The marginal band system in nymphalid butterfly wings.
Taira, Wataru; Kinjo, Seira; Otaki, Joji M
2015-01-01
Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.
Modulation of EEG Theta Band Signal Complexity by Music Therapy
NASA Astrophysics Data System (ADS)
Bhattacharya, Joydeep; Lee, Eun-Jeong
The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.
Loferski, P.J.; Arculus, R.J.; Czamanske, G.K.
1994-01-01
A rare earth element (REE) study was made by isotope-dilution mass spectrometry of plagioclase separates from a variety of cumulates stratigraphically spanning the Banded series of the Stillwater Complex, Montana. Evaluation of parent liquid REE patterns, calculated on the basis of published plagioclase-liquid partition coefficients, shows that the range of REE ratios is too large to be attributable to fractionation of a single magma type. At least two different parental melts were present throughout the Banded series. This finding supports hypotheses of previous workers that the Stillwater Complex formed from two different parent magma types, designated the anorthosite- or A-type liquid and the ultramafic- or U-type liquid. -from Authors
NASA Technical Reports Server (NTRS)
Maruyasu, T.; Shoji, D. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Rias shorelines are interpreted from the fine depiction of their complex features in the image of band 7. Sand beaches are discriminated from their linear nature, and the similarity of sand beaches among the all band is very good.
Defect chaos of oscillating hexagons in rotating convection
Echebarria; Riecke
2000-05-22
Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.
Liesegang banding and multiple precipitate formation in cobalt phosphate systems
NASA Astrophysics Data System (ADS)
Karam, Tony; El-Rassy, Houssam; Zaknoun, Farah; Moussa, Zeinab; Sultan, Rabih
2012-02-01
We study a cobalt phosphate Liesegang pattern from cobalt(II) and phosphate ions in a 1D tube. The system yields a complex, multi-component pattern. Characterization of the different precipitates by FTIR, SEM and XRD reveals that they are cobalt phosphate polymorphs with different degrees of hydration.
Unusual large-pitch banding in poly(L-lactic acid): Effects of composition and geometry confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Eamor M.; Lugito, Graecia; Hsieh, Ya-Ting
2014-02-24
Lamellar patterns and orientations in blends of two crystalline polymers: poly(ethylene oxide) (PEO) and low-molecular-weight poly(L-lactic acid) (PLLA) were investigated using polarizing light optical microscopy (POM), and atomic and scanning electron microscopy (AFM, SEM). Specific etching off of PEO was used to reveal the complex earlier-grown PLLA lamellae patterns with various PEO content in blends. Banding of extremely long pitch (50 μm) in crystallized PLLA spherulites was induced by two kinetic factors: geometry confinement by top cover and introduction of diluent such as PEO. The mechanisms and correlation among the lamellar assembly, ring bands, and cracks are exemplified. Lamellar patternsmore » and ring-band types in blends were found to vary with respect to not only blend compositions, but also confinement of top-cover.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, T. B.; Miliordos, E.; Carnegie, P. D.
Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O–H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 1:3 intensity ratios for K = even:odd levels for independent ortho:para nuclearmore » spin states are missing for some complexes. We relied on highly correlated internally contracted Multi-Reference Configuration Interaction (icMRCI) and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to quasi-C2v symmetry with significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and iobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 sec-1).« less
Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters.
Ward, T B; Miliordos, E; Carnegie, P D; Xantheas, S S; Duncan, M A
2017-06-14
Vanadium and niobium cation-water complexes, V + (H 2 O) and Nb + (H 2 O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C 2v symmetry with a significant probability off the C 2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 10 6 s -1 ).
Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters
NASA Astrophysics Data System (ADS)
Ward, T. B.; Miliordos, E.; Carnegie, P. D.; Xantheas, S. S.; Duncan, M. A.
2017-06-01
Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C2v symmetry with a significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 s-1).
Nemati, Shamim; Edwards, Bradley A.; Lee, Joon; Pittman-Polletta, Benjamin; Butler, James P.; Malhotra, Atul
2013-01-01
Aging and disease are accompanied with a reduction of complex variability in the temporal patterns of heart rate. This reduction has been attributed to a break down of the underlying regulatory feedback mechanisms that maintain a homeodynamic state. Previous work has established the utility of entropy as an index of disorder, for quantification of changes in heart rate complexity. However, questions remain regarding the origin of heart rate complexity and the mechanisms involved in its reduction with aging and disease. In this work we use a newly developed technique based on the concept of band-limited transfer entropy to assess the aging-related changes in contribution of respiration and blood pressure to entropy of heart rate at different frequency bands. Noninvasive measurements of heart beat interval, respiration, and systolic blood pressure were recorded from 20 young (21–34 years) and 20 older (68–85 years) healthy adults. Band-limited transfer entropy analysis revealed a reduction in high-frequency contribution of respiration to heart rate complexity (p < 0.001) with normal aging, particularly in men. These results have the potential for dissecting the relative contributions of respiration and blood pressure-related reflexes to heart rate complexity and their degeneration with normal aging. PMID:23811194
Constitutional Chromoanagenesis of Distal 13q in a Young Adult with Recurrent Strokes.
Burnside, Rachel D; Harris, April; Speyer, Darrow; Burgin, W Scott; Rose, David Z; Sanchez-Valle, Amarilis
2016-01-01
Constitutional chromoanagenesis events, which include chromoanasynthesis and chromothripsis and result in highly complex rearrangements, have been reported for only a few individuals. While rare, these phenomena have likely been underestimated in a constitutional setting as technologies that can accurately detect such complexity are relatively new to the mature field of clinical cytogenetics. G-banding is not likely to accurately identify chromoanasynthesis or chromothripsis, since the banding patterns of chromosomes are likely to be misidentified or oversimplified due to a much lower resolution. We describe a patient who was initially referred for cytogenetic testing as a child for speech delay. As a young adult, he was referred again for recurrent strokes. Chromosome analysis was performed, and the rearrangement resembled a simple duplication of 13q32q34. However, SNP microarray analysis showed a complex pattern of copy number gains and a loss consistent with chromoanasynthesis involving distal 13q (13q32.1q34). This report emphasizes the value of performing microarray analysis for individuals with abnormal or complex chromosome rearrangements. © 2016 S. Karger AG, Basel.
A Continental Rifting Event in Tanzania Revealed by Envisat and ALOS InSAR Observations
NASA Astrophysics Data System (ADS)
Oyen, A. M.; Marinkovic, P. S.; Wauthier, C.; d'Oreye, N.; Hanssen, R. F.
2008-11-01
From July to September 2007 a series of moderate earthquakes struck the area South of the Gelai volcano, located on the Eastern branch of the East African Rift (North Tanzania). Most deformation patterns detected by InSAR in these period are very complex, impeding proper interpretation. To decrease the complexity of the models of the deformation, this study proposes two strategies of combining data from different tracks and sensors. In a first stage a method is proposed to correct unwrapping errors in C-band using the much more coherent L-band data. Furthermore, a modeling optimization method is explored, which aims at the decomposition of the deformation in smaller temporal baselines, by means of creating new, artificial interferograms and the use of models. Due to the higher coherence level and fewer phase cycles in L-band, the deformation interpretation is facilitated but model residual interpretation has become more difficult compared to C-band.
Thul, Sanjog T; Srivastava, Ankit K; Singh, Subhash C; Shanker, Karuna
2011-09-01
A method was developed based on multiple approaches wherein DNA and chemical analysis was carried out toward differentiation of important species of Sida complex that is being used for commercial preparation. Isolated DNA samples were successfully performed through PCR amplification using ISSR markers and degree of genetic diversity among the different species of Sida is compared with that of chemical diversity. For genetic fingerprint investigation, selected 10 ISSR primers generating reproducible banding patterns were used. Among the total of 63 amplicons, 62 were recorded as polymorphic, genetic similarity index deduced from ISSR profiles ranged from 12 to 51%. Based on similarity index, S. acuta and S. rhombifolia found to be most similar (51%). High number of species-specific bands played pivotal role to delineate species at genetic level. Investigation based on HPTLC fingerprints analysis revealed 23 bands representing to characteristic chemicals and similarity index ranged from 73 to 91%. Prominent distinguishable bands were observed only in S. acuta, while S. cordifolia and S. rhombifolia shared most bands making them difficult to identify on chemical fingerprint basis. This report summarizes the genotypic and chemotypic diversity and the use of profiles for authentication of species of Sida complex.
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study
NASA Astrophysics Data System (ADS)
Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.
2016-08-01
Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
An infrared and Raman spectroscopic study of natural zinc phosphates.
Frost, Ray L
2004-06-01
Zinc phosphates are important in the study of the phosphatisation of metals. Raman spectroscopy in combination with infrared spectroscopy has been used to characterise the zinc phosphate minerals. The minerals may be characterised by the patterns of the hydroxyl stretching vibrations in both the Raman and infrared spectra. Spencerite is characterised by a sharp Raman band at 3516 cm(-1) and tarbuttite by a single band at 3446 cm(-1). The patterns of the Raman spectra of the hydroxyl stretching region of hopeite and parahopeite are different in line with their differing crystal structures. The Raman spectrum of the PO4 stretching region shows better band separated peaks than the infrared spectra which consist of a complex set of overlapping bands. The position of the PO4 symmetric stretching mode can be used to identify the zinc phosphate mineral. It is apparent that Raman spectroscopy lends itself to the fundamental study of the evolution of zinc phosphate films.
McGuire, Austen B; Rafi, Syed K; Manzardo, Ann M; Butler, Merlin G
2016-05-05
Mammalian chromosomes are comprised of complex chromatin architecture with the specific assembly and configuration of each chromosome influencing gene expression and function in yet undefined ways by varying degrees of heterochromatinization that result in Giemsa (G) negative euchromatic (light) bands and G-positive heterochromatic (dark) bands. We carried out morphometric measurements of high-resolution chromosome ideograms for the first time to characterize the total euchromatic and heterochromatic chromosome band length, distribution and localization of 20,145 known protein-coding genes, 790 recognized autism spectrum disorder (ASD) genes and 365 obesity genes. The individual lengths of G-negative euchromatin and G-positive heterochromatin chromosome bands were measured in millimeters and recorded from scaled and stacked digital images of 850-band high-resolution ideograms supplied by the International Society of Chromosome Nomenclature (ISCN) 2013. Our overall measurements followed established banding patterns based on chromosome size. G-negative euchromatic band regions contained 60% of protein-coding genes while the remaining 40% were distributed across the four heterochromatic dark band sub-types. ASD genes were disproportionately overrepresented in the darker heterochromatic sub-bands, while the obesity gene distribution pattern did not significantly differ from protein-coding genes. Our study supports recent trends implicating genes located in heterochromatin regions playing a role in biological processes including neurodevelopment and function, specifically genes associated with ASD.
Earth-Facing Antenna Characterization in Complex Ground Plane/Multipath Rich Environment
NASA Technical Reports Server (NTRS)
Welch, Bryan W.; Piasecki, Marie T.
2015-01-01
The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth-Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been used successfully to characterize the NEN-LGA's in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned
Earth-Facing Antenna Characterization in a Complex Ground Plane/Multipath Rich Environment
NASA Technical Reports Server (NTRS)
Welch, Bryan W.; Piasecki, Marie T.
2015-01-01
The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational space environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been successfully used to characterize the NEN-LGAs in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned.
Fehrenbacher, Jennifer S.; Russell, Ann D.; Davis, Catherine V.; ...
2017-05-15
Mg/Ca ratios of planktic foraminifera are commonly used to reconstruct past ocean temperatures. However, intrashell Mg/Ca ratios exhibit a pattern of alternating high and low Mg-bands in many species. Whereas mechanisms controlling Mg variability are poorly constrained, recent experiments demonstrate that it is paced by the diurnal light/dark cycle in Orbulina universa, which forms a terminal shell of simple spherical geometry. It is unknown whether Mg-heterogeneity is diurnally paced in species with complex shell morphologies, or is the result of growth processes. Here, we show that high Mg/Ca-calcite also forms at night in cultured specimens of the multi-chambered planktic foraminiferamore » Neogloboquadrina dutertrei. Our results demonstrate that N. dutertrei adds a significant amount of calcite, and nearly all Mg-bands, after the final chamber forms. Furthermore, these results have implications for interpreting patterns of calcification in N. dutertrei, and possibly other foraminifera species, and suggests diurnal Mg-banding is an intrinsic component of biomineralization in planktic foraminifera.« less
Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms
Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan
2017-01-01
Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909
Ecosystem properties self-organize in response to a directional fog-vegetation interaction.
Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O
2014-05-01
Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.
2017-01-01
The evolution of wing pattern in Lepidoptera is a popular area of inquiry but few studies have examined microlepidoptera, with fewer still focusing on intraspecific variation. The tineid genus Moerarchis Durrant, 1914 includes two species with high intraspecific variation of wing pattern. A subset of the specimens examined here provide, to my knowledge, the first examples of wing patterns that follow both the ‘alternating wing-margin’ and ‘uniform wing-margin’ models in different regions along the costa. These models can also be evaluated along the dorsum of Moerarchis, where a similar transition between the two models can be seen. Fusion of veins is shown not to effect wing pattern, in agreement with previous inferences that the plesiomorphic location of wing veins constrains the development of colour pattern. The significant correlation between wing length and number of wing pattern elements in Moerarchis australasiella shows that wing size can act as a major determinant of wing pattern complexity. Lastly, some M. australasiella specimens have wing patterns that conform entirely to the ‘uniform wing-margin’ model and contain more than six bands, providing new empirical insight into the century-old question of how wing venation constrains wing patterns with seven or more bands. PMID:28405390
Mori, Tadashi; Tanaka, Takayuki; Higashino, Tomohiro; Yoshida, Kota; Osuka, Atsuhiro
2016-06-23
Intrinsically chiral Möbius aromatic [28]hexaphyrin monophosphorus(V) and Möbius antiaromatic [30]hexaphyrin bisphosphorus(V) complexes have been optically resolved and their absolute configurations (ACs) were determined by combined experimental and theoretical investigations on their circular dichroisms (CDs). First elutes in chiral HPLC exhibited strong positive Cotton effects (CEs) at the B-band, characteristic for the ML configurations in their Möbius strips. Weak CEs at the Q-band, if attainable, complemented their AC assignment. The whole CD pattern and intensity were well reproduced by time-dependent approximate coupled cluster theory using model systems that omit five outward meso-aryl substituents (inward-meso-retained model), providing a solid basis for AC assignment. The cost efficient TD-DFT method with appropriate functionals for fully substituted (nontruncated) complexes well reproduced CEs around the B-band (but less satisfactory at the Q-band), also allows the rapid AC estimation for their Möbius strips. Observed difference in CDs between aromatic and antiaromatic hexaphyrins were better interpreted by their shifts in energy levels and altered interactions of relevant molecular orbitals, rather than small differences in Möbius geometries nor aromatic/antiaromatic character, despite the correlations recently claimed in planar π-systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehrenbacher, Jennifer S.; Russell, Ann D.; Davis, Catherine V.
Mg/Ca ratios of planktic foraminifera are commonly used to reconstruct past ocean temperatures. However, intrashell Mg/Ca ratios exhibit a pattern of alternating high and low Mg-bands in many species. Whereas mechanisms controlling Mg variability are poorly constrained, recent experiments demonstrate that it is paced by the diurnal light/dark cycle in Orbulina universa, which forms a terminal shell of simple spherical geometry. It is unknown whether Mg-heterogeneity is diurnally paced in species with complex shell morphologies, or is the result of growth processes. Here, we show that high Mg/Ca-calcite also forms at night in cultured specimens of the multi-chambered planktic foraminiferamore » Neogloboquadrina dutertrei. Our results demonstrate that N. dutertrei adds a significant amount of calcite, and nearly all Mg-bands, after the final chamber forms. Furthermore, these results have implications for interpreting patterns of calcification in N. dutertrei, and possibly other foraminifera species, and suggests diurnal Mg-banding is an intrinsic component of biomineralization in planktic foraminifera.« less
An ice-rich flow origin for the banded terrain in the Hellas basin, Mars
NASA Astrophysics Data System (ADS)
Diot, X.; El-Maarry, M. R.; Guallini, L.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Sutton, S.; Grindrod, P. M.
2015-12-01
The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (Context Camera and High-Resolution Imaging Science Experiment) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds, and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summertime temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively "temperate" climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.
Coherence among climate signals, precipitation, and groundwater.
Ghanbari, Reza Namdar; Bravo, Hector R
2011-01-01
Climate signals may affect groundwater level at different time scales in different geographical regions, and those patterns or time scales can be estimated using coherence analysis. This study shows that the synthesis effort required to search for patterns at the physical geography scale is possible, and this approach should be applicable in other regions of the world. The relations between climate signals, Southern Oscillation Index, Pacific Decadal Oscillation, North Atlantic Oscillation, North Pacific Pattern (SOI, PDO, NAO, and NP), precipitation, and groundwater level in three geographical areas of Wisconsin are examined using a three-tiered coherence analysis. In the high frequency band (<4(-1) cycles/year), there is a significant coherence between four climate signals and groundwater level in all three areas. In the low frequency band (>8(-1) to ≤23(-1) cycles/year), we found significant coherence between the SOI and NP signals and groundwater level in the forested area, characterized by shallow wells constructed in sand and gravel aquifers. In the high frequency band, there is significant coherence between the four climate signals and precipitation in all three areas. In the low frequency band, the four climate signals have effect on precipitation in the agricultural area, and SOI and NP have effect on precipitation in the forested and driftless areas. Precipitation affects groundwater level in all three areas, and in high, low and intermediate frequency bands. In the agricultural area, deeper aquifers and a more complex hydrostratigraphy and land use dilute the effect of precipitation on groundwater level for interdecadal frequencies. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
2006-09-27
Maximum parsimony; Sibling species; Species complex; Myxomatosis ; DNA barcoding; Australia; Papua New Guinea; ITS2; COI; COII; EF-11. Introduction... myxomatosis to con- trol rabbits (Fenner and RatcliVe, 1965). Chris Green used data from cross-matings and the band- ing pattern of polytene chromosomes to... myxomatosis based on distribution but more sam- pling is required to conWrm this. Many of the sampling locations in this study and the allozyme study of
Probing semiconductor gap states with resonant tunneling.
Loth, S; Wenderoth, M; Winking, L; Ulbrich, R G; Malzer, S; Döhler, G H
2006-02-17
Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for appropriate bias voltages, evanescent states in the GaAs band gap. Energetically and spatially resolved spectra show that the pronounced anisotropic contrast pattern of shallow acceptors occurs exclusively for this specific transport channel. Our findings suggest that the complex band structure causes the observed anisotropies connected with the zinc blende symmetry.
Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan
2018-03-01
This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.
Trypanosoma brucei RNA Editing Complex
O'Hearn, Sean F.; Huang, Catherine E.; Hemann, Mike; Zhelonkina, Alevtina; Sollner-Webb, Barbara
2003-01-01
Maturation of Trypanosoma brucei mitochondrial mRNA involves massive posttranscriptional insertion and deletion of uridine residues. This RNA editing utilizes an enzymatic complex with seven major proteins, band I through band VII. We here use RNA interference (RNAi) to examine the band II and band V proteins. Band II is found essential for viability; it is needed to maintain the normal structure of the editing complex and to retain the band V ligase protein. Previously, band III was found essential for certain activities, including maintenance of the editing complex and retention of the band IV ligase protein. Thus, band II and band V form a protein pair with features analogous to the band III/band IV ligase pair. Since band V is specific for U insertion and since band IV is needed for U deletion, their parallel organization suggests that the editing complex has a pseudosymmetry. However, unlike the essential band IV ligase, RNAi to band V has only a morphological but no growth rate effect, suggesting that it is stimulatory but nonessential. Indeed, in vitro analysis of band V RNAi cell extract demonstrates that band IV can seal U insertion when band V is lacking. Thus, band IV ligase is the first activity of the basic editing complex shown able to serve in both forms of editing. Our studies also indicate that the U insertional portion may be less central in the editing complex than the corresponding U deletional portion. PMID:14560033
Lattice-Matched Epitaxial Graphene Grown on Boron Nitride.
Davies, Andrew; Albar, Juan D; Summerfield, Alex; Thomas, James C; Cheng, Tin S; Korolkov, Vladimir V; Stapleton, Emily; Wrigley, James; Goodey, Nathan L; Mellor, Christopher J; Khlobystov, Andrei N; Watanabe, Kenji; Taniguchi, Takashi; Foxon, C Thomas; Eaves, Laurence; Novikov, Sergei V; Beton, Peter H
2018-01-10
Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band gap but requires the formation of highly strained material and has not hitherto been realized. We demonstrate that aligned, lattice-matched graphene can be grown by molecular beam epitaxy using substrate temperatures in the range 1600-1710 °C and coexists with a topologically modified moiré pattern with regions of strained graphene which have giant moiré periods up to ∼80 nm. Raman spectra reveal narrow red-shifted peaks due to isotropic strain, while the giant moiré patterns result in complex splitting of Raman peaks due to strain variations across the moiré unit cell. The lattice-matched graphene has a lower conductance than both the Frenkel-Kontorova-type domain walls and also the topological defects where they terminate. We relate these results to theoretical models of band gap formation in graphene/boron nitride heterostructures.
Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian
2018-06-13
The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.
Cataldo, Franco; Keheyan, Yeghis; Heymann, Dieter
2004-02-01
In this communication we present the basic concept that the pure PAHs (Polycyclic Aromatic Hydrocarbons) can be considered only the ideal carriers of the UIBs (Unidentified Infrared Bands), the emission spectra coming from a large variety of astronomical objects. Instead we have proposed that the carriers of UIBs and of protoplanetary nebulae (PPNe) emission spectra are much more complex molecular mixtures possessing also complex chemical structures comparable to certain petroleum fractions obtained from the petroleum refining processes. The demonstration of our proposal is based on the comparison between the emission spectra recorded from the protoplanetary nebulae (PPNe) IRAS 22272+ 5435 and the infrared absorption spectra of certain 'heavy' petroleum fractions. It is shown that the best match with the reference spectrum is achieved by highly aromatic petroleum fractions. It is shown that the selected petroleum fractions used in the present study are able to match the band pattern of anthracite coal. Coal has been proposed previously as a model for the PPNe and UIBs but presents some drawbacks which could be overcome by adopting the petroleum fractions as model for PPNe and UIBs in place of coal. A brief discussion on the formation of the petroleum-like fractions in PPNe objects is included.
Complex band structure and electronic transmission eigenchannels
NASA Astrophysics Data System (ADS)
Jensen, Anders; Strange, Mikkel; Smidstrup, Søren; Stokbro, Kurt; Solomon, Gemma C.; Reuter, Matthew G.
2017-12-01
It is natural to characterize materials in transport junctions by their conductance length dependence, β. Theoretical estimations of β are made employing two primary theories: complex band structure and density functional theory (DFT) Landauer transport. It has previously been shown that the β value derived from total Landauer transmission can be related to the β value from the smallest |ki| complex band; however, it is an open question whether there is a deeper relationship between the two. Here we probe the details of the relationship between transmission and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two molecular junctions. The molecular junctions show that both the length dependence of the total transmission and the individual transmission eigenvalues can be, almost always, found through the complex band structure. The complex band structure of the semi-conducting material, however, does not predict the length dependence of the total transmission but only of the individual channels, at some k-points, due to multiple channels contributing to transmission. We also observe instances of vertical bands, some of which are the smallest |ki| complex bands, that do not contribute to transport. By understanding the deeper relationship between complex bands and individual transmission eigenchannels, we can make a general statement about when the previously accepted wisdom linking transmission and complex band structure will fail, namely, when multiple channels contribute significantly to the transmission.
Balajee, A S; Sharma, T
1994-01-01
In situ digestion of metaphase chromosomes with AluI revealed differences in the distribution of Mus musculus-like AT-rich heterochromatin in the complements of the Indian pygmy field mice, M. booduga and M. dunni. In M. booduga, although the banding pattern was almost comparable to that of M. musculus, AluI-resistant bands were much reduced in size at the centromeric regions. In all three chromosome types of the M. dunni complex, M. musculus-like AT-rich heterochromatin was found to be confined mainly to two small segments on the short arm of the X chromosome. This AT-rich heterochromatin varied greatly in both position and quantity in the two X chromosomes. In addition to the polymorphism, a whole block of M. musculus-like AT-rich heterochromatin was found at the centromeric region of an autosome in one individual of M. dunni.
Application of DNA Machineries for the Barcode Patterned Detection of Genes or Proteins.
Zhou, Zhixin; Luo, Guofeng; Wulf, Verena; Willner, Itamar
2018-06-05
The study introduces an analytical platform for the detection of genes or aptamer-ligand complexes by nucleic acid barcode patterns generated by DNA machineries. The DNA machineries consist of nucleic acid scaffolds that include specific recognition sites for the different genes or aptamer-ligand analytes. The binding of the analytes to the scaffolds initiate, in the presence of the nucleotide mixture, a cyclic polymerization/nicking machinery that yields displaced strands of variable lengths. The electrophoretic separation of the resulting strands provides barcode patterns for the specific detection of the different analytes. Mixtures of DNA machineries that yield, upon sensing of different genes (or aptamer ligands), one-, two-, or three-band barcode patterns are described. The combination of nucleic acid scaffolds acting, in the presence of polymerase/nicking enzyme and nucleotide mixture, as DNA machineries, that generate multiband barcode patterns provide an analytical platform for the detection of an individual gene out of many possible genes. The diversity of genes (or other analytes) that can be analyzed by the DNA machineries and the barcode patterned imaging is given by the Pascal's triangle. As a proof-of-concept, the detection of one of six genes, that is, TP53, Werner syndrome, Tay-Sachs normal gene, BRCA1, Tay-Sachs mutant gene, and cystic fibrosis disorder gene by six two-band barcode patterns is demonstrated. The advantages and limitations of the detection of analytes by polymerase/nicking DNA machineries that yield barcode patterns as imaging readout signals are discussed.
Snyder-Mackler, Noah; Alberts, Susan C; Bergman, Thore J
2014-12-01
Multilevel societies with fission-fusion dynamics--arguably the most complex animal societies--are defined by two or more nested levels of organization. The core of these societies are modular social units that regularly fission and fuse with one another. Despite convergent evolution in disparate taxa, we know strikingly little about how such societies form and how fitness benefits operate. Understanding the kinship structure of complex societies could inform us about the origins of the social structure as well as about the potential for individuals in these societies to accrue indirect fitness benefits. Here, we combined genetic and behavioural data on geladas (Theropithecus gelada), an Old World Monkey, to complete the most comprehensive socio-genetic analysis of a multilevel society to date. In geladas, individuals in the core social 'units', associate at different frequencies to form 'teams', 'bands' and, the largest aggregations, 'communities'. Units were composed of closely related females, and females remained with their close kin during permanent fissions of units. Interestingly, female-female relatedness also significantly predicted between-unit, between-team and between-band association patterns, while male-male relatedness did not. Thus, it is likely that the socio-genetic structure of gelada society results from females maintaining associations with their female relatives during successive unit fissions--possibly in an attempt to balance the direct and indirect fitness benefits of group living. Overall, the persistence of associations among related females across generations appears to drive the formation of higher levels of gelada society, suggesting that females seek kin for inclusive fitness benefits at multiple levels of gelada society. © 2014 John Wiley & Sons Ltd.
Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal.
Göncü, F; Luding, S; Bertoldi, K
2012-06-01
The band structure of a two-dimensional granular crystal composed of silicone rubber and polytetrafluoroethylene (PTFE) cylinders is investigated numerically. This system was previously shown to undergo a pattern transformation with uniaxial compression by Göncü et al. [Soft Matter 7, 2321 (2011)]. The dispersion relations of the crystal are computed at different levels of deformation to demonstrate the tunability of the band structure, which is strongly affected by the pattern transformation that induces new band gaps. Replacement of PTFE particles with rubber ones reveals that the change of the band structure is essentially governed by pattern transformation rather than particles' mechanical properties.
NASA Astrophysics Data System (ADS)
Fehrenbacher, Jennifer S.; Russell, Ann D.; Davis, Catherine V.; Gagnon, Alexander C.; Spero, Howard J.; Cliff, John B.; Zhu, Zihua; Martin, Pamela
2017-05-01
The relationship between seawater temperature and the average Mg/Ca ratios in planktic foraminifera is well established, providing an essential tool for reconstructing past ocean temperatures. However, many species display alternating high and low Mg-bands within their shell walls that cannot be explained by temperature alone. Recent experiments demonstrate that intrashell Mg variability in Orbulina universa, which forms a spherical terminal shell, is paced by the diurnal light/dark cycle. Whether Mg-heterogeneity is also diurnally paced in species with more complex shell morphologies is unknown. Here we show that high Mg/Ca-calcite forms at night in cultured specimens of the multi-chambered species Neogloboquadrina dutertrei. Our results demonstrate that N. dutertrei adds a significant amount of calcite, and nearly all Mg-bands, after the final chamber forms. These results have implications for interpreting patterns of calcification in N. dutertrei and suggest that diurnal Mg-banding is an intrinsic component of biomineralization in planktic foraminifera.
Carter, Jean-Michel; Gibbs, Melanie; Breuker, Casper J.
2015-01-01
The maternal effect genes responsible for patterning the embryo along the antero-posterior (AP) axis are broadly conserved in insects. The precise function of these maternal effect genes is the result of the localisation of their mRNA in the oocyte. The main developmental mechanisms involved have been elucidated in Drosophila melanogaster, but recent studies have shown that other insect orders often diverge in RNA localisation patterns. A recent study has shown that in the butterfly Pararge aegeria the distinction between blastodermal embryonic (i.e. germ band) and extra-embryonic tissue (i.e. serosa) is already specified in the oocyte during oogenesis in the ovariole, long before blastoderm cellularisation. To examine the extent by which a female butterfly specifies and patterns the AP axis within the region fated to be the germ band, and whether she specifies a germ plasm, we performed in situ hybridisation experiments on oocytes in P. aegeria ovarioles and on early embryos. RNA localisation of the following key maternal effect genes were investigated: caudal (cad), orthodenticle (otd), hunchback (hb) and four nanos (nos) paralogs, as well as TDRD7 a gene containing a key functional domain (OST-HTH/LOTUS) shared with oskar. TDRD7 was mainly confined to the follicle cells, whilst hb was exclusively zygotically transcribed. RNA of some of the nos paralogs, otd and cad revealed complex localisation patterns within the cortical region prefiguring the germ band (i.e. germ cortex). Rather interestingly, otd was localised within and outside the anterior of the germ cortex. Transcripts of nos-O formed a distinct granular ring in the middle of the germ cortex possibly prefiguring the region where germline stem cells form. These butterfly RNA localisation patterns are highly divergent with respect to other insects, highlighting the diverse ways in which different insect orders maternally regulate early embryogenesis of their offspring. PMID:26633019
Khodnapur, Bharati S; Inamdar, Laxmi S; Nindi, Robertraj S; Math, Shivkumar A; Mulimani, B G; Inamdar, Sanjeev R
2015-02-01
To examine the impact of ultraviolet (UV) laser radiation on the embryos of Calotes versicolor in terms of its effects on the protein profile of the adrenal-kidney-gonadal complex (AKG), sex determination and differentiation, embryonic development and hatching synchrony. The eggs of C. versicolor, during thermo-sensitive period (TSP), were exposed to third harmonic laser pulses at 355 nm from a Q-switched Nd:YAG laser for 180 sec. Subsequent to the exposure they were incubated at the male-producing temperature (MPT) of 25.5 ± 0.5°C. The AKG of hatchlings was subjected to protein analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and to histology. The UV laser radiation altered the expression of the protein banding pattern in the AKG complex of hatchlings and it also affected the gonadal sex differentiation. SDS-PAGE of AKG of one-day-old hatchlings revealed a total of nine protein bands in the control group whereas UV laser irradiated hatchlings expressed a total of seven protein bands only one of which had the same Rf as a control band. The UV laser treated hatchlings have an ovotestes kind of gonad exhibiting a tendency towards femaleness instead of the typical testes. It is inferred that 355 nm UV laser radiation during TSP induces changes in the expression of proteins as well as their secretions. UV laser radiation had an impact on the gonadal differentiation pathway but no morphological anomalies were noticed.
Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator
NASA Astrophysics Data System (ADS)
Wang, Ben-Xin; Wang, Gui-Zhen
2017-03-01
A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.
Mars, John L.; Rowan, Lawrence C.
2007-01-01
Introduction: ASTER data and logical operators were successfully used to map phyllic and argillic-altered rocks in the southeastern part of Afghanistan. Hyperion data were used to correct ASTER band 5 and ASTER data were georegistered to orthorectified Landsat TM data. Logical operator algorithms produced argillic and phyllic byte ASTER images that were converted to vector data and overlain on ASTER and Landsat TM images. Alteration and fault patterns indicated that two areas, the Argandab igneous complex, and the Katawaz basin may contain potential polymetallic vein and porphyry copper deposits. ASTER alteration mapping in the Chagai Hills indicates less extensive phyllic and argillic-altered rocks than mapped in the Argandab igneous complex and the Katawaz basin and patterns of alteration are inconclusive to predict potential deposit types.
Intimate association of Thy-1 and the T-cell antigen receptor with the CD45 tyrosine phosphatase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volarevic, S.; Burns, C.M.; Sussman, J.J.
1990-09-01
Immunoprecipitation of Thy-1 from Triton X-100 detergent lysates of surface-iodinated and chemically cross-linked T cells precipitated at least first major and discrete bands. Four of these bands were identified as Thy-1, CD45 (a trasmembrane tyrosine phosphatase), a major histocompatibility complex-encoded class I molecule, and {beta}{sub 2}-microglobulin. Similar analyses revealed that CD45 was coprecipitated from lysates of cross-linker-treated cells by antibodies to the T-cell antigen receptor (TCR). The same pattern of coprecipitated bands was observed when digitonin was used to lyse untreated cells. Immunoprecipitation of Thy-1 or the TCR from lysates of cross-linked T cells precipitated CD45 tyrosine phosphatase activity. Calculationsmore » based upon the amounts of coprecipitated enzymatic activity or TCR {zeta} chain indicate that a substantial fraction of Thy-1 and TCR complexes can be cross-linked to CD45. These data support a model in which the dependence of Thy-1 signaling on TCR coexpression is due to their common interaction with a tyrosine phosphatase and provide a possible structural basis for the influence of CD45 on TCR-mediated signaling.« less
Low temperature investigations of dynamic properties in l-leucine - chloranilic acid complex.
Hetmańczyk, J; Nowicka-Scheibe, J; Maurin, J K; Pawlukojć, A
2018-07-05
Inelastic neutron scattering (INS) and infra-red (IR) spectroscopy methods were used for determination of dynamic structure of l-leucine - chloranilic acid complex. A theoretical dynamic pattern calculated by the density functional theory (DFT) method for periodic boundary conditions accompanied the experimental ones. Normal modes in the vibrational spectra were defined and described. The characteristic presence of the Hadži's trio enriched by numerous submaxima is observed in the wavenumber range 3200-800 cm -1 . Bands assigned to CH 3 torsion vibrations in the leucine cation were observed at 231 cm -1 and 258 cm -1 in the INS spectrum. Temperature-dependent far-infrared spectra in the temperature range 9 K-290 K were obtained. Vibrational bands were analyzed as a function of temperature. Activation energies for reorientational motion of CH 3 and CH 2 groups were determined by means of the band shape analysis performed for torsional and twisting vibrations of these groups. The estimated energy is equal to E a = 2.7 ± 0.2 kJ/mol and E a = 2.17 ± 0.12 kJ/mol for CH 3 and CH 2 groups, respectively. A phase transition at about 130 K in the l-leucine - chloranilic acid complex was observed. Copyright © 2018 Elsevier B.V. All rights reserved.
Rochlani, Maya; Lewis, Jessica H.; Ramsey, Glenn E.; Bontempo, Franklin A.; Shah, Gunjan; Bowman, Rebecca A.; van Thiel, David H.; Starzl, Thomas E.
2010-01-01
Plasma samples from 1,182 patients undergoing primary liver transplantation were tested for anti-hepatitis C (HCV) virus by two methods: Ortho HCV ELISA Test System (EIA) and Chiron RIBA HCV Test System (RIBA II). The EIA results, 0 or +, were recorded first, followed by RIBA results, N = negative, P = positive, or I = indeterminate. Concordant results—0N, + P, + I—were found in 1,076 (91%), and discordant results were found in 106 (9%). The EIA optical density did not relate to concordant or discordant results. Band patterns were described by stating the band position (1, 2, 3, or 4) and insetting a dash (−) if no band was visualized. Most + P samples fell into two patterns: 47% showed all four bands, pattern 1234, and 15% showed the two-band pattern, 34. When the EIA was negative, 0P, the opposite was seen: 8% showed the 1234 pattern and 81% showed the 34 pattern. There were 226 samples that formed bands (+ P, 149; 0P, 31; + I, 15; 0I, 31). The frequency of bands was as follows: 4, 32%; 3, 31%; 2, 19%; and 1, 18%. Band 2 and the EIA test detected antibodies to the same c100-3 fragment and showed 74% concordance. No explanation is apparent for the lower concordance rate here than that between the EIA test and bands 3 = 96% or 4 = 88%. The EIA and RIBA II tests, together with positive liver function tests and abnormal tissue pathologic findings, provide a basis for the diagnosis of HCV. PMID:1377442
NASA Astrophysics Data System (ADS)
Pournamdari, Mohsen; Hashim, Mazlan; Pour, Amin Beiranvand
2014-08-01
Spectral transformation methods, including correlation coefficient (CC) and Optimum Index Factor (OIF), band ratio (BR) and principal component analysis (PCA) were applied to ASTER and Landsat TM bands for lithological mapping of Soghan ophiolitic complex in south of Iran. The results indicated that the methods used evidently showed superior outputs for detecting lithological units in ophiolitic complexes. CC and OIF methods were used to establish enhanced Red-Green-Blue (RGB) color combination bands for discriminating lithological units. A specialized band ratio (4/1, 4/5, 4/7 in RGB) was developed using ASTER bands to differentiate lithological units in ophiolitic complexes. The band ratio effectively detected serpentinite dunite as host rock of chromite ore deposits from surrounding lithological units in the study area. Principal component images derived from first three bands of ASTER and Landsat TM produced well results for lithological mapping applications. ASTER bands contain improved spectral characteristics and higher spatial resolution for detecting serpentinite dunite in ophiolitic complexes. The developed approach used in this study offers great potential for lithological mapping using ASTER and Landsat TM bands, which contributes in economic geology for prospecting chromite ore deposits associated with ophiolitic complexes.
Mills, D R; Goldsmith, M R
2000-04-01
Recent work towards the completion of a saturated molecular genetic linkage map for the lepidopteran silkworm, Bombyx mori (n = 28), has provided evidence for existing polymorphisms in the inbred strain C108. Two inbred parental strains, p50 and C108, were crossed to produce the F1 (P/C) hybrid offspring. The populations used in this project were comprised of a combination of 29 F2 (F1 x F1) and 31 reciprocal backcross (P/C x C/C, P/C x P/P) progeny. All restriction fragment length polymorphisms (RFLPs) for the initial analysis were hybridized with anonymous probes derived from a random early follicular cDNA (Rcf) library from Bombyx. A total of 19 Rcf probes were selected as showing scorable codominant polymorphic patterns when screened against F2 and backcross DNAs digested with the restriction enzymes EcoRI, HindIII, or PstI, and Southern blotted to nylon membranes for hybridization. Of the newly reported Rcf probes, 7 (37%) were characterized as producing 'simple' polymorphic patterns, while 12 (63%) were characterized as producing 'complex' polymorphic patterns. Further characterization of the complex patterns subdivided this group into two general classes: polymorphisms that contained an additional allele, and multiple bands that contained an easily scored two banded polymorphism. Because the extra allele class was limited to the (P/C x C/C) backcross progeny, it is suggested that the inbred parental strain C108 harbors polymorphic loci that are inherited in a simple Mendelian fashion. A genetic analysis discussing plausible origins and maintenance of these polymorphisms is presented.
A novel encryption scheme for high-contrast image data in the Fresnelet domain
Bibi, Nargis; Farwa, Shabieh; Jahngir, Adnan; Usman, Muhammad
2018-01-01
In this paper, a unique and more distinctive encryption algorithm is proposed. This is based on the complexity of highly nonlinear S box in Flesnelet domain. The nonlinear pattern is transformed further to enhance the confusion in the dummy data using Fresnelet technique. The security level of the encrypted image boosts using the algebra of Galois field in Fresnelet domain. At first level, the Fresnelet transform is used to propagate the given information with desired wavelength at specified distance. It decomposes given secret data into four complex subbands. These complex sub-bands are separated into two components of real subband data and imaginary subband data. At second level, the net subband data, produced at the first level, is deteriorated to non-linear diffused pattern using the unique S-box defined on the Galois field F28. In the diffusion process, the permuted image is substituted via dynamic algebraic S-box substitution. We prove through various analysis techniques that the proposed scheme enhances the cipher security level, extensively. PMID:29608609
NASA Astrophysics Data System (ADS)
Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Vincenti Gatti, R.
2017-08-01
Started as educational tools, CubeSats have immediately encountered the favor of the scientific community, subsequently becoming viable platforms for research and commercial applications. To ensure competitive data rates, some pioneers have started to explore the usage of the Ka-band beside the conventional amateur radio frequencies. In this context, this study proposes a phased antenna array design for Ka-band downlink operations consisting of 8×8 circularly polarized subarrays of microstrip patches filling one face of a single CubeSat unit. The conceived structure is developed to support 1.5 GHz bandwidth and dual-task missions, whose feasibility is verified by proper link budgets. The dual-task operations are enabled by a low-complexity phase-only control algorithm that provides pattern reconfigurability in order to satisfy both orbiting and intersatellite missions, while remaining adherent to the cost-effective CubeSat paradigm.
SINE sequences detect DNA fingerprints in salmonid fishes.
Spruell, P; Thorgaard, G H
1996-04-01
DNA probes homologous to two previously described salmonid short interspersed nuclear elements (SINEs) detected DNA fingerprint patterns in 14 species of salmonid fishes. The probes showed more homology to some species than to others and little homology to three nonsalmonid fishes. The DNA fingerprint patterns derived from the SINE probes are individual-specific and inherited in a Mendelian manner. Probes derived from different regions of the same SINE detect only partially overlapping banding patterns, reflecting a more complex SINE structure than has been previously reported. Like the human Alu sequence, the SINEs found in salmonids could provide useful genetic markers and primer sites for PCR-based techniques. These elements may be more desirable for some applications than traditional DNA fingerprinting probes that detect tandemly repeated arrays.
Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.
Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades
2015-01-01
DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA gel electrophoresis images, called GELect, which was written in Java and made available through the imageJ framework. With a novel automated image processing workflow, the tool can accurately segment lanes from a gel matrix, intelligently extract distorted and even doublet bands that are difficult to identify by existing image processing tools. Consequently, genotyping from DNA gel electrophoresis can be performed automatically allowing users to efficiently conduct large scale DNA fingerprinting via DNA gel electrophoresis. The software is freely available from http://www.biotec.or.th/gi/tools/gelect.
Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z
2013-12-19
Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Cocito, C; Vanlinden, F
1995-02-01
Surface static cultures of Mycobacterium bovis BCG contained cells embedded in an extracellular matrix, whose mechanical removal yielded free cells that were pressure disrupted and fractionated into cytoplasm and walls. Cell envelopes were either mechanically disrupted or extracted with detergents. Intracellular and extracellular fractions were analysed for proteins, polysaccharides, and antigen 6O (A60), a major complex immunodominant in tuberculosis. A60 was present in extracellular matrix, cytoplasm and walls: it represented a substantial portion of the proteins and polysaccharides of these fractions. While the protein/polysaccharide ratio varied according to the origin of A60 preparations, the electrophoretic patterns of A60 proteins (which accounted for the immunogenicity of the complex) remained unchanged. Western blots pointed to the proteins present within the 29-45 kDa range as the A60 components endowed with the highest immunogenicity level. Since the most heavily stained protein bands in SDS-PAGE patterns were located outside the region best recognized by antisera, a striking discordance was found between concentration and immunogenicity patterns of A60 proteins. The electrophoretic patterns of A60- and non-A60-proteins from cytoplasm were also different. A60 complexes in dot blots and some electrophoresed A60 proteins reacted with monoclonal antibodies directed against lipoarabinomannan (LAM), a highly immunogenic polymer of cell envelope. This contaminating compound was removed from A60 with organic solvents and detergents. SDS-PAGE and Western blot patterns of proteins from delipidated A60 were similar to those of native A60 proteins.
Nazco, R; Peña, R J; Ammar, K; Villegas, D; Crossa, J; Moragues, M; Royo, C
2014-06-01
The allelic composition at five glutenin loci was assessed by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) on a set of 155 landraces (from 21 Mediterranean countries) and 18 representative modern varieties. Gluten strength was determined by SDS-sedimentation on samples grown under rainfed conditions during 3 years in north-eastern Spain. One hundred and fourteen alleles/banding patterns were identified (25 at Glu-1 and 89 at Glu-2 / Glu-3 loci); 0·85 of them were in landraces at very low frequency and 0·72 were unreported. Genetic diversity index was 0·71 for landraces and 0·38 for modern varieties. All modern varieties exhibited medium to strong gluten type with none of their 13 banding patterns having a significant effect on gluten-strength type. Ten banding patterns significantly affected gluten strength in landraces. Alleles Glu-B1e (band 20), Glu-A3a (band 6), Glu-A3d (bands 6 + 11), Glu-B3a (bands 2 + 4+15 + 19) and Glu-B2a (band 12) significantly increased the SDS-value, and their effects were associated with their frequency. Two alleles, Glu-A3b (band 5) and Glu-B2b (null), significantly reduced gluten strength, but only the effect of the latter locus could be associated with its frequency. Only three rare banding patterns affected gluten strength significantly: Glu-B1a (band 7), found in six landraces, had a negative effect, whereas banding patterns 2 + 4+14 + 15 + 18 and 2 + 4+15 + 18 + 19 at Glu-B3 had a positive effect. Landraces with outstanding gluten strength were more frequent in eastern than in western Mediterranean countries. The geographical pattern displayed from the frequencies of Glu-A1c is discussed.
1978-01-01
This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis. PMID:102651
Cutillas, C; German, P; Arias, P; Guevara, D
1996-10-01
Morphological and biometric studies were performed in Trichuris skrjabini (Baskakov, 1924) collected from the caecum of Capra hircus. The LDH (EC 1.1.1.27.), G6PD (EC 1.1.1.49.), GPI (EC 5.3.1.9.), MDH (EC 1.1.1.37) and malic enzyme (ME) (EC 1.1.1.40) isoenzymatic patterns of T. skrjabini were determined by starch gel electrophoresis. The G6PD and GPI isoenzymatic patterns of T. skrjabini displayed two anodic bands for both enzymes: one fast migration band and one band near the origin. This isoenzymatic pattern was interpreted as two gene loci encoding both enzymes. The LDH isoenzymatic pattern of T. skrjabini was characterized by the presence of a cathodically migrating band, while the MDH isoenzymatic pattern showed a very slow cathodic band. These two phenotypes were interpreted as the expression of a homozygous state of a gene locus for LDH and MDH in T. skrjabini. The ME isoenzymatic pattern was characterized by the presence of a single anodic band. Further, comparative isoenzymatic studies were carried out between T. skrjabini and T. ovis. The different G6PD, GPI, LDH, MDH and ME isoenzymatic patterns observed for both species allowed us to distinguish them and therefore to use isoenzymatic patterns as a diagnostic tool to differentiate species of Trichuris.
Nonlinear dynamics and rheology of active fluids: simulations in two dimensions.
Fielding, S M; Marenduzzo, D; Cates, M E
2011-04-01
We report simulations of a continuum model for (apolar, flow aligning) active fluids in two dimensions. Both free and anchored boundary conditions are considered, at parallel confining walls that are either static or moving at fixed relative velocity. We focus on extensile materials and find that steady shear bands, previously shown to arise ubiquitously in one dimension for the active nematic phase at small (or indeed zero) shear rate, are generally replaced in two dimensions by more complex flow patterns that can be stationary, oscillatory, or apparently chaotic. The consequences of these flow patterns for time-averaged steady-state rheology are examined. ©2011 American Physical Society
Zhou, Ang; Crossland, Patrick M; Draksharapu, Apparao; Jasniewski, Andrew J; Kleespies, Scott T; Que, Lawrence
2018-01-01
Nonheme oxoiron(IV) complexes can serve as synthons for generating heterobimetallic oxo-bridged dimetal complexes by reaction with divalent metal complexes. The formation of Fe III -O-Cr III and Fe III -O-Mn III complexes is described herein. The latter complexes may serve as models for the Fe III -X-Mn III active sites of an emerging class of Fe/Mn enzymes represented by the Class 1c ribonucleotide reductase from Chlamydia trachomatis and the R2-like ligand-binding oxidase (R2lox) found in Mycobacterium tuberculosis. These synthetic complexes have been characterized by UV-Vis, resonance Raman, and X-ray absorption spectroscopy, as well as electrospray mass spectrometry. The Fe III -O-Cr III complexes exhibit a three-band UV-Vis pattern that differs from the simpler features associated with Fe III -O-Fe III complexes. The positions of these features are modulated by the nature of the supporting polydentate ligand on the iron center, and their bands intensify dramatically in two examples upon the binding of an axial cyanate or thiocyanate ligand trans to the oxo bridge. In contrast, the Fe III -O-Mn III complexes resemble Fe III -O-Fe III complexes more closely. Resonance Raman characterization of the Fe III -O-M III complexes reveals an 18 O-sensitive vibration in the range of 760-890 cm -1 . This feature has been assigned to the asymmetric Fe III -O-M III stretching mode and correlates reasonably with the Fe-O bond distance determined by EXAFS analysis. The likely binding of an acetate as a bridging ligand to the Fe III -O-Mn III complex 12 lays the foundation for further efforts to model the heterobimetallic active sites of Fe/Mn enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, L A; Andrews, A H; Cailliet, G M
The white shark (Carcharodon carcharias) has a complex life history that is characterized by large scale movements and a highly variable diet. Estimates of age and growth for the white shark from the eastern North Pacific Ocean indicate they have a slow growth rate and a relatively high longevity. Age, growth, and longevity estimates useful for stock assessment and fishery models, however, require some form of validation. By counting vertebral growth band pairs, ages can be estimated, but because not all sharks deposit annual growth bands and many are not easily discernable, it is necessary to validate growth band periodicitymore » with an independent method. Radiocarbon ({sup 14}C) age validation uses the discrete {sup 14}C signal produced from thermonuclear testing in the 1950s and 1960s that is retained in skeletal structures as a time-specific marker. Growth band pairs in vertebrae, estimated as annual and spanning the 1930s to 1990s, were analyzed for {Delta}{sup 14}C and stable carbon and nitrogen isotopes ({delta}{sup 13}C and {delta}{sup 15}N). The aim of this study was to evaluate the utility of {sup 14}C age validation for a wide-ranging species with a complex life history and to use stable isotope measurements in vertebrae as a means of resolving complexity introduced into the {sup 14}C chronology by ontogenetic shifts in diet and habitat. Stable isotopes provided useful trophic position information; however, validation of age estimates was confounded by what may have been some combination of the dietary source of carbon to the vertebrae, large-scale movement patterns, and steep {sup 14}C gradients with depth in the eastern North Pacific Ocean.« less
NASA Astrophysics Data System (ADS)
Russell, Scott; Walker, David M.; Tordesillas, Antoinette
2016-03-01
A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.
Restriction fragment length polymorphism of the major histocompatibility complex of the dog.
Sarmiento, U M; Storb, R F
1988-01-01
Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (Bam HI, Eco RI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I, and Bgl II), separated by agarose gel electrophoresis, and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabeled HLA cDNA probes corresponding to DR, DQ, DP, and DO beta genes. The autoradiograms for all nine enzyme digests displayed multiple bands with the DRb, DQb, and DPb probes while the DOb probe hybridized with one to two bands. The RFLP patterns were highly polymorphic but consistent within each DLA-D type. Standard RFLP patterns were established for nine DLA-D types which could be discriminated from each other by using two enzymes (Rsa I and Pst I) and the HLA-DPb probe. Cluster analysis of the polymorphic restriction fragments detected by the DRb probe revealed four closely related supertypic groups or DLA-DR families: Dw3 + Dw4 + D1, Dw8 + D10, D7 + D16 + D9, and Dw1. This study provides the basis for DLA-D genotyping at a population level by RFLP analysis. These results also suggest that the genetic organization of the DLA-D region may closely resemble that of the HLA complex.
Population genomics reveals a candidate gene involved in bumble bee pigmentation.
Pimsler, Meaghan L; Jackson, Jason M; Lozier, Jeffrey D
2017-05-01
Variation in bumble bee color patterns is well-documented within and between species. Identifying the genetic mechanisms underlying such variation may be useful in revealing evolutionary forces shaping rapid phenotypic diversification. The widespread North American species Bombus bifarius exhibits regional variation in abdominal color forms, ranging from red-banded to black-banded phenotypes and including geographically and phenotypically intermediate forms. Identifying genomic regions linked to this variation has been complicated by strong, near species level, genome-wide differentiation between red- and black-banded forms. Here, we instead focus on the closely related black-banded and intermediate forms that both belong to the subspecies B. bifarius nearcticus . We analyze an RNA sequencing (RNAseq) data set and identify a cluster of single nucleotide polymorphisms (SNPs) within one gene, Xanthine dehydrogenase/oxidase -like, that exhibit highly unusual differentiation compared to the rest of the sequenced genome. Homologs of this gene contribute to pigmentation in other insects, and results thus represent a strong candidate for investigating the genetic basis of pigment variation in B. bifarius and other bumble bee mimicry complexes.
