 kHz per channel and thus comparable to high resolution spectra from telescopes. Both receivers are operated in double sideband mode resulting in a total instantaneous bandwidth of 5 GHz. The system performances, in particular the noise temperatures and stabilities are presented. Proof-of-concept is demonstrated by showing spectra of methyl cyanide obtained with both spectrometers. While the transition frequencies for this molecule are very well known, intensities of those transitions can also be determined with high accuracy using our new instruments. This additional information shall be exploited in future measurements to improve spectral predictions for astronomical observations. Other future prospects concern the study of more complex organic species, such as ethyl cyanide. These aspects of the new instruments as well as limitations of the two distinct receivers will be discussed.

  1. A communication efficient and scalable distributed data mining for the astronomical data

    NASA Astrophysics Data System (ADS)

    Govada, A.; Sahay, S. K.

    2016-07-01

    In 2020, ∼60PB of archived data will be accessible to the astronomers. But to analyze such a paramount data will be a challenging task. This is basically due to the computational model used to download the data from complex geographically distributed archives to a central site and then analyzing it in the local systems. Because the data has to be downloaded to the central site, the network BW limitation will be a hindrance for the scientific discoveries. Also analyzing this PB-scale on local machines in a centralized manner is challenging. In this, virtual observatory is a step towards this problem, however, it does not provide the data mining model (Zhang et al., 2004). Adding the distributed data mining layer to the VO can be the solution in which the knowledge can be downloaded by the astronomers instead the raw data and thereafter astronomers can either reconstruct the data back from the downloaded knowledge or use the knowledge directly for further analysis. Therefore, in this paper, we present Distributed Load Balancing Principal Component Analysis for optimally distributing the computation among the available nodes to minimize the transmission cost and downloading cost for the end user. The experimental analysis is done with Fundamental Plane (FP) data, Gadotti data and complex Mfeat data. In terms of transmission cost, our approach performs better than Qi et al. and Yue et al. The analysis shows that with the complex Mfeat data ∼90% downloading cost can be reduced for the end user with the negligible loss in accuracy.

  2. Considerations for the Use of STEREO -HI Data for Astronomical Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappin, S. J., E-mail: james.tappin@stfc.ac.uk

    Recent refinements to the photometric calibrations of the Heliospheric Imagers (HI) on board the Solar TErrestrial RElations Observatory ( STEREO ) have revealed a number of subtle effects in the measurement of stellar signals with those instruments. These effects need to be considered in the interpretation of STEREO -HI data for astronomy. In this paper we present an analysis of these effects and how to compensate for them when using STEREO -HI data for astronomical studies. We determine how saturation of the HI CCD detectors affects the apparent count rates of stars after the on-board summing of pixels and exposures.more » Single-exposure calibration images are analyzed and compared with binned and summed science images to determine the influence of saturation on the science images. We also analyze how the on-board cosmic-ray scrubbing algorithm affects stellar images. We determine how this interacts with the variations of instrument pointing to affect measurements of stars. We find that saturation is a significant effect only for the brightest stars, and that its onset is gradual. We also find that degraded pointing stability, whether of the entire spacecraft or of the imagers, leads to reduced stellar count rates and also increased variation thereof through interaction with the on-board cosmic-ray scrubbing algorithm. We suggest ways in which these effects can be mitigated for astronomical studies and also suggest how the situation can be improved for future imagers.« less

  3. The CCD Photometric Calibration Cookbook

    NASA Astrophysics Data System (ADS)

    Palmer, J.; Davenhall, A. C.

    This cookbook presents simple recipes for the photometric calibration of CCD frames. Using these recipes you can calibrate the brightness of objects measured in CCD frames into magnitudes in standard photometric systems, such as the Johnson-Morgan UBV, system. The recipes use standard software available at all Starlink sites. The topics covered include: selecting standard stars, measuring instrumental magnitudes and calibrating instrumental magnitudes into a standard system. The recipes are appropriate for use with data acquired with optical CCDs and filters, operated in standard ways, and describe the usual calibration technique of observing standard stars. The software is robust and reliable, but the techniques are usually not suitable where very high accuracy is required. In addition to the recipes and scripts, sufficient background material is presented to explain the procedures and techniques used. The treatment is deliberately practical rather than theoretical, in keeping with the aim of providing advice on the actual calibration of observations. This cookbook is aimed firmly at people who are new to astronomical photometry. Typical readers might have a set of photometric observations to reduce (perhaps observed by a colleague) or be planning a programme of photometric observations, perhaps for the first time. No prior knowledge of astronomical photometry is assumed. The cookbook is not aimed at experts in astronomical photometry. Many finer points are omitted for clarity and brevity. Also, in order to make the most accurate possible calibration of high-precision photometry, it is usually necessary to use bespoke software tailored to the observing programme and photometric system you are using.

  4. The VO-Dance web application at the IA2 data center

    NASA Astrophysics Data System (ADS)

    Molinaro, Marco; Knapic, Cristina; Smareglia, Riccardo

    2012-09-01

    Italian center for Astronomical Archives (IA2, http://ia2.oats.inaf.it) is a national infrastructure project of the Italian National Institute for Astrophysics (Istituto Nazionale di AstroFisica, INAF) that provides services for the astronomical community. Besides data hosting for the Large Binocular Telescope (LBT) Corporation, the Galileo National Telescope (Telescopio Nazionale Galileo, TNG) Consortium and other telescopes and instruments, IA2 offers proprietary and public data access through user portals (both developed and mirrored) and deploys resources complying the Virtual Observatory (VO) standards. Archiving systems and web interfaces are developed to be extremely flexible about adding new instruments from other telescopes. VO resources publishing, along with data access portals, implements the International Virtual Observatory Alliance (IVOA) protocols providing astronomers with new ways of analyzing data. Given the large variety of data flavours and IVOA standards, the need for tools to easily accomplish data ingestion and data publishing arises. This paper describes the VO-Dance tool, that IA2 started developing to address VO resources publishing in a dynamical way from already existent database tables or views. The tool consists in a Java web application, potentially DBMS and platform independent, that stores internally the services' metadata and information, exposes restful endpoints to accept VO queries for these services and dynamically translates calls to these endpoints to SQL queries coherent with the published table or view. In response to the call VO-Dance translates back the database answer in a VO compliant way.

  5. Astronomy in Denver: Probing Interstellar Circular Polarization with Polvis, a Full Stokes Single Shot Polarimeter

    NASA Astrophysics Data System (ADS)

    Wolfe, Tristan; Stencel, Robert E.

    2018-06-01

    Measurements of optical circular polarization (Stokes V) introduced by dust grains in the ISM are important for two main reasons. First of all, the polarization itself contains information about the metallic versus dielectric composition of the dust grains themselves (H. C. van de Hulst 1957, textbook). Additionally, circular polarization can help constrain the interstellar component of the polarization of any source that may have intrinsic polarization, which needs to be calibrated for astrophysical study. Though interstellar circular polarization has been observed (P. G. Martin 1972, MNRAS 159), most broadband measurements of ISM polarization include linear polarization only (Stokes Q and U), due to the relatively low circular polarization signal and the added instrumentation complexity of including V-measurement capability. Prior circular polarization measurements have also received very little follow-up in the past several decades, even as polarimeters have become more accurate due to advances in technology. The University of Denver is pursuing these studies with POLVIS, a prototype polarimeter that utilizes a stress-engineered optic ("SEO", A. K. Spilman and T. G. Brown 2007, Applied Optics IP 46) to produce polarization-dependent PSFs (A. M. Beckley and T. G. Brown 2010, Proc SPIE 7570). These PSFs are analyzed to provide simultaneous Stokes I, Q, U, and V measurements, in a single beam and single image, along the line-of-sight to point source-like objects. Polvis is the first polarimeter to apply these optics and measurement techniques for astronomical observations. We present the first results of this instrument in B, V, and R wavebands, providing a fresh look at full Stokes interstellar polarization. Importantly, this set of efforts will constrain the ISM contribution to the polarization with respect to intrinsic stellar components. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver, and for funding provided by the Mt. Cuba Astronomical Foundation.

  6. Future Looks Bright for Interferometry

    NASA Astrophysics Data System (ADS)

    2008-09-01

    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility-class instrument of its kind that is open to all astronomers. PRIMA parts arrived at the summit at Paranal at the end of July and were integrated and tested during the following month. On 2 September 2008, as a first milestone, starlight from two VLTI 1.8-m Auxiliary Telescopes was fed into the PRIMA system, and interference fringes were detected on PRIMA's Fringe Sensor Unit. Three days later the system was routinely using active tracking on the fringes, compensating for atmospheric turbulence. First light - or, in the case of interferometric instruments, first fringes - actually occurred ahead of the ambitious schedule set out by lead engineer Francoise Delplancke: "There were many activities that all had to be successful simultaneously for this to happen, but the assembly, integration, and verification went smoothly - I was pleased by how easy and reliable the fringe tracking was, for our first try." All PRIMA sub-systems [3] have been installed successfully for use with two Auxiliary Telescopes and will now be submitted to intensive commissioning tests before being offered to the community of users for routine observations [4].

  7. From Fragments to a museum display: restoration of a Gautier meridian circle

    NASA Astrophysics Data System (ADS)

    Granato, Marcus

    2009-07-01

    The Museu de Astronomia e Ciências Afins (MAST), which opened to the public in 1985, is a research institute of the Brazilian Ministry of Science and Technology. One of its main activities is to preserve its collections, especially the most important one, its collection of scientific instruments, which grants MAST its identity as a museum of science and technology. Among the 2,000 objects in the collection there is a Gautier meridian circle that has a 190-mm diameter objective lens and a focal distance of 2,400 mm, with its axis aligned east-west. It should be noted that this instrument was at great risk of being lost to the collection, as it had been left dismantled since the 1960s, and the top part of the dome that sheltered it had been demolished in the 1980s, leaving just a vestibule and the base of the dome, which was in danger of completely collapsing. The intervention philosophy applied was not to put the instrument back in working order, but to allow it to be viewed and understood by the public within a coherent display space. As for the dome, a shelter was built for the instrument using a metal cover of a similar volume and appearance to the original, but with a different function, i.e. it is no longer designed to permit astronomical investigations, but rather to protect the exhibition space and merge harmoniously with the rest of the listed architectural complex. This paper presents information about the history of this meridian circle and its restoration, as well as about the Imperial Observatório do Rio de Janeiro/Observatório Nacional where this instrument was originally used.

  8. What Lies Behind NSF Astronomer Demographics? Subjectivities of Women, Minorities and Foreign-born Astronomers within Meshworks of Big Science Astronomy

    NASA Astrophysics Data System (ADS)

    Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L. F.; Traweek, S.

    2011-01-01

    Our current research focuses on the trajectory of scientists working with large-scale databases in astronomy, following them as they strategically build their careers, digital infrastructures, and make their epistemological commitments. We look specifically at how gender, ethnicity, nationality intersect in the process of subject formation in astronomy, as well as in the process of enrolling partners for the construction of instruments, design and implementation of large-scale databases. Work once figured as merely technical support, such assembling data catalogs, or as graphic design, generating pleasing images for public support, has been repositioned at the core of the field. Some have argued that such databases enable a new kind of scientific inquiry based on data exploration, such as the "fourth paradigm" or "data-driven" science. Our preliminary findings based on oral history interviews and ethnography provide insights into meshworks of women, African-American, "Hispanic," Asian-American and foreign-born astronomers. Our preliminary data suggest African-American men are more successful in sustaining astronomy careers than Chicano and Asian-American men. A distinctive theme in our data is the glocal character of meshworks available to and created by foreign-born women astronomers working at US facilities. Other data show that the proportion of Asian to Asian American and foreign-born Latina/o to Chicana/o astronomers is approximately equal. Futhermore, Asians and Latinas/os are represented in significantly greater numbers than Asian Americans and Chicanas/os. Among professional astronomers in the US, each ethnic minority group is numbered on the order of tens, not hundreds. Project support is provided by the NSF EAGER program to University of California, Los Angeles under award 0956589.

  9. Recent Activity at the Astronomical Photographic Data Archive

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Barker, T.

    2011-01-01

    The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 300 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 100,000 photographic plates and film collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, that were built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. We will present the status of GAMMA II and the recent donations of astronomical plates and current research projects.

  10. Foreword

    NASA Astrophysics Data System (ADS)

    Schneider, J.

    This book deals with the, happy, encounter of one of the oldest well-formulated scientific questions, namely the quest for “other worlds”, with one of the most sophisticated developments in astronomical instrumentation, high contrast imaging. The quest for other worlds started indeed with the Greeks and has led, until the first scientific approach by Huygens in 1698, only to speculations by thinkers like Epicurus, Bruno, Descartes etc. A more profound question behind these other worlds is the existence of life outside the Solar System. It occupies a remarkable place in science: it is in the forefront of science and at the same time it is one of the easiest to understand by the general public and its philosophical and psychological subfoundations provides strong motivations to researchers. Until the recent times, astronomical instrumentation was powerless to detect the other planetary systems. Starting in the late '30s, the search for extrasolar planets has first begun with astrometry. After some unfortunate false alarms (e.g. the case of the Barnard star), no exoplanet could be detected until the late '80s. The first successes came from the radial velocity and the pulsar timing techniques. These discoveries by the way present an interesting case of the non-linearity of the development of science. On the one hand, what was found was a series of complete surprises. On the other hand, with the interplay of announcements, retractations, rediscoveries of planets and the ambiguities of the mass value for the planets γ Cephei b, ɛ Eridani b and HD 114762 b, it is not easy to tell what was the first planet discovered. All these discoveries, making use of the parent star's wobble, detect the planets only indirectly, they do not “see” it. The amount of informations on the planet is rather poor and the stellar wobble alone does not help for the goal behind all these efforts: the detection of extrasolar life. Here then comes the main topic of the present book: the development of high contrast imaging techniques. The high contrast is mandatory because the planets are so faint compared to their parent stars. Since they are so close to the star, they also required a sufficient angular resolution. These two areas of astronomical instruments are experiencing spectacular developments, both in the domain of interferometry and in coronagraphy. They lead to ambitious instrumental developments at the major ground-based telescopes (such as the Very Large Telescope operated by the European Southern Observatory Organization) and space mission projects such as the european Darwin project and the numerous NASA projects. Major preliminary technological efforts on subsystems and components such as adaptive optics, coronagraphic masks are necessary. The european astronomical community is very active in both the scientific and the instrumental aspects of the search for planets by imaging. Some of its members have met for one week and this volume presents an up-to-date account of this promising field of research.

  11. Infrared Astrophysics in the SOFIA Era - An Overview

    NASA Astrophysics Data System (ADS)

    Yorke, Harold W.

    2018-06-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) provides the international astronomical community access to a broad range of instrumentation that covers wavelengths spanning the near to far infrared. The high spectral resolution of many of these instruments in several wavelength bands is unmatched by any existing or near future planned facility. The far infrared polarization capabilities of one of its instruments, HAWC+, is also unique. Moreover, SOFIA allows for additional instrument augmentations, as new state-of-the-art photometric, spectrometric, and polarimetric capabilities have been added and are being further improved. The fact that SOFIA provides ample mass, power, computing capabilities as well as 4K cooling eases the constraints on future instrument design, technical readiness, and the instrument build to an extent not possible for space-borne missions. We will review SOFIA's current and future planned capabilities and highlight specific science areas for which the stratospheric observatory will be able to significantly advance Origins science topics.

  12. Beyond MOS and Fibers: Wide-FoV Imaging Fourier Transform Spectroscopy - an Instrumentation Proposal for the Present and Future Mexican Telescopes

    NASA Astrophysics Data System (ADS)

    Rosales-Ortega, F. F.; Castillo, E.; Sánchez, S. F.; Iglesias-Páramo, J.; Mollá, J. I. M.; Chávez, M.

    2016-10-01

    In order to extend the current suite of instruments offered in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE), and to explore a second-generation instrument for the future 6.5 m Telescopio San Pedro Martir (TSPM), we propose a prototype instrument that will provide un-biased wide-field (few arcmin) spectroscopic information, with the flexibility of operating at different spectral resolutions (R˜1-104), with a spatial resolution limited by seeing, and therefore to be used in a wide range of astronomical problems. This instrument will make use of the Fourier Transform Spectroscopy technique, which has been proved to be feasible in the optical wavelength range. Here we give the basic technical description of a Fourier transform spectrograph, as well as the technical advantages and weaknesses, and the science cases in which this instrument can be implemented.

  13. On the Trail of a Cosmic Cat

    NASA Astrophysics Data System (ADS)

    2010-01-01

    ESO has just released a stunning new image of the vast cloud known as the Cat's Paw Nebula or NGC 6334. This complex region of gas and dust, where numerous massive stars are born, lies near the heart of the Milky Way galaxy, and is heavily obscured by intervening dust clouds. Few objects in the sky have been as well named as the Cat's Paw Nebula, a glowing gas cloud resembling the gigantic pawprint of a celestial cat out on an errand across the Universe. British astronomer John Herschel first recorded NGC 6334 in 1837 during his stay in South Africa. Despite using one of the largest telescopes in the world at the time, Herschel seems to have only noted the brightest part of the cloud, seen here towards the lower left. NGC 6334 lies about 5500 light-years away in the direction of the constellation Scorpius (the Scorpion) and covers an area on the sky slightly larger than the full Moon. The whole gas cloud is about 50 light-years across. The nebula appears red because its blue and green light are scattered and absorbed more efficiently by material between the nebula and Earth. The red light comes predominantly from hydrogen gas glowing under the intense glare of hot young stars. NGC 6334 is one of the most active nurseries of massive stars in our galaxy and has been extensively studied by astronomers. The nebula conceals freshly minted brilliant blue stars - each nearly ten times the mass of our Sun and born in the last few million years. The region is also home to many baby stars that are buried deep in the dust, making them difficult to study. In total, the Cat's Paw Nebula could contain several tens of thousands of stars. Particularly striking is the red, intricate bubble in the lower right part of the image. This is most likely either a star expelling large amount of matter at high speed as it nears the end of its life or the remnant of a star that already has exploded. This new portrait of the Cat's Paw Nebula was created from images taken with the Wide Field Imager (WFI) instrument at the 2.2-metre MPG/ESO telescope at the La Silla Observatory in Chile, combining images taken through blue, green and red filters, as well as a special filter designed to let through the light of glowing hydrogen. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. Herzberg Institute of Astrophysics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Herzberg Institute of Astrophysics (HIA) is the Institute within the NATIONAL RESEARCH COUNCIL of Canada responsible for providing astronomical facilities, and developing related instrumentation and software for Canadian researchers. The Institute was established in 1975, and now operates 1.8 m and 1.2 m optical telescopes at the DOMINION ASTROPHYSICAL OBSERVATORY close to Victoria, BC, as we...

  15. Popularization of Astronomy: From Models of the Cosmos to Stargazing

    ERIC Educational Resources Information Center

    Wolfschmidt, Gudrun

    2007-01-01

    "Raritäten-und Wunderkammern" of the Baroque period were a microscopic image of the macroscopic world, in which astronomical instruments, orreries and celestial globes played an important role. The Gottorf globe in the ducal castle in Schleswig (1664) and, much later, the Atwood sphere in Chicago (1913) allowed demonstration of star…

  16. NPOI: recent technology and science

    NASA Astrophysics Data System (ADS)

    Benson, James A.; Hutter, Donald J.; Johnston, Kenneth J.; Zavala, Robert T.; White, Nathaniel M.; Pauls, Thomas A.; Gilbreath, G. C.; Armstrong, J. T.; Hindsley, Robert B.

    2004-10-01

    We describe recent science projects that the Navy Prototype Optical Interferometer (NPOI) scientific staff and collaborators are pursuing. Recent results from the wide angle astrometric program and imaging programs (rapid rotators, binaries and Be stars) will be summarized. We discuss some of the technology that enables the NPOI to operate routinely as an observatory astronomical instrument.

  17. Crabtree, William (1610-44)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Instrument-maker and astronomer, born in Broughton, Lancashire, England, studied sunspots, made precise observations of the planets, including a transit of Venus. Crabtree collaborated with HORROCKS who predicted the transit. Horrocks described his friend Crabtree as `a man who has few superiors in mathematical learning' and described how awestruck Crabtree had been on perceiving the little disc ...

  18. JWST NIRCam Time Series Observations

    NASA Technical Reports Server (NTRS)

    Greene, Tom; Schlawin, E.

    2017-01-01

    We explain how to make time-series observations with the Near-Infrared camera (NIRCam) science instrument of the James Webb Space Telescope. Both photometric and spectroscopic observations are described. We present the basic capabilities and performance of NIRCam and show examples of how to set its observing parameters using the Space Telescope Science Institute's Astronomer's Proposal Tool (APT).