NASA Astrophysics Data System (ADS)
Panigrahi, Suraj Kumar; Mishra, Ashok Kumar
2017-09-01
A combination of broad-band UV radiation (UV A and UV B; 250-400 nm) and a stretched exponential function (StrEF) has been utilised in efforts towards convenient and sensitive detection of fluorescent dissolved organic matter (FDOM). This approach enables accessing the gross fluorescence spectral signature of both protein-like and humic-like components in a single measurement. Commercial FDOM components are excited with the broad-band UV excitation; the variation of spectral profile as a function of varying component ratio is analysed. The underlying fluorescence dynamics and non-linear quenching of amino acid moieties are studied with the StrEF (exp(-V[Q] β )). The complex quenching pattern reflects the inner filter effect (IFE) as well as inter-component interactions. The inter-component interactions are essentially captured through the ‘sphere of action’ and ‘dark complex’ models. The broad-band UV excitation ascertains increased excitation energy, resulting in increased population density in the excited state and thereby resulting in enhanced sensitivity.
A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns
NASA Astrophysics Data System (ADS)
Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav
2017-07-01
In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.
Cervelli, Manuela; Leonetti, Alessia; Cervoni, Laura; Ohkubo, Shinji; Xhani, Marla; Stano, Pasquale; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo; Agostinelli, Enzo
2016-10-01
Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process.
Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2015-11-30
Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.
Determination of turbidity patterns in Lake Chicot from LANDSAT MSS imagery
NASA Technical Reports Server (NTRS)
Lecroy, S. R. (Principal Investigator)
1982-01-01
A historical analysis of all the applicable LANDSAT imagery was conducted on the turbidity patterns of Lake Chicot, located in the southeastern corner of Arkansas. By examining the seasonal and regional turbidity patterns, a record of sediment dynamics and possible disposition can be obtained. Sketches were generated from the suitable imagery, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. Additionally, the upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.
NASA Technical Reports Server (NTRS)
Lecroy, S. R. (Principal Investigator)
1981-01-01
The LANDSAT imagery was historically analyzed to determine the circulation and turbidity patterns of Kerr Lake, located on the Virginia-North Carolina border. By examining the seasonal and regional turbidity and circulation patterns, a record of sediment transport and possible disposition can be obtained. Sketches were generated, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. The upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.
NASA Astrophysics Data System (ADS)
Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger
2017-07-01
How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.
Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger
2017-01-01
How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme–substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor–acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor–substrate complex.
Modification in band gap of zirconium complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S.
2016-05-06
The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.
Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan.
Otaki, Joji M
2012-09-01
To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the "nymphalid groundplan". However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the "marginal band system". Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of "core elements" (the discal spot and the border ocelli, respectively) and a pair of "paracore elements" (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.
Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity
NASA Technical Reports Server (NTRS)
Nessel, James A.; Miranda, Felix A.; Zaman, Afroz
2007-01-01
A printed, folded, Hilbert-curve fractal microwave antenna has been designed and built to offer advantages of compactness and low mass, relative to other antennas designed for the same operating frequencies. The primary feature of the antenna is that it offers the advantage of radiation-pattern diversity without need for electrical or mechanical switching: it can radiate simultaneously in an end-fire pattern at a frequency of 2.3 GHz (which is in the S-band) and in a broadside pattern at a frequency of 16.8 GHz (which is in the Ku-band). This radiation-pattern diversity could be utilized, for example, in applications in which there were requirements for both S-band ground-to-ground communications and Ku-band ground-to-aircraft or ground-to-spacecraft communications. The lack of switching mechanisms or circuitry makes this antenna more reliable, easier, and less expensive to fabricate than it otherwise would be.
Electron Localization States in Asymmetric Shape Carbon Nanotubes Caused by Hydrogen Adsorption
NASA Astrophysics Data System (ADS)
Pan, L. J.; Chen, W. G.
2017-12-01
In this paper, we presented pseudopotential-based density functional theory studies on energy, structure, energy band structure of hydrogenated single-walled carbon nanotube. The stability of the configuration mainly depends on hydrogen coverage. According to the adsorption energies, the stability deteriorates with the increase of the hydrogen adsorption. The cross section of configurations become various shapes such as “beetle” or “lip” appearance without the balanced effects of hydrogen atoms. We also explored the energy band structures of configurations in three typical adsorption patterns, showing that the disparate trends of energy band gap as the hydrogen atoms concentrate. For C32H24, the band gap may reach the large value of 2.79 eV for the adsorption pattern A configuration and reduce to be zero for the adsorption pattern C case, the values of band gap for pattern A configurations decrease, which is opposite of the pattern B configurations as the adsorption hydrogen becomes more disperse. It is deduced that the hydrogen adsorption has significant effect on the electrical properties of the carbon nanotube.
Low-frequency vibrational modes of DL-homocysteic acid and related compounds.
Yang, Limin; Zhao, Guozhong; Li, Weihong; Liu, Yufeng; Shi, Xiaoxi; Jia, Xinfeng; Zhao, Kui; Lu, Xiangyang; Xu, Yizhuang; Xie, Datao; Wu, Jinguang; Chen, Jia'er
2009-09-01
In this paper several polycrystalline molecules with sulfonate groups and some of their metal complexes, including DL-homocysteic acid (DLH) and its Sr- and Cu-complexes, pyridine-3-sulphonic acid and its Co- and Ni-complexes, sulfanilic acid and L-cysteic acid were investigated using THz time-domain methods at room temperature. The results of THz absorption spectra show that the molecules have characteristic bands in the region of 0.2-2.7 THz (6-90 cm(-1)). THz technique can be used to distinguish different molecules with sulfonate groups and to determine the bonding of metal ions and the changes of hydrogen bond networks. In the THz region DLH has three bands: 1.61, 1.93 and 2.02 THz; and 0.85, 1.23 and 1.73 THz for Sr-DLH complex, 1.94 THz for Cu-DLH complex, respectively. The absorption bands of pyridine-3-sulphonic acid are located at 0.81, 1.66 and 2.34 THz; the bands at 0.96, 1.70 and 2.38 THz for its Co-complex, 0.76, 1.26 and 1.87 THz for its Ni-complex. Sulphanilic acid has three bands: 0.97, 1.46 and 2.05 THz; and the absorption bands of l-cysteic acid are at 0.82, 1.62, 1.87 and 2.07 THz, respectively. The THz absorption spectra after complexation are different from the ligands, which indicate the bonding of metal ions and the changes of hydrogen bond networks. M-O and other vibrations appear in the FIR region for those metal-ligand complexes. The bands in the THz region were assigned to the rocking, torsion, rotation, wagging and other modes of different groups in the molecules. Preliminary assignments of the bands were carried out using Gaussian program calculation.
Insight into the structure of photosynthetic LH2 aggregate from spectroscopy simulations.
Rancova, Olga; Sulskus, Juozas; Abramavicius, Darius
2012-07-12
Using the electrostatic model of intermolecular interactions, we obtain the Frenkel exciton Hamiltonian parameters for the chlorophyll Qy band of a photosynthetic peripheral light harvesting complex LH2 of a purple bacteria Rhodopseudomonas acidophila from structural data. The intermolecular couplings are mostly determined by the chlorophyll relative positions, whereas the molecular transition energies are determined by the background charge distribution of the whole complex. The protonation pattern of titratable residues is used as a tunable parameter. By studying several protonation state scenarios for distinct protein groups and comparing the simulated absorption and circular dichroism spectra to experiment, we determine the most probable configuration of the protonation states of various side groups of the protein.
Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects.
Wei, J L; Sanchez, C; Giacoumidis, E
2017-10-01
We present, to the best of our knowledge, the first known detailed analysis and fair comparison of complexity of a 56 Gb/s multi-band carrierless amplitude and phase (CAP) and discrete multi-tone (DMT) over 80 km dispersion compensation fiber-free single-mode fiber links based on intensity modulation and direct detection for data center interconnects. We show that the matched finite impulse response filters and inverse fast Fourier transform (IFFT)/FFT take the majority of the complexity of the multi-band CAP and DMT, respectively. The choice of the multi-band CAP sub-band count and the DMT IFFT/FFT size makes significant impact on the system complexity or performance, and trade-off must be considered.
Papaioannou, Vasilios E; Chouvarda, Ioanna G; Maglaveras, Nikos K; Pneumatikos, Ioannis A
2012-12-12
Even though temperature is a continuous quantitative variable, its measurement has been considered a snapshot of a process, indicating whether a patient is febrile or afebrile. Recently, other diagnostic techniques have been proposed for the association between different properties of the temperature curve with severity of illness in the Intensive Care Unit (ICU), based on complexity analysis of continuously monitored body temperature. In this study, we tried to assess temperature complexity in patients with systemic inflammation during a suspected ICU-acquired infection, by using wavelets transformation and multiscale entropy of temperature signals, in a cohort of mixed critically ill patients. Twenty-two patients were enrolled in the study. In five, systemic inflammatory response syndrome (SIRS, group 1) developed, 10 had sepsis (group 2), and seven had septic shock (group 3). All temperature curves were studied during the first 24 hours of an inflammatory state. A wavelet transformation was applied, decomposing the signal in different frequency components (scales) that have been found to reflect neurogenic and metabolic inputs on temperature oscillations. Wavelet energy and entropy per different scales associated with complexity in specific frequency bands and multiscale entropy of the whole signal were calculated. Moreover, a clustering technique and a linear discriminant analysis (LDA) were applied for permitting pattern recognition in data sets and assessing diagnostic accuracy of different wavelet features among the three classes of patients. Statistically significant differences were found in wavelet entropy between patients with SIRS and groups 2 and 3, and in specific ultradian bands between SIRS and group 3, with decreased entropy in sepsis. Cluster analysis using wavelet features in specific bands revealed concrete clusters closely related with the groups in focus. LDA after wrapper-based feature selection was able to classify with an accuracy of more than 80% SIRS from the two sepsis groups, based on multiparametric patterns of entropy values in the very low frequencies and indicating reduced metabolic inputs on local thermoregulation, probably associated with extensive vasodilatation. We suggest that complexity analysis of temperature signals can assess inherent thermoregulatory dynamics during systemic inflammation and has increased discriminating value in patients with infectious versus noninfectious conditions, probably associated with severity of illness.
2012-01-01
Background Even though temperature is a continuous quantitative variable, its measurement has been considered a snapshot of a process, indicating whether a patient is febrile or afebrile. Recently, other diagnostic techniques have been proposed for the association between different properties of the temperature curve with severity of illness in the Intensive Care Unit (ICU), based on complexity analysis of continuously monitored body temperature. In this study, we tried to assess temperature complexity in patients with systemic inflammation during a suspected ICU-acquired infection, by using wavelets transformation and multiscale entropy of temperature signals, in a cohort of mixed critically ill patients. Methods Twenty-two patients were enrolled in the study. In five, systemic inflammatory response syndrome (SIRS, group 1) developed, 10 had sepsis (group 2), and seven had septic shock (group 3). All temperature curves were studied during the first 24 hours of an inflammatory state. A wavelet transformation was applied, decomposing the signal in different frequency components (scales) that have been found to reflect neurogenic and metabolic inputs on temperature oscillations. Wavelet energy and entropy per different scales associated with complexity in specific frequency bands and multiscale entropy of the whole signal were calculated. Moreover, a clustering technique and a linear discriminant analysis (LDA) were applied for permitting pattern recognition in data sets and assessing diagnostic accuracy of different wavelet features among the three classes of patients. Results Statistically significant differences were found in wavelet entropy between patients with SIRS and groups 2 and 3, and in specific ultradian bands between SIRS and group 3, with decreased entropy in sepsis. Cluster analysis using wavelet features in specific bands revealed concrete clusters closely related with the groups in focus. LDA after wrapper-based feature selection was able to classify with an accuracy of more than 80% SIRS from the two sepsis groups, based on multiparametric patterns of entropy values in the very low frequencies and indicating reduced metabolic inputs on local thermoregulation, probably associated with extensive vasodilatation. Conclusions We suggest that complexity analysis of temperature signals can assess inherent thermoregulatory dynamics during systemic inflammation and has increased discriminating value in patients with infectious versus noninfectious conditions, probably associated with severity of illness. PMID:22424316
Synthesis and Use of [Cd(Detu)2(OOCCH3)2]·H2O as Single Molecule Precursor for Cds Nanoparticles
Ajibade, Peter A.
2013-01-01
Substituted thiourea ligands are of interest because they possess various donor sites for metal ions and their application in separation of metal ions and as antimicrobial agents. The coordination of the sulfur donor atom led to interest in them as precursor for semiconductor nanoparticles. In this study, cadmium(II) complex of diethylthiourea was synthesized and characterized by elemental analysis, FTIR, and X-ray crystallography. Single crystal X-ray structure of the complex showed that the octahedral geometry around the Cd ion consists of two molecules of diethylthiourea acting as monodentate ligands and two chelating acetate ions. The thermal decomposition of the compound showed that it decomposed to give CdS. The compound was thermolysed in hexadecylamine (HDA) to prepare HDA-capped CdS nanoparticles. The absorption spectrum showed blue shifts in its absorption band edges which clearly indicated quantum confinement effect, and the emission spectrum showed characteristic band edge luminescence. The broad diffraction peaks of the XRD pattern showed the materials to be of the nanometric size. PMID:24294141
Keeping the band together: evidence for false boundary disruptive coloration in a butterfly.
Seymoure, B M; Aiello, A
2015-09-01
There is a recent surge of evidence supporting disruptive coloration, in which patterns break up the animal's outline through false edges or boundaries, increasing survival in animals by reducing predator detection and/or preventing recognition. Although research has demonstrated that false edges are successful for reducing predation of prey, research into the role of internal false boundaries (i.e. stripes and bands) in reducing predation remains warranted. Many animals have stripes and bands that may function disruptively. Here, we test the possible disruptive function of wing band patterning in a butterfly, Anartia fatima, using artificial paper and plasticine models in Panama. We manipulated the band so that one model type had the band shifted to the wing margin (nondisruptive treatment) and another model had a discontinuous band located on the wing margin (discontinuous edge treatment). We kept the natural wing pattern to represent the false boundary treatment. Across all treatment groups, we standardized the area of colour and used avian visual models to confirm a match between manipulated and natural wing colours. False boundary models had higher survival than either the discontinuous edge model or the nondisruptive model. There was no survival difference between the discontinuous edge model and the nondisruptive model. Our results demonstrate the importance of wing bands in reducing predation on butterflies and show that markings set in from the wing margin can reduce predation more effectively than marginal bands and discontinuous marginal patterns. This study demonstrates an adaptive benefit of having stripes and bands. © 2015 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa
Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.
Analysis of Some Combination-Overtone Infrared Bands of (SO3)-S-32-O-16.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maki, Arthur G.; Blake, Thomas A.; Sams, Robert L.
2004-06-01
Several new bands for 32S16O3 have been measured and analyzed. The principal bands observed were v1+v2 (at 1561 cm-1), v1+v4 (at 1594 cm -1) v3+ v4 (at 1918 cm-1), and 3v3 (at 4136 cm-1). Except for 3v3, these bands are very complicated because of (a) the Coriolis coupling between v2 and v4 (b) the Fermi resonance between v1 and 2v4, (c) the Fermi resonance between v1 and 2v2, (d) ordinary l-type resonance that couples levels that differ by 2 in both the k and l quantum numbers, and (e) the vibrational l-type resonance between the A1 and A2 levels ofmore » v3+v4. The unraveling of the complex pattern of these bands was facilitated by a systematic approach to the understanding of the various interactions. Fortunately, previous work on the fundamentals permitted good estimates of many constants necessary to begin the assignments and the fit of the measurements. In addition, the use of hot band transitions accompanying the v3 band was an essential aid in fitting the v3+v4 transitions since these could be directly observed for only one of four interacting states. From the hot band analysis we find that the A1 vibrational level is 3.50cm-1 above the A2 level, i.e., r34=1.75236(7) cm-1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, A.J.; Bailey, E.; Woodward, J.G.
1986-03-05
Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a /sup 32/P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphismmore » was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family.« less
Bahkali, Ali H.; Abd-Elsalam, Kamel A.; Guo, Jian-Rong; Khiyami, Mohamed A.; Verreet, Joseph-Alexander
2012-01-01
The goals of this investigation were to identify and evaluate the use of polymorphic microsatellite marker (PMM) analysis for molecular typing of seventeen plant pathogenic fungi. Primers for di-, tri-, and tetranucleotide loci were designed directly from the recently published genomic sequence of Mycospherlla graminicola and Fusarium graminearum. A total of 20 new microsatellite primers as easy-to-score markers were developed. Microsatellite primer PCR (MP-PCR) yielded highly reproducible and complex genomic fingerprints, with several bands ranging in size from 200 to 3000 bp. Of the 20 primers tested, only (TAGG)4, (TCC)5 and (CA)7T produced a high number of polymorphic bands from either F. graminearum or F. culmorum. (ATG)5 led to successful amplifications in M. graminicola isolates collected from Germany. Percentage of polymorphic bands among Fusarium species ranged from 9 to 100%. Cluster analysis of banding patterns of the isolates corresponded well to the established species delineations based on morphology and other methods of phylogenetic analysis. The current research demonstrates that the newly designed microsatellite primers are reliable, sensitive and technically simple tools for assaying genetic variability in plant pathogenic fungi. PMID:22489135
Ferris, Michael J; Masztal, Alicia; Aldridge, Kenneth E; Fortenberry, J Dennis; Fidel, Paul L; Martin, David H
2004-01-01
Background Bacterial vaginosis (BV) is a polymicrobial syndrome characterized by a change in vaginal flora away from predominantly Lactobacillus species. The cause of BV is unknown, but the condition has been implicated in diverse medical outcomes. The bacterium Atopobium vaginae has been recognized only recently. It is not readily identified by commercial diagnostic kits. Its clinical significance is unknown but it has recently been isolated from a tuboovarian abcess. Methods Nucleotide sequencing of PCR amplified 16S rRNA gene segments, that were separated into bands within lanes on polyacrylamide gels by denaturing gradient gel electrophoresis (DGGE), was used to examine bacterial vaginal flora in 46 patients clinically described as having normal (Lactobacillus spp. predominant; Nugent score ≤ 3) and abnormal flora (Nugent score ≥ 4). These women ranged in age from 14 to 48 and 82% were African American. Results The DGGE banding patterns of normal and BV-positive patients were recognizably distinct. Those of normal patients contained 1 to 4 bands that were focused in the centre region of the gel lane, while those of BV positive patients contained bands that were not all focused in the center region of the gel lane. More detailed analysis of patterns revealed that bands identified as Atopobium vaginae were present in a majority (12/22) of BV positive patients, while corresponding bands were rare (2/24) in normal patients. (P < 0.001) Two A. vaginae isolates were cultivated from two patients whose DGGE analyses indicated the presence of this organism. Two A. vaginae 16S rRNA gene sequences were identified among the clinical isolates. The same two sequences were obtained from DGGE bands of the corresponding vaginal flora. The sequences differed by one nucleotide over the short (~300 bp) segment used for DGGE analysis and migrated to slightly different points in denaturing gradient gels. Both isolates were strict anaerobes and highly metronidazole resistant. Conclusion The results suggest that A. vaginae may be an important component of the complex bacterial ecology that constitutes abnormal vaginal flora. This organism could play a role in treatment failure if further studies confirm it is consistently metronidozole resistant. PMID:15018635
NASA Technical Reports Server (NTRS)
Sukharev, S. I.; Schroeder, M. J.; McCaslin, D. R.
1999-01-01
MscL, a 15 kDa transmembrane protein, is the only component involved in the formation of a 3 nS channel in the inner membrane of Escherichia coli that opens in response to mechanical or osmotic stress. While previous data had suggested that the functional MscL complex might be a hexamer, a recent crystallographic study of the MscL homologue from M. tuberculosis reveals a pentameric structure. The present work further examines the stoichiometry of the E. coli MscL using a variety of biochemical approaches. Detergent-purified 6His-MscL in solution and MscL in the membrane could be chemically crosslinked with the products displaying ladderlike patterns on SDS gels. Three crosslinking agents (EDC, DMS, and DMA) used at saturating concentrations invariably generated pentamers as the largest product. DSS produced additional bands corresponding to larger complexes although the pentamer band appeared to be the predominant product at high levels of crosslinker. It is not clear whether these extra bands reflect a difference in the crosslinking chemistry of DSS or whether its spacer arm is the longest of those used, or a combination of both facts. For the detergent-solubilized 6His-MscL both sedimentation equilibrium and gel chromatography showed the presence of multiple species. Thus the longer spacer arm could permit both intra- and intercomplex linkages. Nonetheless, the patterns obtained with all agents are consistent with and strongly suggest a pentameric organization for the MscL channel. Expression of MscL as genetically engineered double or triple subunit tandems yields low numbers of functional channels as compared to expressed monomers. The double-tandem assemblies must have an even number of subunits and crosslinking in the membrane confirmed hexamerization. Gel chromatography clearly demonstrated that the channels formed from the double tandems were larger than those formed from WT MscL, consistent with the native channel being pentameric. The observation that both double and triple tandems form channels of normal conductance implies that the pentameric assembly is to some degree independent of the number of subunit repeats in the polypeptide precursor. The channel is thus a pentameric core with the 'extra' subunits left out of the functional complex. From sedimentation equilibrium and size-exclusion chromatography, we also conclude that MscL complexes are not in a dynamic equilibrium with monomers, but are pre-assembled; and thus, their gating properties must result from changes in the conformation of the entire complex induced by the mechanical stress.
Sukharev, S I; Schroeder, M J; McCaslin, D R
1999-10-01
MscL, a 15 kDa transmembrane protein, is the only component involved in the formation of a 3 nS channel in the inner membrane of Escherichia coli that opens in response to mechanical or osmotic stress. While previous data had suggested that the functional MscL complex might be a hexamer, a recent crystallographic study of the MscL homologue from M. tuberculosis reveals a pentameric structure. The present work further examines the stoichiometry of the E. coli MscL using a variety of biochemical approaches. Detergent-purified 6His-MscL in solution and MscL in the membrane could be chemically crosslinked with the products displaying ladderlike patterns on SDS gels. Three crosslinking agents (EDC, DMS, and DMA) used at saturating concentrations invariably generated pentamers as the largest product. DSS produced additional bands corresponding to larger complexes although the pentamer band appeared to be the predominant product at high levels of crosslinker. It is not clear whether these extra bands reflect a difference in the crosslinking chemistry of DSS or whether its spacer arm is the longest of those used, or a combination of both facts. For the detergent-solubilized 6His-MscL both sedimentation equilibrium and gel chromatography showed the presence of multiple species. Thus the longer spacer arm could permit both intra- and intercomplex linkages. Nonetheless, the patterns obtained with all agents are consistent with and strongly suggest a pentameric organization for the MscL channel. Expression of MscL as genetically engineered double or triple subunit tandems yields low numbers of functional channels as compared to expressed monomers. The double-tandem assemblies must have an even number of subunits and crosslinking in the membrane confirmed hexamerization. Gel chromatography clearly demonstrated that the channels formed from the double tandems were larger than those formed from WT MscL, consistent with the native channel being pentameric. The observation that both double and triple tandems form channels of normal conductance implies that the pentameric assembly is to some degree independent of the number of subunit repeats in the polypeptide precursor. The channel is thus a pentameric core with the 'extra' subunits left out of the functional complex. From sedimentation equilibrium and size-exclusion chromatography, we also conclude that MscL complexes are not in a dynamic equilibrium with monomers, but are pre-assembled; and thus, their gating properties must result from changes in the conformation of the entire complex induced by the mechanical stress.
NASA Astrophysics Data System (ADS)
He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang
2017-03-01
Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.
Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita
2014-01-01
Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms. PMID:24611143
Thomas, Robert Joseph; Mietus, Joseph E.; Peng, Chung-Kang; Gilmartin, Geoffrey; Daly, Robert W.; Goldberger, Ary L.; Gottlieb, Daniel J.
2007-01-01
Study Objectives: Complex sleep apnea is defined as sleep disordered breathing secondary to simultaneous upper airway obstruction and respiratory control dysfunction. The objective of this study was to assess the utility of an electrocardiogram (ECG)-based cardiopulmonary coupling technique to distinguish obstructive from central or complex sleep apnea. Design: Analysis of archived polysomnographic datasets. Setting: A laboratory for computational signal analysis. Interventions: None. Measurements and Results: The PhysioNet Sleep Apnea Database, consisting of 70 polysomnograms including single-lead ECG signals of approximately 8 hours duration, was used to train an ECG-based measure of autonomic and respiratory interactions (cardiopulmonary coupling) to detect periods of apnea and hypopnea, based on the presence of elevated low-frequency coupling (e-LFC). In the PhysioNet BIDMC Congestive Heart Failure Database (ECGs of 15 subjects), a pattern of “narrow spectral band” e-LFC was especially common. The algorithm was then applied to the Sleep Heart Health Study–I dataset, to select the 15 records with the highest amounts of broad and narrow spectral band e-LFC. The latter spectral characteristic seemed to detect not only periods of central apnea, but also obstructive hypopneas with a periodic breathing pattern. Applying the algorithm to 77 sleep laboratory split-night studies showed that the presence of narrow band e-LFC predicted an increased sensitivity to induction of central apneas by positive airway pressure. Conclusions: ECG-based spectral analysis allows automated, operator-independent characterization of probable interactions between respiratory dyscontrol and upper airway anatomical obstruction. The clinical utility of spectrographic phenotyping, especially in predicting failure of positive airway pressure therapy, remains to be more thoroughly tested. Citation: Thomas RJ; Mietus JE; Peng CK; Gilmartin G; Daly RW; Goldberger AL; Gottlieb DJ. Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method. SLEEP 2007;30(12):1756-1769. PMID:18246985
Mesoscale pattern formation of self-propelled rods with velocity reversal
NASA Astrophysics Data System (ADS)
Großmann, Robert; Peruani, Fernando; Bär, Markus
2016-11-01
We study self-propelled particles with velocity reversal interacting by uniaxial (nematic) alignment within a coarse-grained hydrodynamic theory. Combining analytical and numerical continuation techniques, we show that the physics of this active system is essentially controlled by the reversal frequency. In particular, we find that elongated, high-density, ordered patterns, called bands, emerge via subcritical bifurcations from spatially homogeneous states. Our analysis reveals further that the interaction of bands is weakly attractive and, consequently, bands fuse upon collision in analogy with nonequilibrium nucleation processes. Moreover, we demonstrate that a renormalized positive line tension can be assigned to stable bands below a critical reversal rate, beyond which they are transversally unstable. In addition, we discuss the kinetic roughening of bands as well as their nonlinear dynamics close to the threshold of transversal instability. Altogether, the reduction of the multiparticle system onto the dynamics of bands provides a unified framework to understand the emergence and stability of nonequilibrium patterns in this self-propelled particle system. In this regard, our results constitute a proof of principle in favor of the hypothesis in microbiology that velocity reversal of gliding rod-shaped bacteria regulates the transitions between various self-organized patterns observed during the bacterial life cycle.
Turner-Stokes, Lynne; Sutch, Stephen; Dredge, Robert
2012-03-01
To describe the rationale and development of a casemix model and costing methodology for tariff development for specialist neurorehabilitation services in the UK. Patients with complex needs incur higher treatment costs. Fair payment should be weighted in proportion to costs of providing treatment, and should allow for variation over time CASEMIX MODEL AND BAND-WEIGHTING: Case complexity is measured by the Rehabilitation Complexity Scale (RCS). Cases are divided into five bands of complexity, based on the total RCS score. The principal determinant of costs in rehabilitation is staff time. Total staff hours/week (estimated from the Northwick Park Nursing and Therapy Dependency Scales) are analysed within each complexity band, through cross-sectional analysis of parallel ratings. A 'band-weighting' factor is derived from the relative proportions of staff time within each of the five bands. Total unit treatment costs are obtained from retrospective analysis of provider hospitals' budget and accounting statements. Mean bed-day costs (total unit cost/occupied bed days) are divided broadly into 'variable' and 'non-variable' components. In the weighted costing model, the band-weighting factor is applied to the variable portion of the bed-day cost to derive a banded cost, and thence a set of cost-multipliers. Preliminary data from one unit are presented to illustrate how this weighted costing model will be applied to derive a multilevel banded payment model, based on serial complexity ratings, to allow for change over time.
Optimized stereo matching in binocular three-dimensional measurement system using structured light.
Liu, Kun; Zhou, Changhe; Wei, Shengbin; Wang, Shaoqing; Fan, Xin; Ma, Jianyong
2014-09-10
In this paper, we develop an optimized stereo-matching method used in an active binocular three-dimensional measurement system. A traditional dense stereo-matching algorithm is time consuming due to a long search range and the high complexity of a similarity evaluation. We project a binary fringe pattern in combination with a series of N binary band limited patterns. In order to prune the search range, we execute an initial matching before exhaustive matching and evaluate a similarity measure using logical comparison instead of a complicated floating-point operation. Finally, an accurate point cloud can be obtained by triangulation methods and subpixel interpolation. The experiment results verify the computational efficiency and matching accuracy of the method.
Improved classification of small-scale urban watersheds using thematic mapper simulator data
NASA Technical Reports Server (NTRS)
Owe, M.; Ormsby, J. P.
1984-01-01
The utility of Landsat MSS classification methods in the case of small, highly urbanized hydrological basins containing complex land-use patterns is limited, and is plagued by misclassifications due to the spectral response similarity of many dissimilar surfaces. Landsat MSS data for the Conley Creek basin near Atlanta, Georgia, have been compared to thematic mapper simulator (TMS) data obtained on the same day by aircraft. The TMS data were able to alleviate many of the recurring patterns associated with MSS data, through bandwidth optimization, an increase of the number of spectral bands to seven, and an improvement of ground resolution to 30 m. The TMS is thereby able to detect small water bodies, powerline rights-of-way, and even individual buildings.
Zhang, Delong; Liu, Bo; Chen, Jun; Peng, Xiaoling; Liu, Xian; Fan, Yuanyuan; Liu, Ming; Huang, Ruiwang
2013-01-01
Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01∼0.027 Hz), slow-4 (0.027∼0.073 Hz), and whole-band (0.01∼0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was more efficient in the slow-5 (0.01∼0.027 Hz) band than in the other two frequency bands. Our findings suggest that the MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD. PMID:23359801
NASA Astrophysics Data System (ADS)
Dore, L.; Cohen, R. C.; Schmuttenmaer, C. A.; Busarow, K. L.; Elrod, M. J.; Loeser, J. G.; Saykally, R. J.
1994-01-01
Thirteen vibration-rotation-tunneling (VRT) bands of the CH4-H2O complex have been measured in the range from 18 to 35.5 cm-1 using tunable far infrared laser spectroscopy. The ground state has an average center of mass separation of 3.70 Å and a stretching force constant of 1.52 N/m, indicating that this complex is more strongly bound than Ar-H2O. The eigenvalue spectrum has been calculated with a variational procedure using a spherical expansion of a site-site ab initio intermolecular potential energy surface [J. Chem. Phys. 93, 7808 (1991)]. The computed eigenvalues exhibit a similar pattern to the observed spectra but are not in quantitative agreement. These observations suggest that both monomers undergo nearly free internal rotation within the complex.
Sensor feature fusion for detecting buried objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.
1993-04-01
Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less
Tóth, Rita; Walliser, Roché M; Lagzi, István; Boudoire, Florent; Düggelin, Marcel; Braun, Artur; Housecroft, Catherine E; Constable, Edwin C
2016-10-12
Periodic precipitation processes in gels can result in impressive micro- and nanostructured patterns known as periodic precipitation (or Liesegang bands). Under certain conditions, the silver nitrate-chromium(vi) system exhibits the coexistence of two kinds of Liesegang bands with different frequencies. We now present that the two kinds of bands form independently on different time scales and the pH-dependent chromate(vi)-dichromate(vi) equilibrium controls the formation of the precipitates. We determined the spatial distribution and constitution of the particles in the bands using focused ion beam-scanning electron microscopy (FIB-SEM) and scanning transmission X-ray spectromicroscopy (STXM) measurements. This provided the necessary empirical input data to formulate a model for the pattern formation; a model that quantitatively reproduces the experimental observations. Understanding the pattern-forming process at the molecular level enables us to tailor the size and the shape of the bands, which, in turn, can lead to new functional architectures for a range of applications.
Large-scale fabrication of vertically aligned ZnO nanowire arrays
Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo
2013-02-05
In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.
Compaction dynamics of crunchy granular material
NASA Astrophysics Data System (ADS)
Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai
2017-06-01
Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.
Vegetation pattern formation in a fog-dependent ecosystem.
Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A
2010-07-07
Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.
Reed, Robert D; McMillan, W Owen; Nagy, Lisa M
2008-01-07
Geographical variation in the mimetic wing patterns of the butterfly Heliconius erato is a textbook example of adaptive polymorphism; however, little is known about how this variation is controlled developmentally. Using microarrays and qPCR, we identified and compared expression of candidate genes potentially involved with a red/yellow forewing band polymorphism in H. erato. We found that transcripts encoding the pigment synthesis enzymes cinnabar and vermilion showed pattern- and polymorphism-related expression patterns, respectively. cinnabar expression was associated with the forewing band regardless of pigment colour, providing the first gene expression pattern known to be correlated with a major Heliconius colour pattern. In contrast, vermilion expression changed spatially over time in red-banded butterflies, but was not expressed at detectable levels in yellow-banded butterflies, suggesting that regulation of this gene may be involved with the red/yellow polymorphism. Furthermore, we found that the yellow pigment, 3-hydroxykynurenine, is incorporated into wing scales from the haemolymph rather than being synthesized in situ. We propose that some aspects of Heliconius colour patterns are determined by spatio-temporal overlap of pigment gene transcription prepatterns and speculate that evolutionary changes in vermilion regulation may in part underlie an adaptive colour pattern polymorphism.
Takano, Nami K; Tsutsumi, Takeshi; Suzuki, Hiroshi; Okamoto, Yoshiwo; Nakajima, Toshiaki
2012-02-01
We evaluated whether frequency analysis could detect the development of interstitial fibrosis in rats. SHR/Izm and age-matched WKY/Izm were used. Limb lead II electrocardiograms were recorded. Continuous wavelet transform (CWT) was applied for the time-frequency analysis. The integrated time-frequency power (ITFP) between QRS complexes was measured and compared between groups. The ITFP at low-frequency bands (≤125Hz) was significantly higher in SHR/Izm. The percent change of ITFP showed the different patterns between groups. Prominent interstitial fibrosis with an increase in TIMP-1 mRNA expression was also observed in SHR/Izm. These results were partly reproduced in a computer simulation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Precht, William F.; Aronson, Richard B.; Moody, Ryan M.; Kaufman, Les
2010-01-01
Background The threespot damselfish, Stegastes planifrons (Cuvier), is important in mediating interactions among corals, algae, and herbivores on Caribbean coral reefs. The preferred microhabitat of S. planifrons is thickets of the branching staghorn coral Acropora cervicornis. Within the past few decades, mass mortality of A. cervicornis from white-band disease and other factors has rendered this coral a minor ecological component throughout most of its range. Methodology/Principal Findings Survey data from Jamaica (heavily fished), Florida and the Bahamas (moderately fished), the Cayman Islands (lightly to moderately fished), and Belize (lightly fished) indicate that distributional patterns of S. planifrons are positively correlated with live coral cover and topographic complexity. Our results suggest that species-specific microhabitat preferences and the availability of topographically complex microhabitats are more important than the abundance of predatory fish as proximal controls on S. planifrons distribution and abundance. Conclusions/Significance The loss of the primary microhabitat of S. planifrons—A. cervicornis—has forced a shift in the distribution and recruitment of these damselfish onto remaining high-structured corals, especially the Montastraea annularis species complex, affecting coral mortality and algal dynamics throughout the Caribbean. PMID:20520809
Fresh and aged human lymphocyte metaphase slides are equally usable for GTG banding.
Sajjad, Naheed; Haque, Sayedul; SBurney, Syed Intesar; Shahid, Syed Muhammad; Zehra, Sitwat; Azhar, Abid
2014-09-01
The identification of chromosomes for routine cytogenetic analysis is based on quality of metaphases and good banding pattern. Fresh slides of human lymphocytes have been shown to produce good bands for the identification of chromosomes morphology. G-bands by Trypsin using Giemsa (GTG) banding of aged slides is generally considered hard to get desired band pattern of chromosomes persistently. The current study is focused on GTG banding of aged slides. A total of 340 subjects including 290 primary infertile and 50 fertile were selected. The blood samples were drawn aseptically for cytogenetic analysis. Lymphocytes were cultured and GTG banding was done on 1440 glass slides. Giemsa trypsin banding of aged slides were done by adjusting average trypsin time for each month according to the slide age and metaphase concentration. Correlation analyses showed a significant and positive correlation between slide ageing and trypsin pre-treatment time. The results of this study suggest that, the fresh and aged human lymphocyte metaphases are equally usable for GTG banding.
Space Radar Image of Canberra, Australia
NASA Technical Reports Server (NTRS)
1994-01-01
Australia's capital city, Canberra, is shown in the center of this spaceborne radar image. Images like this can help urban planners assess land use patterns. Heavily developed areas appear in bright patchwork patterns of orange, yellow and blue. Dense vegetation appears bright green, while cleared areas appear in dark blue or black. Located in southeastern Australia, the site of Canberra was selected as the capital in 1901 as a geographic compromise between Sydney and Melbourne. Design and construction of the city began in 1908 under the supervision of American architect Walter Burley-Griffin. Lake Burley-Griffin is located above and to the left of the center of the image. The bright pink area is the Parliament House. The city streets, lined with government buildings, radiate like spokes from the Parliament House. The bright purple cross in the lower left corner of the image is a reflection from one of the large dish-shaped radio antennas at the Tidbinbilla, Canberra Deep Space Network Communication Complex, operated jointly by NASA and the Australian Space Office. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 10, 1994, onboard the space shuttle Endeavour. The image is 28 kilometers by 25 kilometers (17 miles by 15 miles) and is centered at 35.35 degrees south latitude, 149.17 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Office of Mission to Planet Earth.
Alternative beam configuration for a Canadian Ka-band satellite system
NASA Technical Reports Server (NTRS)
Hindson, Daniel J.; Caron, Mario
1995-01-01
Satellite systems operating in the Ka-band have been proposed to offer wide band personal communications services to fixed earth terminals employing small aperture antennas as well as to mobile terminals. This requirement to service a small aperture antenna leads to a satellite system utilizing small spot beams. The traditional approach is to cover the service area with uniform spot beams which have been sized to provide a given grade of service at the worst location over the service area and to place them in a honeycomb pattern. In the lower frequency bands this approach leads to a fairly uniform grade of service over the service area due to the minimal effects of rain on the signals. At Ka-band, however, the effects of rain are quite significant. Using this approach over a large service area (e.g. Canada) where the geographic distribution of rain impairment varies significantly yields an inefficient use of satellite resources to provide a uniform grade of service. An alternative approach is to cover the service area using more than one spot beam size in effect linking the spot beam size to the severity of the rain effects in a region. This paper demonstrates how for a Canadian Ka-band satellite system, that the use of two spot beam sizes can provide a more uniform grade of service across the country as well as reduce the satellite payload complexity over a design utilizing a single spot beam size.
Ultraviolet Photodissociation Spectroscopy of the Cold K⁺·Calix[4]arene Complex in the Gas Phase.
Inokuchi, Yoshiya; Soga, Kazuki; Hirai, Kenta; Kida, Motoki; Morishima, Fumiya; Ebata, Takayuki
2015-08-06
The cooling of ionic species in the gas phase greatly simplifies the UV spectrum, which is of special importance when studying the electronic and geometric structures of large systems, such as biorelated molecules and host-guest complexes. Many efforts have been devoted to achieving ion cooling with a cold, quadrupole Paul ion trap (QIT), but one problem was the insufficient cooling of ions (up to ∼30 K) in the QIT. In this study, we construct a mass spectrometer for the ultraviolet photodissociation (UVPD) spectroscopy of gas-phase cold ions. The instrument consists of an electrospray ion source, a QIT cooled with a He cryostat, and a time-of-flight mass spectrometer. With great care given to the cooling condition, we can achieve ∼10 K for the vibrational temperature of ions in the QIT, which is estimated from UVPD spectra of the benzo-18-crown-6 (B18C6) complex with a potassium ion, K(+)·B18C6. Using this setup, we measure a UVPD spectrum of cold calix[4]arene (C4A) complex with potassium ion, K(+)·C4A. The spectrum shows a very weak band and a strong one at 36018 and 36156 cm(-1), respectively, accompanied by many sharp vibronic bands in the 36000-36600 cm(-1) region. In the geometry optimization of the K(+)·C4A complex, we obtain three stable isomers: one endo and two exo forms. On the basis of the total energy and UV spectral patterns predicted by density functional theory calculations, we attribute the structure of the K(+)·C4A complex to the endo isomer (C2 symmetry), in which the K(+) ion is located inside the cup of C4A. The vibronic bands of K(+)·C4A at 36 018 and 36 156 cm(-1) are assigned to the S1(A)-S0(A) and S2(B)-S0(A) transitions of the endo isomer, respectively.
Intra-annual patterns in adult band-tailed pigeon survival estimates
Casazza, Michael L.; Coates, Peter S.; Overton, Cory T.; Howe, Kristy H.
2015-01-01
Implications: We present the first inter-seasonal analysis of survival probability of the Pacific coast race of band-tailed pigeons and illustrate important temporal patterns that may influence future species management including harvest strategies and disease monitoring.
Novel method to control antenna currents based on theory of characteristic modes
NASA Astrophysics Data System (ADS)
Elghannai, Ezdeen Ahmed
Characteristic Mode Theory is one of the very few numerical methods that provide a great deal of physical insight because it allows us to determine the natural modes of the radiating structure. The key feature of these modes is that the total induced antenna current, input impedance/admittance and radiation pattern can be expressed as a linear weighted combination of individual modes. Using this decomposition method, it is possible to study the behavior of the individual modes, understand them and therefore control the antennas behavior; in other words, control the currents induced on the antenna structure. This dissertation advances the topic of antenna design by carefully controlling the antenna currents over the desired frequency band to achieve the desired performance specifications for a set of constraints. Here, a systematic method based on the Theory of Characteristic Modes (CM) and lumped reactive loading to achieve the goal of current control is developed. The lumped reactive loads are determined based on the desired behavior of the antenna currents. This technique can also be used to impedance match the antenna to the source/generator connected to it. The technique is much more general than the traditional impedance matching. Generally, the reactive loads that properly control the currents exhibit a combination of Foster and non-Foster behavior. The former can be implemented with lumped passive reactive components, while the latter can be implemented with lumped non-Foster circuits (NFC). The concept of current control is applied to design antennas with a wide band (impedance/pattern) behavior using reactive loads. We successfully applied this novel technique to design multi band and wide band antennas for wireless applications. The technique was developed to match the antenna to resistive and/or complex source impedance and control the radiation pattern at these frequency bands, considering size and volume constraints. A wide band patch antenna was achieved using the developed technique. In addition, the technique was applied to multi band wire less Universal Serial Bus (USB) dongle antenna that serves for WLAN IEEE 802.11 a/b/g/n band applications and Radio Frequency Identification (RFID) tag antenna for 915MHz band applications with superior performance compared to previous published results. This dissertation also discusses the total Q of an antenna from the CM standpoint. A new expression as well as additional physical information about each mode's individual contribution to the total antenna Q are provided. Finally, the theory is used to an analyze the antenna in both radiation and/or scattering modes. In the antenna scattering mode, the field scattered by an antenna contains a component that is the short circuit scattered field, and a second component that is proportional to the radiation field. In this dissertation, an analytical study of this phenomena from the CM standpoint is performed aiming to shed some light on antenna scattering phenomenon where additional physical insight is obtained and thus used to reach desire results.
High-Resolution Study of the Perturbation in the CO Triplet Band
NASA Astrophysics Data System (ADS)
Momona, M.; Kanamori, H.; Sakurai, K.
1993-05-01
Seven hundred absorption lines have been observed in the discharge plasma of He and CO in the 12600-12 800 cm-1 region with Doppler-limited resolution by a near-infrared diode laser spectrometer. Out of complex spectral patterns, more than 400 lines were assigned to the CO triplet band, d3Δ(v‧ = 2) - a3Π (v″ = 1). The upper state of this transition is known to be severely perturbed. The measurement of all the spin subbands of the 3Δ - 3Π transition allowed us to reanalyze the perturbation of the d3Δ (v = 2) state with the highly vibrationally excited state, v = 9, in the a3Π state. Diode laser spectroscopy with high sensitivity and Doppler-limited resolution revealed the overtone band transition from v = 1 to v = 9 within the a3Π state and the Λ-type doubling in the d3Δ state. Those interesting phenomena can be understood as a result of the perturbation and were successfully reproduced by the eigenvectors determined in this analysis.
M Weerasekera, Manjula; H Sissons, Chris; Wong, Lisa; A Anderson, Sally; R Holmes, Ann; D Cannon, Richard
2017-10-01
The aim was to investigate the relationship between groups of bacteria identified by cluster analysis of the DGGE fingerprints and the amounts and diversity of yeast present. Bacterial and yeast populations in saliva samples from 24 adults were analysed using denaturing gradient gel electrophoresis (DGGE) of the bacteria present and by yeast culture. Eubacterial DGGE banding patterns showed considerable variation between individuals. Seventy one different amplicon bands were detected, the band number per saliva sample ranged from 21 to 39 (mean±SD=29.3±4.9). Cluster and principal component analysis of the bacterial DGGE patterns yielded three major clusters containing 20 of the samples. Seventeen of the 24 (71%) saliva samples were yeast positive with concentrations up to 10 3 cfu/mL. Candida albicans was the predominant species in saliva samples although six other yeast species, including Candida dubliniensis, Candida tropicalis, Candida krusei, Candida guilliermondii, Candida rugosa and Saccharomyces cerevisiae, were identified. The presence, concentration, and species of yeast in samples showed no clear relationship to the bacterial clusters. Despite indications of in vitro bacteria-yeast interactions, there was a lack of association between the presence, identity and diversity of yeasts and the bacterial DGGE fingerprint clusters in saliva. This suggests significant ecological individual-specificity of these associations in highly complex in vivo oral biofilm systems under normal oral conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direction of information flow in large-scale resting-state networks is frequency-dependent.
Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J
2016-04-05
Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.
1978-01-01
Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome- tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate- sized filaments is discussed. PMID:569157
Drochmans, P; Freudenstein, C; Wanson, J C; Laurent, L; Keenan, T W; Stadler, J; Leloup, R; Franke, W W
1978-11-01
Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome-tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate-sized filaments is discussed.
Fabrication and single-electron-transfer operation of a triple-dot single-electron transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, Mingyu, E-mail: mingyujo@eis.hokudai.ac.jp; Uchida, Takafumi; Tsurumaki-Fukuchi, Atsushi
2015-12-07
A triple-dot single-electron transistor was fabricated on silicon-on-insulator wafer using pattern-dependent oxidation. A specially designed one-dimensional silicon wire having small constrictions at both ends was converted to a triple-dot single-electron transistor by means of pattern-dependent oxidation. The fabrication of the center dot involved quantum size effects and stress-induced band gap reduction, whereas that of the two side dots involved thickness modulation because of the complex edge structure of two-dimensional silicon. Single-electron turnstile operation was confirmed at 8 K when a 100-mV, 1-MHz square wave was applied. Monte Carlo simulations indicated that such a device with inhomogeneous tunnel and gate capacitances canmore » exhibit single-electron transfer.« less
Variation of directional reflectance factors with structural changes of a developing alfalfa canopy
NASA Technical Reports Server (NTRS)
Kirchner, J. A.; Kimes, D. S.; Mcmurtrey, J. E., III
1982-01-01
Directional reflectance factors of an alfalfa canopy were determined and related to canopy structure, agronomic variables, and irradiance conditions at four periods during a cutting cycle. Nadir and off-nadir reflectance factors decreased with increasing biomass in Thematic Mapper band 3(0.63-0.69 micrometer) and increased with increasing biomass in band 4(0.76-0.90 micrometer). The sensor view angle had less impact on perceived reflectance as the alfalfa progressed from an erectophile canopy of stems after harvest to a near planophile canopy of leaves at maturity. Studies of directional reflectance are needed for testing and upgrading vegetation canopy models and to aid in the complex interpretation problems presented by aircraft scanners and pointable satellites where illumination and viewing geometries may vary widely. Distinct changes in the patterns of radiance observed by a sensor as structural and biomass changes occur are keys to monitoring the growth and condition of crops.
Deformation relief evolution during sliding friction of Hadfield steel single crystal
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Filippov, A. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.
2017-12-01
The paper deals with the evolution of the deformation relief formed on lateral faces of single crystals of Hadfield steel during dry sliding friction. The use of single crystals with the predetermined orientation enables to analyze the development of shear systems subject to the duration of tribological tests. As the test duration increases, slip bands are curved and thicken in the near-surface region. After 24 hours of friction, single crystals of Hadfield steel demonstrate the maximum hardening. Afterwards, the wear process begins, which is followed by the repeated strain hardening of the specimens. After 48 hours of friction, the height of the deformation relief nearly halves on all of the three faces, as compared to that observed after 24 hours of friction. Differences in the propagation height of slip bands on the faces occur due to the uneven running-in as well as the complex involvement pattern of shear systems into the deformation process.
Zhao, Gen-gui; Dong, Yan-min; Yang, Su-ping; Jiao, Nian-zhi; Qu, Yin-bo
2010-10-01
The aim of this study is to reveal the interaction relationships between lauryl dimethylamine N-oxide (LDAO) and peripheral light-harvesting complex (LH2) as well as the influence of LDAO on structure and function of LH2. In the present work, the effects of LDAO on the conformation and release processes of bacteriochlorophyll (BChl) of LH2 when incubated under different temperature and pH in the presence and absence of LDAO were investigated by spectroscopy. The results indicated that (1) the presence of LDAO resulted in alterations in the conformation, alpha-helix content, and spectra of Tyr and B850 band of LH2 at room temperature and pH 8.0. Moreover, energy transfer efficiency of LH2 was enhanced markedly in the presence of LDAO. (2) At 60 degrees C, both the B800 and B850 band of LH2 were released and transited into free BChl at pH 8.0. However, the release rates of bacteriochlorophylls of B800 and B850 band from LH2 were slowed down and the release processes were changed when incubated in the presence of LDAO. Hence, the stability of LH2 was improved in the presence of LDAO. (3) The accelerated release processes of bacteriochlorophylls of B800 and B850 band of LH2 were induced to transform into bacteriopheophytin (BPhe) and free BChl by LDAO in strong acid and strong alkalic solution at room temperature. However, the kinetic patterns of the B800 and B850 band were remarkably different. The release and self-assemble processes of B850 in LH2 were observed in strong acid solution without LDAO. Therefore, the different release behaviors of B800 and B850 of LH2 are induced by LDAO under different extreme environmental conditions.
Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon.
Dinning, P G; Costa, M; Brookes, S J; Spencer, N J
2012-07-01
The rabbit colon consists of four distinct regions. The motility of each region is controlled by myogenic and neurogenic mechanisms. Associating these mechanisms with specific motor patterns throughout all regions of the colon has not previously been achieved. Three sections of the colon (the proximal, mid, and distal colon) were removed from euthanized rabbits. The proximal colon consists of a triply teniated region and a single tenia region. Spatio-temporal maps were constructed from video recordings of colonic wall diameter, with associated intraluminal pressure recorded from the aboral end. Hexamethonium (100 μM) and tetrodotoxin (TTX; 0.6 μM) were used to inhibit neural activity. Four distinct patterns of motility were detected: 1 myogenic and 3 neurogenic. The myogenic activity consisted of circular muscle (CM) contractions (ripples) that occurred throughout the colon and propagated in both antegrade (anal) and retrograde (oral) directions. The neural activity of the proximal colon consisted of slowly (0.1 mm/s) propagating colonic migrating motor complexes, which were abolished by hexamethonium. These complexes were observed in the region of the proximal colon with a single band of tenia. In the distal colon, tetrodotoxin-sensitive, thus neurally mediated, but hexamethonium-resistant, peristaltic (anal) and antiperistaltic (oral) contractions were identified. The distinct patterns of neurogenic and myogenic motor activity recorded from isolated rabbit colon are specific to each anatomically distinct region. The regional specificity motor pattern is likely to facilitate orderly transit of colonic content from semi-liquid to solid composition of feces.
Sonographic Bands of Hypoechogenicity in the Spleen in Children: Zebra Spleen.
Kuint, Ruth Cytter; Daneman, Alan; Navarro, Oscar M; Oates, Adam
2016-09-01
Zebra spleen is the normal pattern of splenic enhancement during the arterial phase of CT and MRI and is attributed to different flow rates. The purpose of this study was to describe the appearance and occurrence of bands of hypoechogenicity in the spleen on unenhanced sonograms of children with no splenic abnormalities. We reviewed 100 abdominal ultrasound studies to evaluate the ultrasound characteristics of the spleen. Demographic data were collected for all patients. Homogeneous echogenicity of the spleen was found in 92 children. Heterogeneous echogenicity was present in eight. Three of the eight had discrete macronodules due to known splenic disease. The other five had bands of hypoechogenicity. These five had no known splenic disease, but one had mild splenomegaly of unknown cause. The pattern of hypoechoic bands occurred in 5% of our series. This pattern cannot be explained simply by different flow rates and probably reflects different structural components of the parenchyma. At ultrasound this pattern should be considered a normal finding that may simulate a splenic mass.
Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes
Winship, Lawrence J.; Rounds, Caleb; Hepler, Peter K.
2016-01-01
Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily (Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth. PMID:28042810
Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes.
Winship, Lawrence J; Rounds, Caleb; Hepler, Peter K
2016-12-30
Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily ( Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth.
De-Dopplerization of Acoustic Measurements
2017-08-10
band energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An...energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An equation...fractional octave representation and smearing that occurs within the spectrum11, digital filtering techniques were not considered by these earlier
NASA Astrophysics Data System (ADS)
Wolk, Arron B.; Garand, Etienne; Jones, Ian M.; Kamrath, Michael Z.; Hamilton, Rew; Johnson, Mark A.
2012-06-01
We report the infrared predissociation spectra of a family of ionic diphenylacetylene molecular switch complexes. The electrosprayed complexes were trapped and cooled in a cryogenic (10K) quadrupole ion trap and tagged with molecular deuterium. The infrared spectra of the vibrationally cold species reveal sharp transitions over a wide energy range (800 - 3800 cm-1), facilitating comparison to harmonic spectra. The evolution of the band pattern upon derivatization of the complexes exposes the signatures of the amide, urea, and carbonyl functionalities, enabling unambiguous identification of the non-covalent interactions that control the secondary structure of the molecule. Complexation with the tetramethylammonium cation reveals a conformation analogous to that of the neutral molecule, while halide ion attachment induces a conformational change similar to that observed earlier in solution. In several cases, both the donor and acceptor groups involved in the multidentate H-bonds are observed, providing a microscopic mechanical picture of the interactions at play. I. Jones, and A. Hamilton, Angew. Chem. Intl. Edit. 50, 4597 (2011).
Wimmer, Klaus; Ramon, Marc; Pasternak, Tatiana; Compte, Albert
2016-01-13
Neuronal activity in the lateral prefrontal cortex (LPFC) reflects the structure and cognitive demands of memory-guided sensory discrimination tasks. However, we still do not know how neuronal activity articulates in network states involved in perceiving, remembering, and comparing sensory information during such tasks. Oscillations in local field potentials (LFPs) provide fingerprints of such network dynamics. Here, we examined LFPs recorded from LPFC of macaques while they compared the directions or the speeds of two moving random-dot patterns, S1 and S2, separated by a delay. LFP activity in the theta, beta, and gamma bands tracked consecutive components of the task. In response to motion stimuli, LFP theta and gamma power increased, and beta power decreased, but showed only weak motion selectivity. In the delay, LFP beta power modulation anticipated the onset of S2 and encoded the task-relevant S1 feature, suggesting network dynamics associated with memory maintenance. After S2 onset the difference between the current stimulus S2 and the remembered S1 was strongly reflected in broadband LFP activity, with an early sensory-related component proportional to stimulus difference and a later choice-related component reflecting the behavioral decision buildup. Our results demonstrate that individual LFP bands reflect both sensory and cognitive processes engaged independently during different stages of the task. This activation pattern suggests that during elementary cognitive tasks, the prefrontal network transitions dynamically between states and that these transitions are characterized by the conjunction of LFP rhythms rather than by single LFP bands. Neurons in the brain communicate through electrical impulses and coordinate this activity in ensembles that pulsate rhythmically, very much like musical instruments in an orchestra. These rhythms change with "brain state," from sleep to waking, but also signal with different oscillation frequencies rapid changes between sensory and cognitive processing. Here, we studied rhythmic electrical activity in the monkey prefrontal cortex, an area implicated in working memory, decision making, and executive control. Monkeys had to identify and remember a visual motion pattern and compare it to a second pattern. We found orderly transitions between rhythmic activity where the same frequency channels were active in all ongoing prefrontal computations. This supports prefrontal circuit dynamics that transitions rapidly between complex rhythmic patterns during structured cognitive tasks. Copyright © 2016 the authors 0270-6474/16/360489-17$15.00/0.
NASA Astrophysics Data System (ADS)
Manning, Andrew H.; Bartley, John M.
1994-06-01
Much of the recent debate over low-angle normal faults exposed in metamorphic core complexes has centered on the rolling hinge model. The model predicts tilting of seismogenic high-angle normal faults to lower dips by footwall deformation in response to isostatic forces caused by footwall exhumation. This shallow brittle deformation should visibly overprint the mylonitic fabric in the footwall of a metamorphic core complex. The predicted style and magnitude of rolling hinge strain depends upon the macroscopic mechanism by which the footwall deforms. Two end-members have been proposed: subvertical simple shear and flexural failure. Each mechanism should generate a distinctive pattern of structures that strike perpendicular to the regional extension direction. Subvertical simple shear (SVSS) should generate subvertical faults and kink bands with a shear sense antithetic to the detachment. For an SVSS hinge, the hinge-related strain magnitude should depend only on initial fault dip; rolling hinge structures should shorten the mylonitic foliation by >13% for an initial fault dip of >30°. In flexural failure the footwall behaves as a flexed elastic beam that partially fails in response to bending stresses. Resulting structures include conjugate faults and kink bands that both extend and contract the mylonitic foliation. Extensional sets could predominate as a result of superposition of far-field and flexural stresses. Strain magnitudes do not depend on fault dip but depend on the thickness and radius of curvature of the flexed footwall beam and vary with location within that beam. Postmylonitic structures were examined in the footwall of the Raft River metamorphic core complex in northwestern Utah to test these predictions. Observed structures strike perpendicular to the regional extension direction and include joints, normal faults, tension-gash arrays, and both extensional and contractional kink bands. Aside from the subvertical joints, the extensional structures dip moderately to steeply and are mainly either synthetic to the detachment or form conjugate sets. Range-wide, the extensional structures accomplish about 4% elongation of the mylonitic foliation. Contractional structures dip steeply, mainly record shear antithetic to the detachment, and accomplish <1% contraction of the foliation. These observations are consistent with the presence of a rolling hinge in the Raft River Mountains, but a rolling hinge that reoriented a high-angle normal fault by SVSS is excluded. The pattern and magnitudes of strain favor hinge-related deformation mainly by flexural failure with a subordinate component of SVSS.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-05-25
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-01-01
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085
Interactions of Enolizable Barbiturate Dyes.
Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan
2016-04-11
The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Narrow band imaging combined with water immersion technique in the diagnosis of celiac disease.
Valitutti, Francesco; Oliva, Salvatore; Iorfida, Donatella; Aloi, Marina; Gatti, Silvia; Trovato, Chiara Maria; Montuori, Monica; Tiberti, Antonio; Cucchiara, Salvatore; Di Nardo, Giovanni
2014-12-01
The "multiple-biopsy" approach both in duodenum and bulb is the best strategy to confirm the diagnosis of celiac disease; however, this increases the invasiveness of the procedure itself and is time-consuming. To evaluate the diagnostic yield of a single biopsy guided by narrow-band imaging combined with water immersion technique in paediatric patients. Prospective assessment of the diagnostic accuracy of narrow-band imaging/water immersion technique-driven biopsy approach versus standard protocol in suspected celiac disease. The experimental approach correctly diagnosed 35/40 children with celiac disease, with an overall diagnostic sensitivity of 87.5% (95% CI: 77.3-97.7). An altered pattern of narrow-band imaging/water immersion technique endoscopic visualization was significantly associated with villous atrophy at guided biopsy (Spearman Rho 0.637, p<0.001). Concordance of narrow-band imaging/water immersion technique endoscopic assessments was high between two operators (K: 0.884). The experimental protocol was highly timesaving compared to the standard protocol. An altered narrow-band imaging/water immersion technique pattern coupled with high anti-transglutaminase antibodies could allow a single guided biopsy to diagnose celiac disease. When no altered mucosal pattern is visible even by narrow-band imaging/water immersion technique, multiple bulbar and duodenal biopsies should be obtained. Copyright © 2014. Published by Elsevier Ltd.
Antenna pattern measurements to characterize the out-of-band behavior of reflector antennas
NASA Astrophysics Data System (ADS)
Cown, B. J.; Weaver, E. E.; Ryan, C. E., Jr.
1983-12-01
Research was conducted to collect and describe out-of-band antenna pattern data. The research efforts were devoted: (1) to deriving valid measured data for a reflector antenna for out-of-band frequencies spanning intervals around the second and third harmonics of the in-band design frequency, and (2) to statistically characterize the measured data. The second harmonic data were collected for both polarization senses for the out-of-band frequencies of 5.5 GHz to 7.5 GHz in steps of 0.1 GHz. The third harmonic data were collected for both polarization senses for the out-of-band frequencies of 8.0 GHz to 10.0 GHz in steps of 0.1 GHz. Additionally, in-band data were collected at 2.9, 3.0, and 3.1 GHz for both polarization senses. The measured data were collected on the Georgia Tech compact antenna range test facility with the aid of an automated data logger system designed expressly for efficient collection of broadband antenna data. The pattern data, recorded directly on magnetic disks, were analyzed: (1) to compute average gain and standard deviation over selected angular sectors, (2) to construct cumulative probability curves, and (3) to specify the peak gain and the angular coordinates of the peak at each frequency.
Howard, Mary F; Poeppel, David
2010-11-01
Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3-7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response.
A microscopic evaluation of collagen-bilirubin interactions: in vitro surface phenomenon.
Usharani, N; Jayakumar, G C; Rao, J R; Chandrasekaran, B; Nair, B U
2014-02-01
This study is carried out to understand the morphology variations of collagen I matrices influenced by bilirubin. The characteristics of bilirubin interaction with collagen ascertained using various techniques like XRD, CLSM, fluorescence, SEM and AFM. These techniques are used to understand the distribution, expression and colocalization patterns of collagen-bilirubin complexes. The present investigation mimic the in vivo mechanisms created during the disorder condition like jaundice. Fluorescence technique elucidates the crucial role played by bilirubin deposition and interaction during collagen organization. Influence of bilirubin during collagen fibrillogenesis and banding patterns are clearly visualize using SEM. As a result, collagen-bilirubin complex provides different reconstructed patterns because of the influence of bilirubin concentration. Selectivity, specificity and spatial organization of collagen-bilirubin are determined through AFM imaging. Consequently, it is observed that the morphology and quantity of the bilirubin binding to collagen varied by the concentrations and the adsorption rate in protein solutions. Microscopic studies of collagen-bilirubin interaction confirms that bilirubin influence the fibrillogenesis and alter the rate of collagen organization depending on the bilirubin concentration. This knowledge helps to develop a novel drug to inhibit the interface point of interaction between collagen and bilirubin. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Thalhammer, S; Koehler, U; Stark, R W; Heckl, W M
2001-06-01
Surface topography of human metaphase chromosomes following GTG banding was examined using high resolution atomic force microscopy (AFM). Although using a completely different imaging mechanism, which is based on the mechanical interaction of a probe tip with the chromosome, the observed banding pattern is comparable to results from light microscopy and a karyotype of the AFM imaged metaphase spread can be generated. The AFM imaging process was performed on a normal 2n = 46, XX karyotype and on a 2n = 46, XY, t(2;15)(q23;q15) karyotype as an example of a translocation of chromosomal bands.
Cell wall biogenesis in Oocystis: experimental alteration of microfibril assembly and orientation.
Montezinos, D; Brown, R M
1978-01-01
Cell wall biogenesis in the unicellular green alga Oocystis apiculata has been studied. Under normal growth conditions, a cell wall with ordered microfibrils is synthesized. In each layer there are rows of parallel microfibrils. Layers are nearly perpendicular to each other. Terminal linear synthesizing complexes are located in the plasma membrane, and they are capable of bidirectional synthesis of cellulose microfibrils. Granule bands associated with the inner leaflet of the plasma membrane appear to control the orientation of newly synthesized microfibrils. Subcortical microtubules also are present during wall synthesis. Patterns of cell wall synthesis were studied after treatment with EDTA and EGTA as well as divalent cations (MgSO4, CaSO4, Cacl2). 0.1 M EDTA treatment for 15 min results in the disassociation of the terminal complexes from the ends of microfibrils. EDTA-treated cells followed by 15 min treatment with MgSO4 results in reaggregation of the linear complexes into a paired state, remote from the original ends to which they were associated. After 90 min treatment with MgSO4, normal synthesis resumes. EGTA and calcium salts do not affect the linear complexes or microfibril orientation. Treatments with colchicine and vinblastine sulphate do not depolymerize the microtubles, but the wall microfibril orientation is altered. With colchicine or vinblastine, the change in orientation from layer to layer is inhibited. The process is reversible upon removal of the drugs. Lumicolchicine has no effect upon microfibril orientation, but granule bands are disorganized. Treatment with coumarin, a known inhibitor of cellulose synthesis, causes the loss of visualization of subunits of the terminal complexes. The possibility of the existence of a membrane-associated colchicine-sensitive orientation protein for cellulose microfibrils is discussed. Transmembrane modulation of microfibril synthesis and orientation is presented.
Solving complex band structure problems with the FEAST eigenvalue algorithm
NASA Astrophysics Data System (ADS)
Laux, S. E.
2012-08-01
With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.
Within-band spray distribution of nozzles used for herbaceous plant control
James H. Miller
1994-01-01
Abstract. Described are the spray patterns of nozzles setup for banded herbaceous plant control treatments. Spraying Systems Company nozzles. were tested, but similar nozzles are available from other manufacturers. Desirable traits were considered to be as follows: an even distribution pattern, low volume, low height, large droplets, and a single...
The structure of the NO(X (2)Pi)-N(2) complex: A joint experimental-theoretical study.
Wen, B; Meyer, H; Kłos, J
2010-04-21
We report the first measurement of the spectrum of the NO-N(2) complex in the region of the first vibrational NO overtone transition. The origin band of the complex is blueshifted by 0.30 cm(-1) from the corresponding NO monomer frequency. The observed spectrum consists of three bands assigned to the origin band, the excitation of one quantum of z-axis rotation and one associated hot band. The spacing of the bands and the rotational structure indicate a T-shaped vibrationally averaged structure with the NO molecule forming the top of the T. These findings are confirmed by high level ab initio calculations of the potential energy surfaces in planar symmetry. The deepest minimum is found for a T-shaped geometry on the A(")-surface. As a result the sum potential also has the global minimum for this structure. The different potential surfaces show several additional local minima at slightly higher energies indicating that the complex most likely will perform large amplitude motion even in its ground vibrational state. Nevertheless, as suggested by the measured spectra, the complex must, on average, spend a substantial amount of time near the T-shaped configuration.
Tailoring plasmonic nanoparticles and fractal patterns
NASA Astrophysics Data System (ADS)
Rosa, Lorenzo; Juodkazis, Saulius
2011-12-01
We studied new three-dimensional tailoring of nano-particles by ion-beam and electron-beam lithographies, aiming for features and nano-gaps down to 10 nm size. Electron-beam patterning is demonstrated for 2D fabrication in combination with plasmonic metal deposition and lift-off, with full control of spectral features of plasmonic nano-particles and patterns on dielectric substrates. We present wide-angle bow-tie rounded nano-antennas whose plasmonic resonances achieve strong field enhancement at engineered wavelength range, and show how the addition of fractal patterns defined by standard electron beam lithography achieve light field enhancement from visible to far-IR spectral range and scalable up towards THz band. Field enhancement is evaluated by FDTD modeling on full-3D simulation domains using complex material models, showing the modeling method capabilities and the effect of staircase approximations on field enhancement and resonance conditions, especially at metal corners, where a minimum rounding radius of 2 nm is resolved and a five-fold reduction of spurious ringing at sharp corners is obtained by the use of conformal meshing.
Franke, Ralf-Peter; Scharnweber, Tim; Fuhrmann, Rosemarie; Wenzel, Folker; Krüger, Anne; Mrowietz, Christof; Jung, Friedrich
2014-01-01
The membrane of red blood cells consists of a phospholipid bilayer with embedded membrane proteins and is associated on the cytoplasmatic side with a network of proteins, the membrane skeleton. Band3 has an important role as centre of the functional complexes e.g. gas exchange complex and as element of attachment for the membrane skeleton maintaining membrane stability and flexibility. Up to now it is unclear if band3 is involved in the morphology change of red blood cells after contact with radiographic contrast media. The study revealed for the first time that Iopromide induced markedly more severe alterations of the membrane skeleton compared to Iodixanol whose effects were similar to erythrocytes suspended in autologous plasma. A remarkable clustering of band3 was found associated with an accumulation of band3 in spicules and also a sequestration of band3 to the extracellular space. This was evidently accompanied by a gross reduction of functional band3 complexes combined with a dissociation of spectrin from band3 leading to a loss of homogeneity of the spectrin network. It could be demonstrated for the first time that RCM not only induced echinocyte formation but also exocytosis of particles at least coated with band3. PMID:24586837
Multiple spiral patterns in the transitional disk of HD 100546
NASA Astrophysics Data System (ADS)
Boccaletti, A.; Pantin, E.; Lagrange, A.-M.; Augereau, J.-C.; Meheut, H.; Quanz, S. P.
2013-12-01
Context. Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planet formation or gravitational perturbations caused by already existing planets. In this context, the star HD 100546 presents some specific characteristics with a complex gaseous and dusty disk that includes spirals, as well as a possible planet in formation. Aims: The objective of this study is to analyze high-contrast and high angular resolution images of this emblematic system to shed light on critical steps in planet formation. Methods: We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using an advanced high contrast imaging technique that takes advantage of the angular differential imaging. Results: These new images reveal the spiral pattern previously identified with Hubble Space Telescope (HST) with an unprecedented resolution, while the large-scale structure of the disk is mostly cancelled by the data processing. The single pattern to the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk, we attempted to constrain the characteristics of this perturber, assuming that each spiral is independent, and drew qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows putting a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering, yields a larger anisotropic scattering than is derived in the visible. Also, we find that the spirals are likely to be spatially resolved with a thickness of about 5-10 AU. Finally, we did not detect the candidate planet in formation recently discovered in the Lp band, with a mass upper limit of 16-18 MJ. Based on data retrieved from the Gemini archive.
Koehler, Samantha; Cabral, Juliano S; Whitten, W Mark; Williams, Norris H; Singer, Rodrigo B; Neubig, Kurt M; Guerra, Marcelo; Souza, Anete P; Amaral, Maria do Carmo E
2008-10-01
Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Six of 21 currently accepted species were recovered. The results also support recognition of the 'C. pumila' clade as a single species. Molecular phylogenetic relationships within the 'C. acicularis-C. madida' and 'C. ferdinandiana-C. neowiedii' species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic data proved to be a valuable source of information to understand evolutionary patterns within Maxillariinae orchids.
Koehler, Samantha; Cabral, Juliano S.; Whitten, W. Mark; Williams, Norris H.; Singer, Rodrigo B.; Neubig, Kurt M.; Guerra, Marcelo; Souza, Anete P.; Amaral, Maria do Carmo E.
2008-01-01
Background and Aims Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Methods Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Key Results Six of 21 currently accepted species were recovered. The results also support recognition of the ‘C. pumila’ clade as a single species. Molecular phylogenetic relationships within the ‘C. acicularis–C. madida’ and ‘C. ferdinandiana–C. neowiedii’ species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. Conclusions The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic data proved to be a valuable source of information to understand evolutionary patterns within Maxillariinae orchids. PMID:18687799
Efficient modeling of photonic crystals with local Hermite polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, C. R.; Li, Zehao; Albrecht, J. D.
2014-04-21
Developing compact algorithms for accurate electrodynamic calculations with minimal computational cost is an active area of research given the increasing complexity in the design of electromagnetic composite structures such as photonic crystals, metamaterials, optical interconnects, and on-chip routing. We show that electric and magnetic (EM) fields can be calculated using scalar Hermite interpolation polynomials as the numerical basis functions without having to invoke edge-based vector finite elements to suppress spurious solutions or to satisfy boundary conditions. This approach offers several fundamental advantages as evidenced through band structure solutions for periodic systems and through waveguide analysis. Compared with reciprocal space (planemore » wave expansion) methods for periodic systems, advantages are shown in computational costs, the ability to capture spatial complexity in the dielectric distributions, the demonstration of numerical convergence with scaling, and variational eigenfunctions free of numerical artifacts that arise from mixed-order real space basis sets or the inherent aberrations from transforming reciprocal space solutions of finite expansions. The photonic band structure of a simple crystal is used as a benchmark comparison and the ability to capture the effects of spatially complex dielectric distributions is treated using a complex pattern with highly irregular features that would stress spatial transform limits. This general method is applicable to a broad class of physical systems, e.g., to semiconducting lasers which require simultaneous modeling of transitions in quantum wells or dots together with EM cavity calculations, to modeling plasmonic structures in the presence of EM field emissions, and to on-chip propagation within monolithic integrated circuits.« less
The plume of the Yukon River in relation to the oceanography of the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, Kenneson G.; Mcroy, C. Peter; Ahlnas, Kristina; Springer, Alan
1989-01-01
The ecosystem of the northern Bering-Sea shelf was studied using data from the NOAA Very High Resolution Radiometer and AVHRR and the Landsat MSS and Thematic Mapper (TM) in conjunction with shipboard measurements. Emphasis was placed on the influence of the Yukon River on this inner shelf environment and on the evaluation of the utility of the new Landsat TM data for oceanography. It was found that the patterns of water mass distribution obtained from satellite images agreed reasonably well with the areal patterns of temperature, salinity, and phytoplankton distributions. The AVHRR, MSS, and TM data show that the Yukon-River discharge is warmer and more turbid than the surrounding coastal water that originates to the south; thus, the Yukon water contributes to the higher temperatures and lower transmissivity of the coastal water. The high resolution of the TM thermal IR band made it possible to observe complex patterns and structures in the surface water that could not be resolved on previous data sets.
Instabilities and patterns in an active nematic film
NASA Astrophysics Data System (ADS)
Srivastava, Pragya; Marchetti, Cristina
2015-03-01
Experiments on microtubule bundles confined to an oil-water interface have motivated extensive theoretical studies of two-dimensional active nematics. Theoretical models taking into account the interplay between activity, flow and order have remarkably reproduced several experimentally observed features of the defect-dynamics in these ``living'' nematics. Here, we derive minimal description of a two-dimensional active nematic film confined between walls. At high friction, we eliminate the flow to obtain closed equations for the nematic order parameter, with renormalized Frank elastic constants. Active processes can render the ``Frank'' constants negative, resulting in the instability of the uniformly ordered nematic state. The minimal model yields emergent patterns of growing complexity with increasing activity, including bands and turbulent dynamics with a steady density of topological defects, as obtained with the full hydrodynamic equations. We report on the scaling of the length scales of these patterns and of the steady state number of defects with activity and system size. National Science Foundation grant DMR-1305184 and Syracuse Soft Matter Program.
Infrared spectra of hexamethylbenzene—tetracyanoethylene complexes at high pressures
NASA Astrophysics Data System (ADS)
Yamada, Haruka; Saheki, Masao
Infrared spectra of hexamethylbenzene(HMB)—tetracyanoethylene(TCNE), 1:1 and 2:1, complexes were measured under high pressures, 11˜4,000 bar. It was found that the CC stretching (A g) band of TCNE became much stronger at high pressures than at 1 bar and that the intensity increase of this band was especially large for both of the complexes. Based on these facts the strong appearance of the CC band at 1 bar, which is inconsistent with the symmetry consideration derived from X-ray analysis, can be discussed.
Novel band structures in silicene on monolayer zinc sulfide substrate.
Li, Sheng-shi; Zhang, Chang-wen; Yan, Shi-shen; Hu, Shu-jun; Ji, Wei-xiao; Wang, Pei-ji; Li, Ping
2014-10-01
Opening a sizable band gap in the zero-gap silicene without lowering the carrier mobility is a key issue for its application in nanoelectronics. Based on first-principles calculations, we find that the interaction energies are in the range of -0.09‒0.3 eV per Si atom, indicating a weak interaction between silicene and ZnS monolayer and the ABZn stacking is the most stable pattern. The band gap of silicene can be effectively tuned ranging from 0.025 to 1.05 eV in silicene and ZnS heterobilayer (Si/ZnS HBL). An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern, interlayer spacing and external strain effects on silicene. Interestingly, the characteristics of Dirac cone with a nearly linear band dispersion relation of silicene can be preserved in the ABS pattern which is a metastable state, accompanied by a small electron effective mass and thus the carrier mobility is expected not to degrade much. These provide a possible way to design effective FETs out of silicene on a ZnS monolayer.
Lemieux, Chantal L; Collin, Charles A; Nelson, Elizabeth A
2015-02-01
In two experiments, we examined the effects of varying the spatial frequency (SF) content of face images on eye movements during the learning and testing phases of an old/new recognition task. At both learning and testing, participants were presented with face stimuli band-pass filtered to 11 different SF bands, as well as an unfiltered baseline condition. We found that eye movements varied significantly as a function of SF. Specifically, the frequency of transitions between facial features showed a band-pass pattern, with more transitions for middle-band faces (≈5-20 cycles/face) than for low-band (≈<5 cpf) or high-band (≈>20 cpf) ones. These findings were similar for the learning and testing phases. The distributions of transitions across facial features were similar for the middle-band, high-band, and unfiltered faces, showing a concentration on the eyes and mouth; conversely, low-band faces elicited mostly transitions involving the nose and nasion. The eye movement patterns elicited by low, middle, and high bands are similar to those previous researchers have suggested reflect holistic, configural, and featural processing, respectively. More generally, our results are compatible with the hypotheses that eye movements are functional, and that the visual system makes flexible use of visuospatial information in face processing. Finally, our finding that only middle spatial frequencies yielded the same number and distribution of fixations as unfiltered faces adds more evidence to the idea that these frequencies are especially important for face recognition, and reveals a possible mediator for the superior performance that they elicit.
NASA Technical Reports Server (NTRS)
Carter, W. D. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The La Paz Mosaic and its attendant overlays serve as a model for geologic studies elsewhere in the world. The P.I. and two geologists are mapping the conterminous states at scales of 1:5000,000 and 1:1,000,000. The 1:5 million band 5 mosaic was completed in two days of analysis. The 1:1 million band sheets are being completed at the rate of one per day. Comparison of the preliminary results of the three investigators shows a high correlation of linear and curvilinear features. Comparison with magnetic and gravity data indicates that many features being mapped are deep seated structures that have been active through long periods of geologic time, perhaps dating back to the Precambrian period. A detailed analysis of the El Salvador mining district has been completed. The interpretation is extremely detailed showing a complex pattern of linear features and bedrock outcrop patterns. This is the first product from ERTS-1 to be provided by Chile and shows a high degree of expertise in image interpretation. The Chileans are enthusiastic about their results and are anxious to map the entire country using ERTS.
Spectral Studies of Iron Coordination in Hemeprotein Complexes
Brill, Arthur S.; Sandberg, Howard E.
1968-01-01
In order to evaluate the feasibility of observing the spectral behavior of protein groups in the coordination sphere of the iron in hemeproteins, criteria are developed to determine whether or not the application of difference absorption spectroscopy to the study of complex formation will be successful. Absolute absorption spectra, 300-1100 mμ, from bacterial catalase complexes are displayed, and the infrared bands correlated with magnetic susceptibility values of similar complexes of other hemeproteins. Dissociation constants for the formation of cyanide and azide complexes of metmyoglobin, methemoglobin, bacterial catalase, and horseradish peroxidase are given. Difference spectra, 210-280 mμ, are displayed for cyanide and azide complexes of these hemeproteins. A band at 235-241 mμ is found in the difference spectra of all low-spin vs. high-spin complexes. The factors which favor the assignment of this band to a transition involving a histidine residue are presented. PMID:5699802
NASA Astrophysics Data System (ADS)
Yang, Pei; Shi, Li-Jie; Zhang, Jian-Min; Liu, Gui-Bin; Yang, Shengyuan A.; Guo, Wei; Yao, Yugui
2018-01-01
Tuning band gaps of semiconductors in terms of defect control is essential for the optical and electronic properties of photon emission or photon harvesting devices. By using first-principles calculations, we study the stability condition of bulk CuInS2 and formation energies of point and complex defects in CuInS2 with hybrid exchange-correlation functionals. We find that at Cu-rich and In-poor conditions, 2Cui + CuIn is the main complex defect, while InCu + 2VCu is the main complex defect at In-rich and Cu-poor conditions. Such stable complex defects provide the feasibility of tuning band gaps by varying the [Cu]/[In] molar ratios. These results present how the off-stoichiometry CuInS2 crystal structures, and electronic and optical properties can be optimized by tuning the [Cu]/[In] ratio and Fermi level, and highlight the importance of complex defects in achieving better photoelectric performance in CuInS2. Such band gap tuning in terms of complex defect engineering is a general approach and thus applicable to other photo-harvest or light-emission semiconductors.
Bidirectional Brush Seals: Post-Test Analysis
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Wilson, Jack; Wu, Tom Y.; Flower, Ralph; Mullen, Robert L.
1997-01-01
A post-test analysis of a set of inside-diameter/outside-diameter (ID/OD) bidirectional brush seals used in three-port wave rotor tests was undertaken to determine brush bristle and configuration wear, pullout, and rotor coating wear. The results suggest that sharp changes in the pressure profiles were not well reflected in bristle tip configuration patterns or wear. Also, positive-to-negative changes in axial pressure gradients appeared to have little effect on the backing plates. Although the brushes had similar porosities, they had very different unpacked arrays. This difference could explain the departure of experimental data from computational fluid dynamics flow predictions for well-packed arrays at higher pressure drops. The rotor wear led to "car-track" scars (upper and lower wear bands) with a whipped surface between the bands. Those bands may have resulted from bristle stiffening at the fence and gap plates during alternate portions of the rotor cycle. Within the bristle response range the wear surface reflected the pressure distribution effect on bristle motion. No sacrificial metallurgical data were taken. The bristles did wear, with correspondingly more wear on the ID brush configurations than on the OD configurations; the complexity in constructing the ID brush was a factor.
Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate
NASA Astrophysics Data System (ADS)
Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias
2015-03-01
Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.
Kaplunov, Mikhail G; Krasnikova, Svetlana S; Nikitenko, Sergey L; Sermakasheva, Natalia L; Yakushchenko, Igor K
2012-04-03
We have investigated the electroluminescence spectra of the electroluminescent devices based on the new zinc complexes of amino-substituted benzothiazoles and quinolines containing the C-N-M-N chains in their chelate cycles. The spectra exhibit strong exciplex bands in the green to yellow region 540 to 590 nm due to interaction of the excited states of zinc complexes and triaryl molecules of the hole-transporting layer. For some devices, the intrinsic luminescence band of 460 nm in the blue region is also observed along with the exciplex band giving rise to an almost white color of the device emission. The exciplex band can be eliminated if the material of the hole-transporting layer is not a triarylamine derivative. We have also found the exciplex emission in the photoluminescence spectra of the films containing blends of zinc complex and triphenylamine material.
2012-01-01
We have investigated the electroluminescence spectra of the electroluminescent devices based on the new zinc complexes of amino-substituted benzothiazoles and quinolines containing the C-N-M-N chains in their chelate cycles. The spectra exhibit strong exciplex bands in the green to yellow region 540 to 590 nm due to interaction of the excited states of zinc complexes and triaryl molecules of the hole-transporting layer. For some devices, the intrinsic luminescence band of 460 nm in the blue region is also observed along with the exciplex band giving rise to an almost white color of the device emission. The exciplex band can be eliminated if the material of the hole-transporting layer is not a triarylamine derivative. We have also found the exciplex emission in the photoluminescence spectra of the films containing blends of zinc complex and triphenylamine material. PMID:22471942
Jackson, Timothy J; Jarrell, Shelby E; Adamson, Gregory J; Chung, Kyung Chil; Lee, Thay Q
2016-07-01
The main purpose of this study was to examine the functional characteristics of the anterior and posterior bands of the anterior bundle of the ulnar collateral ligament (UCL). Six cadaveric elbows were tested using a digital tracking system to measure the strain in the anterior band and posterior band of the anterior bundle of the UCL throughout a flexion/extension arc. The specimens were then placed in an Instron materials testing machine and loaded to failure to determine yield load and ultimate load of the UCL. The posterior band showed a linear increase in strain with increasing degrees of elbow flexion while the anterior band showed minimal change in strain throughout. The bands showed similar strain at yield load and ultimate load, demonstrating similar intrinsic properties. The anterior band of the anterior bundle of the UCL shows an isometric strain pattern through elbow range of motion, while the posterior band shows an increasing strain pattern in higher degrees of elbow flexion. Both bands show similar strain in a load to failure model, indicating insertion point, not intrinsic differences, of the bands determine the function of the anterior bundle of the UCL. This demonstrates a biomechanical rationale for UCL reconstructions using single point anatomical insertion points.
Topological Band Theory for Non-Hermitian Hamiltonians
NASA Astrophysics Data System (ADS)
Shen, Huitao; Zhen, Bo; Fu, Liang
2018-04-01
We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-Hermitian case, we classify "gapped" bands in one and two dimensions by explicitly finding their topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a new classification in one dimension, whose topology is determined by the energy dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate phase with complex-energy band degeneracies at isolated "exceptional points" in momentum space. We also systematically classify all types of band degeneracies.
Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J; Anderson, William S
2015-08-01
The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the [Formula: see text] Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately [Formula: see text]. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.
Disturbed temporal dynamics of brain synchronization in vision loss.
Bola, Michał; Gall, Carolin; Sabel, Bernhard A
2015-06-01
Damage along the visual pathway prevents bottom-up visual input from reaching further processing stages and consequently leads to loss of vision. But perception is not a simple bottom-up process - rather it emerges from activity of widespread cortical networks which coordinate visual processing in space and time. Here we set out to study how vision loss affects activity of brain visual networks and how networks' activity is related to perception. Specifically, we focused on studying temporal patterns of brain activity. To this end, resting-state eyes-closed EEG was recorded from partially blind patients suffering from chronic retina and/or optic-nerve damage (n = 19) and healthy controls (n = 13). Amplitude (power) of oscillatory activity and phase locking value (PLV) were used as measures of local and distant synchronization, respectively. Synchronization time series were created for the low- (7-9 Hz) and high-alpha band (11-13 Hz) and analyzed with three measures of temporal patterns: (i) length of synchronized-/desynchronized-periods, (ii) Higuchi Fractal Dimension (HFD), and (iii) Detrended Fluctuation Analysis (DFA). We revealed that patients exhibit less complex, more random and noise-like temporal dynamics of high-alpha band activity. More random temporal patterns were associated with worse performance in static (r = -.54, p = .017) and kinetic perimetry (r = .47, p = .041). We conclude that disturbed temporal patterns of neural synchronization in vision loss patients indicate disrupted communication within brain visual networks caused by prolonged deafferentation. We propose that because the state of brain networks is essential for normal perception, impaired brain synchronization in patients with vision loss might aggravate the functional consequences of reduced visual input. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J.; Anderson, William S.
2015-08-01
Objective. The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the 70-110 Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. Approach. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. Main results. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately 9 m{{m}2}. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. Significance. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.
Preparation and properties of a monomeric high-spin Mn(V)-oxo complex.
Taguchi, Taketo; Gupta, Rupal; Lassalle-Kaiser, Benedikt; Boyce, David W; Yachandra, Vittal K; Tolman, William B; Yano, Junko; Hendrich, Michael P; Borovik, A S
2012-02-01
Oxomanganese(V) species have been implicated in a variety of biological and synthetic processes, including their role as a key reactive center within the oxygen-evolving complex in photosynthesis. Nearly all mononuclear Mn(V)-oxo complexes have tetragonal symmetry, producing low-spin species. A new high-spin Mn(V)-oxo complex that was prepared from a well-characterized oxomanganese(III) complex having trigonal symmetry is now reported. Oxidation experiments with [FeCp(2)](+) were monitored with optical and electron paramagnetic resonance (EPR) spectroscopies and support a high-spin oxomanganese(V) complex formulation. The parallel-mode EPR spectrum has a distinctive S = 1 signal at g = 4.01 with a six-line hyperfine pattern having A(z) = 113 MHz. The presence of an oxo ligand was supported by resonance Raman spectroscopy, which revealed O-isotope-sensitive peaks at 737 and 754 cm(-1) assigned as a Fermi doublet centered at 746 cm(-1)(Δ(18)O = 31 cm(-1)). Mn Kβ X-ray emission spectra showed Kβ' and Kβ(1,3) bands at 6475.92 and 6490.50 eV, respectively, which are characteristic of a high-spin Mn(V) center. © 2012 American Chemical Society
Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall.
Ji, Hyo Jin; Park, Se-Hee; Cho, Kyung-Mo; Lee, Suk Keun; Kim, Jin Woo
2017-05-01
Periapical lesions, including periapical cyst (PC), periapical granuloma (PG), and periapical abscess (PA), are frequently affected by chemical/physical damage during root canal treatment or severe bacterial infection, and thus, the differential diagnosis of periapical lesions may be difficult due to the presence of severe inflammatory reaction. The aim of this study was to make differential diagnosis among PC, PG, and PA under polarizing microscope. The collagen birefringence patterns of 319 cases of PC ( n = 122), PG ( n = 158), and PA ( n = 39) obtained using a polarizing microscope were compared. In addition, 6 cases of periodontal fibroma (PF) were used as positive controls. Collagen birefringence was condensed with a thick, linear band-like pattern in PC, but was short and irregularly scattered in PG, and scarce or absent in PA. PF showed intense collagen birefringence with a short, palisading pattern but no continuous band-like pattern. The linear band-like birefringence in PC was ascribed to pre-existing expansile tensile stress of the cyst wall. In this study all PCs ( n = 122) were distinguishable from PGs and PAs by their characteristic birefringence, despite the absence of lining epithelium ( n = 20). Therefore, the authors suggest that the presence of linear band-like collagen birefringence of the cyst wall aids the diagnostic differentiation of PC from PG and PA.
Brázdil, Milan; Janeček, Jiří; Klimeš, Petr; Mareček, Radek; Roman, Robert; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Rektor, Ivan; Halámek, Josef; Plešinger, Filip; Jirsa, Viktor
2013-01-01
Using intracerebral EEG recordings in a large cohort of human subjects, we investigate the time course of neural cross-talk during a simple cognitive task. Our results show that human brain dynamics undergo a characteristic sequence of synchronization patterns across different frequency bands following a visual oddball stimulus. In particular, an initial global reorganization in the delta and theta bands (2–8 Hz) is followed by gamma (20–95 Hz) and then beta band (12–20 Hz) synchrony. PMID:23696809
Rodriguez, B; Cutillas, C; German, P; Guevara, D
1991-12-01
In the present communication we have studied the isoenzymatic pattern activity of the glucose 6-phosphate dehydrogenase (G6PD) in Oesophagostomum venulosum, Trichuris ovis and T. suis, parasites of Capra hircus (goat), Ovis aries (sheep) and Sus scrofa domestica (pig) respectively, by polyacrylamide gel electrophoresis. Different phenotypes have been observed in the G6PD isoenzymatic pattern activity in males and females of Oesophagostomum venulosum. Furthermore, G6PD activity has been assayed in Trichuris ovis collected from Ovis aries and Capra hircus. No differences have been observed in the isoenzymatic patterns attending to the different hosts. All the individuals exhibited one single band or two bands; this suggests a monomeric condition for G6PD in T. ovis. In T. suis the enzyme G6PD appeared as a single electrophoretic band in about 85.7% of the individuals.
NASA Astrophysics Data System (ADS)
Güngör, Seyit Ali; Kose, Muhammet
2017-12-01
In this study, a Ni2Ce complex [(NiL)2Ce(NO3)2](NO3) was synthesized and characterized by spectroscopic and analytical methods. The structure of the complex was determined by single crystal X-ray diffraction study. In the structure of the complex, a Ce(III) ion is sandwiched between the two NiL units, which are virtually parallel to each other. The Ce(III) center is 12-coordinate, surrounded by 12 oxygen atoms; four are from phenolic groups, four from methoxy groups, and four from two bidentate nitrate ligands. Hirshfeld surface analysis was used to evaluate the inter-molecular interactions within the crystal packing. The complex molecules are linked by H⋯ONO2 interactions. The largest contribution is H⋯O/O⋯H with 41.6% contribution and followed by H⋯H contacts with 39.1%. The complex showed an excitation band in the range of 510-580 nm. A band in the range of 520-580 nm observed in the emission spectrum almost completely overlapped. This suggests that the band in the emission spectrum of the complex is not the actual fluorescence emission and is assigned to the Rayleigh scattering band. Electrochemical and thermal behaviours of the complex were also investigated.
One-Dimensional Photonic Crystal Superprisms
NASA Technical Reports Server (NTRS)
Ting, David
2005-01-01
Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.
NASA Astrophysics Data System (ADS)
Xing, Chang-Ming; Wang, Christina Yan; Tan, Wei
2017-12-01
Olivine from mafic-ultramafic intrusions rarely displays growth zoning in major and some minor elements, such as Fe, Mg and Ni, due to fast diffusion of these elements at high temperatures. These elements in olivine are thus not useful in deciphering magma chamber processes, such as magma convection, multiple injection and mixing. High-resolution X-ray elemental intensity mapping reveals distinct P zoning patterns of olivine from two mafic-ultramafic intrusions in SW China. Polyhedral olivine grains from lherzolite and dunite of the Abulangdang intrusion show P-rich dendrites similar to those observed in volcanic rocks. Rounded olivine grains from net-textured Fe-Ti oxide ores of the Baima layered intrusion have irregular P-rich patches/bands crosscut and interlocked by P-poor olivine domains. P-rich patches/bands contain 250 to 612 ppm P, much higher than P-poor olivine domains with 123 to 230 ppm P. In electron backscattered diffraction (EBSD) maps, P-rich patches/bands within a single olivine grain have the same crystallographic orientation, indicating that they were remnants of the same crystal. Thus, both P-rich patches/bands and P-poor olivine domains in the same grain show a disequilibrium texture and clearly record two-stage growth. The P-rich patches/bands are likely the remnants of a polyhedral olivine crystal that formed in the first stage, whereas the P-poor olivine domains containing rounded Ti-rich magnetite and Fe-rich melt inclusions may have formed from an Fe-rich ambient melt in the second stage. The complex P zoning of olivine can be attributed to the dissolution of early polyhedral olivine and re-precipitation from the Fe-rich ambient melt. The early polyhedral olivine was in chemical disequilibrium with the ambient melt that may have been developed by silicate liquid immiscibility in a crystal mush. Our study implies that olivine crystals in igneous cumulates with an equilibrium appearance may have experienced disequilibrium growth processes during slow cooling. Therefore, the crystallization sequence of mafic magmas based on textural relationships should be treated with caution.
Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures
NASA Astrophysics Data System (ADS)
Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.
2017-10-01
We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more complex structures.
NASA Astrophysics Data System (ADS)
Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying; Gong, Yun; Lin, Jian Hua
2017-01-01
By using a rigid dicarboxylate ligand, 4,5-di(4‧-carboxylphenyl)benzene (H2L), two complexes formulated as SrL(DMF)(H2O)·(CH3CN) (DMF=N,N‧-dimethylformamide) (1) and BaL(H2O)2 (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV-vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density than complex 1. The Mott-Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations.
Foliar spray banding characteristics
A.R. Womac; C.W. Smith; Joseph E. Mulrooney
2004-01-01
Foliar spray banding was explored as a means of reducing peticide use compared to broadcast applications. Barious geometric spray patterns and delivery angles of foliar spray bands were investigated to increase spray deposits in a crop row at a constant spray rate of 94 L/ha. Wind-free laboratory results indicated that a banded application using three 65° hollow-cone...
Influence of Complex Terrain on Wind Fields in the Mojave Desert, Southwestern US
NASA Astrophysics Data System (ADS)
Clow, G. D.; Reynolds, R. L.; Urban, F. E.; Bogle, R.; Vogel, J. M.
2009-12-01
The complex terrain of southern California has important effects on the winds in this dust-producing region. We use the Weather Research and Forecasting Model (WRF) to investigate the influences of rugged topography on the wind field in the Mojave Desert at a variety of scales. For this study, the WRF model was used in a retrospective mode over the time period 2000-to-present, with horizontal resolutions as fine as 1-km in specific areas of interest (i.e., known dust-source areas). At a regional scale, the juxtaposition of California's Central Valley with the Sierra Nevada Mountain Range often generates a band of strong winds extending eastward from the southern end of the Sierra Nevada and Tehachapi Mountains across the Mojave Desert and into Arizona. At finer scales, WRF-derived winds within this band reveal terrain deflection, focusing, channeling, and rapid direction change over short distances. These effects are important for assessing the capacity of wind to produce dust at potential dust-source areas during specific events, and for determining dust-transport pathways. Comparison of the WRF results during strong wind events with data from meteorological stations having dust emission instruments (saltation sensors and/or wind-triggered time-lapse cameras) help elucidate landscape conditions that influence dust emission and patterns of dust transport.
NASA Astrophysics Data System (ADS)
Andima, Geoffrey; Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.
2018-01-01
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude -9.3°N) and Nairobi (Geographic coordinate 36.8°E, -1.3°N, and dip latitude -10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135-180°E and 270-300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270-300°E and 300-330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50-150 m s-1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.
NASA Astrophysics Data System (ADS)
Wang, W.; Olovsson, W.; Uhrberg, R. I. G.
2015-11-01
Silicene, the two-dimensional (2D) allotrope of silicon, has very recently attracted a lot of attention. It has a structure that is similar to graphene and it is theoretically predicted to show the same kind of electronic properties which have put graphene into the focus of large research and development projects worldwide. In particular, a 2D structure made from Si is of high interest because of the application potential in Si-based electronic devices. However, so far there is not much known about the silicene band structure from experimental studies. A comprehensive study is here presented of the atomic and electronic structure of the silicene phase on Ag(111) denoted as (2 √ 3 ×2 √ 3 )R30° in the literature. Low energy electron diffraction (LEED) shows an unconventional rotated ("2 √ 3 ×2 √ 3 ") pattern with a complicated set of split diffraction spots. Scanning tunneling microscopy (STM) results reveal a Ag(111) surface that is homogeneously covered by the ("2 √ 3 ×2 √ 3 ") silicene which exhibits an additional quasiperiodic long-range ordered superstructure. The complex structure, revealed by STM, has been investigated in detail and we present a consistent picture of the silicene structure based on both STM and LEED. The homogeneous coverage by the ("2 √ 3 ×2 √ 3 ") silicene facilitated an angle-resolved photoelectron spectroscopy study which reveals a silicene band structure of unprecedented detail. Here we report four silicene bands which are compared to calculated dispersions based on a relaxed (2 √ 3 ×2 √ 3 ) model. We find good qualitative agreement between the experimentally observed bands and calculated silicene bands of σ character.
Gazoni, Thiago; Gruber, Simone L; Silva, Ana P Z; Araújo, Olivia G S; Narimatsu, Hideki; Strüssmann, Christine; Haddad, Célio F B; Kasahara, Sanae
2012-12-26
The karyotypes of Leptodactylus species usually consist of 22 bi-armed chromosomes, but morphological variations in some chromosomes and even differences in the 2n have been reported. To better understand the mechanisms responsible for these differences, eight species were analysed using classical and molecular cytogenetic techniques, including replication banding with BrdU incorporation. Distinct chromosome numbers were found: 2n = 22 in Leptodactylus chaquensis, L. labyrinthicus, L. pentadactylus, L. petersii, L. podicipinus, and L. rhodomystax; 2n = 20 in Leptodactylus sp. (aff. podicipinus); and 2n = 24 in L. marmoratus. Among the species with 2n = 22, only three had the same basic karyotype. Leptodactylus pentadactylus presented multiple translocations, L. petersii displayed chromosome morphological discrepancy, and L. podicipinus had four pairs of telocentric chromosomes. Replication banding was crucial for characterising this variability and for explaining the reduced 2n in Leptodactylus sp. (aff. podicipinus). Leptodactylus marmoratus had few chromosomes with a similar banding patterns to the 2n = 22 karyotypes. The majority of the species presented a single NOR-bearing pair, which was confirmed using Ag-impregnation and FISH with an rDNA probe. In general, the NOR-bearing chromosomes corresponded to chromosome 8, but NORs were found on chromosome 3 or 4 in some species. Leptodactylus marmoratus had NORs on chromosome pairs 6 and 8. The data from C-banding, fluorochrome staining, and FISH using the telomeric probe helped in characterising the repetitive sequences. Even though hybridisation did occur on the chromosome ends, telomere-like repetitive sequences outside of the telomere region were identified. Metaphase I cells from L. pentadactylus confirmed its complex karyotype constitution because 12 chromosomes appeared as ring-shaped chain in addition to five bivalents. Species of Leptodactylus exhibited both major and minor karyotypic differences which were identified by classical and molecular cytogenetic techniques. Replication banding, which is a unique procedure that has been used to obtain longitudinal multiple band patterns in amphibian chromosomes, allowed us to outline the general mechanisms responsible for these karyotype differences. The findings also suggested that L. marmoratus, which was formerly included in the genus Adenomera, may have undergone great chromosomal repatterning.
2012-01-01
Background The karyotypes of Leptodactylus species usually consist of 22 bi-armed chromosomes, but morphological variations in some chromosomes and even differences in the 2n have been reported. To better understand the mechanisms responsible for these differences, eight species were analysed using classical and molecular cytogenetic techniques, including replication banding with BrdU incorporation. Results Distinct chromosome numbers were found: 2n = 22 in Leptodactylus chaquensis, L. labyrinthicus, L. pentadactylus, L. petersii, L. podicipinus, and L. rhodomystax; 2n = 20 in Leptodactylus sp. (aff. podicipinus); and 2n = 24 in L. marmoratus. Among the species with 2n = 22, only three had the same basic karyotype. Leptodactylus pentadactylus presented multiple translocations, L. petersii displayed chromosome morphological discrepancy, and L. podicipinus had four pairs of telocentric chromosomes. Replication banding was crucial for characterising this variability and for explaining the reduced 2n in Leptodactylus sp. (aff. podicipinus). Leptodactylus marmoratus had few chromosomes with a similar banding patterns to the 2n = 22 karyotypes. The majority of the species presented a single NOR-bearing pair, which was confirmed using Ag-impregnation and FISH with an rDNA probe. In general, the NOR-bearing chromosomes corresponded to chromosome 8, but NORs were found on chromosome 3 or 4 in some species. Leptodactylus marmoratus had NORs on chromosome pairs 6 and 8. The data from C-banding, fluorochrome staining, and FISH using the telomeric probe helped in characterising the repetitive sequences. Even though hybridisation did occur on the chromosome ends, telomere-like repetitive sequences outside of the telomere region were identified. Metaphase I cells from L. pentadactylus confirmed its complex karyotype constitution because 12 chromosomes appeared as ring-shaped chain in addition to five bivalents. Conclusions Species of Leptodactylus exhibited both major and minor karyotypic differences which were identified by classical and molecular cytogenetic techniques. Replication banding, which is a unique procedure that has been used to obtain longitudinal multiple band patterns in amphibian chromosomes, allowed us to outline the general mechanisms responsible for these karyotype differences. The findings also suggested that L. marmoratus, which was formerly included in the genus Adenomera, may have undergone great chromosomal repatterning. PMID:23268622
Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun
2017-09-26
Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.
Direct graphene growth on MgO: origin of the band gap.
Gaddam, Sneha; Bjelkevig, Cameron; Ge, Siping; Fukutani, Keisuke; Dowben, Peter A; Kelber, Jeffry A
2011-02-23
A 2.5 monolayer (ML) thick graphene film grown by chemical vapor deposition of thermally dissociated C(2)H(4) on MgO(111), displays a significant band gap. The apparent six-fold low energy electron diffraction (LEED) pattern actually consists of two three-fold patterns with different 'A' and 'B' site diffraction intensities. Similar effects are observed for the LEED patterns of a 1 ML carbon film derived from annealing adventitious carbon on MgO(111), and for a 1.5 ML thick graphene film grown by sputter deposition on the 1 ML film. The LEED data indicate different electron densities at the A and B sites of the graphene lattice, suggesting that the observed band gap results from lifting the graphene HOMO/LUMO degeneracy at the Dirac point. The data also indicate that disparities in A site/B site LEED intensities decrease with increasing carbon overlayer thickness, suggesting that the graphene band gap size decreases with increasing number of graphene layers on MgO(111). © 2011 IOP Publishing Ltd
ERIC Educational Resources Information Center
Christensen, Doug
2013-01-01
Understanding how DNA banding patterns in a gel can aid in the conviction or exoneration of suspects and be utilized for positive identification of biological fathers in paternity cases can be intimidating. In reality, the logistics and technology used in such cases are rather straightforward. This exercise is designed for use in high school…
Reinitz, G.L.
1976-01-01
1. The stability of hemoglobin of rainbow trout under frozen conditions in oxyform, carboxyform, and cyanometform was examined.2. Carboxyhemoglobin retained its original electrophoretic banding pattern after 14 days of frozen storage, whereas oxyform and cyanometform hemoglobins did not.3. Banding patterns changed in some samples in all treatment groups after 21 days of storage.