  19. The General History of Astronomy

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen

    2010-04-01

    Foreword; Preface; Acknowledgements; Part I. The Birth of Astrophysics and Other Late Nineteenth-Century Trends (c.1850-c.1920); 1. The origins of astrophysics A. J. Meadows; 2. The impact of photography on astronomy John Lankford; 3. Telescope building, 1850-1900 Albert Van Helden; 4. The new astronomy A. J. Meadows; 5. Variable stars Helen Sawyer Hogg; 6. Stellar evolution and the origin of the Hertzsprung-Russell diagram David DeVorkin; Part II. Observatories and Instrumentation: 7. Astronomical institutions. Introduction Owen Gingerich, Greenwich Observatory Philip S. Laurie, Paris Observatory Jacques Lévy, Pulkovo Observatory Aleksandr A. Mikhailov, Harvard College Observatory Howard Plotkin, United States Naval Observatory Deborah Warner, Lick Observatory Trudy E. Bell, Potsdam Astrophysical Observatory Dieter B. Herrmann; 8. Building large telescopes, 1900-1950 Albert Van Helden; 9. Astronomical institutions in the southern hemisphere, 1850-1950 David S. Evans; 10. Twentieth-century instrumentation Charles Fehrenbach, with a section on 'Early rockets in astronomy' Herbert Friedman; 11. Early radio astronomy Woodruff T. Sullivan III; Appendix: The world's largest telescopes, 1850-1950 Barbara L. Welther; Illustrations: acknowledgements and sources; Index.

  20. Fitting and Modeling in the ASC Data Analysis Environment

    NASA Astrophysics Data System (ADS)

    Doe, S.; Siemiginowska, A.; Joye, W.; McDowell, J.

    As part of the AXAF Science Center (ASC) Data Analysis Environment, we will provide to the astronomical community a Fitting Application. We present a design of the application in this paper. Our design goal is to give the user the flexibility to use a variety of optimization techniques (Levenberg-Marquardt, maximum entropy, Monte Carlo, Powell, downhill simplex, CERN-Minuit, and simulated annealing) and fit statistics (chi (2) , Cash, variance, and maximum likelihood); our modular design allows the user easily to add their own optimization techniques and/or fit statistics. We also present a comparison of the optimization techniques to be provided by the Application. The high spatial and spectral resolutions that will be obtained with AXAF instruments require a sophisticated data modeling capability. We will provide not only a suite of astronomical spatial and spectral source models, but also the capability of combining these models into source models of up to four data dimensions (i.e., into source functions f(E,x,y,t)). We will also provide tools to create instrument response models appropriate for each observation.

  1. Astronomical Optical Interferometry. I. Methods and Instrumentation

    NASA Astrophysics Data System (ADS)

    Jankov, S.

    2010-12-01

    Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  2. TALON: the telescope alert operation network system: intelligent linking of distributed autonomous robotic telescopes

    NASA Astrophysics Data System (ADS)

    White, Robert R.; Wren, James; Davis, Heath R.; Galassi, Mark; Starr, Daniel; Vestrand, W. T.; Wozniak, P.

    2004-09-01

    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.

  3. New technology and techniques for x-ray mirror calibration at PANTER

    NASA Astrophysics Data System (ADS)

    Freyberg, Michael J.; Budau, Bernd; Burkert, Wolfgang; Friedrich, Peter; Hartner, Gisela; Misaki, Kazutami; Mühlegger, Martin

    2008-07-01

    The PANTER X-ray Test Facility has been utilized successfully for developing and calibrating X-ray astronomical instrumentation for observatories such as ROSAT, Chandra, XMM-Newton, Swift, etc. Future missions like eROSITA, SIMBOL-X, or XEUS require improved spatial resolution and broader energy band pass, both for optics and for cameras. Calibration campaigns at PANTER have made use of flight spare instrumentation for space applications; here we report on a new dedicated CCD camera for on-ground calibration, called TRoPIC. As the CCD is similar to ones used for eROSITA (pn-type, back-illuminated, 75 μm pixel size, frame store mode, 450 μm micron wafer thickness, etc.) it can serve as prototype for eROSITA camera development. New techniques enable and enhance the analysis of measurements of eROSITA shells or silicon pore optics. Specifically, we show how sub-pixel resolution can be utilized to improve spatial resolution and subsequently the characterization of of mirror shell quality and of point spread function parameters in particular, also relevant for position reconstruction of astronomical sources in orbit.

  4. James Cook's 1769 transit of Venus expedition to Tahiti

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    2005-04-01

    After the failure of the 1761 transit to provide a reliable value for the astronomical unit, the focus shifted to the 1769 event, and Britain mounted an ambitious program, with overseas observing parties dispatched to North Cape (Norway), Hudson Bay (Canada) and newly-discovered Tahiti in the Pacific. Lieutenant James Cook was in charge of the Tahitian expedition, ably assisted by fellow-astronomer, Charles Green, and they were supplied by the Royal Society and the Royal Observatory at Greenwich with telescopes and other scientific instruments. The main observing site was set up at Fort Venus, and supplementary transit stations were established on Irioa Island (Moorea) and Taaupiri Island (off the east coast of Tahiti). June 3 was warm and clear, and all observers successfully recorded the transit, but on the journey home `the curse of the transit' prevailed and more than half of them fell ill and died. Back in England, Cook wrote up the transit observations for the Philosophical Transactions of the Royal Society, but for some inexplicable reason only used data obtained at Fort Venus. It was left to Oxford astronomer, Professor Thomas Hornsby, to derive a meaningful figure for the solar parallax, and he utilized the Tahitian data and observations made at four other sites to arrive at a figure of 8.78''. But discordant results obtained by other researchers fuelled controversy over the effectiveness of transits of Venus as a valid means of determining the astronomical unit. In fact, the solar parallax obtained by Hornsby was remarkably similar to the currently-accepted value of 8.794148'', thereby discrediting Beaglehole's oft-quoted claim that the Tahitian observations were a failure. Although more than a dozen men were involved in the Tahitian transit program, most of their records have been lost, and remarkably few of the instruments they employed can now be identified. Yet for those of us with Pacific affiliations, Cook's first voyage to the South Seas occupies a special place in transit of Venus history.

  5. Precision mechanisms for optics in a vacuum cryogenic environment

    NASA Astrophysics Data System (ADS)

    Navarro, R.; Elswijk, E.; Tromp, N.; Kragt, J.; Kroes, G.; Hanenburg, H.; de Haan, M.; Schuil, M.; Teuwen, M.; Janssen, H.; Venema, L.

    2017-11-01

    To achieve superb stability in cryogenic optical systems, NOVA-ASTRON generally designs optical instruments on the basis of a 'no adjustments' philosophy. This means that in principle no corrections are possible after assembly. The alignment precision and consequently the performance of the instrument is guaranteed from the design, the tolerance analysis and the detailed knowledge of the material behavior and manufacturing process. This resulted in a higher degree of integrated optomechanical-cryogenic design with fewer parts, but with a higher part complexity. The 'no adjustments' strategy is successful because in the end the risk on instrument performance and project delays is much reduced. Astronomical instrument specifications have become more challenging over the years. Recent designs of the European Southern Observatory Very Large Telescope Interferometer (ESO VLTI) 4 Telescope combiner MATISSE include hundreds of optical components in a cryogenic environment. Despite the large number of optical components the alignment accuracy and stability requirements are in the order of nanometers. The 'no adjustments' philosophy would be too costly in this case, because all components would need to meet extremely tight manufacturing specifications. These specifications can be relaxed dramatically if cryogenic mechanisms are used for alignment. Several mechanisms have been developed: a tip-tilt mirror mechanism, an optical path distance mechanism, a slider mechanism, a bistable cryogenic shutter and a mirror mounting clip. Key aspects of these mechanisms are that the optical element and mechanism are combined in a compact single component, driven by e.g. self braking piezo actuators in order to hold position without power. The design, realization and test results of several mechanisms are presented in this paper.

  6. Astronomy and public outreach in Serbia (1934-2009)

    NASA Astrophysics Data System (ADS)

    Stanic, N.

    2008-06-01

    The astronomical community in Serbia has grown significantly over the last few decades, despite the departure overseas of much home-grown talent. Serbia celebrates three important anniversaries in 2007 - 150 years since the birth of Milan Nedeljkovic, who introduced the first astronomical subjects to the Faculty of Mathematics in 1884, and founded the Astronomical Observatory in Belgrade in 1887; 120 years of the Belgrade Astronomical Observatory and 75 years since the construction of the complex of buildings and telescopes at the Astronomical Observatory in Belgrade. The Astronomy Department at the Faculty of Mathematics in Belgrade has produced many excellent scientists working today at telescopes (Arecibo, Sidney, VLA, Hawaii etc.) and universities (California, Toronto, Sidney, Illinois, MIT etc.) around the world. Since 2005, students have also been able to study astronomy at the University of Novi Sad, Serbia (Faculty of Physics). Today there are more than 20 amateur astronomical societies in Serbia, two magazines of popular astronomy, one Youth Science Centre (Petnica), two Public Observatories and two Planetariums. If the social and media network formed in October 2007 can deliver even the minimum of the expected results, six million people in Serbia should easily be familiar with IYA2009 goals, related Cornerstone Projects and particular goals in Serbia for 2009.

  7. One hundred years of earthquake recording at the University of California

    USGS Publications Warehouse

    Bolt, B. A.

    1987-01-01

    The best seismographs then available arrived from England in 1887 and were installed at Lick Observatory on Mt.Hamilton and at the Students Astronomical Observatory on the Berkeley campus. The first California earthquake recorded by the Lick instrument was on April 24, 1887. These seismographic stations have functioned continuously from their founding to the present day, with improvements in instruments from time to time as technology advanced. Now they are part of a sesimogrpahic network of 16 stations recording with great completeness both local and distant earthquakes. 

  8. Stratospheric observatory for infrared astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have instrumentation that will allow astronomical surveys that were not possible on the KAO. A future SOFIA survey project related to astrochemistry is discussed.

  9. Automated Reduction and Calibration of SCUBA Archive Data Using ORAC-DR

    NASA Astrophysics Data System (ADS)

    Jenness, T.; Stevens, J. A.; Archibald, E. N.; Economou, F.; Jessop, N.; Robson, E. I.; Tilanus, R. P. J.; Holland, W. S.

    The Submillimetre Common User Bolometer Array (SCUBA) instrument has been operating on the James Clerk Maxwell Telescope (JCMT) since 1997. The data archive is now sufficiently large that it can be used for investigating instrumental properties and the variability of astronomical sources. This paper describes the automated calibration and reduction scheme used to process the archive data with particular emphasis on the pointing observations. This is made possible by using the ORAC-DR data reduction pipeline, a flexible and extensible data reduction pipeline that is used on UKIRT and the JCMT.

  10. Flight software operation of the Hubble Space Telescope fine guidance sensor

    NASA Technical Reports Server (NTRS)

    Rodden, J. J.; Dougherty, H. J.; Cormier, D. J.

    1988-01-01

    The Hubble Space Telescope (HST) is to carry five major scientific instruments to collect imagery, spectrographic, and photometric astronomical data. The Pointing Control System is designed to achieve pointing accuracies and line of sight jitter levels an order of magnitude less than can be achieved with ground mounted telescopes. This paper describes the operation of the pointing control system flight software in targeting a celestial object in a science instrument aperture and in performing the coordinate transformations necessary for commanding the fine guidance sensor and determining the attitude-error corrections.

  11. Star Formation Studies in the SPICA/SAFARI Era

    NASA Astrophysics Data System (ADS)

    Sibthorpe, Bruce; Goicoechea, Javier

    2013-07-01

    The Japanese JAXA SPICA space observatory, due for launch in 2022, will provide astronomers with a long awaited new window on the universe. Having a large cold telescope, cooled to only 6K above absolute zero, SPICA will provide a unique environment in which instruments are limited only by the cosmic background itself. A consortium of European and Canadian institutes has been established to design and implement the SpicA FAR infrared Instrument, SAFARI, an imaging FTS spectrometer designed to fully exploit this extremely low far infrared background environment provided by the SPICA observatory. With SAFARI it will be possible to obtain continuous spectra spanning 34 -\\ 210 um within an instantaneous 2'x2' field-of-view, at spectral resolutions of up to R = 2000 @ 100um (4000 @ 50um), within a single telescope pointing. This capability, coupled with the exquisite sensitivity provided by the cold SPICA telescope, makes SAFARI the ideal instrument to perform large area spectroscopic mapping surveys in the far-infrared. SPICA/SFARI will provide new insights into a range of astronomical sources. By obtaining spectra for large, statistically significant samples, we can obtain a fundamental understanding of their chemistry and physical processes, and thereby characterise and understand the nature of these sources. Moreover, with the high sensitivity of SAFARI, it will be possible to extend current far-infrared studies of star formation processes to nearby galaxies, thereby putting our current understanding in a wider, universal, context. This poster provides a description of the SAFARI instrument and its capabilities. A brief representative sample of the contribution SAFARI can make in the field of star formation studies is also given, and compared to similar observations made using the Herschel-PACS instrument.

  12. SAFARI new and improved: extending the capabilities of SPICA's imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Roelfsema, Peter; Giard, Martin; Najarro, Francisco; Wafelbakker, Kees; Jellema, Willem; Jackson, Brian; Sibthorpe, Bruce; Audard, Marc; Doi, Yasuo; di Giorgio, Anna; Griffin, Matthew; Helmich, Frank; Kamp, Inga; Kerschbaum, Franz; Meyer, Michael; Naylor, David; Onaka, Takashi; Poglitch, Albrecht; Spinoglio, Luigi; van der Tak, Floris; Vandenbussche, Bart

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics, SPICA, aims to provide astronomers with a truly new window on the universe. With a large -3 meter class- cold -6K- telescope, the mission provides a unique low background environment optimally suited for highly sensitive instruments limited only by the cosmic background itself. SAFARI, the SpicA FAR infrared Instrument SAFARI, is a Fourier Transform imaging spectrometer designed to fully exploit this extremely low far infrared background environment. The SAFARI consortium, comprised of European and Canadian institutes, has established an instrument reference design based on a Mach-Zehnder interferometer stage with outputs directed to three extremely sensitive Transition Edge Sensor arrays covering the 35 to 210 μm domain. The baseline instrument provides R > 1000 spectroscopic imaging capabilities over a 2' by 2' field of view. A number of modifications to the instrument to extend its capabilities are under investigation. With the reference design SAFARI's sensitivity for many objects is limited not only by the detector NEP but also by the level of broad band background radiation - the zodiacal light for the shorter wavelengths and satellite baffle structures for the longer wavelengths. Options to reduce this background are dedicated masks or dispersive elements which can be inserted in the optics as required. The resulting increase in sensitivity can directly enhance the prime science goals of SAFARI; with the expected enhanced sensitivity astronomers would be in a better position to study thousands of galaxies out to redshift 3 and even many hundreds out to redshifts of 5 or 6. Possibilities to increase the wavelength resolution, at least for the shorter wavelength bands, are investigated as this would significantly enhance SAFARI's capabilities to study star and planet formation in our own galaxy.

  13. Major Conference about Astronomical Technology in Munich

    NASA Astrophysics Data System (ADS)

    2000-03-01

    Press Conference on Monday, March 27, 2000 Which are the latest astronomical discoveries made with the new 8-10 metre class astronomical telescopes? Will it be possible to construct even more powerful instruments on the ground and in space to explore the near and distant Universe at all wavelengths from gamma-rays to radio waves? Which research areas in this dynamical science are likely to achieve break-throughs with emerging new technologies? These are some of the central themes that will be discussed by more than 600 specialists from all over the world at an international conference in Munich (Germany), "Astronomical Telescopes and Instruments 2000" , beginning on Monday, March 27, 2000. During five days, the modern architecture of the new International Congress Center in the Bavarian capital will be the scene of lively exchanges about recent progress at the world's top-class astronomical research facilities and the presentation of inspired new ideas about future technological opportunities. The conference will be accompanied by numerous on-site exhibition stands by the major industries and research organisations in this wide field. This meeting is the latest in a series, organised every second year, alternatively in the USA and Europe by the International Society for Optical Engineering (SPIE) , this year with the European Southern Observatory (ESO) as co-sponsor and host institution. The conference will be opened in the morning of March 27 by the Bavarian Minister of Science, Research and Arts, Hans Zehetmair . His address will be followed by keynote speeches by Massimo Tarenghi (European Southern Observatory), James B. Breckenridge (National Science Foundation, USA), Harvey Butcher (Netherlands Foundation for Research in Astronomy) and Albrecht Ruediger (Max Planck Institut für Quantenoptik, Germany). The conference is subtitled "Power Telescopes and Instrumentation into the New Millennium" and will be attended by leading scientists and engineers from all continents. There will be plenary sessions and specialised working group meetings on virtually all subject areas related to modern astronomical technology, ranging from optical design, materials and fabrication to telescope structures, detectors and the associated discovery and research prospects. While the performance and results from the new, large ground-based facilities like the ESO Very Large Telescope (VLT) will constitute one of the focal points, much attention will also be devoted to new projects in space astronomy, e.g., the Next Generation Space Telescope (NGST) , the planned successor to the Hubble Space Telescope (HST). Other space missions to be discussed are the XMM-Newton and Chandra X-Ray observatories. Radio Telescopes , herunder the projected Atacama Large Millimetre Array (ALMA) , as well as Optical Interferometry are other hot subjects, as are the current plans for optical telescopes in the extremely large class , with surface diameters of 30 - 100 metres. Press Conference An international Press Conference will be held at the meeting site in the Munich International Conference Center on Monday, March 27, at 12:15 hrs local time (CET) . It will be attended by some of the key participants, with possibilities for individual interviews. More information about the Press Conference is available from

  14. Getting organized: A history of amateur astronomy in the United States

    NASA Astrophysics Data System (ADS)

    Williams, Thomas R.

    2000-10-01

    During the twentieth century, American amateur astronomers attempted to form national organizations with structures and intents similar to the British Astronomical Association (BAA), an amateur organization dedicated to the advancement of astronomy and widely admired by American amateurs and professionals alike. The Society for Practical Astronomy (1910), the American Amateur Astronomers Association (1935), and the National Astronomical Association (1945) were each intended to facilitate amateur scientific contributions in BAA-like topical sections, but each of these societies failed. Founded in 1911, the American Association of Variable Star Observers (AAVSO) and the American Meteor Society (AMS) provided an alternative for amateur astronomers who were interested in those specific topics. However, it was not until 1947, when the Association of Lunar and Planetary Observers (ALPO) formed, that another large segment of amateur astronomers found a home for their interests. A second mode of national organization succeeded at mid- century and grew to include most avocational astronomers. Founded in 1947, the Astronomical League consists of regional associations of local societies, and is oriented largely towards recreational astronomy. The League sponsors annual national and regional conventions, but contributes little to scientific programs. This study concludes that avocational astronomy cannot simply be compared with professional astronomy, and instead must be viewed on its own terms as a complex and variegated field. Although the failure of American amateurs to form a BAA-like organization was at first disappointing, the specialized associations of observers, together with a separate and larger organization devoted to recreational astronomy, have served the American astronomical community well. Professional support for both types of activity was facilitated in this mode of organization. The style in which professional support is rendered appears to be important, with strong volunteer member leadership more effective than a benevolent dictatorship by professionals. A journal in which amateur astronomers may publish observations, discuss techniques and share insights is critical for scientifically oriented associations, and provided a driving force for organizing and maintaining such associations.

  15. Hubble Space Telescope First Servicing Mission Prelaunch Mission Operation Report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Hubble Space Telescope (HST) is a high-performance astronomical telescope system designed to operate in low-Earth orbit. It is approximately 43 feet long, with a diameter of 10 feet at the forward end and 14 feet at the aft end. Weight at launch was approximately 25,000 pounds. In principle, it is no different than the reflecting telescopes in ground-based astronomical observatories. Like ground-based telescopes, the HST was designed as a general-purpose instrument, capable of using a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic allows the HST to be used as a national facility, capable of supporting the astronomical needs of an international user community. The telescope s planned useful operational lifetime is 15 years, during which it will make observations in the ultraviolet, visible, and infrared portions of the spectrum. The extended operational life of the HST is possible by using the capabilities of the Space Transportation System to periodically visit the HST on-orbit to replace failed or degraded components, install instruments with improved capabilities, re-boost the HST to higher altitudes compensating for gravitational effects, and to bring the HST back to Earth when the mission is terminated. The largest ground-based observatories, such as the 200-inch aperture Hale telescope at Palomar Mountain, California, can recognize detail in individual galaxies several billion light years away. However, like all earthbound devices, the Hale telescope is limited because of the blurring effect of the Earth s atmosphere. Further, the wavelength region observable from the Earth s surface is limited by the atmosphere to the visible part of the spectrum. The very important ultraviolet portion of the spectrum is lost. The HST uses a 2.4-meter reflective optics system designed to capture data over a wavelength region that reaches far into the ultraviolet and infrared portions of the spectrum.

  16. Nikolay N. Donitch - the astronomer

    NASA Astrophysics Data System (ADS)

    Gaina, Alex B.; Volyanskaya, M. Yu.

    1999-08-01

    The article is devoted to milestones of life and scientific activity of the eminent astronomer Nikolay Nikolaevich Donitch (Nicolae N. Donici) (1874-1956), a graduate from the Odessa (Novorossiski) university. He was a wellknown expert in the field of reseacrh of objects of Solar system. A person highly cultured, which built the first in Bessarabia (actually a part of the Republic of Moldova) observatory. He was borne in Kishinev (Chisinau) in a nobles family of notable Moldavian landersmen. N.D. graduated from the Richelieu lyceym in Odessa and afterwards, in 1897, graduated from the Odessa (Novorossiysky) University. A.K. Kononovich (1850-1910)headed the chair of astronomy and the Observatory at that time - a foremost authority in the field of astrophysics and stellar astronomy. Many of his disciples became eminent scientists of their time. N. Donitch was among them. N.D. worked till 1918 at Pulkovo Observatory and became a master in the field of studying of such phenomena as solar and lunar eclipses. To observe the Sun N.D., could afford to design and manufacture a spectroheliograph, the first in Russia, with the assistance of a famous Odessa mechanic J.A. Timchenko. This instrument enabled him to obtain topquality photos of the Sun's surface and prominences. It was mounted together with coelostat in the private observatory of N.D. , built in the village Staryie Doubossary in 1908. Besides the heliograoph, the observatory was equiped with a five inch refractor-equatorial with numerous instruments for various observations. Of the other instruments should be mentioned : "a comet triplet" - an instrument consisting of guiding refractor, a photographic camera and a spectrograph with an objective prism. N.D. was lucky enough to observe rare astronomical phenomena. He observed the transit of Mercury through the disk of the Sun on November 14, 1907 and showed the athmosphere absence around this planet, observed the Halley's comet in 1910, the bright Pons-Winneke comet in 1927. In 1933 he was cartying out observations of Saturn and determined the rotational period of the planet. Eight scientific papers on the zodiacal light investigations were published by N.D.. Due to a H. Shapley's recommmendation he obtained in his observatory a number of stelar sky photos. N.N. Donitch was a brillant personality in the astronomical community of his time. He was a member of many scientific societies. Hard and sad times came to Donitch during the last years of his life. At first he leaved Bessarabia for Bucharest (1940), then Romania for Germany (1944), then Germany for France (1945), where he worked at the Meudon Observatory. At last he found himself under tryiung financial situation. According to some findings he spent the last days in an old men house near Nice and died in 1956.

  17. Improved Mirror Coatings for Use in the Lyman Ultraviolet to Enhance Astronomical Instrument Capabilities

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Del Hoyo, Javier; Boris, David R.; Walton, Scott

    2017-01-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  18. Improved mirror coatings for use in the Lyman Ultraviolet to enhance astronomical instrument capabilities

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; del Hoyo, Javier; Boris, David R.; Walton, Scott G.

    2017-09-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with fluorine ions in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  19. H2RG Detector Characterization for RIMAS and Instrument Efficiencies

    NASA Technical Reports Server (NTRS)

    Toy, Vicki L.; Kutyrev, Alexander S.; Capone, John I.; Hams, Thomas; Robinson, F. David; Lotkin, Gennadiy N.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2016-01-01

    The Rapid infrared IMAger-Spectrometer (RIMAS) is a near-infrared (NIR) imager and spectrometer that will quickly follow up gamma-ray burst afterglows on the 4.3-meter Discovery Channel Telescope (DCT). RIMAS has two optical arms which allows simultaneous coverage over two bandpasses (YJ and HK) in either imaging or spectroscopy mode. RIMAS utilizes two Teledyne HgCdTe H2RG detectors controlled by Astronomical Research Cameras, Inc. (ARC/Leach) drivers. We report the laboratory characterization of RIMAS's detectors: conversion gain, read noise, linearity, saturation, dynamic range, and dark current. We also present RIMAS's instrument efficiency from atmospheric transmission models and optics data (both telescope and instrument) in all three observing modes.

  20. The space telescope scientific instruments

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.

    1980-01-01

    The paper describes the space telescope with a 2.4 m aperture to be launched at 500 km altitude in late 1983. Four axial-bay and one radial-bay scientific instrument, a wide-field and planetary camera, a faint-object camera, a faint-object spectrograph, and a high-speed photometer are to be installed to conduct the initial observations. The axial instruments are constrained to envelopes with dimensions 0.9 x 0.9 x 2.2 m and their masses cannot exceed 317 kg. The observatory will also be equipped with fine-guidance sensors and a microprocessor. The design concepts of the instruments are outlined and some of the astronomical capabilities including studies of distant and local galaxies, physical properties of quasars, interrelations between quasars and active galactic nuclei are mentioned.

  1. The Einstein Observatory: A New Public/Private Observatory Complex for Community Education and Scientific Research

    NASA Astrophysics Data System (ADS)

    Sowell, J.

    1999-12-01

    The Development Authority of Cherokee County (Georgia) is leading a public/private partnership of business/industry professionals, educators, and university scientists that seeks to develop a national prototype educational and scientific research facility for grades K-12, as well as college-level research, that will inspire our youth to become literate in science and technology. In particular, the goal is to make this complex a science, math, and engineering magnet learning facility and to raise the average SAT scores of local area students by 100 points. A dark-site mountain, nestled on the foothills of the Blue Ridge Mountains at the northern-most edge of Atlanta, will become the home for the "Einstein" Observatory. The complex will have four telescopes: one 50-inch, one 24-inch, and two 16-inch telescopes. Each telescope will have digital cameras and an optic-fiber feed to a single, medium-resolution spectroscope. All four telescopes will be electronically accessible from local schools. Professional astronomers will establish suitable observational research projects and will lead K-12 and college students in the acquisition and analysis of data. Astronomers will also assist the local area schoolteachers in methods for nurturing children's scientific inquiry. The observatory mountain will have 100 platform locations for individual viewing by visiting families, school groups, and amateur astronomers. The Atlanta Astronomer Club will provide numerous evening programs and viewing opportunities for the general public. An accompanying Planetarium & Science Center will be located on the nearby campus of Reinhardt College. The Planetarium & Science Center will be integrated with Reinhardt College's theme of learning focused upon studying the past and present as a basis for projecting the future.

  2. Object classification and outliers analysis in the forthcoming Gaia mission

    NASA Astrophysics Data System (ADS)

    Ordóñez-Blanco, D.; Arcay, B.; Dafonte, C.; Manteiga, M.; Ulla, A.

    2010-12-01

    Astrophysics is evolving towards the rational optimization of costly observational material by the intelligent exploitation of large astronomical databases from both terrestrial telescopes and spatial mission archives. However, there has been relatively little advance in the development of highly scalable data exploitation and analysis tools needed to generate the scientific returns from these large and expensively obtained datasets. Among the upcoming projects of astronomical instrumentation, Gaia is the next cornerstone ESA mission. The Gaia survey foresees the creation of a data archive and its future exploitation with automated or semi-automated analysis tools. This work reviews some of the work that is being developed by the Gaia Data Processing and Analysis Consortium for the object classification and analysis of outliers in the forthcoming mission.

  3. The Development of Astronomy in Korea and the Emergence of Astrophysics in South Korea

    NASA Astrophysics Data System (ADS)

    Nha, Il-Seong; L. Nha, Sarah; Orchiston, Wayne

    There are two books and one review paper that have been written about the history of astronomy in Korea. Chronologically, they are the review paper "Astronomy in Korea" (Rufus, Transactions of the Korea Branch of the Royal Asiatic Society, XXVI, 1-69, 1936), and the books The Hall of Heavenly Records, Korean Astronomical Instruments and Clocks 1380-1780 (Needham et al., Cambridge University Press, Cambridge, 1986a) and History of Astronomy in Korea (Nha, Seoul National University Press, Seoul, 2000). In order to overview the emergence and development of modern astronomy and astrophysics in South Korea, much of the present chapter is based on these three references, along with various papers published by the present authors and other astronomers.

  4. Astronomical near-infrared echelle gratings

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Liang, Ming

    2014-07-01

    High-resolution near-infrared echelle spectrographs require coarse rulings in order to match the free spectral range to the detector size. Standard near-IR detector arrays typically are 2 K x 2 K or 4 K x 4 K. Detectors of this size combined with resolutions in the range 30000 to 100000 require grating groove spacings in the range 5 to 20 lines/mm. Moderately high blaze angles are desirable to reduce instrument size. Echelle gratings with these characteristics have potential wide application in both ambient temperature and cryogenic astronomical echelle spectrographs. We discuss optical designs for spectrographs employing immersed and reflective echelle gratings. The optical designs set constraints on grating characteristics. We report on market choices for obtaining these gratings and review our experiments with custom diamond turned rulings.

  5. Invited Review Article: The Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  6. Invited review article: The Chandra X-ray Observatory.

    PubMed

    Schwartz, Daniel A

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  7. System definition phase and acquisition phase project plan for Small Astronomy Satellite SAS-D

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The objective of the SAS-D project is to conduct spectral distribution studies of celestial ultraviolet sources using an Explorer-class spacecraft launched by a Delta vehicle into a geosynchronous orbit in the last half of 1975. The telescope system is intended for use by guest astronomers for a major portion of the total observing time. The concept of the overall system, designed to resemble functionally the operation of a ground-based observatory, should maximize the usefulness of the instrument to the astronomical community by limiting the amount of special instruction needed to use the spaceborne telescope. The SAS-D mission will obtain information on what stars, nebulae, and galaxies are and how they develop.

  8. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    NASA Technical Reports Server (NTRS)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  9. Keynote presentation: Looking for Zebras When There Are Only Horses (Abstract)

    NASA Astrophysics Data System (ADS)

    Conti, D. M.

    2018-06-01

    (Abstract only) How many times have each of us thought we had made a "scientific discovery" only to realize that we were the victim of our own operational, instrumentation, or processing errors? With amateur astronomers contributing more and more to pro/am collaborations, the quality and credibility of our participation is becoming even more important. This keynote presentation will review some of the common pitfalls in producing research-grade photometry results and will give examples of some "horses" that we thought were really "zebras." In addition, it will present some procedures and new techniques for obtaining higher precision photometry. These will be especially useful in helping amateur astronomers better identify false positives in support of the upcoming TESS exoplanet mission.

  10. Accelerating the Rate of Astronomical Discovery

    NASA Astrophysics Data System (ADS)

    Norris, Ray P. Ruggles, Clive L. N.

    2010-05-01

    Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress - paradigmatic, technological, organisational, and political - examining each issue both from modern and historical perspectives, and drawing lessons to guide future progress. A number of issues were identified which potentially regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.

  11. SpS5: Accelerating the Rate of Astronomical Discovery

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.

    2010-11-01

    Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress: paradigmatic, technological, organizational, and political. It examined each issue both from modern and historical perspectives, and drew lessons to guide future progress. A number of issues were identified which may regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.

  12. The Astronomical Instruments from the Tomb of Xiahou Zao (? - 165BCE) Revisited

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    2012-09-01

    In 1977, archaeologists unearthed a piece of lacquerware from the tomb of Xiahou Zao (?--165BCE), the 2nd Marquis of Ruyin of the Western Han dynasty (206BCE--24ACE). It has been named ``A Lacquerware Article of Unkown Name" for no one understands its function. Our analysis shows that the article is actually a gnomon for the determination of 4 major seasons in ancient Chinese calendar, viz. Spring Equinox, Summer Solstice, Autumn Equinox and Winter Solstice, and the size and function of the article coincide quite well with those of the ``Earth Gnomon-Scale" as described in the Rites of Zhou, a Confucian Classic appeared in the middle of the 2nd century BCE. This is the earliest example of its kind that we have hitherto seen in a complete form. Moreover, the "Disks with 28 Lunar Lodges" from the same tomb have caused a lasting dispute over their possible function. While some scholars believe it to be a pure astrological instrument, others guess that it was an instrument for the measurement of celestial coordinates. Our analysis shows that, with the so-called ``Supporting Frame for the Cosmic Boards" unearthed from the same tomb, the disks can actually be mounted onto the plane of the celestial equator and thus form the earliest and definitely dated example of an equatorial device for astronomical observation that still can be seen in the world.

  13. Building a Smart Portal for Astronomy

    NASA Astrophysics Data System (ADS)

    Derriere, S.; Boch, T.

    2011-07-01

    The development of a portal for accessing astronomical resources is not an easy task. The ever-increasing complexity of the data products can result in very complex user interfaces, requiring a lot of effort and learning from the user in order to perform searches. This is often a design choice, where the user must explicitly set many constraints, while the portal search logic remains simple. We investigated a different approach, where the query interface is kept as simple as possible (ideally, a simple text field, like for Google search), and the search logic is made much more complex to interpret the query in a relevant manner. We will present the implications of this approach in terms of interpretation and categorization of the query parameters (related to astronomical vocabularies), translation (mapping) of these concepts into the portal components metadata, identification of query schemes and use cases matching the input parameters, and delivery of query results to the user.

  14. Derivation of sideband gain ratio for Herschel/HIFI

    NASA Astrophysics Data System (ADS)

    Kester, Do; Higgins, Ronan; Teyssier, David

    2017-03-01

    Context. Heterodyne mixers are commonly used for high-resolution spectroscopy at radio telescopes. When used as a double sideband system, the accurate flux calibration of spectral lines acquired by those detectors is highly dependent on the system gains in the respective mixer sidebands via the so-called sideband gain ratio (SBR). As such, the SBR was one of the main contributors to the calibration uncertainty budget of the Herschel/HIFI instrument. Aims: We want to determine the HIFI instrument sideband gain ratio for all bands on a fine frequency grid and within an accuracy of a few percent. Methods: We introduce a novel technique involving in-orbit HIFI data that is bootstrapped onto standard methods involving laboratory data measurements of the SBR. We deconvolved the astronomical data to provide a proxy of the expected signal at every frequency channel, and extracted the sideband gain ratios from the residuals of that process. Results: We determine the HIFI sideband gain ratio to an accuracy varying between 1 and 4%, with degraded accuracy in higher frequency ranges, and at places where the reliability of the technique is lower. These figures were incorporated into the HIFI data processing pipeline and improved the overall flux uncertainty of the legacy data from this instrument. Conclusions: We demonstrate that a modified sideband deconvolution algorithm, using astronomical data in combination with gas cell measurements, can be used to generate an accurate and fine-granularity picture of the sideband gain ratio behaviour of a heterodyne receiver. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  15. Data processing pipeline for Herschel HIFI

    NASA Astrophysics Data System (ADS)

    Shipman, R. F.; Beaulieu, S. F.; Teyssier, D.; Morris, P.; Rengel, M.; McCoey, C.; Edwards, K.; Kester, D.; Lorenzani, A.; Coeur-Joly, O.; Melchior, M.; Xie, J.; Sanchez, E.; Zaal, P.; Avruch, I.; Borys, C.; Braine, J.; Comito, C.; Delforge, B.; Herpin, F.; Hoac, A.; Kwon, W.; Lord, S. D.; Marston, A.; Mueller, M.; Olberg, M.; Ossenkopf, V.; Puga, E.; Akyilmaz-Yabaci, M.

    2017-12-01

    Context. The HIFI instrument on the Herschel Space Observatory performed over 9100 astronomical observations, almost 900 of which were calibration observations in the course of the nearly four-year Herschel mission. The data from each observation had to be converted from raw telemetry into calibrated products and were included in the Herschel Science Archive. Aims: The HIFI pipeline was designed to provide robust conversion from raw telemetry into calibrated data throughout all phases of the HIFI missions. Pre-launch laboratory testing was supported as were routine mission operations. Methods: A modular software design allowed components to be easily added, removed, amended and/or extended as the understanding of the HIFI data developed during and after mission operations. Results: The HIFI pipeline processed data from all HIFI observing modes within the Herschel automated processing environment as well as within an interactive environment. The same software can be used by the general astronomical community to reprocess any standard HIFI observation. The pipeline also recorded the consistency of processing results and provided automated quality reports. Many pipeline modules were in use since the HIFI pre-launch instrument level testing. Conclusions: Processing in steps facilitated data analysis to discover and address instrument artefacts and uncertainties. The availability of the same pipeline components from pre-launch throughout the mission made for well-understood, tested, and stable processing. A smooth transition from one phase to the next significantly enhanced processing reliability and robustness. Herschel was an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. Concluding remarks

    NASA Astrophysics Data System (ADS)

    Bohannan, Bruce

    2001-01-01

    This workshop brought proposed directions in instrumentation for the Isaac Newton Group together with scientific and technical needs of the ING astronomical community. A personal summary of the critical issues, questions, and approaches raised at this workshop includes the mission of the ING, the role of <4-m aperture telescopes today, the importance of continuous renewal, the power of AO, and the data glut.

  17. Hubble Space Telescope cycle 5 call for proposals

    NASA Technical Reports Server (NTRS)

    Bond, Howard E. (Editor)

    1994-01-01

    This document invites and supports participation by the international astronomical community in the HST General Observer and Archival Research programs. These documents contain the basic procedural and technical information required for HST proposal preparation and submission, including applicable deadlines. The telescope and its instruments were built under the auspices of the NASA and the European Space Agency.

  18. The MPE/UCB far-infrared imaging Fabry-Perot interferometer (FIFI)

    NASA Technical Reports Server (NTRS)

    Poglitsch, A.; Geis, N.; Genzel, R.; Haggerty, M.; Beeman, J. W.

    1991-01-01

    FIFI, an imaging spectrometer with two or three Fabry-Perot interferometers in a series for astronomical observations in the FIR range, is described. Spectral resolutions of 2 km/s can be obtained with FIFI. Design considerations are discussed as well as optics, the detector array, the transimpedance amplifier array, signal demodulation, data acquisition, and instrument control.

  19. Apollo 17 ultraviolet spectrometer experiment (S-169)

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1974-01-01

    The scientific objectives of the ultraviolet spectrometer experiment are discussed, along with design and operational details, instrument preparation and performance, and scientific results. Information gained from the experiment is given concerning the lunar atmosphere and albedo, zodiacal light, astronomical observations, spacecraft environment, and the distribution of atomic hydrogen in the solar system and in the earth's atmosphere.

  20. Point source detection in infrared astronomical surveys

    NASA Technical Reports Server (NTRS)

    Pelzmann, R. F., Jr.

    1977-01-01

    Data processing techniques useful for infrared astronomy data analysis systems are reported. This investigation is restricted to consideration of data from space-based telescope systems operating as survey instruments. In this report the theoretical background for specific point-source detection schemes is completed, and the development of specific algorithms and software for the broad range of requirements is begun.

  1. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.

  2. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Astronomy Data Centre, Canadian

    2014-01-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.

  3. Hipe, Hipe, Hooray

    NASA Astrophysics Data System (ADS)

    Ott, Stephan; Herschel Science Ground Segment Consortium

    2010-05-01

    The Herschel Space Observatory, the fourth cornerstone mission in the ESA science program, was launched 14th of May 2009. With a 3.5 m telescope, it is the largest space telescope ever launched. Herschel's three instruments (HIFI, PACS, and SPIRE) perform photometry and spectroscopy in the 55 - 672 micron range and will deliver exciting science for the astronomical community during at least three years of routine observations. Since 2nd of December 2009 Herschel has been performing and processing observations in routine science mode. The development of the Herschel Data Processing System started eight years ago to support the data analysis for Instrument Level Tests. To fulfil the expectations of the astronomical community, additional resources were made available to implement a freely distributable Data Processing System capable of interactively and automatically reducing Herschel data at different processing levels. The system combines data retrieval, pipeline execution and scientific analysis in one single environment. The Herschel Interactive Processing Environment (HIPE) is the user-friendly face of Herschel Data Processing. The software is coded in Java and Jython to be platform independent and to avoid the need for commercial licenses. It is distributed under the GNU Lesser General Public License (LGPL), permitting everyone to access and to re-use its code. We will summarise the current capabilities of the Herschel Data Processing System and give an overview about future development milestones and plans, and how the astronomical community can contribute to HIPE. The Herschel Data Processing System is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortium members.

  4. HIPE, HIPE, Hooray!

    NASA Astrophysics Data System (ADS)

    Ott, S.

    2011-07-01

    (On behalf of all contributors to the Herschel mission) The Herschel Space Observatory, the fourth cornerstone mission in the ESA science program, was launched 14th of May 2009. With a 3.5 m telescope, it is the largest space telescope ever launched. Herschel's three instruments (HIFI, PACS, and SPIRE) perform photometry and spectroscopy in the 55-671 micron range and will deliver exciting science for the astronomical community during at least three years of routine observations. Starting October 2009 Herschel has been performing and processing observations in routine science mode. The development of the Herschel Data Processing System (HIPE) started nine years ago to support the data analysis for Instrument Level Tests. To fulfil the expectations of the astronomical community, additional resources were made available to implement a freely distributable Data Processing System capable of interactively and automatically reducing Herschel data at different processing levels. The system combines data retrieval, pipeline execution, data quality checking and scientific analysis in one single environment. HIPE is the user-friendly face of Herschel interactive Data Processing. The software is coded in Java and Jython to be platform independent and to avoid the need for commercial licenses. It is distributed under the GNU Lesser General Public License (LGPL), permitting everyone to access and to re-use its code. We will summarise the current capabilities of the Herschel Data Processing system, highlight how the Herschel Data Processing system supported the Herschel observatory to meet the challenges of this large project, give an overview about future development milestones and plans, and how the astronomical community can contribute to HIPE.

  5. Multi-arm spectrometer for parallel frequency analysis of radio-wave signals oriented to astronomical observations

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan Omar; Tepichin Rodriguez, Eduardo

    2017-08-01

    We describe a potential prototype of modern spectrometer based on acousto-optical technique with three parallel optical arms for analysis of radio-wave signals specific to astronomical observations. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar multi-band instrument is able to realize measurements within various scenarios from planetary atmospheres to attractive objects in the distant Universe. The arrangement under development has two novelties. First, each optical arm represents an individual spectrum analyzer with its individual performances. Such an approach is conditioned by exploiting various materials for acousto-optical cells operating within various regimes, frequency ranges, and light wavelengths from independent light sources. Individually produced beam shapers give both the needed incident light polarization and the required apodization for light beam to increase the dynamic range of the system as a whole. After parallel acousto-optical processing, a few data flows from these optical arms are united by the joint CCD matrix on the stage of the combined extremely high-bit rate electronic data processing that provides the system performances as well. The other novelty consists in the usage of various materials for designing wide-aperture acousto-optical cells exhibiting the best performances within each of optical arms. Here, one can mention specifically selected cuts of tellurium dioxide, bastron, and lithium niobate, which overlap selected areas within the frequency range from 40 MHz to 2.0 GHz. Thus one yields the united versatile instrument for comprehensive studies of astronomical objects simultaneously with precise synchronization in various frequency ranges.