Presence of skeletal banding in a reef-building tropical crustose coralline alga
Lewis, Bonnie; Lough, Janice M.; Nash, Merinda C.; Diaz-Pulido, Guillermo
2017-01-01
The presence of banding in the skeleton of coralline algae has been reported in many species, primarily from temperate and polar regions. Similar to tree rings, skeletal banding can provide information on growth rate, age, and longevity; as well as records of past environmental conditions and the coralline alga’s growth responses to such changes. The aim of this study was to explore the presence and characterise the nature of banding in the tropical coralline alga Porolithon onkodes, an abundant and key reef-building species on the Great Barrier Reef (GBR) Australia, and the Indo-Pacific in general. To achieve this we employed various methods including X-ray diffraction (XRD) to determine seasonal mol% magnesium (Mg), mineralogy mapping to investigate changes in dominant mineral phases, scanning electron microscopy–electron dispersive spectroscopy (SEM-EDS), and micro-computed tomography (micro-CT) scanning to examine changes in cell size and density banding, and UV light to examine reproductive (conceptacle) banding. Seasonal variation in the Mg content of the skeleton did occur and followed previously recorded variations with the highest mol% MgCO3 in summer and lowest in winter, confirming the positive relationship between seawater temperature and mol% MgCO3. Rows of conceptacles viewed under UV light provided easily distinguishable bands that could be used to measure vertical growth rate (1.4 mm year-1) and age of the organism. Micro-CT scanning showed obvious banding patterns in relation to skeletal density, and mineralogical mapping revealed patterns of banding created by changes in Mg content. Thus, we present new evidence for seasonal banding patterns in the tropical coralline alga P. onkodes. This banding in the P. onkodes skeleton can provide valuable information into the present and past life history of this important reef-building species, and is essential to assess and predict the response of these organisms to future climate and environmental changes. PMID:28976988
Observations of banding in first-year Arctic sea ice
NASA Astrophysics Data System (ADS)
Cole, David M.; Eicken, Hajo; Frey, Karoline; Shapiro, Lewis H.
2004-08-01
Horizontal banding features, alternating dark and bright horizontal bands apparent in ice cores and stratigraphic cross sections have long been observed in first-year sea ice and are frequently associated with bands of high and low brine or gas porosity. Observations on the land-fast ice near Barrow, Alaska, in recent years have revealed particularly striking banding patterns and prompted a study of their macroscopic and microscopic characteristics. The banding patterns are quantified from photographs of full-depth sections of the ice, and examples are presented from the Chukchi Sea and Elson Lagoon. Statistics on band spacing are presented, and the growth records for three seasons are employed to estimate their time of formation. These data provide insight into the periodicity of the underlying phenomena. Micrographs are used to examine the microstructural variations associated with various banding features and to quantify the geometry of the constituent brine inclusions associated with high- and low-porosity bands. The micrography revealed that the area fraction of brine inclusions varied by a factor of nearly 3 through the more pronounced high- and low-porosity bands. Vertical micrographs obtained shortly after the materials' removal from the ice sheet showed that significantly larger inclusions form abruptly at the start of the high-porosity bands and frequently terminate abruptly at the end of the band. Crystallographic observations indicated that the high-porosity bands supported the nucleation and growth of crystals having substantially different orientations from the very well aligned columnar structure that characterized the bulk of the sheet.
NASA Technical Reports Server (NTRS)
Carnahan, W. H.; Mausel, P. W.; Zhou, G. P.
1984-01-01
An approach for atmospheric particulate concentration evaluation above urban areas using ratio Thematic Mapper (TM) data is discussed. October 25, 1982 TM data over Chicago, IL are analyzed using TM band ratios of 1/2, 1/3, 1/4, 1/5, and 1/6 and particulate concentration estimates derived from TM ratios are tested over low reflective turbid water sites and highly reflective concrete highways. From analysis of the data it is evident that for water, the pattern of increasing particulate concentration is associated with decreasing ratio values in all band combinations used. Over concrete features, the TM band 1/4 ratio values follow the predicted pattern, while the TM band 1/6 has ratios which are reversed from anticipated values.
Epidemiology of health concerns among collegiate student musicians participating in marching band.
Hatheway, Melissa; Chesky, Kris
2013-12-01
Participation in marching band requires intense physical and mental requirements, altered and potentially elevated biomechanical demands related to performing musical instruments while marching, routine exposures to elevated noise levels and at times hazardous weather conditions, and time commitments for practice and travel. Unfortunately, there are no known epidemiologic studies that systematically examine the perception of health-related consequences among college students participating in a collegiate marching band. There are no known studies that attempt to understand if the perceived consequences of marching band are different for students majoring in music compared to non-music major students. In response to this deficiency, this study collected and characterized occupational health patterns and concerns associated with participation in a collegiate marching band. Members of a large collegiate marching band (n=246/310, 76%) responded to a 70-item epidemiologic survey. Results reveal patterns of health concerns and how they differ when compared across music majors vs non-music majors and instrument groups.
Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground
NASA Astrophysics Data System (ADS)
Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.
2018-04-01
A dual-band mono-pole antenna is proposed for Wireless LAN applications. The WLAN band is obtained by cutting a rectangular ring and a circular slot in the radiating patch. The overall dimension of antenna is 17×16.5×0.8 mmł. The frequency bands obtained are 2.38-2.9 GHz and 4.7-6.1 GHz with ≤ - 10 dB return loss which covers WLAN 2.4/5.2/5.8 GHz bands. The behavior of the antenna is analyzed in terms of radiation pattern, peak realized gain, radiation efficiency and surface current density. It has dipole like radiation pattern with gain of 2.33 - 4.31 dBi for lower frequency band and 4.29 - 5.16 dBi for upper frequency band with radiation efficiency of 95-98% and 93-96% respectively. The parametric analysis is carried out to understand the consequence of the various shape parameters and to get an optimum design. The simulation and measurement gave the results having close agreement.
Lopez-Valladares, Gloria; Danielsson-Tham, Marie-Louise; Goering, Richard V; Tham, Wilhelm
2017-01-01
Among 504 clinical lineage II isolates of Listeria monocytogenes isolated during 1958-2010 in Sweden, 119 pulsed-field gel electrophoresis (PFGE) types (AscI) have been identified based on the number and distribution of all banding patterns in each DNA profile. In this study, these types were further divided into PFGE groups based on the configuration of small bands with sizes <145.5 kb. The 504 isolates included 483 serovar 1/2a isolates distributed into 114 PFGE types and 21 serovar 1/2c isolates distributed into 9 PFGE types; these were further divided into 21 PFGE groups. PFGE group, that is, configuration of small bands below 145.5 kb, and serovars were correlated. L. monocytogenes isolates belonging to PFGE groups A, B, C, E, F, H, K, L, M, S, V, W, Y, and Ö-6 to Ö-12 shared serovar 1/2a, with one exception. PFGE group E also included two PFGE types sharing serovar 1/2c and four PFGE types belonging to either serovar 1/2a or 1/2c. Isolates belonging to PFGE group N shared serovar 1/2c. In contrast to lineage I isolates, small fragments <33.3 kb were visible in all L. monocytogenes isolates belonging to lineage II. In the results from both the present and previous studies, the genomic region of small bands was genetically more conservative than in large bands. The distribution of these small bands established the relatedness of strains and defined a genetic marker for both lineages I and II, while also establishing their serogroup. The division of L. monocytogenes PFGE types into PFGE groups is advantageous as the profile of every new isolate can be identified easily and quickly through first studying the PFGE group affiliation of the isolate based on the smaller band patterns <145.5 kb, and then identifying the PFGE type based on the band patterns >145.5 kb.
Analysis of signals propagating in a phononic crystal PZT layer deposited on a silicon substrate.
Hladky-Hennion, Anne-Christine; Vasseur, Jérôme; Dubus, Bertrand; Morvan, Bruno; Wilkie-Chancellier, Nicolas; Martinez, Loïc
2013-12-01
The design of a stop-band filter constituted by a periodically patterned lead zirconate titanate (PZT) layer, polarized along its thickness, deposited on a silicon substrate and sandwiched between interdigitated electrodes for emission/reception of guided elastic waves, is investigated. The filter characteristics are theoretically evaluated by using finite element simulations: dispersion curves of a patterned PZT layer with a specific pattern geometry deposited on a silicon substrate present an absolute stop band. The whole structure is modeled with realistic conditions, including appropriate interdigitated electrodes to propagate a guided mode in the piezoelectric layer. A robust method for signal analysis based on the Gabor transform is applied to treat transmitted signals; extract attenuation, group delays, and wave number variations versus frequency; and identify stop-band filter characteristics.
Demosaicking for full motion video 9-band SWIR sensor
NASA Astrophysics Data System (ADS)
Kanaev, Andrey V.; Rawhouser, Marjorie; Kutteruf, Mary R.; Yetzbacher, Michael K.; DePrenger, Michael J.; Novak, Kyle M.; Miller, Corey A.; Miller, Christopher W.
2014-05-01
Short wave infrared (SWIR) spectral imaging systems are vital for Intelligence, Surveillance, and Reconnaissance (ISR) applications because of their abilities to autonomously detect targets and classify materials. Typically the spectral imagers are incapable of providing Full Motion Video (FMV) because of their reliance on line scanning. We enable FMV capability for a SWIR multi-spectral camera by creating a repeating pattern of 3x3 spectral filters on a staring focal plane array (FPA). In this paper we present the imagery from an FMV SWIR camera with nine discrete bands and discuss image processing algorithms necessary for its operation. The main task of image processing in this case is demosaicking of the spectral bands i.e. reconstructing full spectral images with original FPA resolution from spatially subsampled and incomplete spectral data acquired with the choice of filter array pattern. To the best of author's knowledge, the demosaicking algorithms for nine or more equally sampled bands have not been reported before. Moreover all existing algorithms developed for demosaicking visible color filter arrays with less than nine colors assume either certain relationship between the visible colors, which are not valid for SWIR imaging, or presence of one color band with higher sampling rate compared to the rest of the bands, which does not conform to our spectral filter pattern. We will discuss and present results for two novel approaches to demosaicking: interpolation using multi-band edge information and application of multi-frame super-resolution to a single frame resolution enhancement of multi-spectral spatially multiplexed images.
Systematic Regional Variations in Purkinje Cell Spiking Patterns
Xiao, Jianqiang; Cerminara, Nadia L.; Kotsurovskyy, Yuriy; Aoki, Hanako; Burroughs, Amelia; Wise, Andrew K.; Luo, Yuanjun; Marshall, Sarah P.; Sugihara, Izumi; Apps, Richard; Lang, Eric J.
2014-01-01
In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs) in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+) and negative (Z−) bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z− PCs, respectively. In both datasets significant differences in simple spike (SS) activity were observed between cortical regions. Specifically, Z− and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution) was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS) activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions. PMID:25144311
Shuttle Ku-band and S-band communications implementation study
NASA Technical Reports Server (NTRS)
Dodds, J. G.; Huth, G. K.; Nilsen, P. W.; Polydoros, A.; Simon, M. K.; Weber, C. L.
1980-01-01
Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed.
1989-08-24
P-34687 Range : 530,000 km. ( 330,000 miles ) Smallest Resolvable Feature : 10 km or 6 miles This Voyager 2 image of Neptune's satellite Triton shows the first photo of Triton to reveal surface topography. The south pole, continuously illuminated by sunlight at this season, ia at bottom left. the boundary between bright southern hemisphere and the darker and the darker, northern hemisphere is clearly visible. Both the darker regions to the north and the very bright sub-equatorial band show a complex pattern of irregular topography that somewhat resembles 'fretted terrain' on parts of Venus and Mars. The pattern of dark and light regions over most of the southern hemisphere will require higher resolution images for interpretation. Also evident are long, straight lines that appear to be surface expressions of internal, tectonic processes. No large impact ctaters are visible, suggesting that the crust of Triton has been renewed relatively recently, that is, within the last bllion years or less.
Two-Dimensional Raman Correlation Analysis of Diseased Esophagus in a Rat
NASA Astrophysics Data System (ADS)
Takanezawa, Sota; Morita, Shin-ichi; Maruyama, Atsushi; Murakami, Takurou N.; Kawashima, Norimichi; Endo, Hiroyuki; Iijima, Katsunori; Asakura, Tohru; Shimosegawa, Tooru; Sato, Hidetoshi
2010-07-01
Generalized two-dimensional (2D) Raman correlation analysis effectively distinguished a benign tumor from normal tissue. Line profiling Raman spectra of a rat esophagus, including a benign tumor, were measured and the generalized 2D synchronous and asynchronous spectra were calculated. In the autocorrelation area of the amide I band of proteins in the asynchronous map, a cross-like pattern was observed. A simulation study indicated that the pattern was caused by a sharp band component in the amide I band region. We considered that the benign tumor corresponded to the sharp component.
NASA Astrophysics Data System (ADS)
Moison, Jean-Marie; Belabas, Nadia; Levenson, Juan Ariel; Minot, Christophe
2012-09-01
We assess the band structure of arrays of coupled optical waveguides both by ab initio calculations and by experiments, with an excellent quantitative agreement without any adjustable physical parameter. The band structures we obtain can deviate strongly from the expectations of the standard coupled mode theory approximation, but we describe them efficiently by a few parameters within an extended coupled mode theory. We also demonstrate that this description is in turn a firm and simple basis for accurate beam management in functional patterns of coupled waveguides, in full accordance with their design.
Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning
NASA Astrophysics Data System (ADS)
Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios
2017-12-01
We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.
Mutoh, Shingo; Kouguchi, Hirokazu; Sagane, Yoshimasa; Suzuki, Tomonori; Hasegawa, Kimiko; Watanabe, Toshihiro; Ohyama, Tohru
2003-09-23
Clostridium botulinum serotype D strains usually produce two types of stable toxin complex (TC), namely, the 300 kDa M (M-TC) and the 660 kDa L (L-TC) toxin complexes. We previously proposed assembly pathways for both TCs [Kouguchi, H., et al. (2002) J. Biol. Chem. 277, 2650-2656]: M-TC is composed by association of neurotoxin (NT) and nontoxic nonhemagglutinin (NTNHA); conjugation of M-TC with three auxiliary types of hemagglutinin subcomponents (HA-33, HA-17, and HA-70) leads to the formation of L-TC. In this study, we found three TC species, 410, 540, and 610 kDa TC species, in the culture supernatant of type D strain 4947. The 540 and 610 kDa TC species displayed banding patterns on SDS-PAGE similar to that of L-TC but with less staining intensity of the HA-33 and HA-17 bands than those of L-TC, indicating that these are intermediate species in the pathway to L-TC assembly. In contrast, the 410 kDa TC species consisted of M-TC and two molecules of HA-70. All of the TC species, except L-TC, demonstrated no hemagglutination activity. When the intermediate TC species were mixed with an isolated HA-33/17 complex, every TC species converted to 650 kDa L-TC with full hemagglutination activity and had the same molecular composition of L-TC. On the basis of titration analysis with the HA-33/17 complex, the stoichiometry of the HA-33/17 complex molecules in the L-TC, 610 kDa, and 540 kDa TC species was estimated as 4, 3, and 2, respectively. In conclusion, the complete subunit composition of mature L-TC is deduced to be a dodecamer assembled by a single NT, a single NTNHA, two HA-70, four HA-33, and four HA-17 molecules.
Nonlinear analysis of EEG in major depression with fractal dimensions.
Akar, Saime A; Kara, Sadik; Agambayev, Sumeyra; Bilgic, Vedat
2015-01-01
Major depressive disorder (MDD) is a psychiatric mood disorder characterized by cognitive and functional impairments in attention, concentration, learning and memory. In order to investigate and understand its underlying neural activities and pathophysiology, EEG methodologies can be used. In this study, we estimated the nonlinearity features of EEG in MDD patients to assess the dynamical properties underlying the frontal and parietal brain activity. EEG data were obtained from 16 patients and 15 matched healthy controls. A wavelet-chaos methodology was used for data analysis. First, EEGs of subjects were decomposed into 5 EEG sub-bands by discrete wavelet transform. Then, both the Katz's and Higuchi's fractal dimensions (KFD and HFD) were calculated as complexity measures for full-band and sub-bands EEGs. Last, two-way analyses of variances were used to test EEG complexity differences on each fractality measures. As a result, a significantly increased complexity was found in both parietal and frontal regions of MDD patients. This significantly increased complexity was observed not only in full-band activity but also in beta and gamma sub-bands of EEG. The findings of the present study indicate the possibility of using the wavelet-chaos methodology to discriminate the EEGs of MDD patients from healthy controls.
A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex
NASA Astrophysics Data System (ADS)
Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.
2015-09-01
The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.
NASA Astrophysics Data System (ADS)
Gogoi, Pallavi; Mohan, Uttam; Borpuzari, Manash Protim; Boruah, Abhijit; Baruah, Surjya Kumar
2017-03-01
UV-Vis spectroscopy has established that Pyridine substitutes form n→σ* charge transfer (CT) complexes with molecular Iodine. This study is a combined approach of purely experimental UV-Vis spectroscopy, Multiple linear regression theory and Computational chemistry to analyze the effect of solvent upon the charge transfer band of 2-Methylpyridine-I2 and 2-Chloropyridine-I2 complexes. Regression analysis verifies the dependence of the CT band upon different solvent parameters. Dielectric constant and refractive index are considered among the bulk solvent parameters and Hansen, Kamlet and Catalan parameters are taken into consideration at the molecular level. Density Functional Theory results explain well the blue shift of the CT bands in polar medium as an outcome of stronger donor acceptor interaction. A logarithmic relation between the bond length of the bridging atoms of the donor and the acceptor with the dielectric constant of the medium is established. Tauc plot and TDDFT study indicates a non-vertical electronic transition in the complexes. Buckingham and Lippert Mataga equations are applied to check the Polarizability effect on the CT band.
X/X/Ka-band prime focus feed antenna for the Mars Observer beacon spacecraft
NASA Technical Reports Server (NTRS)
Stanton, P.; Reilly, H.; Esquivel, M.
1988-01-01
The results of an X/X/Ka-band feed design concept demonstration are presented. The purpose is to show the feasibility of adding a Ka-band beacon to the Mars Observer spacecraft. Scale model radiation patterns were made and analyzed.
Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall
2017-01-01
Objectives Periapical lesions, including periapical cyst (PC), periapical granuloma (PG), and periapical abscess (PA), are frequently affected by chemical/physical damage during root canal treatment or severe bacterial infection, and thus, the differential diagnosis of periapical lesions may be difficult due to the presence of severe inflammatory reaction. The aim of this study was to make differential diagnosis among PC, PG, and PA under polarizing microscope. Materials and Methods The collagen birefringence patterns of 319 cases of PC (n = 122), PG (n = 158), and PA (n = 39) obtained using a polarizing microscope were compared. In addition, 6 cases of periodontal fibroma (PF) were used as positive controls. Results Collagen birefringence was condensed with a thick, linear band-like pattern in PC, but was short and irregularly scattered in PG, and scarce or absent in PA. PF showed intense collagen birefringence with a short, palisading pattern but no continuous band-like pattern. The linear band-like birefringence in PC was ascribed to pre-existing expansile tensile stress of the cyst wall. Conclusions In this study all PCs (n = 122) were distinguishable from PGs and PAs by their characteristic birefringence, despite the absence of lining epithelium (n = 20). Therefore, the authors suggest that the presence of linear band-like collagen birefringence of the cyst wall aids the diagnostic differentiation of PC from PG and PA. PMID:28503476
Freeman, S.; Pham, M.; Rodriguez, R.J.
1993-01-01
Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309-322. Isolates of Colletotrichum were grouped into 10 separate species based on arbitrarily primed PCR (ap-PCR), A + T-rich DNA (AT-DNA) and nuclear DNA banding patterns. In general, the grouping of Colletotrichum isolates by these molecular approaches corresponded to that done by classical taxonomic identification, however, some exceptions were observed. PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of the 10 species. HaeIII digestion patterns of AT-DNA also distinguished between species of Colletotrichum by generating species-specific band patterns. In addition, hybridization of the repetitive DNA element (GcpR1) to genomic DNA identified a unique set of Pst 1-digested nuclear DNA fragments in each of the 10 species of Colletotrichum tested. Multiple isolates of C. acutatum, C. coccodes, C. fragariae, C. lindemuthianum, C. magna, C. orbiculare, C. graminicola from maize, and C. graminicola from sorghum showed 86-100% intraspecies similarity based on ap-PCR and AT-DNA analyses. Interspecies similarity determined by ap-PCR and AT-DNA analyses varied between 0 and 33%. Three distinct banding patterns were detected in isolates of C. gloeosporioides from strawberry. Similarly, three different banding patterns were observed among isolates of C. musae from diseased banana.
Vila-Vidal, Manel; Principe, Alessandro; Ley, Miguel; Deco, Gustavo; Tauste Campo, Adrià; Rocamora, Rodrigo
2017-06-01
We introduce a method that quantifies the consistent involvement of intracranially monitored regions in recurrent focal seizures. We evaluated the consistency of two ictal spectral activation patterns (mean power change and power change onset time) in intracranial recordings across focal seizures from seven patients with clinically marked seizure onset zone (SOZ). We examined SOZ discrimination using both patterns in different frequency bands and periods of interest. Activation patterns were proved to be consistent across more than 80% of recurrent ictal epochs. In all patients, whole-seizure mean activations were significantly higher for SOZ than non-SOZ regions (P<0.05) while activation onset times were significantly lower for SOZ than for non-SOZ regions (P<0.001) in six patients. Alpha-beta bands (8-20Hz) achieved the highest patient-average effect size on the whole-seizure period while gamma band (20-70Hz) achieved the highest discrimination values between SOZ and non-SOZ sites near seizure onset (0-5s). Consistent spectral activation patterns in focal epilepsies discriminate the SOZ with high effect sizes upon appropriate selection of frequency bands and activation periods. The present method may be used to improve epileptogenic identification as well as pinpoint additional regions that are functionally altered during ictal events. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Satchwell, Timothy J; Hawley, Bethan R; Bell, Amanda J; Ribeiro, M Leticia; Toye, Ashley M
2015-01-01
Band 3 is the most abundant protein in the erythrocyte membrane and forms the core of a major multiprotein complex. The absence of band 3 in human erythrocytes has only been reported once, in the homozygous band 3 Coimbra patient. We used in vitro culture of erythroblasts derived from this patient, and separately short hairpin RNA-mediated depletion of band 3, to investigate the development of a band 3-deficient erythrocyte membrane and to specifically assess the stability and retention of band 3 dependent proteins in the absence of this core protein during terminal erythroid differentiation. Further, using lentiviral transduction of N-terminally green fluorescent protein-tagged band 3, we demonstrated the ability to restore expression of band 3 to normal levels and to rescue secondary deficiencies of key proteins including glycophorin A, protein 4.2, CD47 and Rh proteins arising from the absence of band 3 in this patient. By transducing band 3-deficient erythroblasts from this patient with band 3 mutants with absent or impaired ability to associate with the cytoskeleton we also demonstrated the importance of cytoskeletal connectivity for retention both of band 3 and of its associated dependent proteins within the reticulocyte membrane during the process of erythroblast enucleation. Copyright© Ferrata Storti Foundation.
Satchwell, Timothy J; Hawley, Bethan R; Bell, Amanda J; Ribeiro, M. Leticia; Toye, Ashley M
2015-01-01
Band 3 is the most abundant protein in the erythrocyte membrane and forms the core of a major multiprotein complex. The absence of band 3 in human erythrocytes has only been reported once, in the homozygous band 3 Coimbra patient. We used in vitro culture of erythroblasts derived from this patient, and separately short hairpin RNA-mediated depletion of band 3, to investigate the development of a band 3-deficient erythrocyte membrane and to specifically assess the stability and retention of band 3 dependent proteins in the absence of this core protein during terminal erythroid differentiation. Further, using lentiviral transduction of N-terminally green fluorescent protein-tagged band 3, we demonstrated the ability to restore expression of band 3 to normal levels and to rescue secondary deficiencies of key proteins including glycophorin A, protein 4.2, CD47 and Rh proteins arising from the absence of band 3 in this patient. By transducing band 3-deficient erythroblasts from this patient with band 3 mutants with absent or impaired ability to associate with the cytoskeleton we also demonstrated the importance of cytoskeletal connectivity for retention both of band 3 and of its associated dependent proteins within the reticulocyte membrane during the process of erythroblast enucleation. PMID:25344524
[RAPD analysis of Aspergilli and its application in brewing industry].
Pan, Li; Wang, Bin; Guo, Yong
2007-06-01
Phylogenetic analysis of sixteen Aspergilli was done by RAPD technology, using Aspergillus oryzae AS3.951, Aspergillus flavus GIM3.18 and Aspergillus sojae AS3.495 as controls. First, genome DNA of the sixteen test strains were prepared by improved extraction method, and their quality was verified by electrophoresis and spectrophotometry. They displayed an identical band (approximately 20 kb) in agarose gel electrophoresis, which conformed to the fact that these strains all belong to Aspergillus. OD260/OD280 of the prepared DNA ranged from 1.80 to 1.90, illustrating that they were good enough to be used as templates in the following RAPD-PCR experiment. Then, three appropriate primers (Primerl, Primer2, Primer5) for RAPD-PCR were screened from nine random primers, and repetitive experiments demonstrated that the RAPD-PCR polymorphic patterns of the sixteen test strains based on these three primers were stable. There were usually 8-14 bands in their RADP-PCR patterns, where the number of the main bands was 4-9 and the secondary bands were abundant. There were totally 181 bands in their RAPD-PCR patterns, where the percentage of polymorphic bands reached to 40.9% (74 bands). The similarity coefficient between the strains was calculated based on their RAPD-PCR patterns, ranging from 8.0% to 96.6%. All these data suggests that the genetic polymorphism of the strains is abundant and they have evident genetic differentiation. The phylogenetic tree of the sixteen test strains was reconstructed according to their RAPD-PCR patterns with Primer1, Primer2 and Primer5. It basically corresponded to traditional morphological taxonomy, demonstrating that the application of RAPD molecular marker in the phylogenetic analysis of these Aspergilli is feasible. Besides, the aflatoxin-producing strains (GIM3.17, CICC2219, CICC2357, CICC2390, CICC2402, CICC2404) could be easily discriminated by RAPD molecular marker, whereas it is difficult to distinguish them by conventional morphological taxonomy. Consequently, RAPD molecular marker provides a novel clue to discriminating aflatoxin-producing strains in brewing industry.
Medina, A M; Michelangeli, C; Ramis, C; Díaz, A
2001-01-01
In order to identify and to determine the genetic variability of 36 annatto genotypes (Bixa orellana L.) collected in five Venezuelan regions (Oriente, Centro, Llanos, Andes and Amazonas) and in Brazil, hydrosoluble protein patterns as well as specific isozyme patterns (alpha-esterase, beta-esterase and peroxidase) were studied using extracts of germinated annatto seeds with radicles of 10 to 15 mm long. Each electrophoretic system allowed genotype discrimination by means of unique banding patterns: both the hydrosoluble protein and the electrophoretic system of beta-esterase with nine banding patterns each; whilst alpha-esterase and peroxidase discriminated eight and three genotypes, respectively. On the other hand, a combination of all the systems permitted a greater discrimination since 34 out of 36 genotypes could be distinguished. Eight mayor groups were formed that showed high levels of genetic diversity (40 to 60%) with no association between geographic and genetic distances, probably because of human influence in the aleatory distribution of this crop. Results obtained indicated that using electrophoretic banding patterns, a classification system could be established for identification and genetic variability purposes in this species.
Poly-Pattern Compressive Segmentation of ASTER Data for GIS
NASA Technical Reports Server (NTRS)
Myers, Wayne; Warner, Eric; Tutwiler, Richard
2007-01-01
Pattern-based segmentation of multi-band image data, such as ASTER, produces one-byte and two-byte approximate compressions. This is a dual segmentation consisting of nested coarser and finer level pattern mappings called poly-patterns. The coarser A-level version is structured for direct incorporation into geographic information systems in the manner of a raster map. GIs renderings of this A-level approximation are called pattern pictures which have the appearance of color enhanced images. The two-byte version consisting of thousands of B-level segments provides a capability for approximate restoration of the multi-band data in selected areas or entire scenes. Poly-patterns are especially useful for purposes of change detection and landscape analysis at multiple scales. The primary author has implemented the segmentation methodology in a public domain software suite.
Spectroscopic vector analysis for fast pattern quality monitoring
NASA Astrophysics Data System (ADS)
Sohn, Younghoon; Ryu, Sungyoon; Lee, Chihoon; Yang, Yusin
2018-03-01
In semiconductor industry, fast and effective measurement of pattern variation has been key challenge for assuring massproduct quality. Pattern measurement techniques such as conventional CD-SEMs or Optical CDs have been extensively used, but these techniques are increasingly limited in terms of measurement throughput and time spent in modeling. In this paper we propose time effective pattern monitoring method through the direct spectrum-based approach. In this technique, a wavelength band sensitive to a specific pattern change is selected from spectroscopic ellipsometry signal scattered by pattern to be measured, and the amplitude and phase variation in the wavelength band are analyzed as a measurement index of the pattern change. This pattern change measurement technique is applied to several process steps and verified its applicability. Due to its fast and simple analysis, the methods can be adapted to the massive process variation monitoring maximizing measurement throughput.
Goldstone STDN 9-meter radiation test
NASA Astrophysics Data System (ADS)
Blain, J. R.
1981-12-01
The Goldstone spaceflight tracking and data network (STDN) 9-meter tests were conducted from February through July 1981 to characterize the near-field radiation patterns of the S-band and fourth harmonic frequency emissions. The test configurations and results are presented with graphs of the antenna patterns. The tests indicated that X-band leakage may be suppressed to levels of approximately -190 dBm/sq cm at 200 meters.
Land mine detection using multispectral image fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-03-29
Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less
Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa
2015-03-01
Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.
Investigation of Portevin-Le Chatelier band with temporal phase analysis of speckle interferometry
NASA Astrophysics Data System (ADS)
Jiang, Zhenyu; Zhang, Qingchuan; Wu, Xiaoping
2003-04-01
A new method combining temporal phase analysis with dynamic digital speckle pattern interferometry is proposed to study Portevin-Le Chatelier effect quantitatively. The principle bases on that the phase difference of interference speckle patterns is a time-dependent function related to the object deformation. The interference speckle patterns of specimen are recorded with high sampling rate while PLC effect occurs, and the 2D displacement map of PLC band and its width are obtained by analyzing the displacement of specimen with proposed method.
NASA Astrophysics Data System (ADS)
Liu, Ruijian; Li, Yongfeng; Yao, Bin; Ding, Zhanhui; Deng, Rui; Zhang, Ligong; Zhao, Haifeng; Liu, Lei
2015-08-01
We report that a band-tail emission at 3.08 eV, lower than near-band-edge energy, is observed in photoluminescence measurements of bulk Na-doped CuAlO2. The band-tail emission is attributed to Na-related defects. Electronic structure calculations based on the first-principles method demonstrate that the donor-acceptor compensated complex of NaAl-2Na i in Na-doped CuAlO2 plays a key role in leading to the band-tail emission and bandgap narrowing. Furthermore, Hall effect measurements indicates that the hole concentration in CuAlO2 is independent on Na doping, which is well understood by the donor-acceptor compensation effect of NaAl-2Na i complex.
NASA Astrophysics Data System (ADS)
Hinnov, L. A.; de Oliveira Carvalho Rodrigues, P.; Franco, D.
2017-12-01
The classic, Superior-type banded iron formation (BIF) of the Precambrian Dales Gorge Member (DGM) of the Brockman Iron Formation, Hamersley Basin, Western Australia consists of a succession of micro- (millimeter-scale) and meso- (centimeter to decimeter-scale) bands of primarily iron-silica chemical sediment alternations, separated into macro- (meter to decameter-scale) bands by shales (1). Here, we present a time-frequency analysis of a gray-scale scan of the DGM "type section core" Hole 47A with small contributions from Hole EC10 (1) to provide a comprehensive characterization of banding patterns and periodicity throughout the 140 m section. SHRIMP zircon ages (2) indicate that the DGM was deposited over approximately 30 myr during the Archean-Proterozoic transition just prior to the Great Oxidation Event. This suggests that the banding patterns recorded Milankovitch cycles, although with orbital-rotational parameters significantly different from present-day due to Earth's tidal dissipation and chaotic episodes in the Solar System since 2.5 Ga. Banding patterns change systematically within the formation in response to slowly varying environmental conditions, which have been interpreted previously to be related to sea level change and basin evolution (3). Researchers, including (2), have questioned the 30 myr duration, suggesting instead that the micro-bands may be annual in scale. This would indicate a much shorter duration of less than 150 kyr for the DGM. In an attempt to determine whether Milankovitch cycles could have generated the meso-band patterns, we present detailed studies of BIF0 and BIF12, which typify the marked changes in meso-banding along the section. Objective procedures are also applied, including ASM (4) and TIMEOPT (5) to test for a range of potential alternative timescales assuming orbital-rotational parameter values modeled for 2.5 Ga. References: (1) Trendall, A.K., Blockley, J.G., GSWA Ann. Rep. 1967, 48, 1968; (2) Trendall, A.K., et al., Austr. J. Earth Sci., 51, 621, 2004; (3) Pickard, A., Barley, M., Krapez, B., Sed. Geol., 170, 37, 2004; (4) Meyers, S.R., Sageman, B.B., Amer. J. Sci., 307, 773, 2007; (5) Meyers, S.R., Paleocean., 30, 2015.
Robbins, C.S.; Rice, D.W.; King, Warren B.
1974-01-01
Summarizes the seasonal distribution of pelagic recoveries of 324 banded Laysan Albatrosses and 399 banded Black-footed Albatrosses. Different age groups of each species concentrate in somewhat different areas, and, although range overlap between species is almost complete, each has its own distinctive seasonal distribution pattern.
Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C
2010-01-01
Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.
NASA Astrophysics Data System (ADS)
Junquera, Javier; Aguado-Puente, Pablo
2013-03-01
At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.
Bernardo, Alessandra Augusta; Bicudo, Hermione Elly Melara de Campos
2009-09-01
Esterases are known for their involvement in several physiological processes and high degree of polymorphism, in many organisms. Such polymorphism has been used to characterize species and species groups and to study genetic changes occurred in their evolutionary history. In the present study, the esterase patterns of 19 strains from 10 species representative of the five subgroups of the saltans species group were analyzed using polyacrylamide gel electrophoresis and alpha- and beta- naphthyl acetates as substrates. Fifty-one esterase bands were detected and classified as 31 alpha-esterases, 18 beta-esterases and two alpha/beta-esterases. On the basis of the inhibition patterns using Malathion and eserine sulfate, 34 bands were classified as carboxylesterases, 14 as acethylesterases and three as cholinesterases. Ten gene loci were tentatively established on the basis of data on band position in the gel, substrate preference and inhibition pattern. Twenty bands were species-specific, the remaining being shared by species from the same or different subgroups. Bands detected exclusively in males and bands with a different frequency or degree of expression between sexes were also detected. In the gels prepared for analysis of gene expression in the body parts (head, thorax and abdomen), the degree of expression of the beta-esterases was higher in the thorax, while the alpha-esterases were expressed predominantly in the abdomen and thorax. A global view of the data available at present on the esterases of the species from the saltans group and their degree of polymorphism are presented, as well as the possibility of using some beta-esterases, because of their characteristics in the gels, as markers for species identification.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark
2016-01-01
In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying
By using a rigid dicarboxylate ligand, 4,5-di(4′-carboxylphenyl)benzene (H{sub 2}L), two complexes formulated as SrL(DMF)(H{sub 2}O)·(CH{sub 3}CN) (DMF=N,N′-dimethylformamide) (1) and BaL(H{sub 2}O){sub 2} (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV–vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density thanmore » complex 1. The Mott–Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations. - Graphical abstract: Two alkaline earth metal(II) complexes with 2D layer structures are p-type semiconductors, they possess different band structures and density of states. And the Ba(II) complex 2 exhibits much higher photocurrent density than the Sr(II) complex 1.« less
Interface Pattern Selection in Directional Solidification
NASA Technical Reports Server (NTRS)
Trivedi, Rohit; Tewari, Surendra N.
2001-01-01
The central focus of this research is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. Ground-based studies have established that the conditions under which cellular and dendritic microstructures form are precisely where convection effects are dominant in bulk samples. Thus, experimental data can not be obtained terrestrially under pure diffusive regime. Furthermore, reliable theoretical models are not yet possible which can quantitatively incorporate fluid flow in the pattern selection criterion. Consequently, microgravity experiments on cellular and dendritic growth are designed to obtain benchmark data under diffusive growth conditions that can be quantitatively analyzed and compared with the rigorous theoretical model to establish the fundamental principles that govern the selection of specific microstructure and its length scales. In the cellular structure, different cells in an array are strongly coupled so that the cellular pattern evolution is controlled by complex interactions between thermal diffusion, solute diffusion and interface effects. These interactions give infinity of solutions, and the system selects only a narrow band of solutions. The aim of this investigation is to obtain benchmark data and develop a rigorous theoretical model that will allow us to quantitatively establish the physics of this selection process.
Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas
1995-01-01
A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.
Novel Mycobacterium tuberculosis complex pathogen, M. mungi.
Alexander, Kathleen A; Laver, Pete N; Michel, Anita L; Williams, Mark; van Helden, Paul D; Warren, Robin M; Gey van Pittius, Nicolaas C
2010-08-01
Seven outbreaks involving increasing numbers of banded mongoose troops and high death rates have been documented. We identified a Mycobacterium tuberculosis complex pathogen, M. mungi sp. nov., as the causative agent among banded mongooses that live near humans in Chobe District, Botswana. Host spectrum and transmission dynamics remain unknown.
USDA-ARS?s Scientific Manuscript database
Wild banded mongooses (Mungos mungo) in northeastern Botswana and Northwest Zimbabwe are infected with a novel Mycobacterium tuberculosis complex pathogen (MTC), M. mungi. This pathogen is transmitted environmentally between mongoose hosts through exposure to infected scent marks used in olfactory c...
Charge transport through one-dimensional Moiré crystals
Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe
2016-01-01
Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations. PMID:26786067
Characterizing bars in low surface brightness disc galaxies
NASA Astrophysics Data System (ADS)
Peters, Wesley; Kuzio de Naray, Rachel
2018-05-01
In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.
There’s More to Groove than Bass in Electronic Dance Music: Why Some People Won’t Dance to Techno
2016-01-01
The purpose of this study was to explore the relationship between audio descriptors for groove-based electronic dance music (EDM) and raters’ perceived cognitive, affective, and psychomotor responses. From 198 musical excerpts (length: 15 sec.) representing 11 subgenres of EDM, 19 low-level audio feature descriptors were extracted. A principal component analysis of the feature vectors indicated that the musical excerpts could effectively be classified using five complex measures, describing the rhythmical properties of: (a) the high-frequency band, (b) the mid-frequency band, and (c) the low-frequency band, as well as overall fluctuations in (d) dynamics, and (e) timbres. Using these five complex audio measures, four meaningful clusters of the EDM excerpts emerged with distinct musical attributes comprising music with: (a) isochronous bass and static timbres, (b) isochronous bass with fluctuating dynamics and rhythmical variations in the mid-frequency range, (c) non-isochronous bass and fluctuating timbres, and (d) non-isochronous bass with rhythmical variations in the high frequencies. Raters (N = 99) were each asked to respond to four musical excerpts using a four point Likert-Type scale consisting of items representing cognitive (n = 9), affective (n = 9), and psychomotor (n = 3) domains. Musical excerpts falling under the cluster of “non-isochronous bass with rhythmical variations in the high frequencies” demonstrated the overall highest composite scores as evaluated by the raters. Musical samples falling under the cluster of “isochronous bass with static timbres” demonstrated the overall lowest composite scores as evaluated by the raters. Moreover, music preference was shown to significantly affect the systematic patterning of raters’ responses for those with a musical preference for “contemporary” music, “sophisticated” music, and “intense” music. PMID:27798645
There's More to Groove than Bass in Electronic Dance Music: Why Some People Won't Dance to Techno.
Wesolowski, Brian C; Hofmann, Alex
2016-01-01
The purpose of this study was to explore the relationship between audio descriptors for groove-based electronic dance music (EDM) and raters' perceived cognitive, affective, and psychomotor responses. From 198 musical excerpts (length: 15 sec.) representing 11 subgenres of EDM, 19 low-level audio feature descriptors were extracted. A principal component analysis of the feature vectors indicated that the musical excerpts could effectively be classified using five complex measures, describing the rhythmical properties of: (a) the high-frequency band, (b) the mid-frequency band, and (c) the low-frequency band, as well as overall fluctuations in (d) dynamics, and (e) timbres. Using these five complex audio measures, four meaningful clusters of the EDM excerpts emerged with distinct musical attributes comprising music with: (a) isochronous bass and static timbres, (b) isochronous bass with fluctuating dynamics and rhythmical variations in the mid-frequency range, (c) non-isochronous bass and fluctuating timbres, and (d) non-isochronous bass with rhythmical variations in the high frequencies. Raters (N = 99) were each asked to respond to four musical excerpts using a four point Likert-Type scale consisting of items representing cognitive (n = 9), affective (n = 9), and psychomotor (n = 3) domains. Musical excerpts falling under the cluster of "non-isochronous bass with rhythmical variations in the high frequencies" demonstrated the overall highest composite scores as evaluated by the raters. Musical samples falling under the cluster of "isochronous bass with static timbres" demonstrated the overall lowest composite scores as evaluated by the raters. Moreover, music preference was shown to significantly affect the systematic patterning of raters' responses for those with a musical preference for "contemporary" music, "sophisticated" music, and "intense" music.
Paleoproductivity and Nutrient Cycling on the Sumatra Margin during the Past Half Million Years
NASA Astrophysics Data System (ADS)
Gibson, K.; Mitt Schwamborn, T.; Thunell, R.; Tuten, E. C.; Swink, C.; Tappa, E.
2017-12-01
In the IndoPacific, changes in paleoproductivity on orbital timescales are often linked to changes in precession, particularly in areas of coastal upwelling. These changes are in turn related to variations in zonal wind patterns and thermocline tilt associated with the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), and commensurate changes in Asian, Indian, and Australian monsoon precipitation and wind-driven upwelling. Previous studies have revealed varying phase relationships amongst monsoon precipitation, upwelling variability and precession minima in the Indo-Pacific region. Regional records have additionally displayed power in the 41-kyr band, attributed to changes in deepwater ventilation and preservation, and the 100-kyr band, related to the influence of sea level on the Indonesian Throughflow (ITF). To provide further insight into the regional and distal forcing on paleoproductivity and nutrient cycling in this clearly complex region, we present %TOC, %CaCO3, and sedimentary δ15N data from core MD98-2152, off the Sumatra margin in a region influenced by both ITF variability and wind-driven upwelling. By comparing our paleoproductivity and paleonutrient data with planktonic δ18O (tuned to composite Chinese cave speleothem records) and benthic δ18O (tuned to the Lisiecki-Raymo Stack), we compare timing of local productivity changes to high latitude ice-volume changes and local hydrographic changes. A strong 23-kyr signal in the %TOC record supports the strong influence of precession on paleoproductivity in this region. In contrast, strong power in the 100 and 41-kyr bands is observed in %CaCO3 and δ15N with a relatively minor contribution from precession, indicating a complex relationship between nutrient cycling, upwelling, production, and preservation on the Sumatra coast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.
The Late Cretaceous-early Tertiary Orocopia Schist (OS) of southeasternmost California consists of metamorphosed continental margin sedimentary and basaltic rocks, overlain by an upper plate of continental crust along the Vincent-Chocolate Mountains fault (VCMF). Previous analysis of late folds and shear band in OS and upper plate in the Gavilan Hills and adjacent ares indicated that the direction of transport of the upper plate was northeastward. This has been considered evidence of a SW dipping subduction zone, along which an outboard continental fragment was sutured to North America. Another view is that the VCMF was formed by underplating of the OSmore » in an Andean continental margin, and that the NE-vergent late structures formed during uplift of the OS. The authors' continuing work in the Gavilan Hills confirm the NE sense of vergence but suggests a more complex structural history. The schist is characterized by refolded folds, shear bands, and two penetrative lineations. An older lineation that ranges from N10[degree]E to N30[degree]E is widespread in the area, but is more evident at low structural levels. A second lineation ranges from N40[degree]E to N70[degree]E and is strongly developed in rocks near the VCMF. The complex folding pattern, presence of mylonitic schist, relative thinness of upper-plate mylonite, and possible retrogressive character of the shear bands suggest that the VCMF in the Gavilan Hills area may have been reactivated after original thrusting. The VCMF in the Gavilan Hills is intermediate in character between the probable subduction thrust in the San Gabriel Mountains and the reactivated faults in the Orocopia Mountains and areas surrounding the Gavilan Hills.« less
Raman spectroscopic studies of hydrogen clathrate hydrates.
Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A
2009-01-07
Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.
Irregular head movement patterns in whiplash patients during a trajectory task.
Woodhouse, Astrid; Stavdahl, Øyvind; Vasseljen, Ottar
2010-03-01
Patients with whiplash associated disorders (WAD) have shown less accuracy in trajectory head motion compared to asymptomatic controls, which comply with clinical observations. The aim of this study was to investigate whether a trajectory head movement task can differ between WAD patients, chronic non-traumatic neck pain (CNP) patients and asymptomatic controls. Study groups included subjects with WAD (n = 35) with persistent neck pain after a car accident, CNP (n = 45), and asymptomatic controls (n = 48). Head motion was recorded from an unsupported standing position using a 3D Fastrak device. A laser pointer was attached to the head and by moving the head the subjects were asked to trace a figure of eight displayed on the wall at three different paces (slow, moderate and fast). The motion signal was decomposed into 1 Hz frequency bands and angular velocity (deg/s) within each frequency band was calculated. Significantly higher angular RMS velocity was found in the WAD group compared to the two other groups for the slow paced test (3-4 and 4-5 Hz frequency bands) and the moderate paced test (3-4 Hz frequency band) indicating irregular and uncoordinated movements. Angular RMS velocity was associated with pain and dizziness, but only with severe symptom levels. In conclusion, irregular head movements during a complex task were found in the WAD group, indicating altered central sensorimotor processing. The irregularities were found within frequency levels observable to clinicians.
Organic influences on inorganic patterns of diffusion-controlled precipitation in gels
NASA Astrophysics Data System (ADS)
Barge, Laura M.; Nealson, Kenneth H.; Petruska, John
2010-06-01
The well-known AgNO 3/K 2CrO 4 reaction-diffusion system produces periodic bands of silver chromate precipitate in gelatin, but only randomly oriented crystals in agarose gel. We show that comparable bands can be produced in agarose gel by adding small amounts of simple organic acids (e.g., acetic acid, N-acetyl glycine, and N-acetyl alanine) that suppress crystal growth and promote formation of rounded particles of precipitate. These results indicate that α-carboxyl groups of amino acids or short peptides in gelatin under mildly acidic conditions can induce periodic band patterns in diffusion-controlled silver chromate precipitates.
Relationship between rabbit transferrin electrophoretic patterns and plasma iron concentrations.
Zaragoza, P; Arana, A; Amorena, B
1987-01-01
Rabbit transferrin (Tf) was studied electrophoretically using 1141 blood samples from individuals belonging to seven populations (Spanish Common, Spanish Giant, Butterfly, Lyoné de Bourgogne, New Zealand White, Californian and New Zealand White X Californian hybrids). No Tf polymorphism was found by starch gel electrophoresis, but six patterns, differing in the presence and/or intensity of three bands ('a', anodic; 'b', intermediate; and 'c', cathodic) were observed by polyacrylamide gel electrophoresis. No genetic model could explain these patterns, since they reflect differences in plasma Tf iron content. The electrophoretic test allowed a direct observation of the relative in vivo levels of the different Tf molecular species; saturated (band 'a', Fe2Tf); semi-saturated (band 'b', Fe1Tf); and without iron (band 'c' Fe0Tf, apotransferrin). The degree of iron saturation of Tf varied among individuals and throughout the individual's life. Specifically, in pregnant females, Fe2Tf and Fe1Tf are generally observed, except in late pregnancy (from day 25 to parturition), when mainly apotransferrin is observed. Significantly, within 24 h post-partum, high levels of Fe2Tf are reached in the female's serum.
Self-organized iron-oxide cementation geometry as an indicator of paleo-flows
Wang, Yifeng; Chan, Marjorie A.; Merino, Enrique
2015-06-30
Widespread iron oxide precipitation from groundwater in fine-grained red beds displays various patterns, including nodulation, banding and scallops and fingers. Hematite nodules have been reported also from the Meridiani Planum site on Mars and interpreted as evidence for the ancient presence of water on the red planet. Here we show that such patterns can autonomously emerge from a previously unrecognized Ostwald ripening mechanism and they capture rich information regarding ancient chemical and hydrologic environments. A linear instability analysis of the reaction-transport equations suggests that a pattern transition from nodules to bands may result from a symmetry breaking of mineral dissolutionmore » and precipitation triggered by groundwater advection. Round nodules tend to develop under nearly stagnant hydrologic conditions, while repetitive bands form in the presence of persistent water flows. Since water circulation is a prerequisite for a sustainable subsurface life, a Martian site with iron oxide precipitation bands, if one were found, may offer a better chance for detecting extraterrestrial biosignatures on Mars than would sites with nodules.« less
Ring complexes and related rocks in Africa
NASA Astrophysics Data System (ADS)
Vail, J. R.
Over 625 igneous complexes throughout Africa and Arabia have been selected and classified on the basis of petrographic association and chronology into six broad age groups forming 29 provinces. The groups range from Mid-Proterozoic to Tertiary and include gabbro, granite, syenite, foid syenite and carbonatite plutonic rocks, the majority in the form of ring-dykes, cone-sheets, plugs, circular intrusions, and their associated extrusive phases. Pan-African late or post-orogenic complexes (720-490 Ma) are common in the Arabian-Nubian and Tuareg shields of north Africa originating from subduction zone derived magmatism. Anorogenic complexes in Egypt, NE and central Sudan, Niger, Nigeria, Cameroon, Zaïre-Burundi, Malawi, Mozambique, Zimbabwe, Namibia and Angola span 550 to 50 Ma and are dominantly alkali granites and foid syenites. Many groups occur as en-echelon bands within linear arrays, and show migrating centres of intrusion in variable directions. In W. Africa there was a progressive shift of emplacement southwards during early Ordovician to Mid-Cretaceous times. Distribution patterns suggest thatdeep seated features, such as shear zones associated with lithospheric plate movements,controlled melting, and the resultant location of the complexes. Economic mineralization is not widespread in the rocks of the African ring complexes and is mainly restricted to small deposits of Sn, W, F, U and Nb.
Generation of a complete set of human telomeric band painting probes by chromosome microdissection.
Hu, Liang; Sham, Jonathan S T; Tjia, Wai Mui; Tan, Yue-qiu; Lu, Guang-xiu; Guan, Xin-Yuan
2004-02-01
Chromosomal rearrangements involving telomeric bands have been frequently detected in many malignancies and congenital diseases. To develop a useful tool to study chromosomal rearrangements within the telomeric band effectively and accurately, a whole set of telomeric band painting probes (TBP) has been generated by chromosome microdissection. The intensity and specificity of these TBPs have been tested by fluorescence in situ hybridization and all TBPs showed strong and specific signals to target regions. TBPs of 6q and 17p were successfully used to detect the loss of the terminal band of 6q in a hepatocellular carcinoma cell line and a complex translocation involving the 17p terminal band in a melanoma cell line. Meanwhile, the TBP of 21q was used to detect a de novo translocation, t(12;21), and the breakpoint at 21q was located at 21q22.2. Further application of these TBPs should greatly facilitate the cytogenetic analysis of complex chromosome rearrangements involving telomeric bands.
Diurnal water relations of walnut trees - Implications for remote sensing
NASA Technical Reports Server (NTRS)
Weber, James A.; Ustin, Susan L.
1991-01-01
Leaflet water content (WC), relative water content (RWC), and water potential, Phi(lf) were measured as indicators of diurnal change in tree water status in an experimental walnut orchard receiving two irrigation treatments: 100 and 33 percent of potential evapotranspiration (PET). Diurnal change was greatest in Phi(lf) throughout the experimental period, with minima occurring each day in early to mid-afternoon and maxima between midnight and sunrise. Leaflet WC and RWC were lower in the afternoon than at night, but had greater variability so that the diurnal pattern was not as clear. Comparison between the pattern of Phi(lf) and dielectric constants (DCs) measured from probes inserted 2 cm into a tree hole showed that both declined nearly in parallel in the morning. Phi(lf) recovered more rapidly than DC in the afternoon. This temporal discrepancy could be caused by cavitation of xylem elements in the vicinity of the DC probe. Microwave backscatter for L- and X-bands also measured diurnal variation that had local minima in the afternoon, but the pattern among wavelength and polarization signatures was complex.
Application of remote sensing in the study of vegetation and soils in Idaho
NASA Technical Reports Server (NTRS)
Tisdale, E. W. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Comparison of ERTS-1 imagery and USGS 1:250,000 scale maps of study areas with known ground points revealed significant map errors. These errors were sufficient to render impractical the projection of ERTS-1 imagery directly onto maps of the area. Marked differences were found in the delineation of ground features by different MSS bands. Generally, Band 4 was least useful, while Band 5 proved valuable for indicating patterns of native vegetation, cultivated areas - both dry and irrigated, lava fields, drainage basins, and deep bodies of water. Band 6 was better for landforms and drainages and for shallow bodies of water than Band 5 but inferior for indicating patterns in native vegetation and most types of cultivated land. Band 7 was best of all for indicating lava flows, water bodies, and landform features. Use of a additive color viewer-projector aided greatly in separation of images. A combination of Bands 5 and 7 with appropriate color filters proved best for separating most types of native vegetation and cultivated crops. Landform features and water bodies also showed well with this combination. The addition of Band 4 imagery to these further enhanced the identification of semi-dormant vegetation.
Absorption spectroscopic studies of Np(IV) complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, D. T.