  6. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  7. Integration of the instrument control electronics for the ESPRESSO spectrograph at ESO-VLT

    NASA Astrophysics Data System (ADS)

    Baldini, V.; Calderone, G.; Cirami, R.; Coretti, I.; Cristiani, S.; Di Marcantonio, P.; Mégevand, D.; Riva, M.; Santin, P.

    2016-07-01

    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the ESO - Very Large Telescope site, is now in its integration phase. The large number of functions of this complex instrument are fully controlled by a Beckhoff PLC based control electronics architecture. Four small and one large cabinets host the main electronic parts to control all the sensors, motorized stages and other analogue and digital functions of ESPRESSO. The Instrument Control Electronics (ICE) is built following the latest ESO standards and requirements. Two main PLC CPUs are used and are programmed through the TwinCAT Beckhoff dedicated software. The assembly, integration and verification phase of ESPRESSO, due to its distributed nature and different geographical locations of the consortium partners, is quite challenging. After the preliminary assembling and test of the electronic components at the Astronomical Observatory of Trieste and the test of some electronics and software parts at ESO (Garching), the complete system for the control of the four Front End Unit (FEU) arms of ESPRESSO has been fully assembled and tested in Merate (Italy) at the beginning of 2016. After these first tests, the system will be located at the Geneva Observatory (Switzerland) until the Preliminary Acceptance Europe (PAE) and finally shipped to Chile for the commissioning. This paper describes the integration strategy of the ICE workpackage of ESPRESSO, the hardware and software tests that have been performed, with an overall view of the experience gained during these project's phases.

  8. ACDA Thirty Years of Popularization of Astronomy in Colombia

    NASA Astrophysics Data System (ADS)

    Ocampo, W.; Higuera-G., Mario A.

    2017-07-01

    The Colombian Association of Astronomical Studies (ACDA) is a Non Profit Organization with thirty years of permanent efforts for the popularization of astronomy and related sciences in Colombia. ACDA put together amateur and profesional astronomers, as well as interested people. We surely had left a footprint on uncountable number of attending people to our activities, members and former members, and have supported the process of building a new society, with more awareness on the importance of science. We devote our efforts to our members and general people, to keep them motivated, support them and follow each member own interests in order to expand and spread their knowledge. In order to achieve our goals we have develop several strategies as: acquire of didactic material and optical instruments, video projections and discussion, astronomical observations, visits to observatories and planetariums, attending conferences and events, and mainly a weekly Saturday morning talk at the Bogotá Planetarium. ACDA has had different study teams on several fields including: Planetary Systems, Astrobiology, Space Exploration, Cosmology, History of Astronomy and Radioastronomy. ACDA has a national brandname on Astronomy due to seriousness and quality of its projects. A good list of members have become profesional astronomers. From our experience we can say: astronomy is a fertile field to teach science, in general there is an absence of astronomy culture in the public, our best communication experience are astronomical observations, explained astronomy movies and colloquiums, our best public are kids and aged people and finally, social networks gave dynamics to our astronomy spreading initiative.

  9. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    NASA Astrophysics Data System (ADS)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers, accelerometers, etc. This low-cost, customizable platform provides researchers the ability to design immediately responsive, repeatable, high resolution experiments.

  10. Baron von Zach's business relations with the Munich entrepreneur Joseph von Utzschneider (German Title: Geschäftsbeziehungen des Barons von Zach zu dem Münchner Unternehmer Joseph von Utzschneider)

    NASA Astrophysics Data System (ADS)

    Schneider, Ivo

    The relationship between the astronomer von Zach on the one side and the entrepreneur Joseph von Utzschneider and his partner Georg von Reichenbach on the other dates presumably from the year 1807 when Zach spent two months in Munich. Already in the same year Zach had ordered an instrument for himself and began to solicit business for the institute of Reichenbach, Utzschneider, and Liebherr, which was founded in 1804. One of the clients canvassed by Zach was the director of the observatory in Naples Zuccari. Zuccari had ordered the whole equipment for the new observatory from this institute in 1813. The instruments for Naples, which were completed in 1814, were sent accompanied by Reichenbach by land and sea to their destination where Reichenbach supervised their setup. At that time Reichenbach had separated from Utzschneider who kept the optical institute in Benediktbeuern with his new partner Joseph von Fraunhofer whereas Reichenbach became owner of the mathematical-mechanical institute in Munich. For personal and economical reasons Utzschneider began soon after to produce not only optical glass but also optical devices similar to those offered by Reichenbach. As soon as two institutes in Munich competed against each other on the market for sophisticated geodetical and astronomical instruments Zach sided with Utzschneider. Zach's main professional argument for this decision was that both competitors got the optical glass for their instruments from Utzschneider's optical institute in Benediktbeuern. This meant that Utzschneider had first choice and so the optical part of his instruments could be considered as better than that of Reichenbach`s instruments. Zach's role as an agent in Italy and France for the sale of products coming from Utzschneider's manufactories is highlighted by three of Zach's letters to Utzschneider from 1817 and 1818, two of which are reproduced here for the first time.

  11. The Climate Response to the Astronomical Forcing

    NASA Astrophysics Data System (ADS)

    Crucifix, M.; Loutre, M. F.; Berger, A.

    2006-08-01

    Links between climate and Earth’s orbit have been proposed for about 160 years. Two decisive advances towards an astronomical theory of palæoclimates were Milankovitch’s theory of insolation (1941) and independent findings, in 1976, of a double precession frequency peak in marine sediment data and from celestial mechanics calculations. The present chapter reviews three essential elements of any astronomical theory of climate: (1) to calculate the orbital elements, (2) to infer insolation changes from climatic precession, obliquity and eccentricity, and (3) to estimate the impact of these variations on climate. The Louvain-la-Neuve climate-ice sheet model has been an important instrument for confirming the relevance of Milankovitch’s theory, but it also evidences the critical role played by greenhouse gases during periods of low eccentricity. It is recognised today that climatic interactions at the global scale were involved in the processes of glacial inception and deglaciation. Three examples are given, related to the responses of the carbon cycle, hydrological cycle, and the terrestrial biosphere, respectively. The chapter concludes on an outlook on future research directions on this topic.

  12. Anders Celsius' Contributions to Meridian Arc Measurements and the Establishment of an Astronomical Observatory in Uppsala

    NASA Astrophysics Data System (ADS)

    Stempels, H. C.

    Astronomy has been on the curriculum of Uppsala University from at least the middle of the 15th century. However, since Uppsala also was the ecclesiastical centre of Sweden, the acceptance of new ideas, such as the Copernican heliocentric system, was slow. At the same time, more peripheral universities in the Swedish empire, including Dorpat/Tartu, enjoyed a larger freedom. It was not until the early 18th century that a `modern' astronomy emerged in Uppsala. This effort was to a large extent led by Anders Celsius (1701--1744), who was able to establish good international contacts with astronomers in continental Europe. Celsius participated in De Maupertuis' expedition to the far north of Sweden, in order to measure the meridian arc and determine the shape of the Earth. This paper explores how Celsius became involved in De Maupertuis' expedition, and how this effort paved the way to the establishment of a fully equipped astronomical observatory, including an extensive collection of books and instruments, most of which survives up to this day.

  13. A Long Journey of Mathematics and Astronomy in Romania

    NASA Astrophysics Data System (ADS)

    Stavinschi, Magda

    2010-10-01

    Bucharest Astronomical Observatory celebrated recently its centenary. Its founders were all mathematicians or, better said, astronomers specialized in celestial mechanics. Their first doctoral theses were defended at Sorbonne, in the second half of the 19th century, under the guidance of the greatest specialists of the time. After they returned home, they continued what they had begun in Paris, namely celestial mechanics. The instruments they ordered and the first programmes of astronomical observations had an increasingly closer relation to mathematics, as they referred to astrometry and especially to stellar catalogues. Naturally, there were also astrophysical concerns, timid ones in the beginning, and then ever larger, especially beginning with the International Geophysical Year. The evolution of world astronomy, as well as that of Romania, seems to be following but one direction: astrophysics. The truth is that astrometry and celestial mechanics continue to lie at the basis of all astrophysical researches, actually in an entirely new and modern form. The astrometry schools recently organized, the new astrometry textbooks, as well as the IAU working groups dedicated to modern astrometry prove that the long journey of mathematics and astronomy is not over yet.

  14. The French Jesuit Mission to Thailand in the 1680s and the Establishment of a Major Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Soonthornthum, Boonrucksar; Orchiston, Wayne; Komonjinda, Siramas

    2012-09-01

    The first great Thai ruler to encourage the adoption of Western culture and technology was King Narai, and his enlightened attitude led to the rapid development of Thailand. King Narai also had a passion for astronomy, and he pursued this interest by allowing French Jesuit missionaries to set up a large modern well-equipped astronomical observatory in Lopburi Province between AD 1685 and 1687. This was known as the Wat San Paolo Observatory, and King Narai and the missionaries observed a total lunar eclipse on 10 December 1685 and a partial solar eclipse on 30 April 1688. These observations and others made at Wat San Paolo Observatory during the 1680s marked the start of modern scientific astronomy in Thailand. In this paper we discuss King Narai's scientific and other interests, the founding of the Wat San Paolo Observatory, the missionaries who conducted the astronomical programs, their instruments and their observations. We also describe the surviving ruins of the Observatory and their interpretation as a site of national scientific importance in Thailand.

  15. Diseño, Construcción Y Desarrollo De Un Sistema Limitado Por Difracción Para Telescopios Terrestres: Fastcam

    NASA Astrophysics Data System (ADS)

    Lopez Lopez, Roberto

    2013-02-01

    This work describes the concept, design, development, evolution and application of the FastCam instrument. FastCam is an image photometer for astronomy with image capture in a high-frequency range and diraction limited, in order to apply the Lucky Imaging technique to medium- and large-sized ( 1.5 to 4 m) telescopes. The Lucky Imaging technique allows, for ground-based telescopes, to achieve the resolution limit for astronomical images under suitable conditions. This work describes the atmospheric problems and the active and adaptive optics techniques to solve them, as well as the Lucky Imaging fundamentals. A description of the considerations to the project development and design parameters is performed. Then, the optical design and dierent adaptations to several telescopes will be revised. In a next step, some of the scientic results obtained thanks to this project are shown, both in position astronomy and complex structures in globular cluster and binary systems. Dierent designs arising from the basic idea and the instruments now in development that are expanding the system's capabilities and the technique are explained. Some other possible applications to other elds in which the image sharpness is necessary despite uctuations or instabilities of the observing system will be also pointed out: ophthalmology, video-control, etc.

  16. The Sky Through Three Giant Eyes

    NASA Astrophysics Data System (ADS)

    2007-02-01

    AMBER Instrument on VLT Delivers a Wealth of Results The ESO Very Large Telescope Interferometer, which allows astronomers to scrutinise objects with a precision equivalent to that of a 130-m telescope, is proving itself an unequalled success every day. One of the latest instruments installed, AMBER, has led to a flurry of scientific results, an anthology of which is being published this week as special features in the research journal Astronomy & Astrophysics. ESO PR Photo 06a/07 ESO PR Photo 06a/07 The AMBER Instrument "With its unique capabilities, the VLT Interferometer (VLTI) has created itself a niche in which it provide answers to many astronomical questions, from the shape of stars, to discs around stars, to the surroundings of the supermassive black holes in active galaxies," says Jorge Melnick (ESO), the VLT Project Scientist. The VLTI has led to 55 scientific papers already and is in fact producing more than half of the interferometric results worldwide. "With the capability of AMBER to combine up to three of the 8.2-m VLT Unit Telescopes, we can really achieve what nobody else can do," added Fabien Malbet, from the LAOG (France) and the AMBER Project Scientist. Eleven articles will appear this week in Astronomy & Astrophysics' special AMBER section. Three of them describe the unique instrument, while the other eight reveal completely new results about the early and late stages in the life of stars. ESO PR Photo 06b/07 ESO PR Photo 06b/07 The Inner Winds of Eta Carinae The first results presented in this issue cover various fields of stellar and circumstellar physics. Two papers deal with very young solar-like stars, offering new information about the geometry of the surrounding discs and associated outflowing winds. Other articles are devoted to the study of hot active stars of particular interest: Alpha Arae, Kappa Canis Majoris, and CPD -57o2874. They provide new, precise information about their rotating gas envelopes. An important new result concerns the enigmatic object Eta Carinae. Using AMBER with its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave coming from the nova. The stream of results from the VLTI and AMBER is no doubt going to increase in the coming years with the availability of new functionalities. "In addition to the 8.2-m Unit Telescopes, the VLTI can also combine the light from up to 4 movable 1.8-m Auxiliary Telescopes. AMBER fed by three of these AT's will be offered to the user community as of April this year, and from October we will also make FINITO available," said Melnick. "This 'fringe-tracking' device allows us to stabilise changes in the atmospheric conditions and thus to substantially improve the efficiency of the observations. By effectively 'freezing' the interferometric fringes, FINITO allows astronomers to significantly increase the exposure times." The Astronomy & Astrophysics special feature (volume 464 - March II 2007) on AMBER first results includes 11 articles. They are freely available on the A&A web site. More Information The AMBER consortium, led by Romain Petrov (Nice, France), includes researchers from the Laboratoire d'Astrophysique de Grenoble (France), Laboratoire d'Astrophysique Universitaire de Nice (France), Max-Planck Institut für Radioastronomie (Bonn, Germany), INAF-Osservatorio Astrofisico di Arcetri (Italy), and the Observatoire de la Côte d'Azur (Nice, France). In March 2004, the first on-line tests of AMBER (Astronomical Multiple BEam Recombiner) were completed, when astronomers combined the two beams of light from the southern star Theta Centauri from two test 40-cm aperture telescopes (ESO 07/04). It was later used to combine light from two, then three Unit Telescopes of ESO's VLT and light from the Auxiliary Telescopes. AMBER is part of the VLT Interferometer (VLTI) and completes the planned set of first-generation instruments for this facility. It continues the success story of the interferometric mode of the VLT, following the unique initial scientific results obtained by the VINCI and MIDI instruments, the installation of the four MACAO adaptive optics systems and the recent arrival of the last of the four 1.8-m Auxiliary Telescopes at Paranal. The principle of the interferometric technique is to combine the light collected by two or more telescopes. The greater the distance between the telescopes, the more details one can detect. For the VLTI, this distance can be up to 200 metres, providing observers with milli-arcsecond spatial resolution. With such a high spatial resolution, one would be able to distinguish between the headlights of a car located on the Moon. In addition, AMBER also provides astronomers with spectroscopic measurements, allowing the structure and the physics of the source to be constrained by comparing the measures at different wavelengths. AMBER combines the light beams from three telescopes - this is a world first for large telescopes such as the VLT. The ability to combine three beams, rather than just two as in a conventional interferometer, provides a substantial increase in the efficiency of observations, permitting astronomers to obtain three baselines simultaneously instead of one. The combination of these three baselines also permits the computation of the so-called closure phase, an important mathematical quantity that can be used in imaging applications. The AMBER instrument is mounted on a 4.2 x 1.5-m precision optical table, placed in the VLT Interferometric Laboratory at the top of the Paranal mountain. The total shipping weight of the instrument and its extensive associated electronics was almost 4 tons. Two of the results discussed here were already presented as ESO press releases in ESO 29/05 and 35/06.

  17. Scanning sky monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Seetha, S.; Bhattacharya, Dipankar; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Sharma, M. Ramakrishna; Kulkarni, Ravi; Babu, V. Chandra; Kumar; Singh, Brajpal; Jain, Anand; Yadav, Reena; Vaishali, S.; Ashoka, B. N.; Agarwal, Anil; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastian, Mathew; Rajarajan, A.; Radhika, D.; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Kushwaha, Ankur; Iyer, Nirmal Kumar

    2017-10-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.

  18. SiFAP: a Simple Sub-Millisecond Astronomical Photometer

    NASA Astrophysics Data System (ADS)

    Ambrosino, F.; Meddi, F.; Nesci, R.; Rossi, C.; Sclavi, S.; Bruni, I.

    2013-09-01

    A new fast photometer based on SiPM technology was developed at the University of Rome "La Sapienza" starting from 2009. A first prototype was successfully tested observing the Crab pulsar at the Loiano telescope of the Bologna Observatory. In this paper we illustrate the improvements we applied to our instrument, concerning new cooled commercial sensors, a new version of our custom dedicated electronics and an upgraded control timing software. Finally we report the results obtained with this instrument on December 2012 on the Crab pulsar at the Loiano telescope to show its goodness and capabilities.

  19. Astronomy and astrophysics for the 1980's, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  20. The whole earth telescope - A new astronomical instrument

    NASA Technical Reports Server (NTRS)

    Nather, R. E.; Winget, D. E.; Clemens, J. C.; Hansen, C. J.; Hine, B. P.

    1990-01-01

    A new multimirror ground-based telescope for time-series photometry of rapid variable stars, designed to minimize or eliminate gaps in the brightness record caused by the rotation of the earth, is described. A sequence of existing telescopes distributed in longitude, coordinated from a single control center, is used to measure designated target stars so long as they are in darkness. Data are returned by electronic mail to the control center, where they are analyzed in real time. This instrument is the first to provide data of continuity and quality that permit true high-resolution power spectroscopy of pulsating white dwarf stars.

  1. The European ELT: status report

    NASA Astrophysics Data System (ADS)

    Cuby, J.-G.

    2010-12-01

    This paper provides a brief status report on the European Extremely Large Telescope (E-ELT) as presented at the annual meeting of the French Astronomical Society (SF2A) held in Marseille in June 2010. The project is now proceeding to the end of its Phase B that lasted four years, the results of which will form the basis of the proposal for construction that will be submitted to the ESO council for approval. The decision is expected to be taken in 2011. In parallel to the Telescope Phase B, Instrument Phase A studies have been completed from which a comprehensive instrumentation plan could be drawn.

  2. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.; Horn, Jochen M. M.

    The joint US and German SOFIA project to develop and operate a 2.5 - meter infrared airborne telescope in a Boeing 747-SP is now well into development. Work on the aircraft and the telescope has started. First science flights will begin in 2003 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have instrumentation that will allow astronomical surveys that were not possible on the KAO. A future SOFIA project related to astrochemistry is discussed.

  3. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Davidson, J. A.; Horn, J. M. M.

    1999-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 - meter infrared airborne telescope in a Boeing 747-SP is now in its second year of development. Work on the aircraft and the primary mirror has started. First science flights will begin in 2002 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have facility instrumentation that will allow astronomical surveys that were not possible on the KAO. Two future SOFIA projects related to cosmology and astrochemistry are discussed.

  4. Development and Calibration of the ART-XC Mirror Modules for the Spectrum Rontgen Gamma Mission

    NASA Technical Reports Server (NTRS)

    Ramsey, B.; Gubarev, M.; Elsner, R.; Kolodziejczak, J.; Odell, S.; Swartz, D.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2013-01-01

    The Spectrum-Röntgen-Gamma (SRG) mission is a Russian-lead X-ray astrophysical observatory that carries two co-aligned X-ray telescope systems. The primary instrument is the German-led extended ROentgen Survey with an Imaging Telescope Array (eROSITA), a 7-module X-ray telescope system that covers the energy range from 0.2-12 keV. The complementary instrument is the Astronomical Roentgen Telescope -- X-ray Concentrator (ART-XC or ART), a 7-module Xray telescope system that provides higher energy coverage, up to 30 keV.

  5. Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Ramsey, Brian; O'Dell, Stephen L.; Elsner, Ronald F.; Kilaru, Kiranmayee; Atkins, Carolyn; Pavlinskiy, Mikhail N.; Tkachenko, Alexey V.; Lapshov, Igor Y.

    2013-01-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the Astronomical Roengen Telescope- X-ray Concentrator (ART-XC) instrument on board the Spectrum-Roentgen-Gamma Mission. ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module provides an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. We will present a status of the ART x-ray module development at MSFC.

  6. Astronomy and astrophysics for the 1980's, volume 1

    NASA Astrophysics Data System (ADS)

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  7. Cultural Heritage of Observatories and Instruments - From Classical Astronomy to Modern Astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Until the middle of the 19th century positioal astronomy with meridian circles played the dominant role. Pulkovo Observatory, St. Petersburg, was the leading institution for this kind of research. The design of this observatory was a model for the construction of observatories in the 19th century. In addition, in Hamburg Observatory and in some other observatories near the coast, time keeping and teaching of navigation were important tasks for astronomers. Around 1860 astronomy underwent a revolution. Astronomers began to investigate the properties of celestial bodies with physical and chemical methods. In the context of “classical astronomy”, only the direction of star light was studied. In the 1860s quantity and quality of radiation were studied for the first time. This was the beginning of modern “astrophysics”, a notion coined in 1865 by the Leipzig astronomer Karl Friedrich Zöllner (1834-1882). It is remarkable that many amateurs started this new astrophysics in private observatories but not in the established observatories like Greenwich, Paris or Pulkovo. In Germany this development started in Bothkamp Observatory near Kiel, with Hermann Carl Vogel (1841-1907), strongly influenced by Zöllner. An important enterprise was the foundation of the Astrophysical Observatory in Potsdam, near Berlin, in 1874 as the first observatory in the world dedicated to astrophysics - a foundation that inspired others. Important innovations and discoveries were made in Potsdam. The new field of astrophysics caused, and was caused by, new instrumentation: spectrographs, instruments for astrophotography, photometers and solar physics instruments. In particular, the glass mirror reflecting telescope was recognised as a more important instrument than a large refractor; for the new observatory in Hamburg-Bergedorf a 1-m reflector, the fourth largest in the world, made by Zeiss of Jena, was acquired in 1911. Another change was made in the architecture, the idea of a park observatory came up, as in the case of Nice Observatory, Hamburg-Bergedorf and in America. Finally the Schmidt telescope was the most important and influential invention in the Hamburg Observatory. In the last quarter of the 19th century only a few centres of astrophysics existed in the world. Besides Potsdam one should mention Göttingen, Heidelberg, Bonn and Hamburg in Germany; then observatories in Hungary, Italy, England and France and later, around 1900, also in the United States and India. The change from classical astronomy to modern astrophysics can be seen very well in the case of the Hamburg Observatory around 1900 - concerning the choice of instruments, the architecture and the idea of the astronomy park: all this is an important cultural heritage connected with observatories of this time.

  8. Software and cyber-infrastructure development to control the Observatorio Astrofísico de Javalambre (OAJ)

    NASA Astrophysics Data System (ADS)

    Yanes-Díaz, A.; Antón, J. L.; Rueda-Teruel, S.; Guillén-Civera, L.; Bello, R.; Jiménez-Mejías, D.; Chueca, S.; Lasso-Cabrera, N. M.; Suárez, O.; Rueda-Teruel, F.; Cenarro, A. J.; Cristobal-Hornillos, D.; Marin-Franch, A.; Luis-Simoes, R.; López-Alegre, G.; Rodríguez-Hernández, M. A. C.; Moles, M.; Ederoclite, A.; Varela, J.; Vazquez Ramió, H.; Díaz-Martín, M. C.; Iglesias-Marzoa, R.; Maicas, N.; Lamadrid, J. L.; Lopez-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.

    2014-07-01

    The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located at the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys with two unprecedented telescopes of unusually large fields of view: the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. CEFCA engineering team has been designing the OAJ control system as a global concept to manage, monitor, control and maintain all the observatory systems including not only astronomical subsystems but also infrastructure and other facilities. In order to provide quality, reliability and efficiency, the OAJ control system (OCS) design is based on CIA (Control Integrated Architecture) and OEE (Overall Equipment Effectiveness) as a key to improve day and night operation processes. The OCS goes from low level hardware layer including IOs connected directly to sensors and actuators deployed around the whole observatory systems, including telescopes and astronomical instrumentation, up to the high level software layer as a tool to perform efficiently observatory operations. We will give an overview of the OAJ control system design and implementation from an engineering point of view, giving details of the design criteria, technology, architecture, standards, functional blocks, model structure, development, deployment, goals, report about the actual status and next steps.

  9. The GBT PRIMOS Project - A Broadband Spectral Line Survey of SgrB2N from 300 MHz to 46 GHz

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony J.; Hollis, J. M.; Jewell, P. R.; Lovas, F.; Corby, J.

    2013-01-01

    Broadband, very sensitive, high spectral resolution spectral line surveys in recent years have made profound impacts into the understanding of interstellar reaction processes and in the identification of new molecular material in astronomical environments. Molecular line surveys are studies of the spectra of astronomical sources over a wide and usually continuous range of frequencies in order to determine the chemical composition (i.e., "molecular inventory"), physical properties (temperature, density), and kinematics of such regions. The National Radio Astronomy Observatory's (NRAO) 100-m Robert C. Byrd Green Bank Telescope (GBT) PRebiotic Interstellar MOlecule Survey (PRIMOS) Legacy Project started in Jan 2008 and concluded in July 2011. The PRIMOS project recorded a nearly frequency-continuous astronomical spectrum from 300 MHz to 46 GHz towards the Sgr B2(N) molecular cloud, with the pointing position centered on the Large Molecule Heimat (LMH). The PRIMOS data have resulted in numerous new detections and discoveries in astrochemistry. The data have also been widely used to demonstrate advances in molecular astrophysics in a variety of venues and have been instrumental in training the next generation of astronomers and chemists. The GBT is the only telescope in the world capable of making these groundbreaking discoveries. This presentation will highlight the recent successes from the survey and how to access these publically-available observations.

  10. Observatorio Astronómico De Cantabria

    NASA Astrophysics Data System (ADS)

    Domínguez, R. M.; Carrera, F. J.

    The Astronomical Observatory of Cantabria is a center of the Consejería de Medio Ambiente del Gobierno de Cantabria managed by the Centro de Investigación del Medio Ambiente (CIMA), an autonomous organism which depends on such Consejería. The development of different activities of the Observatory is a joint collaboration between the University of Cantabria and the Agrupación Astronómica Cántabra (AstroCantabria). As part of the University of Cantabria, the Instituto de Física de Cantabria (IFCA, CSIC-UC) is in charge of the direction, management and coordination of scientific, observational, educational and outreach activities of the Observatory. AstroCantabria takes care of the outreach activities for the general public as well as the astronomical observations. In addition, it is responsible for the calibration and maintenance of the astronomical instrumentation of the Observatory. The Astronomical Observatory of Cantabria is located on the Southern edge of the Comunidad Autónoma de Cantabria, on the high plateau of La Lora (Valderredible county), at an altitude of 1,080m, with longitude 3∘ 56 ' 36' W and latitude 42∘ 46 ' 18' N. Rocamundo is the closest town. The Observatory aims to become a center of reference for scientific, observational, educational and public outreach activities in Cantabria. In the near future, an observational proposal system for outside users will be set in place.

  11. "Perhaps Irrelevant". The Iconography of Tycho Brahe's Small Gilt Brass Quadrant.

    PubMed

    Perkins, Emma L; Taub, Liba

    2015-01-01

    When Tycho Brahe published a description of his astronomical instruments in 1598 as part of a strategy to procure royal patronage, it was not with one of his grander, precision measurement tools that he opened his account, but rather a small brass quadrant with limited observational utility. The defining feature of this instrument was seemingly a small emblematic image inscribed within the arc of the quadrant. Through this symbolic motif Tycho conveyed a moralising message about the relative worth of astronomy. Considering a range of visual productions that may have influenced his iconography, the present paper situates the quadrant within the broader context of Renaissance visual culture and examines the significance of the quadrant in Tycho's wider instrument collection.

  12. Explosive Transient Camera (ETC) Program

    NASA Technical Reports Server (NTRS)

    Ricker, George

    1991-01-01

    Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.

  13. AstroMadrid: Astrophysics and technological developments in Comunidad de Madrid

    NASA Astrophysics Data System (ADS)

    Mas-Hesse, J. M.

    2011-11-01

    AstroMadrid is a network constituted by different research groups in the Comunidad de Madrid area, with the objective of coordinating the activities related to the development of astronomical instrumentation in the various centres. AstroMadrid is a multidisciplinar team which benefits from the synergies provided by the different participating groups, optimizing our capabilities to develop instrumentation, and minimizing the problems related to the geographical dispersion within our region. AstroMadrid is also participated by several aerospace industries, which complement the capabilities and facilities available in the research centres. In addition to optimizing the development of instrumentation, AstroMadrid plays an essential role in the formation of new engineers and scientists, by actively contributing to some Master degree courses organized by different Universities in Madrid.

  14. The James Webb Space Telescope: Contamination Control and Materials

    NASA Technical Reports Server (NTRS)

    Stewart, Elaine M.; Wooldridge, Eve M.

    2017-01-01

    The James Webb Space Telescope (JWST), expected to launch in 2018 or early 2019, will be the premier observatory for astronomers worldwide. It is optimized for infrared wavelengths and observation from up to 1 million miles from Earth. JWST includes an Integrated Science Instrument Module (ISIM) containing the four main instruments used to observe deep space: Near-Infrared Camera (NIRCam), Near-Infrared Spectrograph (NIRSpec), Mid-Infrared Instrument (MIRI), and Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS). JWST is extremely sensitive to contamination directly resulting in degradation in performance of the telescope. Contamination control has been an essential focus of this mission since the beginning of this observatory. A particular challenge has been contamination challenges in vacuum chamber operations.

  15. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks! The richness and complexity of data and information available to the astronomers is overwhelming. This has created a major problem as to how astronomers can manage, distribute and analyse this great wealth of data . The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and enable them to "put the Universe online". AVO is supported by the European Commission The AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The European Commission awarded a contract valued at 4 million Euro for the AVO project , starting 15 November 2001. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the 'real' sky would, in comparison, be both costly and take far too long. Towards a Global Virtual Observatory The need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded 10 million Dollar (approx. 11.4 million Euro) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on their respective committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first class international astronomical archives. The AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich (Germany). The other partner organisations are the European Space Agency (ESA) , the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg (France), the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory of the Victoria University of Manchester (UK). Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, ASTROGRID, CDS, TERAPIX/CNRS and the University of Manchester. A 13 minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). This will also be transmitted via satellite Wednesday 12 December 2001 from 12:00 to 12:15 CET on "ESA TV Service", cf. http://television.esa.int. An international conference, "Toward an International Virtual Observatory" will take place at ESO (Garching, Germany) on June 10 - 14, 2002. Contacts AVO Contacts Peter Quinn European Southern Observatory Garching, Germany Tel.: +4989-3200-6509 email: pjq@eso.org Piero Benvenuti Space Telescope-European Coordinating Facility Garching, Germany Tel.: +49-89-3200-6290 email: pbenvenu@eso.org Andy Lawrence (on behalf of The ASTROGRID Consortium) Institute for Astronomy University of Edinburgh United Kingdom Tel.: +44-131-668-8346/56 email: al@roe.ac.uk Francoise Genova Centre de Données Astronomiques de Strasbourg (CDS) France Tel.: +33-390-24-24-76 email: genova@astro.u-strasbg.fr Yannick Mellier CNRS, Delegation Paris A (CNRSDR01-Terapix)/IAP/INSU France Tel.: +33-1-44-32-81-40 email: mellier@iap.fr Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44-147-757-2625 email: pdiamond@jb.man.ac.uk PR Contacts Richard West European Southern Observatory Garching, Germany Tel.: +49-89-3200-6276 email: rwest@eso.org Lars Lindberg Christensen Hubble European Space Agency Information Centre Garching, Germany Tel.: +49-89-3200-6306 or +49-173-38-72-621 email: lars@eso.org Ray Footman The ASTROGRID Consortium/University of Edinburgh United Kingdom Tel.: +44-131-650-2249 email: r.footman@ed.ac.uk Philippe Chauvin Terapix/CDS CNRS, Delegation Paris A, IAP/INSU France Tel.: +33 1 44 96 43 36 email: philippe.chauvin@cnrs-dir.fr Agnes Villanueva University of Strasbourg France Tel.: +33 3 90 24 11 35 email: agnes.villanueva@adm-ulp.u-strasbg.fr Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44 1477 572610 email: im@jb.man.ac.uk Appendix: Introduction to Europe's Astrophysical Virtual Observatory (AVO) The Digital Data Revolution Over the past thirty years, astronomers have moved from photographic and analogue techniques towards the use of high-speed, digital instruments connected to specialised telescopes to study the Universe. Whether these instruments are onboard spacecraft or located at terrestrial observatories, the data they produce are stored digitally on computer systems for later analysis. Two Challenges This data revolution has created two challenges for astronomers. Firstly, as the capability of digital detector systems has advanced, the volume of digital data that astronomical facilities are producing has expanded greatly. The rate of growth of the volume of stored data far exceeds the rate of increase in the performance of computer systems or storage devices. Secondly, astronomers have realised that many important insights into the deepest secrets in the Universe can come from combining information obtained at many wavelengths into a consistent and comprehensive physical picture . However, because the datasets from different parts of the spectrum come from different observatories using different instruments, the data are not easily combined. To unite data from different observatories, bridges must be built between digital archives to allow them to share data and "interoperate" - an important and challenging task. The Human Factor These challenges are not only technological. Our brains are not equipped to for instance analyse simultaneously the millions and millions of images available. Astronomers must adapt and learn to deal with such diverse and extensive sets of data. The "digital sky" has the potential to become a vital tool with novel and fascinating capabilities that are essential for astronomers to make progress in their understanding of the Cosmos. But astronomers must be able to find the relevant information quickly and efficiently. Currently the data needed by a particular research program may well be stored in the archives already, but the tools and methods have not yet been developed to extract the relevant information from the flood of images available. A new way of thinking, a new frame of mind and a new approach are needed. The Astrophysical Virtual Observatory The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and extract data from the digital sky, thus "putting the Universe online" . Like a search engine helps us to find information on the Internet, astronomers need sophisticated "search engines" as well as other tools to find and interpret the information. "We're drowning in information and starving for knowledge", a Yale University librarian once said. Or to paraphrase a popular series on TV: "The information is out there, but you have to find it!" Using the latest in computer technology, data storage and analysis techniques, AVO will maximise the potential for new scientific insights from the stored data by making them available in a readily accessible and seamlessly unified form to professional researchers, amateur astronomers and students. Users of AVO will have immense multi-wavelength vistas of the digital Universe at their fingertips and the potential to make breathtaking new discoveries. Virtual observatories signal a new era, where data collected by a multitude of sophisticated telescopes can be used globally and repeatedly to achieve substantial progress in the quest for knowledge. The AVO project, funded by the European Commission, is a three-year study of the design and implementation of a virtual observatory for European astronomy. A virtual observatory is a collection of connected data archives and software tools that utilise the Internet to form a scientific research environment in which new multi-wavelength astronomical research programs can be conducted. In much the same way as a real observatory consists of telescopes, each with a collection of unique astronomical instruments, the virtual observatory consists of a collection of data centres each with unique collections of astronomical data, software systems and processing capabilities. The programme will implement and test a prototype virtual observatory , focussing on the key areas of scientific requirements, interoperability and new technologies such as the GRID, needed to link powerful computers to the newly formed large data repositories. The GRID and the Future of the Internet The technical problems astronomers have to solve are similar to those being worked on by particle physicists, by biologists, and by commercial companies who want to search and fill customer databases across the world. The emerging idea is that of the GRID where computers collaborate across the Internet. The World Wide Web made words and pictures available to anybody at the click of a mouse. The GRID will do the same for data, and for computer processing power. Anybody can have the power of a supercomputer sitting on their desktop. The Astrophysical Virtual Observatory, and GRID projects like the ASTROGRID project in the United Kingdom (funding 5 million UK Pounds or 8 million Euro), are closely linked to these developments.

  16. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for both wavefront sensing and correction. In this scheme, the DM is used to introduce known aberrations (speckles in the focal plane), which interfere with existing speckles. By monitoring the interference between the pre-existing speckles and the speckles added deliberately by the DM, it is possible to reconstruct the complex amplitude (amplitude and phase) of the focal plane speckles. Thus, the DM is used for wavefront sensing, in a scheme akin to phase diversity. For SCExAO and other HCI systems using phase diversity, the wavefront compensation is a mix of closed-loop and open-loop control of the DM. The successful implementation of MEMS DMs open-loop control relies on a thorough modelling of the DM response to the control system commands. The work presented in this thesis, motivated by the need to provide accurate DM control for the wavefront control system of SCExAO, was centred around the development of MEMS DM models. This dissertation reports the characterization of MEMS DMs and the development of two efficient modelling approaches. The open-loop performance of both approaches has been investigated. The model providing the best result has been implemented within the SCExAO wavefront control software. Within SCExAO, the model was used to command the DM to create focal plane speckles. The work is now focused on using the model within a full speckle nulling process and on increasing the execution speed to make the model suitable for on-sky operation.

  17. Seeing Stars

    NASA Astrophysics Data System (ADS)

    Kitchin, Chris; Forrest, Robert W.

    Seeing Stars is written for astronomers, regardless of the depth of their theoretical knowledge, who are taking their first steps in observational astronomy. Chris Kitchin and Bob Forrest - both professional astronomers - take a conducted tour of the night sky and suggest suitable observing programmes for everyone from beginners to experts. How is this book different? We are all familiar with the beautiful images of planets and galaxies obtained by spacecraft and giant telescopes - but what can you really see with a small telescope? What should you expect from a small refractor or reflector? And what is the effect of observing from a site near a city? The answers are all here, with many photographs that will illustrate exactly what can be seen with different instruments (everything from the naked eye to a 300mm telescope) - and from different locations.

  18. Chaucer's Dantean Presentation of Time in The Canterbury Tales: Libra and the Moon

    NASA Astrophysics Data System (ADS)

    Osborn, Marijane

    In the last of his several chronographiæ — astronomically expressed descriptions of time — contained in The Canterbury Tales, Chaucer uses language that has led modern readers to believe that he is making elementary errors about the altitude of the Sun above the horizon and about the astrological relationship between Libra and the Moon. In this essay, I argue that the errors are ours, not his. If one reads the altitude of the Sun by means of Chaucer's observing instrument, the astrolabe, and — forgetting astrology — perceives the Moon's relationship to the sign/constellation of Libra as a real one much like Dante's similar image at the end of The Divine Comedy, both the astronomical and spiritual meanings of the passage in the Tales become clearer.

  19. A Study on the Armillary Spheres of the Confucianists in Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Lee, Min Soo; Jeong, Jang Hae

    2010-12-01

    Armillary sphere, generally known as, not only astronomical instrument for observing astronomical phenomena but also symbolizes the royal authority and royal political ideology which is based on Confucianism. Among the well-reputed Confucian scholars were built their own armillary spheres. However, these armillary spheres which exist are damaged and most of parts of its have been lost. We analyzed and measured the remnants of armillary spheres which were made by Toegye Lee Hwang, Uam Song Si-Yeol and Goedam Bae Sang-Yeol who were well-reputed Confucian scholars in Joseon Dynasty, and have been executed the restorations of Toegye Lee Hwang and Song Si-Yeols armillary sphere based on the drawings which were drawn as the original form by analysis and measurement of its remnants.

  20. Laser Guide Star Based Astrophysics at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C; Gavel, D.; Friedman, H.

    2000-03-10

    The resolution of ground-based telescopes is typically limited to {approx}1 second of arc because of the blurring effects of atmospheric turbulence. Adaptive optics (AO) technology senses and corrects for the optical distortions due to turbulence hundreds of times per second using high-speed sensors, computers, deformable mirror, and laser technology. The goal of this project is to make AO systems widely useful astronomical tools providing resolutions up to an order of magnitude better than current, ground-based telescopes. Astronomers at the University of California Lick Observatory at Mt. Hamilton now routinely use the LLNL developed AO system for high resolution imaging ofmore » astrophysical objects. We report here on the instrument development progress and on the science observations made with this system during this 3-year ERI project.« less

  1. The NASA airborne astronomy program - A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1992-01-01

    The publication records from NASA's airborne observatories are examined to evaluate the contribution of the airborne astronomy program to technological development and scientific/educational progress. The breadth and continuity of program is detailed with reference to its publication history, discipline representation, literature citations, and to the ability of such a program to address nonrecurring and unexpected astronomical phenomena. Community involvement in the airborne-observation program is described in terms of the number of participants, institutional affiliation, and geographic distribution. The program utilizes instruments including heterodyne and grating spectrometers, high-speed photometers, and Fabry-Perot spectrometers with wide total spectral ranges, resolutions, and numbers of channels. The potential of the program for both astronomical training and further scientific, theoretical, and applied development is underscored.

  2. Twentieth-century astronomical heritage: the case of the Brazilian National Observatory

    NASA Astrophysics Data System (ADS)

    Barboza, Christina Helena

    2016-10-01

    This paper aims at contributing to the UNESCO-IAU Astronomy and World Heritage Initiative's discussions by presenting the case study of a 20th-century observatory located in a South American country. In fact, the National Observatory of Brazil was created in the beginning of the 19th century, but its present facilities were inaugurated in 1921. Through this paper a brief description of the heritage associated with the Brazilian observatory is given, focused on its main historical instruments and the scientific and social roles it performed along its history. By way of conclusion, the paper suggests that the creation of the Museum of Astronomy and Related Sciences with its multidisciplinary team of academic specialists and technicians was decisive for the preservation of that expressive astronomical heritage.

  3. SOFIA Technology: The NASA Airborne Astronomy Ambassador (AAA) Experience and Online Resources

    NASA Astrophysics Data System (ADS)

    Clark, C.; Harman, P. K.; Backman, D. E.