2004-01-01
The complexation of neptunium (IV) with selected inorganic and organic ligands was studied as part of an investigation to establish key subsurface interactions between neptunium and biological systems. The prevalence of reducing environments in most subsurface migation scenarios, which are in many cases induced by biological activity, has increased the role and importance of Np(IV) as a key subsurface neptunium oxidation state. The biodegradation of larger organics that often coexist with actinides in the subsurface leads to the formation of many organic acids as transient products that, by complexation, play a key role in defining the fate and speciation ofmore » neptunium in biologically active systems. These often compete with inorganic complexes e.g. hydrolysis and phosphate. Herein we report the results of a series of complexation studies based on new band formation of the characteristic 960 nm band for Np(IV). Formation constants for Np(IV) complexes with phosphate, hydrolysis, succinate, acetohydroxamic acid, and acetate were determined. These results show the 960 nm absorption band to be very amenable to these types of complexation studies.« less
Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José
2008-01-07
We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.
Gonçalves-Araujo, Rafael; Wiegmann, Sonja; Torrecilla, Elena; Bardaji, Raul; Röttgers, Rüdiger; Bracher, Astrid; Piera, Jaume
2017-01-01
The detection and prediction of changes in coastal ecosystems require a better understanding of the complex physical, chemical and biological interactions, which involves that observations should be performed continuously. For this reason, there is an increasing demand for small, simple and cost-effective in situ sensors to analyze complex coastal waters at a broad range of scales. In this context, this study seeks to explore the potential of beam attenuation spectra, c(λ), measured in situ with an advanced-technology optical transmissometer, for assessing temporal and spatial patterns in the complex estuarine waters of Alfacs Bay (NW Mediterranean) as a test site. In particular, the information contained in the spectral beam attenuation coefficient was assessed and linked with different biogeochemical variables. The attenuation at λ = 710 nm was used as a proxy for particle concentration, TSM, whereas a novel parameter was adopted as an optical indicator for chlorophyll a (Chl-a) concentration, based on the local maximum of c(λ) observed at the long-wavelength side of the red band Chl-a absorption peak. In addition, since coloured dissolved organic matter (CDOM) has an important influence on the beam attenuation spectral shape and complementary measurements of particle size distribution were available, the beam attenuation spectral slope was used to analyze the CDOM content. Results were successfully compared with optical and biogeochemical variables from laboratory analysis of collocated water samples, and statistically significant correlations were found between the attenuation proxies and the biogeochemical variables TSM, Chl-a and CDOM. This outcome depicted the potential of high-frequency beam attenuation measurements as a simple, continuous and cost-effective approach for rapid detection of changes and patterns in biogeochemical properties in complex coastal environments. PMID:28107539
NASA Astrophysics Data System (ADS)
Iida, Michihira; Maeno, Tsuyoshi; Wang, Jianqing; Fujiwara, Osamu
Electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common slitting ground patterns. To suppress these kinds of noise currents, we previously measured them for simple two-layer PCBs with two parallel signal traces and slitting or non-slitting ground patterns, and then investigated by the FDTD simulation the reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces on six simple PCB models having different slitting ground or different divided ground patterns parallel to the traces. As a result, we found that the contributory factor for the FM-band cross-talk reduction is the reduction of mutual inductance between the two parallel traces, and also the noise currents from PCBs can rather be suppressed even if the size of the return ground becomes small. In this study, to investigate this finding, we further simulated the frequency characteristics of cross-talk reduction for additional six simple PCB models with different dividing dimensions ground patterns parallel to the traces, which revealed an interesting phenomenon that cross-talk reduction characteristics do not always decrease with increasing the width between the divided ground patterns.
Structural sensitivity of Csbnd H vibrational band in methyl benzoate
NASA Astrophysics Data System (ADS)
Roy, Susmita; Maiti, Kiran Sankar
2018-05-01
The Csbnd H vibrational bands of methyl benzoate are studied to understand its coupling pattern with other vibrational bands of the biological molecule. This will facilitate to understand the biological structure and dynamics in spectroscopic as well as in microscopic study. Due to the congested spectroscopic pattern, near degeneracy, and strong anharmonicity of the Csbnd H stretch vibrations, assignment of the Csbnd H vibrational frequencies are often misleading. Anharmonic vibrational frequency calculation with multidimensional potential energy surface interprets the Csbnd H vibrational spectra more accurately. In this article we have presented the importance of multidimensional potential energy surface in anharmonic vibrational frequency calculation and discuss the unexpected red shift of asymmetric Csbnd H stretch vibration of methyl group. The Csbnd D stretch vibrational band which is splitted to double peaks due to the Fermi resonance is also discussed here.
Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses
Li, Weidong; Bei, Hongbin; Gao, Yanfei
2016-09-21
Our recent experiments in notched bulk metallic glasses have found reduced, or insensitive, or improved strengths, while in many of these cases the ductile strain prior to final failure is enhanced. First, although the inverse notch effect is explained by a shift from shear localization to cavitation failure, it is suggested in this work that the synergistic effect between cohesive fracture at the notched area and shear bands emanating from the notch roots may extend the parametric space for the notch insensitive behavior. Second, the dependence of shear band patterns on notch geometric factors is determined by the Rudnicki-Rice theorymore » and the free-volume-based finite element simulations. Our results suggest conditions for shear band multiplication to take place and for the shear-localization-induced failure to be delayed.« less
Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Weidong; Bei, Hongbin; Gao, Yanfei
Our recent experiments in notched bulk metallic glasses have found reduced, or insensitive, or improved strengths, while in many of these cases the ductile strain prior to final failure is enhanced. First, although the inverse notch effect is explained by a shift from shear localization to cavitation failure, it is suggested in this work that the synergistic effect between cohesive fracture at the notched area and shear bands emanating from the notch roots may extend the parametric space for the notch insensitive behavior. Second, the dependence of shear band patterns on notch geometric factors is determined by the Rudnicki-Rice theorymore » and the free-volume-based finite element simulations. Our results suggest conditions for shear band multiplication to take place and for the shear-localization-induced failure to be delayed.« less
Nugent, Allison C; Luber, Bruce; Carver, Frederick W; Robinson, Stephen E; Coppola, Richard; Zarate, Carlos A
2017-02-01
Recently, independent components analysis (ICA) of resting state magnetoencephalography (MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited power envelopes. Most of the work in this area has concentrated on networks derived from the power envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To validate our method, we focused on the sensorimotor network, which is well-characterized and robust in both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) was used to project signals into anatomical source space separately in each band before a group temporal ICA was performed over all subjects and bands. This method preserved the inherent correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed identification of spatial spectral modes that are consistent across subjects. The implications of these results on our understanding of sensorimotor function are discussed, as are the potential applications of this technique. Hum Brain Mapp 38:779-791, 2017. © 2016 Wiley Periodicals, Inc. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Quantity and distribution of plaque in orthodontic patients treated with molar bands.
Erbe, Christina; Hornikel, Sandra; Schmidtmann, Irene; Wehrbein, Heiner
2011-03-01
The placement of orthodontic bands usually increases plaque accumulation due to numerous mechanical retention sites. The purpose of this investigation was to evaluate the amount and distribution pattern of biofilm in the oral (palatal and lingual) and interproximal regions surrounding orthodontic bands. We evaluated the formation of biofilm on 32 orthodontic bands which had been placed intraorally for 6-37 months. Two parameters were measured: the percentage of surface covered by biofilm (quantity) and the biofilm distribution pattern of accumulation. We measured these two parameters in four regions of interest: the mesial and distal interproximal regions, as well as the mesial and distal regions of the oral attachment. The quantity of biofilm formation was similar in all four regions of interest, ranging from 13.3% to 16.8%. In contrast to biofilm quantity, distribution patterns differed in the four regions. In the mesial and distal interproximal regions it appeared as extensive insular areas in 87.5% and 71.9%, respectively, whereas it appeared more often supragingival and linear in nature in regions adjacent to the oral attachment, i.e. in 65.6% and 68.8%, respectively. Our results indicate that firstly, oral hygiene in the palatal and lingual regions of orthodontic bands seems as difficult as it is in the interproximal areas, thus requiring thorough hygiene in both areas. Secondly, orthodontic patients with a history of periodontal disease require special attention regarding the use of orthodontic bands.
Dual band metamaterial perfect absorber based on artificial dielectric "molecules".
Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji
2016-07-13
Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.
Optimized oligonucleotide probes for DNA fingerprinting.
Schäfer, R; Zischler, H; Birsner, U; Becker, A; Epplen, J T
1988-08-01
The three different simple repetitive oligonucleotide probes (CT)8, (CAC)5 and (TCC)5 were hybridized to a panel of human DNAs which had been digested with the restriction endonucleases Alu I, Hinf I and Mbo I. The resulting DNA fingerprints were analyzed and different parameters calculated, such as the maximal mean allele frequency and the average number of polymorphic bands per individual. The highest number of bands was obtained after hybridization of Hinf I digested DNA with (CAC)5. The probability of finding the same band pattern as in individual A in individual B is 2 x 10(-8). The DNAs of monozygous twins show indistinguishable banding patterns and the bands are inherited according to the Mendelian laws. Thus this procedure reveals informative fingerprints that can be used for individual identification, e.g. in paternity testing and in forensic applications. In most of these experiments 32P-labelled probes were employed, yet the biotinylated oligonucleotide (GACA)4 produced results which were equivalent to those obtained by hybridization with the 32P-labelled probe (GACA)4.
Polytene Chromosomes - A Portrait of Functional Organization of the Drosophila Genome.
Zykova, Tatyana Yu; Levitsky, Victor G; Belyaeva, Elena S; Zhimulev, Igor F
2018-04-01
This mini-review is devoted to the problem genetic meaning of main polytene chromosome structures - bands and interbands. Generally, densely packed chromatin forms black bands, moderately condensed regions form grey loose bands, whereas decondensed regions of the genome appear as interbands. Recent progress in the annotation of the Drosophila genome and epigenome has made it possible to compare the banding pattern and the structural organization of genes, as well as their activity. This was greatly aided by our ability to establish the borders of bands and interbands on the physical map, which allowed to perform comprehensive side-by-side comparisons of cytology, genetic and epigenetic maps and to uncover the association between the morphological structures and the functional domains of the genome. These studies largely conclude that interbands 5'-ends of housekeeping genes that are active across all cell types. Interbands are enriched with proteins involved in transcription and nucleosome remodeling, as well as with active histone modifications. Notably, most of the replication origins map to interband regions. As for grey loose bands adjacent to interbands, they typically host the bodies of house-keeping genes. Thus, the bipartite structure composed of an interband and an adjacent grey band functions as a standalone genetic unit. Finally, black bands harbor tissue-specific genes with narrow temporal and tissue expression profiles. Thus, the uniform and permanent activity of interbands combined with the inactivity of genes in bands forms the basis of the universal banding pattern observed in various Drosophila tissues.
Cuevas, César C; Formas, J Ramón
2003-01-01
A comparative cytogenetic analysis of Alsodes pehuenche, A. vanzolinii, A. verrucosus and A. aff. vittatus show that all four species share the same diploid number 2n = 26; the fundamental number is 50 in A. vanzolinii and 52 in A. aff. vittatus, A. pehuenche and A. verrucosus. The karyotypes of A. pehuenche and A. aff. vittatus are described for the first time; the C-band patterns, the NOR locations and Q-band patterns are also described for the first time for the four species. C-band patterns are species specific and useful to identify the taxa. The usefulness of the chromosomal data in taxonomy and systematics of Alsodes species is discussed. Transformation of euchromatin into heterochromatin and centric fissions and translocations are proposed as the main mechanisms that govern the chromosomal evolution of the frog genus Alsodes.
Summer precipitation variability over South America on long and short intraseasonal timescales
NASA Astrophysics Data System (ADS)
Gonzalez, Paula L. M.; Vera, Carolina S.
2014-10-01
A dipole pattern in convection between the South Atlantic convergence zone and the subtropical plains of southeastern South America characterizes summer intraseasonal variability over the region. The dipole pattern presents two main bands of temporal variability, with periods between 10 and 30 days, and 30 and 90 days; each influenced by different large-scale dynamical forcings. The dipole activity on the 30-90-day band is related to an eastward traveling wavenumber-1 structure in both OLR and circulation anomalies in the tropics, similar to that associated with the Madden-Julian oscillation. The dipole is also related to a teleconnection pattern extended along the South Pacific between Australia and South America. Conversely, the dipole activity on the 10-30-day band does not seem to be associated with tropical convection anomalies. The corresponding circulation anomalies exhibit, in the extratropics, the structure of Rossby-like wave trains, although their sources are not completely clear.
Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.
1995-04-11
A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.
Han, Pei-pei; Shen, Shi-gang; Jia, Shi-ru; Wang, Hui-yan; Zhong, Cheng; Tan, Zhi-lei; Lv, He-xin
2015-07-01
Filamentous Nostoc flagelliforme form colloidal complex, with beaded cells interacting with other bacteria embedded in the complex multilayer sheath. However, the species of bacteria in the sheath and the interaction between N. flagelliforme and associated bacteria remain unclear. In this study, PCR-denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial communities of N. flagelliforme from three regions of China. DGGE patterns showed variations in all samples, exhibiting 25 discrete bands with various intensities. The diversity index analysis of bands profiles suggested the high similarity of bacterial communities to each other but also the dependence of microbial composition on each location. Phylogenetic affiliation indicated that the majority of the sequences obtained were affiliated with Actinobacteria, Cyanobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, of which Cyanobacteria was dominant, followed the Proteobacteria. Members of the genus Nostoc were the most abundant in all samples. Rhizobiales and Actinobacteria were identified, whereas, Craurococcus, Caulobacter, Pseudomonas, Terriglobus and Mucilaginibacter were also identified at low levels. Through comparing the bacterial composition of N. flagelliforme from different regions, it was revealed that N. flagelliforme could facilitate the growth of other microorganisms including both autotrophic bacteria and heterotrophic ones and positively contributed to their harsh ecosystems. The results indicated N. flagelliforme played an important role in diversifying the microbial community composition and had potential application in soil desertification.
Esterase Isoenzyme Profiles in Acute and Chronic Leukemias.
Drexler, H G; Gignac, S M; Hoffbrand, A V; Minowada, J
1991-01-01
Using isoelectric focusing (IEF) a number of carboxylic esterase isoenzymes (EC 3.1.1.1) with isoelectric points between pH 4.5-8.0 can be separated. One particular isoenzyme with an isoelectric point at about pH 6.0, the Mono-band, can be selectively and completely inhibited by sodium fluoride; this isoenzyme comprises a number of closely related subcomponents and may appear in more than one band on the gel. We analyzed the expression of typical esterase isoenzyme patterns in cells from a large panel of leukemias which were tested under identical conditions by IEF on horizontal thin-layer polyacrylamide gels with an ampholyte of pH 2-11. The 442 cases of acute and chronic myeloid and lymphoid leukemia (AML/AMMoL, CML/CMML, ALL, CLL) were classified according to clinical, morpho-cytochemical and immunophenotyping criteria. While bands between pH 4.5-5.5 appeared not to be specific for lineage or stage of differentiation, isoenzymes between pH 6.6-7.7 provided information on the type of leukemia involved. Seven typical isoenzyme patterns termed Mono1/Mono2 (fo monocyte-associated), My1/My2 (myeloid), Lym1/Lym2 (lymphoid) and Und (undifferentiated) could be discerned. Lym and Und patterns are characterized by fewer bands with a weaker staining intensity than Mono and My patterns. Nearly all cases of lymphoid leukemias (acute and chronic) expressed only Lym or Und esterase isoenzyme patterns, but no Mono or My patterns. Cases of acute or chronic myeloid and (myelo)monocytic leukemia showed strong isoenzyme staining displaying predominantly Mono or My isoenzyme patterns. The isoenzyme patterns found in CML in lymphoid or myeloid blast crisis corresponded to those seen in the respective acute leukemias, ALL or AML. The Mono-band was found in most cases of leukemias with monocytic elements (AMMoL 80%, CML 44%, CMML 100%), in the occasional case of CML-myeloid blast crisis or AML, but in none of the cases of ALL or CLL. This isoenzyme is a distinctive, specific marker for leukemias of monocytic origin and is of discriminatory value for the differentiation of monocytic from non-monocytic leukemia variants. Esterase isoenzyme profiles can give additional evidence on the origin and stage of differentiation of leukemic cells.
NASA Astrophysics Data System (ADS)
Huerta-Aguilar, Carlos Alberto; Thangarasu, Pandiyan; Mora, Jesús Gracia
2018-04-01
Copper complexes of N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,2-diaminoethane (L1) and N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,3-diaminopropane (L2) prepared were characterized completely by different analytical methods. The X-structure of the complexes shows that Cu(II) presents in trigonal bi-pyramidal (TBP) geometry, consisting with the electronic spectra where two visible bands corresponding to five coordinated structure were observed. Thus TD-DFT was used to analyze the orbital contribution to the electronic transitions for the visible bands. Furthermore, the interaction of cysteine with the complexes was spectrally studied, and the results were explained through DFT analysis, observing that the geometrical parameters and oxidation state of metal ions play a vital role in the binding of cysteine with copper ion. It appears that the TBP structure is being changed into octahedral geometry during the addition of cysteine to the complexes as two bands (from complex) is turned to a broad band in visible region, signifying the occupation of cysteine molecule at sixth position of octahedral geometry. In the molecular orbital analysis, the existence of a strong overlapping of HOMOs (from cysteine) with LUMOs of Cu ion was observed. The total energy of the systems calculated by DFT shows that cysteine binds favorably with copper (I) than that with Cu(II).
NASA Astrophysics Data System (ADS)
Tukhvatullin, F. H.; Jumabaev, A.; Tashkenbaev, U. N.; Hushvaktov, H. A.; Absanov, A. A.
2002-11-01
For liquid ethylacetate the frequency maximums for parallel (I|| (v)) and perpendicular (I\\highmod(v)) polarized components of C=O vibrations band in Raman spectra are differed on 5.3 cm-1. At dilution ethylacetate in CCl4 and heptane or heating in this difference is decreased by displacement of I|| (v) maximum to the I\\highmod(v) maximum. In polar solvent, nitrometane, the picture is different - the frequency maxima difference is decreased though the displacement of I\\highmod(v) band maximum to the I|| (v)one. The results were explained by the complexity of C=O vibration bands, and existence within the band of two lines with the different depolarization ratio. The complexity of the band is the result existence in liquid ethylacetate the monomer molecules and molecular aggregations.
Yu, Meichen; Engels, Marjolein M A; Hillebrand, Arjan; van Straaten, Elisabeth C W; Gouw, Alida A; Teunissen, Charlotte; van der Flier, Wiesje M; Scheltens, Philip; Stam, Cornelis J
2017-05-01
Although frequency-specific network analyses have shown that functional brain networks are altered in patients with Alzheimer's disease, the relationships between these frequency-specific network alterations remain largely unknown. Multiplex network analysis is a novel network approach to study complex systems consisting of subsystems with different types of connectivity patterns. In this study, we used magnetoencephalography to integrate five frequency-band specific brain networks in a multiplex framework. Previous structural and functional brain network studies have consistently shown that hub brain areas are selectively disrupted in Alzheimer's disease. Accordingly, we hypothesized that hub regions in the multiplex brain networks are selectively targeted in patients with Alzheimer's disease in comparison to healthy control subjects. Eyes-closed resting-state magnetoencephalography recordings from 27 patients with Alzheimer's disease (60.6 ± 5.4 years, 12 females) and 26 controls (61.8 ± 5.5 years, 14 females) were projected onto atlas-based regions of interest using beamforming. Subsequently, source-space time series for both 78 cortical and 12 subcortical regions were reconstructed in five frequency bands (delta, theta, alpha 1, alpha 2 and beta band). Multiplex brain networks were constructed by integrating frequency-specific magnetoencephalography networks. Functional connections between all pairs of regions of interests were quantified using a phase-based coupling metric, the phase lag index. Several multiplex hub and heterogeneity metrics were computed to capture both overall importance of each brain area and heterogeneity of the connectivity patterns across frequency-specific layers. Different nodal centrality metrics showed consistently that several hub regions, particularly left hippocampus, posterior parts of the default mode network and occipital regions, were vulnerable in patients with Alzheimer's disease compared to control subjects. Of note, these detected vulnerable hubs in Alzheimer's disease were absent in each individual frequency-specific network, thus showing the value of integrating the networks. The connectivity patterns of these vulnerable hub regions in the patients were heterogeneously distributed across layers. Perturbed cognitive function and abnormal cerebrospinal fluid amyloid-β42 levels correlated positively with the vulnerability of the hub regions in patients with Alzheimer's disease. Our analysis therefore demonstrates that the magnetoencephalography-based multiplex brain networks contain important information that cannot be revealed by frequency-specific brain networks. Furthermore, this indicates that functional networks obtained in different frequency bands do not act as independent entities. Overall, our multiplex network study provides an effective framework to integrate the frequency-specific networks with different frequency patterns and reveal neuropathological mechanism of hub disruption in Alzheimer's disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Gaohua; Department of Applied Physics and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082; Luo, Ning
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands showmore » rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.« less
Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires
NASA Astrophysics Data System (ADS)
Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q.
2015-09-01
We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.
Variations in Paper Electrophoretic Serum Lipoprotein Patterns in Healthy Subjects
Buckley, G. C.; Little, J. A.; Csima, A.
1970-01-01
The normal variations in the paper electrophoretic lipoprotein patterns in 240 healthy Canadian males and females, aged 10 to 59 years, have been described and compared with serum cholesterol and triglyceride levels. The incidence of abnormal chylomicra, beta and pre-beta lipoproteins was similar in both sexes and increased with age in both sexes. Chylomicron bands and/or pre-beta trails from the origin occurred in 4% of subjects, pre-beta bands in 27% and “abnormally” dense beta bands in 28%. Five per cent of subjects were considered to have definite hyperlipoproteinemia, another 19% had slight and 21% had questionable hyperlipoproteinemia. Fifty-five per cent were normal. PMID:5538493
Schnell, R J; Ronning, C M; Knight, R J
1995-02-01
Twenty-five accessions of mango were examined for random amplified polymorphic DNA (RAPD) genetic markers with 80 10-mer random primers. Of the 80 primers screened, 33 did not amplify, 19 were monomorphic, and 28 gave reproducible, polymorphic DNA amplification patterns. Eleven primers were selected from the 28 for the study. The number of bands generated was primer- and genotype-dependent, and ranged from 1 to 10. No primer gave unique banding patterns for each of the 25 accessions; however, ten different combinations of 2 primer banding patterns produced unique fingerprints for each accession. A maternal half-sib (MHS) family was included among the 25 accessions to see if genetic relationships could be detected. RAPD data were used to generate simple matching coefficients, which were analyzed phenetically and by means of principal coordinate analysis (PCA). The MHS clustered together in both the phenetic and the PCA while the randomly selected accessions were scattered with no apparent pattern. The uses of RAPD analysis for Mangifera germ plasm classification and clonal identification are discussed.
Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J.; Anderson, William S.
2015-01-01
Objective The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the 70 – 110 Hz high frequency band across micro-domains sampled by such micro-electrode arrays. Approach We used 7 complex partial seizures recorded from 4 patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a directed transfer function measure. Main results We showed that a directed transfer function can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical seizure onset zone and the time from seizure onset, ictal propagation changed in directional characteristics over a 2 to 10 seconds time scale, with gross directionality limited to spatial dimensions of approximately 9mm2. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined seizure onset zone than inside. Significance This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices. PMID:26061006
Hydrogen-related complexes in Li-diffused ZnO single crystals
NASA Astrophysics Data System (ADS)
Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.
2016-07-01
Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>1019 cm-3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm-1, attributed to surface O-H species. When Li2CO3 is used, a structured blue luminescence band and O-H mode at 3327 cm-1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy-hydrogen complex, with an acceptor level ˜0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.
Sánchez Herrera, Melissa; Kuhn, William R; Lorenzo-Carballa, Maria Olalla; Harding, Kathleen M; Ankrom, Nikole; Sherratt, Thomas N; Hoffmann, Joachim; Van Gossum, Hans; Ware, Jessica L; Cordero-Rivera, Adolfo; Beatty, Christopher D
2015-01-01
The study of color polymorphisms (CP) has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI). Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these "wingforms" do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this polymorphism, and the potential evolutionary mechanisms that could maintain it.
Harding, Kathleen M.; Ankrom, Nikole; Sherratt, Thomas N.; Hoffmann, Joachim; Van Gossum, Hans; Ware, Jessica L.; Cordero-Rivera, Adolfo
2015-01-01
The study of color polymorphisms (CP) has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI). Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these “wingforms” do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this polymorphism, and the potential evolutionary mechanisms that could maintain it. PMID:25923455
Silva, A P; Haddad, C F; Kasahara, S
1999-01-01
We studied ten specimens of Physalaemus cuvieri collected at different localities in Brazil using conventional staining and banding techniques. All specimens had 2n = 22. There were karyotypic variants: distinct patterns in the number and chromosome localization of Ag-NORs as well as in the corresponding secondary constrictions. Preliminary C-banding patterns obtained for specimens from two localities are also suggestive of karyotypic differentiation in P. cuvieri.
W-band EPR of vanadyl complexes aggregates on the surface of Al2O3
NASA Astrophysics Data System (ADS)
Mamin, G.; Gafurov, M.; Galukhin, A.; Gracheva, I.; Murzakhanov, F.; Rodionov, A.; Orlinskii, S.
2018-05-01
Structural characterization of metalloporphyrins, asphaltenes and their aggregates in complex systems such as native hydrocarbons is in the focus of scientific and industrial interests since many years. We present W-band (95 GHz) electron paramagnetic resonance (EPR) study in the magnetic field of about 3.4 T and temperature of 100 K for Karmalinskoe oil, asphaltens and asphaltenes deposited on the surface of Al2O3. Features of the obtained spectra are described. Shift to the higher frequencies allows to separate spectrally the contributions from paramagnetic complexes of different origin and define the EPR parameters more accurately comparing to the conventional X-band (9 GHz). Changes of the EPR parameters are tracked. We suggest that the proposed approach can be used for the investigation of structure of vanadyl complexes aggregates in crude oil and their fractions.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves.
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-03-22
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-01-01
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206
NASA Technical Reports Server (NTRS)
Seaver, E. C.; Paulson, D. A.; Irvine, S. Q.; Martindale, M. Q.
2001-01-01
We are interested in understanding whether the annelids and arthropods shared a common segmented ancestor and have approached this question by characterizing the expression pattern of the segment polarity gene engrailed (en) in a basal annelid, the polychaete Chaetopterus. We have isolated an en gene, Ch-en, from a Chaetopterus cDNA library. Genomic Southern blotting suggests that this is the only en class gene in this animal. The predicted protein sequence of the 1.2-kb cDNA clone contains all five domains characteristic of en proteins in other taxa, including the en class homeobox. Whole-mount in situ hybridization reveals that Ch-en is expressed throughout larval life in a complex spatial and temporal pattern. The Ch-en transcript is initially detected in a small number of neurons associated with the apical organ and in the posterior portion of the prototrochophore. At later stages, Ch-en is expressed in distinct patterns in the three segmented body regions (A, B, and C) of Chaetopterus. In all segments, Ch-en is expressed in a small set of segmentally iterated cells in the CNS. In the A region, Ch-en is also expressed in a small group of mesodermal cells at the base of the chaetal sacs. In the B region, Ch-en is initially expressed broadly in the mesoderm that then resolves into one band/segment coincident with morphological segmentation. The mesodermal expression in the B region is located in the anterior region of each segment, as defined by the position of ganglia in the ventral nerve cord, and is involved in the morphogenesis of segment-specific feeding structures late in larval life. We observe banded mesodermal and ectodermal staining in an anterior-posterior sequence in the C region. We do not observe a segment polarity pattern of expression of Ch-en in the ectoderm, as is observed in arthropods. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd
2016-09-01
Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M = Mo, W; X = S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.
CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis
Skinner, Owen S.; Do Vale, Luis H. F.; Catherman, Adam D.; Havugimana, Pierre C.; Valle de Sousa, Marcelo; Domont, Gilberto B.; Kelleher, Neil L.; Compton, Philip D.
2016-01-01
Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses. PMID:26967310
Nieves, Mariela; De Oliveira, Edivaldo H C; Amaral, Paulo J S; Nagamachi, Cleusa Y; Pieczarka, Julio C; Mühlmann, María C; Mudry, Marta D
2011-04-01
The karyotype of the neotropical primate genus Cebus (Platyrrhini: Cebidae), considered the most ancestral one, shows the greatest amount of heterochromatin described among Platyrrhini genera. Banding techniques and restriction enzyme digestion have previously revealed great variability of quantity and composition of heterochromatin in this genus. In this context, we use fluorescence in situ hybridization (FISH) to analyse this genomic region and discuss its possible role in the diversification of Cebus.We used a heterochromatin probe for chromosome 11 of Cebus libidinosus (11qHe+ CLI probe), obtained by chromosome microdissection. Twenty-six specimens belonging to the families Atelidae, Cebidae, Callitrichidae and Pithecidae (Platyrrhini) were studied. Fourteen out of 26 specimens were Cebus (Cebidae) individuals of C. libidinosus, C. xanthosternos, C. apella, C. nigritus, C. albifrons, C. kaapori and C. olivaceus. In Cebus specimens, we found 6 to 22 positive signals located in interstitial and telomeric positions along the different species. No hybridization signal was observed among the remaining Ceboidea species, thus reinforcing the idea of a Cebus-specific heterochromatin composed of a complex system of repetitive sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samollow, P.B.; Ford, A.L.; VandeBerg, J.L.
1987-01-01
Expression of X-linked glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase-A (PGK-A) in the Virginia opossum (Didelphis virginiana) was studied electrophoretically in animals from natural populations and those produced through controlled laboratory crosses. Blood from most of the wild animals exhibited a common single-banded phenotype for both enzymes. Rare variant animals, regardless of sex, exhibited single-banded phenotypes different in mobility from the common mobility class of the respective enzyme. The laboratory crosses confirmed the allelic basis for the common and rare phenotypes. Transmission of PGK-A phenotypes followed the pattern of determinate (nonrandom) inactivation of the paternally derived Pgk-A allele, and transmission ofmore » G6PD also was consistent with this pattern. A survey of tissue-specific expression of G6PD phenotypes of heterozygous females revealed, in almost all tissues, three-banded patterns skewed in favor of the allele that was expressed in blood cells. Three-banded patterns were never observed in males or in putatively homozygous females. These patterns suggest simultaneous, but unequal, expression of the maternally and paternally derived Gpd alleles within individual cells. The absence of such partial expression was noted in a parallel survey of females heterozygous at the Pgd-A locus. Thus, it appears that Gpd and Pgk-A are X-linked in D. virginiana and subject to preferential paternal allele inactivation, but that dosage compensation may not be complete for all paternally derived X-linked genes.« less
CPM Signals for Satellite Navigation in the S and C Bands.
Xue, Rui; Sun, Yanbo; Zhao, Danfeng
2015-06-05
Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands' demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes.
Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon
NASA Astrophysics Data System (ADS)
Ferdous, Naheed; Ertekin, Elif
2018-05-01
Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.
Space Radar Image of Colorado River
NASA Technical Reports Server (NTRS)
1994-01-01
This space radar image illustrates the recent rapid urban development occurring along the lower Colorado River at the Nevada/Arizona state line. Lake Mojave is the dark feature that occupies the river valley in the upper half of the image. The lake is actually a reservoir created behind Davis Dam, the bright white line spanning the river near the center of the image. The dam, completed in 1953, is used both for generating electric power and regulating the river's flow downstream. Straddling the river south of Davis Dam, shown in white and bright green, are the cities of Laughlin, Nevada (west of the river) and Bullhead City, Arizona (east of the river). The runway of the Laughlin, Bullhead City Airport is visible as a dark strip just east of Bullhead City. The area has experienced rapid growth associated with the gambling industry in Laughlin and on the Fort Mojave Indian Reservation to the south. The community of Riviera is the bright green area in a large bend of the river in the lower left part of the image. Complex drainage patterns and canyons are the dark lines seen throughout the image. Radar is a useful tool for studying these patterns because of the instrument's sensitivity to roughness, vegetation and subtle topographic differences. This image is 50 kilometers by 35 kilometers (31 miles by 22 miles) and is centered at 35.25 degrees north latitude, 114.67 degrees west longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 13, 1994, onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Office of Mission to Planet Earth.
From lattice Hamiltonians to tunable band structures by lithographic design
NASA Astrophysics Data System (ADS)
Tadjine, Athmane; Allan, Guy; Delerue, Christophe
2016-08-01
Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.
Goncharov, Fedor P.; Zhimulev, Igor F.
2018-01-01
Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila. PMID:29659604
A Novel Design of Frequency Reconfigurable Antenna for UWB Application
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao
2016-09-01
In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.
The use of isoelectric focusing to identify rhinoceros keratins.
Butler, D J; De Forest, P R; Kobilinsky, L
1990-03-01
Keratins represent the principal structural proteins of hair. They are also found in horn, nail, claw, hoof, and feather. Hair and nail samples from human and canine sources and hair samples from mule deer, white tail deer, cat, moose, elk, antelope, caribou, raccoon, and goat were studied. Parrot and goose feathers were also analyzed. Keratins are polymorphic, and species differences are known to exist. Proteinaceous extracts of deer and antelope antlers and bovine and rhinoceros horn were prepared by solubilizing 10 mg of horn sample in 200 microL of a solution containing 12M urea, 74mM Trizma base, and 78mM dithiothreitol (DTT). Extraction took place over a 48-h period. A 25-microL aliquot of extract was removed and incubated with 5 microL of 0.1 M DTT for 10 min at 25 degrees C. Keratins were then separated by isoelectric focusing (IEF) on 5.2% polyacrylamide gels for 3 h and visualized using silver staining. At least 20 bands could be observed for each species studied. However, band patterns differed in the position of each band, in the number of bands, and in band coloration resulting from the silver staining process. Horn from two species of rhinoceros was examined. For both specimens, most bands occurred in the pH range of 4 to 5. Although similar patterns for both species were observed, they differed sufficiently to differentiate one from the other. As might be expected, the closer two species are related phylogenetically, the greater the similarity in the IEF pattern produced from their solubilized keratin.(ABSTRACT TRUNCATED AT 250 WORDS)
Devi, P Lekshmi; Cicy, P J; Thambi, Renu; Poothiode, Usha
2015-01-01
Amniotic band sequence (ABS) includes a wide spectrum of abnormalities resulting from entrapment of various fetal parts from a disrupted amnion, ranging from a mere constriction ring affecting a finger to a fatal form called limb body wall complex (LBWC). Reported cases of ABS with LBWC are very few. The spectrum of anomalies depends on which part gets entrapped and at what point of gestation. Hence, the clinical presentation can be extremely variable. Early detection of such cases using sonology is really challenging due to the small size of the fibrotic bands. Here, we present a case of amniotic band syndrome with LBWC in a fetus at 24 weeks of gestation, which was referred for an autopsy. The fetus also showed scoliosis, gastroschisis, lumbosacral meningocele, congenital talipes equinovarus, and cleft palate, thus having features of placenta cranial and placenta abdominal phenotype which is very rare.
Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity
Thompson, Garth John; Pan, Wen-Ju
2015-01-01
Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC). The relationship between neural activity and dynamic rsfMRI was tested under three anesthetic states in rats: dexmedetomidine and high and low doses of isoflurane. Under dexmedetomidine, the lightest anesthetic, infraslow electrophysiology correlated with QPP but not SWC, whereas band-limited power in higher frequencies correlated with SWC but not QPP. Results were similar under isoflurane; however, the QPP was also correlated to band-limited power, possibly due to the burst-suppression state induced by the anesthetic agent. The results provide additional support for the hypothesis that the two types of dynamic rsfMRI are linked to different frequencies of neural activity, but isoflurane anesthesia may make this relationship more complicated. Understanding which neural frequency bands appear as particular dynamic patterns in rsfMRI may ultimately help isolate components of the rsfMRI signal that are of interest to disorders such as schizophrenia and attention deficit disorder. PMID:26041826
NASA Astrophysics Data System (ADS)
Porta, Alberto; Bari, Vlasta; Ranuzzi, Giovanni; De Maria, Beatrice; Baselli, Giuseppe
2017-09-01
We propose a multiscale complexity (MSC) method assessing irregularity in assigned frequency bands and being appropriate for analyzing the short time series. It is grounded on the identification of the coefficients of an autoregressive model, on the computation of the mean position of the poles generating the components of the power spectral density in an assigned frequency band, and on the assessment of its distance from the unit circle in the complex plane. The MSC method was tested on simulations and applied to the short heart period (HP) variability series recorded during graded head-up tilt in 17 subjects (age from 21 to 54 years, median = 28 years, 7 females) and during paced breathing protocols in 19 subjects (age from 27 to 35 years, median = 31 years, 11 females) to assess the contribution of time scales typical of the cardiac autonomic control, namely in low frequency (LF, from 0.04 to 0.15 Hz) and high frequency (HF, from 0.15 to 0.5 Hz) bands to the complexity of the cardiac regulation. The proposed MSC technique was compared to a traditional model-free multiscale method grounded on information theory, i.e., multiscale entropy (MSE). The approach suggests that the reduction of HP variability complexity observed during graded head-up tilt is due to a regularization of the HP fluctuations in LF band via a possible intervention of sympathetic control and the decrement of HP variability complexity observed during slow breathing is the result of the regularization of the HP variations in both LF and HF bands, thus implying the action of physiological mechanisms working at time scales even different from that of respiration. MSE did not distinguish experimental conditions at time scales larger than 1. Over a short time series MSC allows a more insightful association between cardiac control complexity and physiological mechanisms modulating cardiac rhythm compared to a more traditional tool such as MSE.
Yurduseven, Okan; Marks, Daniel L; Fromenteze, Thomas; Smith, David R
2018-03-05
We present a reconfigurable, dynamic beam steering holographic metasurface aperture to synthesize a microwave camera at K-band frequencies. The aperture consists of a 1D printed microstrip transmission line with the front surface patterned into an array of slot-shaped subwavelength metamaterial elements (or meta-elements) dynamically tuned between "ON" and "OFF" states using PIN diodes. The proposed aperture synthesizes a desired radiation pattern by converting the waveguide-mode to a free space radiation by means of a binary modulation scheme. This is achieved in a holographic manner; by interacting the waveguide-mode (reference-wave) with the metasurface layer (hologram layer). It is shown by means of full-wave simulations that using the developed metasurface aperture, the radiated wavefronts can be engineered in an all-electronic manner without the need for complex phase-shifting circuits or mechanical scanning apparatus. Using the dynamic beam steering capability of the developed antenna, we synthesize a Mills-Cross composite aperture, forming a single-frequency all-electronic microwave camera.
Large Scale Frequent Pattern Mining using MPI One-Sided Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnu, Abhinav; Agarwal, Khushbu
In this paper, we propose a work-stealing runtime --- Library for Work Stealing LibWS --- using MPI one-sided model for designing scalable FP-Growth --- {\\em de facto} frequent pattern mining algorithm --- on large scale systems. LibWS provides locality efficient and highly scalable work-stealing techniques for load balancing on a variety of data distributions. We also propose a novel communication algorithm for FP-growth data exchange phase, which reduces the communication complexity from state-of-the-art O(p) to O(f + p/f) for p processes and f frequent attributed-ids. FP-Growth is implemented using LibWS and evaluated on several work distributions and support counts. Anmore » experimental evaluation of the FP-Growth on LibWS using 4096 processes on an InfiniBand Cluster demonstrates excellent efficiency for several work distributions (87\\% efficiency for Power-law and 91% for Poisson). The proposed distributed FP-Tree merging algorithm provides 38x communication speedup on 4096 cores.« less
Local pH oscillations witness autocatalytic self-organization of biomorphic nanostructures
NASA Astrophysics Data System (ADS)
Montalti, M.; Zhang, G.; Genovese, D.; Morales, J.; Kellermeier, M.; García-Ruiz, J. M.
2017-02-01
Bottom-up self-assembly of simple molecular compounds is a prime pathway to complex materials with interesting structures and functions. Coupled reaction systems are known to spontaneously produce highly ordered patterns, so far observed in soft matter. Here we show that similar phenomena can occur during silica-carbonate crystallization, the emerging order being preserved. The resulting materials, called silica biomorphs, exhibit non-crystallographic curved morphologies and hierarchical textures, much reminiscent of structural principles found in natural biominerals. We have used a fluorescent chemosensor to probe local conditions during the growth of such self-organized nanostructures. We demonstrate that the pH oscillates in the local microenvironment near the growth front due to chemical coupling, which becomes manifest in the final mineralized architectures as intrinsic banding patterns with the same periodicity. A better understanding of dynamic autocatalytic crystallization processes in such simple model systems is key to the rational development of advanced materials and to unravel the mechanisms of biomineralization.
Morphology and innervation of the vestibular lagena in pigeons
Mridha, Zakir; Wu, Le-Qing; Dickman, J. David
2012-01-01
The morphological characteristics of the pigeon lagena were examined using histology, scanning electron microscopy, and biotinylated dextran amine (BDA) neural tracers. The lagena epithelium was observed to lie partially in a parasagittal plane, but was also U-shaped with orthogonal (lateral) directed tips. Hair cell planar polarities were oriented away from a central reversal line that ran nearly the length of the epithelium. Similar to the vertebrate utricle and saccule, three afferent classes were observed based upon their terminal innervation pattern, which include calyx, dimorph, and bouton fibers. Calyx and dimorph afferents innervated the striola region of the lagena, while bouton afferents innervated the extrastriola and a small region of the central striola known as the type II band. Calyx units had large calyceal terminal structures that innervated only type I hair cells. Dimorph afferents innervated both type I and II hair cells, with calyx and bouton terminals. Bouton afferents had the largest most complex innervation patterns and the greatest terminal areas contacting many hair cells. PMID:22387112
Near bottom velocity and suspended solids measurements in San Francisco Bay, California
Gartner, Jeffrey W.; Cheng, Ralph T.; Cacchione, David A.; Tate, George B.
1997-01-01
Ability to accurately measure long-term time-series of turbulent mean velocity distribution within the bottom boundary layer (BBL) in addition to suspended solids concentration (SSC) is critical to understanding complex processes controlling transport, resuspension, and deposition of suspended sediments in bays and estuaries. A suite of instruments, including broad band acoustic Doppler current profilers (BB-ADCPs), capable of making very high resolution measurement of velocity profiles in the BBL, was deployed in the shipping channel of South San Francisco Bay (South Bay), California in an investigation of sediment dynamics during March and April 1995. Results of field measurements provide information to calculate suspended solids flux (SSF) at the site. Calculations show striking patterns; residual SSF varies through the spring-neap tidal cycle. Significant differences from one spring tide to another are caused by differences in tidal current diurnal inequalities. Winds from significant storms establish residual circulation patterns that may affect magnitude of residual SSF more than increased tidal energy at spring tides.
Selen, L. P. J.; Medendorp, W. P.
2014-01-01
Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion. PMID:25505108
Wang, Jia-Chi; Boyar, Fatih Z
2016-01-01
Chromosomal microarray analysis (CMA) has been recommended and practiced routinely in the large reference laboratories of U.S.A. as the first-tier test for the postnatal evaluation of individuals with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. Using CMA as a diagnostic tool and without a routine setting of fluorescence in situ hybridization with labeled bacterial artificial chromosome probes (BAC-FISH) in the large reference laboratories becomes a challenge in the characterization of chromosome 9 pericentric region. This region has a very complex genomic structure and contains a variety of heterochromatic and euchromatic polymorphic variants. These variants were usually studied by G-banding, C-banding and BAC-FISH analysis. Chromosomal microarray analysis (CMA) was not recommended since it may lead to false positive results. Here, we presented a cohort of four cases, in which high-resolution CMA was used as the first-tier test or simultaneously with G-banding analysis on the proband to identify pathogenic copy number variants (CNVs) in the whole genome. CMA revealed large pathogenic CNVs from chromosome 9 in 3 cases which also revealed different G-banding patterns between the two chromosome 9 homologues. Although we demonstrated that high-resolution CMA played an important role in the identification of pathogenic copy number variants in chromosome 9 pericentric regions, the lack of BAC-FISH analysis or other useful tools renders significant challenges in the characterization of chromosome 9 pericentric regions. None; it is not a clinical trial, and the cases were retrospectively collected and analyzed.
Volchkov, Valery V; Ivanov, Vladimir L; Uzhinov, Boris M
2011-03-01
The LE band fluorescence enhancement of p-N,N-dimethylaminobenzoic acid (DMABA) and p-N,N-dimethylaminobenzonitrile (DMABN) was found in aprotic acetonitrile and butyronitrile at the addition of LaCl(3). The corresponding ICT fluorescence band remains unchanged. This enhancement is explained by the decrease of the internal conversion rate constant in a coordination complex with LaCl(3). The formation of the coordination complex between DMABA and LaCl(3) in ethanol is accompanied by the efficient fluorescence quenching in LE and ICT bands, in parallel with the enhancement of ICT/LE emission ratio. The experimental data are well described by the proposed kinetic schemes. © Springer Science+Business Media, LLC 2010
Characterization of a major 31-kilodalton peptidoglycan-bound protein of Legionella pneumophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, C.A.; Hoffman, P.S.
1990-05-01
A 31-kilodalton (kDa) protein was solubilized from the peptidoglycan (PG) fraction of Legionella pneumophila after treatment with either N-acetylmuramidase from the fungus Chalaropsis sp. or with mutanolysin from Streptomyces globisporus. The protein exhibited a ladderlike banding pattern by autoradiography when radiolabeled ((35S)cysteine or (35S)methionine) PG material was extensively treated with hen lysozyme. The banding patterns ranging between 31 and 45 kDa and between 55 and 60 kDa resolved as a single 31-kDa protein when the material was subsequently treated with N-acetylmuramidase. Analysis of the purified 31-kDa protein for diaminopimelic acid by gas chromatography revealed 1 mol of diaminopimelic acid permore » mol of protein. When outer membrane PG material containing the major outer membrane porin protein was treated with N-acetylmuramidase or mutanolysin, both the 28.5-kDa major outer membrane protein and the 31-kDa protein were solubilized from the PG material under reducing conditions. In the absence of 2-mercaptoethanol, a high-molecular-mass complex (100 kDa) was resolved. The results of this study indicate that a 31-kDa PG-bound protein is a major component of the cell wall of L. pneumophila whose function may be to anchor the major outer membrane protein to PG. Finally, a survey of other Legionella species and other serogroups of L. pneumophila suggested that PG-bound proteins may be a common feature of this genus.« less
Movement sense determination in sheared rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, C.
1985-01-01
Deformation within fault zones produces sheared rocks that range from cataclasites at high structural level, to mylonites and mylonitic gneiss at deeper levels. These rocks are easily recognized and mapped in the field and the strike and dip of the fault zone established. However, present-day geometry of the fault zone does not necessarily indicate relative motion - a zone dipping at 15/sup 0/ could represent a listric normal, thrust, oblique-slip or tilted strike-slip fault. Where offset stratigraphic or lithological markers are absent, the movement sense may be determined from meso- and micro-structural features within the sheared rocks. Of prime importancemore » is the orientation of mineral elongation or stretching lineations which record the finite X direction of strain in the rock; this direction approaches the bulk movement direction with increase in strain. At mesoscopic scale the most reliable shear sense indicators are shear bands and associated features. Use of fold vergence requires caution. On a micro-structural scale, shear bands, mica fish, microfolds, rotated grains, asymmetrical augen structure and fiber growth patterns all give reliable results. Thin sections should be cut parallel to lineation and perpendicular to foliation in order to view maximum rotational component. Asymmetry of crystallographic fabric patterns gives consistent results in zones of relatively simple movement history. For high confidence shear sense determination, all structural elements should be internally consistent. If inconsistency occurs this may indicate a complex, multidirectional movement history for the fault zone.« less
NASA Astrophysics Data System (ADS)
Khalifa, Aly A.; Aly, Hussein A.; El-Sherif, Ashraf F.
2016-02-01
Near infrared (NIR) dynamic scene projection systems are used to perform hardware in-the-loop (HWIL) testing of a unit under test operating in the NIR band. The common and complex requirement of a class of these units is a dynamic scene that is spatio-temporal variant. In this paper we apply and investigate active external modulation of NIR laser in different ranges of temporal frequencies. We use digital micromirror devices (DMDs) integrated as the core of a NIR projection system to generate these dynamic scenes. We deploy the spatial pattern to the DMD controller to simultaneously yield the required amplitude by pulse width modulation (PWM) of the mirror elements as well as the spatio-temporal pattern. Desired modulation and coding of high stable, high power visible (Red laser at 640 nm) and NIR (Diode laser at 976 nm) using the combination of different optical masks based on DMD were achieved. These spatial versatile active coding strategies for both low and high frequencies in the range of kHz for irradiance of different targets were generated by our system and recorded using VIS-NIR fast cameras. The temporally-modulated laser pulse traces were measured using array of fast response photodetectors. Finally using a high resolution spectrometer, we evaluated the NIR dynamic scene projection system response in terms of preserving the wavelength and band spread of the NIR source after projection.
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H–SiC
NASA Astrophysics Data System (ADS)
Igumbor, E.; Olaniyan, O.; Mapasha, R. E.; Danga, H. T.; Omotoso, E.; Meyer, W. E.
2018-05-01
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H–SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H–SiC are presented. We explore complexes where substitutional N/N or B/B sits near a Si (V) or C (V) vacancy to form vacancy-complexes (NV, NV, NV, NV, BV, BV, BV and BV). The energies of formation of the N related vacancy-complexes showed the NV to be energetically stable close to the valence band maximum in its double positive charge state. The NV is more energetically stable in the double negative charge state close to the conduction band minimum. The NV on the other hand, induced double donor level and the NV induced a double acceptor level. For B related complexes, the BV and BV were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the BV become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
Changes of multispectral soil patterns with increasing crop canopy
NASA Technical Reports Server (NTRS)
Kristof, S. J.; Baumgardner, M. F.
1972-01-01
Multispectral data and automatic data processing were used to map surface soil patterns and to follow the changes in multispectral radiation from a field of maize (Zea mays L.) during a period from seeding to maturity. Panchromatic aerial photography was obtained in early May 1970 and multispectral scanner missions were flown on May 6, June 30, August 11 and September 5, 1970 to obtain energy measurements in 13 wavelength bands. The orange portion of the visible spectrum was used in analyzing the May and June data to cluster relative radiance of the soils into eight different radiance levels. The reflective infrared spectral band was used in analyzing the August and September data to cluster maize into different spectral categories. The computer-produced soil patterns had a striking similarity to the soil pattern of the aerial photograph. These patterns became less distinct as the maize canopy increased.
Zion-Golumbic, Elana; Kutas, Marta; Bentin, Shlomo
2010-02-01
Prior semantic knowledge facilitates episodic recognition memory for faces. To examine the neural manifestation of the interplay between semantic and episodic memory, we investigated neuroelectric dynamics during the creation (study) and the retrieval (test) of episodic memories for famous and nonfamous faces. Episodic memory effects were evident in several EEG frequency bands: theta (4-8 Hz), alpha (9-13 Hz), and gamma (40-100 Hz). Activity in these bands was differentially modulated by preexisting semantic knowledge and by episodic memory, implicating their different functional roles in memory. More specifically, theta activity and alpha suppression were larger for old compared to new faces at test regardless of fame, but were both larger for famous faces during study. This pattern of selective semantic effects suggests that the theta and alpha responses, which are primarily associated with episodic memory, reflect utilization of semantic information only when it is beneficial for task performance. In contrast, gamma activity decreased between the first (study) and second (test) presentation of a face, but overall was larger for famous than nonfamous faces. Hence, the gamma rhythm seems to be primarily related to activation of preexisting neural representations that may contribute to the formation of new episodic traces. Taken together, these data provide new insights into the complex interaction between semantic and episodic memory for faces and the neural dynamics associated with mnemonic processes.
Bonizzi, I; Buffoni, J N; Feligini, M; Enne, G
2009-10-01
To assess the bacterial biodiversity level in bovine raw milk used to produce Fontina, a Protected Designation of Origin cheese manufactured at high-altitude pastures and in valleys of Valle d'Aosta region (North-western Italian Alps) without any starters. To study the relation between microbial composition and pasture altitude, in order to distinguish high-altitude milk against valley and lowland milk. The microflora from milks sampled at different alpine pasture, valley and lowland farms were fingerprinted by PCR of the 16S-23S intergenic transcribed spacers (ITS-PCR). The resulting band patterns were analysed by generalized multivariate statistical techniques to handle discrete (band presence-absence) and continuous (altitude) information. The fingerprints featured numerous bands and marked variability indicating complex, differentiated bacterial communities. Alpine pasture milks were distinguished from lowland ones by cluster analysis, while this technique less clearly discriminated alpine pasture and valley samples. Generalized principal component analysis and clustering-after-ordination enabled a more effective distinction of alpine pasture, valley and lowland samples. Alpine raw milks for Fontina production contain highly diverse bacterial communities, the composition of which is related to the altitude of the pasture where milk was produced. This research may provide analytical support to the important issue represented by the authentication of the geographical origin of alpine milk productions.