    2016-12-01

    SOFIA, an 80/20 partnership of NASA and the German Aerospace Center (DLR), consists of a modified Boeing 747SP carrying a reflecting telescope with an effective diameter of 2.5 meters. SOFIA is the largest airborne observatory in the world, capable of observations impossible for even the largest and highest ground-based telescopes. The SOFIA Program Office is at NASA ARC, Moffett Field, CA; the aircraft is based in Palmdale, CA. During its planned 20-year lifetime, SOFIA will foster development of new scientific instrumentation and inspire the education of young scientists and engineers. Astrophysicists are awarded time on SOFIA to study many kinds of astronomical objects and phenomena. Among the most interesting are: Star birth, evolution, and death Formation of new planetary systems Chemistry of complex molecules in space Planet and exoplanet atmospheres Galactic gas & dust "ecosystems" Environments around supermassive black holes SOFIA currently has eight instruments, five US-made and three German. The instruments — cameras, spectrometers, and a photometer,— operate at near-, mid- and far-infrared wavelengths, each spectral range being best suited to studying particular celestial phenomena. NASA's Airborne Astronomy Ambassadors' (AAAs) experience includes a STEM immersion component. AAAs are onboard during two overnight SOFIA flights that provide insight into the acquisition of scientific data as well as the interfaces between the telescope, instrument, & aircraft. AAAs monitor system performance and view observation targets from their dedicated workstation during flights. Future opportunities for school district partnerships leading to selection of future AAA cohorts will be offered in 2018-19. AAAs may access public archive data via the SOFIA Data Cycle System (DCS) https://dcs.sofia.usra.edu/. Additional SOFIA science and other resources are available at: www.sofia.usra.edu, including lessons that use photovoltaic circuits, and other technology for the classroom.

  4. The French Astronomical Archives Alidade Project

    NASA Astrophysics Data System (ADS)

    Debarbat, S.; Bobis, L.

    2004-12-01

    The present state of Alidade, an archival project of Paris Observatory, including not only archival papers, but also instruments, documents, iconography, paintings etc., of various institutions, is described. Documents and collections, e.g. from donations or purchases, are still integrated into the archives, and selected material is displayed in temporary exhibits at the Observatory. Modern uses of old material are briefly mentioned

  5. 16 years of airglow measurement with astronomical facilities

    NASA Astrophysics Data System (ADS)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy; Proxauf, Bastian

    2017-04-01

    Observations taken with ground-based astronomical telescopes are affected by various airglow emission processes in the Earth's upper atmosphere. This chemiluminescent emission can be used to investigate the physical state of the meso- and the thermosphere. By applying a modified approach of techniques originally developed to characterise and remove these features from the astronomical spectra, which are not primarily taken for airglow studies, these spectra are suitable for airglow research. For our studies, we currently use data from two observing sites on both hemispheres for our studies: The European Southern Observatory operates four 8m telescopes at the Very Large Telescope (VLT) in the Chilean Atacama desert (24.6°S, 70.4°W). The 2.5m Sloan Digital Sky Survey telescope (SDSS) located in New Mexico/USA (32.8°N, 105.8°W) provides observations from the northern hemisphere. Each of these telescopes is equipped with several astronomical instruments. Among them are several spectrographs operating in the optical and near-IR regime with medium to high spectral resolution. Currently, we work on data from the following three spectrographs (1) UVES@VLT (Ultraviolet and Visual Echelle Spectrograph): This instrument provides spectra in the wavelength regime from 0.3 to 1.1μm in small spectral ranges. Its high resolving power (up to R˜110 000) allows a detailed study of oxygen (OI@557nm, OI@630nm), sodium (NaD@589nm), nitrogen (NI@520nm), and many OH bands. UVES has been in operation since 1999 providing the longest time series. (2) X-Shooter@VLT: This spectrograph is unique as it provides the whole wavelength range from 0.3 to 2.5μm at once with medium resolving power (R˜3 300 to 18 000, depending on the setup). This enables us to study the dependency of optical and near-IR airglow processes simultaneously, e.g. the OH bands. In addition, weak airglow continuum emission, e.g. arising from FeO and NiO can be studied. In operation since 2009, the data cover half a solar cycle. (3) MaNGA spectrograph@SDSS: This instrument combines two spectrographs covering the wavelength range from 0.36 to 1.03μm with a resolving power of R˜2 000. It is equipped with a multi-fibre device and is used for this specific survey that started in 2014 (aimed to finish in 2020). In this poster we give an overview on the status of the project, some first results, and an outlook.

  6. The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR)

    NASA Astrophysics Data System (ADS)

    Peterson, Bradley M.; Fischer, Debra; LUVOIR Science and Technology Definition Team

    2017-01-01

    LUVOIR is one of four potential large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. LUVOIR will have an 8 to16-m segmented primary mirror and operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The notional initial complement of instruments will include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a multi-resolution optical/NIR spectrograph. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable and upgradable. This is the first report by the LUVOIR STDT to the community on the top-level architectures we are studying, including preliminary capabilities of a mission with those parameters. The STDT seeks feedback from the astronomical community for key science investigations that can be undertaken with the notional instrument suite and to identify desirable capabilities that will enable additional key science.

  7. 2012 Summer Research Experiences for Undergraduates at Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Owen, L.

    2013-01-01

    Pisgah Astronomical Research Institute (PARI) offers research experiences for undergraduates (REU). PARI receives support for the internships from the NC Space Grant Consortium, NSF awards, private donations, and industry partner funding. The PARI REU program began in 2001 with 4 students and has averaged 6 students per year over the past 11 years. This year PARI hosted 8 funded REU students. Mentors for the interns include PARI’s Science, Education, and Information Technology staff and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the annually published PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors and the logistics for hosting the PARI undergraduate internship program.

  8. Design of a multiband near-infrared sky brightness monitor using an InSb detector.

    PubMed

    Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  9. CALLISTO: scientific projects performed by high school students

    NASA Astrophysics Data System (ADS)

    Boer, Michel

    The Callisto project was initiated in 2002 by the "Lyće de l'Arc" (High School in Orange, e France) and the "Observatoire de Haute Provence". Its goal is to give the students motivation for scientific and technical studies: they have the possibility to perform scientific projects together with professional astronomers. The pupils work in groups of 3 to 4, each having a specific theme: geophysics, variable stars, small bodies of the solar system, mechanical and optical instrumentation. They follow a whole scientific approach, from the question to answer, the instrumental setup, acquisition, data reduction, and publication. During a week they are invited to observe using the OHP 1.20m and 0.80m, with the support of a professional astronomer. Some projects have been in fact derived from actual proposal accepted at OHP (e.g. rotation curves of binary asteroids). The best projects are considered for some competitions like ESO "catch a star", "Olympiade de Physique", etc. Since 2005 three high-schools participate to this project. The Callisto initiative has also produced the basis of a teacher training course. Callisto is an example of a succesful collaboration between an interdisciplinary team of teachers (physics, maths, philosophy, English...), a research institution (the OHP), and researchers.

  10. Historical Examples of Lobbying: The Case of Strasbourg Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Heck, Andre

    2012-08-01

    Several astronomical observatories have been established in Strasbourg in very differing contexts. In the late 17th century, an observing post (scientifically sterile) was put on top of a tower, the Hospital Gate, essentially for the prestige of the city and the notoriety of the university. In the 19th century, the observatory built on the Académie hosting the French university was the first attempt to set up in the city a real observatory equipped with genuine instrumentation with the purpose of carrying out serious research, but the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. After the 1870-1871 Franco-Prussian war, the German authorities set up a prestigious university campus with a whole range of institutes together with a modern observatory consisting of several buildings and hosting a flotilla of excellent instruments, including the then largest refractor of the country. This paper illustrates various types of lobbying used in the steps above while detailing, from archive documents largely unexploited so far, original research on the two first observatories.

  11. Design of a multiband near-infrared sky brightness monitor using an InSb detector

    NASA Astrophysics Data System (ADS)

    Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  12. Prospects for star formation studies with infrared instruments (TIRCAM2 and TANSPEC) on the 3.6-m Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Ojha, Devendra; Ghosh, Swarna Kanti; Sharma, Saurabh; Pandey, Anil Kumar; Baug, Tapas; Ninan, Joe Philip; Kumar, Brijesh; Puravankara, Manoj; D'Costa, Savio; Naik, Milind; Poojari, Satheesha; Bhagat, Shailesh; Jadhav, Rajesh; Meshram, Ganesh; Sandimani, Pradeep; Gharat, Sanjay; Bakalkar, Chandrakant

    2018-04-01

    We present a brief description of the activities of the infrared astronomy group of Tata Institute of Fundamental Research with special emphasis on the ground-based near infrared instrumentation for star formation studies. We describe the unique capability of TIRCAM2 for observations in the polycyclic aromatic hydrocarbon (λcen˜3.3 μm) and narrow-band L (λcen˜3.59 μm) bands, currently being used by the astronomy community, and of the upcoming TANSPEC, which is being built for India's largest telescope, i.e. the 3.6-m Devasthal Optical Telescope (DOT). The TIRCAM2 on the 3.6-m DOT was successfully commissioned in June 2016, and the subsequent characterization and astronomical observations are presented here. Based on the successful engineering runs on the 3.6-m DOT, TIRCAM2 has been made available to the Indian and Belgian astronomical community for science observations since Early Science Cycle 2017A (May 2017) onwards. The fabrication of TANSPEC is in an advanced stage and the spectrometer is expected to be commissioned by the end of January 2018.

  13. In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.; Yuen, Lunming; Sisson, David; Hang, Richard

    2012-01-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012.

  14. TALON - The Telescope Alert Operation Network System : intelligent linking of distributed autonomous robotic telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. R.; Wren, J.; Davis, H. R.

    2004-01-01

    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficienfiy in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation.more » The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.« less

  15. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  16. Astronomy from the chair - the application of the Internet in promoting of Astronomy

    NASA Astrophysics Data System (ADS)

    Tomic, Zoran

    2014-05-01

    Internet and modern communication technologies are an indispensable part of modern life. The use of the Internet makes it possible to enhance the education and expand opportunities for acquiring new knowledge. One example is Astronomy, where today thanks to the Internet, we can control telescopes that are distant from us and listen to lectures from Universities in other countries. "Astronomy from the chair" is the name for a concept where amateur astronomers can deal with astronomy from their homes using the Internet. The concept can be divided into four sections depending on the content being offered: Robotic Observatory, Virtual Observatory, Online astronomy broadcasting and Online courses. Robotic observatory is defined as an astronomical instrument and detection system that enables efficient observation without the need of a person's physical intervention. Virtual Observatory is defined as a collection of databases and software tools that use the Internet as a platform for scientific research. Online astronomy broadcasting is part of concept "Astronomy from the chair" which gives users the opportunity to get directly involved in astronomical observation organized by an amateur astronomer from somewhere in the world. Online courses are groups of sites and organizations that provide the opportunity to amateur astronomers to attend lectures, save and watch video materials from lectures, do homework, communicate with other seminar participants and in that way become familiar with the various areas of Astronomy. This paper discusses a new concept that describes how the Internet can be applied in modern education. In this paper will be described projects that allows a large number of astronomy lovers to do their own research without the need to own a large and expensive set of astronomical equipment (Virtual Telescope from Italy, Observatory "Night Hawk" from Serbia and project "Astronomy from an armchair" at Faculty of Sciences and Mathematics in Nis), to help professional astronomers in research of galaxies, extrasolar systems, Moon etc. without the need of owning the official certificate in Astronomy (Planet Hunters, Moon Zoo) and the possibility to attend online courses in Astronomy (Introduction to Astronomy from the site Coursera). In the end, will be discussion about economic analysis of using robotic observatory in contemporary education and the implementation of research projects, rather than Institutions to invest huge amounts of funds in the purchase and maintenance of the same astronomical equipment.

  17. Light Dawns on Dark Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift data with new observations made using GROND [2] - a dedicated gamma-ray burst follow-up observation instrument, which is attached to the 2.2-metre MPG/ESO telescope at La Silla in Chile. In doing so, astronomers have conclusively solved the puzzle of the missing optical afterglow. What makes GROND exciting for the study of afterglows is its very fast response time - it can observe a burst within minutes of an alert coming from Swift using a special system called the Rapid Response Mode - and its ability to observe simultaneously through seven filters covering both the visible and near-infrared parts of the spectrum. By combining GROND data taken through these seven filters with Swift observations, astronomers were able to accurately determine the amount of light emitted by the afterglow at widely differing wavelengths, all the way from high energy X-rays to the near-infrared. The astronomers used this information to directly measure the amount of obscuring dust that the light passed through en route to Earth. Previously, astronomers had to rely on rough estimates of the dust content [3]. The team used a range of data, including their own measurements from GROND, in addition to observations made by other large telescopes including the ESO Very Large Telescope, to estimate the distances to nearly all of the bursts in their sample. While they found that a significant proportion of bursts are dimmed to about 60-80 percent of the original intensity by obscuring dust, this effect is exaggerated for the very distant bursts, letting the observer see only 30-50 percent of the light [4]. The astronomers conclude that most dark gamma-ray bursts are therefore simply those that have had their small amount of visible light completely stripped away before it reaches us. "Compared to many instruments on large telescopes, GROND is a low cost and relatively simple instrument, yet it has been able to conclusively resolve the mystery surrounding dark gamma-ray bursts," says Greiner. Notes [1] Gamma-ray bursts lasting longer than two seconds are referred to as long bursts and those with a shorter duration are known as short bursts. Long bursts, which were observed in this study, are associated with the supernova explosions of massive young stars in star-forming galaxies. Short bursts are not well understood, but are thought to originate from the merger of two compact objects such as neutron stars. [2] The Gamma-Ray burst Optical and Near-infrared Detector (GROND) was designed and built at the Max-Planck Institute for Extraterrestrial Physics in collaboration with the Tautenburg Observatory, and has been fully operational since August 2007. [3] Other studies relating to dark gamma-ray bursts have been released. Early this year, astronomers used the Subaru Telescope to observe a single gamma-ray burst, from which they hypothesised that dark gamma-ray bursts may indeed be a separate sub-class that form through a different mechanism, such as the merger of binary stars. In another study published last year using the Keck Telescope, astronomers studied the host galaxies of 14 dark GRBs, and based on the derived low redshifts they infer dust as the likely mechanism to create the dark bursts. In the new work reported here, 39 GRBs were studied, including nearly 20 dark bursts, and it is the only study in which no prior assumptions have been made and the amount of dust has been directly measured. [4] Because the afterglow light of very distant bursts is redshifted due to the expansion of the Universe, the light that left the object was originally bluer than the light we detect when it gets to Earth. Since the reduction of light intensity by dust is greater for blue and ultraviolet light than for red, this means that the overall dimming effect of dust is greater for the more distant gamma-ray bursts. This is why GROND's ability to observe near-infrared radiation makes such a difference. More information This research is presented in a paper to appear in the journal Astronomy & Astrophysics on 16 December 2010 The team is composed of: J. Greiner (Max-Planck-Institut für extraterrestrische Physik [MPE], Germany), T. Krühler (MPE, Universe Cluster, Technische Universität München), S. Klose (Thüringer Landessternwarte, Germany), P. Afonso (MPE), C. Clemens (MPE), R. Filgas (MPE), D.H. Hartmann (Clemson University, USA), A. Küpcü Yoldaş¸ (University of Cambridge, UK), M. Nardini (MPE), F. Olivares E. (MPE), A. Rau (MPE), A. Rossi (Thüringer Landessternwarte, Germany), P. Schady (MPE), and A. Updike (Clemson University, USA) ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. Astronomical Software Directory Service

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Payne, Harry; Hayes, Jeffrey

    1997-01-01

    With the support of NASA's Astrophysics Data Program (NRA 92-OSSA-15), we have developed the Astronomical Software Directory Service (ASDS): a distributed, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URLs indexed for full-text searching. Users are performing about 400 searches per month. A new aspect of our service is the inclusion of telescope and instrumentation manuals, which prompted us to change the name to the Astronomical Software and Documentation Service. ASDS was originally conceived to serve two purposes: to provide a useful Internet service in an area of expertise of the investigators (astronomical software), and as a research project to investigate various architectures for searching through a set of documents distributed across the Internet. Two of the co-investigators were then installing and maintaining astronomical software as their primary job responsibility. We felt that a service which incorporated our experience in this area would be more useful than a straightforward listing of software packages. The original concept was for a service based on the client/server model, which would function as a directory/referral service rather than as an archive. For performing the searches, we began our investigation with a decision to evaluate the Isite software from the Center for Networked Information Discovery and Retrieval (CNIDR). This software was intended as a replacement for Wide-Area Information Service (WAIS), a client/server technology for performing full-text searches through a set of documents. Isite had some additional features that we considered attractive, and we enjoyed the cooperation of the Isite developers, who were happy to have ASDS as a demonstration project. We ended up staying with the software throughout the project, making modifications to take advantage of new features as they came along, as well as influencing the software development. The Web interface to the search engine is provided by a gateway program written in C++ by a consultant to the project (A. Warnock).

  19. Status of LOFAR Data in HDF5 Format

    NASA Astrophysics Data System (ADS)

    Alexov, A.; Schellart, P.; ter Veen, S.; van der Akker, M.; Bähren, L.; Greissmeier, J.-M.; Hessels, J. W. T.; Mol, J. D.; Renting, G. A.; Swinbank, J.; Wise, M.

    2012-09-01

    The Hierarchical Data Format, version 5 (HDF5) is a data model, library, and file format for storing and managing data. It is designed for flexible and efficient I/O and for high volume, complex data. The Low Frequency Array (LOFAR) project is solving the challenge of data size and complexity using HDF5. Most of LOFAR's standard data products will be stored using HDF5; the beam-formed time-series data and transient buffer board data have already transitioned from project-specific binary format to HDF5. We report on our effort to pave the way towards new astronomical data encapsulation using HDF5, which can be used by future ground and space projects. The LOFAR project has formed a collaboration with NRAO, the Virtual Astronomical Observatory (VAO) and the HDF Group to obtain funding for a full-time staff member to work on documenting and developing standards for astronomical data written in HDF5. We hope our effort will enhance HDF5 visibility and usage within the community, specifically for LSST, the SKA pathfinders (ASKAP, MeerKAT, MWA, LWA), and other major new radio telescopes such as EVLA, ALMA, and eMERLIN.

  20. Easy PC Astronomy

    NASA Astrophysics Data System (ADS)

    Duffett-Smith, Peter

    1996-11-01

    Easy PC Astronomy is the perfect book for everyone who wants to make easy and accurate astronomical calculations. The author supplies a simple but powerful script language called AstroScript on a disk, ready to use on any IBM PC-type computer. Equipped with this software, readers can compute complex but interesting astronomical results within minutes: from the time of moonrise or moonset anywhere in the world on any date, to the display of a lunar or solar eclipse on the computer screen--all within a few minutes of opening the book! The Sky Graphics feature of the software displays a detailed image of the sky as seen from any point on earth--at any time in the future or past--showing the constellations, planets, and a host of other features. Readers need no expert knowledge of astronomy, math or programming; the author provides full details of the calculations and formulas, which the reader can absorb or ignore as desired, and a comprehensive glossary of astronomical terms. Easy PC Astronomy is of immediate practical use to beginning and advanced amateur astronomers, students at all levels, science teachers, and research astronomers. Peter Duffett-Smith is at the Cavendish Laboratory of the University of Cambridge and is the author of Astronomy with Your Personal Computer (Cambridge University Press, 1990) and Practical Astronomy with Your Calculator (Cambridge University Press, 1989).

  1. The first massive astronomical observation event in Mexico City

    NASA Astrophysics Data System (ADS)

    Espinosa, Mariana; Hernandez, Xavier

    2011-06-01

    On the night of the 20th of February 2008 there was a total eclipse of the moon visible from Mexico City, with a total duration from 19:42 hrs to 23:09 hrs. At the Instituto de Astronomía, UNAM, we took this opportunity to organise a massive astronomical party on the central plaza of the city, the Zocalo. Over a period of about 6 hrs. we set up a huge astro-party, with free use of over 100 telescopes, where we estimate over 40,000 persons looked through an astronomical telescope at the moon and Saturn, most for the first time in their lives. Numerous stands including a children's games, an Astronomy conference room, and the free distribution of Astronomical material were organised. Here we describe some of the issues associated with the planning and implementation of the event. Coordination issues were complex, involving interaction with divers and numerous authorities, city, national, police, traffic, medical assistance in readiness, aide from other universities, and amateur astronomical societies, which supplied most of the telescopes. An extensive publicity campaign was launched with several weeks of anticipation, and although we had no way of estimating the public response, we were ready with over 800 volunteers at the Zócalo on the 20th of February. The public response was massive and overwhelmingly positive, thousands swarmed the square in a completely peaceful and well organised interaction between Astronomy and society at large, over many complementary levels

  2. A Mythological, Philosophical and Astronomical approach of our solar system

    NASA Astrophysics Data System (ADS)

    Drivas, Sotirios; Kastanidou, Sofia

    2016-04-01

    Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.

  3. Lewis M. Rutherfurd and the First Photograph of Solar Granulation

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Briggs, John W.; Prosser, Sian

    2017-08-01

    A major astronomical controversy of the mid-19th century was discordant descriptions of the small scale structure of the solar surface. Visual observers contradicted each other by describing the surface as consisting of “corrugations”, “willow leaves”, “rice grains”, “cumuli”, “thatch”, “granules”, etc. Early photographs of the solar surface were not good enough to settle the controversy. The French astronomer Jules Janssen is credited with the first 1876 photographs that clearly showed what we now call solar granulation (1876, CRAS 82, 1363). Upon seeing these images, New Yorker Lewis M. Rutherfurd (1878, MNRAS 38, 410) praised the high quality of Janssen’s images but asserted that he had also photographed granulation as early as 1871 using collodion wet plates. He sent copies of his best photograph to the Royal Astronomical Society to support his assertion. Curious about his claim, Briggs and Harvey set up Rutherfurd’s 13-inch achromatic refractor on Kitt Peak and found that it easily showed well-resolved solar granulation, so his claim might well have been justified. But without his plates we could not confirm the claim. For 140 years the copies of Rutherfurd’s best solar photograph remained in the archives of the Royal Astronomical Society and were recently discovered by Prosser (RAS Photographs A3/001B and A3/002). By coincidence a few days later, Briggs found the original August 11, 1871 plate. Despite poor condition these photographs show solar granulation. There are at least two other possible early claimants (Reade; Vogel) but their plates are almost certainly lost. Rutherfurd was a master of astronomical instrumentation and photography. He was reticent about his work, letting results speak for themselves, so it is satisfying to find that he was justified in making his claim of priority.

  4. Computer simulations of interferometric imaging with the Very Large Telescope Interferometer and its Astronomical Multibeam Recombiner instrument

    NASA Astrophysics Data System (ADS)

    Przygodda, Frank; Bloecker, Thomas; Hofmann, Karl-Heinz; Weigelt, Gerd

    2001-05-01

    We present computer simulations of interferometric imaging with the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory and the Astronomical Multibeam Recombiner (AMBER) phase-closure instrument. These simulations include both the astrophysical modeling of a stellar object by radiative-transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector readout noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object and r0,ref ranging between 0.9 and 1.2 m), different residual tip-tilt error ((delta) tt,object and (delta) tt,ref ranging between 0.1% and 20% of the Airy-disk diameter), and object brightness (Kobject equals 0.7 to 10.2 mag, Kref equals 0.7 mag). As an example, we focus on stars in late stages of stellar evolution and study one of the key objects of that kind, the dusty super-giant IRC + 10420, which is rapidly evolving on human time scales. We show computer simulations of VLT interferometer (visibility and phase-closure measurements) of IRC + 10420 with two and three auxiliary telescopes (in AMBER wide-field mode, i.e., without fiber optic spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.

  5. Finland Becomes Eleventh ESO Member State

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Finland has become the eleventh member state of the European Southern Observatory (ESO) [1]. The formal accession procedure was carried through as planned and has now been completed. Following the signing of the corresponding Agreement earlier this year (ESO PR 02/04), acceptance by the Finnish Parliament and ratification by the Finnish President of the Agreement as well as the ESO Convention and the associated protocols in June [2] and the deposit of the instruments of accession today, Finland has now officially joined ESO. ESO warmly welcomes the new member country and its scientific community that is renowned for their expertise in many frontline areas. The related opportunities will contribute to strenghtening of pioneering research with the powerful facilities at ESO's observatories, to the benefit of Astronomy and Astrophysics as well as European science in general. ESO also looks forward to collaboration with the Finnish high-tech industry. For Finland, the membership in ESO is motivated by scientific and technological objectives as well as by the objective of improving the public understanding of science. The Finnish Government is committed to increasing the public research funding in order to improve the quality, impact and internationalisation of research. Membership in ESO offers unique facilities for astronomical research which would not otherwise be available for Finnish astronomers. Finland is also very interested in taking part in technological development projects in fields like ICT, optics and instrumentation. For young scientists and engineers, ESO is a challenging, international working and learning environment. Finland has already taken part in the educational programmes of ESO, and as a member this activity will be broadened and intensified. In Finland there are also several science journalists and a large community of amateur astronomers who will be very happy to take part in ESO's outreach activities.

  6. On-line Machine Learning and Event Detection in Petascale Data Streams

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; Wagstaff, K. L.

    2012-01-01

    Traditional statistical data mining involves off-line analysis in which all data are available and equally accessible. However, petascale datasets have challenged this premise since it is often impossible to store, let alone analyze, the relevant observations. This has led the machine learning community to investigate adaptive processing chains where data mining is a continuous process. Here pattern recognition permits triage and followup decisions at multiple stages of a processing pipeline. Such techniques can also benefit new astronomical instruments such as the Large Synoptic Survey Telescope (LSST) and Square Kilometre Array (SKA) that will generate petascale data volumes. We summarize some machine learning perspectives on real time data mining, with representative cases of astronomical applications and event detection in high volume datastreams. The first is a "supervised classification" approach currently used for transient event detection at the Very Long Baseline Array (VLBA). It injects known signals of interest - faint single-pulse anomalies - and tunes system parameters to recover these events. This permits meaningful event detection for diverse instrument configurations and observing conditions whose noise cannot be well-characterized in advance. Second, "semi-supervised novelty detection" finds novel events based on statistical deviations from previous patterns. It detects outlier signals of interest while considering known examples of false alarm interference. Applied to data from the Parkes pulsar survey, the approach identifies anomalous "peryton" phenomena that do not match previous event models. Finally, we consider online light curve classification that can trigger adaptive followup measurements of candidate events. Classifier performance analyses suggest optimal survey strategies, and permit principled followup decisions from incomplete data. These examples trace a broad range of algorithm possibilities available for online astronomical data mining. This talk describes research performed at the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2012, All Rights Reserved. U.S. Government support acknowledged.

  7. A Decade Of Teacher Professional Development With SOFIA's EXES And TEXES

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Lacy, J. H.; Sneden, C.; Teacher Associates, EXES

    2007-12-01

    Since January 1998 central Texas grade 6-12 science and math teachers have met several times per year to learn first-hand about how a scientific instrument, the Echelon Cross Echelle Spectrograph (EXES), is being developed and built for SOFIA. In addition to learning about the technology of astronomical instrumentation, they have learned about the development of SOFIA, the scheduling and preparation for observing runs, and a wide range of astronomical topics. A typical Saturday meeting includes an update on SOFIA, EXES, and its ground-based prototype, TEXES (Texas Echelon Cross Echelle Spectrograph); one or more presentations on a science or technology topic; and a Standards-linked activity that they can carry back to use in their classrooms. A variety of guest-presenters - faculty, staff, and graduate students as well as visitors (e. g., Jackie Davidson and Alan Tokunaga) - enrich the program with their expertise. Field trips are important supplements to the program; the entire group visited Waco three times to observe the SOFIA aircraft modification while selected members have accompanied scientists to McDonald Observatory, IRTF, and Gemini for observing runs. In addition, the immediacy offered by live videoconferences with TEXES observers at IRTF and Gemini brought the participants a unique appreciation of nighttime observing at a professional observatory. The participants report their increased knowledge of astronomical concepts and of the culture of professional astronomy. By spreading the SOFIA EXES teacher program over its first decade of development, the staff has formed strong professional bonds with the participants while the participants have shared their experiences with each other. Support from USRA grant 8500-98-008 and the National Science Foundation AST-0607312 and AST- 0607708 is gratefully acknowledged.

  8. The Undergraduate Research Resources at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, Michael W.

    2016-01-01

    Pisgah Astronomical Research Institute (PARI), a former NASA tracking station located in western North Carolina, has been offering programs, campus, and instrument use for undergraduate research and learning experiences since 2000. Over these years, PARI has collaborated with universities and colleges in the Southeastern U.S. Sharing its campus with institutions of higher learning is a priority for PARI as part of its mission to "to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines."PARI is a 200 acre campus for environmental, earth, geological, physical, and astronomical sciences. For example, the PARI 26-m and 4.6-m radio telescopes are excellent for teaching electromagnetic theory, spectroscopy, atomic and molecular emission processes, and general physics and astronomy concepts. The PARI campus has lab and office space, data centers with high speed internet, distance learning capabilities, radio and optical telescopes, earth science sensors, housing and cafeteria.Also, the campus is in an excellent spot for environmental and biological sciences lab and classroom experiences for students. The campus has the capability to put power and Internet access almost anywhere on its 200 acre campus so experiments can be set up in a protected area of a national forest. For example, Earthscope operates a Plate Boundary Observatory sensor on campus to measure plate tectonic motion. And, Clemson University has an instrument measuring winds and temperatures in the Thermsophere. The use of thePARI campus is limited only by the creativity faculty to provide a rich educational environment for their students. An overview of PARI will be presented along with a summary of programs, and a summary of undergraduate research experiences over the past 15 years. Access to PARI and collaboration possibilities will be presented.

  9. Hubble's Best Image of Alpha Centauri A and B

    NASA Image and Video Library

    2017-12-08

    The closest star system to the Earth is the famous Alpha Centauri group. Located in the constellation of Centaurus (The Centaur), at a distance of 4.3 light-years, this system is made up of the binary formed by the stars Alpha Centauri A and Alpha Centauri B, plus the faint red dwarf Alpha Centauri C, also known as Proxima Centauri. This NASA/ESA Hubble Space Telescope has given us this stunning view of the bright Alpha Centauri A (on the left) and Alpha Centauri B (on the right), shining like huge cosmic headlamps in the dark. The image was captured by the Wide-Field and Planetary Camera 2 (WFPC2). WFPC2 was Hubble’s most used instrument for the first 13 years of the space telescope’s life, being replaced in 2009 by Wide-Field Camera 3 (WFC3) during Servicing Mission 4. This portrait of Alpha Centauri was produced by observations carried out at optical and near-infrared wavelengths. Compared to the sun, Alpha Centauri A is of the same stellar type, G2, and slightly bigger, while Alpha Centauri B, a K1-type star, is slightly smaller. They orbit a common center of gravity once every 80 years, with a minimum distance of about 11 times the distance between Earth and the sun. Because these two stars are, together with their sibling Proxima Centauri, the closest to Earth, they are among the best studied by astronomers. And they are also among the prime targets in the hunt for habitable exoplanets. Using the European Space Organization's HARPS instrument, astronomers already discovered a planet orbiting Alpha Centauri B. Then on Aug. 24, 2016, astronomers announced the intriguing discovery of a nearly Earth-sized planet in the habitable zone orbiting the star Proxima Centauri Image credit: ESA/NASA

  10. Feeding the Monster

    NASA Astrophysics Data System (ADS)

    2005-10-01

    Near-infrared images of the active galaxy NGC 1097, obtained with the NACO adaptive optics instrument on ESO's Very Large Telescope, disclose with unprecedented detail a complex central network of filamentary structure spiralling down to the centre of the galaxy. These observations provide astronomers with new insights on how super-massive black holes lurking inside galaxies get fed. "This is possibly the first time that a detailed view of the channelling process of matter, from the main part of the galaxy down to the very end in the nucleus is released," says Almudena Prieto (Max-Planck Institute, Heidelberg, Germany), lead author of the paper describing these results. Located at a distance of about 45 million light-years in the southern constellation Fornax (the Furnace), NGC 1097 is a relatively bright, barred spiral galaxy seen face-on. At magnitude 9.5, and thus just 25 times fainter than the faintest object that can be seen with the unaided eye, it appears in small telescopes as a bright, circular disc. NGC 1097 is a very moderate example of an Active Galactic Nucleus (AGN), whose emission is thought to arise from matter (gas and stars) falling into oblivion in a central black hole. However, NGC 1097 possesses a comparatively faint nucleus only, and the black hole in its centre must be on a very strict "diet": only a small amount of gas and stars is apparently being swallowed by the black hole at any given moment. Astronomers have been trying to understand for a long time how the matter is "gulped" down towards the black hole. Watching directly the feeding process requires very high spatial resolution at the centre of galaxies. This can be achieved by means of interferometry as was done with the VLTI MIDI instrument on the central parts of another AGN, NGC 1068 (see ESO PR 17/03), or with adaptive optics [1]. Thus, astronomers [2] obtained images of NGC 1097 with the adaptive optics NACO instrument attached to Yepun, the fourth Unit Telescope of ESO's VLT. These new images probe with unprecedented detail the presence and extent of material in the very proximity of the nucleus. The resolution achieved with the images is about 0.15 arcsecond, corresponding to about 30 light-years across. For comparison, this is only 8 times the distance between the Sun and its nearest star, Proxima Centauri. ESO PR Photo 33b/05 ESO PR Photo 33b/05 Filamentary Structures in NGC 1097 [Preview - JPEG: 400 x 570 pix - 275k] [Normal - JPEG: 800 x 1140 pix - 900k] [Full Res - JPEG: 1422 x 2026 pix - 2.6M] Caption: ESO PR Photo 33b/05: The left image shows the same central region as imaged in PR Photo 33a/05 but this time as seen in the J-Ks colour. It clearly shows the nucleus, the central spiral arms extending up to 1,300 light-years from the centre, and the star-forming ring. The right image shows the same but after a masking process has been applied to suppress the central stellar light of the galaxy. The central spiral arms are now seen as dark channels, some extending up to the star-forming ring. North is up and East is to the left. As can be seen in last year's image (see ESO PR Photo 35d/04), NGC 1097 has a very strong bar and a prominent star-forming ring inside it. Interior to the ring, a secondary bar crosses the nucleus almost perpendicular to the primary bar. The newly released NACO near-infrared images show in addition more than 300 star-forming regions, a factor four larger than previously known from Hubble Space Telescope images. These "HII regions" can be seen as white spots in ESO PR Photo 33a/05. At the centre of the ring, a moderate active nucleus is located. Details from the nucleus and its immediate surroundings are however outshone by the overwhelming stellar light of the galaxy seen as the bright diffuse emission all over the image. The astronomers therefore applied a masking technique that allowed them to suppress the stellar light (see ESO PR Photo 33b/05). This unveils a bright nucleus at the centre, but mostly a complex central network of filamentary structures spiralling down to the centre. "Our analysis of the VLT/NACO images of NGC 1097 shows that these filaments end up at the very centre of the galaxy", says co-author Juha Reunanen from ESO. "This network closely resembles those seen in computer models", adds co-worker Witold Maciejewski from the University of Oxford, UK. "The nuclear filaments revealed in the NACO images are the tracers of cold dust and gas being channelled towards the centre to eventually ignite the AGN." The astronomers also note that the curling of the spiral pattern in the innermost 300 light-years seem indeed to confirm the presence of a super-massive black hole in the centre of NGC 1097. Such a black hole in the centre of a galaxy causes the nuclear spiral to wind up as it approaches the centre, while in its absence the spiral would be unwinding as it moves closer to the centre. An image of NGC 1097 and its small companion, NGC 1097A, was taken in December 2004, in the presence of Chilean President Lagos with the VIMOS instrument on ESO's Very Large Telescope (VLT). It is available as ESO PR Photo 35d/04. More information This ESO Press Photo is based on research published in the October issue of Astronomical Journal, vol. 130, p. 1472 ("Feeding the Monster: The Nucleus of NGC 1097 at Subarcsecond Scales in the Infrared with the Very Large Telescope", by M. Almudena Prieto, Witold Maciejewski, and Juha Reunanen).

  11. Primary Objective Grating Astronomical Telescope

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas D.

    2007-01-01

    It has been 370 years since a seventeenth century French mathematician, Mersenne, presciently sketched out an astronomical telescope based on dual parabolic reflectors. Since that time the concept of the primary objective has been virtually unchanged. Now a new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectroscopy (MOS). Other potential benefits include unprecedented apertures and collection areas. The new design also favors space deployment as a gossamer membrane. The inventor, Tom Ditto, first discovered that higher-order diffraction images contain hidden depth cues, for which he was granted a seminal range finding patent in 1987. Subsequently, he invented and patented 3D localizers, profilometers and microscopes using POGs. The POG telescope was placed in the public domain to expedite research. The function of a telescopes primary objective is to collect flux and to deliver images. Both functions dictate that size matters, and bigger is better. For that reason, there has been a steady push over the past century to ramp up the size of the primary mirror. However, for every doubling of mirror diameter, the elapsed time between initial effort and first light has also doubled. Meanwhile, costs escalated beyond the mirror alone, because larger instruments required larger enclosures and better pointing mechanisms. One key catalog of observation, spectrographic data, is far more difficult to amass than two-dimensional imagery. While the number of observable objects has increased with mirror size, the capacity to take spectra has not increased proportionately. In the best of circumstances, spectrograms are available for one per cent of the all objects surveyed. Spectroscopy was a historical afterthought introduced in the nineteenth century shortly after the invention of the diffraction grating and over a century after Newtons 1670 telescope. Spectroscopy is generally accomplished using a diffraction grating as the disperser in the secondary. The light being delivered to the spectrograph is first captured by a primary mirror which provides no chromatic magnification by itself. Sizeable spectrographs could not be deployed while diffraction gratings were rare commodities scribed using mechanical ruling engines that produced one grating line at a time. Today diffraction gratings are commonplace. Their recent availability is a product of both the invention of holography and the mass replication of surface microstructures. Holography permits all lines in a grating to be made simultaneously in a single photographic exposure. Holograms can then be reproduced by embossing processes. The improvement in replication is analogous to how Gutenberg changed the availability of books. The masters may be expensive, but the copies are not. Computer science is another technology that emerged in the second half of the twentieth century without which our proposed spectrographic instrument could not function due to the complexity of image processing required in data reduction. The employment of very large diffraction gratings as primary objectives for astronomical telescopes requires a novel

  12. CARMENES. IV: instrument control software

    NASA Astrophysics Data System (ADS)

    Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Hagen, Hans-Jürgen; Morales, Rafael; Abril, Miguel; Galadí-Enríquez, David; Seifert, Walter; Sánchez Carrasco, Miguel A.; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, Jose A.; Mandel, Holger

    2012-09-01

    The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.

  13. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-10-01

    This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. Hubble Space Telescope-The Support Systems Module

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring

    NASA Astrophysics Data System (ADS)

    Fiandrotti, Attilio; Fosson, Sophie M.; Ravazzi, Chiara; Magli, Enrico

    2018-04-01

    Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.

  16. The NVO in Day-to-Day Astronomy

    NASA Astrophysics Data System (ADS)

    McGlynn, T. A.; White, N. E.

    2000-12-01

    In the discussion following the decadal review's recommendation to establish a National Virtual Observatory (NVO) much attention has been paid to how the NVO could provide unprecedented capabilities to perform complex statistical analyses of the huge datasets now entering the community. It is equally important to recognize how it can also redefine how astronomers conduct smaller scale investigations. The NVO vision includes a federation of current major data providers, providing astronomers with seamless access to data from distributed sites, spanning the entire spectrum. This goes well beyond earlier services, e.g., SkyView, Astrobrowse, NED, .... The NVO's metadata standards, data mining capabilities, and data discovery services will enable all astronomers -- including those without substantial access to physical observatories -- to quickly and effectively use the archival resources of the community. In this paper we describe how the NVO may come to permeate the culture of astronomy in the coming decade. We discuss our experience with forerunners of the NVO including SkyView and Astrobrowse, and we also consider the requirements that the NVO must meet to ensure it achieves its potential for the entire astronomical community.

  17. The 6.5-m MMT Telescope: status and plans for the future

    NASA Astrophysics Data System (ADS)

    Williams, G. Grant; Ortiz, R.; Goble, W.; Gibson, J. D.

    2016-08-01

    The MMT Observatory, a joint venture of the Smithsonian Institution and the University of Arizona, operates the 6.5-m MMT telescope on the summit of Mount Hopkins approximately 45 miles south of Tucson, AZ. The upgraded telescope has been in routine operation for nearly fifteen years and, as such, is a very reliable and productive general purpose astronomical instrument. The telescope can be configured with one of three secondary mirrors that feed more than ten instruments at the Cassegrain focus. In this paper we provide an overview of the the telescope, its current capabilities, and its performance. We will review the existing suite of instruments and their different modes of operation. We will describe some of the general operations challenges and strategies for the Observatory. Finally, we will discuss plans for the near-term future including technical upgrades, new instrumentation and routine queue operation of MMIRS and Binospec.

  18. EUV Cross-Calibration Strategies for the GOES-R SUVI

    NASA Astrophysics Data System (ADS)

    Darnel, Jonathan; Seaton, Daniel

    2016-10-01

    The challenges of maintaining calibration for solar EUV instrumentation is well-known. The lack of standard calibration sources and the fact that most solar EUV telescopes are incapable of utilizing bright astronomical EUV sources for calibration make knowledge of instrument performance quite difficult. In the recent past, calibration rocket underflights have helped establish a calibration baseline. The EVE instrument on SDO for a time provided well-calibrated, high spectral resolution solar spectra for a broad range of the EUV, but has suffered a loss of coverage at the shorter wavelengths. NOAA's Solar UltraViolet Imager (SUVI), a solar EUV imager with similarities to SDO/AIA, will provide solar imagery over nearly an entire solar cycle. In order to maintain the scientific value of the SUVI's dataset, novel approaches to calibration are necessary. Here we demonstrate a suite of methods to cross-calibrate SUVI against other solar EUV instruments through the use of proxy solar spectra.

  19. The AAO fiber instrument data simulator

    NASA Astrophysics Data System (ADS)

    Goodwin, Michael; Farrell, Tony; Smedley, Scott; Heald, Ron; Heijmans, Jeroen; De Silva, Gayandhi; Carollo, Daniela

    2012-09-01

    The fiber instrument data simulator is an in-house software tool that simulates detector images of fiber-fed spectrographs developed by the Australian Astronomical Observatory (AAO). In addition to helping validate the instrument designs, the resulting simulated images are used to develop the required data reduction software. Example applications that have benefited from the tool usage are the HERMES and SAMI instrumental projects for the Anglo-Australian Telescope (AAT). Given the sophistication of these projects an end-to-end data simulator that accurately models the predicted detector images is required. The data simulator encompasses all aspects of the transmission and optical aberrations of the light path: from the science object, through the atmosphere, telescope, fibers, spectrograph and finally the camera detectors. The simulator runs under a Linux environment that uses pre-calculated information derived from ZEMAX models and processed data from MATLAB. In this paper, we discuss the aspects of the model, software, example simulations and verification.

  20. Division XII / Commission 41 / Working Group Historical Instruments

    NASA Astrophysics Data System (ADS)

    Pigatto, Luisa; Il-Seong, Nha; Hamel, Jürgen; Johnson, Kevin; Kochhar, Rajesh K.; Nakamura, Tsuko; Orchiston, Wayne; Pettersen, Bjørn R.; Schechner, Sara J.; Yunli, Shi

    The Historical Instruments Working Group (WG-HI) and Commission 41 started planning an interdisciplinary conference titled Astronomy and its instruments before and after Galileo since January 2007. This conference, as an IYA2009 initiative, aims “to highlight mankind's path toward an improved knowledge of the sky using mathematical and mechanical tools as well as monuments and buildings, giving rise, in doing so, to scientific astronomy”. Commission 46 and Commission 55 also support this conference, to be held on the Isle of San Servolo, Venice (Italy), 27 September 3 October 2009. As a fact of history, it was in Venice that Galileo was advised and got material (glass) to make his telescope, and in Venice he presented an working instrument to Venetian Doge in August 1609. The conference is co-sponsored by IAU as a Joint Symposium with the INAF Astronomical Observatory of Padova, Italy.

  1. Using XML and Java for Astronomical Instrumentation Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Koons, Lisa; Sall, Ken; Warsaw, Craig

    2000-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). ]ML is used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, and communication mechanisms. Although the current effort is targeted for the High-resolution Airborne Wideband Camera, a first-light instrument of the Stratospheric Observatory for Infrared Astronomy, the framework is designed to be generic and extensible so that it can be applied to any instrument.

  2. Improved Controller for a Three-Axis Piezoelectric Stage

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Palmer, Dean

    2009-01-01

    An improved closed-loop controller has been built for a three-axis piezoelectric positioning stage. The stage can be any of a number of commercially available or custom-made units that are used for precise three-axis positioning of optics in astronomical instruments and could be used for precise positioning in diverse fields of endeavor that include adaptive optics, fabrication of semiconductors, and nanotechnology.

  3. Advanced optical coatings for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Pradal, Fabien; Leplan, Hervé; Vayssade, Hervé; Geyl, Roland

    2016-07-01

    Recently Safran Reosc worked and progressed on various thin film technology for: Large mirrors with low stress and stable coatings. Large lens elements with strong curvature and precise layer specifications. Large filters with high spectral response uniformity specifications. IR coatings with low stress and excellent resistance to cryogenic environment for NIR to LWIR domains. Pixelated coatings. Results will be presented and discussed on the basis of several examples.

  4. Support of Mark III Optical Interferometer

    DTIC Science & Technology

    1988-11-01

    error, and low visibility* pedestal, and the surface of a zerodur sphere attached to the mirror errors are not entirely consistent. as shown in Fig. 7...of’ stellar usually associated with the primary mirror of a large astronomical interferometers at Mt. Wilson Observatory. The first instrument...the two siderostats is directed toward the central building by fixed mirrors . These fixed mirrors are necessary to keep the polarization - vectors

  5. Odyssey of Human Creative Genius: From Astronomical Heritage to Space Technology Heritage

    NASA Astrophysics Data System (ADS)

    Dluzhnevskaya, Olga; Marov, Mikhail

    2016-10-01

    Astronomy was one of the most important sciences in the ancient world. It was rooted in naked eye observations and primitive stone instruments for astrometric measurements to determine the positions of the Sun, Moon, planets and some stars that had both practical and sacred meaning. That is why the majority of archaeoastronomical monuments are simultaneously observatories and sanctuaries, with burials and altars.

  6. World's fastest and most sensitive astronomical camera

    NASA Astrophysics Data System (ADS)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these corrections to be done at an even higher rate, more than one thousand times a second, and this is where OCam is essential. "The quality of the adaptive optics correction strongly depends on the speed of the camera and on its sensitivity," says Philippe Feautrier from the LAOG, France, who coordinated the whole project. "But these are a priori contradictory requirements, as in general the faster a camera is, the less sensitive it is." This is why cameras normally used for very high frame-rate movies require extremely powerful illumination, which is of course not an option for astronomical cameras. OCam and its CCD220 detector, developed by the British manufacturer e2v technologies, solve this dilemma, by being not only the fastest available, but also very sensitive, making a significant jump in performance for such cameras. Because of imperfect operation of any physical electronic devices, a CCD camera suffers from so-called readout noise. OCam has a readout noise ten times smaller than the detectors currently used on the VLT, making it much more sensitive and able to take pictures of the faintest of sources. "Thanks to this technology, all the new generation instruments of ESO's Very Large Telescope will be able to produce the best possible images, with an unequalled sharpness," declares Jean-Luc Gach, from the Laboratoire d'Astrophysique de Marseille, France, who led the team that built the camera. "Plans are now underway to develop the adaptive optics detectors required for ESO's planned 42-metre European Extremely Large Telescope, together with our research partners and the industry," says Hubin. Using sensitive detectors developed in the UK, with a control system developed in France, with German and Spanish participation, OCam is truly an outcome of a European collaboration that will be widely used and commercially produced. More information The three French laboratories involved are the Laboratoire d'Astrophysique de Marseille (LAM/INSU/CNRS, Université de Provence; Observatoire Astronomique de Marseille Provence), the Laboratoire d'Astrophysique de Grenoble (LAOG/INSU/CNRS, Université Joseph Fourier; Observatoire des Sciences de l'Univers de Grenoble), and the Observatoire de Haute Provence (OHP/INSU/CNRS; Observatoire Astronomique de Marseille Provence). OCam and the CCD220 are the result of five years work, financed by the European commission, ESO and CNRS-INSU, within the OPTICON project of the 6th Research and Development Framework Programme of the European Union. The development of the CCD220, supervised by ESO, was undertaken by the British company e2v technologies, one of the world leaders in the manufacture of scientific detectors. The corresponding OPTICON activity was led by the Laboratoire d'Astrophysique de Grenoble, France. The OCam camera was built by a team of French engineers from the Laboratoire d'Astrophysique de Marseille, the Laboratoire d'Astrophysique de Grenoble and the Observatoire de Haute Provence. In order to secure the continuation of this successful project a new OPTICON project started in June 2009 as part of the 7th Research and Development Framework Programme of the European Union with the same partners, with the aim of developing a detector and camera with even more powerful functionality for use with an artificial laser star. This development is necessary to ensure the image quality of the future 42-metre European Extremely Large Telescope. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. Instruments, Detectors and the Future of Astronomy with Large Ground Based Telescopes

    NASA Astrophysics Data System (ADS)

    Simons, Douglas A.; Amico, Paola; Baade, Dietrich; Barden, Sam; Campbell, Randall; Finger, Gert; Gilmore, Kirk; Gredel, Roland; Hickson, Paul; Howell, Steve; Hubin, Norbert; Kaufer, Andreas; Kohley, Ralf; MacQueen, Philip; Markelov, Sergej; Merrill, Mike; Miyazaki, Satoshi; Nakaya, Hidehiko; O'Donoghue, Darragh; Oliva, Tino; Richichi, Andrea; Salmon, Derrick; Schmidt, Ricardo; Su, Hongjun; Tulloch, Simon; García Vargas, Maria Luisa; Wagner, R. Mark; Wiecha, Olivier; Ye, Binxun

    2005-01-01

    Results of a survey of instrumentation and detector systems, either currently deployed or planned for use at telescopes larger than 3.5 m, in ground based observatories world-wide, are presented. This survey revealed a number of instrumentation design trends at optical, near, and mid-infrared wavelengths. Some of the most prominent trends include the development of vastly larger optical detector systems (> 109 pixels) than anything built to date, and the frequent use of mosaics of near-infrared detectors - something that was quite rare only a decade ago in astronomy. Some future science applications for detectors are then explored, in an attempt to build a bridge between current detectors and what will be needed to support the research ambitions of astronomers in the future.

  8. Building Bigger, Better Instruments with Dry Cryostats

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Voellmer, George

    2010-01-01

    The cylindrical instrument volume allowable n SOFIA is large, comprising perhaps 400 liters at 4K. However, the cryogen accommodation to enable this environment consumes roughly 20% of the volume, and worsens rues, airworthiness/safety, and handling/operation, Present-day pulse tube coolers have negligible cold volumes, provide adequate cooling powers, and reach colder temperatures than stored cryogen. In addition, they permit safer, more reliable, lower maintenance instrument operation. While the advantages of dry cryostats are well-known and commonly used in labs and ground-based astronomical facilities, SOFIA would require some charges in accommodations to permit a pulse tube cooler to operate on board, Whil e these changes are not negligible, we present our investigation into the feasibility and desirability of making SOFIA a dry cryostat-capable observatory

  9. Knowledge-based engineering of a PLC controlled telescope

    NASA Astrophysics Data System (ADS)

    Pessemier, Wim; Raskin, Gert; Saey, Philippe; Van Winckel, Hans; Deconinck, Geert

    2016-08-01

    As the new control system of the Mercator Telescope is being finalized, we can review some technologies and design methodologies that are advantageous, despite their relative uncommonness in astronomical instrumentation. Particular for the Mercator Telescope is that it is controlled by a single high-end soft-PLC (Programmable Logic Controller). Using off-the-shelf components only, our distributed embedded system controls all subsystems of the telescope such as the pneumatic primary mirror support, the hydrostatic bearing, the telescope axes, the dome, the safety system, and so on. We show how real-time application logic can be written conveniently in typical PLC languages (IEC 61131-3) and in C++ (to implement the pointing kernel) using the commercial TwinCAT 3 programming environment. This software processes the inputs and outputs of the distributed system in real-time via an observatory-wide EtherCAT network, which is synchronized with high precision to an IEEE 1588 (PTP, Precision Time Protocol) time reference clock. Taking full advantage of the ability of soft-PLCs to run both real-time and non real-time software, the same device also hosts the most important user interfaces (HMIs or Human Machine Interfaces) and communication servers (OPC UA for process data, FTP for XML configuration data, and VNC for remote control). To manage the complexity of the system and to streamline the development process, we show how most of the software, electronics and systems engineering aspects of the control system have been modeled as a set of scripts written in a Domain Specific Language (DSL). When executed, these scripts populate a Knowledge Base (KB) which can be queried to retrieve specific information. By feeding the results of those queries to a template system, we were able to generate very detailed "browsable" web-based documentation about the system, but also PLC software code, Python client code, model verification reports, etc. The aim of this paper is to demonstrate the added value that technologies such as soft-PLCs and DSL-scripts and design methodologies such as knowledge-based engineering can bring to astronomical instrumentation.

  10. EUV Spectroscopy of High-redshift X-ray Objects

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael Paul; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.

    2010-03-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGNs for example, will have their maxima redshifted into the EUV waveband ( 90-912 Å/0.1-0.01 keV). Consequently, a wealth of spectral diagnostics, provided by, for example, the Fe L-shell complex ( 60-6 Å/0.2-2.0 keV) and the O VII/VIII lines ( 20 Å/0.5 keV), will be lost to X-ray instruments operating at traditional ( 0.5-10 keV) and higher X-ray energies. There are precedents in other wavebands. For example, HST evolutionary studies will become largely the province of JWST. Despite the successes of EUVE, the ROSAT WFC, and the Chandra LETG, the EUV continues to be unappreciated and under-utilized, partly because of a preconception that absorption by neutral galactic Hydrogen in the ISM prevents any useful extragalactic measurements at all EUV wavelengths and, until recently, by a lack of a suitable enabling technology. Thus, if future planned X-ray missions (e.g., IXO, Gen-X) are optimized again for traditional X-ray energies, their performance (effective area, resolving power) will be cut off at ultrasoft X-ray energies or at best be radically reduced in the EUV. This opens up a critical gap in performance located right at short EUV wavelengths, where the critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nano-laminate fabrication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs.

  11. ODI - Portal, Pipeline, and Archive (ODI-PPA): a web-based astronomical compute archive, visualization, and analysis service

    NASA Astrophysics Data System (ADS)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Harbeck, Daniel R.; Boroson, Todd; Liu, Wilson; Kotulla, Ralf; Shaw, Richard; Henschel, Robert; Rajagopal, Jayadev; Stobie, Elizabeth; Knezek, Patricia; Martin, R. Pierre; Archbold, Kevin

    2014-07-01

    The One Degree Imager-Portal, Pipeline, and Archive (ODI-PPA) is a web science gateway that provides astronomers a modern web interface that acts as a single point of access to their data, and rich computational and visualization capabilities. Its goal is to support scientists in handling complex data sets, and to enhance WIYN Observatory's scientific productivity beyond data acquisition on its 3.5m telescope. ODI-PPA is designed, with periodic user feedback, to be a compute archive that has built-in frameworks including: (1) Collections that allow an astronomer to create logical collations of data products intended for publication, further research, instructional purposes, or to execute data processing tasks (2) Image Explorer and Source Explorer, which together enable real-time interactive visual analysis of massive astronomical data products within an HTML5 capable web browser, and overlaid standard catalog and Source Extractor-generated source markers (3) Workflow framework which enables rapid integration of data processing pipelines on an associated compute cluster and users to request such pipelines to be executed on their data via custom user interfaces. ODI-PPA is made up of several light-weight services connected by a message bus; the web portal built using Twitter/Bootstrap, AngularJS and jQuery JavaScript libraries, and backend services written in PHP (using the Zend framework) and Python; it leverages supercomputing and storage resources at Indiana University. ODI-PPA is designed to be reconfigurable for use in other science domains with large and complex datasets, including an ongoing offshoot project for electron microscopy data.

  12. Structures of twilight patrol in the "Churyumov's Unified network" to ensure continuous monitoring

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.; Steklov, E. A.; Slipchenko, A. S.; Romaniuk, Ya. O.; Nevodovskyi, P. V.

    2016-10-01

    1. Three types of astronomical observations, and three classes of astronomical observatories. Over 70% of the observer's time in astronomical observatories accounted for the night of observation after the end of astronomical twilight. Prior to 15.02.2013, from the famous invasion of the Chelyabinsk large meteoroid in morning twilight, astronomers practically no carried out the twilight observations. But it is such morning and evening twilight observation, became the main "highlight" of the authors in the past four years [3, 5, 7]. Results were unexpected, and they allowed us to state that in our time the astronomical observatory (AO) should be divided into AO for nighttime astronomical observations (NAO), daily astronomical observations (DAO) and AO for twilight astronomical observations (SAO). 2. The real problem of AO DAO and SAO. We affirm, that in the interest of health and safety the inhabitants of our cities, astronomers are obliged significantly expand a circle and list of observations; need to include in it astrophysical observations and registration of facts and traces of all kinds of hazardous aerospace invasions into the sky over our cities. Society and the state allocate their money on the development of astronomical observatories, and therefore are entitled to demand recoil in the form of constant monitoring to ensure nocturnal, daytime and twilight control, for their safety the realities of modern complex time. And it is, in the conditions of aggravation of ecological problems, at climate evolution and of the increasing amount of harmful technogenic pollutants emissions in conditions of constant asteroid and comet hazard [10, 11], and especially within the present conditions of hybrid wars [8, 9]. That is why it is necessary give off sufficient observational time for the monitoring control on the facts and trail of all sorts of dangerous invasions. All astronomical observatories could create their own sectors, which would provide ground and space calibrating control of facts and traces of all kinds of dangerous invasions. 3. Twilight patrol of "Churyumov Unified Network" and the study of invasions of fragments of cometary nuclei in the Earth's atmosphere. The costs of the study of the comet Churyumov-Gerasimenko 67P and its nuclei, on all mission of Rosetta-Philae, amounted to about EUR 2 billion [6]. Its results have significantly improved our understanding of the physics of cometary phenomena have further exacerbated problems of asteroid and comet hazard. In 2016, astronomers a lot of effort and time allocated for study of the disintegration of cometary nucleus of Ikeya - Murakami (P / 2010 V1) at least 17 of fragments. The authors have created a twilight patrol of "United Network Churyumov" to implement of daytime and twilight observations

  13. Can Distributed Volunteers Accomplish Massive Data Analysis Tasks?

    NASA Technical Reports Server (NTRS)

    Kanefsky, Bob; Barlow, Nadine G.; Gulick, Virginia C.; Norvig, Peter (Technical Monitor)

    2000-01-01

    The science community is accustomed to interacting with the public for two main purposes: outreach to adults (since they are the patrons upon whose good will future funding will depend), and education for children (since they are the reservoir from which the next generation's talent must be drawn). We suggest that a third relationship can now be fruitful, one that has been little used until now - with the notable exception of the astronomy community. Astronomy has a long history of relying on non-professionals for some observations. Important contributions have been made by amateur astronomers in several areas of research including monitoring dust storms on Mars, timing asteroid occultations, and discovering comets. Note that three distinct contributions are being made by amateur astronomers: they supply their own instrumentation, provide access to observing sites around the Globe, and contribute their innate powers of perception.

  14. BIG MAC: A bolometer array for mid-infrared astronomy, Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Telesco, C. M.; Decher, R.; Baugher, C.

    1985-01-01

    The infrared array referred to as Big Mac (for Marshall Array Camera), was designed for ground based astronomical observations in the wavelength range 5 to 35 microns. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilized cold reimaging optics and an up looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics.

  15. QUEST1 Variability Survey. III. Light Curve Catalog Update

    NASA Astrophysics Data System (ADS)

    Rengstorf, A. W.; Thompson, D. L.; Mufson, S. L.; Andrews, P.; Honeycutt, R. K.; Vivas, A. K.; Abad, C.; Adams, B.; Bailyn, C.; Baltay, C.; Bongiovanni, A.; Briceño, C.; Bruzual, G.; Coppi, P.; Della Prugna, F.; Emmet, W.; Ferrín, I.; Fuenmayor, F.; Gebhard, M.; Hernández, J.; Magris, G.; Musser, J.; Naranjo, O.; Oemler, A.; Rosenzweig, P.; Sabbey, C. N.; Sánchez, Ge.; Sánchez, Gu.; Schaefer, B.; Schenner, H.; Sinnott, J.; Snyder, J. A.; Sofia, S.; Stock, J.; van Altena, W.

    2009-03-01

    This paper reports an update to the QUEST1 (QUasar Equatorial Survey Team, Phase 1) Variability Survey (QVS) light curve catalog, which links QVS instrumental magnitude light curves to Sloan Digital Sky Survey (SDSS) objects and photometry. In the time since the original QVS catalog release, the overlap between publicly available SDSS data and QVS data has increased by 8% in sky coverage and 16,728 in number of matched objects. The astrometric matching and the treatment of SDSS masks have been refined for the updated catalog. We report on these improvements and present multiple bandpass light curves, global variability information, and matched SDSS photometry for 214,941 QUEST1 objects. Based on observations obtained at the Llano del Hato National Astronomical Observatory, operated by the Centro de Investigaciones de Astronomía for the Ministerio de Ciencia y Tecnologia of Venezuela.

  16. Frequency division multiplexed readout of TES detectors with baseband feedback

    NASA Astrophysics Data System (ADS)

    den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.

    2012-09-01

    SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.

  17. The first SPIE software Hack Day

    NASA Astrophysics Data System (ADS)

    Kendrew, S.; Deen, C.; Radziwill, N.; Crawford, S.; Gilbert, J.; Gully-Santiago, M.; Kubánek, P.

    2014-07-01

    We report here on the software Hack Day organised at the 2014 SPIE conference on Astronomical Telescopes and Instrumentation in Montréal. The first ever Hack Day to take place at an SPIE event, the aim of the day was to bring together developers to collaborate on innovative solutions to problems of their choice. Such events have proliferated in the technology community, providing opportunities to showcase, share and learn skills. In academic environments, these events are often also instrumental in building community beyond the limits of national borders, institutions and projects. We show examples of projects the participants worked on, and provide some lessons learned for future events.

  18. Spectrometer system for diffuse extreme ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  19. Advanced X-ray Astrophysics Facility (AXAF) science instruments

    NASA Technical Reports Server (NTRS)

    Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.

    1991-01-01

    The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.

  20. Sounding Rocket Instrument Development at UAHuntsville/NASA MSFC

    NASA Technical Reports Server (NTRS)

    Kobayashi, Ken; Cirtain, Jonathan; Winebarger, Amy; Savage, Sabrina; Golub, Leon; Korreck, Kelly; Kuzin, Sergei; Walsh, Robert; DeForest, Craig; DePontieu, Bart; hide

    2013-01-01

    We present an overview of solar sounding rocket instruments developed jointly by NASA Marshall Space Flight Center and the University of Alabama in Huntsville. The High Resolution Coronal Imager (Hi-C) is an EUV (19.3 nm) imaging telescope which was flown successfully in July 2012. The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a Lyman Alpha (121.6 nm) spectropolarimeter developed jointly with the National Astronomical Observatory of Japan and scheduled for launch in 2015. The Marshall Grazing Incidence X-ray Spectrograph is a soft X-ray (0.5-1.2 keV) stigmatic spectrograph designed to achieve 5 arcsecond spatial resolution along the slit.

Top