Streck, Martin J.; Broderick, Cindy A.; Thronber, Carl R.; Clynne, Michael A.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
We propose that crystals with no dissolution surfaces are those that were supplied last to the shallow reservoir, whereas plagioclase with increasingly more complex zoning patterns (that is, the number of zoned bands bounded by dissolution surfaces) result from prolonged residency and evolution in the reservoir. We propose that banding and An zoning across multiple bands are primarily a response to thermally induced fluctuations in crystallinity of the magma in combination with recharge; a lesser role is ascribed to cycling crystals through pressure gradients. Crystals without dissolution surfaces, in contrast, could have grown only in response to steady(?) decompression. Some heating-cooling cycles probably postdate the final eruption in 1986. They resulted from small recharge events that supplied new crystals that then experienced resorption-growth cycles. We suggest that magmatic events shortly prior to the current eruption, recorded in the outermost zones of plagioclase phenocrysts, began with the incorporation of acicular orthopyroxene, followed by last resorption, and concluded with crystallization of euhedral rims. Finally, we propose that 2004-5 dacite is composed mostly of dacite magma that remained after 1986 and underwent subsequent magmatic evolution but, more importantly, contains a component of new dacite from deeper in the magmatic system, which may have triggered the new eruption.
Infrared Cephalic-Vein to Assist Blood Extraction Tasks: Automatic Projection and Recognition
NASA Astrophysics Data System (ADS)
Lagüela, S.; Gesto, M.; Riveiro, B.; González-Aguilera, D.
2017-05-01
Thermal infrared band is not commonly used in photogrammetric and computer vision algorithms, mainly due to the low spatial resolution of this type of imagery. However, this band captures sub-superficial information, increasing the capabilities of visible bands regarding applications. This fact is especially important in biomedicine and biometrics, allowing the geometric characterization of interior organs and pathologies with photogrammetric principles, as well as the automatic identification and labelling using computer vision algorithms. This paper presents advances of close-range photogrammetry and computer vision applied to thermal infrared imagery, with the final application of Augmented Reality in order to widen its application in the biomedical field. In this case, the thermal infrared image of the arm is acquired and simultaneously projected on the arm, together with the identification label of the cephalic-vein. This way, blood analysts are assisted in finding the vein for blood extraction, especially in those cases where the identification by the human eye is a complex task. Vein recognition is performed based on the Gaussian temperature distribution in the area of the vein, while the calibration between projector and thermographic camera is developed through feature extraction and pattern recognition. The method is validated through its application to a set of volunteers, with different ages and genres, in such way that different conditions of body temperature and vein depth are covered for the applicability and reproducibility of the method.
Flakus, Henryk T; Michta, Anna
2010-02-04
This Article presents the investigation results of the polarized IR spectra of the hydrogen bond in acetanilide (ACN) crystals measured in the frequency range of the proton and deuteron stretching vibration bands, nu(N-H) and nu(N-D). The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The model of the centrosymmetric dimer of hydrogen bonds postulated by us facilitated the explanation of the well-developed, two-branch structure of the nu(N-H) and nu(N-D) bands as well as the isotopic dilution effects in the spectra. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of ACN crystals, the H/D isotopic "self-organization" effects were revealed. A nonrandom distribution of hydrogen isotope atoms (H or D) in the lattice was deduced from the spectra of isotopically diluted ACN crystals. It was also determined that identical hydrogen isotope atoms occupy both hydrogen bonds in the dimeric systems, where each hydrogen bond belongs to a different chain. A more complex fine structure pattern of nu(N-H) and nu(N-D) bands in ACN spectra in comparison with the spectra of other secondary amides (e.g., N-methylacetamide) can be explained in terms of the "relaxation" theory of the IR spectra of hydrogen-bonded systems.
Grundy, Brian R.
1981-01-01
The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.
Grundy, B.R.
1981-09-29
The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.
Spatial arrangement of faults and opening-mode fractures
NASA Astrophysics Data System (ADS)
Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.
2018-03-01
Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in the subsurface through coupled spatial, size, and pattern analysis.
Black, J A; Waggamon, K A
1992-01-01
An isoelectric focusing method using thin-layer agarose gel has been developed for wheat gliadin. Using flat-bed units with a third electrode, up to 72 samples per gel may be analyzed. Advantages over traditional acid polyacrylamide gel electrophoresis methodology include: faster run times, nontoxic media, and greater sample capacity. The method is suitable for fingerprinting or purity testing of wheat varieties. Using digital images captured by a flat-bed scanner, a 4-band reference system using isoelectric points was devised. Software enables separated bands to be assigned pI values based upon reference tracks. Precision of assigned isoelectric points is shown to be on the order of 0.02 pH units. Captured images may be stored in a computer database and compared to unknown patterns to enable an identification. Parameters for a match with a stored pattern may be adjusted for pI interval required for a match, and number of best matches.
Gray, B.A.; Zori, Roberto T.; McGuire, P.M.; Bonde, R.K.
2002-01-01
Detailed chromosome studies were conducted for the Florida manatee (Trichechus manatus latirostris) utilizing primary chromosome banding techniques (G- and Q-banding). Digital microscopic imaging methods were employed and a standard G-banded karyotype was constructed for both sexes. Based on chromosome banding patterns and measurements obtained in these studies, a standard karyotype and ideogram are proposed. Characterization of additional cytogenetic features of this species by supplemental chromosome banding techniques, C-banding (constitutive heterochromatin), Ag-NOR staining (nucleolar organizer regions), and DA/DAPI staining, was also performed. These studies provide detailed cytogenetic data for T. manatus latirostris, which could enhance future genetic mapping projects and interspecific and intraspecific genomic comparisons by techniques such as zoo-FISH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeletos, T.; Londos, C. A., E-mail: hlontos@phys.uoa.gr; Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk
2016-03-28
Carbon-oxygen-self-interstitial complexes were investigated in silicon by means of Fourier transform infrared spectroscopy. Upon irradiation, the C{sub i}O{sub i} defect (C{sub 3}) forms which for high doses attract self-interstitials (Si{sub I}s) leading to the formation of the C{sub i}O{sub i}(Si{sub I}) defect (C{sub 4}) with two well-known related bands at 939.6 and 1024 cm{sup −1}. The bands are detectable in the spectra both in room temperature (RT) and liquid helium (LH) temperature. Upon annealing at 150 °C, these bands were transformed to three bands at 725, 952, and 973 cm{sup −1}, detectable only at LH temperatures. Upon annealing at 220 °C, these bands weremore » transformed to three bands at 951, 969.5, and 977 cm{sup −1}, detectable both at RT and LH temperatures. Annealing at 280 °C resulted in the transformation of these bands to two new bands at 973 and 1024 cm{sup −1}. The latter bands disappear from the spectra upon annealing at 315 °C without the emergence of other bands in the spectra. Considering reaction kinetics and defect metastability, we developed a model to describe the experimental results. Annealing at 150 °C triggers the capturing of Si{sub I}s by the C{sub 4} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 2} complex. The latter structure appears to be bistable: measuring at LH, the defect is in configuration C{sub i}O{sub i}(Si{sub I}){sub 2} giving rise to the bands at 725, 952, and 973 cm{sup −1}, whereas on measurements at RT, the defect converts to another configuration C{sub i}O{sub i}(Si{sub I}){sub 2}{sup *} without detectable bands in the spectra. Possible structures of the two C{sub i}O{sub i}(Si{sub I}){sub 2} configurations are considered and discussed. Upon annealing at 220 °C, additional Si{sub I}s are captured by the C{sub i}O{sub i}(Si{sub I}){sub 2} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 3} complex, which in turn on annealing at 280 °C converts to the C{sub i}O{sub i}(Si{sub I}){sub 4} complex. The latter defect anneals out at 315 °C, without being accompanied in the spectra by the growth of new bands.« less
Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko
2017-12-28
Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.
Hydrogen-related complexes in Li-diffused ZnO single crystals
Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; ...
2016-07-21
Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li 2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>10 19 cm -3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm -1, attributed to surface O-H species. When Li 2COmore » 3 is used, a structured blue luminescence band and O-H mode at 3327 cm -1 are observed at 10K. These observations, along with positron annihilation measurements, suggest a zinc vacancy–hydrogen complex, with an acceptor level 0.3 eV above the valence-band maximum. In conclusion, this relatively shallow acceptor could be beneficial for p-type ZnO.« less
Old but Still Relevant: High Resolution Electrophoresis and Immunofixation in Multiple Myeloma.
Misra, Aroonima; Mishra, Jyoti; Chandramohan, Jagan; Sharma, Atul; Raina, Vinod; Kumar, Rajive; Soni, Sushant; Chopra, Anita
2016-03-01
High resolution electrophoresis (HRE) and immunofixation (IFX) of serum and urine are integral to the diagnostic work-up of multiple myeloma. Unusual electrophoresis patterns are common and may be misinterpreted. Though primarily the responsibility of the hematopathologist, clinicians who are responsible for managing myelomas may benefit from knowledge of these. In this review article we intend to discuss the patterns and importance of electrophoresis in present day scenario. Patterns of HRE and IFX seen in our laboratory over the past 15 years were studied. Monoclonal proteins are seen on HRE as sharply defined bands, sometimes two, lying from γ- to α-globulin regions on a background of normal, increased or decreased polyclonal γ-globulins, showing HRE to be a rapid and dependable method of detecting M-protein in serum or urine. Immunofixation complements HRE and due to its greater sensitivity, is able to pick up small or light chain bands, not apparent on electrophoresis, including biclonal disease even when electrophoresis shows only one M-band. Special features liable to misinterpretation are discussed. Familiarity with the interpretation of the varied patterns seen in health and disease is essential for providing dependable laboratory support in the management of multiple myeloma.
Stone, David B.; Coffman, Brian A.; Bustillo, Juan R.; Aine, Cheryl J.; Stephen, Julia M.
2014-01-01
Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and healthy controls (N = 57) using magnetoencephalography (MEG). Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia. PMID:25414652
Fault Tolerant Frequent Pattern Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shohdy, Sameh; Vishnu, Abhinav; Agrawal, Gagan
FP-Growth algorithm is a Frequent Pattern Mining (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivotal to consider fault tolerant FP-Growth, which can address the increasing fault rates in large scale systems. In this work, we propose a novel parallel, algorithm-level fault-tolerant FP-Growth algorithm. We leverage algorithmic properties and MPI advanced features to guarantee an O(1) space complexity, achieved by using the dataset memory space itself for checkpointing. We also propose a recovery algorithm that can use in-memory and disk-based checkpointing,more » though in many cases the recovery can be completed without any disk access, and incurring no memory overhead for checkpointing. We evaluate our FT algorithm on a large scale InfiniBand cluster with several large datasets using up to 2K cores. Our evaluation demonstrates excellent efficiency for checkpointing and recovery in comparison to the disk-based approach. We have also observed 20x average speed-up in comparison to Spark, establishing that a well designed algorithm can easily outperform a solution based on a general fault-tolerant programming model.« less
Spectroscopic characterization of the ethyl radical-water complex.
Lin, Chen; Finney, Brian A; Laufer, Allan H; Anglada, Josep M; Francisco, Joseph S
2016-10-14
An ab initio investigation has been employed to determine the structural and spectroscopic parameters, such as rotational constants, vibrational frequencies, vertical excitation energies, and the stability of the ethyl-water complex. The ethyl-water complex has a binding energy of 1.15 kcal⋅mol -1 . The interaction takes place between the hydrogen of water and the unpaired electron of the radical. This interaction is found to produce a red shift in the OH stretching bands of water of ca. 84 cm -1 , and a shift of all UV absorption bands to higher energies.
Immunogold detection of glycoprotein antigens in sea urchin embryos.
Benson, N C; Benson, S C; Wilt, F
1989-01-01
Four developmental stages of sea urchin embryos were labeled with colloidal gold in an attempt to elucidate the intracellular trafficking patterns within the cells that produce the glycoprotein matrix of the embryonic spicule. The primary mesenchyme cells (PMCs) form a syncytium and secrete an organic matrix on which calcium carbonate is laid down to form an endoskeletal spicule. The organic matrix has been isolated and characterized as glycoprotein consisting of four major bands. Polyclonal antibodies to these glycoproteins were used to label embryos from the mesenchyme blastula, early gastrula, late gastrula, and plutei stages of development. The label is concentrated in the Golgi complex and associated vesicles, in secretory vesicles, and in the organic matrix. The density of the labeling increases as development proceeds.
Xue, Huiling; Xiao, Yao; Jin, Yanling; Li, Xinbo; Fang, Yang; Zhao, Hai; Zhao, Yun; Guan, Jiafa
2012-01-01
Duckweed, with rapid growth rate and high starch content, is a new alternate feedstock for bioethanol production. The genetic diversity among 27 duckweed populations of seven species in genus Lemna and Spirodela from China and Vietnam was analyzed by ISSR-PCR. Eight ISSR primers generating a reproducible amplification banding pattern had been screened. 89 polymorphic bands were scored out of the 92 banding patterns of 16 Lemna populations, accounting for 96.74% of the polymorphism. 98 polymorphic bands of 11 Spirodela populations were scored out of 99 banding patterns, and the polymorphism was 98.43%. The genetic distance of Lemna varied from 0.127 to 0.784, and from 0.138 to 0.902 for Spirodela, which indicated a high level of genetic variation among the populations studied. The unweighted pair group method with arithmetic average (UPGMA) cluster analysis corresponded well with the genetic distance. Populations from Sichuan China grouped together and so did the populations from Vietnam, which illuminated populations collected from the same region clustered into one group. Especially, the only one population from Tibet was included in subgroup A2 alone. Clustering analysis indicated that the geographic differentiation of collected sites correlated closely with the genetic differentiation of duckweeds. The results suggested that geographic differentiation had great influence on genetic diversity of duckweed in China and Vietnam at the regional scale. This study provided primary guidelines for collection, conservation, characterization of duckweed resources for bioethanol production etc.
Kakita, Veera Mohana Rao; Vemulapalli, Sahithya Phani Babu; Bharatam, Jagadeesh
2016-04-01
Precise assignments of (1) H atomic sites and establishment of their through-bond COSY or TOCSY connectivity are crucial for molecular structural characterization by using (1) H NMR spectroscopy. However, this exercise is often hampered by signal overlap, primarily because of (1) H-(1) H scalar coupling multiplets, even at typical high magnetic fields. The recent developments in homodecoupling strategies for effectively suppressing the coupling multiplets into nice singlets (pure-shift), particularly, Morris's advanced broadband pure-shift yielded by chirp excitation (PSYCHE) decoupling and ultrahigh resolution PSYCHE-TOCSY schemes, have shown new possibilities for unambiguous structural elucidation of complex organic molecules. The superior broadband PSYCHE-TOCSY exhibits enhanced performance over the earlier TOCSY methods, which however warrants prolonged experimental times due to the requirement of large number of dwell increments along the indirect dimension. Herein, we present fast and band-selective analog of the broadband PSYCHE-TOCSY, which is useful for analyzing complex organic molecules that exhibit characteristic yet crowded spectral regions. The simple pulse scheme relies on band-selective excitation (BSE) followed by PSYCHE homodecoupling in the indirect dimension. The BSE-PSYCHE-TOCSY has been exemplified for Estradiol and a complex carbohydrate mixture comprised of six constituents of closely comparable molecular weights. The experimental times are greatly reduced viz., ~20 fold for Estradiol and ~10 fold for carbohydrate mixture, with respect to the broadband PSYCHE-TOCSY. Furthermore, unlike the earlier homonuclear band-selective decoupling, the BSE-PSYCHE-decoupling provides fully decoupled pure-shift spectra for all the individual chemical sites within the excited band. The BSE-PSYCHE-TOCSY is expected to have significant potential for quick screening of complex organic molecules and mixtures at ultrahigh resolution. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Shepherd, Mark N.; Pomicter, Anthony D.; Velazco, Cristine S.; Henderson, Scott C.; Dupree, Jeffrey L.
2012-01-01
Paranodal axo-glial junctional complexes anchor the myelin sheath to the axon and breakdown of these complexes presumably facilitates demyelination. Myelin deterioration is also prominent in the aging central nervous system (CNS); however, the stability of the paranodal complexes in the aged CNS has not been examined. Here, we show that transverse bands, prominent components of paranodal junctions, are significantly reduced in the aged CNS; however, the number of paired clusters of both myelin and axonal paranodal proteins is not altered. Ultrastructural analyses also reveal that thicker myelin sheaths display a “piling” of paranodal loops, the cytoplasm-containing sacs that demarcate the paranode. Loops involved in piling are observed throughout the paranode and are not limited to loops positioned in either the nodal- or juxtanodal-most regions. Here, we propose that as myelination continues, previously anchored loops lose their transverse bands and recede away from the axolemma. Newly juxtaposed loops then lose their transverse bands, move laterally to fill in the gap left by the receded loops and finally reform their transverse bands. This paranodal reorganization results in conservation of paranodal length, which may be important in maintaining ion channel spacing and axonal function. Furthermore, we propose that transverse band reformation is less efficient in the aged CNS, resulting in the significant reduction of these junctional components. Although demyelination was not observed, we propose that loss of transverse bands facilitates myelin degeneration and may predispose the aged CNS to a poorer prognosis following a secondary insult. PMID:20888080
European Climate and Pinot Noir Grape-Harvest Dates in Burgundy, since the 17th Century
NASA Astrophysics Data System (ADS)
Tourre, Y. M.
2011-12-01
Time-series of growing season air temperature anomalies in the Parisian region and of 'Pinot Noir' grape-harvest dates (GHD) in Burgundy (1676-2004) are analyzed in the frequency-domain. Variability of both time-series display three significant frequency-bands (peaks significant at the 5% level) i.e., a low-frequency band (multi-decadal) with a 25-year peak period; a 3-to-8 year band period (inter-annual) with a 3.1-year peak period; and a 2-to-3 year band period (quasi-biennial) with a 2.4-year peak period. Joint sea surface temperature/sea level pressure (SST/SLP) empirical orthogonal functions (EOF) analyses during the 20th century, along with spatio-temporal patterns for the above frequency-bands are presented. It is found that SST anomalies display early significant spatial SST patterns in the North Atlantic Ocean (air temperature lagging by 6 months) similar to those obtained from EOF analyses. It is thus proposed that the robust power spectra for the above frequency-bands could be linked with Atlantic climate variability metrics modulating Western European climate i.e., 1) the global Multi-decadal Oscillation (MDO) with its Atlantic Multi-decadal Oscillation (AMO) footprint; 2) the Atlantic Inter-Annual (IA) fluctuations; and 3) the Atlantic Quasi-Biennial (QB) fluctuations, respectively. Moreover these specific Western European climate signals have effects on ecosystem health and can be perceived as contributors to the length of the growing season and the timing of GHD in Burgundy. Thus advance knowledge on the evolution and phasing of the above climate fluctuations become important elements for viticulture and wine industry management. It is recognized that anthropogenic effects could have modified time-series patterns presented here, particularly since the mid 1980s.
A narrow band pattern-matching model of vowel perception
NASA Astrophysics Data System (ADS)
Hillenbrand, James M.; Houde, Robert A.
2003-02-01
The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /h
Pepper, Mitzy; Doughty, Paul; Fujita, Matthew K.; Moritz, Craig; Keogh, J. Scott
2013-01-01
The isolated uplands of the Australian arid zone are known to provide mesic refuges in an otherwise xeric landscape, and divergent lineages of largely arid zone taxa have persisted in these regions following the onset of Miocene aridification. Geckos of the genus Heteronotia are one such group, and have been the subject of many genetic studies, including H. spelea, a strongly banded form that occurs in the uplands of the Pilbara and Central Ranges regions of the Australian arid zone. Here we assess the systematics of these geckos based on detailed examination of morphological and genetic variation. The H. spelea species complex is a monophyletic lineage to the exclusion of the H. binoei and H. planiceps species complexes. Within the H. spelea complex, our previous studies based on mtDNA and nine nDNA loci found populations from the Central Ranges to be genetically divergent from Pilbara populations. Here we supplement our published molecular data with additional data gathered from central Australian samples. In the spirit of integrative species delimitation, we combine multi-locus, coalescent-based lineage delimitation with extensive morphological analyses to test species boundaries, and we describe the central populations as a new species, H. fasciolatus sp. nov. In addition, within the Pilbara there is strong genetic evidence for three lineages corresponding to northeastern (type), southern, and a large-bodied melanic population isolated in the northwest. Due to its genetic distinctiveness and extreme morphological divergence from all other Heteronotia, we describe the melanic form as a new species, H. atra sp. nov. The northeastern and southern Pilbara populations are morphologically indistinguishable with the exception of a morpho-type in the southeast that has a banding pattern resembling H. planiceps from the northern monsoonal tropics. Pending more extensive analyses, we therefore treat Pilbara H. spelea as a single species with phylogenetic structure and morphological heterogeneity. PMID:24244289
The effect of hypobaric hypoxia on multichannel EEG signal complexity.
Papadelis, Christos; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Maglaveras, Nikos; Pappas, Konstantinos
2007-01-01
The objective of this study was the development and evaluation of nonlinear electroencephalography parameters which assess hypoxia-induced EEG alterations, and describe the temporal characteristics of different hypoxic levels' residual effect upon the brain electrical activity. Multichannel EEG, pO2, pCO2, ECG, and respiration measurements were recorded from 10 subjects exposed to three experimental conditions (100% oxygen, hypoxia, recovery) at three-levels of reduced barometric pressure. The mean spectral power of EEG under each session and altitude were estimated for the standard bands. Approximate Entropy (ApEn) of EEG segments was calculated, and the ApEn's time-courses were smoothed by a moving average filter. On the smoothed diagrams, parameters were defined. A significant increase in total power and power of theta and alpha bands was observed during hypoxia. Visual interpretation of ApEn time-courses revealed a characteristic pattern (decreasing during hypoxia and recovering after oxygen re-administration). The introduced qEEG parameters S1 and K1 distinguished successfully the three hypoxic conditions. The introduced parameters based on ApEn time-courses are assessing reliably and effectively the different hypoxic levels. ApEn decrease may be explained by neurons' functional isolation due to hypoxia since decreased complexity corresponds to greater autonomy of components, although this interpretation should be further supported by electrocorticographic animal studies. The introduced qEEG parameters seem to be appropriate for assessing the hypoxia-related neurophysiological state of patients in the hyperbaric chambers in the treatment of decompression sickness, carbon dioxide poisoning, and mountaineering.
NASA Astrophysics Data System (ADS)
Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.
2015-03-01
We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.
Opening complete band gaps in two dimensional locally resonant phononic crystals
NASA Astrophysics Data System (ADS)
Zhou, Xiaoling; Wang, Longqi
2018-05-01
Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.
Nichols, James D.; Hines, James E.
1987-01-01
In the present report we address questions about winter distribution patterns and survival rates of North American mallards Anas platyrhynchos. Inferences are based on analyses of banding and recovery data from both winter and preseason banding period. The primary wintering range of the mallard was dividded into 45 minor reference areas and 15 major reference areas which were used to summarize winter banding data. Descriptive tables and figures on the recovery distributions of winter-banded mallards are presented. Using winter recoveries of preseason-banded mallards, we found apparent differences between recovery distribution of young versus adult birds from the same breeding ground reference areas. However, we found no sex-specific differences in winter recovery distribution patterns. Winter recovery distributions of preseason-banded birds also provided evidence that mallards exhibited some degree of year-to-year variation in wintering ground location. The age- and sex-specificity of such variation was tested using winter recoveries of winter-banded birds, and results indicated that subadult (first year) birds were less likely to return to the same wintering grounds the following year than adults. Winter recovery distributions of preseason-banded mallards during 1950-58 differed from distributions in 1966-76. These differences could have resulted from either true distributional shifts or geographic changes in hunting pressure. Survival and recovery rates were estimated from winter banding data. We found no evidence of differences in survival or recovery rates between subadult and adult mallards. Thus, the substantial difference between survival rates of preseason-banded young and adult mallards must result almost entirely from higher mortality of young birds during the approximate period, August-January. Male mallards showed higher survival than females, corroborating inferences based on preseason data. Tests with winter banding and band recovery data indicated some degree of year-to-year variation in both survival and recovery rates, a result again consistent with inference from preseason data. Some evidence indication geographic variation in survival rates; however, there were no consistent directional differences between survival rates of mallards from adjacent northern versus southern areas, or eastern versus western areas. In some comparisons, Central Flyway mallards exhibited slightly higher survival rates than mallards from other flyways. Weighted mean estimates of continental survival rates were computed for the period 1960-77 from both winter banding data and preseason banding of adults. Resulting estimates differed significantly for males, but not for females, and the magnitude of the difference between point estimates was relatively small, even for males. The direction of the difference between these estimates was predicted correctly from previous work on the effects of heterogeneous survival an d recovery rates on band recovery model estimates. The similarity of survival estimates from these two independent data sets supports the believe that biases in these estimates are relatively small.
The development of inflatable array antennas
NASA Technical Reports Server (NTRS)
Huang, J.
2001-01-01
Inflatable array antennas are being developed to significantly reduce the mass, the launch vehicle's stowage volume, and the cost of future spacecraft systems. Three inflatable array antennas, recently developed for spacecraft applications, are a 3.3 m x 1.0 m L-band synthetic-aperture radar (SAR) array, a 1.0 m-diameter X-band telecom reflectarray, and a 3 m-diameter Ka-band telecom reflectarray. All three antennas are similar in construction, and each consists of an inflatable tubular frame that supports and tensions a multi-layer thin-membrane RF radiating surface with printed microstrip patches. The L-band SAR array achieved a bandwidth of 80 MHz, an aperture efficiency of 74%, and a total mass of 15 kg. The X-band reflectarray achieved an aperture efficiency of 37%, good radiation patterns, and a total mass of 1.2 kg (excluding the inflation system). The 3 m Ka-band reflectarray achieved a surface flatness of 0.1 mm RMS, good radiation patterns, and a total mass of 12.8 kg (excluding the inflation system). These antennas demonstrated that inflatable arrays are feasible across the microwave and millimeter-wave spectrums. Further developments of these antennas are deemed necessary, in particular, in the area of qualifying the inflatable structures for space-environment usage.
Improved twin detection via tracking of individual Kikuchi band intensity of EBSD patterns.
Rampton, Travis M; Wright, Stuart I; Miles, Michael P; Homer, Eric R; Wagoner, Robert H; Fullwood, David T
2018-02-01
Twin detection via EBSD can be particularly challenging due to the fine scale of certain twin types - for example, compression and double twins in Mg. Even when a grid of sufficient resolution is chosen to ensure scan points within the twins, the interaction volume of the electron beam often encapsulates a region that contains both the parent grain and the twin, confusing the twin identification process. The degradation of the EBSD pattern results in a lower image quality metric, which has long been used to imply potential twins. However, not all bands within the pattern are degraded equally. This paper exploits the fact that parent and twin lattices share common planes that lead to the quality of the associated bands not degrading; i.e. common planes that exist in both grains lead to bands of consistent intensity for scan points adjacent to twin boundaries. Hence, twin boundaries in a microstructure can be recognized, even when they are associated with thin twins. Proof of concept was performed on known twins in Inconel 600, Tantalum, and Magnesium AZ31. This method was then used to search for undetected twins in a Mg AZ31 structure, revealing nearly double the number of twins compared with those initially detected by standard procedures. Copyright © 2017 Elsevier B.V. All rights reserved.
Bi-directional evolutionary optimization for photonic band gap structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Fei; School of Civil Engineering, Central South University, Changsha 410075; Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au
2015-12-01
Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gapsmore » from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.« less
Inverse modeling/transmit power levels : GPS-ABC Workshop VI RTCA, Washington, DC, March 30, 2017.
DOT National Transportation Integrated Search
2017-03-30
This presentation provides models for adjacent band transmitters (base stations and handsets), and : GNSS receiver antenna patterns, as well as provides C/A results for: (1) impacted regions for adjacent band transmitters of : various types, (2) maxi...
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
NASA Astrophysics Data System (ADS)
Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong; Zhu, Hong; Persson, Kristin; Ceder, Gerbrand; Hautier, Geoffroy; Jain, Anubhav; Snyder, G. Jeffrey
2017-02-01
The effective mass is a convenient descriptor of the electronic band structure used to characterize the density of states and electron transport based on a free electron model. While effective mass is an excellent first-order descriptor in real systems, the exact value can have several definitions, each of which describe a different aspect of electron transport. Here we use Boltzmann transport calculations applied to ab initio band structures to extract a density-of-states effective mass from the Seebeck Coefficient and an inertial mass from the electrical conductivity to characterize the band structure irrespective of the exact scattering mechanism. We identify a Fermi Surface Complexity Factor:
Forage quantity estimation from MERIS using band depth parameters
NASA Astrophysics Data System (ADS)
Ullah, Saleem; Yali, Si; Schlerf, Martin
Saleem Ullah1 , Si Yali1 , Martin Schlerf1 Forage quantity is an important factor influencing feeding pattern and distribution of wildlife. The main objective of this study was to evaluate the predictive performance of vegetation indices and band depth analysis parameters for estimation of green biomass using MERIS data. Green biomass was best predicted by NBDI (normalized band depth index) and yielded a calibration R2 of 0.73 and an accuracy (independent validation dataset, n=30) of 136.2 g/m2 (47 % of the measured mean) compared to a much lower accuracy obtained by soil adjusted vegetation index SAVI (444.6 g/m2, 154 % of the mean) and by other vegetation indices. This study will contribute to map and monitor foliar biomass over the year at regional scale which intern can aid the understanding of bird migration pattern. Keywords: Biomass, Nitrogen density, Nitrogen concentration, Vegetation indices, Band depth analysis parameters 1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, The Netherlands
Strain, stabilities and electronic properties of hexagonal BN bilayers
NASA Astrophysics Data System (ADS)
Fujimoto, Yoshitaka; Saito, Susumu
Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.
Vecoli, C; Prevost, F E; Ververis, J J; Medeiros, A A; O'Leary, G P
1983-08-01
Plasmid-mediated beta-lactamases from strains of Escherichia coli and Pseudomonas aeruginosa were separated by isoelectric focusing on a 0.8-mm thin-layer agarose gel with a pH gradient of 3.5 to 9.5. Their banding patterns and isoelectric points were compared with those obtained with a 2.0-mm polyacrylamide gel as the support medium. The agarose method produced banding patterns and isoelectric points which corresponded to the polyacrylamide gel data for most samples. Differences were observed for HMS-1 and PSE-1 beta-lactamases. The HMS-1 sample produced two highly resolvable enzyme bands in agarose gels rather than the single faint enzyme band observed on polyacrylamide gels. The PSE-1 sample showed an isoelectric point shift of 0.2 pH unit between polyacrylamide and agarose gel (pI 5.7 and 5.5, respectively). The short focusing time, lack of toxic hazard, and ease of formulation make agarose a practical medium for the characterization of beta-lactamases.
Vecoli, C; Prevost, F E; Ververis, J J; Medeiros, A A; O'Leary, G P
1983-01-01
Plasmid-mediated beta-lactamases from strains of Escherichia coli and Pseudomonas aeruginosa were separated by isoelectric focusing on a 0.8-mm thin-layer agarose gel with a pH gradient of 3.5 to 9.5. Their banding patterns and isoelectric points were compared with those obtained with a 2.0-mm polyacrylamide gel as the support medium. The agarose method produced banding patterns and isoelectric points which corresponded to the polyacrylamide gel data for most samples. Differences were observed for HMS-1 and PSE-1 beta-lactamases. The HMS-1 sample produced two highly resolvable enzyme bands in agarose gels rather than the single faint enzyme band observed on polyacrylamide gels. The PSE-1 sample showed an isoelectric point shift of 0.2 pH unit between polyacrylamide and agarose gel (pI 5.7 and 5.5, respectively). The short focusing time, lack of toxic hazard, and ease of formulation make agarose a practical medium for the characterization of beta-lactamases. Images PMID:6605714
Satellite studies of turbidity and circulation patterns in Delaware Bay
NASA Technical Reports Server (NTRS)
Klemas, V.; Srna, R.; Treasure, W. M.; Rogers, R.
1973-01-01
Satellite imagery from four successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle are interpreted with special emphasis on visibility of suspended sediment and its use as a natural tracer for gross circulation patters. The MSS red band (band 5) appears to give the best contrast, although the sediment patterns are represented by only a few neighboring shades of grey. Color density slicing improves the differentiation of turbidity levels. However, color additive enhancements are of limited value since most of the information is in a single color band. The ability of ERTS-1 to present a synoptic view of the surface circulation over the entire bay is shown to be a valuable and unique contribution of ERTS-1 to coastal oceanography.
2014-01-09
Low lying areas in the Hellas region, which is the largest impact basin on Mars, often show complex groups of banded ridges, furrows, and pits as seen in this observation from NASA Mars Reconnaissance Orbiter.
Topological Exciton Bands in Moire Heterojunctions.
Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.
2017-04-05
Moire patterns are common in Van der Waals heterostructures and can be used to apply periodic potentials to elementary excitations. Here, we show that the optical absorption spectrum of transition metal dichalcogenide bilayers is profoundly altered by long period moire patterns that introduce twist-angle dependent satellite excitonic peaks. Topological exciton bands with non-zero Chern numbers that support chiral excitonic edge states can be engineered by combining three ingredients: i) the valley Berry phase induced by electron-hole exchange interactions, ii) the moire potential, and iii) the valley Zeeman field.
Detection of the HA-33 protein in botulinum neurotoxin type G complex by mass spectrometry.
Kalb, Suzanne R; Baudys, Jakub; Barr, John R
2015-10-23
The disease botulism is caused by intoxication with botulinum neurotoxins (BoNTs), extremely toxic proteins which cause paralysis. This neurotoxin is produced by some members of the Clostridium botulinum and closely related species, and is produced as a protein complex consisting of the neurotoxin and neurotoxin-associated proteins (NAPs). There are seven known serotypes of BoNT, A-G, and the composition of the NAPs can differ between these serotypes. It was previously published that the BoNT/G complex consisted of BoNT/G, nontoxic-nonhemagglutinin (NTNH), Hemagglutinin 70 (HA-70), and HA-17, but that HA-33, a component of the protein complex of other serotypes of BoNT, was not found. Components of the BoNT/G complex were first separated by SDS-PAGE, and bands corresponding to components of the complex were digested and analyzed by LC-MS/MS. Gel bands were identified with sequence coverages of 91% for BoNT/G, 91% for NTNH, 89% for HA-70, and 88% for HA-17. Notably, one gel band was also clearly identified as HA-33 with 93% sequence coverage. The BoNT/G complex consists of BoNT/G, NTNH, HA-70, HA-17, and HA-33. These proteins form the progenitor form of BoNT/G, similar to all other HA positive progenitor toxin complexes.
NASA Technical Reports Server (NTRS)
Gioannini, Bryan; Wong, Yen; Wesdock, John
2005-01-01
The National Aeronautics and Space Administration (NASA) has recently established the Tracking and Data Relay Satellite System (TDRSS) K-band Upgrade Project (TKUP), a project intended to enhance the TDRSS Ku-band and Ka-band Single Access Return 225 MHz (Ku/KaSAR-225) data service by adding the capability to process bandwidth efficient signal design and to replace the White Sand Complex (WSC) KSAR high data rate ground equipment and high rate switches which are nearing obsolescence. As a precursor to this project, a modulation and coding study was performed to identify signal structures which maximized the data rate through the Ku/KaSAR-225 channel, minimized the required customer EIRP and ensured acceptable hardware complexity on the customer platform. This paper presents the results and conclusions of the TKUP modulation and coding study.
NASA Astrophysics Data System (ADS)
Fan, Xiang; P H Diamond Collaboration; Luis Chacon Collaboration
2017-10-01
Spinodal decomposition is a second order phase transition for a binary liquid mixture to evolve from a miscible phase (e.g., water + alcohol) to two co-existing phases (e.g., water + oil). The Cahn-Hilliard model for spinodal decomposition is analogous to 2D MHD. We study the evolution of the concentration field in a single eddy in the 2D Cahn-Hilliard system to better understand scalar mixing processes in that system. This study extends investigations of the classic studies of flux expulsion in 2D MHD and homogenization of potential vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A) formation of a ``jelly roll'' pattern, for which the concentration field is constant along spirals; (B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for which the isoconcentration contours follow concentric annuli. In the final target pattern stage, the isoconcentration bands align with stream lines. The results indicate that the target pattern is a metastable state. Band merger process continues on a time scale exponentially long relative to the eddy turnover time. The band merger process resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.
NASA Technical Reports Server (NTRS)
Danev, P.; Friedrich, E.; Balabanov, V.
1983-01-01
Homogenates were prepared from various growth phases of Microsporum gypseum grown on different amino acids as the nitrogen source. When analyzed on 7.5% polyacrylamide disc gels, the water-soluble proteins in these homogenates gave essentially identical banding patterns.
NASA Technical Reports Server (NTRS)
Lindsey, J. F.
1976-01-01
The isolation between the upper S-band quad antenna and the S-band payload antenna on the shuttle orbiter is calculated using a combination of plane surface and curved surface theories along with worst case values. A minimum value of 60 db isolation is predicted based on recent antenna pattern data, antenna locations on the orbiter, curvature effects, dielectric covering effects and edge effects of the payload bay. The calculated value of 60 db is significantly greater than the baseline value of 40 db. Use of the new value will result in the design of smaller, lighter weight and less expensive filters for S-band transponder and the S-band payload interrogator.
Diffuse interstellar bands in reflection nebulae
NASA Technical Reports Server (NTRS)
Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.
1994-01-01
A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.
Spectral changes in spontaneous MEG activity across the lifespan
NASA Astrophysics Data System (ADS)
Gómez, Carlos; Pérez-Macías, Jose M.; Poza, Jesús; Fernández, Alberto; Hornero, Roberto
2013-12-01
Objective. The aim of this study is to explore the spectral patterns of spontaneous magnetoencephalography (MEG) activity across the lifespan. Approach. Relative power (RP) in six frequency bands (delta, theta, alpha, beta-1, beta-2 and gamma) was calculated in a sample of 220 healthy subjects with ages ranging from 7 to 84 years. Main results. A significant RP decrease in low-frequency bands (i.e. delta and theta) and a significant increase in high bands (mainly beta-1 and beta-2) were found from childhood to adolescence. This trend was observed until the sixth decade of life, though only slight changes were found. Additionally, healthy aging was characterized by a power increase in low-frequency bands. Our results show that spectral changes across the lifespan may follow a quadratic relationship in delta, theta, alpha, beta-2 and gamma bands with peak ages being reached around the fifth or sixth decade of life. Significance. Our findings provide original insights into the definition of the ‘normal’ behavior of age-related MEG spectral patterns. Furthermore, our study can be useful for the forthcoming MEG research focused on the description of the abnormalities of different brain diseases in comparison to cognitive decline in normal aging.
Proteinase pattern in Trametes versicolor in response to carbon and nitrogen starvation.
Staszczak, M; Nowak, G
1984-01-01
In stationary cultures of Trametes versicolor seven proteinase bands were revealed by electrophoresis in mycelium and five in the medium. Under conditions of nitrogen starvation the number of bands in mycelium was unchanged whereas one extracellular proteinase was missing. In the case of carbon starvation one new intracellular proteinase activity appeared and one extracellular activity disappeared. Moreover, in all starved cultures distinct differences in the intensity of particular bands were observed.
Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen
2017-05-16
Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.
Seidel, Jörg; Heller, Anita; Senger, Gabriele; Starke, Heike; Chudoba, Ilse; Kelbova, Christina; Tönnies, Holger; Neitzel, Heidemarie; Haase, Claudia; Beensen, Volkmar; Zintl, Felix; Claussen, Uwe; Liehr, Thomas
2003-09-01
We report a 13-year-old female patient with multiple congenital abnormalities (microcephaly, facial dysmorphism, anteverted dysplastic ears and postaxial hexadactyly), mental retardation, and adipose-gigantism. Ultrasonography revealed no signs of a heart defect or renal abnormalities. She showed no speech development and suffered from a behavioural disorder. CNS abnormalities were excluded by cerebral MRI. Initial cytogenetic studies by Giemsa banding revealed an aberrant karyotype involving three chromosomes, t(2;4;11). By high resolution banding and multicolour fluoresence in-situ hybridisation (M-FISH, MCB), chromosome 1 was also found to be involved in the complex chromosomal aberrations, confirming the karyotype 46,XX,t(2;11;4).ish t(1;4;2;11)(q43;q21.1;p12-p13.1;p14.1). To the best of our knowledge no patient has been previously described with such a complex translocation involving 4 chromosomes. This case demonstrates that conventional chromosome banding techniques such as Giemsa banding are not always sufficient to characterise complex chromosomal abnormalities. Only by the additional utilisation of molecular cytogenetic techniques could the complexity of the present chromosomal rearrangements and the origin of the involved chromosomal material be detected. Further molecular genetic studies will be performed to clarify the chromosomal breakpoints potentially responsible for the observed clinical symptoms. This report demonstrates that multicolour-fluorescence in-situ hybridisation studies should be performed in patients with congenital abnormalities and suspected aberrant karyotypes in addition to conventional Giemsa banding.
Song, Myoung Geun; Han, Jun Young; Bark, Chung Wung
2015-10-01
The wide band gap of complex oxides is one of the major obstacles limiting their use in photovoltaic cells. To identify an effective route for tailoring the band gap of complex oxides, this study examined the effects of cobalt and iron doping on lanthanum-modified Bi4Ti3O2-based oxides synthesized using a solid reaction. The structural and optical properties were analyzed by X-ray diffraction and ultraviolet-visible absorption spectroscopy. As a result, the optimal iron to cobalt doping ratio in bismuth titanate powder resulted in an ~1.8 eV decrease in the optical band gap. This new route to reduce the optical bandgap can be adapted to the synthesis of other complex oxides.
Defect interactions in GaAs single crystals
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1984-01-01
The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A; Deutsch, Todd G; Fernandez, A. M.
CuGaSe2 (CGS) is a semiconductor that has potential use as a photo electrode for solar water splitting. Its wide band gap and high absorption coefficient make it an ideal candidate for the top absorber in tandem structures. CGS can be synthesized by several techniques, being electrodeposition the most advantageous from a technical standpoint. Many reports show that electrodeposition of these films for producing the desired precursor atomic composition can be aided by using a complexing agent. However, the use of supporting electrolyte and the type of the electrolyte to improve the atomic composition in the films has never been reported.more » Using cyclic voltammetry, with complexing agents and deposition potentials between -0.5 and -0.9 V vs. Ag/AgCl reference electrode atomic ratios close to the ideal values ([Cu]/[Ga] = 1 and [Se]/[Cu + Ga] = 1), based on atomic composition and morphology analysis are reported in this work. From the X-ray diffraction (XRD), the as-deposited films exhibit poor crystallinity; however, the XRD patterns evidence the formation CuGaSe2 after annealing of the samples.« less
Monaural and binaural processing of complex waveforms
NASA Astrophysics Data System (ADS)
Trahiotis, Constantine; Bernstein, Leslie R.
1992-01-01
Our research concerned the manners by which the monaural and binaural auditory systems process information in complex sounds. Substantial progress was made in three areas, consistent with the ojectives outlined in the original proposal. (1) New electronic equipment, including a NeXT computer was purchased, installed and interfaced with the existing laboratory. Software was developed for generating the necessary complex digital stimuli and for running behavioral experiments utilizing those stimuli. (2) Monaural experiments showed that the CMR is not obtained successively and is reduced or non-existent when the flanking bands are pulsed rather than presented continuously. Binaural investigations revealed that the detectability of a tonal target in a masking level difference paradigm could be degraded by the presence of a spectrally remote interfering tone. (3) In collaboration with Dr. Richard Stem, theoretical efforts included the explication and evaluation of a weighted-image model of binaural hearing, attempts to extend the Stern-Colbum position-variable model to account for many crucial lateralization and localization data gathered over the past 50 years, and the continuation of efforts to incorporate into a general model notions that lateralization and localization of spectrally-rich stimuli depend upon the patterns of neural activity within a plane defined by frequency and interaural delay.
Smalla, K.; Wieland, G.; Buchner, A.; Zock, A.; Parzy, J.; Kaiser, S.; Roskot, N.; Heuer, H.; Berg, G.
2001-01-01
The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180
Space Radar Image of Samara, Russia
NASA Technical Reports Server (NTRS)
1994-01-01
This three-frequency space radar image shows the city of Samara, Russia in pink and light green right of center. Samara is at the junction of the Volga and Samara Rivers approximately 800 kilometers (500 miles) southeast of Moscow. The wide river in the center of the image is the Volga. Samara, formerly Kuybyshev, is a busy industrial city known for its chemical, mechanical and petroleum industries. Northwest of the Volga (upper left corner of the image) are deciduous forests of the Samarskaya Luka National Park. Complex patterns in the floodplain of the Volga are caused by 'cut-off' lakes and channels from former courses of the meandering river. The three radar frequencies allow scientists to distinguish different types of agricultural fields in the lower right side of the image. For example, fields which appear light blue are short grass or cleared fields. Purple and green fields contain taller plants or rough plowed soil. Scientists hope to use radar data such as these to understand the environmental consequences of industrial, agricultural and natural preserve areas coexisting in close proximity. This image is 50 kilometers by 26 kilometers (31 by 16 miles) and is centered at 53.2 degrees north latitude, 50.1 degrees east longitude. North is toward the top of the image. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and vertically received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 1, 1994 onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.
Iwata, Masaki; Otaki, Joji M
2016-02-01
Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings. Copyright © 2015 Elsevier Ltd. All rights reserved.
1982-12-06
different model aircraft in different wave bands (P,L, S and X). Yet, the obtained results were relatively complex and it was not easy to find regularity...hertz for the S wave band . This type of narrow wave band signifies that the drift velocity of the target viewed in the reflection center is very low... Band of Airborne Radar With Pulse Width of 0.02)4 s and Grazing Angle of 470) Key: 1. Probability exceeding horizontal coordinates 2. Clutter section 3
Semeshin, F; Belyaeva, S; Zhimulev, F
2001-12-01
Breaks and ectopic contacts in the heterochromatic regions of Drosophila melanogaster polytene chromosomes are the manifestations of the cytological effects of DNA underreplication. Their appearance makes these regions difficult to map. The Su(UR)ES gene, which controls the phenomenon, has been described recently. Mutation of this locus gives rise to new blocks of material in the pericentric heterochromatic regions and causes the disappearance of breaks and ectopic contacts in the intercalary heterochromatic regions, thereby making the banding pattern distinct and providing better opportunities for mapping of the heterochromatic regions in polytene chromosomes. Here, we present the results of an electron microscope study of the heterochromatic regions. In the wild-type salivary glands, the pericentric regions correspond to the beta-heterochromatin and do not show the banding pattern. The most conspicuous cytological effect of the Su(UR)ES mutation is the formation of a large banded chromosome fragment comprising at least 25 bands at the site where the 3L and 3R proximal arms connect. In the other pericentric regions, 20CF, 40BF and 41BC, 15, 12 and 9 new bands were revealed, respectively. A large block of densely packed material appears in the most proximal part of the fourth chromosome. An electron microscope analysis of 26 polytene chromosome regions showing the characteristic features of intercalary heterochromatin was also performed. Suppression of DNA underreplication in the mutant transforms the bands with weak spots into large single bands.
Serra, Montserrat; Brazís, Pilar; Fondati, Alessandra; Puigdemont, Anna
2006-11-01
To assess binding of IgE to native, whole hydrolyzed, and separated hydrolyzed fractions of soy protein in serum obtained from dogs with experimentally induced soy protein hypersensitivity. 8 naïve Beagles (6 experimentally sensitized to native soy protein and 2 control dogs). 6 dogs were sensitized against soy protein by administration of allergens during a 90-day period. After the sensitization protocol was completed, serum concentrations of soy-specific IgE were measured and intradermal skin tests were performed in all 6 dogs to confirm that the dogs were sensitized against soy protein. Serum samples from each sensitized and control dog underwent western blot analysis to assess the molecular mass band pattern of the different allergenic soy fractions and evaluate reactivities to native and hydrolyzed soy protein. In sera from sensitized dogs, a characteristic band pattern with 2 major bands (approx 75 and 50 kd) and 2 minor bands (approx 31 and 20 kd) was detected, whereas only a diffuse band pattern associated with whole hydrolyzed soy protein was detected in the most reactive dog. Reactivity was evident only for the higher molecular mass peptide fraction. In control dogs, no IgE reaction to native or hydrolyzed soy protein was detected. Data suggest that the binding of soy-specific IgE to the hydrolyzed soy protein used in the study was significantly reduced, compared with binding of soy-specific IgE to the native soy protein, in dogs with experimentally induced soy hypersensitivity.
NASA Astrophysics Data System (ADS)
Box, Paul W.
GIS and spatial analysis is suited mainly for static pictures of the landscape, but many of the processes that need exploring are dynamic in nature. Dynamic processes can be complex when put in a spatial context; our ability to study such processes will probably come with advances in understanding complex systems in general. Cellular automata and agent-based models are two prime candidates for exploring complex spatial systems, but are difficult to implement. Innovative tools that help build complex simulations will create larger user communities, who will probably find novel solutions for understanding complexity. A significant source for such innovations is likely to be from the collective efforts of hobbyists and part-time programmers, who have been dubbed ``garage-band scientists'' in the popular press.
Band structure engineering of 2D materials using patterned dielectric superlattices.
Forsythe, Carlos; Zhou, Xiaodong; Watanabe, Kenji; Taniguchi, Takashi; Pasupathy, Abhay; Moon, Pilkyung; Koshino, Mikito; Kim, Philip; Dean, Cory R
2018-05-07
The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals 1-5 . Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra 6-8 under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.
Spectral pattern of urinary water as a biomarker of estrus in the giant panda
NASA Astrophysics Data System (ADS)
Kinoshita, Kodzue; Miyazaki, Mari; Morita, Hiroyuki; Vassileva, Maria; Tang, Chunxiang; Li, Desheng; Ishikawa, Osamu; Kusunoki, Hiroshi; Tsenkova, Roumiana
2012-11-01
Near infrared spectroscopy (NIRS) has been successfully used for non-invasive diagnosis of diseases and abnormalities where water spectral patterns are found to play an important role. The present study investigates water absorbance patterns indicative of estrus in the female giant panda. NIR spectra of urine samples were acquired from the same animal on a daily basis over three consecutive putative estrus periods. Characteristic water absorbance patterns based on 12 specific water absorbance bands were discovered, which displayed high urine spectral variation, suggesting that hydrogen-bonded water structures increase with estrus. Regression analysis of urine spectra and spectra of estrone-3-glucuronide standard concentrations at these water bands showed high correlation with estrogen levels. Cluster analysis of urine spectra grouped together estrus samples from different years. These results open a new avenue for using water structure as a molecular mirror for fast estrus detection.
Spectral pattern of urinary water as a biomarker of estrus in the giant panda.
Kinoshita, Kodzue; Miyazaki, Mari; Morita, Hiroyuki; Vassileva, Maria; Tang, Chunxiang; Li, Desheng; Ishikawa, Osamu; Kusunoki, Hiroshi; Tsenkova, Roumiana
2012-01-01
Near infrared spectroscopy (NIRS) has been successfully used for non-invasive diagnosis of diseases and abnormalities where water spectral patterns are found to play an important role. The present study investigates water absorbance patterns indicative of estrus in the female giant panda. NIR spectra of urine samples were acquired from the same animal on a daily basis over three consecutive putative estrus periods. Characteristic water absorbance patterns based on 12 specific water absorbance bands were discovered, which displayed high urine spectral variation, suggesting that hydrogen-bonded water structures increase with estrus. Regression analysis of urine spectra and spectra of estrone-3-glucuronide standard concentrations at these water bands showed high correlation with estrogen levels. Cluster analysis of urine spectra grouped together estrus samples from different years. These results open a new avenue for using water structure as a molecular mirror for fast estrus detection.
Spectral pattern of urinary water as a biomarker of estrus in the giant panda
Kinoshita, Kodzue; Miyazaki, Mari; Morita, Hiroyuki; Vassileva, Maria; Tang, Chunxiang; Li, Desheng; Ishikawa, Osamu; Kusunoki, Hiroshi; Tsenkova, Roumiana
2012-01-01
Near infrared spectroscopy (NIRS) has been successfully used for non-invasive diagnosis of diseases and abnormalities where water spectral patterns are found to play an important role. The present study investigates water absorbance patterns indicative of estrus in the female giant panda. NIR spectra of urine samples were acquired from the same animal on a daily basis over three consecutive putative estrus periods. Characteristic water absorbance patterns based on 12 specific water absorbance bands were discovered, which displayed high urine spectral variation, suggesting that hydrogen-bonded water structures increase with estrus. Regression analysis of urine spectra and spectra of estrone-3-glucuronide standard concentrations at these water bands showed high correlation with estrogen levels. Cluster analysis of urine spectra grouped together estrus samples from different years. These results open a new avenue for using water structure as a molecular mirror for fast estrus detection. PMID:23181188
Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging
NASA Astrophysics Data System (ADS)
Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ
2015-01-01
Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)
Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z
2017-09-01
Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.
NASA Astrophysics Data System (ADS)
Ohyanagi, S.; Dileonardo, C.
2013-12-01
As a natural phenomenon earthquake occurrence is difficult to predict. Statistical analysis of earthquake data was performed using candlestick chart and Bollinger Band methods. These statistical methods, commonly used in the financial world to analyze market trends were tested against earthquake data. Earthquakes above Mw 4.0 located on shore of Sanriku (37.75°N ~ 41.00°N, 143.00°E ~ 144.50°E) from February 1973 to May 2013 were selected for analysis. Two specific patterns in earthquake occurrence were recognized through the analysis. One is a spread of candlestick prior to the occurrence of events greater than Mw 6.0. A second pattern shows convergence in the Bollinger Band, which implies a positive or negative change in the trend of earthquakes. Both patterns match general models for the buildup and release of strain through the earthquake cycle, and agree with both the characteristics of the candlestick chart and Bollinger Band analysis. These results show there is a high correlation between patterns in earthquake occurrence and trend analysis by these two statistical methods. The results of this study agree with the appropriateness of the application of these financial analysis methods to the analysis of earthquake occurrence.
Ohno, Keiichi; Takao, Hiroshi; Katsumoto, Yukiteru
2006-03-01
Changes in the geometry of hydrogen bonding patterns in the alpha-dodecyl-omega-hydroxy-tris(oxyethylene) (C(12)E(3))-water system have been investigated by near infrared (NIR) spectroscopy. In the 5,300-4,600 cm(-1) region, the characteristic bands for C(12)E(3) and water can be separately investigated, since the combination bands of the OH stretching and its COH bending of alcohols are observed at 5,000-4,650 cm(-1), whereas the combination bands of the OH stretching and its HOH bending of water, at 5,300-5,000 cm(-1). The NIR result has revealed that the addition of water to C(12)E(3) promotes the formation of the OHcdots, three dots, centeredOHcdots, three dots, centeredO hydrogen bonds.
NASA Astrophysics Data System (ADS)
Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita
2016-11-01
In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.
NASA Astrophysics Data System (ADS)
Morikawa, T.; Sato, S.; Arai, T.; Uemura, K.; Yamanaka, K. I.; Suzuki, T. M.; Kajino, T.; Motohiro, T.
2013-12-01
We developed a new hybrid photocatalyst for CO2 reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ΔG between the position of conduction band minimum (ECBM) of the semiconductor and the CO2 reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO2 to formate using water as an electron donor and a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO2 reduction with a TiO2 photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.
Ubaldini, Adriana L M; Baesso, Mauro L; Sehn, Elizandra; Sato, Francielle; Benetti, Ana R; Pascotto, Renata C
2012-06-01
The purpose of this study was to provide the physicochemical interactions at the interfaces between two commercial etch-&-rinse adhesives and human dentin in a simulated moist bond technique. Six dentin specimens were divided into two groups (n=3) according to the use of two different adhesive systems: (a) 2-hydroxyethylmethacrylate (HEMA) and 4-methacryloxyethyl trimellitate anhydrate (4-META), and (b) HEMA. The Fourier transform infrared photoacoustic spectroscopy was performed before and after dentin treatment with 37% phosphoric acid, with adhesive systems and also for the adhesive systems alone. Acid-conditioning resulted in a decalcification pattern. Adhesive treated spectra subtraction suggested the occurrence of chemical bonding to dentin expressed through modifications of the OH stretching peak (3340 cm(-1)) and symmetric CH stretching (2900 cm(-1)) for both adhesives spectra; a decrease of orthophosphate absorption band (1040 to 970 cm(-1)) for adhesive A and a better resolved complex band formation (1270 to 970 cm(-1)) for adhesive B were observed. These results suggested the occurrence of chemical bonding between sound human dentin and etch-&-rinse adhesives through a clinical typical condition.
Salina, Margarete Aparecida; Shikanai-Yasuda, Maria Aparecida; Mendes, Rinaldo Poncio; Barraviera, Benedito; Mendes Giannini, Maria José Soares
1998-01-01
For the diagnosis and follow-up of paracoccidioidomycosis patients undergoing therapy, we evaluated two methods (immunoblotting and competition enzyme immunoassay) for the detection of circulating antigen in urine samples. A complex pattern of reactivity was observed in the immunoblot test. Bands of 70 and 43 kDa were detected more often in urine samples from patients before treatment. The immunoblot method detected gp43 and gp70 separately or concurrently in 11 (91.7%) of 12 patients, whereas the competition enzyme immunoassay detected antigenuria in 9 (75%) of 12 patients. Both tests appeared to be highly specific (100%), considering that neither fraction detectable by immunoblotting was present in urine samples from the control group. gp43 remained present in the urine samples collected during the treatment period, with a significant decrease in reactivity in samples collected during clinical recovery and increased reactivity in samples collected during relapses. Reactivity of some bands was also detected in urine specimens from patients with “apparent cure.” The detection of Paracoccidioides brasiliensis antigens in urine appears to be a promising method for diagnosing infection, for evaluating the efficacy of treatment, and for detecting relapse. PMID:9620407
Sky Compass Orientation in Desert Locusts-Evidence from Field and Laboratory Studies.
Homberg, Uwe
2015-01-01
Locusts are long-range migratory insects. At high population density, immature animals form marching hopper bands while adults take off and form huge swarms of millions of animals. At low population densities animals are solitarious, but likewise migrate, mostly during the night. Numerous studies aimed at predicting locust infestations showed that migrations both as hopper bands and as adults are largely downwind following seasonal shifts of the tropical convergence zone taking the animals to areas of rainfall. Only a few studies provided evidence for active orientation mechanisms, including the involvement of a sun compass. This scarcity of evidence stands in contrast to recent neurobiological data showing sophisticated neuronal adaptations suited for sky compass navigation. These include a special dorsal eye region with photoreceptors suited to analyze the polarization pattern of the sky and a system of topographically arranged sky compass neurons in the central complex of the brain. Laboratory experiments, moreover, demonstrated polarotaxis in tethered flying animals. The discrepancy of these findings call for more rigorous field studies on active orientation mechanisms in locusts. It remains to be shown how locusts use their internal sky compass during mass migrations and what role it plays to guide solitarious locusts in their natural habitat.
Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery
NASA Astrophysics Data System (ADS)
Chu, Tianxing; Chen, Ruizhi; Landivar, Juan A.; Maeda, Murilo M.; Yang, Chenghai; Starek, Michael J.
2016-07-01
This paper explores the potential of using unmanned aircraft system (UAS)-based visible-band images to assess cotton growth. By applying the structure-from-motion algorithm, the cotton plant height (ph) and canopy cover (cc) information were retrieved from the point cloud-based digital surface models (DSMs) and orthomosaic images. Both UAS-based ph and cc follow a sigmoid growth pattern as confirmed by ground-based studies. By applying an empirical model that converts the cotton ph to cc, the estimated cc shows strong correlation (R2=0.990) with the observed cc. An attempt for modeling cotton yield was carried out using the ph and cc information obtained on June 26, 2015, the date when sigmoid growth curves for both ph and cc tended to decline in slope. In a cross-validation test, the correlation between the ground-measured yield and the estimated equivalent derived from the ph and/or cc was compared. Generally, combining ph and cc, the performance of the yield estimation is most comparable against the observed yield. On the other hand, the observed yield and cc-based estimation produce the second strongest correlation, regardless of the complexity of the models.
Space Radar Image of Namib Desert in Southern Namib
1999-01-27
This is a C-band, VV polarization radar image of the Namib desert in southern Namibia, near the coast of South West Africa. The image is centered at about 25 degrees South latitude, 15.5 degrees East longitude. This image was one of the first acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) when it was taken on orbit 4 from the shuttle Endeavour on April 9, 1994. The area shown is approximately 78 kilometers by 20 kilometers. The dominant features in the image are complex sand dune patterns formed by the prevailing winds in this part of the Namib desert. The Namib desert is an extremely dry area formed largely because of the influence of the cold Benguela ocean current that flows northward along the coast of Namibia. The bright areas at the bottom of the image are exposed outcrops of Precambrian rocks. This extremely barren area is a region rich in diamonds that through the centuries have washed down from the mountains. The town of Luderitz is located just to the south of the area shown. http://photojournal.jpl.nasa.gov/catalog/PIA01720
Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.
Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P
2003-08-01
The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.
A technique for the reduction of banding in Landsat Thematic Mapper Images
Helder, Dennis L.; Quirk, Bruce K.; Hood, Joy J.
1992-01-01
The radiometric difference between forward and reverse scans in Landsat thematic mapper (TM) images, referred to as "banding," can create problems when enhancing the image for interpretation or when performing quantitative studies. Recent research has led to the development of a method that reduces the banding in Landsat TM data sets. It involves passing a one-dimensional spatial kernel over the data set. This kernel is developed from the statistics of the banding pattern and is based on the Wiener filter. It has been implemented on both a DOS-based microcomputer and several UNIX-based computer systems. The algorithm has successfully reduced the banding in several test data sets.
Heads Up, Shoulders Straight, Stick and Twirl Together
ERIC Educational Resources Information Center
Warrick, James
1977-01-01
With so many roles to juggle and so many complex music problems to resolve, some marching band directors overlook simple rules of thumb to increase their bands' visual and musical impact. Here are some guidelines. (Author/RK)
Kretschmer, Rafael; Gunski, Ricardo José; Garnero, Analía Del Valle; Furo, Ivanete de Oliveira; O'Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.; de Oliveira, Edivaldo Herculano Corrêa
2014-01-01
Turdus rufiventris and Turdus albicollis, two songbirds belonging to the family Turdidae (Aves, Passeriformes) were studied by C-banding, 18S rDNA, as well as the use of whole chromosome probes derived from Gallus gallus (GGA) and Leucopternis albicollis (LAL). They showed very similar karyotypes, with 2n = 78 and the same pattern of distribution of heterochromatic blocks and hybridization patterns. However, the analysis of 18/28S rDNA has shown differences in the number of NOR-bearing chromosomes and ribosomal clusters. The hybridization pattern of GGA macrochromosomes was similar to the one found in songbirds studied by Fluorescent in situ hybridization, with fission of GGA 1 and GGA 4 chromosomes. In contrast, LAL chromosome paintings revealed a complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) on chromosome 2, which corresponds to GGA1q. The first inversion changed the chromosomal morphology and the second and third inversions changed the order of chromosome segments. Karyotype analysis in Turdus revealed that this genus has derived characteristics in relation to the putative avian ancestral karyotype, highlighting the importance of using new tools for analysis of chromosomal evolution in birds, such as the probes derived from L. albicollis, which make it possible to identify intrachromosomal rearrangements not visible with the use of GGA chromosome painting solely. PMID:25058578
Ribeiro, Tiago; Marques, André; Novák, Petr; Schubert, Veit; Vanzela, André L L; Macas, Jiri; Houben, Andreas; Pedrosa-Harand, Andrea
2017-03-01
Satellite DNA repeats (or satDNA) are fast-evolving sequences usually associated with condensed heterochromatin. To test whether the chromosomal organisation of centromeric and non-centromeric satDNA differs in species with holocentric chromosomes, we identified and characterised the major satDNA families in the holocentric Cyperaceae species Rhynchospora ciliata (2n = 10), R. globosa (2n = 50) and R. tenuis (2n = 2x = 4 and 2n = 4x = 8). While conserved centromeric repeats (present in R. ciliata and R. tenuis) revealed linear signals at both chromatids, non-centromeric, species-specific satDNAs formed distinct clusters along the chromosomes. Colocalisation of both repeat types resulted in a ladder-like hybridisation pattern at mitotic chromosomes. In interphase, the centromeric satDNA was dispersed while non-centromeric satDNA clustered and partly colocalised to chromocentres. Despite the banding-like hybridisation patterns of the clustered satDNA, the identification of chromosome pairs was impaired due to the irregular hybridisation patterns of the homologues in R. tenuis and R. ciliata. These differences are probably caused by restricted or impaired meiotic recombination as reported for R. tenuis, or alternatively by complex chromosome rearrangements or unequal condensation of homologous metaphase chromosomes. Thus, holocentricity influences the chromosomal organisation leading to differences in the distribution patterns and condensation dynamics of centromeric and non-centromeric satDNA.
Nishida, K; Yoshimura, M; Isotani, T; Yoshida, T; Kitaura, Y; Saito, A; Mii, H; Kato, M; Takekita, Y; Suwa, A; Morita, S; Kinoshita, T
2011-09-01
To determine the electrophysiological characteristics of frontotemporal dementia (FTD) and the distinction with Alzheimer's disease (AD). We performed analyses of global field power (GFP) which is a measure of whole brain electric field strength, and EEG neuroimaging analyses with sLORETA (standardized low resolution electromagnetic tomography), in the mild stages of FTD (n = 19; mean age = 68.11 ± 7.77) and AD (n = 19; mean age = 69.42 ± 9.57) patients, and normal control (NC) subjects (n = 22; mean age = 66.13 ± 6.02). In the GFP analysis, significant group effects were observed in the delta (1.5-6.0 Hz), alpha1 (8.5-10.0 Hz), and beta1 (12.5-18.0 Hz) bands. In sLORETA analysis, differences in activity were observed in the alpha1 band (NC > FTD) in the orbital frontal and temporal lobe, in the delta band (AD>NC) in widespread areas including the frontal lobe, and in the beta1 band (FTD > AD) in the parietal lobe and sensorimotor area. Differential patterns of brain regions and EEG frequency bands were observed between the FTD and AD groups in terms of pathological activity. FTD and AD patients in the early stages displayed different patterns in the cortical localization of oscillatory activity across different frequency bands. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.
No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu
2016-11-14
High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.
NASA Astrophysics Data System (ADS)
Fakheri, Hamideh; Tayyari, Sayyed Faramarz; Heravi, Mohammad Momen; Morsali, Ali
2017-12-01
Theoretical quantum chemistry calculations were used to assign the observed vibrational band frequencies of Be, Mg, Ca, Sr, and Ba acetylacetonates complexes. Density functional theory (DFT) calculations have been carried out at the B3LYP level, using LanL2DZ, def2SVP, and mixed, GenECP, (def2SVP for metal ions and 6-311++G** for all other atoms) basis sets. The B3LYP level, with mixed basis sets, was utilized for calculations of vibrational frequencies, IR intensity, and Raman activity. Analysis of the vibrational spectra indicates that there are several bands which could almost be assigned mainly to the metal-oxygen vibrations. The strongest Raman band in this region could be used as a measure of the stability of the complex. The effects of central metal on the bond orders and charge distributions in alkaline earth metal acetylacetonates were studied by the Natural Bond Orbital (NBO) method for fully optimized compounds. Optimization were performed at the B3LYP/6-311++G** level for the lighter alkaline earth metal complexes (Be, Mg, and Ca acetylacetonates) while the B3LYP level, using LanL2DZ (extrabasis, d and f on oxygen and metal atoms), def2SVP and mixed (def2SVP on metal ions and 6-311++G** for all other atoms) basis sets for all understudy complexes. Calculations indicate that the covalence nature of metal-oxygen bonds considerably decreases from Be to Ba complexes. The nature of metal-oxygen bond was further studied by using Atoms In Molecules (AIM) analysis. The topological parameters, Wiberg bond orders, natural charges of O and metal ions, and also some vibrational band frequencies were correlated with the stability constants of understudy complexes.
NASA Astrophysics Data System (ADS)
Behera, M.; Ram, S.
2018-03-01
Fourier transform infrared and Raman bands shows a discernible enhancement in band intensity of C–H stretching, C=O stretching, C–N stretching, C–H2 bending, and C–H2 in-plane bending in PVP molecules in the presence of C60 molecules. Amplification in intensity is ascribed to microscopic interactions results when a donation of nonbonding electron (n) occurs from a “>N–C=O” entity of PVP into a lowest unoccupied molecular orbital of the C60 molecule in PVP-C60 charge transfer (CT) complex. The C=O stretching band intensity (integrated) Vs C60 content plot exhibits a peak near a critical 13.9 μM C60 value owing to percolation effect. Light emission spectra show that even a small addition of 4.63 μM C60 able to suppress the band intensity by ~23% as a result of an energy loss. The integrated band intensity also decreases through a peak near 13.9 μM when plotted against the C60-content. In correlation to the vibration spectra, the maximum effect observed both in light emission and excitation spectra suggests a percolation effect in the CT complex. Exhibition of percolation threshold in C60-PVP donor-acceptor complex will be helpful in optimizing the photovoltaic properties vital for solar cell applications.
Design of a dual-band radiation system for a complex magnetically insulated line oscillator
NASA Astrophysics Data System (ADS)
Yu, Yuanqiang; Wang, Xiaoyu; Fan, Yuwei; Li, Ankun; Li, Sirui
2018-05-01
In this paper, a dual-band radiation system for a complex magnetically insulated line oscillator (MILO) is designed and investigated numerically. The radiation system comprises a coaxial plate-inserted mode converter, a power combiner and a conical horn antenna. The mode converter converts the coaxial TEM mode microwaves (1.775 GHz and 3.175 GHz) which are generated by the complex MILO into the coaxial TE11 mode microwaves, and then the coaxial TE11 mode microwaves are combined by the power combiner in a circular waveguide. Lastly, the microwaves are radiated by a conical horn antenna into the air. The gains of the dual-band radiation system are calculated to be 17.8 dB at 1.775 GHz and 18.9 dB at 3.175 GHz. The 3 dB beam widths are 20.5° in E-plane, 26.4° in H-plane at 1.775 GHz and 20.8° in E-plane, 15.1° in H-plane at 3.175 GHz. The power transmission efficiencies of the dual-band radiation system are 98.5% at 1.775 GHz and 95.7% at 3.175 GHz respectively. The power handling capacities of the dual-band radiation system are 4.2 GW at 1.775 GHz and 4.7 GW at 3.175 GHz, respectively.
Hu, Liping; Jiang, Liming; Bi, Ke; Liao, Huan; Yang, Zujing; Huang, Xiaoting; Bao, Zhenmin
2018-01-01
Abstract Mitotic chromosome preparations of the interspecific hybrids Chlamys farreri (Jones & Preston, 1904) × Patinopecten yessoensis (Jay, 1857), C. farreri × Argopecten irradians (Lamarck, 1819) and C. farreri × Mimachlamys nobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C. farreri and the vertebrate telomeric (TTAGGG)n sequences were used to map mitotic chromosomes of C. farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C. farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs. PMID:29675138
Hu, Liping; Jiang, Liming; Bi, Ke; Liao, Huan; Yang, Zujing; Huang, Xiaoting; Bao, Zhenmin
2018-01-01
Mitotic chromosome preparations of the interspecific hybrids Chlamys farreri (Jones & Preston, 1904) × Patinopecten yessoensis (Jay, 1857), C. farreri × Argopecten irradians (Lamarck, 1819) and C. farreri × Mimachlamys nobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C. farreri and the vertebrate telomeric (TTAGGG) n sequences were used to map mitotic chromosomes of C. farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C. farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs.
Chenxi, Li; Chen, Yanni; Li, Youjun; Wang, Jue; Liu, Tian
2016-06-01
The multiscale entropy (MSE) is a novel method for quantifying the intrinsic dynamical complexity of physiological systems over several scales. To evaluate this method as a promising way to explore the neural mechanisms in ADHD, we calculated the MSE in EEG activity during the designed task. EEG data were collected from 13 outpatient boys with a confirmed diagnosis of ADHD and 13 age- and gender-matched normal control children during their doing multi-source interference task (MSIT). We estimated the MSE by calculating the sample entropy values of delta, theta, alpha and beta frequency bands over twenty time scales using coarse-grained procedure. The results showed increased complexity of EEG data in delta and theta frequency bands and decreased complexity in alpha frequency bands in ADHD children. The findings of this study revealed aberrant neural connectivity of kids with ADHD during interference task. The results showed that MSE method may be a new index to identify and understand the neural mechanism of ADHD. Copyright © 2016 Elsevier Inc. All rights reserved.
Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics
NASA Astrophysics Data System (ADS)
Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří
2018-06-01
Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves.
Qian, Pingping; Hou, Suiwen; Guo, Guangqin
2009-08-01
Pavement cells have an interlocking jigsaw puzzle-shaped leaf surface pattern. Twenty-three genes involved in the pavement cell morphogenesis were discovered until now. The mutations of these genes through various means lead to pavement cell shape defects, such as loss or lack of interdigitation, the reduction of lobing, gaps between lobe and neck regions in pavement cells, and distorted trichomes. These phenotypes are affected by the organization of microtubules and microfilaments. Microtubule bands are considered corresponding with the neck regions of the cell, while lobe formation depends on patches of microfilaments. The pathway of Rho of plant (ROP) GTPase signaling cascades regulates overall activity of the cytoskeleton in pavement cells. Some other proteins, in addition to the ROPs, SCAR/WAVE, and ARP2/3 complexes, are also involved in the pavement cell morphogenesis.
NASA Astrophysics Data System (ADS)
Turkulets, Yury; Shalish, Ilan
2018-01-01
Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.
Oxygen Isotope Variability within Nautilus Shell Growth Bands
2016-01-01
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands. PMID:27100183
Oxygen isotope variability within Nautilus shell growth bands
Linzmeier, Benjamin J.; Kozdon, Reinhard; Peters, Shanan E.; ...
2016-04-21
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis ofmore » oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ 18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ 18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. In addition, to create the observed range of δ 18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.« less
Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition.
Brown, Shannon; Ortiz-Catalan, Max; Petersson, Joel; Rodby, Kristian; Seoane, Fernando
2016-08-01
Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.
Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae
NASA Astrophysics Data System (ADS)
Gilpin, William; Prakash, Vivek N.; Prakash, Manu
2017-04-01
Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrate larvae. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary `tangles' analogous to topological defects that break up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modelling demonstrate that these vortices create a physical trade-off between feeding and swimming in heterogeneous environments, which manifests as distinct flow patterns or `eigenstrokes' representing each behaviour--potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function may generalize to other invertebrates with ciliary bands, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.
Toth, Marton; Faludi, Bela; Kondakor, Istvan
2012-10-01
Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporo-parietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long-term memory and motor performances caused by chronic hypoxia could be reversed by CPAP-therapy.
NASA Astrophysics Data System (ADS)
Özkan, Mutlu; Çelik, Ömer Faruk; Özyavaş, Aziz
2018-02-01
One of the most appropriate approaches to better understand and interpret geologic evolution of an accretionary complex is to make a detailed geologic map. The fact that ophiolite sequences consist of various rock types may require a unique image processing method to map each ophiolite body. The accretionary complex in the study area is composed mainly of ophiolitic and metamorphic rocks along with epi-ophiolitic sedimentary rocks. This paper attempts to map the Late Cretaceous accretionary complex in detail in northern Sivas (within İzmir-Ankara-Erzincan Suture Zone in Turkey) by the analysis of all of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) bands and field study. The new two hybrid color composite images yield satisfactory results in delineating peridotite, gabbro, basalt, and epi-ophiolitic sedimentary rocks of the accretionary complex in the study area. While the first hybrid color composite image consists of one principle component (PC) and two band ratios (PC1, 3/4, 4/6 in the RGB), the PC5, the original ASTER band 4 and the 3/4 band ratio images were assigned to the RGB colors to generate the second hybrid color composite image. In addition to that, the spectral indices derived from the ASTER thermal infrared (TIR) bands discriminate clearly ultramafic, siliceous, and carbonate rocks from adjacent lithologies at a regional scale. Peridotites with varying degrees of serpentinization illustrated as a single color were best identified in the spectral indices map. Furthermore, the boundaries of ophiolitic rocks based on fieldwork were outlined in detail in some parts of the study area by superimposing the resultant maps of ASTER maps on Google Earth images of finer spatial resolution. Eventually, the encouraging geologic map generated by the image analysis of ASTER data strongly correlates with lithological boundaries from a field survey.
Dual-Band Operation of a Microstrip Patch Antenna on a Duroid 5870 Substrate for Ku- and K-Bands
Islam, M. M.; Islam, M. T.; Faruque, M. R. I.
2013-01-01
The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz–14.86 GHz) on the lower band and 0.94 GHz (20.67–19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results. PMID:24385878
Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands.
Islam, M M; Islam, M T; Faruque, M R I
2013-01-01
The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.
Analysis of ERTS-1 imagery and its application to evaluation of Wyoming's natural resources
NASA Technical Reports Server (NTRS)
Marrs, R. W.
1973-01-01
The author has identified the following significant results. A summary of the significant results of the studies completed during the July-August, 1973 period includes: (1) ERTS-1 image brightness contrasts can be related to important contrasts in rangeland and forest vegetation communities of the Laramie Basin. (2) Stereoscopic viewing is essential for correct structural interpretation in outcrop patterns in some areas. (3) Complex fracture patterns which may have exerted a controlling influence on intrusive activity in the Absaroka Mountains can be mapped from ERTS. (4) Volcanic lithologies of the Yellowstone region are often differentiated on the basis of their textures, and cannot be successfully mapped by photogeologic interpretation of ERTS-1 imagery. Ground spectral readings confirm a general lack of contrast between these lithologies in the four ERTS-1 MSS bands. (5) Major dune fields can be recognized and defined from ERTS-1 image interpretations and recognition of differences in stabilizing plant communities (some of which may be mappable from ERTS-1) yields information about migration history of the dune fields.
Monitoring Peatland ecosystem dynamics using multisensor satellite data
NASA Astrophysics Data System (ADS)
Romshoo, S.; Shimada, M.; Igarashi, T.; Rosenqvist, A.
Peatlands are multi-functional natural systems, which perform many globally, regionally, and locally important natural resource functions. They are key links in the cycles of water, carbon and other chemical elements and substances, supporting biological diversity, and accumulating energy, matter and information. Their total carbon pool exceeds that of the world's forests and equals that of the atmosphere. They are complex systems with a specific environm nt in which they exist ande function. The range and importance of the diverse functions, services and resources provided by peatlands are changing with increases in human demand and development of new technologies. These functions can have different values on different spatial (local, regional, national, international, etc.) and temporal (short- term and long-term) levels that may lead to intersectoral conflicts and problems for co-ordinating wise management of peatlands. Keeping in view their ecological and economic importance in the Southeast Asian region, an integrated study was conducted, employing JERS-1 SAR and optical data, to find out how the SAR data could be used to understand the complex ecological processes of these ecosystems. As a first step, it was found out that large tracts of these peatlands have been lost as a result of being diverted to other unproductive land uses from 1994 to 1998 and the process is going on unabated. Such a reckless destruction of these carbon rich forests have resulted in the release of huge amount of carbon to the atmosphere as confirmed from the flux measurements in the area. In order to better understand and quantify the cycles of carbon and water in these ecosystem using bio-geophysical models, it is important to characterize the vegetation and seasonal patterns of the inundation. Both, a single scene and a time series of L-band SAR data were used for the land surface characterization. The vegetation characterization was markedly improved with the use of a time series of data belonging to a particular dry season. A combination of the dry and wet season data only confounded the confusion in the land surface characterization because of the significant soil moisture influence on the L band signals during wet season.- Furthermore, the inundation patterns are clearly discernable and could be mapped on the images. These observed changes in the backscatter due to moisture changes are being compared with the simulations from a backscattering model employing a 1s t order Radiative transfer approach. Overall, it is demonstrated that L-band SAR could be successfully employed to map the deforested areas in these peat swamp forests and the vegetated surface could be better characterized employing a multi-temporal SAR data sets. The nundation,i which is a characteristic phenomenon of these forests and in certain cases remain inundated for an appreciable part of the growing season, could be mapped using L- band observations and modelled using a Radiative Transfer Approach.
SAR antenna calibration techniques
NASA Technical Reports Server (NTRS)
Carver, K. R.; Newell, A. C.
1978-01-01
Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.
NASA Astrophysics Data System (ADS)
Zhang, Hongwen
In this thesis, a detailed investigation of thermal stability and mechanical deformation behavior of Zr/Hf-based Bulk Metallic Glasses is conducted. First, systematic studies had been implemented to understand the influence of relative compositions of Zr and Hf on thermal stability and mechanical property evolution. Second, shear band evolution under indentations were investigated experimentally and theoretically. It was found in the present work that gradually replacing Zr by Hf remarkably increases the density and improves the mechanical properties. However, a slight decrease in glass forming ability with increasing Hf content has also been identified through thermodynamic analysis although all the materials in the current study were still found to be amorphous. Many indentation studies have revealed only a few shear bands surrounding the indent on the top surface of the specimen. This small number of shear bands cannot account for the large plastic deformation beneath the indentations. Therefore, a bonded interface technique has been used to observe the slip-steps due to shear band evolution. Vickers indentations were performed along the interface of the bonded split specimen at increasing loads. At small indentation loads, the plastic deformation was primarily accommodated by semi-circular primary shear bands surrounding the indentation. At higher loads, secondary and tertiary shear bands were formed inside this plastic zone. A modified expanding cavity model was then used to predict the plastic zone size characterized by the shear bands and to identify the stress components responsible for the evolution of the various types of shear bands. The applicability of various hardness - yield-strength (H-sigma y) relationships currently available in the literature for bulk metallic glasses (BMGs) is also investigated. Experimental data generated on ZrHf-based BMGs in the current study and those available elsewhere on other BMG compositions were used to validate the models. A modified expanding-cavity model, employed in earlier work, was extended to propose a new H-sigmay relationship. Unlike previous models, the proposed model takes into account not only the indenter geometry and the material properties, but also the pressure sensitivity index of the BMGs. The influence of various model parameters is systematically analyzed. It is shown that there is a good correlation between the model predictions and the experimental data for a wide range of BMG compositions. Under dynamic Vickers indentation, a decrease in indentation hardness at high loading rate was observed compared to static indentation hardness. It was observed that at equivalent loads, dynamic indentations produced more severe deformation features on the loading surface than static indentations. Different from static indentation, two sets of widely spaced semi-circular shear bands with two different curvatures were observed. The observed shear band pattern and the strain rate softening in indentation hardness were rationalized based on the variations in the normal stress on the slip plane, the strain rate of shear and the temperature rise associated with the indentation deformation. Finally, a coupled thermo-mechanical model is proposed that utilizes a momentum diffusion mechanism for the growth and evolution of the final spacing of shear bands. The influence of strain rate, confinement pressure and critical shear displacement on the shear band spacing, temperature rise within the shear band, and the associated variation in flow stress have been captured and analyzed. Consistent with the known pressure sensitive behavior of BMGs, the current model clearly captures the influence of the normal stress in the formation of shear bands. The normal stress not only reduces the time to reach critical shear displacement but also causes a significant temperature rise during the shear band formation. Based on this observation, the variation of shear band spacing in a typical dynamic indentation test has been rationalized. The temperature rise within a shear band can be in excess of 2000K at high strain rate and high confinement pressure conditions. The associated drop in viscosity and flow stress may explain the observed decrease in fracture strength and indentation hardness. The above investigations provide valuable insight into the deformation behavior of BMGs under static and dynamic loading conditions. The shear band patterns observed in the above indentation studies can be helpful to understand and model the deformation features under complex loading scenarios such as the interaction of a penetrator with armor. Future work encompasses (1) extending and modifying the coupled thermo-mechanical model to account for the temperature rise in quasistatic deformation; and (2) expanding this model to account for the microstructural variation-crystallization and free volume migration associated with the deformation. (Abstract shortened by UMI.)
Namouchi, Amine; Mardassi, Helmi
2006-11-01
Evidence suggests that insertion of the IS6110 element is not without consequence to the biology of Mycobacterium tuberculosis complex strains. Thus, mapping of multiple IS6110 insertion sites in the genome of biomedically relevant clinical isolates would result in a better understanding of the role of this mobile element, particularly with regard to transmission, adaptability and virulence. In the present paper, we describe a versatile strategy, referred to as GL-PCR, that amplifies IS6110-flanking sequences based on the construction of a genomic library. M. tuberculosis chromosomal DNA is fully digested with HincII and then ligated into a plasmid vector between T7 and T3 promoter sequences. The ligation reaction product is transformed into Escherichia coli and selective PCR amplification targeting both 5' and 3' IS6110-flanking sequences are performed on the plasmid library DNA. For this purpose, four separate PCR reactions are performed, each combining an outward primer specific for one IS6110 end with either T7 or T3 primer. Determination of the nucleotide sequence of the PCR products generated from a single ligation reaction allowed mapping of 21 out of the 24 IS6110 copies of two 12 banded M. tuberculosis strains, yielding an overall sensitivity of 87,5%. Furthermore, by simply comparing the migration pattern of GL-PCR-generated products, the strategy proved to be as valuable as IS6110 RFLP for molecular typing of M. tuberculosis complex strains. Importantly, GL-PCR was able to discriminate between strains differing by a single IS6110 band.
Jordán-Dahlgren, Eric; Maldonado, Miguel Angel; Rodríguez-Martínez, Rosa Elisa
2005-01-25
We documented the prevalence of diseases, syndromes and partial mortality in colonies of the Montastraea annularis species complex on 3 reefs, and tested the assumption that a higher prevalence of these parameters occurs when reefs are closer to point-sources of pollution. One reef was isolated from the impact of local factors with the exception of fishing, 1 potentially influenced by local industrial pollutants, and 1 influenced by local urban pollution. Two reefs were surveyed in 1996 and again in 2001 and 1 in 1998 and again in 2001. In 2001, colonies on all reefs had a high prevalence of the yellow-band syndrome and a relatively high degree of recent partial mortality, while the prevalence of black-band and white-plague diseases was low although a new sign, that we named the thin dark line, had relatively high prevalence in all reefs. As no direct relationship was found between disease prevalence and local environmental quality, our results open the possibility that regional and/or global factors may already be playing an important role in the prevalence of coral disease in the Caribbean, and contradict the theory that coral disease prevalence is primarily related to local environmental degradation. Reasons that may partially explain these findings are the high level of potential pathogen connectivity within the Caribbean as a result of its circulation patterns coupled to the large land-derived pollutants and pathogens input into this Mediterranean sea, together with the surface water warming effects which stress corals and enhance pathogen activity.
NASA Astrophysics Data System (ADS)
Chen, Chun-Nan; Luo, Win-Jet; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying
2018-01-01
Using a non-equilibrium Green’s function framework in combination with the complex energy-band method, an atomistic full-quantum model for solving quantum transport problems for a zigzag-edge graphene nanoribbon (zGNR) structure is proposed. For transport calculations, the mathematical expressions from the theory for zGNR-based device structures are derived in detail. The transport properties of zGNR-based devices are calculated and studied in detail using the proposed method.
Structural investigation of the C-O complex in GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alt, H. Ch.; Kersch, A.; Wagner, H. E.
A carbon-oxygen complex occurring in gallium arsenide crystals after annealing at around 700 °C is studied. Fourier transform infrared absorption measurements on the associated vibrational band at 2060 cm-1 under uniaxial stress reveal that the center has tetragonal symmetry. From the intensity of the {sup 18}O-related satellite band it is concluded that four oxygen atoms are involved. Ab initio local density calculations show that a tetragonal CO{sub 4} molecule forms a stable entity in the gallium arsenide lattice.
A dithiolate-bridged (CN)2(CO)Fe-Ni complex reproducing the IR bands of [NiFe] hydrogenase.
Tanino, Soichiro; Li, Zilong; Ohki, Yasuhiro; Tatsumi, Kazuyuki
2009-03-16
A dithiolate-bridged dinuclear Fe-Ni complex, which has the desired fac-(CN)(2)(CO) ligand set at iron, has been synthesized. Its CN/CO bands in the IR spectrum reproduce those of the Ni-A, Ni-B, and Ni-SU states, which indicate that these octahedral Fe(II) centers have similar electronic properties. This result verifies the assignment of a (CN)(2)(CO)Fe(II) moiety in the active site of [NiFe] hydrogenase.
Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining
2017-12-13
Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.
Nanoscale patterning controls inorganic-membrane interface structure
NASA Astrophysics Data System (ADS)
Almquist, Benjamin D.; Verma, Piyush; Cai, Wei; Melosh, Nicholas A.
2011-02-01
The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces.The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces. Electronic supplementary information (ESI) available: Breakthrough rate as a function of force plots for 5 nm, 10 nm and ∞-probes.. See DOI: 10.1039/c0nr00486c
Chirino, Mónica G.; Rossi, Luis F.; Bressa, María J.; Luaces, Juan P.; Merani, María S.
2015-01-01
Abstract The karyotypes of Lucilia cluvia (Walker, 1849) and Lucilia sericata (Meigen, 1826) from Argentina were characterized using conventional staining and the C- and G-like banding techniques. Besides, nucleolus organizer regions (NORs) were detected by fluorescent in situ hybridization (FISH) and silver staining technique. The chromosome complement of these species comprises five pairs of autosomes and a pair of sex chromosomes (XX/XY, female/male). The autosomes of both species have the same size and morphology, as well as C- and G-like banding patterns. The X and Y chromosomes of Lucilia cluvia are subtelocentric and easily identified due to their very small size. In Lucilia sericata, the X chromosome is metacentric and the largest of the complement, showing a secondary constriction in its short arm, whereas the Y is submetacentric and smaller than the X. The C-banding patterns reflect differences in chromatin structure and composition between the subtelocentric X and Y chromosomes of Lucilia cluvia and the biarmed sex chromosomes of Lucilia sericata. These differences in the sex chromosomes may be due to distinct amounts of constitutive heterochromatin. In Lucilia cluvia, the NORs are placed at one end of the long-X and of the long-Y chromosome arms, whereas one of the NORs is disposed in the secondary constriction of the short-X chromosome arm and the other on the long-Y chromosome arm in Lucilia sericata. Although the G-like banding technique does not yield G-bands like those in mammalian chromosomes, it shows a high degree chromosomal homology in both species because each pair of autosomes was correctly paired. This chromosome similarity suggests the absence of autosomal rearrangements during karyotype evolution in the two species studied. PMID:25893078
NASA Astrophysics Data System (ADS)
Watanabe, Tsuyoshi; Taniguchi, Kazutake; Suzuki, Kouta; Iyama, Hiromasa; Kishimoto, Shuji; Sato, Takashi; Kobayashi, Hideo
2016-06-01
Fine hole and dot patterns with bit pitches (bp’s) of less than 40 nm were fabricated in the circular band area of a quartz substrate by R-θ electron beam lithography (EBL), reactive ion etching (RIE), and nanoimprinting. These patterning processes were studied to obtain minimum pitch sizes of hole and dot patterns without pattern collapse. The patterning on the circular band was aimed to apply these patterning processes to future high-density bit-patterned media (BPM) for hard disk drive (HDD) and permanent memory for the long life archiving of digital data. In hole patterning, a minimum-22-nm-bp and 8.2-nm-diameter pattern (1.3 Tbit/in.2) was obtained on a quartz substrate by optimizing the R-θ EBL and RIE processes. Dot patterns were replicated on another quartz substrate by nanoimprinting using a hole-patterned quartz substrate as a master mold followed by RIE. In dot patterning, a minimum-30-nm-bp and 18.5-nm-diameter pattern (0.7 Tbit/in.2) was obtained by introducing new descum conditions. It was observed that the minimum bp of successful patterning increased as the fabrication process proceeded, i.e., from 20 nm bp in the first EBL process to 30 nm bp in the last quartz dot patterning process. From the measured diameters of the patterns, it was revealed that pattern collapse was apt to occur when the value of average diameter plus 3 sigma of diameter was close to the bp. It was suggested that multiple fabrication processes caused the degradation of pattern quality; therefore, hole patterning is more suitable than dot patterning for future applications owing to the lower quality degradation by its simple fabrication process.
Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate
Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.
2014-01-01
This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications. PMID:25165750
Compact double-p slotted inset-fed microstrip patch antenna on high dielectric substrate.
Ahsan, M R; Islam, M T; Habib Ullah, M; Mahadi, W N L; Latef, T A
2014-01-01
This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.
Nanoscale charge distribution and energy band modification in defect-patterned graphene.
Wang, Shengnan; Wang, Rui; Wang, Xiaowei; Zhang, Dongdong; Qiu, Xiaohui
2012-04-21
Defects were introduced precisely to exfoliated graphene (G) sheets on a SiO(2)/n(+) Si substrate to modulate the local energy band structure and the electron pathway using solution-phase oxidation followed by thermal reduction. The resulting nanoscale charge distribution and band gap modification were investigated by electrostatic force microscopy and spectroscopy. A transition phase with coexisting submicron-sized metallic and insulating regions in the moderately oxidized monolayer graphene were visualized and measured directly. It was determined that the delocalization of electrons/holes in a graphene "island" is confined by the surrounding defective C-O matrix, which acts as an energy barrier for mobile charge carriers. In contrast to the irreversible structural variations caused by the oxidation process, the electrical properties of graphene can be restored by annealing. The defect-patterned graphene and graphene oxide heterojunctions were further characterized by electrical transport measurement.
Lachowska, Dorota; Holecová, Milada; Rozek, Maria
2004-01-01
Chromosome numbers and C-banding patterns of sixteen weevil species are presented. The obtained results confirm the existence of two groups of species with either a small or large amount of heterochromatin in the karyotype. The first group comprises twelve species (Apionidae: Oxystoma cerdo, Eutrichapion melancholicum, Ceratapion penetrans, Ceratapion austriacum, Squamapion flavimanum, Rhopalapion longirostre; Nanophyidae: Nanophyes marmoratus; Curculionidae: Centricnemus (=Peritelus) leucogrammus, Sitona humeralis, Sitona lineatus, Sitona macularis, Sitona suturalis). In weevils with a small amount of heterochromatin, tiny grains on the nucleus during interphase are visible, afterwards appearing as dark dots during mitotic and meiotic prophase. The second group comprises four species from the curculionid subfamily Cryptorhynchinae (Acalles camelus, Acalles commutatus, Acalles echinatus, Ruteria hypocrita) which possess much larger heteropycnotic chromosome parts visible during all nuclear divisions. The species examined have pericentromeric C-bands on autosomes and on the X chromosome.
Diagnosis of early gastric cancer using narrow band imaging and acetic acid
Matsuo, Ken; Takedatsu, Hidetoshi; Mukasa, Michita; Sumie, Hiroaki; Yoshida, Hikaru; Watanabe, Yasutomo; Akiba, Jun; Nakahara, Keita; Tsuruta, Osamu; Torimura, Takuji
2015-01-01
AIM: To determine whether the endoscopic findings of depressed-type early gastric cancers (EGCs) could precisely predict the histological type. METHODS: Ninety depressed-type EGCs in 72 patients were macroscopically and histologically identified. We evaluated the microvascular (MV) and mucosal surface (MS) patterns of depressed-type EGCs using magnifying endoscopy (ME) with narrow-band imaging (NBI) (NBI-ME) and ME enhanced by 1.5% acetic acid, respectively. First, depressed-type EGCs were classified according to MV pattern by NBI-ME. Subsequently, EGCs unclassified by MV pattern were classified according to MS pattern by enhanced ME (EME) images obtained from the same angle. RESULTS: We classified the depressed-type EGCs into the following 2 MV patterns using NBI-ME: a fine-network pattern that indicated differentiated adenocarcinoma (25/25, 100%) and a corkscrew pattern that likely indicated undifferentiated adenocarcinoma (18/23, 78.3%). However, 42 of the 90 (46.7%) lesions could not be classified into MV patterns by NBI-ME. These unclassified lesions were then evaluated for MS patterns using EME, which classified 33 (81.0%) lesions as MS patterns, diagnosed as differentiated adenocarcinoma. As a result, 76 of the 90 (84.4%) lesions were matched with histological diagnoses using a combination of NBI-ME and EME. CONCLUSION: A combination of NBI-ME and EME was useful in predicting the histological type of depressed-type EGC. PMID:25632201
Spatial Organization In Europe of Decadal and Interdecadal Fluctuations In Annual Rainfall
NASA Astrophysics Data System (ADS)
Lucero, O. A.; Rodriguez, N. C.
In this research the spatial patterns of decadal and bidecadal fluctuations in annual rainfall in Europe are identified. Filtering of time series of anomaly of annual rainfall is carried out using the Morlet wavelet technique. Reconstruction is achieved by sum- ming the contributions from bands of wavelet timescales; the decadal band and the bidecadal band are composed of contributions from the band of (10- to 17-year] and (17- to 27- year] timescales respectively. Results indicate that 1) the spatial organi- zation of decadal and bidecadal components of annual rainfall are standing wave-like organized patterns. Three standing decadal fluctuations zonally aligned formed the spatial pattern from 1900 until 1931; thereafter the pattern changed into a NW-SE orientation. The decadal band shows an average 12-year period. 2) The spatial orga- nization of bidecadal component was composed of three standing fluctuations since 1903 to 1986. After 1987 two standing bidecadal fluctuations were located on Europe. The orientation of bidecadal fluctuations changed during the period under study. Until 1913 the spatial pattern of the bidecadal component was zonally aligned. Since 1913 until 1986 the three bidecadal fluctuations composing the spatial pattern were aligned SW U NE; starting 1987 the spatial pattern is composed of two standing fluctuations zonally aligned. The bidecadal spatial pattern shows an average period of 20- to 22- year length. 3) At decadal and bidecadal timescales, the first principal component of the spatial field of anomaly of annual rainfall and the NAO index are connected. The upper positive third (lower negative third) of values of first principal component are indicative of extensive area with positive (negative) anomaly of annual rainfall. 4) At decadal timescale the relative phase between the first PC and the NAO index changes through the period under study; these changes define three regimes: 1) Dur- ing the regime covering the period 1900 (start of period under study) to about 1945, at the time of peak values of decadal NAO-index it takes place a transition between extremes (a neutral state) of the decadal rainfall spatial pattern (first PC takes small absolute values). Besides, for positive (negative) peak value of NAO index the spatial pattern of annual rainfall is evolving toward an area of predominantly positive (nega- tive) anomaly. 2) The second regime starts about 1946 and reaches up to early 1980s. At the time of negative (positive) peak of decadal NAO there is a prevailing spatial pattern of positive (negative) anomaly of decadal rainfall. 3) The third regime starts 1 about late 1970s and reaches to the end of the period under study (in 1996). There is a change of relative phase within this period in late 1980s. In this regime a spatial pattern of prevailing positive or negative anomaly of decadal rainfall takes place dur- ing values of decadal NAO close to zero. 5) At bidecadal timescale the relative phase between the first PC and the NAO index remains almost constant through the period under study. The first PC of the transformed bidecadal component of annual rainfall anomaly attains its positive (negative) peak about three years before the bidecadal component of NAO reaches its negative (positive) peak. 2
de Boer, Annette S.; Kremer, Kristin; Borgdorff, Martien W.; de Haas, Petra E. W.; Heersma, Herre F.; van Soolingen, Dick
2000-01-01
Mycobacterium tuberculosis isolates with identical IS6110 restriction fragment length polymorphism (RFLP) patterns are considered to originate from the same ancestral strain and thus to reflect ongoing transmission. In this study, we investigated 1,277 IS6110 RFLP patterns for the presence of multiple low-intensity bands (LIBs), which may indicate infections with multiple M. tuberculosis strains. We did not find any multiple LIBs, suggesting that multiple infections are rare in the Netherlands. However, we did observe a few LIBs in 94 patterns (7.4%) and examined the nature of this phenomenon. With single-colony cultures it was found that LIBs mostly represent mixed bacterial populations with slightly different RFLP patterns. Mixtures were expressed in RFLP patterns as LIBs when 10 to 30% of the DNA analyzed originated from a bacterial population with another RFLP pattern. Presumably, a part of the LIBs did not represent mixed bacterial populations, as in some clusters all strains exhibited LIBs in their RFLP patterns. The occurrence of LIBs was associated with increased age in patients. This may reflect either a gradual change of the bacterial population in the human body over time or IS6110-mediated genetic adaptation of M. tuberculosis to changes in the environmental conditions during the dormant state or reactivation thereafter. PMID:11101583
The thermochromic behavior of aromatic amine-SO2 charge transfer complexes
NASA Astrophysics Data System (ADS)
Monezi, Natália M.; Borin, Antonio C.; Santos, Paulo S.; Ando, Rômulo A.
2017-02-01
The distinct thermochromism observed in solutions containing N,N-dimethylaniline (DMA) and N,N-diethylaniline (DEA) and SO2 was investigated by resonance Raman spectroscopy in a wide range of temperatures. The results indicate in addition to the charge transfer (CT) complexes DMA-SO2 and DEA-SO2, the presence of collision complexes involving the CT complexes and excess DMA and DEA molecules. The latter in fact is the chromophore responsible for the long wavelength absorption originating the color. The Raman signature of the collision complex was attributed to the distinct enhancement of a band at 1140 cm- 1 assigned to νs(SO2), in contrast to the same mode in the 1:1 complex at 1115 cm- 1. The intensity of such band, assigned to the collision complex is favored at high temperatures and depends on the steric hindrance associated to amines, as well as the SO2 molar fraction. Quantum chemical calculations based on time-dependent density functional theory (TDDFT) support the proposed interpretation.
Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J
2012-09-01
Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Victory Devi, Ch.; Rajmuhon Singh, N.
2011-10-01
The interaction of uracil with Nd(III) has been explored in presence and absence of Zn(II) using the comparative absorption spectroscopy involving the 4f-4f transitions in different solvents. The complexation of uracil with Nd(III) is indicated by the change in intensity of 4f-4f bands expressing in terms of significant change in oscillator strength and Judd-Ofelt parameters. Intensification of this bands became more prominent in presence of Zn(II) suggesting the stimulative effect of Zn(II) towards the complexation of Nd(III) with uracil. Other spectral parameters namely Slator-Condon ( Fk's), nephelauxetic effect ( β), bonding ( b1/2) and percent covalency ( δ) parameters are computed to correlate their simultaneous binding of metal ions with uracil. The sensitivities of the observed 4f-4f transitions towards the minor coordination changes around Nd(III) has been used to monitor the simultaneous coordination of uracil with Nd(III) and Zn(II). The variation of intensities (oscillator strengths and Judd-Ofelt parameters) of 4f-4f bands during the complexation has helped in following the heterobimetallic complexation of uracil. Rate of complexation with respect to hypersensitive transition was evaluated. Energy of activation and thermodynamic parameters for the complexation reaction were also determined.
Hull, Emily A; West, Aaron C; Pestovsky, Oleg; Kristian, Kathleen E; Ellern, Arkady; Dunne, James F; Carraher, Jack M; Bakac, Andreja; Windus, Theresa L
2015-02-28
Transition metal complexes (NH3)5CoX(2+) (X = CH3, Cl) and L(H2O)MX(2+), where M = Rh or Co, X = CH3, NO, or Cl, and L is a macrocyclic N4 ligand are examined by both experiment and computation to better understand their electronic spectra and associated photochemistry. Specifically, irradiation into weak visible bands of nitrosyl and alkyl complexes (NH3)5CoCH3(2+) and L(H2O)M(III)X(2+) (X = CH3 or NO) leads to photohomolysis that generates the divalent metal complex and ˙CH3 or ˙NO, respectively. On the other hand, when X = halide or NO2, visible light photolysis leads to dissociation of X(-) and/or cis/trans isomerization. Computations show that visible bands for alkyl and nitrosyl complexes involve transitions from M-X bonding orbitals and/or metal d orbitals to M-X antibonding orbitals. In contrast, complexes with X = Cl or NO2 exhibit only d-d bands in the visible, so that homolytic cleavage of the M-X bond requires UV photolysis. UV-Vis spectra are not significantly dependent on the structure of the equatorial ligands, as shown by similar spectral features for (NH3)5CoCH3(2+) and L(1)(H2O)CoCH3(2+).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Emily A.; West, Aaron C.; Pestovsky, Oleg
2015-01-22
In this paper, transition metal complexes (NH 3) 5CoX2 + (X = CH 3, Cl) and L(H 2O)MX 2+, where M = Rh or Co, X = CH 3, NO, or Cl, and L is a macrocyclic N 4 ligand are examined by both experiment and computation to better understand their electronic spectra and associated photochemistry. Specifically, irradiation into weak visible bands of nitrosyl and alkyl complexes (NH 3) 5CoCH 3 2+ and L(H 2O)M IIIX 2+ (X = CH 3 or NO) leads to photohomolysis that generates the divalent metal complex and ˙CH3 or ˙NO, respectively. On the othermore » hand, when X = halide or NO 2, visible light photolysis leads to dissociation of X – and/or cis/trans isomerization. Computations show that visible bands for alkyl and nitrosyl complexes involve transitions from M–X bonding orbitals and/or metal d orbitals to M–X antibonding orbitals. In contrast, complexes with X = Cl or NO 2 exhibit only d–d bands in the visible, so that homolytic cleavage of the M–X bond requires UV photolysis. UV-Vis spectra are not significantly dependent on the structure of the equatorial ligands, as shown by similar spectral features for (NH 3) 5CoCH 3 2+ and L 1(H 2O)CoCH 3 2+.« less
Electrically coupling complex oxides to semiconductors: A route to novel material functionalities
Ngai, J. H.; Ahmadi-Majlan, K.; Moghadam, J.; ...
2017-01-12
Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. In this paper, we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypicalmore » heterostructures, Ba 1-xSr xTiO 3/Ge and SrZr xTi 1-xO 3/Ge, will be discussed. In the case of Ba 1-xSr xTiO 3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZr xTi 1-xO 3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Finally, analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.« less
Electrically coupling complex oxides to semiconductors: A route to novel material functionalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngai, J. H.; Ahmadi-Majlan, K.; Moghadam, J.
Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. In this paper, we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypicalmore » heterostructures, Ba 1-xSr xTiO 3/Ge and SrZr xTi 1-xO 3/Ge, will be discussed. In the case of Ba 1-xSr xTiO 3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZr xTi 1-xO 3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Finally, analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.« less
NASA Astrophysics Data System (ADS)
Barreto, Wagner J.; Barreto, Sônia R. G.; Ando, Rômulo A.; Santos, Paulo S.; DiMauro, Eduardo; Jorge, Thiago
2008-12-01
The anionic complexes [Cu(L 1-) 3] 1-, L - = dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the νCC + νCO stretching mode at ca. 1384 cm -1. The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g = 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.
Rahman, MuhibUr; Park, Jung-Dong
2018-03-19
In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.
2018-01-01
In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands. PMID:29562714
A doubly curved reflector X-band antenna with integrated IFF array
NASA Astrophysics Data System (ADS)
Alia, F.; Barbati, S.
Primary radar antennas and Identification Friend or Foe (IFF) antennas must rotate with the same speed and synchronism, so that the target echo and IFF transponder mark will appear to the operator at the same time and at the same angular direction. A doubly-curved reflector antenna with a six-element microstrip array integrated in the reflector surface is presented to meet this requirement. The main antenna operates at X-band for low angle search radar, while the secondary antenna operates at L-band for IFF functions. The new configuration minimizes masking of the X-band radiated energy as a result of the IFF L-band elements. In fact, the only effect of the microstrip array on the X-band radiation pattern is the presence of several sidelobes in the + or - 90 deg angular region. The proposed new solution is compared to three other L-band/X-band integrated antenna configurations, and is found to be more advantageous with respect to masking, mechanical aspects, and production costs.
Ok, Kyung-Sun; Kim, Gwang Ha; Park, Do Youn; Lee, Hyun Jeong; Jeon, Hye Kyung; Baek, Dong Hoon; Lee, Bong Eun; Song, Geun Am
2016-01-01
Background/Aims Magnifying endoscopy with narrow band imaging (ME-NBI) is a useful modality for the detailed visualization of microsurface (MS) and microvascular (MV) structures in the gastrointestinal tract. This study aimed to determine whether the MS and MV patterns in ME-NBI differ according to the histologic type, invasion depth, and mucin phenotype of early gastric cancers (EGCs). Methods The MS and MV patterns of 160 lesions in 160 patients with EGC who underwent ME-NBI before endoscopic or surgical resection were prospectively collected and analyzed. EGCs were categorized as either differentiated or undifferentiated and as either mucosal or submucosal, and their mucin phenotypes were determined via immunohistochemistry of the tumor specimens. Results Differentiated tumors mainly displayed an oval and/or tubular MS pattern and a fine network or loop MV pattern, whereas undifferentiated tumors mainly displayed an absent MS pattern and a corkscrew MV pattern. The destructive MS pattern was associated with submucosal invasion, and this association was more prominent in the differentiated tumors than in the undifferentiated tumors. MUC5AC expression was increased in lesions with either a papillary or absent MS pattern and a corkscrew MV pattern, whereas MUC6 expression was increased in lesions with a papillary MS pattern and a loop MV pattern. CD10 expression was more frequent in lesions with a fine network MV pattern. Conclusions ME-NBI can be useful for predicting the histopathology and mucin phenotype of EGCs. PMID:27021504
Alexander, Kathleen A; Laver, Peter N; Williams, Mark C; Sanderson, Claire E; Kanipe, Carly; Palmer, Mitchell V
2018-03-01
Wild banded mongooses ( Mungos mungo) in northeastern Botswana and northwest Zimbabwe are infected with a novel Mycobacterium tuberculosis complex (MTC) pathogen, Mycobacterium mungi. We evaluated gross and histologic lesions in 62 infected mongooses (1999-2017). Many tissues contained multifocal irregular, lymphohistiocytic to granulomatous infiltrates and/or multifocal or coalescing noncaseating to caseating granulomas with variable numbers of intralesional acid-fast bacilli. Over one-third of nasal turbinates examined had submucosal lymphohistiocytic to granulomatous infiltrates, erosion and ulceration of the nasal mucosa, bony remodeling, and nasal distortion. Similar inflammatory cell infiltrates expanded the dermis of the nasal planum with frequent ulceration. However, even in cases with intact epidermis, acid-fast bacilli were present in variable numbers among dermal infiltrates and on the epidermal surface among desquamated cells and debris, most commonly in small crevices or folds. In general, tissue involvement varied among cases but was highest in lymph nodes (50/54, 93%), liver (39/53, 74%), spleen (37/51, 73%), and anal glands/sacs (6/8, 75%). Pulmonary lesions were present in 67% of sampled mongooses (35/52) but only in advanced disseminated disease. The pathological presentation of M. mungi in the banded mongoose is consistent with pathogen shedding occurring through scent-marking behaviors (urine and anal gland secretions) with new infections arising from contact with these contaminated olfactory secretions and percutaneous movement of the pathogen through breaks in the skin, nasal planum, and/or skin of the snout. Given the character and distribution of lesions and the presence of intracellular acid-fast bacilli, we hypothesize that pathogen spread occurs within the body through a hematogenous and/or lymphatic route. Features of prototypical granulomas such as multinucleated giant cells and peripheral fibrosis were rarely present in affected mongooses. Acid-fast bacilli were consistently found intracellularly, even in regions of necrosis. The mongoose genome has a unique deletion (RD1 mon ) that includes part of the encoding region for PPE68 (Rv3873), a gene co-operonic with PE35. These proteins can influence the host's cellular immune response to mycobacterial infections, and it remains uncertain how this deletion might contribute to observed patterns of pathology. M. mungi infection in banded mongooses is characterized by both a unique transmission and exposure route, as well as accompanying pathological features, providing an opportunity to increase our understanding of MTC pathogenesis across host-pathogen systems.
Minimal perceptrons for memorizing complex patterns
NASA Astrophysics Data System (ADS)
Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo
2016-11-01
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.
NASA Astrophysics Data System (ADS)
Miyan, Lal; Khan, Ishaat M.; Ahmad, Afaq
2015-07-01
The charge transfer (CT) complex of 1,2-dimethylimidazole (DMI) as an electron donor with π acceptor 2,4-dinitro-1-naphthol (DNN) has been studied spectrophotometrically in different solvents like chloroform, acetonitrile, methanol, methylene chloride, etc. at room temperature. The CT complex which is formed through the transfer of lone pair electrons from DMI to DNN exhibits well resolved CT bands and the regions of these bands were remarkably different from those of the donor and acceptor. The stoichiometry of the CT complex was found to be 1:1 by a straight-line method between donor and acceptor with maximum absorption bands. The novel CT complex has been characterized by FTIR, TGA-DTA, powder XRD, 1H NMR and 13C NMR spectroscopic techniques. The Benesi-Hildebrand equation has been used to determine the formation constant (KCT), molar extinction coefficient (εCT), standard gibbs free energy (ΔG°) and other physical parameters of the CT complex. The formation constant recorded higher values and molar extinction coefficient recorded lower values in chloroform compared with methylene chloride, methanol and acetonitrile, confirming the strong interaction between the molecular orbital's of donor and acceptor in the ground state in less polar solvent. This CT complex has been studied by absorption spectra of donor 1,2-dimethylimidazole (DMI) and acceptor 2,4-dinitro-1-naphthol (DNN) by using the spectrophotometric technique in various solvents at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morikawa, T., E-mail: morikawa@mosk.tytlabs.co.jp; Sato, S., E-mail: morikawa@mosk.tytlabs.co.jp; Arai, T., E-mail: morikawa@mosk.tytlabs.co.jp
2013-12-10
We developed a new hybrid photocatalyst for CO{sub 2} reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ΔG between the position of conduction band minimum (E{sub CBM}) of the semiconductor and the CO{sub 2} reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO{sub 2} to formate using water as an electron donor andmore » a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO{sub 2} reduction with a TiO{sub 2} photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.« less
NASA Astrophysics Data System (ADS)
Naeem, A.; Khan, I. M.; Ahmad, A.
2011-10-01
The convincing evidence have been given that both the interactions π-π and π-π* (between p-nitrophenol ( p-NTP) and p-dimethylaminobenzaldehyde ( p-DAB)) are simultaneously involved. This has been established by using IR spectrometry. Association constant K evaluated by the method of Foster under the condition [A]0 = [D]0 with apply in this equation, [A]0/ A = 1/ Kɛλ[D]0 + 2/ɛλ, where [A]0 is the initial concentration of acceptor equal to [D]0, A is the absorbance of the complex at λ, K is the association constant, and ɛλ is the molar absorptivity of the complex at λ. In the IR spectral studies of several related organic compounds, one comes to the conclusion that p-NTP shows a broad band centred at 1600 cm-1 and to nitro asymmetric stretching vibrations. In the complex while the 1500 cm-1 band remains without shift, the broad band localized at 1600 cm-1 shift to 1610 cm-1. A shift of 10 cm-1 shows weak interactions. Studies on molecular complexes of organ metallic donors and acceptors are of very recent origin. Though alkyl donors have been extensively studied, very few studies have appeared on aryl donors.
The diffuse interstellar bands: a tracer for organics in the diffuse interstellar medium?
NASA Technical Reports Server (NTRS)
Salama, F.
1998-01-01
The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.
NASA Astrophysics Data System (ADS)
Cammarata, Antonio; Rondinelli, James
2012-02-01
Transition-metal oxides within the perovskite crystal family exhibit strong electron--electron correlation effects that coexist with complex structural distortions, leading to metal-insulator (MI) transitions. Using first-principles density functional calculations, we investigate the effects of cooperative octahedral rotations and dilations/contractions on the charge-ordering MI-transition in CaFeO3. By calculating the evolution in the lattice phonons, which describe the different octahedral distortions present in the low-symmetry monoclinic phase of CaFeO3 with increasing electron correlation, we show that the MI-transition results from a complex interplay between these modes and correlation effects. We combine this study with group theoretical tools to disentangle the electron--lattice interactions by computing the evolution in the low-energy electronic band structure with the lattice phonons, demonstrating the MI-transition in CaFeO3 proceeds through a symmetry-lowering transition driven by a cooperative three-dimensional octahedral dilation/contraction pattern. Finally, we suggest a possible route by which to control the charge ordering by fine-tuning the electron--lattice coupling.
Invisible defects in complex crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it; Della Valle, Giuseppe
2013-07-15
We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out tomore » be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.« less
Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P
2010-06-01
Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.
Restoration of movement patterns of the Hawaiian Goose
Hess, Steven C.; Leopold, Christina R.; Misajon, Kathleen; Hu, Darcy; Jeffrey, John J.
2012-01-01
We used visual observations of banded individuals and satellite telemetry from 2007 to 2011 on Hawai′i Island to document movement patterns of the Hawaiian Goose (Branta sandvicensis), commonly known as Nene. Visual observations of numbered leg bands identified >19% and ≤10% of 323 geese at one of two breeding sites and one of two distant non-breeding areas during 2007-2011. We used satellite telemetry to document movement patterns of 10 male Nene from 2009 to 2011, and log-linear models to quantify the magnitude and individual differences in altitudinal migration. Two subpopulations of Nene moved 974.4 m (95% CI ± 22.0) and 226.4 m (95% CI ± 40.7) in elevation between seasons on average, from high-elevation shrublands during the non-breeding season of May-August, to lower-elevation breeding and molting areas in September-April. Traditional movement patterns were thought to be lost until recently, but the movement pattern we documented with satellite telemetry was similar to altitudinal migration described by early naturalists in Hawai′i prior to the severe population decline of Nene in the 20th century.
Fabrication of frequency selective surface for band stop IR-filter
NASA Astrophysics Data System (ADS)
Mishra, Akshita; Sudheer, Tiwari, P.; Mondal, P.; Bhatt, H.; Rai, V. N.; Srivastava, A. K.
2016-05-01
Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO2 on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infrared region.
Measurement of hurricane winds and waves with a synthetic aperture radar
NASA Technical Reports Server (NTRS)
Shemdin, O. H.; King, D. B.
1979-01-01
An analysis of data collected in a hurricane research program is presented. The data were collected with a Synthetic Aperture Radar (SAR) during five aircraft flights in the Atlantic in August and September, 1976. Work was conducted in two areas. The first is an analysis of the L-band SAR data in a scatterometer mode to determine the surface windspeeds in hurricanes, in a similar manner to that done by an X-band scatterometer. The second area was to use the SAR to examine the wave patterns in hurricanes. The wave patterns in all of the storms are similar and show a marked radial asymmetry.
Plasmonic thermal IR emitters based on nanoamorphous carbon
NASA Astrophysics Data System (ADS)
Tay, Savaş; Kropachev, Aleksandr; Araci, Ismail Emre; Skotheim, Terje; Norwood, Robert A.; Peyghambarian, N.
2009-02-01
The development of plasmonic narrow-band thermal mid-IR emitters made from a conducting amorphous carbon composite is shown. These IR emitters have greatly improved thermal and mechanical stability compared to metallic emitters as they can be operated at 600 °C in air without any degradation in performance. The emitted thermal radiation has a bandwidth of 0.5 μm and can be set to the desired wavelength from 3 to 15 μm by changing the surface periodicity. The periodically patterned devices have in-band emissivities significantly exceeding that of the non-patterned devices, constituting simple yet efficient radiation sources at this important wavelength range.
Kondo, T; Ohshima, T
1998-01-01
A blind shell suddenly and unexpectedly exploded, and 20 dismembered human remains were discovered. DNA fingerprint was performed to determine whether the 20 human remains were derived from one person or not. DNA was isolated from each of the remains and digested by the restriction enzyme Hinf I and Hae III and hybridized with the oligonucleotide probe (GTG)5. DNA fingerprint using Hinf I demonstrated the same band pattern in 17 out of the 20 remains. However, in the remaining 3 samples, two novel strange bands were observed. DNA fingerprint using Hae III showed completely identical pattern in all of the remains.
Finn, James E.; Burger, Carl V.; Holland-Bartels, Leslie E.
1997-01-01
We used otolith banding patterns formed during incubation to discriminate among hatchery- and wild-incubated fry of sockeye salmon Oncorhynchus nerka from Tustumena Lake, Alaska. Fourier analysis of otolith luminance profiles was used to describe banding patterns: the amplitudes of individual Fourier harmonics were discriminant variables. Correct classification of otoliths to either hatchery or wild origin was 83.1% (cross-validation) and 72.7% (test data) with the use of quadratic discriminant function analysts on 10 Fourier amplitudes. Overall classification rates among the six test groups (one hatchery and five wild groups) were 46.5% (cross-validation) and 39.3% (test data) with the use of linear discriminant function analysis on 16 Fourier amplitudes. Although classification rates for wild-incubated fry from any one site never exceeded 67% (cross-validation) or 60% (test data), location-specific information was evident for all groups because the probability of classifying an individual to its true incubation location was significantly greater than chance. Results indicate phenotypic differences in otolith microstructure among incubation sites separated by less than 10 km. Analysis of otolith luminance profiles is a potentially useful technique for discriminating among and between various populations of hatchery and wild fish.
Motor strategy patterns study of diabetic neuropathic individuals while walking. A wavelet approach.
Sacco, I C N; Hamamoto, A N; Onodera, A N; Gomes, A A; Weiderpass, H A; Pachi, C G F; Yamamoto, J F; von Tscharner, V
2014-07-18
The aim of this study was to investigate muscle׳s energy patterns and spectral properties of diabetic neuropathic individuals during gait cycle using wavelet approach. Twenty-one diabetic patients diagnosed with peripheral neuropathy, and 21 non-diabetic individuals were assessed during the whole gait cycle. Activation patterns of vastus lateralis, medial gastrocnemius and tibialis anterior were studied by means of bipolar surface EMG. The signal׳s energy and frequency were compared between groups using t-test. The energy was compared in each frequency band (7-542 Hz) using ANOVAs for repeated measures for each group and each muscle. The diabetic individuals displayed lower energies in lower frequency bands for all muscles and higher energies in higher frequency bands for the extensors׳ muscles. They also showed lower total energy of gastrocnemius and a higher total energy of vastus, considering the whole gait cycle. The overall results suggest a change in the neuromuscular strategy of the main extensor muscles of the lower limb of diabetic patients to compensate the ankle extensor deficit to propel the body forward and accomplish the walking task. Copyright © 2014 Elsevier Ltd. All rights reserved.
Complexity and time asymmetry of heart rate variability are altered in acute mental stress.
Visnovcova, Z; Mestanik, M; Javorka, M; Mokra, D; Gala, M; Jurko, A; Calkovska, A; Tonhajzerova, I
2014-07-01
We aimed to study the complexity and time asymmetry of short-term heart rate variability (HRV) as an index of complex neurocardiac control in response to stress using symbolic dynamics and time irreversibility methods. ECG was recorded at rest and during and after two stressors (Stroop, arithmetic test) in 70 healthy students. Symbolic dynamics parameters (NUPI, NCI, 0V%, 1V%, 2LV%, 2UV%), and time irreversibility indices (P%, G%, E) were evaluated. Additionally, HRV magnitude was quantified by linear parameters: spectral powers in low (LF) and high frequency (HF) bands. Our results showed a reduction of HRV complexity in stress (lower NUPI with both stressors, lower NCI with Stroop). Pattern classification analysis revealed significantly higher 0V% and lower 2LV% with both stressors, indicating a shift in sympathovagal balance, and significantly higher 1V% and lower 2UV% with Stroop. An unexpected result was found in time irreversibility: significantly lower G% and E with both stressors, P% index significantly declined only with arithmetic test. Linear HRV analysis confirmed vagal withdrawal (lower HF) with both stressors; LF significantly increased with Stroop and decreased with arithmetic test. Correlation analysis revealed no significant associations between symbolic dynamics and time irreversibility. Concluding, symbolic dynamics and time irreversibility could provide independent information related to alterations of neurocardiac control integrity in stress-related disease.
Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture
NASA Astrophysics Data System (ADS)
Zhu, A.; Ramanathan, V.
2007-12-01
The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for research on aerosol mixing state and its climate impacts.
Puchulu-Campanella, Estela; Chu, Haiyan; Anstee, David J; Galan, Jacob A; Tao, W Andy; Low, Philip S
2013-01-11
Glycolytic enzymes (GEs) have been shown to exist in multienzyme complexes on the inner surface of the human erythrocyte membrane. Because no protein other than band 3 has been found to interact with GEs, and because several GEs do not bind band 3, we decided to identify the additional membrane proteins that serve as docking sites for GE on the membrane. For this purpose, a method known as "label transfer" that employs a photoactivatable trifunctional cross-linking reagent to deliver a biotin from a derivatized GE to its binding partner on the membrane was used. Mass spectrometry analysis of membrane proteins that were biotinylated following rebinding and photoactivation of labeled GAPDH, aldolase, lactate dehydrogenase, and pyruvate kinase revealed not only the anticipated binding partner, band 3, but also the association of GEs with specific peptides in α- and β-spectrin, ankyrin, actin, p55, and protein 4.2. More importantly, the labeled GEs were also found to transfer biotin to other GEs in the complex, demonstrating for the first time that GEs also associate with each other in their membrane complexes. Surprisingly, a new GE binding site was repeatedly identified near the junction of the membrane-spanning and cytoplasmic domains of band 3, and this binding site was confirmed by direct binding studies. These results not only identify new components of the membrane-associated GE complexes but also provide molecular details on the specific peptides that form the interfacial contacts within each interaction.
Puchulu-Campanella, Estela; Chu, Haiyan; Anstee, David J.; Galan, Jacob A.; Tao, W. Andy; Low, Philip S.
2013-01-01
Glycolytic enzymes (GEs) have been shown to exist in multienzyme complexes on the inner surface of the human erythrocyte membrane. Because no protein other than band 3 has been found to interact with GEs, and because several GEs do not bind band 3, we decided to identify the additional membrane proteins that serve as docking sites for GE on the membrane. For this purpose, a method known as “label transfer” that employs a photoactivatable trifunctional cross-linking reagent to deliver a biotin from a derivatized GE to its binding partner on the membrane was used. Mass spectrometry analysis of membrane proteins that were biotinylated following rebinding and photoactivation of labeled GAPDH, aldolase, lactate dehydrogenase, and pyruvate kinase revealed not only the anticipated binding partner, band 3, but also the association of GEs with specific peptides in α- and β-spectrin, ankyrin, actin, p55, and protein 4.2. More importantly, the labeled GEs were also found to transfer biotin to other GEs in the complex, demonstrating for the first time that GEs also associate with each other in their membrane complexes. Surprisingly, a new GE binding site was repeatedly identified near the junction of the membrane-spanning and cytoplasmic domains of band 3, and this binding site was confirmed by direct binding studies. These results not only identify new components of the membrane-associated GE complexes but also provide molecular details on the specific peptides that form the interfacial contacts within each interaction. PMID:23150667
Controlling flows in microchannels with patterned surface charge and topography.
Stroock, Abraham D; Whitesides, George M
2003-08-01
This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).
Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation.
Watanabe, Yoichiro; Schneider, Rene; Barkwill, Sarah; Gonzales-Vigil, Eliana; Hill, Joseph L; Samuels, A Lacey; Persson, Staffan; Mansfield, Shawn D
2018-06-05
In plants, plasma membrane-embedded CELLULOSE SYNTHASE (CESA) enzyme complexes deposit cellulose polymers into the developing cell wall. Cellulose synthesis requires two different sets of CESA complexes that are active during cell expansion and secondary cell wall thickening, respectively. Hence, developing xylem cells, which first undergo cell expansion and subsequently deposit thick secondary walls, need to completely reorganize their CESA complexes from primary wall- to secondary wall-specific CESAs. Using live-cell imaging, we analyzed the principles underlying this remodeling. At the onset of secondary wall synthesis, the primary wall CESAs ceased to be delivered to the plasma membrane and were gradually removed from both the plasma membrane and the Golgi. For a brief transition period, both primary wall- and secondary wall-specific CESAs coexisted in banded domains of the plasma membrane where secondary wall synthesis is concentrated. During this transition, primary and secondary wall CESAs displayed discrete dynamic behaviors and sensitivities to the inhibitor isoxaben. As secondary wall-specific CESAs were delivered and inserted into the plasma membrane, the primary wall CESAs became concentrated in prevacuolar compartments and lytic vacuoles. This adjustment in localization between the two CESAs was accompanied by concurrent decreased primary wall CESA and increased secondary wall CESA protein abundance. Our data reveal distinct and dynamic subcellular trafficking patterns that underpin the remodeling of the cellulose biosynthetic machinery, resulting in the removal and degradation of the primary wall CESA complex with concurrent production and recycling of the secondary wall CESAs. Copyright © 2018 the Author(s). Published by PNAS.
[Measurement and analysis on complex refraction indices of pear pollen in infrared band].
Li, Le; Hu, Yi-hua; Gu, You-lin; Chen, Wei; Zhao, Yi-zheng; Chen, Shan-jing
2015-01-01
Pollen is an important part of bioaerosols, and its complex refractive index is a crucial parameter for study on optical characteristics and detection, identification of bioaerosols. The reflection spectra of pear pollen within the 2. 5 - 15µm waveband were measured by squash method. Based on the measured data, the complex refractive index of pear pollen within the wave-band of 2. 5 to 15 µm was calculated by using Kramers-Kroning (K-K) relation, and calculation deviation about incident angle and different reflectivities at high and low frequencies.were analyzed. The results indicate that 18 degrees angle of incidence and different reflectivities at high and low frequencies have little effect on the results, and it is practicable to calculate the complex refractive index of pollen based on its reflection spectral data. The data of complex refractive index of pollen have some reference value for optical characteristics of pollen, detection and identification of bioaerosols.
Reentrant Information Flow in Electrophysiological Rat Default Mode Network.
Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong
2017-01-01
Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.
Been, Anita C.; Rasch, Ellen M.
1972-01-01
The cellular and secretory proteins of the salivary gland of Sciara coprophila during the stages of the larval-pupal transformation were examined by electrophoresis in 0.6 mm sheets of polyacrylamide gel with both SDS-continuous and discontinuous buffer systems. After SDS-electrophoresis, all electrophoretograms of both reduced and nonreduced proteins from single glands stained with Coomassie brilliant blue revealed a pattern containing the same 25 bands during the stages of the larval-pupal transformation. With the staining procedures used in this study, qualitative increases and decreases were detected in existing proteins and enzymes. There was no evidence, however, for the appearance of new protein species that could be correlated with the onset of either pupation or gland histolysis. Electrophoretograms of reduced samples of anterior versus posterior gland parts indicated that no protein in the basic pattern of 25 bands was unique to either the anterior or posterior gland part. Electrophoretograms of reduced samples of secretion collected from either actively feeding or "cocoon"-building animals showed an electrophoretic pattern containing up to six of the 25 protein fractions detected in salivary gland samples, with varied amounts of these same six proteins in electrophoretograms of secretion samples from a given stage. Zymograms of non-specific esterases in salivary gland samples revealed a progressive increase in the amount of esterase reaction produce in one major band and some decrease in the second major band during later stages of the larval-pupal transformation. PMID:4116523
Dark gap solitons in exciton-polariton condensates in a periodic potential.
Cheng, Szu-Cheng; Chen, Ting-Wei
2018-03-01
We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.
Dark gap solitons in exciton-polariton condensates in a periodic potential
NASA Astrophysics Data System (ADS)
Cheng, Szu-Cheng; Chen, Ting-Wei
2018-03-01
We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.
Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz
2014-01-01
A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band. PMID:25133245
Perez-Heydrich, Carolina; Loughry, W J; Anderson, Corey Devin; Oli, Madan K
2016-07-01
The nine-banded armadillo ( Dasypus novemcinctus ) is the only known nonhuman reservoir of Mycobacterium leprae , the causative agent of Hansen's disease or leprosy. We conducted a 6-yr study on a wild population of armadillos in western Mississippi that was exposed to M. leprae to evaluate the importance of demographic and spatial risk factors on individual antibody status. We found that spatially derived covariates were not predictive of antibody status. Furthermore, analyses revealed no evidence of clustering by antibody-positive individuals. Lactating females and adult males had higher odds of being antibody positive than did nonlactating females. No juveniles or yearlings were antibody positive. Results of these analyses support the hypothesis that M. leprae infection patterns are spatially homogeneous within this armadillo population. Further research related to movement patterns, contact among individuals, antibody status, and environmental factors could help address hypotheses related to the role of environmental transmission on M. leprae infection and the mechanisms underlying the differential infection patterns among demographic groups.
Hunter-Schreger Band patterns in human tooth enamel
Lynch, Christopher D; O’Sullivan, Victor R; Dockery, Peter; McGillycuddy, Catherine T; Sloan, Alastair J
2010-01-01
Using light microscopy, we examined Hunter-Schreger Band (HSB) patterns on the axial and occlusal/incisal surfaces of 160 human teeth, sectioned in both the buccolingual and mesiodistal planes. We found regional variations in HSB packing densities (number of HSBs per mm of amelodentinal junction length) and patterns throughout the crown of each class of tooth (maxillary and mandibular: incisor, canine, premolar, and molar) examined. HSB packing densities were greatest in areas where functional and occlusal loads are greatest, such as the occlusal surfaces of posterior teeth and the incisal regions of incisors and canines. From this it is possible to infer that the behaviour of ameloblasts forming enamel prisms during amelogenesis is guided by genetic/evolutionary controls that act to increase the fracture and wear resistance of human tooth enamel. It is suggested that HSB packing densities and patterns are important in modern clinical dental treatments, such as the bonding of adhesive restorations to enamel, and in the development of conditions, such as abfraction and cracked tooth syndrome. PMID:20579171
NASA Astrophysics Data System (ADS)
Kumar, Jagadish; Ananthakrishna, G.
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.
Designer Disordered Complex Media: Hyperuniform Photonic and Phononic Band Gap Materials
NASA Astrophysics Data System (ADS)
Amoah, Timothy
In this thesis we investigate designer disordered complex media for photonics and phononics applications. Initially we focus on the photonic properties and we analyse hyperuniform disordered structures (HUDS) using numerical simulations. Photonic HUDS are a new class of photonic solids, which display large, isotropic photonic band gaps (PBG) comparable in size to the ones found in photonic crystals (PC). We review their complex interference properties, including the origin of PBGs and potential applications. HUDS combine advantages of both isotropy due to disorder (absence of long-range order) and controlled scattering properties from uniform local topology due to hyperuniformity (constrained disorder). The existence of large band gaps in HUDS contradicts the longstanding intuition that Bragg scattering and long-range translational order is required in PBG formation, and demonstrates that interactions between Mie-like local resonances and multiple scattering can induce on their own PBGs. The discussion is extended to finite height effects of planar architectures such as pseudo-band-gaps in photonic slabs as well as the vertical confinement in the presence of disorder. The particular case of a silicon-on-insulator compatible hyperuniform disordered network structure is considered for TE polarised light. We address technologically realisable designs of HUDS including localisation of light in point-defect-like optical cavities and the guiding of light in freeform PC waveguide analogues. Using finite-difference time domain and band structure computer simulations, we show that it is possible to construct optical cavities in planar hyperuniform disordered solids with isotropic band gaps that effciently confine TE polarised radiation. We thus demonstrate that HUDS are a promising general-purpose design platform for integrated optical micro-circuitry. After analysing HUDS for photonic applications we investigate them in the context of elastic waves towards phononics applications. We demonstrate the first phononic band gaps (PnBG) for HUDS. We find that PnBGs in phononic HUDS can confine and guide elastic waves similar to photonic HUDS for EM radiation.
Kumar, Jagadish; Ananthakrishna, G
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.
Controlled Neutralization of Anions in Cryogenic Matrices by Near-Threshold Photodetachment
NASA Astrophysics Data System (ADS)
Ludwig, Ryan M.; Moore, David T.
2014-06-01
Using matrix isolation FTIR, we have observed the formation of anionic copper carbonyl complexes [Cu(CO)n]- (n=1-3) following co-deposition of Cu- and counter-cations (Ar+ or Kr+) into argon matrices doped with CO. The infrared bands have been previously assigned in argon matrix studies employing laser ablation, however they were quite weak compared to the bands for the corresponding neutral species. In the current study, when the deposition is carried out in fully darkened conditions at 10 K with high CO concentrations (1-2%), only the bands for the anionic complexes are observed initially via FTIR. However, upon mild irradiation with broadband visible light, the anionic bands are rapidly depleted, with concomitant appearance of bands corresponding to neutral copper carbonyl complexes. This photo-triggered neutralization is attributed to photodetachment of electrons from the anions, which then "flow" through the solid argon matrix to recombine in the matrix with non-adjacent trapping sites. This mechanism is supported by the appearance of a new band near 1515 wn, assigned to the (CO)2- species in argon. The wavelength dependence of the photodetachment will be discussed in detail, although preliminary indications are that the thresholds for the copper carbonyls, which are normally in the infrared, are shifted into the visible region of the spectrum in argon matrices. This likely occurs because the conduction band of solid argon is known to lie about 1 eV above the vacuum level, and thus the electron must have at least this much energy in order to escape into the matrix and find a trapping site. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged Ryan M. Ludwig and David T. Moore, J. Chem. Phys. 139, 244202 (2013) Zhou, M.; Andrews, L., J. Chem. Phys. 111, 4548 (1999). Thompson, W.E.; Jacox, M.E.; J. Chem. Phys. 91, 735 (1991). Stanzel, J. et al.; Collect. Czech. Chem. Comm. 72, 1 (2007). Harbich, W. et al.; Phys. Rev. B. 76, 104306 (2007).
Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures
NASA Astrophysics Data System (ADS)
Manca, Nicola; Groenendijk, Dirk J.; Pallecchi, Ilaria; Autieri, Carmine; Tang, Lucas M. K.; Telesio, Francesca; Mattoni, Giordano; McCollam, Alix; Picozzi, Silvia; Caviglia, Andrea D.
2018-02-01
Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5 d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear electronlike Hall effect up to 33 T.
Vassilikos, Vassilios P; Mantziari, Lilian; Dakos, Georgios; Kamperidis, Vasileios; Chouvarda, Ioanna; Chatzizisis, Yiannis S; Kalpidis, Panagiotis; Theofilogiannakos, Efstratios; Paraskevaidis, Stelios; Karvounis, Haralambos; Mochlas, Sotirios; Maglaveras, Nikolaos; Styliadis, Ioannis H
2014-01-01
Wider QRS and left bundle branch block morphology are related to response to cardiac resynchronization therapy (CRT). A novel time-frequency analysis of the QRS complex may provide additional information in predicting response to CRT. Signal-averaged electrocardiograms were prospectively recorded, before CRT, in orthogonal leads and QRS decomposition in three frequency bands was performed using the Morlet wavelet transformation. Thirty eight patients (age 65±10years, 31 males) were studied. CRT responders (n=28) had wider baseline QRS compared to non-responders and lower QRS energies in all frequency bands. The combination of QRS duration and mean energy in the high frequency band had the best predicting ability (AUC 0.833, 95%CI 0.705-0.962, p=0.002) followed by the maximum energy in the high frequency band (AUC 0.811, 95%CI 0.663-0.960, p=0.004). Wavelet transformation of the QRS complex is useful in predicting response to CRT. © 2013.
Téllez S, Claudio A; Costa, Anilton C; Mondragón, M A; Ferreira, Glaucio B; Versiane, O; Rangel, J L; Lima, G Müller; Martin, A A
2016-12-05
Theoretical and experimental bands have been assigned for the Fourier Transform Infrared and Raman spectra of the bis(diethyldithiocarbamate)Mn(II) complex, [Mn(DDTC)2]. The calculations have been based on the DFT/B3LYP method, second derivative spectra and band deconvolution analysis. The UV-vis experimental spectra were measured in acetonitrile solution, and the calculated electronic spectrum was obtained using the TD/B3LYP method with 6-311G(d, p) basis set for all atoms. Charge transfer bands and those d-d spin forbidden were assigned in the UV-vis spectrum. The natural bond orbital analysis was carried out using the DFT/B3LYP method and the Mn(II) hybridization leading to the planar geometry of the framework was discussed. Surface enhanced Raman scattering (SERS) was also performed. Mulliken charges of the normal modes were obtained and related to the SERS enhanced bands. Copyright © 2016 Elsevier B.V. All rights reserved.
Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken
2014-03-03
This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.
Thermoelectric band engineering: The role of carrier scattering
NASA Astrophysics Data System (ADS)
Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse
2017-11-01
Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.
Instabilities in wormlike micelle systems. From shear-banding to elastic turbulence.
Fardin, M-A; Lerouge, S
2012-09-01
Shear-banding is ubiquitous in complex fluids. It is related to the organization of the flow into macroscopic bands bearing different viscosities and local shear rates and stacked along the velocity gradient direction. This flow-induced transition towards a heterogeneous flow state has been reported in a variety of systems, including wormlike micellar solutions, telechelic polymers, emulsions, clay suspensions, colloidal gels, star polymers, granular materials, or foams. In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In wormlike micelle solutions, many of the data collected exhibit unexplained spatio-temporal fluctuations. Different candidates have been identified, the main ones being wall slip, interfacial instability between bands or bulk instability of one of the bands. In this review, we present experimental evidence for a purely elastic instability of the high shear rate band as the main origin for fluctuating shear-banding flows.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen
2016-01-01
Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuck-Muller, C.M.; Li, Shibo; Chen, H.
Intrachromosomal rearrangements usually result from three or fewer breaks. We report a complex intrachromosomal rearrangement resulting from five breaks in one chromosome 10 of a phenotypically normal father of two developmentally delayed children. GTG-banding analysis of the father`s rearranged chromosome 10 suggested an initial pericentric inversion followed by an insertion from the short arm into the terminal band of the long arm. To our knowledge, this rearrangement is the most complex ever reported in a single chromosome. Both children inherited a recombinant chromosome 10 with loss of the insertion and the segment distal to it. Mechanisms for both rearrangements aremore » proposed. 7 refs., 2 figs.« less
Photoactive platinum(ii) β-diketonates as dual action anticancer agents.
Raza, Md Kausar; Mitra, Koushambi; Shettar, Abhijith; Basu, Uttara; Kondaiah, Paturu; Chakravarty, Akhil R
2016-08-16
Platinum(ii) complexes, viz. [Pt(L)(cur)] (1), [Pt(L)(py-acac)] (2) and [Pt(L)(an-acac)] (3), where HL is 4,4'-bis-dimethoxyazobenzene, Hcur is curcumin, Hpy-acac and Han-acac are pyrenyl and anthracenyl appended acetylacetone, were prepared, characterized and their anticancer activities were studied. Complex [Pt(L)(acac)] (4) was used as a control. Complex 1 showed an absorption band at 430 nm (ε = 8.8 × 10(4) M(-1) cm(-1)). The anthracenyl and pyrenyl complexes displayed bands near 390 nm (ε = 3.7 × 10(4) for 3 and 4.4 × 10(4) M(-1) cm(-1) for 2). Complex 1 showed an emission band at 525 nm (Φ = 0.017) in 10% DMSO-DPBS (pH, 7.2), while 2 and 3 were blue emissive (λem = 440 and 435, Φ = 0.058 and 0.045). There was an enhancement in emission intensity on glutathione (GSH) addition indicating diketonate release. The platinum(ii) species thus formed acted as a transcription inhibitor. The released β-diketonate base showed photo-chemotherapeutic activity. The complexes photocleaved plasmid DNA under blue light of 457 nm forming ∼75% nicked circular (NC) DNA with hydroxyl radicals and singlet oxygen as the ROS. Complexes 1-3 were photocytotoxic in skin keratinocyte HaCaT cells giving IC50 of 8-14 μM under visible light (400-700 nm, 10 J cm(-2)), while being non-toxic in the dark (IC50: ∼60 μM). Complex 4 was inactive. Complexes 1-3 generating cellular ROS caused apoptotic cell death under visible light as evidenced from DCFDA and annexin-V/FITC-PI assays. This work presents a novel way to deliver an active platinum(ii) species and a phototoxic β-diketone species to the cancer cells.
Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S
2013-10-21
Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.
Piros, Palma; Puskas, Szilvia; Emri, Miklos; Opposits, Gabor; Spisak, Tamas; Fekete, Istvan; Clemens, Bela
2014-03-01
Absence status (AS) epilepticus with generalized spike-wave pattern is frequently found in severely ill patients in whom several disease states co-exist. The cortical generators of the ictal EEG pattern and EEG functional connectivity (EEGfC) of this condition are unknown. The present study investigated the localization of the uppermost synchronized generators of spike-wave activity in AS. Seven patients with late-onset AS were investigated by EEG spectral analysis, LORETA (Low Resolution Electromagnetic Tomography) source imaging, and LSC (LORETA Source Correlation) analysis, which estimates cortico-cortical EEGfC among 23 ROIs (regions of interest) in each hemisphere. All the patients showed generalized ictal EEG activity. Maximum Z-scored spectral power was found in the 1-6 Hz and 12-14 Hz frequency bands. LORETA showed that the uppermost synchronized generators of 1-6 Hz band activity were localized in frontal and temporal cortical areas that are parts of the limbic system. For the 12-14 Hz band, abnormally synchronized generators were found in the antero-medial frontal cortex. Unlike the rather stereotyped spectral and LORETA findings, the individual EEGfC patterns were very dissimilar. The findings are discussed in the context of nonconvulsive seizure types and the role of the underlying cortical areas in late-onset AS. The diversity of the EEGfC patterns remains an enigma. Localizing the cortical generators of the EEG patterns contributes to understanding the neurophysiology of the condition. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Screening and Characterization of RAPD Markers in Viscerotropic Leishmania Parasites
Mkada–Driss, Imen; Talbi, Chiraz; Guerbouj, Souheila; Driss, Mehdi; Elamine, Elwaleed M.; Cupolillo, Elisa; Mukhtar, Moawia M.; Guizani, Ikram
2014-01-01
Visceral leishmaniasis (VL) is mainly due to the Leishmania donovani complex. VL is endemic in many countries worldwide including East Africa and the Mediterranean region where the epidemiology is complex. Taxonomy of these pathogens is under controversy but there is a correlation between their genetic diversity and geographical origin. With steady increase in genome knowledge, RAPD is still a useful approach to identify and characterize novel DNA markers. Our aim was to identify and characterize polymorphic DNA markers in VL Leishmania parasites in diverse geographic regions using RAPD in order to constitute a pool of PCR targets having the potential to differentiate among the VL parasites. 100 different oligonucleotide decamers having arbitrary DNA sequences were screened for reproducible amplification and a selection of 28 was used to amplify DNA from 12 L. donovani, L. archibaldi and L. infantum strains having diverse origins. A total of 155 bands were amplified of which 60.65% appeared polymorphic. 7 out of 28 primers provided monomorphic patterns. Phenetic analysis allowed clustering the parasites according to their geographical origin. Differentially amplified bands were selected, among them 22 RAPD products were successfully cloned and sequenced. Bioinformatic analysis allowed mapping of the markers and sequences and priming sites analysis. This study was complemented with Southern-blot to confirm assignment of markers to the kDNA. The bioinformatic analysis identified 16 nuclear and 3 minicircle markers. Analysis of these markers highlighted polymorphisms at RAPD priming sites with mainly 5′ end transversions, and presence of inter– and intra– taxonomic complex sequence and microsatellites variations; a bias in transitions over transversions and indels between the different sequences compared is observed, which is however less marked between L. infantum and L. donovani. The study delivers a pool of well-documented polymorphic DNA markers, to develop molecular diagnostics assays to characterize and differentiate VL causing agents. PMID:25313833
Infrared spectra and crystal chemistry of scapolites: implications for Martian mineralogy
Swayze, G.A.; Clark, R.N.
1990-01-01
Near-infrared and midinfrared spectra of a wide range of scapolite compositions were studied to determine the cause of the 2.36-??m features that have been correlated with similar features in the near-IR spectrum of Mars. We attribute the 2.36-??m features to vibrations caused by HCO-3 and HSO-4 in the anion sites of scapolite. The 2.36-??m absorption complex consists of four overlapping bands. The relative intensities of all four bands vary according to the HCO-3/HSO-4 ratio and disordered anion site occupancy. The positional disorder of HCO-3 and HSO4 in the low-symmetry anion site of scapolite gives the 2.36-??m band complex a unique spectral signature not likely to be duplicated in any other mineral. -from Authors
Band Excitation for Scanning Probe Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen
2017-01-02
The Band Excitation (BE) technique for scanning probe microscopy uses a precisely determined waveform that contains specific frequencies to excite the cantilever or sample in an atomic force microscope to extract more information, and more reliable information from a sample. There are a myriad of details and complexities associated with implementing the BE technique. There is therefore a need to have a user friendly interface that allows typical microscopists access to this methodology. This software enables users of atomic force microscopes to easily: build complex band-excitation waveforms, set-up the microscope scanning conditions, configure the input and output electronics for generatemore » the waveform as a voltage signal and capture the response of the system, perform analysis on the captured response, and display the results of the measurement.« less
Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes
NASA Astrophysics Data System (ADS)
Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio
2017-12-01
A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of the band misalignments were less than the pixel size. Furthermore, it was shown that the performance of the band alignment was dependent on the spatial distance from the reference band.
Tailoring Dirac Fermions in Molecular Graphene
NASA Astrophysics Data System (ADS)
Gomes, Kenjiro K.; Mar, Warren; Ko, Wonhee; Camp, Charlie D.; Rastawicki, Dominik K.; Guinea, Francisco; Manoharan, Hari C.
2012-02-01
The dynamics of electrons in solids is tied to the band structure created by a periodic atomic potential. The design of artificial lattices, assembled through atomic manipulation, opens the door to engineer electronic band structure and to create novel quantum states. We present scanning tunneling spectroscopic measurements of a nanoassembled honeycomb lattice displaying a Dirac fermion band structure. The artificial lattice is created by atomic manipulation of single CO molecules with the scanning tunneling microscope on the surface of Cu(111). The periodic potential generated by the assembled CO molecules reshapes the band structure of the two-dimensional electron gas, present as a surface state of Cu(111), into a ``molecular graphene'' system. We create local defects in the lattice to observe the quasiparticle interference patterns that unveil the underlying band structure. We present direct comparison between the tunneling data, first-principles calculations of the band structure, and tight-binding models.
High temperature antenna development for space shuttle, volume 1
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1973-01-01
Design concepts for high temperature flush mounted Space Shuttle Orbiter antenna systems are discussed. The design concepts include antenna systems for VHF, L-band, S-band, C-band and Ku-band frequencies. The S-band antenna system design was completed and test hardware fabricated. It was then subjected to electrical and thermal testing to establish design requirements and determine reuse capabilities. The thermal tests consisted of applying ten high temperature cycles simulating the Orbiter entry heating environment in an arc tunnel plasma facility and observing the temperature distributions. Radiation pattern and impedance measurements before and after high temperature exposure were used to evaluated the antenna systems performance. Alternate window design concepts are considered. Layout drawings, supported by thermal and strength analyses, are given for each of the antenna system designs. The results of the electrical and thermal testing of the S-band antenna system are given.
Compact filtering monopole patch antenna with dual-band rejection.
Kim, Sun-Woong; Choi, Dong-You
2016-01-01
In this paper, a compact ultra-wideband patch antenna with dual-band rejection is proposed. The proposed antenna filters 3.3-3.8 GHz WiMAX and 5.15-5.85 GHz WLAN by respectively rejecting these bands through a C-shaped slit and a λg/4 resonator. The λg/4 resonator is positioned as a pair, centered around the microstrip line, and a C-type slit is inserted into an elliptical patch. The impedance bandwidth of the proposed antenna is 2.9-9.3 GHz, which satisfies the bandwidth for ultra-wideband communication systems. Further, the proposed antenna provides dual-band rejection at two bands: 3.2-3.85 and 4.7-6.03 GHz. The radiation pattern of the antenna is omnidirectional, and antenna gain is maintained constantly while showing -8.4 and -1.5 dBi at the two rejected bands, respectively.
Dual-band microstrip patch antenna based on metamaterial refractive surface
NASA Astrophysics Data System (ADS)
Salhi, Ridha; Labidi, Mondher; Boujemaa, Mohamed Ali; Choubani, Fethi
2017-06-01
In this paper, we present a new design of microstrip patch antenna based on metamaterial refractive surface (MRS). By optimizing the air gap between the MRS layer and the patch antenna to be 7 mm, the band width and the gain of the proposed antenna are significantly enhanced. The proposed prototype presents a dual band antenna. The center frequency for the first band is 2.44 GHz and the generated bandwidth is 25 MHz. The second band has a center frequency of 2.8 GHz and with a bandwidth of 50 MHz. The simulation results are analyzed and discussed in terms of return loss, gain and radiation pattern using electromagnetic simulator software. Finally, the designed dual band antenna is fabricated and different measurement results are performed and compared with simulation results in order to validate its performances. The proposed antenna supports WiBro (wireless broadband), ISM, WiFi, Bluetooth, WiMAX and radars services.
Forces directing germ-band extension in Drosophila embryos.
Kong, Deqing; Wolf, Fred; Großhans, Jörg
2017-04-01
Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
2014-01-01
Background The prevalence of severe and complex obesity is increasing worldwide and surgery may offer an effective and lasting treatment. Laparoscopic adjustable gastric band and Roux-en-Y gastric bypass surgery are the two main surgical procedures performed. Design This open parallel-group randomised controlled trial will compare the effectiveness, cost-effectiveness and acceptability of gastric band (Band) versus gastric bypass (Bypass) in adults with severe and complex obesity. It has an internal pilot phase (in two centres) with integrated qualitative research to establish effective and optimal methods for recruitment. Adults with a body mass index (BMI) of 40 kg/m2 or more, or a BMI of 35 kg/m2 or more and other co-morbidities will be recruited. At the end of the internal pilot the study will expand into more centres if the pre-set progression criteria of numbers and rates of eligible patients screened and randomised are met and if the expected rates of retention and adherence to treatment allocation are achieved. The trial will test the joint hypotheses that Bypass is non-inferior to Band with respect to more than 50% excess weight loss and that Bypass is superior to Band with respect to health related quality of life (HRQOL, EQ-5D) at three years. Secondary outcomes include other weight loss measures, waist circumference and remission/resolution of co-morbidities; generic and symptom-specific HRQOL; nutritional blood test results; resource use; eating behaviours and adverse events. A core outcome set for reporting the results of obesity surgery will be developed and a systematic review of the evidence for sleeve gastrectomy undertaken to inform the main study design. Discussion By-Band is the first pragmatic study to compare the two most commonly performed bariatric surgical procedures for severe and complex obesity. The design will enable and empower surgeons to learn to recruit and participate in a randomised study. Early evidence shows that timely recruitment is possible. Trial registration Current Controlled Trials ISRCTN00786323. PMID:24517309
Rogers, Chris A; Welbourn, Richard; Byrne, James; Donovan, Jenny L; Reeves, Barnaby C; Wordsworth, Sarah; Andrews, Robert; Thompson, Janice L; Roderick, Paul; Mahon, David; Noble, Hamish; Kelly, Jamie; Mazza, Graziella; Pike, Katie; Paramasivan, Sangeetha; Blencowe, Natalie; Perkins, Mary; Porter, Tanya; Blazeby, Jane M
2014-02-11
The prevalence of severe and complex obesity is increasing worldwide and surgery may offer an effective and lasting treatment. Laparoscopic adjustable gastric band and Roux-en-Y gastric bypass surgery are the two main surgical procedures performed. This open parallel-group randomised controlled trial will compare the effectiveness, cost-effectiveness and acceptability of gastric band (Band) versus gastric bypass (Bypass) in adults with severe and complex obesity. It has an internal pilot phase (in two centres) with integrated qualitative research to establish effective and optimal methods for recruitment. Adults with a body mass index (BMI) of 40 kg/m2 or more, or a BMI of 35 kg/m2 or more and other co-morbidities will be recruited. At the end of the internal pilot the study will expand into more centres if the pre-set progression criteria of numbers and rates of eligible patients screened and randomised are met and if the expected rates of retention and adherence to treatment allocation are achieved. The trial will test the joint hypotheses that Bypass is non-inferior to Band with respect to more than 50% excess weight loss and that Bypass is superior to Band with respect to health related quality of life (HRQOL, EQ-5D) at three years. Secondary outcomes include other weight loss measures, waist circumference and remission/resolution of co-morbidities; generic and symptom-specific HRQOL; nutritional blood test results; resource use; eating behaviours and adverse events. A core outcome set for reporting the results of obesity surgery will be developed and a systematic review of the evidence for sleeve gastrectomy undertaken to inform the main study design. By-Band is the first pragmatic study to compare the two most commonly performed bariatric surgical procedures for severe and complex obesity. The design will enable and empower surgeons to learn to recruit and participate in a randomised study. Early evidence shows that timely recruitment is possible. Current Controlled Trials ISRCTN00786323.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei-Wei; Fox, M.A.
1994-06-22
Electrochemical, EPR, and spectroelectrochemical methods have been used to probe electronic coupling through a 1,2,4,5-tetrakis(diphenylphosphino)benzene bridging ligand connecting metal centers in several Ni-, Pd-, and Pt-containing dimetallic complexes. These dimetalated complexes showed weak intervalence charge transfer (IT) bands and slightly shifted redox potentials in comparison with their monometallic models. A Marcus-Hush analysis of the energies of the IT bands for the electrochemically generated mixed-valence heterodimetallic complexes (Ni{sup o}-Pd{sup II} and Ni{sup o}-Pt{sup II}, respectively) established the magnitude of intermetallic electronic coupling. The weak thermal coupling observed in these dimetalated complexes is consistent with the very low conductivities (10{sup {minus}8}-10{sup {minus}10}{omega}{supmore » -1} cm{sup {minus}1}) observed in the polymeric analogs of these complexes, namely, the newly prepared metal coordination polymers (M = Ni{sup II}, Pd{sup II}, Pt{sup II}) with 1,2,4,5-tetrakis(diphenylphosphino)benzene.« less
Spatial-frequency spectra of printed characters and human visual perception.
Põder, Endel
2003-06-01
It is well known that certain spatial frequency (SF) bands are more important than others for character recognition. Solomon and Pelli [Nature 369 (1994) 395-397] have concluded that human pattern recognition mechanism is able to use only a narrow band from available SF spectrum of letters. However, the SF spectra of letters themselves have not been studied carefully. Here I report the results of an analysis of SF spectra of printed characters and discuss their relationship to the observed band-pass nature of letter recognition.
Infrared spectroscopic imaging for noninvasive detection of latent fingerprints.
Crane, Nicole J; Bartick, Edward G; Perlman, Rebecca Schwartz; Huffman, Scott
2007-01-01
The capability of Fourier transform infrared (FTIR) spectroscopic imaging to provide detailed images of unprocessed latent fingerprints while also preserving important trace evidence is demonstrated. Unprocessed fingerprints were developed on various porous and nonporous substrates. Data-processing methods used to extract the latent fingerprint ridge pattern from the background material included basic infrared spectroscopic band intensities, addition and subtraction of band intensity measurements, principal components analysis (PCA) and calculation of second derivative band intensities, as well as combinations of these various techniques. Additionally, trace evidence within the fingerprints was recovered and identified.
Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Whittaker, C. E.; Cancellieri, E.; Walker, P. M.; Gulevich, D. R.; Schomerus, H.; Vaitiekus, D.; Royall, B.; Whittaker, D. M.; Clarke, E.; Iorsh, I. V.; Shelykh, I. A.; Skolnick, M. S.; Krizhanovskii, D. N.
2018-03-01
We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and Px ,y photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom, and interactions.
Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling.
Whittaker, C E; Cancellieri, E; Walker, P M; Gulevich, D R; Schomerus, H; Vaitiekus, D; Royall, B; Whittaker, D M; Clarke, E; Iorsh, I V; Shelykh, I A; Skolnick, M S; Krizhanovskii, D N
2018-03-02
We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and P_{x,y} photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom, and interactions.
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2013-01-01
Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs.
Yang, Jingwei; Cao, Biao; Lu, Qinghua
2017-01-01
The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553
NASA Technical Reports Server (NTRS)
Bodechtel, J.; Nithack, J.; Dibernardo, G.; Hiller, K.; Jaskolla, F.; Smolka, A.
1975-01-01
Utilizing LANDSAT and Skylab multispectral imagery of 1972 and 1973, a land use map of the mountainous regions of Italy was evaluated at a scale of 1:250,000. Seven level I categories were identified by conventional methods of photointerpretation. Images of multispectral scanner (MSS) bands 5 and 7, or equivalents were mainly used. Areas of less than 200 by 200 m were classified and standard procedures were established for interpretation of multispectral satellite imagery. Land use maps were produced for central and southern Europe indicating that the existing land use maps could be updated and optimized. The complexity of European land use patterns, the intensive morphology of young mountain ranges, and time-cost calculations are the reasons that the applied conventional techniques are superior to automatic evaluation.
Yang, Jingwei; Cao, Biao; Lu, Qinghua
2017-02-16
The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed.