Effect-directed analysis supporting monitoring of aquatic environments - An in-depth overview
Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that...
Rickaby, R E M
2015-03-13
Life and the chemical environment are united in an inescapable feedback cycle. The periodic table of the elements essential for life has transformed over Earth's history, but, as today, evolved in tune with the elements available in abundance in the environment. The most revolutionary time in life's history was the advent and proliferation of oxygenic photosynthesis which forced the environment towards a greater degree of oxidation. Consideration of three inorganic chemical equilibria throughout this gradual oxygenation prescribes a phased release of trace metals to the environment, which appear to have coevolved with employment of these new chemicals by life. Evolution towards complexity was chemically constrained, and changes in availability of notably Fe, Zn and Cu paced the systematic development of complex organisms. Evolving life repeatedly catalysed its own chemical challenges via the unwitting release of new and initially toxic chemicals. Ultimately, the harnessing of these allowed life to advance to greater complexity, though the mechanism responsible for translating novel chemistry to heritable use remains elusive. Whether a chemical acts as a poison or a nutrient lies both in the dose and in its environmental history. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
[The concept of the development of the state of chemical-analytical environmental monitoring].
Rakhmanin, Iu A; Malysheva, A G
2013-01-01
Chemical and analytical monitoring of the quality of environment is based on the accounting of the trace amount of substances. Considering the multicomponent composition of the environment and running processes of transformation of substances in it, in determination of the danger of the exposure to the chemical pollution of environment on population health there is necessary evaluation based on the simultaneous account of complex of substances really contained in the environment and supplying from different sources. Therefore, in the analytical monitoring of the quality and safety of the environment there is a necessary conversion from the orientation, based on the investigation of specific target substances, to estimation of real complex of compounds.
40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metal salts of complex inorganic oxyacids (generic name). 721.4680 Section 721.4680 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...
40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.
Code of Federal Regulations, 2010 CFR
2010-07-01
... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting under...
40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting under...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.4594 - Substituted azo metal complex dye.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted azo metal complex...
40 CFR 721.4594 - Substituted azo metal complex dye.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted azo metal complex...
40 CFR 721.5325 - Nickel acrylate complex.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting under...
40 CFR 721.5325 - Nickel acrylate complex.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting under...
40 CFR 721.5325 - Nickel acrylate complex.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting under...
40 CFR 721.5325 - Nickel acrylate complex.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting under...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Trivalent chromium complexes of a... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10239 Trivalent chromium complexes of... subject to reporting. (1) The chemical substance identified generically as trivalent chromium complexes of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Trivalent chromium complexes of a... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10239 Trivalent chromium complexes of... subject to reporting. (1) The chemical substance identified generically as trivalent chromium complexes of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Trivalent chromium complexes of a... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10239 Trivalent chromium complexes of... subject to reporting. (1) The chemical substance identified generically as trivalent chromium complexes of...
USDA-ARS?s Scientific Manuscript database
Adsorption-desorption reactions are important processes that affect the transport of contaminants in the environment. Surface complexation models are chemical models that can account for the effects of variable chemical conditions, such as pH, on adsorption reactions. These models define specific ...
40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...
40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...
Conceptual framework describing a child's total (built, natural ...
The complexity of the components and their interactions that characterize children’s health and well-being are not adequately captured by current public health paradigms. Children are exposed to combinations of chemical and non-chemical stressors from their built, natural, and social environments at each lifestage and throughout their lifecourse. Children’s inherent characteristics (e.g., sex, genetics, pre-existing disease) and their activities and behaviors also influence their exposures to chemical and non-chemical stressors from these environments. We describe a conceptual framework that considers the interrelationships between inherent characteristics, activities and behaviors, and stressors (both chemical and non-chemical) from the built, natural, and social environments in influencing children’s health and well-being throughout their lifecourse. This framework is comprised of several intersecting circles that represent how stressors from the total environment interact with children’s inherent characteristics and their activities and behaviors to influence their health and well-being at each lifestage and throughout their lifecourse. We used this framework to examine the complex interrelationships between chemical and non-chemical stressors for two public health challenges specific to children: childhood obesity and general cognitive ability. One systematic scoping review showed that children’s general cognitive ability was influenced not only by
SPECIATION OF COMPLEX ORGANIC CONTAMINANTS IN WATER WITH RAMAN SPECTROSCOPY
Pesticides and industrial chemicals are typically complex organic molecules with multiple heteroatoms that can ionize, tautomerize, and form various types of hydrates in water. However, conceptual models for predicting the fate of these chemicals in the environment ignore these ...
Nanomotor dynamics in a chemically oscillating medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Bryan, E-mail: bryan.robertson@mail.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca
2015-04-21
Synthetic nanomotors powered by chemical reactions have potential uses as cargo transport vehicles in both in vivo and in vitro applications. In many situations, motors will have to operate in out-of-equilibrium complex chemically reacting media, which supply fuel to the motors and remove the products they produce. Using molecular simulation and mean-field theory, this paper describes some of the new features that arise when a chemically powered nanomotor, operating through a diffusiophoretic mechanism, moves in an environment that supports an oscillatory chemical reaction network. It is shown how oscillations in the concentrations in chemical species in the environment give risemore » to oscillatory motor dynamics. More importantly, since the catalytic reactions on the motor that are responsible for its propulsion couple to the bulk phase reaction network, the motor can change its local environment. This process can give rise to distinctive spatiotemporal structures in reaction-diffusion media that occur as a result of active motor motion. Such locally induced nonequilibrium structure will play an important role in applications that involve motor dynamics in complex chemical media.« less
Diagnostic Assessment of the Ecological Risk of EDCs in Complex Mixtures
Although it is important to be able to forecast the potential endocrine toxicity of chemical mixtures that could enter aquatic environments, in many instances there is a need to determine possible effects of endocrine-active chemicals already present in complex environmental mixt...
Point sources of potentially endocrine active compounds to aquatic environments such as waste water treatment plants, pulp and paper mills, and animal feeding operations invariably contain complex mixtures of chemicals. The current study investigates the use of targeted in vitro ...
Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life.
Griffith, Elizabeth C; Shoemaker, Richard K; Vaida, Veronica
2013-10-01
Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.
NASA Technical Reports Server (NTRS)
Jamieson, C. S.; Guo, Y.; Gu, X.; Zhang, F.; Bennett, C. J.; Kaiser, R. I.
2006-01-01
A detailed knowledge of the formation of carbon-bearing molecules in interstellar ices and in the gas phase of the interstellar medium is of paramount interest to understand the astrochemical evolution of extraterrestrial environments (1). This research also holds strong implications to comprehend the chemical processing of Solar System environments such as icy planets and their moons together with the atmospheres of planets and their satellites (2). Since the present composition of each interstellar and Solar System environment reflects the matter from which it was formed and the processes which have changed the chemical nature since the origin (solar wind, planetary magnetospheres, cosmic ray exposure, photolysis, chemical reactions), a detailed investigation of the physicochemical mechanisms altering the pristine environment is of paramount importance to grasp the contemporary composition. Once these underlying processes have been unraveled, we can identify those molecules, which belonged to the nascent setting, distinguish molecular species synthesized in a later stage, and predict the imminent chemical evolution of, for instance, molecular clouds. Laboratory experiments under controlled physicochemical conditions (temperature, pressure, chemical composition, high energy components) present ideal tools for simulating the chemical evolution of interstellar and Solar System environments. Here, laboratory experiments can predict where and how (reaction mechanisms; chemicals necessary) in extraterrestrial environments and in the interstellar medium complex, carbon bearing molecules can be formed on interstellar grains and in the gas phase. This paper overviews the experimental setups utilized in our laboratory to mimic the chemical processing of gas phase and solid state (ices) environments. These are a crossed molecular beams machine (3) and a surface scattering setup (4). We also present typical results of each setup (formation of amino acids, aldehydes, epoxides; synthesis of hydrogen terminated carbon chains as precursors to complex PAHs and to carbonaceous dust grains in general; nitriles as precursor to amino acids).
Code of Federal Regulations, 2014 CFR
2014-07-01
... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt (generic). 721.2577 Section 721.2577 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES...
From Astrochemistry to prebiotic chemistry? An hypothetical approach toward Astrobiology
NASA Astrophysics Data System (ADS)
Le Sergeant d'Hendecourt, L.; Danger, G.
2012-12-01
We present in this paper a general perspective about the evolution of molecular complexity, as observed from an astrophysicist point of view and its possible relation to the problem of the origin of life on Earth. Based on the cosmic abundances of the elements and the molecular composition of our life, we propose that life cannot really be based on other elements. We discuss where the necessary molecular complexity is built-up in astrophysical environments, actually within inter/circumstellar solid state materials known as ``grains''. Considerations based on non-directed laboratory experiments, that must be further extended in the prebiotic domain, lead to the hypothesis that if the chemistry at the origin of life may indeed be a rather universal and deterministic phenomenon, once molecular complexity is installed, the chemical evolution that generated the first prebiotic reactions that involve autoreplication must be treated in a systemic approach because of the strong contingency imposed by the complex local environment(s) and associated processes in which these chemical systems have evolved.
Ogawa, Diogo M. O.; Moriya, Shigeharu; Tsuboi, Yuuri; Date, Yasuhiro; Prieto-da-Silva, Álvaro R. B.; Rádis-Baptista, Gandhi; Yamane, Tetsuo; Kikuchi, Jun
2014-01-01
We propose the technique of biogeochemical typing (BGC typing) as a novel methodology to set forth the sub-systems of organismal communities associated to the correlated chemical profiles working within a larger complex environment. Given the intricate characteristic of both organismal and chemical consortia inherent to the nature, many environmental studies employ the holistic approach of multi-omics analyses undermining as much information as possible. Due to the massive amount of data produced applying multi-omics analyses, the results are hard to visualize and to process. The BGC typing analysis is a pipeline built using integrative statistical analysis that can treat such huge datasets filtering, organizing and framing the information based on the strength of the various mutual trends of the organismal and chemical fluctuations occurring simultaneously in the environment. To test our technique of BGC typing, we choose a rich environment abounding in chemical nutrients and organismal diversity: the surficial freshwater from Japanese paddy fields and surrounding waters. To identify the community consortia profile we employed metagenomics as high throughput sequencing (HTS) for the fragments amplified from Archaea rRNA, universal 16S rRNA and 18S rRNA; to assess the elemental content we employed ionomics by inductively coupled plasma optical emission spectroscopy (ICP-OES); and for the organic chemical profile, metabolomics employing both Fourier transformed infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H-NMR) all these analyses comprised our multi-omics dataset. The similar trends between the community consortia against the chemical profiles were connected through correlation. The result was then filtered, organized and framed according to correlation strengths and peculiarities. The output gave us four BGC types displaying uniqueness in community and chemical distribution, diversity and richness. We conclude therefore that the BGC typing is a successful technique for elucidating the sub-systems of organismal communities with associated chemical profiles in complex ecosystems. PMID:25330259
Ogawa, Diogo M O; Moriya, Shigeharu; Tsuboi, Yuuri; Date, Yasuhiro; Prieto-da-Silva, Álvaro R B; Rádis-Baptista, Gandhi; Yamane, Tetsuo; Kikuchi, Jun
2014-01-01
We propose the technique of biogeochemical typing (BGC typing) as a novel methodology to set forth the sub-systems of organismal communities associated to the correlated chemical profiles working within a larger complex environment. Given the intricate characteristic of both organismal and chemical consortia inherent to the nature, many environmental studies employ the holistic approach of multi-omics analyses undermining as much information as possible. Due to the massive amount of data produced applying multi-omics analyses, the results are hard to visualize and to process. The BGC typing analysis is a pipeline built using integrative statistical analysis that can treat such huge datasets filtering, organizing and framing the information based on the strength of the various mutual trends of the organismal and chemical fluctuations occurring simultaneously in the environment. To test our technique of BGC typing, we choose a rich environment abounding in chemical nutrients and organismal diversity: the surficial freshwater from Japanese paddy fields and surrounding waters. To identify the community consortia profile we employed metagenomics as high throughput sequencing (HTS) for the fragments amplified from Archaea rRNA, universal 16S rRNA and 18S rRNA; to assess the elemental content we employed ionomics by inductively coupled plasma optical emission spectroscopy (ICP-OES); and for the organic chemical profile, metabolomics employing both Fourier transformed infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H-NMR) all these analyses comprised our multi-omics dataset. The similar trends between the community consortia against the chemical profiles were connected through correlation. The result was then filtered, organized and framed according to correlation strengths and peculiarities. The output gave us four BGC types displaying uniqueness in community and chemical distribution, diversity and richness. We conclude therefore that the BGC typing is a successful technique for elucidating the sub-systems of organismal communities with associated chemical profiles in complex ecosystems.
Burke, Michael P.; Klippenstein, Stephen J.
2017-08-14
Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Michael P.; Klippenstein, Stephen J.
Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less
Non-target high resolution mass spectrometry techniques combined with advanced cheminformatics offer huge potential for exploring complex mixtures in our environment – yet also offers plenty of challenges. Peak inventories of several non-target studies from within Europe reveal t...
40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is subject...
40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is subject...
40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is subject...
40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is subject...
NASA Astrophysics Data System (ADS)
Payne, Christine
2014-03-01
Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Daniel
8-Session Symposium on STRUCTURE AND DYNAMICS IN COMPLEX CHEMICAL SYSTEMS: GAINING NEW INSIGHTS THROUGH RECENT ADVANCES IN TIME-RESOLVED SPECTROSCOPIES. The intricacy of most chemical, biochemical, and material processes and their applications are underscored by the complex nature of the environments in which they occur. Substantial challenges for building a global understanding of a heterogeneous system include (1) identifying unique signatures associated with specific structural motifs within the heterogeneous distribution, and (2) resolving the significance of each of multiple time scales involved in both small- and large-scale nuclear reorganization. This symposium focuses on the progress in our understanding of dynamics inmore » complex systems driven by recent innovations in time-resolved spectroscopies and theoretical developments. Such advancement is critical for driving discovery at the molecular level facilitating new applications. Broad areas of interest include: Structural relaxation and the impact of structure on dynamics in liquids, interfaces, biochemical systems, materials, and other heterogeneous environments.« less
COMPUTATIONAL TOXICOLOGY: AN APPROACH FOR PRIORITIZING CHEMICAL RISK ASSESSMENTS
Characterizing toxic effects for industrial chemicals carries the challenge of focusing resources on the greatest potential risks for human health and the environment. The union of molecular modeling, bioinformatics and simulation of complex systems with emerging technologies suc...
40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and P-89-577...
a Prestellar Core 3MM Line Survey: Molecular Complexity in L183
NASA Astrophysics Data System (ADS)
Lattanzi, Valerio; Bizzocchi, Luca; Caselli, Paola
2017-06-01
Cold dark clouds represent a very unique environment to test our knowledge of the chemical and physical evolution of the structures that ultimately led to life. Starless cores, such as L183, are indeed the first phase of the star formation process and the nursery of chemical complexity. In this work we present the detection of several large astronomical molecules in the prestellar core L183, as a result of a 3mm single-pointing survey performed with the IRAM 30m antenna. The abundances of the observed species will be then compared to those found in similar environments, highlighting correspondences and uniquenesses of the different sources.
Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrat...
Product Description:Evaluation of the potential effects of complex mixtures of chemicals in the environment is challenged by the lack of extensive toxicity data for many chemicals. However, there are growing sources of online information that curate and compile literature reports...
40 CFR 721.10423 - Complex strontium aluminate, rare earth doped (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... earth doped (generic). 721.10423 Section 721.10423 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10423 Complex strontium aluminate, rare earth doped... substances identified generically as complex strontium aluminate, rare earth doped (PMNs P-12-22, P-12-23, P...
Hazardous waste: cleanup and prevention
Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.
1996-01-01
Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.
Social networks of educated nematodes
USDA-ARS?s Scientific Manuscript database
Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound...
OPTIMIZATION OF MODERN DISPERSIVE RAMAN SPECTROMETERS FOR MOLECULAR SPECIATION OF ORGANICS IN WATER
Pesticides and industrial chemicals are typically complex organic molecules with multiple heteroatoms that can ionize in water. However, models for understanding the behavior of these chemicals in the environment typically assume that they exist exclusively as neutral species --...
USDA-ARS?s Scientific Manuscript database
Introduction: Understanding the complex chemical signaling of plants and insects is an important component of chemical ecology. Accordingly, the collection of chemical cues from plants in their normal environment is integral to elucidation of multifaceted plant-insect communications. Often times rem...
Social context influences chemical communication in D. melanogaster males.
Kent, Clement; Azanchi, Reza; Smith, Ben; Formosa, Amanda; Levine, Joel D
2008-09-23
Chemical communication mediates social interactions in insects. For the fruit fly, D. melanogaster, the chemical display is a key fitness trait because it leads to mating. An exchange of cues that resembles a dialogue between males and females is enacted by pheromones, chemical signals that pass between individual flies to alter physiology and behavior. Chemical signals also affect the timing of locomotor activity and sleep. We investigated genetic and environmental determinants of chemical communication. To evaluate the role of the social environment, we extracted a chemical blend from individual males selected from groups composed of one genotype and compared these extracts to those from groups of mixed genotypes. To evaluate the role of the physical environment, these comparisons were performed under a light-dark cycle or in constant darkness. Here, we show that chemical signaling is affected by the social environment, light-dark cycle, and genotype as well as the complex interplay of these variables. Gene-by-environment interactions produce highly significant effects on chemical signaling. We also examined individual responses within the groups. Strikingly, the response of one wild-type fly to another is modulated by the genotypic composition of his neighbors. Chemical signaling in D. melanogaster may be a "fickle" trait that depends on the individual's social background.
Near infrared spectroscopy and chemometrics analysis of complex traits in animal physiology
USDA-ARS?s Scientific Manuscript database
Near infrared reflectance (NIR) applications have been expanding from the traditional framework of small molecule chemical purity and composition (as defined by spectral libraries) to complex system analysis and holistic exploratory approaches to questions in biochemistry, biophysics and environment...
NASA Astrophysics Data System (ADS)
Remijan, Anthony John
2015-08-01
The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.
Nonproliferation Test and Evaluation Complex - NPTEC
None
2018-01-16
The Nonproliferation Test and Evaluation Complex, or NPTEC, is the world's largest facility for open air testing of hazardous toxic materials and biological simulants. NPTEC is used for testing, experimentation, and training for technologies that require the release of toxic chemicals or biological simulants into the environment.
The complexity of the components and their interactions that characterize children’s health and well-being are not adequately captured by current public health paradigms. Children are exposed to combinations of chemical and non-chemical stressors from their built, natural, ...
The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potenti...
Chemical and non-chemical stressors affecting childhood obesity: a systematic scoping review.
Lichtveld, Kim; Thomas, Kent; Tulve, Nicolle S
2018-01-01
Childhood obesity in the United States has doubled over the last three decades and currently affects 17% of children and adolescents. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-chemical stressors found in a child's environment and how these interactions affect a child's health and well-being. The objectives of this systematic scoping review were to (1) identify potential chemical stressors in the context of non-chemical stressors that impact childhood obesity; and, (2) summarize our observations for chemical and non-chemical stressors in regards to child-specific environments within a community setting. A review was conducted to identify chemical and non-chemical stressors related to childhood obesity for the childhood life stages ranging from prenatal to adolescence. Stressors were identified and grouped into domains: individual behaviors, family/household behaviors, community stressors, and chemical exposures. Stressors were related to the child and the child's everyday environments and used to characterize child health and well-being. This review suggests that the interactions of chemical and non-chemical stressors are important for understanding a child's overall health and well-being. By considering these relationships, the exposure science research community can better design and implement strategies to reduce childhood obesity.
Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.
2018-01-01
The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments.
Source apportionment is challenging in urban environments with clustered sourceemissions that have similar chemical signatures. A field and inverse modeling studywas conducted in Elizabeth, New Jersey to observe gaseous and particulate pollutionnear the Port of New York and New J...
Point sources of endocrine active compounds to aquatic environments such as waste water treatment plants, pulp and paper mills, and animal feeding operations invariably contain complex mixtures of chemicals. The current study investigates the use of targeted in vitro assays des...
The complexity of the components and their interactions that characterize children’s health and well-being are not adequately captured by current public health paradigms. Children are exposed to combinations of chemical and non-chemical stressors from their built, natural,...
Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S
2012-04-01
Experimental designs for evaluating complex mixture toxicity in aquatic environments can be highly variable and, if not appropriate, can produce and have produced data that are difficult or impossible to interpret accurately. We build on and synthesize recent critical reviews of mixture toxicity using lessons learned from 4 case studies, ranging from binary to more complex mixtures of primarily polycyclic aromatic hydrocarbons and petroleum hydrocarbons, to provide guidance for evaluating the aquatic toxicity of complex mixtures of organic chemicals. Two fundamental requirements include establishing a dose-response relationship and determining the causative agent (or agents) of any observed toxicity. Meeting these 2 requirements involves ensuring appropriate exposure conditions and measurement endpoints, considering modifying factors (e.g., test conditions, test organism life stages and feeding behavior, chemical transformations, mixture dilutions, sorbing phases), and correctly interpreting dose-response relationships. Specific recommendations are provided. Copyright © 2011 SETAC.
Peters, V. N.; Tumkur, T. U.; Zhu, G.; Noginov, M. A.
2015-01-01
Proximity to metallic surfaces, plasmonic structures, cavities and other inhomogeneous dielectric environments is known to control spontaneous emission, energy transfer, scattering, and many other phenomena of practical importance. The aim of the present study was to demonstrate that, in spirit of the Marcus theory, the rates of chemical reactions can, too, be influenced by nonlocal dielectric environments, such as metallic films and metal/dielectric bilayer or multilayer structures. We have experimentally shown that metallic, composite metal/dielectric substrates can, indeed, control ordering as well as photodegradation of thin poly-3-hexylthiophene (p3ht) films. In many particular experiments, p3ht films were separated from metal by a dielectric spacer, excluding conventional catalysis facilitated by metals and making modification of the nonlocal dielectric environment a plausible explanation for the observed phenomena. This first step toward understanding of a complex relationship between chemical reactions and nonlocal dielectric environments is to be followed by the theory development and a broader scope of thorough experimental studies. PMID:26434679
Gervais, Christel; Jones, Cameron; Bonhomme, Christian; Laurencin, Danielle
2017-03-01
With the increasing number of organocalcium and organomagnesium complexes under development, there is a real need to be able to characterize in detail their local environment in order to fully rationalize their reactivity. For crystalline structures, in cases when diffraction techniques are insufficient, additional local spectroscopies like 25 Mg and 43 Ca solid-state NMR may provide valuable information to help fully establish the local environment of the metal ions. In this current work, a prospective DFT investigation on crystalline magnesium and calcium complexes involving low-coordination numbers and N-bearing organic ligands was carried out, in which the 25 Mg and 43 Ca NMR parameters [isotropic chemical shift, chemical shift anisotropy (CSA) and quadrupolar parameters] were calculated for each structure. The analysis of the calculated parameters in relation to the local environment of the metal ions revealed that they are highly sensitive to very small changes in geometry/distances, and hence that they could be used to assist in the refinement of crystal structures. Moreover, such calculations provide a guideline as to how the NMR measurements will need to be performed, revealing that these will be very challenging.
Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress
Rochman, Chelsea M.; Hoh, Eunha; Kurobe, Tomofumi; Teh, Swee J.
2013-01-01
Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants. PMID:24263561
Atomistic Modeling of Corrosion Events at the Interface between a Metal and Its Environment
Taylor, Christopher D.
2012-01-01
Atomistic simulation is a powerful tool for probing the structure and properties of materials and the nature of chemical reactions. Corrosion is a complex process that involves chemical reactions occurring at the interface between a material and its environment and is, therefore, highly suited to study by atomistic modeling techniques. In this paper, the complex nature of corrosion processes and mechanisms is briefly reviewed. Various atomistic methods for exploring corrosion mechanisms are then described, and recent applications in the literature surveyed. Several instances of the application of atomistic modeling to corrosion science are then reviewed in detail, including studies ofmore » the metal-water interface, the reaction of water on electrified metallic interfaces, the dissolution of metal atoms from metallic surfaces, and the role of competitive adsorption in controlling the chemical nature and structure of a metallic surface. Some perspectives are then given concerning the future of atomistic modeling in the field of corrosion science.« less
ERIC Educational Resources Information Center
Minnesota Univ., Minneapolis. School of Public Health.
The School Health Initiative: Environment, Learning, and Disease (SHIELD) study examined children's exposure to complex mixtures of environmental agents (i.e., volatile organic chemicals, environmental tobacco smoke, allergens, bioaerosols, metals, and pesticides). Environmental, personal, and biological data were collected on ethnically and…
Evaluating the potential human health and/or ecological risks associated with exposures to complex chemical mixtures in the ambient environment is one of the central challenges of chemical safety assessment and environmental protection. There is a need for approaches that can he...
Determining the associated health risks of exposure to complex mixtures in the environment is a recognized challenge. The Chemical Mixtures project, a collaborative effort between USEPA and USGS, is making a step in that direction by examining the co-occurrence of chemicals and b...
Rakhmanin, Iu A; Sinitsyna, O O
2013-01-01
Contemporary factors that affect the health of the population have been analyzed. There was shown the growing activity of chemical pollution of the environment. Therefore, in order to prevent the growth of negative health and environment consequences caused by increased levels of exposure to chemicals preventive potential for solutions of this complex problem and all strenuous efforts to assist possibly of the sound management of the chemicals should be enhanced. Problematic issues of harmonization of the Russian normative and guidance documents have been actualized. Perspective directions of science development in the field of human ecology and environmental health are suggested.
Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.
Knizia, Gerald
2013-11-12
Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.
Uranium extraction by complexation with siderophores
NASA Astrophysics Data System (ADS)
Bahamonde Castro, Cristina
One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.
Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview.
Brack, Werner; Ait-Aissa, Selim; Burgess, Robert M; Busch, Wibke; Creusot, Nicolas; Di Paolo, Carolina; Escher, Beate I; Mark Hewitt, L; Hilscherova, Klara; Hollender, Juliane; Hollert, Henner; Jonker, Willem; Kool, Jeroen; Lamoree, Marja; Muschket, Matthias; Neumann, Steffen; Rostkowski, Pawel; Ruttkies, Christoph; Schollee, Jennifer; Schymanski, Emma L; Schulze, Tobias; Seiler, Thomas-Benjamin; Tindall, Andrew J; De Aragão Umbuzeiro, Gisela; Vrana, Branislav; Krauss, Martin
2016-02-15
Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments. Copyright © 2015 Elsevier B.V. All rights reserved.
Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment.
Zhao, Tianyi; Zhang, Dongmei; Yu, Cunming; Jiang, Lei
2016-09-14
Low cost, eco-friendly, and easily scaled-up processes are needed to fabricate efficient oil/water separation materials, especially those useful in harsh environments such as highly acidic, alkaline, and salty environments, to deal with serious oil spills and industrial organic pollutants. Herein, a highly efficient oil/water separation mesh with durable chemical stability was fabricated by simply scratching and pricking a conventional polyethylene (PE) film. Multiscaled morphologies were obtained by this scratching and pricking process and provided the mesh with a special wettability performance termed superhydrophobicity, superoleophilicity, and low water adhesion, while the inert chemical properties of PE delivered chemical etching resistance to the fabricated mesh. In addition to a highly efficient oil/corrosive liquid separation, the fabricated PE mesh was also reusable and exhibited ultrafast oil/water separation solely by gravity. The easy operation, chemical durability, reusability, and efficiency of the novel PE mesh give it high potential for use in industrial and consumer applications.
Nano-Enabled Approaches to Chemical Imaging in Biosystems
Retterer, Scott T.; Morrell-Falvey, Jennifer L.; Doktycz, Mitchel John
2018-02-28
Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabledmore » by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. As a result, integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.« less
Nano-Enabled Approaches to Chemical Imaging in Biosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retterer, Scott T.; Morrell-Falvey, Jennifer L.; Doktycz, Mitchel John
Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabledmore » by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. As a result, integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.« less
Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol
Prather, Kimberly A.; Bertram, Timothy H.; Grassian, Vicki H.; Deane, Grant B.; Stokes, M. Dale; DeMott, Paul J.; Aluwihare, Lihini I.; Palenik, Brian P.; Azam, Farooq; Seinfeld, John H.; Moffet, Ryan C.; Molina, Mario J.; Cappa, Christopher D.; Geiger, Franz M.; Roberts, Gregory C.; Russell, Lynn M.; Ault, Andrew P.; Baltrusaitis, Jonas; Collins, Douglas B.; Corrigan, Craig E.; Cuadra-Rodriguez, Luis A.; Ebben, Carlena J.; Forestieri, Sara D.; Guasco, Timothy L.; Hersey, Scott P.; Kim, Michelle J.; Lambert, William F.; Modini, Robin L.; Mui, Wilton; Pedler, Byron E.; Ruppel, Matthew J.; Ryder, Olivia S.; Schoepp, Nathan G.; Sullivan, Ryan C.; Zhao, Defeng
2013-01-01
The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60–180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties. PMID:23620519
NASA Astrophysics Data System (ADS)
Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng
2017-12-01
In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.
Synthetic humic substances and their use for remediation of contaminated environments
NASA Astrophysics Data System (ADS)
Dudare, Diana; Klavins, Maris
2014-05-01
Soils are increasingly subjected to different chemical stresses, because of increasing industrialization process and other factors. Different anthropogenic compounds (organic or inorganic in nature) upon entering the soil, may not only influence its productivity potential, but may also affect the quality of groundwater and food chain. Consequently, soils of different environments contain a complex mixture of contaminants, such as oil products, metals, organic solvents, acids, bases and radionuclides. Thereby greater focus should be paid to risk assessment and evaluation of remedial techniques in order to restore the quality of the soil and groundwater. The treatment technologies presently used to remove contaminants are physical, chemical and biological technologies. Many functional groups in the structure of humic substances determine their ability to interact with metal ions forming stable complexes and influencing speciation of metal ions in the environment, as well mobility, behaviour and speciation forms in the environment. Humic substances are suggested for use in the remediation of environments contaminated with metals, owing to complex forming properties. Several efforts have been undertaken with respect to synthesize humic substances for their structural studies. At the same time the real number of methods suggested for synthesis of humic substances is highly limited and their synthesis in general has been used mostly for their structural analysis. The present study deals with development of approaches for synthesis of humic substances with increased complex forming ability in respect to metal ions. Industrially produced humic substances (TEHUM) were used for comparison and after their modification their properties were analyzed for their elemental composition; functional group content changes in spectral characteristics. Synthetic humic substances showed significant differences in the number of functional groups and in ability to interact with the metal ions, which were reflected in their complexation properties towards metal ions. FTIR spectra gave evidence of the presence of metal ions, strongly bound and protected in inner sphere complexes. Considering a large scale of production of humic substances, the obtained synthetic humic substances with modified properties are perspective and sustainable areas of use. The obtained results of this study showed that synthetic humic substances can be used for remediation of environments contaminated with heavy metal ions.
Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments.
Prentice-Mott, Harrison V; Chang, Chi-Han; Mahadevan, L; Mitchison, Timothy J; Irimia, Daniel; Shah, Jagesh V
2013-12-24
Cells integrate multiple measurement modalities to navigate their environment. Soluble and substrate-bound chemical gradients and physical cues have all been shown to influence cell orientation and migration. Here we investigate the role of asymmetric hydraulic pressure in directional sensing. Cells confined in microchannels identified and chose a path of lower hydraulic resistance in the absence of chemical cues. In a bifurcating channel with asymmetric hydraulic resistances, this choice was preceded by the elaboration of two leading edges with a faster extension rate along the lower resistance channel. Retraction of the "losing" edge appeared to precipitate a final choice of direction. The pressure differences altering leading edge protrusion rates were small, suggesting weak force generation by leading edges. The response to the physical asymmetry was able to override a dynamically generated chemical cue. Motile cells may use this bias as a result of hydraulic resistance, or "barotaxis," in concert with chemotaxis to navigate complex environments.
Chemical-text hybrid search engines.
Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J
2010-01-01
As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.
Biochemical strategies for the detection and detoxification of toxic chemicals in the environment
Febbraio, Ferdinando
2017-01-01
Addressing the problems related to the widespread presence of an increasing number of chemicals released into the environment by human activities represents one of the most important challenges of this century. In the last few years, to replace the high cost, in terms of time and money, of conventional technologies, the scientific community has directed considerable research towards the development both of new detection systems for the measurement of the contamination levels of chemicals in people’s body fluids and tissue, as well as in the environment, and of new remediation strategies for the removal of such chemicals from the environment, as a means of the prevention of human diseases. New emerging biosensors for the analysis of environmental chemicals have been proposed, including VHH antibodies, that combine the antibody performance with the affinity for small molecules, genetically engineered microorganisms, aptamers and new highly stable enzymes. However, the advances in the field of chemicals monitoring are still far from producing a continuous real-time and on-line system for their detection. Better results have been obtained in the development of strategies which use organisms (microorganisms, plants and animals) or metabolic pathway-based approaches (single enzymes or more complex enzymatic solutions) for the fixation, degradation and detoxification of chemicals in the environment. Systems for enzymatic detoxification and degradation of toxic agents in wastewater from chemical and manufacturing industries, such as ligninolytic enzymes for the treatment of wastewater from the textile industry, have been proposed. Considering the high value of these research studies, in terms of the protection of human health and of the ecosystem, science must play a major role in guiding policy changes in this field. PMID:28289515
Biochemical strategies for the detection and detoxification of toxic chemicals in the environment.
Febbraio, Ferdinando
2017-02-26
Addressing the problems related to the widespread presence of an increasing number of chemicals released into the environment by human activities represents one of the most important challenges of this century. In the last few years, to replace the high cost, in terms of time and money, of conventional technologies, the scientific community has directed considerable research towards the development both of new detection systems for the measurement of the contamination levels of chemicals in people's body fluids and tissue, as well as in the environment, and of new remediation strategies for the removal of such chemicals from the environment, as a means of the prevention of human diseases. New emerging biosensors for the analysis of environmental chemicals have been proposed, including VHH antibodies, that combine the antibody performance with the affinity for small molecules, genetically engineered microorganisms, aptamers and new highly stable enzymes. However, the advances in the field of chemicals monitoring are still far from producing a continuous real-time and on-line system for their detection. Better results have been obtained in the development of strategies which use organisms (microorganisms, plants and animals) or metabolic pathway-based approaches (single enzymes or more complex enzymatic solutions) for the fixation, degradation and detoxification of chemicals in the environment. Systems for enzymatic detoxification and degradation of toxic agents in wastewater from chemical and manufacturing industries, such as ligninolytic enzymes for the treatment of wastewater from the textile industry, have been proposed. Considering the high value of these research studies, in terms of the protection of human health and of the ecosystem, science must play a major role in guiding policy changes in this field.
Kravchenko, Julia; Corsini, Emanuela; Williams, Marc A.; Decker, William; Manjili, Masoud H.; Otsuki, Takemi; Singh, Neetu; Al-Mulla, Faha; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A. Ivana; Raju, Jayadev; Hamid, Roslida A.; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K.; Ryan, Elizabeth P.; Brown, Dustin G.; Lowe, Leroy; Lyerly, H.Kim
2015-01-01
An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression. PMID:26002081
[Role of environment in complex diseases: air pollution and food contaminants].
Scheen, A J; Giet, D
2012-01-01
Our polluted environment exposes human beings, along their life, to various toxic compounds that could trigger and aggravate different complex diseases. Such a phenomenon is well recognized for cardiovascular diseases, respiratory diseases and cancers, but other chronic inflammatory disorders may also been implicated. The most common factors, but also the most toxic, and thereby the most extensively investigated, are air pollutants (both indoor and outdoor pollution) and various contaminants present in drinking water and food (organic compounds, chemical products, heavy metals, ...). The complex interrelationships between food and pollutants, on the one hand, and between gene and environmental pollutants, including the influence of epigenetics, on the other hand, deserve further careful studies.
NASA Astrophysics Data System (ADS)
Hagen, Stephen J.; Son, Minjun
2017-02-01
Bacterial pathogens rely on chemical signaling and environmental cues to regulate disease-causing behavior in complex microenvironments. The human pathogen Streptococcus mutans employs a particularly complex signaling and sensing scheme to regulate genetic competence and other virulence behaviors in the oral biofilms it inhabits. Individual S. mutans cells make the decision to enter the competent state by integrating chemical and physical cues received from their microenvironment along with endogenously produced peptide signals. Studies at the single-cell level, using microfluidics to control the extracellular environment, provide physical insight into how the cells process these inputs to generate complex and often heterogeneous outputs. Fine changes in environmental stimuli can dramatically alter the behavior of the competence circuit. Small shifts in pH can switch the quorum sensing response on or off, while peptide-rich media appear to switch the output from a unimodal to a bimodal behavior. Therefore, depending on environmental cues, the quorum sensing circuitry can either synchronize virulence across the population, or initiate and amplify heterogeneity in that behavior. Much of this complex behavior can be understood within the framework of a quorum sensing system that can operate both as an intercellular signaling mechanism and intracellularly as a noisy bimodal switch.
ERIC Educational Resources Information Center
School Science Review, 1981
1981-01-01
Outlines a variety of laboratory procedures, discussions, and demonstrations including polarizing power and chemical properties of copper and zinc, preparation of boron coordination complex, demonstration of amino-acid synthesis in the primordial environment, classification and reactions of carbohydrates, and four others. (DS)
Complexation of copper by aquatic humic substances from different environments
McKnight, Diane M.; Feder, Gerald L.; Thurman, E. Michael; Wershaw, Robert L.
1983-01-01
The copper-complexing properties of aquatic humic substances isolated from eighteen different environments were characterized by potentiometric titration, using a cupric ion selective electrode. Potentiometric data were analyzed using FITEQL, a computer program for the determination of chemical equilibrium constants from experimental data. All the aquatic humic substances could be modelled as having two types of Cu(II)-binding sites: one with K equal to about 106 and a concentration of 1.0 ± 0.4 × 10−6 M(mg C)−1 and another with K equal to about 108 and a concentration of 2.6 ± 1.6 × 10−7 M(mg C)−1.A method is described for estimating the Cu(II)-binding sites associated with dissolved humic substances in natural water based on a measurement of dissolved organic carbon, which may be helpful in evaluating chemical processes controlling speciation of Cu and bioavailability of Cu to aquatic organisms.
A Chemical Engineer's Perspective on Health and Disease
Androulakis, Ioannis P.
2014-01-01
Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems. PMID:25506103
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
Lafuente, Maria; Atcher, Joan; Solà, Jordi; Alfonso, Ignacio
2015-11-16
The hierarchical self-assembling of complex molecular systems is dictated by the chemical and structural information stored in their components. This information can be expressed through an adaptive process that determines the structurally fittest assembly under given environmental conditions. We have set up complex disulfide-based dynamic covalent libraries of chemically and topologically diverse pseudopeptidic compounds. We show how the reaction evolves from very complex mixtures at short reaction times to the almost exclusive formation of a major compound, through the establishment of intramolecular noncovalent interactions. Our experiments demonstrate that the systems evolve through error-check and error-correction processes. The nature of these interactions, the importance of the folding and the effects of the environment are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
National Nanotechnology Initiative Strategic Plan
2011-02-01
Engineering complex, theranostic-based nanoparticles and nanodevices to target therapies and diagnose the progress of treatments. • Adopting new materials...the occurrence, fate, and effects of naturally-occurring and engineered chemical contami- nants in aquatic environments, or research on methods of
HANDBOOK: GROUNDWATER - METHODOLOGY - VOL. 2
The subsurface environment of ground water is characterized by a complex interplay of physical, geochemical and biological forces that govern the release, transport and fate of a variety of chemical substances. There are literally as many varied hydrogeologic settings as there ar...
NASA Astrophysics Data System (ADS)
Lebiedz, Dirk; Brandt-Pollmann, Ulrich
2004-09-01
Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.
Kombarova, M Yu; Radilov, A S; Romanov, V V; Oleynikova, E V; Ovchinikova, N S; Gulyaev, D V; Ivanova, I O
2013-01-01
Basic provisions of the medical and sanitary passport of chemically dangerous object and the territory adjoining to it are presented in article. Need of development of the medical and sanitary passport for systematization of sanitary and epidemiologic data with the purpose of a complex assessment of health of the population and the personnel working at chemically dangerous objects, harmful factors production and environment taking into account emissions of polluting substances of chemically dangerous objects is shown.
40 CFR 721.10297 - Tin, C16-18 and C18-unsatd. fatty acids castor-oil fatty acids complexes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Tin, C16-18 and C18-unsatd. fatty... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10297 Tin, C16-18 and C18-unsatd... to reporting. (1) The chemical substance identified as tin, C16-18 and C18-unsatd. fatty acids castor...
40 CFR 721.10297 - Tin, C16-18 and C18-unsatd. fatty acids castor-oil fatty acids complexes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tin, C16-18 and C18-unsatd. fatty... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10297 Tin, C16-18 and C18-unsatd... to reporting. (1) The chemical substance identified as tin, C16-18 and C18-unsatd. fatty acids castor...
40 CFR 721.10297 - Tin, C16-18 and C18-unsatd. fatty acids castor-oil fatty acids complexes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tin, C16-18 and C18-unsatd. fatty... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10297 Tin, C16-18 and C18-unsatd... to reporting. (1) The chemical substance identified as tin, C16-18 and C18-unsatd. fatty acids castor...
Barber, Larry B.
2014-01-01
Since the Industrial Revolution, a diversity of large-scale chemical innovations has impacted aquatic systems in urban environments. Beginning in the 1990s, there has been a growing scientific interest and public awareness of the effects of the chemicals used in domestic, commercial, industrial, and agricultural applications, referred to in this article as ‘emerging contaminants’ (ECs), on ecosystem and human health. The growing global population and its increasing demands on water supplies in conjunction with climate-induced changes in hydrologic regimes place stress on freshwater resources, resulting in a greater reliance on reuse of reclaimed municipal wastewater treatment plant (WWTP) effluents to meet human and environmental needs. WWTP effluents are a major source of ECs, and it is important to have an understanding of the chemical composition of the reclaimed water, because many ECs are biologically active and the effects of chronic exposure to low concentration complex mixtures are unknown. Several classes of ECs that have been shown to be widespread in the aquatic environment are discussed in this chapter, including surfactants, complexing agents, fragrances, antimicrobials, industrial chemicals, pharmaceuticals, natural and synthetic estrogens, and disinfection byproducts. All of these compounds are biologically active via a variety of modes of action, and can occur in aquatic systems at concentrations ranging from <0.001 to >100 μg l−1.
Functional toxicology: tools to advance the future of toxicity testing
Gaytán, Brandon D.; Vulpe, Chris D.
2014-01-01
The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352
A novel photosynthetic strategy for adaptation to low-iron aquatic environments
Chauhan, D.; Folea, I.M.; Jolley, C.C.; Kouril, R.; Lubner, C.E.; Lin, S.; Kolber, D.; Wolfe-Simon, Felisa; Golbeck, J.H.; Boekema, E.J.; Fromme, P.
2011-01-01
Iron (Fe) availability is a major limiting factor for primary production in aquatic environments. Cyanobacteria respond to Fe deficiency by derepressing the isiAB operon, which encodes the antenna protein IsiA and flavodoxin. At nanomolar Fe concentrations, a PSI-IsiA supercomplex forms, comprising a PSI trimer encircled by two complete IsiA rings. This PSI-IsiA supercomplex is the largest photosynthetic membrane protein complex yet isolated. This study presents a detailed characterization of this complex using transmission electron microscopy and ultrafast fluorescence spectroscopy. Excitation trapping and electron transfer are highly efficient, allowing cyanobacteria to avoid oxidative stress. This mechanism may be a major factor used by cyanobacteria to successfully adapt to modern low-Fe environments. ?? 2010 American Chemical Society.
Complex Protostellar Chemistry
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha M.
2012-01-01
Two decades ago, our understanding chemistry in protostars was simple -- matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger-scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets. This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula. Our understanding of the chemistry in protostellar systems has made enormous progress over the last few decades, fueled by an increased awareness of the complex dynamics of these evolving energetic nebulae. We can no longer consider just the simple local environment to explain the composition of a planet, asteroid, or comet as was done in the past, but must now consider chemical processes that might take place within the nebula as a whole as well as the probability of transport and mixing the products of such reactions throughout the system. just as we now find it impossible to explain the complex chemistry of the terrestrial atmosphere without reference to detailed transport models that interconnect highly dissimilar chemical environments, so chemical models of protostars and of the solar nebula must eventually treat these environments as tightly coupled, interactive systems. The demonstration that the chemistry on the surfaces of outward-flowing, dynamically mixing icy grain surfaces both mimics the chemistry in cold cloud cores and strikes at the central assumption of the photochemical self-shielding model for oxygen isotopes in solar system solids only adds emphasis to this conclusion.
Publications of the exobiology program for 1984: A special bibliography
NASA Technical Reports Server (NTRS)
Wallace, J. S. (Compiler); Devincenzi, D. L. (Compiler)
1986-01-01
A bibliography of NASA exobiology programs is given. Planetary environments; chemical evolution; organic geochemistry; extraterrestrial intelligence; and the effect of planetary solar and astrophysical phenomena on the evolution of complex life in the universe are among the topics listed.
DOT National Transportation Integrated Search
2000-12-31
Accidents involving chemicals or radioactive materials represent a significant threat to the environment, public : health and safety, and community well-being. In an increasingly complex and interconnected world, no community : is immune from the thr...
Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates
USDA-ARS?s Scientific Manuscript database
Caenorhabditis elegans, a bacterivorous soil nematode, lives in a complex environment that requires chemical communication for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied...
Mercury reduction and complexation by natural organic matter in anoxic environments.
Gu, Baohua; Bian, Yongrong; Miller, Carrie L; Dong, Wenming; Jiang, Xin; Liang, Liyuan
2011-01-25
Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiolate ligand-induced oxidative complexation with an estimated binding capacity of ~3.5 μmol Hg/g HA and a partitioning coefficient >10(6) mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.
Ionescu, Crina-Maria; Sehnal, David; Falginella, Francesco L; Pant, Purbaj; Pravda, Lukáš; Bouchal, Tomáš; Svobodová Vařeková, Radka; Geidl, Stanislav; Koča, Jaroslav
2015-01-01
Partial atomic charges are a well-established concept, useful in understanding and modeling the chemical behavior of molecules, from simple compounds, to large biomolecular complexes with many reactive sites. This paper introduces AtomicChargeCalculator (ACC), a web-based application for the calculation and analysis of atomic charges which respond to changes in molecular conformation and chemical environment. ACC relies on an empirical method to rapidly compute atomic charges with accuracy comparable to quantum mechanical approaches. Due to its efficient implementation, ACC can handle any type of molecular system, regardless of size and chemical complexity, from drug-like molecules to biomacromolecular complexes with hundreds of thousands of atoms. ACC writes out atomic charges into common molecular structure files, and offers interactive facilities for statistical analysis and comparison of the results, in both tabular and graphical form. Due to high customizability and speed, easy streamlining and the unified platform for calculation and analysis, ACC caters to all fields of life sciences, from drug design to nanocarriers. ACC is freely available via the Internet at http://ncbr.muni.cz/ACC.
Ruiz, Jazmin Del Carmen; Quackenboss, James J.; Tulve, Nicolle S.; ...
2016-02-03
The etiology of a child’s cognitive ability is complex, with research suggesting that it is not attributed to a single determinant or even a defined period of exposure. Rather, cognitive development is the product of cumulative interactions with the environment, both negative and positive, over the life course. The aim of this systematic scoping review was to collate evidence associated with children’s cognitive health, including inherent factors as well as chemical and non-chemical stressors from the built, natural, and social environments. Three databases were used to identify recent epidemiological studies (2003–2013) that examined exposure factors associated with general cognitive abilitymore » in children. Over 100 factors were evaluated from 258 eligible studies. We found that recent literature mainly assessed the hypothesized negative effects of either inherent factors or chemical exposures present in the physical environment. Prenatal growth, sleep health, lead and water pollutants showed consistent negative effects. Of the few studies that examined social stressors, results consistently showed cognitive development to be influenced by both positive and negative social interactions at home, in school or the community. Among behavioral factors related to diet and lifestyle choices of the mother, breastfeeding was the most studied, showing consistent positive associations with cognitive ability. There were mostly inconsistent results for both chemical and non-chemical stressors. The majority of studies utilized traditional exposure assessments, evaluating chemical and non-chemical stressors separately. Collective evidence from a limited number of studies revealed that cumulative exposure assessment that incorporates multiple chemical and non-chemical stressors over the life course may unravel the variability in effect on cognitive development and help explain the inconsistencies across studies. Here, future research examining the interactions of multiple stressors within a child’s total environment, depicting a more real-world exposure, will aid in understanding the cumulative effects associated with a child’s ability to learn.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, Jazmin Del Carmen; Quackenboss, James J.; Tulve, Nicolle S.
The etiology of a child’s cognitive ability is complex, with research suggesting that it is not attributed to a single determinant or even a defined period of exposure. Rather, cognitive development is the product of cumulative interactions with the environment, both negative and positive, over the life course. The aim of this systematic scoping review was to collate evidence associated with children’s cognitive health, including inherent factors as well as chemical and non-chemical stressors from the built, natural, and social environments. Three databases were used to identify recent epidemiological studies (2003–2013) that examined exposure factors associated with general cognitive abilitymore » in children. Over 100 factors were evaluated from 258 eligible studies. We found that recent literature mainly assessed the hypothesized negative effects of either inherent factors or chemical exposures present in the physical environment. Prenatal growth, sleep health, lead and water pollutants showed consistent negative effects. Of the few studies that examined social stressors, results consistently showed cognitive development to be influenced by both positive and negative social interactions at home, in school or the community. Among behavioral factors related to diet and lifestyle choices of the mother, breastfeeding was the most studied, showing consistent positive associations with cognitive ability. There were mostly inconsistent results for both chemical and non-chemical stressors. The majority of studies utilized traditional exposure assessments, evaluating chemical and non-chemical stressors separately. Collective evidence from a limited number of studies revealed that cumulative exposure assessment that incorporates multiple chemical and non-chemical stressors over the life course may unravel the variability in effect on cognitive development and help explain the inconsistencies across studies. Here, future research examining the interactions of multiple stressors within a child’s total environment, depicting a more real-world exposure, will aid in understanding the cumulative effects associated with a child’s ability to learn.« less
Ruiz, Jazmin Del Carmen; Quackenboss, James J.; Tulve, Nicolle S.
2016-01-01
The etiology of a child’s cognitive ability is complex, with research suggesting that it is not attributed to a single determinant or even a defined period of exposure. Rather, cognitive development is the product of cumulative interactions with the environment, both negative and positive, over the life course. The aim of this systematic scoping review was to collate evidence associated with children’s cognitive health, including inherent factors as well as chemical and non-chemical stressors from the built, natural, and social environments. Three databases were used to identify recent epidemiological studies (2003–2013) that examined exposure factors associated with general cognitive ability in children. Over 100 factors were evaluated from 258 eligible studies. We found that recent literature mainly assessed the hypothesized negative effects of either inherent factors or chemical exposures present in the physical environment. Prenatal growth, sleep health, lead and water pollutants showed consistent negative effects. Of the few studies that examined social stressors, results consistently showed cognitive development to be influenced by both positive and negative social interactions at home, in school or the community. Among behavioral factors related to diet and lifestyle choices of the mother, breastfeeding was the most studied, showing consistent positive associations with cognitive ability. There were mostly inconsistent results for both chemical and non-chemical stressors. The majority of studies utilized traditional exposure assessments, evaluating chemical and non-chemical stressors separately. Collective evidence from a limited number of studies revealed that cumulative exposure assessment that incorporates multiple chemical and non-chemical stressors over the life course may unravel the variability in effect on cognitive development and help explain the inconsistencies across studies. Future research examining the interactions of multiple stressors within a child’s total environment, depicting a more real-world exposure, will aid in understanding the cumulative effects associated with a child’s ability to learn. PMID:26840411
Ng, Carla A; von Goetz, Natalie
2017-01-01
Food is a major pathway for human exposure to hazardous chemicals. The modern food system is becoming increasingly complex and globalized, but models for food-borne exposure typically assume locally derived diets or use concentrations directly measured in foods without accounting for food origin. Such approaches may not reflect actual chemical intakes because concentrations depend on food origin, and representative analysis is seldom available. Processing, packaging, storage, and transportation also impart different chemicals to food and are not yet adequately addressed. Thus, the link between environmental emissions and realistic human exposure is effectively broken. We discuss the need for a fully integrated treatment of the modern industrialized food system, and we propose strategies for using existing models and relevant supporting data sources to track chemicals during production, processing, packaging, storage, and transport. Fate and bioaccumulation models describe how chemicals distribute in the environment and accumulate through local food webs. Human exposure models can use concentrations in food to determine body burdens based on individual or population characteristics. New models now include the impacts of processing and packaging but are far from comprehensive. We propose to close the gap between emissions and exposure by utilizing a wider variety of models and data sources, including global food trade data, processing, and packaging models. A comprehensive approach that takes into account the complexity of the modern global food system is essential to enable better prediction of human exposure to chemicals in food, sound risk assessments, and more focused risk abatement strategies. Citation: Ng CA, von Goetz N. 2017. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect 125:1-7; http://dx.doi.org/10.1289/EHP168.
Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk
2015-12-01
Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wawrzyniak, Piotr K; Alia, A; Schaap, Roland G; Heemskerk, Mattijs M; de Groot, Huub J M; Buda, Francesco
2008-12-14
Bacteriochlorophyll-histidine complexes are ubiquitous in nature and are essential structural motifs supporting the conversion of solar energy into chemically useful compounds in a wide range of photosynthesis processes. A systematic density functional theory study of the NMR chemical shifts for histidine and for bacteriochlorophyll-a-histidine complexes in the light-harvesting complex II (LH2) is performed using the BLYP functional in combination with the 6-311++G(d,p) basis set. The computed chemical shift patterns are consistent with available experimental data for positive and neutral(tau) (N(tau) protonated) crystalline histidines. The results for the bacteriochlorophyll-a-histidine complexes in LH2 provide evidence that the protein environment is stabilizing the histidine close to the Mg ion, thereby inducing a large charge transfer of approximately 0.5 electronic equivalent. Due to this protein-induced geometric constraint, the Mg-coordinated histidine in LH2 appears to be in a frustrated state very different from the formal neutral(pi) (N(pi) protonated) form. This finding could be important for the understanding of basic functional mechanisms involved in tuning the electronic properties and exciton coupling in LH2.
Rachamim, Tamar; Sher, Daniel
2012-01-01
Hydra and its fellow cnidarians - sea anemones, corals and jellyfish - are simple, mostly sessile animals that depend on bioactive chemicals for survival. In this review, we briefly describe what is known about the chemical armament of Hydra, and detail future research directions where Hydra can help illuminate major questions in chemical ecology, pharmacology, developmental biology and evolution. Focusing on two groups of putative toxins from Hydra - phospholipase A2s and proteins containing ShK and zinc metalloprotease domains, we ask: how do different venom components act together during prey paralysis? How is a venom arsenal created and how does it evolve? How is the chemical arsenal delivered to its target? To what extent does a chemical and biotic coupling exist between an organism and its environment? We propose a model whereby in Hydra and other cnidarians, bioactive compounds are secreted both as localized point sources (nematocyte discharges) and across extensive body surfaces, likely combining to create complex "chemical landscapes". We speculate that these cnidarian-derived chemical landscapes may affect the surrounding community on scales from microns to, in the case of coral reefs, hundreds of kilometers.
Obesity and Metabolic Comorbidities: Environmental Diseases?
Lubrano, Carla; Genovesi, Giuseppe; Specchia, Palma; Costantini, Daniela; Mariani, Stefania; Petrangeli, Elisa; Lenzi, Andrea; Gnessi, Lucio
2013-01-01
Obesity and metabolic comorbidities represent increasing health problems. Endocrine disrupting compounds (EDCs) are exogenous agents that change endocrine function and cause adverse health effects. Most EDCs are synthetic chemicals; some are natural food components as phytoestrogens. People are exposed to complex mixtures of chemicals throughout their lives. EDCs impact hormone-dependent metabolic systems and brain function. Laboratory and human studies provide compelling evidence that human chemical contamination can play a role in obesity epidemic. Chemical exposures may increase the risk of obesity by altering the differentiation of adipocytes. EDCs can alter methylation patterns and normal epigenetic programming in cells. Oxidative stress may be induced by many of these chemicals, and accumulating evidence indicates that it plays important roles in the etiology of chronic diseases. The individual sensitivity to chemicals is variable, depending on environment and ability to metabolize hazardous chemicals. A number of genes, especially those representing antioxidant and detoxification pathways, have potential application as biomarkers of risk assessment. The potential health effects of combined exposures make the risk assessment process more complex compared to the assessment of single chemicals. Techniques and methods need to be further developed to fill data gaps and increase the knowledge on harmful exposure combinations. PMID:23577225
Photodissociation Spectroscopy of Anionic Transition Metal Complexes
NASA Astrophysics Data System (ADS)
Kaufman, Sydney Hamilton
Transition metal complexes play an important role in many aspects of chemistry; whether in supporting biological functions, as catalysts for organic reactions, in the environment, or in industry. This thesis is comprised of gas-phase spectroscopic studies of four transition metal species with implications for many different chemical applications. Most knowledge of the target molecules in this thesis are derived from studies in the condensed phase, where the chemical environment can change molecular properties. As a result, it is difficult to gain an understanding of the intrinsic properties in solution as well as a molecular-level picture of chemical reactions that take place where many oxidation states, molecular species, and solvent interactions occur. By isolating one particular species in the gas phase, we are able to observe how each species interacts with light independent of perturbing effects of solvent and counter ions. In this thesis, we perform spectroscopic experiments on mass-selected ions in the gas phase, where we are able to gain information on intrinsic molecular properties without the influence of a condensed phase chemical environment. We employ photodissociation spectroscopy, where we mass-select a particular ionic species from solution and irradiate that molecular ion with the output of a tunable laser in the ultraviolet and visible regions. By monitoring the fragments produced, we can obtain an electronic absorption spectrum of the isolated species as well as gain insight into the photochemistry of the ions under study from the fragmentation pathways observed. We combine this method with solution absorption spectra as well as electronic structure calculations.
Lewis, F.M.; Voss, C.I.; Rubin, Jacob
1986-01-01
A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)
Tolerant yeast in situ detoxifies major class of toxic chemicals while producing ethanol
USDA-ARS?s Scientific Manuscript database
Renewable lignocellulosic materials contain abundant sugar source and biofuels conversion including cellulosic ethanol production from lignocellulosic biomass provides a sustainable alternative energy resource for a cleaner environment. In order to release the biomass sugars from the complex cellulo...
Bioengineering thermodynamics of biological cells.
Lucia, Umberto
2015-12-01
Cells are open complex thermodynamic systems. They can be also regarded as complex engines that execute a series of chemical reactions. Energy transformations, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes. Moreover, cells can also actively modify their behaviours in relation to changes in their environment. Different thermo-electro-biochemical behaviours occur between health and disease states. But, all the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into the environment. But, this wasted heat represent also a sort of information, which outflows from the cell toward its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new approach to study the behaviour of the cells themselves and to control their behaviours. So, this approach allows us to consider the living systems as black boxes and analyze only the inflows and outflows and their changes in relation to the modification of the environment. Therefore, information on the systems can be obtained by analyzing the changes in the cell heat wasted in relation to external perturbations. The bioengineering thermodynamics bases are summarized and used to analyse possible controls of the calls behaviours based on the control of the ions fluxes across the cells membranes.
Prior knowledge-based approach for associating ...
Evaluating the potential human health and/or ecological risks associated with exposures to complex chemical mixtures in the ambient environment is one of the central challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrate chemical monitoring and bio-effects data to evaluate risks associated with chemicals present in the environment. We used prior knowledge about chemical-gene interactions to develop a knowledge assembly model for detected chemicals at five locations near two wastewater treatment plants. The assembly model was used to generate hypotheses about the biological impacts of the chemicals at each location. The hypotheses were tested using empirical hepatic gene expression data from fathead minnows exposed for 12 d at each location. Empirical gene expression data was also mapped to the assembly models to statistically evaluate the likelihood of a chemical contributing to the observed biological responses. The prior knowledge approach was able reasonably hypothesize the biological impacts at one site but not the other. Chemicals most likely contributing to the observed biological responses were identified at each location. Despite limitations to the approach, knowledge assembly models have strong potential for associating chemical occurrence with potential biological effects and providing a foundation for hypothesis generation to guide research and/or monitoring efforts relat
Chemical-gene interaction networks and causal reasoning for ...
Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrate chemical monitoring and biological effects data to evaluate risks associated with chemicals present in the environment. Here, we used prior knowledge about chemical-gene interactions to develop a knowledge assembly model for detected chemicals at five locations near the North Branch and Chisago wastewater treatment plants (WWTP) in the St. Croix River Basin, MN and WI. The assembly model was used to generate hypotheses about the biological impacts of the chemicals at each location. The hypotheses were tested using empirical hepatic gene expression data from fathead minnows exposed for 12 d at each location. Empirical gene expression data were also mapped to the assembly models to evaluate the likelihood of a chemical contributing to the observed biological responses using richness and concordance statistics. The prior knowledge approach was able predict the observed biological pathways impacted at one site but not the other. Atrazine was identified as a potential contributor to the observed gene expression responses at a location upstream of the North Branch WTTP. Four chemicals were identified as contributors to the observed biological responses at the effluent and downstream o
Salvia, Marie-Virginie; Ben Jrad, Amani; Raviglione, Delphine; Zhou, Yuxiang; Bertrand, Cédric
2017-06-28
Pesticides are regularly used for a variety of applications and are disseminated throughout the environment. These substances may have significant negative impacts. To date, the half-life, t 1/2 , was often used to study the fate of pesticides in environmental matrices (water, soil, sediment). However, this value gives limited information. First, it does not evaluate the formation of by-products, resulting in the need for additional experiments to be performed to evaluate biodegradation and biotransformation products. T 1/2 also fails to consider the chemical's impact on biodiversity. Resilience time, a new and integrative proxy, was recently proposed as an alternative to t 1/2 , with the potential to evaluate all the post-application effects of the chemical on the environment. The 'Environmental Metabolic Footprinting' (EMF) approach, giving an idea of the resilience time, was used to evaluate the impact of botanicals on soil. The goal is to optimise the EMF to study the impact of a microbial insecticide, the Bacillus thuringiensis israelensis (Bti), on sediment. The difficulty of this work lies in the commercial solution of Bti that is really complex, and this complexity yields chromatograms that are extremely difficult to interpret; t 1/2 cannot be used. No methodologies currently exist to monitor the impact of these compounds on the environment. We will test the EMF to determine if it is sensitive enough to tolerate such complex mixtures. A pure chemical insecticide, the α-cypermethrin, will be also studied. The article shows that the EMF is able to distinguish meta-metabolome differences between control and exposed (with Bti) sediments.
Toward a 3D model of human brain development for studying gene/environment interactions
2013-01-01
This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders caused by known mutations and chromosomal aberrations. Notably, such a human brain model will be a versatile tool for more complex testing platforms and strategies as well as research into central nervous system physiology and pathology. PMID:24564953
Nonylphenols are environmentally persistent endocrine disrupting chemicals. They exist in the environment as complex mixtures containing many nonylphenol isomers. Environmental mixtures of nonylphenols, along with a few single isomers have been tested for their capacity to inte...
Assessment of potential ecological risks of complex contaminant mixtures in the environment requires integrated chemical and biological approaches. Instrumental analysis of environmental samples alone can identify contaminants, but provides only limited insights as to possible a...
LABORATORY STUDIES ON THE REMEDIATION OF MERCURY-CONTAMINATED SOILS
Mercury, in contrast to other toxic metals, cycles between the atmosphere, land, and water. During this cycle, it undergoes a series of complex chemical and physical transformations. Because of these transformations, it is found in the environment not only as simple inorganic and...
Assessing the potential impact to the aquatic environment from emerging contaminants, entails monitoring a complex mixture (pharmaceuticals, polar pesticides, industrial by- products and degradation products) in natural waters. The presence of these chemicals, often at ultra-trac...
LIPID ANALYSIS TO DETERMINE THE EFFECT OF A SOURCE REMEDIAL TECHNOLOGY IN MICROBIAL ECOLOGY
Microbial community structures and related changes in the subsurface environment were investigated following in situ chemical oxidation (ISCO) treatment at Launch Complex 34, Cape Canaveral Air Station, Florida. The site has dense non-aqueous phase (DNAPL) concentrations of TCE ...
Molecular dynamics averaging of Xe chemical shifts in liquids.
Jameson, Cynthia J; Sears, Devin N; Murad, Sohail
2004-11-15
The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.
Heinz, G.H.; Fairbrother, Anne; Locke, Louis N.; Hoff, Gerald L.
1996-01-01
Mercury is an intriguing contaminant because it has complex chemical properties, a wide range of harmful effects, and an infinite persistence in the environment. Die-offs of wildlife due to mercury have occurred in many countries, especially before mercury seed dressings were banned. Today, most mercury problems are associated with aquatic environments. Methylmercury, the most toxic chemical form, attacks many organ systems, but damage to the central nervous system is most severe. Harmful wet-weight concentrations of mercury, as methylmercury, in the tissues of adult birds and mammals range from about 8-30 ppm in the brain, 20-60 ppm in liver, 20-60 ppm in kidney, and 15-30 ppm in muscle. Young animals may be more sensitive.
The behavior of U- and Th-series nuclides in the estuarine environment
Swarzenski, P.W.; Porcelli, D.; Andersson, P.S.; Smoak, J.M.
2003-01-01
Rivers carry the products of continental weathering, and continuously supply the oceans with a broad range of chemical constituents. This erosional signature is, however, uniquely moderated by biogeochemical processing within estuaries. Estuaries are commonly described as complex filters at land-sea margins, where significant transformations can occur due to strong physico-chemical gradients. These changes differ for different classes of elements, and can vary widely depending on the geographic location. U- and Th-series nuclides include a range of elements with vastly different characteristics and behaviors within such environments, and the isotopic systematics provide methods for investigating the transport of these nuclides and other analog species across estuaries and into the coastal ocean.
Electron cryo-tomography captures macromolecular complexes in native environments.
Baker, Lindsay A; Grange, Michael; Grünewald, Kay
2017-10-01
Transmission electron microscopy has a long history in cellular biology. Fixed and stained samples have been used for cellular imaging for over 50 years, but suffer from sample preparation induced artifacts. Electron cryo-tomography (cryoET) instead uses frozen-hydrated samples, without chemical modification, to determine the structure of macromolecular complexes in their native environment. Recent developments in electron microscopes and associated technologies have greatly expanded our ability to visualize cellular features and determine the structures of macromolecular complexes in situ. This review highlights the technological improvements and the new areas of biology these advances have made accessible. We discuss the potential of cryoET to reveal novel and significant biological information on the nanometer or subnanometer scale, and directions for further work. Copyright © 2017. Published by Elsevier Ltd.
Beach, Connor A; Krumm, Christoph; Spanjers, Charles S; Maduskar, Saurabh; Jones, Andrew J; Dauenhauer, Paul J
2016-03-07
Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds. Many compounds of interest are non-volatile and exhibit poor response in current gas chromatography and flame ionization systems. Here we show the reaction of trimethylsilylated chemical analytes to methane using a quantitative carbon detector (QCD; the Polyarc™ reactor) within a gas chromatograph (GC), thereby enabling enhanced detection (up to 10×) of highly functionalized compounds including carbohydrates, acids, drugs, flavorants, and pesticides. Analysis of a complex mixture of compounds shows that the GC-QCD method exhibits faster and more accurate analysis of complex mixtures commonly encountered in everyday products and the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackay, D.; Di Guardo, A.; Paterson, S.
Evaluation of chemical fate in the environment has been suggested to be best accomplished using a five-stage process in which a sequence of increasing site-specific multimedia mass balance models is applied. This approach is illustrated for chlorobenzene and linear alkylbenzene sulfonates (LAS). The first two stages involve classifying the chemical and quantifying the emissions into each environmental compartment. In the third stage, the characteristics of the chemical are determined using the evaluative equilibrium criterion model, which is capable of treating a variety of chemicals including those that are in volatile and insoluble in water. This evaluation is conducted in threemore » steps using levels 1, 2, and 3 versions of the model, which introduce increasing complexity and more realistic representations of the environment. In the fourth stage, ChemCAN, which is a level 3 model for specific regions of Canada, is used to predict the chemical`s fate in southern Ontario. The final stage is to apply local environmental models to predict environmental exposure concentrations. For chlorobenzene, the local model was the SoilFug model, which predicts the fate of agrochemicals, and for LAS the WW-TREAT, GRiDS, and ROUT models were used to predict the fate of LAS in a sewage treatment plant and in riverine receiving waters. It is concluded that this systematic approach provides a comprehensive assessment of chemical fate, revealing the broad characteristics of chemical behavior and quantifying the likely local and regional exposure levels.« less
Kravchenko, Julia; Corsini, Emanuela; Williams, Marc A; Decker, William; Manjili, Masoud H; Otsuki, Takemi; Singh, Neetu; Al-Mulla, Faha; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A Ivana; Raju, Jayadev; Hamid, Roslida A; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K; Ryan, Elizabeth P; Brown, Dustin G; Bisson, William H; Lowe, Leroy; Lyerly, H Kim
2015-06-01
An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.
2004-01-01
Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log KowS < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.
Programmable chemical controllers made from DNA.
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2013-10-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.
Programmable chemical controllers made from DNA
NASA Astrophysics Data System (ADS)
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2013-10-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.
Programmable chemical controllers made from DNA
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2014-01-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language', and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents. PMID:24077029
Zone leveling and solution growth of complex compound semiconductors in space
NASA Technical Reports Server (NTRS)
Bachmann, K. J.
1986-01-01
A research program on complex semiconducting compounds and alloys was completed that addressed the growth of single crystals of CdSe(y)Te(1-y), Zn(x)Cd(1-x)Te, Mn(x)Cd(1-x)Te, InP(y)As(1-y) and CuInSe2 and the measurement of fundamental physico-chemical properties characterizing the above materials. The purpose of this ground based research program was to lay the foundations for further research concerning the growth of complex ternary compound semiconductors in a microgravity environment.
Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...
Chemical modeling of boron adsorption by humic materials using the constant capacitance model
USDA-ARS?s Scientific Manuscript database
The constant capacitance surface complexation model was used to describe B adsorption behavior on reference Aldrich humic acid, humic acids from various soil environments, and dissolved organic matter extracted from sewage effluents. The reactive surface functional groups on the humic materials wer...
Andersson, Asa Scott; Stjernström, Olof; Fängmark, Ingrid
2005-05-01
Assessing the environmental consequences of a chemical accident is a complex task. To date, the methods used to evaluate the environmental effects of an acute release of a chemical have often been based on measurements of chemical and physical variables deemed to be important, such as the concentration of the chemical. However, a broader strategy is needed to predict the environmental consequences of potential accidents during the planning process. An Environment-Accident Index (EAI), a simple tool based on such a strategy, has been developed to facilitate the consideration of a multitude of influential variables. The objectives of this study were to evaluate whether questionnaire-based expert panel's judgements could provide useful data on the environmental consequences of chemical spills, and an effective basis for further development of the EAI. As expected, the judgements did not agree perfectly, but they do give rough indications of the environmental effects, and highlight consistent trends that should be useful inputs for planning, prevention and decontamination processes. The different accidents were also judged to have caused everything from minor to very major effects in the environment, implying that a wide range of accident scenarios were represented in the material and covered by the EAI. Therefore, questionnaires and expert panel judgements can be used to collect useful data for estimating the likely environmental consequences of chemical accidents and for further development of the EAI.
Mercury reduction and complexation by natural organic matter in anoxic environments
Gu, Baohua; Bian, Yongrong; Miller, Carrie L.; Dong, Wenming; Jiang, Xin; Liang, Liyuan
2011-01-01
Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiolate ligand-induced oxidative complexation with an estimated binding capacity of ~3.5 μmol Hg/g HA and a partitioning coefficient >106 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury. PMID:21220311
Evaluation of Fungal Metabolic Compounds Released to the Air in a Restricted Environment
NASA Technical Reports Server (NTRS)
Ferebee, Robert N.
1991-01-01
The metabolic action of selected fungi species on common components of the interior of Space Station Freedom (SSF) will be tested. When present, volatile organic chemicals will be collected on porous polymer adsorbent columns. Using thermal desorption, the volatile compounds will be passed onto a gas chromatographic column for analysis. The Space Station Freedom (SSF) modular complex will largely be individually self contained and the established air environment will not be easily adjusted. The development and maintenance of a safe working environment offers a considerable challenge. Present plans for use of SSF acknowledge periods of manned activities and alternate times when the station is unmanned. The obvious necessity for clean and safe air and water during periods of use have been pursued as fundamental systems to SSF success. Somewhat less obvious, although perhaps of no less importance to the success of long term cyclic usage, are those periods of inactivity. It is during these periods when spores from microorganisms may be afforded the best conditions to germinate and in the vegetative form react with the complex synthetic chemical polymers which compose the furnishings and hardware of SSF nodes. Biodegradation could constitute a real hygiene problem, if the organisms form and release volatile organic chemicals. Similar problems have been documented in closed and improperly ventilated buildings and work spaces. Many of the metabolic products of fungi and bacterial growth create a variety of health problems. Analytical chemical techniques will first be used to document the growth of Aspergillus, Penicillium, and Cladosporium fungal species on the potential substrates Nomex and Kevlar. Any volatile organics that are released will be measured using the spectrum of gas adsorption chromatography. The level of microbial contamination that is necessary to produce such volatile compounds and the relative amounts expected to accumulate will be estimated.
ISS Local Environment Spectrometers (ISLES)
NASA Technical Reports Server (NTRS)
Krause, Linda Habash; Gilchrist, Brian E.
2014-01-01
In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.
Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R
2017-07-01
Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Occurrence, degradation, and effect of polymer-based materials in the environment.
Lambert, Scott; Sinclair, Chris; Boxall, Alistair
2014-01-01
There is now a plethora of polymer-based materials (PBMs) on the market, because of the increasing demand for cheaper consumable goods, and light-weight industrial materials. Each PBM constitutes a mixture of their representative polymer/sand their various chemical additives. The major polymer types are polyethylene, polypropylene,and polyvinyl chloride, with natural rubber and biodegradable polymers becoming increasingly more important. The most important additives are those that are biologically active, because to be effective such chemicals often have properties that make them resistant to photo-degradation and biodegradation. During their lifecycle,PBMs can be released into the environment form a variety of sources. The principal introduction routes being general littering, dumping of unwanted waste materials,migration from landfills and emission during refuse collection. Once in the environment,PBMs are primarily broken down by photo-degradation processes, but due to the complex chemical makeup of PBMs, receiving environments are potentially exposed to a mixture of macro-, meso-, and micro-size polymer fragments, leached additives, and subsequent degradation products. In environments where sunlight is absent (i.e., soils and the deep sea) degradation for most PBMs is minimal .The majority of literature to date that has addressed the environmental contamination or disposition of PBMs has focused on the marine environment. This is because the oceans are identified as the major sink for macro PBMs, where they are known to present a hazard to wildlife via entanglement and ingestion. The published literature has established the occurrence of microplastics in marine environment and beach sediments, but is inadequate as regards contamination of soils and freshwater sediments. The uptake of microplastics for a limited range of aquatic organisms has also been established, but there is a lack of information regarding soil organisms, and the long-term effects of microplastic uptake are also less well understood.There is currently a need to establish appropriate degradation test strategies consistent with realistic environmental conditions, because the complexity of environmental systems is lost when only one process (e.g., hydrolysis) is assessed in isolation. Enhanced methodologies are also needed to evaluate the impact of PBMs to soil and freshwater environments.
The GSTome Reflects the Chemical Environment of White-Rot Fungi
Deroy, Aurélie; Saiag, Fanny; Kebbi-Benkeder, Zineb; Touahri, Nassim; Hecker, Arnaud; Morel-Rouhier, Mélanie; Colin, Francis; Dumarcay, Stephane; Gérardin, Philippe; Gelhaye, Eric
2015-01-01
White-rot fungi possess the unique ability to degrade and mineralize all the different components of wood. In other respects, wood durability, among other factors, is due to the presence of extractives that are potential antimicrobial molecules. To cope with these molecules, wood decay fungi have developed a complex detoxification network including glutathione transferases (GST). The interactions between GSTs from two white-rot fungi, Trametes versicolor and Phanerochaete chrysosporium, and an environmental library of wood extracts have been studied. The results demonstrate that the specificity of these interactions is closely related to the chemical composition of the extracts in accordance with the tree species and their localization inside the wood (sapwood vs heartwood vs knotwood). These data suggest that the fungal GSTome could reflect the chemical environment encountered by these fungi during wood degradation and could be a way to study their adaptation to their way of life. PMID:26426695
Kim, Young-Pil; Shon, Hyun Kyong; Shin, Seung Koo; Lee, Tae Geol
2015-01-01
Bio-conjugated nanoparticles have emerged as novel molecular probes in nano-biotechnology and nanomedicine and chemical analyses of their surfaces have become challenges. The time-of-flight (TOF) secondary ion mass spectrometry (SIMS) has been one of the most powerful surface characterization techniques for both nanoparticles and biomolecules. When combined with various nanoparticle-based signal enhancing strategies, TOF-SIMS can probe the functionalization of nanoparticles as well as their locations and interactions in biological systems. Especially, nanoparticle-based SIMS is an attractive approach for label-free drug screening because signal-enhancing nanoparticles can be designed to directly measure the enzyme activity. The chemical-specific imaging analysis using SIMS is also well suited to screen nanoparticles and nanoparticle-biomolecule conjugates in complex environments. This review presents some recent applications of nanoparticle-based TOF-SIMS to the chemical analysis of complex biological systems. © 2014 Wiley Periodicals, Inc.
Reaction-based small-molecule fluorescent probes for chemoselective bioimaging
Chan, Jefferson; Dodani, Sheel C.; Chang, Christopher J.
2014-01-01
The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration. PMID:23174976
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Sheverev, Valery A.; Holland, Paul M.; Takeuchi, Norishige
2006-01-01
In situ exploration of the solar system to identify its early chemistry as preserved in icy bodies and to look for compelling evidence of astrobiology will require new technology for chemical analysis. Chemical measurements in space flight environments highlight the need for a high level of positive identification of chemical compounds, since re-measurement by alternative techniques for confirmation will not be feasible. It also may not be possible to anticipate all chemical species that are observed, and important species may be present only at trace levels where they can be masked by complex chemical backgrounds. Up to now, the only techniques providing independent sample identification of GC separated components across a wide range of chemical species have been Mass Spectrometry (MS) and Ion Mobility Spectrometry (IMS). We describe here the development of a versatile and robust miniature GC detector based on Penning Ionization Electron Spectroscopy (PIES), for use with miniature GC systems being developed for planetary missions. PIES identifies the sample molecule through spectra related to its ionization potential. The combination of miniature GC technology with the primary identification capabilities of PIES provides an analytical approach ideal for planetary analyses.
According to recent research, 70-90% of long-term latency and chronic human disease incidence is attributable to environmental (human exposome) factors through the gene x environment interaction. Environmental exposures are complex and involve many thousands of chemicals, a mult...
An Introduction to Air Chemistry.
ERIC Educational Resources Information Center
Butcher, Samuel S.; Charlson, Robert J.
Designed for those with no previous experience in the field, this book synthesizes the areas of chemistry and meteorology required to bring into focus some of the complex problems associated with the atmospheric environment. Subject matter moves from a review of the relevant chemical and meteorological principles to a discussion of the general…
40 CFR 721.10037 - Complex halogenated salt of tris(ethylatedaminocarbocyclic)methane (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
...(ethylatedaminocarbocyclic)methane (generic). 721.10037 Section 721.10037 Protection of Environment ENVIRONMENTAL PROTECTION...(ethylatedaminocarbocyclic)methane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The...)methane (PMN P-02-423) is subject to reporting under this section for the significant new uses described...
Knowledge of endocrine control of the complex larval developmental processes in insects (metamorphosis) has led to the introduction of insect hormones and their analogues as insecticides known as insect growth regulators (IGRs) with the largest group being juvenile hormone analog...
40 CFR 721.10037 - Complex halogenated salt of tris(ethylatedaminocarbocyclic)methane (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
...(ethylatedaminocarbocyclic)methane (generic). 721.10037 Section 721.10037 Protection of Environment ENVIRONMENTAL PROTECTION...(ethylatedaminocarbocyclic)methane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The...)methane (PMN P-02-423) is subject to reporting under this section for the significant new uses described...
[Environmental pollution by products of wear and tear automobile-road complex].
Levanchuk, A V
2014-01-01
North-West State Medical University named after I.I. Mechnikov, Saint Petersburg, Russian Federation, 191015. There is supposed the method for the assessment of amounts of pollutants released into the environment during the operational wear of tyre treads, brake system of cars and the road pavement. There are presented results of chemical analysis of residues of combustion. The necessity of control of products of work wear of automobile-road complex has been substantiated.
NASA Astrophysics Data System (ADS)
Giorgino, Toni
2014-03-01
PLUMED-GUI is an interactive environment to develop and test complex PLUMED scripts within the Visual Molecular Dynamics (VMD) environment. Computational biophysicists can take advantage of both PLUMED’s rich syntax to define collective variables (CVs) and VMD’s chemically-aware atom selection language, while working within a natural point-and-click interface. Pre-defined templates and syntax mnemonics facilitate the definition of well-known reaction coordinates. Complex CVs, e.g. involving reference snapshots used for RMSD or native contacts calculations, can be built through dialogs that provide a synoptic view of the available options. Scripts can be either exported for use in simulation programs, or evaluated on the currently loaded molecular trajectories. Script development takes place without leaving VMD, thus enabling an incremental try-see-modify development model for molecular metrics.
Khan, Nazmul Abedin; Jhung, Sung Hwa
2017-03-05
Efficient removal and separation of chemicals from the environment has become a vital issue from a biological and environmental point of view. Currently, adsorptive removal/separation is one of the most promising approaches for cleaning purposes. Selective adsorption/removal of various sulfur- and nitrogen-containing compounds, olefins, and π-electron-rich gases via π-complex formation between an adsorbent and adsorbate molecules is very competitive. Porous metal-organic framework (MOF) materials are very promising in the adsorption/separation of various liquids and gases owing to their distinct characteristics. This review summarizes the literature on the adsorptive removal/separation of various π-electron-rich compounds mainly from fuel and gases using MOF materials containing metal ions that are active for π-complexation. Details of the π-complexation, including mechanism, pros/cons, applications, and efficient ways to form the complex, are discussed systematically. For in-depth understanding, molecular orbital calculations regarding charge transfer between the π-complexing species are also explained in a separate section. From this review, readers will gain an understanding of π-complexation for adsorption and separation, especially with MOFs, to develop new insight for future research. Copyright © 2016 Elsevier B.V. All rights reserved.
Ng, Carla A.; von Goetz, Natalie
2016-01-01
Background: Food is a major pathway for human exposure to hazardous chemicals. The modern food system is becoming increasingly complex and globalized, but models for food-borne exposure typically assume locally derived diets or use concentrations directly measured in foods without accounting for food origin. Such approaches may not reflect actual chemical intakes because concentrations depend on food origin, and representative analysis is seldom available. Processing, packaging, storage, and transportation also impart different chemicals to food and are not yet adequately addressed. Thus, the link between environmental emissions and realistic human exposure is effectively broken. Objectives: We discuss the need for a fully integrated treatment of the modern industrialized food system, and we propose strategies for using existing models and relevant supporting data sources to track chemicals during production, processing, packaging, storage, and transport. Discussion: Fate and bioaccumulation models describe how chemicals distribute in the environment and accumulate through local food webs. Human exposure models can use concentrations in food to determine body burdens based on individual or population characteristics. New models now include the impacts of processing and packaging but are far from comprehensive. We propose to close the gap between emissions and exposure by utilizing a wider variety of models and data sources, including global food trade data, processing, and packaging models. Conclusions: A comprehensive approach that takes into account the complexity of the modern global food system is essential to enable better prediction of human exposure to chemicals in food, sound risk assessments, and more focused risk abatement strategies. Citation: Ng CA, von Goetz N. 2017. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect 125:1–7; http://dx.doi.org/10.1289/EHP168 PMID:27384039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli
The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less
Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli; ...
2017-10-31
The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less
Laboratory Needs for Interstellar Ice Studies
NASA Astrophysics Data System (ADS)
Boogert, Abraham C. A.
2012-05-01
A large fraction of the molecules in dense interstellar and circumstellar environments is stored in icy grain mantles. The mantles are formed by a complex interplay between chemical and physical processes. Key questions on the accretion and desorption processes and the chemistry on the grain surfaces and within the icy mantles can only be answered by laboratory experiments. Recent infrared (2-30 micron) spectroscopic surveys of large samples of Young Stellar Objects (YSOs) and background stars tracing quiescent cloud material have shown that the ice band profiles and depths vary considerably as a function of environment. Using laboratory spectra in the identification process, it is clear that a rather complex mixture of simple species (CH3OH, CO2, H2O, CO) exists even in the quiescent cloud phase. Variations of the local physical conditions (CO freeze out) and time scales (CH3OH formation) appear to be key factors in the observed variations. Sublimation and thermal processing dominate as YSOs heat their environments. The identification of several ice absorption features is still disputed. I will outline laboratory work (e.g., on salts, PAHs, and aliphatic hydrocarbons) needed to further constrain the ice band identification as well as the thermal and chemical history of the carriers. Such experiments will also be essential to interpret future high spectral resolution SOFIA and JWST observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan
It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
Complex wet-environments in electronic-structure calculations
NASA Astrophysics Data System (ADS)
Fisicaro, Giuseppe; Genovese, Luigi; Andreussi, Oliviero; Marzari, Nicola; Goedecker, Stefan
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of an applied electrochemical potentials, including complex electrostatic screening coming from the solvent. In the present work we present a solver to handle both the Generalized Poisson and the Poisson-Boltzmann equation. A preconditioned conjugate gradient (PCG) method has been implemented for the Generalized Poisson and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations. On the other hand, a self-consistent procedure enables us to solve the Poisson-Boltzmann problem. The algorithms take advantage of a preconditioning procedure based on the BigDFT Poisson solver for the standard Poisson equation. They exhibit very high accuracy and parallel efficiency, and allow different boundary conditions, including surfaces. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and it will be released as a independent program, suitable for integration in other codes. We present test calculations for large proteins to demonstrate efficiency and performances. This work was done within the PASC and NCCR MARVEL projects. Computer resources were provided by the Swiss National Supercomputing Centre (CSCS) under Project ID s499. LG acknowledges also support from the EXTMOS EU project.
Molecular recognition in protein modification with rhodium metallopeptides
Ball, Zachary T.
2015-01-01
Chemical manipulation of natural, unengineered proteins is a daunting challenge which tests the limits of reaction design. By combining transition-metal or other catalysts with molecular recognition ideas, it is possible to achieve site-selective protein reactivity without the need for engineered recognition sequences or reactive sites. Some recent examples in this area have used ruthenium photocatalysis, pyridine organocatalysis, and rhodium(II) metallocarbene catalysis, indicating that the fundamental ideas provide opportunities for using diverse reactivity on complex protein substrates and in complex cell-like environments. PMID:25588960
Chatterjee, Pabitra B.; Goncharov-Zapata, Olga; Quinn, Laurence L.; Hou, Guangjin; Hamaed, Hiyam; Schurko, Robert W.; Polenova, Tatyana; Crans, Debbie C.
2012-01-01
51V solid-state NMR (SSNMR) studies of a series of non-innocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that 51V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic 51V NMR chemical shifts cover a wide range from −200 ppm to 400 ppm in solution and from −219 to 530 ppm in the solid state. A linear correlation of 51V NMR isotropic solution and solid-state chemical shifts of complexes containing non-innocent ligands is observed. These experimental results provide the information needed for the application of 51V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems, and in particular those containing non-innocent ligands and that have chemical shifts outside the populated range of −300 ppm to −700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from 51V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (DFT) calculations of NMR parameters for [VO(hshed)(Cat)] yield 51V CSA tensor in reasonable agreement with the experimental results, but surprisingly, the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because the 51V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox active complexes that exhibit similar coordination chemistry as the vanadium catechol complexes. PMID:21842875
2004-11-01
variation in ventilation rates over time and the distribution of ventilation air within a building, and to estimate the impact of envelope air ... tightening efforts on infiltration rates. • It may be used to determine the indoor air quality performance of a building before construction, and to
The aim of this overall project was to explore the utility of ?‘omics’ approaches in monitoring aquatic environments where complex, often unknown, stressors make chemical-specific risk assessment untenable. This specific component of the effort examined changes in the fathead min...
Attributing nitrogen (N) in the environment to emissions from agricultural management practices is difficult because of the complex and inter-related chemical and biological reactions associated with N and its cascading effects across land, air and water. Such analyses are criti...
Attributing nitrogen (N) in the environment to emissions from agricultural management practices is difficult because of the complex and inter-related chemical and biological reactions associated with N and its cascading effects across land, air and water. Such analyses are critic...
Effect-directed analysis supporting monitoring of aquatic ...
Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required,and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, includingtheir strengths andweaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies onfractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determiningthe chemical structures causing effects is analytical toxi
Studying light-harvesting models with superconducting circuits.
Potočnik, Anton; Bargerbos, Arno; Schröder, Florian A Y N; Khan, Saeed A; Collodo, Michele C; Gasparinetti, Simone; Salathé, Yves; Creatore, Celestino; Eichler, Christopher; Türeci, Hakan E; Chin, Alex W; Wallraff, Andreas
2018-03-02
The process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a technique for studying photosynthetic models based on superconducting quantum circuits, which complements existing experimental, theoretical, and computational approaches. We demonstrate a high degree of freedom in design and experimental control of our approach based on a simplified three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 10 5 . We show that the excitation transport between quantum-coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Coffman, Brekke E.; Coffman, Brekke E.; Curran, Jerome P.; Kolody, Mark R.; Whitten, Mary; Perisich, Steven;
2009-01-01
When space vehicles are launched, extreme heat, exhaust, and chemicals are produced and these form a very aggressive exposure environment at the launch complex. The facilities in the launch complex are exposed to this aggressive environment. The vehicle exhaust directly impacts the flame deflectors, making these systems very susceptible to high wear and potential failure. A project was formulated to develop or identify new materials or systems such that the wear and/or damage to the flame deflector system, as a result of the severe environmental exposure conditions during launches, can be mitigated. This report provides a survey of potential protective coatings for the refractory concrete lining on the steel base structure on the flame deflectors at Kennedy Space Center (KSC).
NASA Astrophysics Data System (ADS)
Jaspers, Maarten; Vaessen, Sarah L.; van Schayik, Pim; Voerman, Dion; Rowan, Alan E.; Kouwer, Paul H. J.
2017-05-01
The mechanical properties of cells and the extracellular environment they reside in are governed by a complex interplay of biopolymers. These biopolymers, which possess a wide range of stiffnesses, self-assemble into fibrous composite networks such as the cytoskeleton and extracellular matrix. They interact with each other both physically and chemically to create a highly responsive and adaptive mechanical environment that stiffens when stressed or strained. Here we show that hybrid networks of a synthetic mimic of biological networks and either stiff, flexible and semi-flexible components, even very low concentrations of these added components, strongly affect the network stiffness and/or its strain-responsive character. The stiffness (persistence length) of the second network, its concentration and the interaction between the components are all parameters that can be used to tune the mechanics of the hybrids. The equivalence of these hybrids with biological composites is striking.
Systematic approaches to comprehensive analyses of natural organic matter
Leenheer, Jerry A.
2009-01-01
The more that is learned of the chemistry of aquatic natural organic matter (NOM) the greater is the scientific appreciation of the vast complexity of this subject. This complexity is due not only to a multiplicity of precursor molecules in any environment but to their associations with each other and with other components of local environments such as clays, mineral acids and dissolved metals. In addition, this complex system is subject to constant change owing to environmental variables and microbial action. Thus, there is a good argument that no two NOM samples are exactly the same even from the same source at nearly the same time. When ubiquity of occurrence, reaction with water treatment chemicals, and subsequent human exposure are added to the list of NOM issues, one can understand the appeal that this subject holds for a wide variety of environmental scientists.
Pfeiffer, Christian; Rehbock, Christoph; Hühn, Dominik; Carrillo-Carrion, Carolina; de Aberasturi, Dorleta Jimenez; Merk, Vivian; Barcikowski, Stephan; Parak, Wolfgang J.
2014-01-01
The physico-chemical properties of colloidal nanoparticles (NPs) are influenced by their local environment, as, in turn, the local environment influences the physico-chemical properties of the NPs. In other words, the local environment around NPs has a profound impact on the NPs, and it is different from bulk due to interaction with the NP surface. So far, this important effect has not been addressed in a comprehensive way in the literature. The vicinity of NPs can be sensitively influenced by local ions and ligands, with effects already occurring at extremely low concentrations. NPs in the Hückel regime are more sensitive to fluctuations in the ionic environment, because of a larger Debye length. The local ion concentration hereby affects the colloidal stability of the NPs, as it is different from bulk owing to Debye Hückel screening caused by the charge of the NPs. This can have subtle effects, now caused by the environment to the performance of the NP, such as for example a buffering effect caused by surface reaction on ultrapure ligand-free nanogold, a size quenching effect in the presence of specific ions and a significant impact on fluorophore-labelled NPs acting as ion sensors. Thus, the aim of this review is to clarify and give an unifying view of the complex interplay between the NP's surface with their nanoenvironment. PMID:24759541
NASA Astrophysics Data System (ADS)
Calcutt, Hannah
2015-04-01
Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.
Screening level risk assessment model for chemical fate and effects in the environment.
Arnot, Jon A; Mackay, Don; Webster, Eva; Southwood, Jeanette M
2006-04-01
A screening level risk assessment model is developed and described to assess and prioritize chemicals by estimating environmental fate and transport, bioaccumulation, and exposure to humans and wildlife for a unit emission rate. The most sensitive risk endpoint is identified and a critical emission rate is then calculated as a result of that endpoint being reached. Finally, this estimated critical emission rate is compared with the estimated actual emission rate as a risk assessment factor. This "back-tracking" process avoids the use of highly uncertain emission rate data as model input. The application of the model is demonstrated in detail for three diverse chemicals and in less detail for a group of 70 chemicals drawn from the Canadian Domestic Substances List. The simple Level II and the more complex Level III fate calculations are used to "bin" substances into categories of similar probable risk. The essential role of the model is to synthesize information on chemical and environmental properties within a consistent mass balance framework to yield an overall estimate of screening level risk with respect to the defined endpoint. The approach may be useful to identify and prioritize those chemicals of commerce that are of greatest potential concern and require more comprehensive modeling and monitoring evaluations in actual regional environments and food webs.
Identifying new persistent and bioaccumulative organics among chemicals in commerce.
Howard, Philip H; Muir, Derek C G
2010-04-01
The goal of this study was to identify commercial chemicals that might be persistent and bioaccumulative (P&B) and that were not being considered in current Great Lakes, North American, and Arctic contaminant measurement programs. We combined the Canadian Domestic Substance List (DSL), a list of 3059 substances of "unknown or variable composition complex reaction products and biological materials" (UVCBs), and the U.S. Environmental Protection Agency (U.S. EPA) Toxic Substances Control Act (TSCA) Inventory Update Rule (IUR) database for years 1986, 1990, 1994, 1998, 2002, and 2006 yielding a database of 22263 commercial chemicals. From that list, 610 chemicals were identified by estimates from U.S EPA EPISuite software and using expert judgment. This study has yielded some interesting and probable P&B chemicals that should be considered for further study. Recent studies, following up our initial reports and presentations on this work, have confirmed the presence of many of these chemicals in the environment.
NASA Astrophysics Data System (ADS)
Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na
2016-02-01
Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.
Climate-based archetypes for the environmental fate assessment of chemicals.
Ciuffo, Biagio; Sala, Serenella
2013-11-15
Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits that influence their spatial variability. This hypothesis was tested by comparing the variability of the output of MAPPE for four different climatic zones on four different continents for four different chemicals (which represent different combinations of physical and chemical properties). Results showed the high suitability of climate-based archetypes in assessing the impacts of chemicals released in air. However, further research work is still necessary to test these findings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamics and thermodynamics of open chemical networks
NASA Astrophysics Data System (ADS)
Esposito, Massimiliano
Open chemical networks (OCN) are large sets of coupled chemical reactions where some of the species are chemostated (i.e. continuously restored from the environment). Cell metabolism is a notable example of OCN. Two results will be presented. First, dissipation in OCN operating in nonequilibrium steady-states strongly depends on the network topology (algebraic properties of the stoichiometric matrix). An application to oligosaccharides exchange dynamics performed by so-called D-enzymes will be provided. Second, at low concentration the dissipation of OCN is in general inaccurately predicted by deterministic dynamics (i.e. nonlinear rate equations for the species concentrations). In this case a description in terms of the chemical master equation is necessary. A notable exception is provided by so-called deficiency zero networks, i.e. chemical networks with no hidden cycles present in the graph of reactant complexes.
The comparison of rapid bioassays for the assessment of urban groundwater quality.
Dewhurst, R E; Wheeler, J R; Chummun, K S; Mather, J D; Callaghan, A; Crane, M
2002-05-01
Groundwater is a complex mixture of chemicals that is naturally variable. Current legislation in the UK requires that groundwater quality and the degree of contamination are assessed using chemical methods. Such methods do not consider the synergistic or antagonistic interactions that may affect the bioavailability and toxicity of pollutants in the environment. Bioassays are a method for assessing the toxic impact of whole groundwater samples on the environment. Three rapid bioassays, Eclox, Microtox and ToxAlert, and a Daphnia magna 48-h immobilisation test were used to assess groundwater quality from sites with a wide range of historical uses. Eclox responses indicated that the test was very sensitive to changes in groundwater chemistry; 77% of the results had a percentage inhibition greater than 90%. ToxAlert, although suitable for monitoring changes in water quality under laboratory conditions, produced highly variable results due to fluctuations in temperature and the chemical composition of the samples. Microtox produced replicable results that correlated with those from D. magna tests.
Tait, Zachary S; Thompson, Megan; Stubbins, Aron
2015-07-01
The availability of in situ spectrophotometers, such as the S::CAN spectro::lyser, has expanded the possibilities for high-frequency water quality data collection. However, biological and chemical fouling can degrade the performance of in situ spectrophotometers, especially in saline environments with rapid flow rates. A complex freshwater washing system has been previously designed to reduce chemical fouling for the S::CAN spectro::lyser spectrophotometer. In the current study, we present a simpler, cheaper alternative: the attachment of a sacrificial zinc anode. Results are presented detailing the S::CAN spectro::lyser performance with and without the addition of the sacrificial anode. Attachment of the zinc anode provided efficient corrosion protection during 2-wk deployments in a highly dynamic (average tidal range, 2.5 m) saline tidal saltmarsh creek at Groves Creek, Skidaway Institute of Oceanography, Savannah, GA. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape.
Ferreon, Allan Chris M; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A
2012-10-30
Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.
Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape
Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Deniz, Ashok A.
2012-01-01
Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson’s disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 2∶1 [urea]∶[TMAO] ratio has a net neutral effect on the protein’s dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments. PMID:22826265
Feasibility analysis of EDXRF method to detect heavy metal pollution in ecological environment
NASA Astrophysics Data System (ADS)
Hao, Zhixu; Qin, Xulei
2018-02-01
The change of heavy metal content in water environment, soil and plant can reflect the change of heavy metal pollution in ecological environment, and it is important to monitor the trend of heavy metal pollution in eco-environment by using water environment, soil and heavy metal content in plant. However, the content of heavy metals in nature is very low, the background elements of water environment, soil and plant samples are complex, and there are many interfering factors in the EDXRF system that will affect the spectral analysis results and reduce the detection accuracy. Through the contrastive analysis of several heavy metal elements detection methods, it is concluded that the EDXRF method is superior to other chemical methods in testing accuracy and method feasibility when the heavy metal pollution in soil is tested in ecological environment.
A Quasi-Optical Method for Measuring the Complex Permittivity of Materials.
1984-09-01
structural mechanics, flight dynamics; high-temperature thermomechanica, gas kinetics and radiation; research in environmental chemistry and...specific chemical reactions and radia- tion transport in rocket pluses, applied laser spectroscopy, laser chemistry, batery electrochemistry, space...corrosion; evaluation of materials in space environment ; materials performance In space transportation systems; anal- ysis of system vulnerability and
ERIC Educational Resources Information Center
Evans, Roy
Emphasizing that for any known teratogen no safe dosage level exists, this case-illustrated review identifies the bases for current concern about the pollution of the environment, reflects on the promise and complexities of the emerging disciplines of behavioral toxicology and behavioral teratology, and describes existing evidence of teratogenic…
Complex chemical cycling of mercury in aquatic ecosystems means that tracing the linkage between anthropogenic and natural loadings of mercury to watersheds and water bodies and associated concentrations in the environment are difficult to establish without the assistance of nume...
Advance Planning Briefing for Industry. Technology Requirements Briefings
2009-02-17
procedure drills through complex multiplayer interactions representative of a motorcade under heavy attack. The tool shall provide a first-person...Integrated Munitions Effect Assessment IMI Interactive Multimedia Instruction IP Internet Protocol IPE Intelligence Preparation of the Environment IR...CTTSO Programs and Mission Areas/Subgroups 13 Requirement Descriptions Blast Effects and Mitigation (BX) 16 Chemical, Biological, Radiological, and
Code of Federal Regulations, 2013 CFR
2013-07-01
... Substances and Their Threshold Planning Quantities B Appendix B to Part 355 Protection of Environment... Substances and Their Threshold Planning Quantities [CAS Number Order] CAS No. Chemical name Notes Reportable quantity *(pounds) Threshold planning quantity(pounds) 0 Organorhodium Complex (PMN-82-147) 10 10/10,000 50...
NASA Astrophysics Data System (ADS)
Polyakov, Igor V.; Khrenova, Maria G.; Moskovsky, Alexander A.; Shabanov, Boris M.; Nemukhin, Alexander V.
2018-04-01
Modeling electronic excitation of bacteriochlorophyll (BChl) molecules in light-harvesting (LH) antennae from photosynthetic centers presents a challenge for the quantum theory. We report on a quantum chemical study of the ring of 32 BChl molecules from the bacterial core complex LH1-RC. Diagonal and off-diagonal elements of the excitonic Hamiltonian matrices are estimated in quantum chemical calculations of relevant fragments using the TD-DFT and CIS approaches. The deviation of the computed excitation energy of this BChl system from the experimental data related to the Qy band maximum of this LH1-RC complex is about 0.2 eV. We demonstrate that corrections due to improvement in modeling of an individual BChl molecule and due to contributions from the protein environment are in the range of the obtained discrepancy between theory and experiment. Differences between results of the excitonic model and direct quantum chemical calculations of BChl aggregates fall in the same range.
Simulating the control of molecular reactions via modulated light fields: from gas phase to solution
NASA Astrophysics Data System (ADS)
Thallmair, Sebastian; Keefer, Daniel; Rott, Florian; de Vivie-Riedle, Regina
2017-04-01
Over the past few years quantum control has proven to be very successful in steering molecular processes. By combining theory with experiment, even highly complex control aims were realized in the gas phase. In this topical review, we illustrate the past achievements on several examples in the molecular context. The next step for the quantum control of chemical processes is to translate the fruitful interplay between theory and experiment to the condensed phase and thus to the regime where chemical synthesis can be supported. On the theory side, increased efforts to include solvent effects in quantum control simulations were made recently. We discuss two major concepts, namely an implicit description of the environment via the density matrix algorithm and an explicit inclusion of solvent molecules. By application to chemical reactions, both concepts conclude that despite environmental perturbations leading to more complex control tasks, efficient quantum control in the condensed phase is still feasible.
Scott Andersson, Asa; Tysklind, Mats; Fängmark, Ingrid
2007-08-17
The environment consists of a variety of different compartments and processes that act together in a complex system that complicate the environmental risk assessment after a chemical accident. The Environment-Accident Index (EAI) is an example of a tool based on a strategy to join the properties of a chemical with site-specific properties to facilitate this assessment and to be used in the planning process. In the development of the EAI it is necessary to make an unbiased judgement of relevant variables to include in the formula and to estimate their relative importance. The development of EAI has so far included the assimilation of chemical accidents, selection of a representative set of chemical accidents, and response values (representing effects in the environment after a chemical accident) have been developed by means of an expert panel. The developed responses were then related to the chemical and site-specific properties, through a mathematical model based on multivariate modelling (PLS), to create an improved EAI model. This resulted in EAI(new), a PLS based EAI model connected to a new classification scale. The advantages of EAI(new) compared to the old EAI (EAI(old)) is that it can be calculated without the use of tables, it can estimate the effects for all included responses and make a rough classification of chemical accidents according to the new classification scale. Finally EAI(new) is a more stable model than EAI(old), built on a valid base of accident scenarios which makes it more reliable to use for a variety of chemicals and situations as it covers a broader spectra of accident scenarios. EAI(new) can be expressed as a regression model to facilitate the calculation of the index for persons that do not have access to PLS. Future work can be; an external validation of EAI(new); to complete the formula structure; to adjust the classification scale; and to make a real life evaluation of EAI(new).
Studnik, H; Liebsch, S; Forlani, G; Wieczorek, D; Kafarski, P; Lipok, J
2015-01-25
Growing concerns about the quality of the environment led to the introduction of complex system of safety assessment of synthetically manufactured and commonly applied chemicals. Sometimes, however, our knowledge of consequences that result from the usage of these substances, appears far later, than at the beginning of their application. Such situation is observed in the case of aminopolyphosphonates being an important subgroup of organophosphorus compounds. The increasing industrial and household applications, led to introduce thousand tons of polyphosphonates every year into the environment. These substances are difficult to determine in environmental samples because of lack of appropriate analytical procedures. On the other hand they are suspected to influence the ecological equilibrium in aquatic ecosystems. Thus, studies on their fate in the environment, especially on the routes of their degradation seem to be of interest to both industrial and environmental chemistry. Wherefore this review contains recent available data on the impact of aminophosphonates on environment, microbial degradation methods and evaluation of the possibility for using microorganisms to remove aminophosphonates from wastewater. Copyright © 2014 Elsevier B.V. All rights reserved.
Active control of complex, multicomponent self-assembly processes
NASA Astrophysics Data System (ADS)
Schulman, Rebecca
The kinetics of many complex biological self-assembly processes such as cytoskeletal assembly are precisely controlled by cells. Spatiotemporal control over rates of filament nucleation, growth and disassembly determine how self-assembly occurs and how the assembled form changes over time. These reaction rates can be manipulated by changing the concentrations of the components needed for assembly by activating or deactivating them. I will describe how we can use these principles to design driven self-assembly processes in which we assemble and disassemble multiple types of components to create micron-scale networks of semiflexible filaments assembled from DNA. The same set of primitive components can be assembled into many different, structures depending on the concentrations of different components and how designed, DNA-based chemical reaction networks manipulate these concentrations over time. These chemical reaction networks can in turn interpret environmental stimuli to direct complex, multistage response. Such a system is a laboratory for understanding complex active material behaviors, such as metamorphosis, self-healing or adaptation to the environment that are ubiquitous in biological systems but difficult to quantitatively characterize or engineer.
Yarmush, Martin L.; King, Kevin R.
2011-01-01
Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment. PMID:19413510
Isolation of integrin-based adhesion complexes.
Jones, Matthew C; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Robertson, Joseph; Paul, Nikki R; Ng, Daniel H J; Askari, Janet A; Humphries, Martin J
2015-03-02
The integration of cells with their extracellular environment is facilitated by cell surface adhesion receptors, such as integrins, which play important roles in both normal development and the onset of pathologies. Engagement of integrins with their ligands in the extracellular matrix, or counter-receptors on other cells, initiates the intracellular assembly of a wide variety of proteins into adhesion complexes such as focal contacts, focal adhesions, and fibrillar adhesions. The proteins recruited to these complexes mediate bidirectional signaling across the plasma membrane, and, as such, help to coordinate and/or modulate the multitude of physical and chemical signals to which the cell is subjected. The protocols in this unit describe two approaches for the isolation or enrichment of proteins contained within integrin-associated adhesion complexes, together with their local plasma membrane/cytosolic environments, from cells in culture. In the first protocol, integrin-associated adhesion structures are affinity isolated using microbeads coated with extracellular ligands or antibodies. The second protocol describes the isolation of ventral membrane preparations that are enriched for adhesion complex structures. The protocols permit the determination of adhesion complex components via subsequent downstream analysis by western blotting or mass spectrometry. Copyright © 2015 John Wiley & Sons, Inc.
Igbinosa, Etinosa O.; Odjadjare, Emmanuel E.; Chigor, Vincent N.; Igbinosa, Isoken H.; Emoghene, Alexander O.; Ekhaise, Fredrick O.; Igiehon, Nicholas O.; Idemudia, Omoruyi G.
2013-01-01
Chlorophenol compounds and their derivatives are ubiquitous contaminants in the environment. These compounds are used as intermediates in manufacturing agricultural chemicals, pharmaceuticals, biocides, and dyes. Chlorophenols gets into the environment from a variety of sources such as industrial waste, pesticides, and insecticides, or by degradation of complex chlorinated hydrocarbons. Thermal and chemical degradation of chlorophenols leads to the formation of harmful substances which constitute public health problems. These compounds may cause histopathological alterations, genotoxicity, mutagenicity, and carcinogenicity amongst other abnormalities in humans and animals. Furthermore, the recalcitrant nature of chlorophenolic compounds to degradation constitutes an environmental nuisance, and a good understanding of the fate and transport of these compounds and their derivatives is needed for a clearer view of the associated risks and mechanisms of pathogenicity to humans and animals. This review looks at chlorophenols and their derivatives, explores current research on their effects on public health, and proffers measures for mitigation. PMID:23690744
GAS-611 firefly in zero gravity
NASA Technical Reports Server (NTRS)
Williams, Tony
1988-01-01
The Get Away Special 611 (GAS-611) project will carry a small, self-contained biological experiment into a microgravity environment for a period of 120 hours. The payload will be a colony of Lampyridae (fireflies). The ability of this beetle to produce light with an efficiency of 98 pct will be evaluated in the micro-G environment. The chemical process that occurs could be assisted by the earth's gravitational pull and the very complex tracheae system found within this species of beetle. The effects of microgravity on mating and beetle larvae will also be studied.
Classification of light sources and their interaction with active and passive environments
NASA Astrophysics Data System (ADS)
El-Dardiry, Ramy G. S.; Faez, Sanli; Lagendijk, Ad
2011-03-01
Emission from a molecular light source depends on its optical and chemical environment. This dependence is different for various sources. We present a general classification in terms of constant-amplitude and constant-power sources. Using this classification, we have described the response to both changes in the local density of states and stimulated emission. The unforeseen consequences of this classification are illustrated for photonic studies by random laser experiments and are in good agreement with our correspondingly developed theory. Our results require a revision of studies on sources in complex media.
Searching for life in the Universe: unconventional methods for an unconventional problem.
Nealson, K H; Tsapin, A; Storrie-Lombardi, M
2002-12-01
The search for life, on and off our planet, can be done by conventional methods with which we are all familiar. These methods are sensitive and specific, and are often capable of detecting even single cells. However, if the search broadens to include life that may be different (even subtly different) in composition, the methods and even the approach must be altered. Here we discuss the development of what we call non-earthcentric life detection--detecting life with methods that could detect life no matter what its form or composition. To develop these methods, we simply ask, can we define life in terms of its general properties and particularly those that can be measured and quantified? Taking such an approach we can search for life using physics and chemistry to ask questions about structure, chemical composition, thermodynamics, and kinetics. Structural complexity can be searched for using computer algorithms that recognize complex structures. Once identified, these structures can be examined for a variety of chemical traits, including elemental composition, chirality, and complex chemistry. A second approach involves defining our environment in terms of energy sources (i.e., reductants), and oxidants (e.g. what is available to eat and breathe), and then looking for areas in which such phenomena are inexplicably out of chemical equilibrium. These disequilibria, when found, can then be examined in detail for the presence of the structural and chemical complexity that presumably characterizes any living systems. By this approach, we move the search for life to one that should facilitate the detection of any earthly life it encountered, as well as any non-conventional life forms that have structure, complex chemistry, and live via some form of redox chemistry.
Computer-aided solvent selection for multiple scenarios operation of limited-known properties solute
NASA Astrophysics Data System (ADS)
Anantpinijwatna, Amata
2017-12-01
Solvents have been applied for both production and separation of the complex chemical substance such as the pyrrolidine-2-carbonyl chloride (C5H8ClNO). Since the properties of the target substance itself are largely unknown, the selection of the solvent is limited by experiment only. However, the reaction carried out in conventional solvents are either afforded low yields or obtained slow reaction rates. Moreover, the solvents are also highly toxic and environmental unfriendly. Alternative solvents are required to enhance the production and lessen the harmful effect toward both organism and environment. A costly, time-consuming, and laborious experiments are required for acquiring a better solvent suite for production and separation of these complex compounds; whereas, a limited improvement can be obtained. On the other hand, the combination of the state-of-the-art thermodynamic models can provide faster and more robust solutions to this solvent selection problem. In this work, a framework for solvents selection in complex chemical production process is presented. The framework combines a group-contribution thermodynamic model and a segment activity coefficient model for predicting chemical properties and solubilities of the target chemical in newly formulated solvents. A guideline for solvent selection is also included. The potential of the selected solvents is then analysed and verified. The improvement toward the production yield, production rate, and product separation is then discussed.
Temporal variability in detritus resource maintains diversity of bacterial communities
NASA Astrophysics Data System (ADS)
Hiltunen, Teppo; Laakso, Jouni; Kaitala, Veijo; Suomalainen, Lotta-Riina; Pekkonen, Minna
2008-05-01
Competition theory generally predicts that diversity is maintained by temporal environmental fluctuations. One of the many suggested mechanisms for maintaining diversity in fluctuating environments is the gleaner-opportunist trade-off, whereby gleaner species have low threshold resource levels and low maximum growth rates in high resource concentration while opportunist species show opposite characteristics. We measured the growth rates of eight heterotrophic aquatic bacteria under different concentrations of chemically complex plant detritus resource. The growth rates revealed gleaner-opportunist trade-offs. The role of environmental variability in maintaining diversity was tested in a 28-day experiment with three different resource fluctuation regimes imposed on two four-species bacterial communities in microcosms. We recorded population densities with serial dilution plating and total biomass as turbidity. Changes in resource availability were measured from filter-sterilised medium by re-introducing the consumer species and recording short-term growth rates. The type of environmental variation had no effect on resource availability, which declined slowly during the experiment and differed in level between the communities. However, the slowly fluctuating environment had the highest Shannon diversity index, biomass, and coefficient of variation of biomass in both communities. We did not find a clear link between the gleaner-opportunist trade-off and diversity in fluctuating environments. Nevertheless, our results do not exclude this explanation and support the general view that temporal environmental variation maintains species diversity also in communities feeding chemically complex resource.
X-ray absorption spectral studies of copper (II) mixed ligand complexes
NASA Astrophysics Data System (ADS)
Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2014-09-01
X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.
Electrochemical Probing through a Redox Capacitor To Acquire Chemical Information on Biothiols
2016-01-01
The acquisition of chemical information is a critical need for medical diagnostics, food/environmental monitoring, and national security. Here, we report an electrochemical information processing approach that integrates (i) complex electrical inputs/outputs, (ii) mediators to transduce the electrical I/O into redox signals that can actively probe the chemical environment, and (iii) a redox capacitor that manipulates signals for information extraction. We demonstrate the capabilities of this chemical information processing strategy using biothiols because of the emerging importance of these molecules in medicine and because their distinct chemical properties allow evaluation of hypothesis-driven information probing. We show that input sequences can be tailored to probe for chemical information both qualitatively (step inputs probe for thiol-specific signatures) and quantitatively. Specifically, we observed picomolar limits of detection and linear responses to concentrations over 5 orders of magnitude (1 pM–0.1 μM). This approach allows the capabilities of signal processing to be extended for rapid, robust, and on-site analysis of chemical information. PMID:27385047
Electrochemical Probing through a Redox Capacitor To Acquire Chemical Information on Biothiols.
Liu, Zhengchun; Liu, Yi; Kim, Eunkyoung; Bentley, William E; Payne, Gregory F
2016-07-19
The acquisition of chemical information is a critical need for medical diagnostics, food/environmental monitoring, and national security. Here, we report an electrochemical information processing approach that integrates (i) complex electrical inputs/outputs, (ii) mediators to transduce the electrical I/O into redox signals that can actively probe the chemical environment, and (iii) a redox capacitor that manipulates signals for information extraction. We demonstrate the capabilities of this chemical information processing strategy using biothiols because of the emerging importance of these molecules in medicine and because their distinct chemical properties allow evaluation of hypothesis-driven information probing. We show that input sequences can be tailored to probe for chemical information both qualitatively (step inputs probe for thiol-specific signatures) and quantitatively. Specifically, we observed picomolar limits of detection and linear responses to concentrations over 5 orders of magnitude (1 pM-0.1 μM). This approach allows the capabilities of signal processing to be extended for rapid, robust, and on-site analysis of chemical information.
Kondratiuk, Mykola; Blagaia, Anna; Pelo, Ihor
2018-01-01
Introduction: The quality of the air environment significantly affects the health of the population. Chemical plant protection products in the spring and summer time may be the main pollutants of the air environment in rural areas. Chemical plant protection products are dangerous substances of anthropogenic origin. If applying pesticides in high concentrations, the risk of poisoning by active ingredients of pesticide preparations in workers directly contacting with it increases. The aim: Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides was the aim of the work. Materials and methods: Active ingredients of the studied combined fungicides, samples of air, and swabs from workers' skin and stripes from overalls were materials of the research. Methods of full-scale in-field hygienic experiment, gas-liquid chromatography, high-performance liquid chromatography, as well as statistical and bibliographic methods were used in the research. Results and conclusions: Active ingredients of the studied combined fungicides were not detected in the working zone air and atmospheric air at the levels exceeding the limits of its detection by appropriate chromatography methods. Findings confirmed the air environment safety for agricultural workers and rural population if studied combined fungicides are applied following the hygienically approved suggested application rates and in accordance of good agricultural practice rules. However the possible complex risk for workers after certain studied fungicides application may be higher than acceptable due to the elevated values for dermal effects. The complex risk was higher than acceptable in еру case of aerial spraying of both studied fungicides, meanwhile only one combination of active ingredients revealed possible risk for workers applying fungicides by rod method of cereal spiked crops treatment.
[The workplace injury trends in the petrochemical industry: from data analysis to risk management].
Campo, Giuseppe; Martini, Benedetta
2013-01-01
The most recent INAIL data show that, in 2009-2011, the accident frequency rate and the severity rate of workplace injuries in the chemical industry are lower than for the total non-agricultural workforce. The chemical industry, primarily because of the complex and hazardous work processes, requires an appropriate system for assessing and monitoring specific risks.The implementation of Responsible Care, a risk management system specific for the chemical industry, in 1984, has represented a historical step in the process of critical awareness of risk management by the chemical companies. Responsible Care is a risk management system specifically designed on the risk profiles of this type of enterprise, which integrates safety, health and environment. A risk management system, suitable for the needs of a chemical company, should extend its coverage area, beyond the responsible management of products throughout the entire production cycle, to the issues of corporate responsibility.
NASA Technical Reports Server (NTRS)
Smith, H. E.
1990-01-01
Present software development accomplishments are indicative of the emerging interest in and increasing efforts to provide risk assessment backbone tools in the manned spacecraft engineering community. There are indications that similar efforts are underway in the chemical processes industry and are probably being planned for other high risk ground base environments. It appears that complex flight systems intended for extended manned planetary exploration will drive this technology.
Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy
2018-01-01
Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958
Haverkamp, Alexander; Hansson, Bill S.; Knaden, Markus
2018-01-01
Insects, including those which provide vital ecosystems services as well as those which are devastating pests or disease vectors, locate their resources mainly based on olfaction. Understanding insect olfaction not only from a neurobiological but also from an ecological perspective is therefore crucial to balance insect control and conservation. However, among all sensory stimuli olfaction is particularly hard to grasp. Our chemical environment is made up of thousands of different compounds, which might again be detected by our nose in multiple ways. Due to this complexity, researchers have only recently begun to explore the chemosensory ecology of model organisms such as Drosophila, linking the tools of chemical ecology to those of neurogenetics. This cross-disciplinary approach has enabled several studies that range from single odors and their ecological relevance, via olfactory receptor genes and neuronal processing, up to the insects' behavior. We learned that the insect olfactory system employs strategies of combinatorial coding to process general odors as well as labeled lines for specific compounds that call for an immediate response. These studies opened new doors to the olfactory world in which insects feed, oviposit, and mate. PMID:29449815
Laboratory Formation of Fullerenes from PAHs: Top-down Interstellar Chemistry
NASA Astrophysics Data System (ADS)
Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Linnartz, Harold; Tielens, Alexander G. G. M.
2014-12-01
Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C60. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.
NASA Astrophysics Data System (ADS)
Puff, Werner; Rabitsch, Herbert; Wilde, Gerhard; Dinda, Guru P.; Würschum, Roland
2007-06-01
With the aim to contribute to a microscopical understanding of the processes of solid-state amorphization, the chemically sensitive technique of background—reduced Doppler broadening of positron-electron annihilation radiation in combination with positron lifetime spectroscopy and microstructural characterization is applied to a free volume study of the amorphization of Cu60Zr40 induced by consecutive folding and rolling. Starting from the constituent pure metal foils, a nanosale multilayer structure of elemental layers and amorphous interlayers develops in an intermediate state of folding and rolling, where free volumes with a Zr-rich environment occur presumably located in the hetero-interfaces between the various layers or in grain boundaries of the Cu layers. After complete intermixing and amorphization, the local chemical environment of the free volumes reflects the average chemical alloy composition. In contrast to other processes of amorphization, free volumes of the size of few missing atoms occur in the rolling-induced amorphous state. Self-consistent results from three different methods for analyzing the Doppler broadening spectra, i.e., S-W-parameter correlation, multicomponent fit, and the shape of ratio curves, demonstrate the potential of the background-reduced Doppler technique for chemically sensitive characterization of structurally complex materials on an atomic scale.
The Organic Complexation of Iron in the Marine Environment: A Review
Gledhill, Martha; Buck, Kristen N.
2012-01-01
Iron (Fe) is an essential micronutrient for marine organisms, and it is now well established that low Fe availability controls phytoplankton productivity, community structure, and ecosystem functioning in vast regions of the global ocean. The biogeochemical cycle of Fe involves complex interactions between lithogenic inputs (atmospheric, continental, or hydrothermal), dissolution, precipitation, scavenging, biological uptake, remineralization, and sedimentation processes. Each of these aspects of Fe biogeochemical cycling is likely influenced by organic Fe-binding ligands, which complex more than 99% of dissolved Fe. In this review we consider recent advances in our knowledge of Fe complexation in the marine environment and their implications for the biogeochemistry of Fe in the ocean. We also highlight the importance of constraining the dissolved Fe concentration value used in interpreting voltammetric titration data for the determination of Fe speciation. Within the published Fe speciation data, there appear to be important temporal and spatial variations in Fe-binding ligand concentrations and their conditional stability constants in the marine environment. Excess ligand concentrations, particularly in the truly soluble size fraction, seem to be consistently higher in the upper water column, and especially in Fe-limited, but productive, waters. Evidence is accumulating for an association of Fe with both small, well-defined ligands, such as siderophores, as well as with larger, macromolecular complexes like humic substances, exopolymeric substances, and transparent exopolymers. The diverse size spectrum and chemical nature of Fe ligand complexes corresponds to a change in kinetic inertness which will have a consequent impact on biological availability. However, much work is still to be done in coupling voltammetry, mass spectrometry techniques, and process studies to better characterize the nature and cycling of Fe-binding ligands in the marine environment. PMID:22403574
Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality
Sletten, Ellen M.
2010-01-01
The study of biomolecules in their native environments is a challenging task because of the vast complexity of cellular systems. Technologies developed in the last few years for the selective modification of biological species in living systems have yielded new insights into cellular processes. Key to these new techniques are bioorthogonal chemical reactions, whose components must react rapidly and selectively with each other under physiological conditions in the presence of the plethora of functionality necessary to sustain life. Herein we describe the bioorthogonal chemical reactions developed to date and how they can be used to study biomolecules. PMID:19714693
Bioorthogonal chemistry: fishing for selectivity in a sea of functionality.
Sletten, Ellen M; Bertozzi, Carolyn R
2009-01-01
The study of biomolecules in their native environments is a challenging task because of the vast complexity of cellular systems. Technologies developed in the last few years for the selective modification of biological species in living systems have yielded new insights into cellular processes. Key to these new techniques are bioorthogonal chemical reactions, whose components must react rapidly and selectively with each other under physiological conditions in the presence of the plethora of functionality necessary to sustain life. Herein we describe the bioorthogonal chemical reactions developed to date and how they can be used to study biomolecules.
Engineering the oxygen coordination in digital superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Seyoung; Andersen, Tassie K.; Hong, Hawoong
The oxygen sublattice in the complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, demonstrating a new strategy for achieving unique electronic properties in the transition metal oxides.
Going local: technologies for exploring bacterial microenvironments
Wessel, Aimee K.; Hmelo, Laura; Parsek, Matthew R.; Whiteley, Marvin
2014-01-01
Microorganisms lead social lives and use coordinated chemical and physical interactions to establish complex communities. Mechanistic insights into these interactions have revealed that there are remarkably intricate systems for coordinating microbial behaviour, but little is known about how these interactions proceed in the spatially organized communities that are found in nature. This Review describes the technologies available for spatially organizing small microbial communities and the analytical methods for characterizing the chemical environment surrounding these communities. Together, these complementary technologies have provided novel insights into the impact of spatial organization on both microbial behaviour and the development of phenotypic heterogeneity within microbial communities. PMID:23588251
Dissolved sulfides in the oxic water column of San Francisco Bay, California
Kuwabara, J.S.; Luther, G.W.
1993-01-01
Trace contaminants enter major estuaries such as San Francisco Bay from a variety of point and nonpoint sources and may then be repartitioned between solid and aqueous phases or altered in chemical speciation. Chemical speciation affects the bioavailability of metals as well as organic ligands to planktonic and benthic organisms, and the partitioning of these solutes between phases. Our previous, work in south San Francisco Bay indicated that sulfide complexation with metals may be of particular importance because of the thermodynamic stability of these complexes. Although the water column of the bay is consistently well-oxygenated and typically unstratified with respect to dissolved oxygen, the kinetics of sulfide oxidation could exert at least transient controls on metal speciation. Our initial data on dissolved sulfides in the main channel of both the northern and southern components of the bay consistently indicate submicromolar concenrations (from <1 nM to 162 nM), as one would expect in an oxidizing environment. However, chemical speciation calculations over the range of observed sulfide concentrations indicate that these trace concentrations in the bay water column can markedly affect chemical speciation of ecologically significant trace metals such as cadmium, copper, and zinc.
Ooms, Kristopher J.; Bolte, Stephanie E.; Smee, Jason J.; Baruah, Bharat; Crans, Debbie C.; Polenova, Tatyana
2014-01-01
Using 51V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of 8 hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven coordinate vanadium atom, a geometry for which there is limited 51V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, CQ, are small, 3.0 to 3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm, and are nearly axially symmetric. Based on DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium dz2 character along the V=O bond. PMID:17902653
Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.
2015-01-01
Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476
Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlton, W.H.
1983-12-31
This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affectmore » nuclide migration. Several complexation mechanisms for plutonium migration were investigated.« less
Chance, necessity and the origins of life: a physical sciences perspective
NASA Astrophysics Data System (ADS)
Hazen, Robert M.
2017-11-01
Earth's 4.5-billion-year history has witnessed a complex sequence of high-probability chemical and physical processes, as well as `frozen accidents'. Most models of life's origins similarly invoke a sequence of chemical reactions and molecular self-assemblies in which both necessity and chance play important roles. Recent research adds two important insights into this discussion. First, in the context of chemical reactions, chance versus necessity is an inherently false dichotomy-a range of probabilities exists for many natural events. Second, given the combinatorial richness of early Earth's chemical and physical environments, events in molecular evolution that are unlikely at limited laboratory scales of space and time may, nevertheless, be inevitable on an Earth-like planet at time scales of a billion years. This article is part of the themed issue 'Reconceptualizing the origins of life'.
Hierarchy and Interactions in Environmental Interfaces Regarded as Biophysical Complex Systems
NASA Astrophysics Data System (ADS)
Mihailovic, Dragutin T.; Balaz, Igor
The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. For example, following the definition of environmental interface by Mihailovic and Balaž [23], such interface can be placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere. Complex environmental interface systems are open and hierarchically organised, interactions between their constituent parts are nonlinear, and the interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface systems and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences, particularly in environmental fluid mechanics. In modelling complex biophysical systems one of the main tasks is to successfully create an operative interface with the external environment. It should provide a robust and prompt translation of the vast diversity of external physical and/or chemical changes into a set of signals, which are "understandable" for an organism. Although the establishment of organisation in any system is of crucial importance for its functioning, it should not be forgotten that in biophysical systems we deal with real-life problems where a number of other conditions should be reached in order to put the system to work. One of them is the proper supply of the system by the energy. Therefore, we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy as well as the exchange of biological, chemical and other physical quantities between interacting environmental interfaces can be represented by coupled maps. In this chapter we will address only two illustrative issues important for the modelling of interacting environmental interfaces regarded as complex systems. These are (i) use of algebra for modelling the autonomous establishment of local hierarchies in biophysical systems and (ii) numerical investigation of coupled maps representing exchange of energy, chemical and other relevant biophysical quantities between biophysical entities in their surrounding environment.
A modelling methodology to assess the effect of insect pest control on agro-ecosystems.
Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo
2015-04-23
The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was "applying frequency vibration lamps and environment-friendly insecticides 8 times" (0.80) < "applying trap devices and environment-friendly insecticides 9 times" (0.83) < "applying common insecticides 14 times" (1.08). The treatment "applying frequency vibration lamps and environment-friendly insecticides 8 times" was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China.
A modelling methodology to assess the effect of insect pest control on agro-ecosystems
Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo
2015-01-01
The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was “applying frequency vibration lamps and environment-friendly insecticides 8 times” (0.80) < “applying trap devices and environment-friendly insecticides 9 times” (0.83) < “applying common insecticides 14 times” (1.08). The treatment “applying frequency vibration lamps and environment-friendly insecticides 8 times” was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China. PMID:25906199
Flat laminated microbial mat communities
NASA Astrophysics Data System (ADS)
Franks, Jonathan; Stolz, John F.
2009-10-01
Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.
Vibrational spectroscopy for imaging single microbial cells in complex biological samples
Harrison, Jesse P.; Berry, David
2017-04-13
Here, vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of themore » samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of singlecell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.« less
Vibrational spectroscopy for imaging single microbial cells in complex biological samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Jesse P.; Berry, David
Here, vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of themore » samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of singlecell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.« less
Dynamics and transformations of radionuclides in soils and ecosystem health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellows, Robert J.; Ainsworth, Calvin C.; Driver, Crystal J.
1998-12-01
The chemical behavior of radionuclides can vary widely in soil and sediment environments. Equally important, for a given radionuclide the physico-chemical properties of the solids and aqueous phase can greatly influence a radionuclides behavior. Radionuclides can conceivably occur in soils as soluble-free, inorganic-soluble-complexed, organic-soluble, complexed, adsorbed, precipitated, coprecipitated, or solid structural species. While it is clear that an assessment of a radionuclide?s soil chemistry and potential shifts in speciation will yield a considerable understanding of its behavior in the natural environment, it does not directly translate to bioavailability or its impact on ecosystems health. The soil chemical factors have tomore » be linked to food chain considerations and other ecological parameters that directly tie to an analysis of ecosystem health. In general, the movement of radionuclides from lower to higher trophic levels diminishes with each trophic level in both aqua tic and terrestrial systems. In some cases, transfer is limited because of low absorption/assimilation by successive trophic organisms (Pu, U); for other radionuclides (Tc, H) assimilation may be high but rapid metabolic turnover and low retention greatly reduce tissue concentrations available to predator species. Still others are chemical analogs of essential elements whose concentrations are maintained under strict metabolic control in tissues (Cs) or are stored in tissues seldom consumed by other organisms (Sr storage in exoskeleton, shells, and bone). Therefore, the organisms that receive the greatest ingestion exposures are those in lower trophic positions or are in higher trophic levels but within simple, short food chains. Food source, behavior, and habitat influence the accumulation of radionuclides in animals.« less
NASA Astrophysics Data System (ADS)
Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.
2014-12-01
In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.
Probing the chemical environments of early star formation: A multidisciplinary approach
NASA Astrophysics Data System (ADS)
Hardegree-Ullman, Emily Elizabeth
Chemical compositions of prestellar and protostellar environments in the dense interstellar medium are best quantified using a multidisciplinary approach. For my dissertation, I completed two projects to measure molecular abundances during the earliest phases of star formation. The first project investigates gas phase CO depletion in molecular cloud cores, the progenitors of star systems, using infrared photometry and molecular line spectroscopy at radio wavelengths. Hydrogenation of CO depleted onto dust is an important first step toward building complex organic molecules. The second project constrains polycyclic aromatic hydrocarbon (PAH) abundances toward young stellar objects (YSO). Band strengths measured from laboratory spectroscopy of pyrene/water ice mixtures were applied to estimate abundances from features attributed to PAHs in observational YSO spectra. PAHs represent a distinct but important component of interstellar organic material that is widely observed but not well quantified in star-forming regions.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Niles, Paul B.; Blake, Weston; Leveille, Richard
2009-01-01
This work seeks to use the chemical, isotopic, and mineralogical characteristics of secondary carbonate minerals produced during brief aqueous events to identify the conditions of the aqueous environment in which they formed. Liquid water near the surface of Mars is subject to either rapid freezing and/or evaporation. These processes are also active on Earth, and produce secondary minerals that have complex chemical, mineralogical, and isotopic textures and compositions that can include covariant relationships between Delta C-13 (sub VPDB) and delta O-18 (sub VSMOW). The extremely well studied four billion year old carbonates preserved in martian meteorite ALH 84001 also show covariant delta C-13 and delta O-18 compositions, but these variations are manifested on a micro-scale in a single thin section while the variation observed so far in terrestrial carbonates is seen between different hand samples.
Zereini, Fathi; Wiseman, Clare L S; Vang, My; Albers, Peter; Schneider, Wolfgang; Schindl, Roland; Leopold, Kerstin
2016-01-01
Risk assessments of platinum group metal (PGE) emissions, notably those of platinum (Pt), palladium (Pd) and rhodium (Rh), have been mostly based on data regarding the metallic forms used in vehicular exhaust converters, known to be virtually biologically inert and immobile. To adequately assess the potential impacts of PGE, however, data on the chemical behaviour of these metals under ambient conditions post-emission is needed. Complexing agents with a high affinity for metals in the environment are hypothesized to contribute to an increased bioaccessibility of PGE. The purpose of this study is to examine the modulating effects of the organic complexing agents, L-methionine and citric acid, on the geochemical behavior of Pd in soils and model substances (Pd black and PdO). Batch experimental tests were conducted with soils and model substances to examine the impacts of the concentration of complexing agents, pH and length of extraction period on Pd solubility and its chemical transformation. Particle surface chemistry was examined using X-ray photoelectron spectroscopy (XPS) on samples treated with solutions under various conditions, including low and high O2 levels. Pd was observed to be more soluble in the presence of organic complexing agents, compared to Pt and Rh. Pd in soils was more readily solubilized with organic complexing agents compared to the model substances. After 7 days of extraction, L-methionine (0.1 M) treated soil and Pd black samples, for instance, had mean soluble Pd fractions of 12.4 ± 5.9% and 0.554 ± 0.024%, respectively. Surface chemistry analyses (XPS) confirmed the oxidation of metallic Pd surfaces when treated with organic complexing agents. The type of organic complexing agent used for experimental purposes was observed to be the most important factor influencing solubility, followed by solution pH and time of extraction. The results demonstrate that metallic Pd can be transformed into more bioaccessible species in the presence of organic complexing agents which are ubiquitous in the environment.
Formamide and the origin of life
NASA Astrophysics Data System (ADS)
Saladino, Raffaele; Crestini, Claudia; Pino, Samanta; Costanzo, Giovanna; Di Mauro, Ernesto
2012-03-01
The complexity of life boils down to the definition: “self-sustained chemical system capable of undergoing Darwinian evolution” (Joyce, 1994) [1]. The term “self-sustained” implies a set of chemical reactions capable of harnessing energy from the environment, using it to carry out programmed anabolic and catabolic functions. We briefly present our opinion on the general validity of this definition. Running anabolic and catabolic functions entails complex chemical information whose stability, reproducibility and evolution constitute the core of what is dubbed genetics. Life as-we-know-it is made of the intimate interaction of metabolism and genetics, both built around the chemistry of the most common elements of the Universe (hydrogen, oxygen, nitrogen, carbon). Other elements like phosphorus and sulphur play important but ancillary and potentially replaceable roles. The reproducible interaction of metabolic and genetic cycles results in the hypercycles of organization and de-organization of chemical information that we consider living entities. In order to approach the problem of the origin of life it is therefore reasonable to start from the assumption that both metabolism and genetics had a common origin, shared a common chemical frame, were embedded in physical-chemical conditions favourable for the onset of both. The most abundant three-atoms organic compound in interstellar environment is hydrogen cyanide HCN, the most abundant three-atoms inorganic compound is water H2O. The combination of the two results in the formation of formamide H2NCOH. We have explored the chemistry of formamide in conditions compatible with the synthesis and the stability of compounds of potential pre-genetic and pre-metabolic interest. We discuss evidence showing (i) that all the compounds necessary for the build-up of nucleic acids are easily obtained abiotically, (ii) that essentially all the steps leading to the spontaneous generation of RNA are abiotically possible, (iii) that the key compounds of extant metabolic cycles are obtained in the same chemical frame, often in the same test tube. How close are these observations to a plausible scenario for the origin of life?
How micron-sized dust particles determine the chemistry of our Universe
Dulieu, François; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stéphanie
2013-01-01
In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H2) to the most complex (amino-acids) molecules observed in our Universe. Dust particles are recognized as powerful nano-factories that produce chemical species. However, the mechanism that converts species on dust to gas species remains elusive. Here we report experimental evidence that species forming on interstellar dust analogs can be directly released into the gas. This process, entitled chemical desorption (fig. 1), can dominate over the chemistry due to the gas phase by more than ten orders of magnitude. It also determines which species remain on the surface and are available to participate in the subsequent complex chemistry that forms the molecules necessary for the emergence of life. PMID:23439221
Nazmutdinov, Renat R; Zinkicheva, Tamara T; Vassiliev, Sergey Yu; Glukhov, Dmitri V; Tsirlina, Galina A; Probst, Michael
2010-04-01
The structure of sodium cryolite melts was studied using Raman spectroscopy and quantum chemical calculations performed at the density functional theory level. The existence of bridged forms in the melts was argued first from the analysis of experimental Raman spectra. In the quantum chemical modelling emphasis was put on the construction of potential energy surfaces describing the formation/dissociation of certain complex species. Effects of the ionic environment were found to play a crucial role in the energetics of model processes. The structure of the simplest possible polymeric forms involving two Al centres linked through F atoms ("dimers") was thoroughly investigated. The calculated equilibrium constants and model Raman spectra yield additional evidence in favour of the dimers. This agrees with a self-consistent analysis of a series of Raman spectra for a wide range of the melt composition. Copyright 2010. Published by Elsevier B.V.
Molecular propulsion: chemical sensing and chemotaxis of DNA driven by RNA polymerase.
Yu, Hua; Jo, Kyubong; Kounovsky, Kristy L; de Pablo, Juan J; Schwartz, David C
2009-04-29
Living cells sense extracellular signals and direct their movements in response to stimuli in environment. Such autonomous movement allows these machines to sample chemical change over a distance, leading to chemotaxis. Synthetic catalytic rods have been reported to chemotax toward hydrogen peroxide fuel. Nevertheless individualized autonomous control of movement of a population of biomolecules under physiological conditions has not been demonstrated. Here we show the first experimental evidence that a molecular complex consisting of a DNA template and associating RNA polymerases (RNAPs) displays chemokinetic motion driven by transcription substrates nucleoside triphosphates (NTPs). Furthermore this molecular complex exhibits a biased migration into a concentration gradient of NTPs, resembling chemotaxis. We describe this behavior as "Molecular Propulsion", in which RNAP transcriptional actions deform DNA template conformation engendering measurable enhancement of motility. Our results provide new opportunities for designing and directing nanomachines by imposing external triggers within an experimental system.
Intra-Engine Trace Species Chemistry
NASA Technical Reports Server (NTRS)
Waitz, Ian A.; Lukachko, S. P.; Chobot, A.; Miake-Lye, R. C.; Brown, R.
2002-01-01
Prompted by the needs of downstream plume-wake models, the Massachusetts Institute of Technology (MIT) and Aerodyne Research Incorporated (ART) initiated a collaborative effort, with funding from the NASA AEAP, to develop tools that would assist in understanding the fundamental drivers of chemical change within the intra-engine exhaust flow path. Efforts have been focused on the development of a modeling methodology that can adequately investigate the complex intra-engine environment. Over the history of this project, our research has increasingly pointed to the intra-engine environment as a possible site for important trace chemical activity. Modeling studies we initiated for the turbine and exhaust nozzle have contributed several important capabilities to the atmospheric effects of aviation assessment. These include a more complete understanding of aerosol precursor production, improved initial conditions for plume-wake modeling studies, and a more comprehensive analysis of ground-based test cell and in-flight exhaust measurement data. In addition, establishing a physical understanding of important flow and chemical processes through computational investigations may eventually assist in the design of engines to reduce undesirable species.
Alternative Life Styles for Extraterrestrial Chemists
NASA Astrophysics Data System (ADS)
Benner, S.
2002-12-01
Life is no more (and no less) than a special type of organic chemistry, one that combines a frequently encountered property of organic molecules (the ability to undergo spontaneous chemical transformation) with an uncommon property (the ability to direct the synthesis of self-copies) in a way that allows new molecular features arising through spontaneous transformation to themselves be copied. Any chemical system having this combination will undergo natural selection, evolving in structure to replicate faster through more efficient use of molecular resources and energy. Axiomatically, life cannot exist in an environment at thermodynamic equilibrium. If it were, by the second law of thermodynamics, no net chemical transformation would be possible. Beyond this constraint, it is difficult to define environmental conditions or chemical structures necessary for life. Water is certainly not required for a chemical system to copy itself; in the laboratory, non-aqueous environments appear to support this behavior better. Chemical transformations that might support energy and chemical metabolisms are known in environments as acidic as the aerosols in the atmosphere of Venus, or as basic as the atmosphere of Jupiter. Laboratory experiments with analogs of the nucleic acids, proteins, sugars, and lipids show that the particular molecular structures found in terrean life need not be universal, even those life in water near neutral pH. Indeed, while both water and biological macromolecules are commonly regarded as essential for terrean-like life, water destroys terrean biological macromolecules. These chemical realities create a complex decision environment as NASA attempts to design instrumentation carried by missions, select places in the solar system to send them, and chose laboratory studies on Earth to provide their scientific support. This talk will review a hierarchy of chemical possibilities and constraints that start with the chemistry of terrean life, and takes steps towards weird life. We shall consider alternative amino acid building blocks for proteins, alternative building blocks for nucleic acids, alternative structural features of genetic and catalytic molecules, alternative nucleophile-electrophile pairs to support metabolism, non-polar reaction modes that might support metabolism, non-terrean pH (< 0, > 14) and solvent environments for life, extreme temperature ranges (especially sub zero Celsius) low temperature ranges, alternative thermodynamic design for metabolic pathways, alternative dimensionalities of genetic and catalytic molecules, and approaches for isolating life other than conventional cell structures. Each of these discussions will combine experimental and theoretical information. The first involves organic chemical synthesis that creates new forms of chemical matter to ask "What if?" and "Why not?" questions. The second draws on a century of literature in physical organic chemistry to formulate general constraints on the structure and transformation of organic matter to provide constraints on possible Darwinian chemistries in the galaxy.
Digital and analog chemical evolution.
Goodwin, Jay T; Mehta, Anil K; Lynn, David G
2012-12-18
Living matter is the most elaborate, elegant, and complex hierarchical material known and is consequently the natural target for an ever-expanding scientific and technological effort to unlock and deconvolute its marvelous forms and functions. Our current understanding suggests that biological materials are derived from a bottom-up process, a spontaneous emergence of molecular networks in the course of chemical evolution. Polymer cooperation, so beautifully manifested in the ribosome, appeared in these dynamic networks, and the special physicochemical properties of the nucleic and amino acid polymers made possible the critical threshold for the emergence of extant cellular life. These properties include the precise and geometrically discrete hydrogen bonding patterns that dominate the complementary interactions of nucleic acid base-pairing that guide replication and ensure replication fidelity. In contrast, complex and highly context-dependent sets of intra- and intermolecular interactions guide protein folding. These diverse interactions allow the more analog environmental chemical potential fluctuations to dictate conformational template-directed propagation. When these two different strategies converged in the remarkable synergistic ribonucleoprotein that is the ribosome, this resulting molecular digital-to-analog converter achieved the capacity for both persistent information storage and adaptive responses to an ever-changing environment. The ancestral chemical networks that preceded the Central Dogma of Earth's biology must reflect the dynamic chemical evolutionary landscapes that allowed for selection, propagation, and diversification and ultimately the demarcation and specialization of function that modern biopolymers manifest. Not only should modern biopolymers contain molecular fossils of this earlier age, but it should be possible to use this information to reinvent these dynamic functional networks. In this Account, we review the first dynamic network created by modification of a nucleic acid backbone and show how it has exploited the digital-like base pairing for reversible polymer construction and information transfer. We further review how these lessons have been extended to the complex folding landscapes of templated peptide assembly. These insights have allowed for the construction of molecular hybrids of each biopolymer class and made possible the reimagining of chemical evolution. Such elaboration of biopolymer chimeras has already led to applications in therapeutics and diagnostics, to the construction of novel nanostructured materials, and toward orthogonal biochemical pathways that expand the evolution of existing biochemical systems. The ability to look beyond the primordial emergence of the ribosome may allow us to better define the origins of chemical evolution, to extend its horizons beyond the biology of today and ask whether evolution is an inherent property of matter unbounded by physical limitations imposed by our planet's diverse environments.
Gu, X.; Kim, Y. S.; Kaiser, R. I.; Mebel, A. M.; Liang, M. C.; Yung, Y. L.
2009-01-01
For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH). PMID:19805262
Gu, X; Kim, Y S; Kaiser, R I; Mebel, A M; Liang, M C; Yung, Y L
2009-09-22
For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH).
White, Claire E; Provis, John L; Proffen, Thomas; Riley, Daniel P; van Deventer, Jannie S J
2010-04-07
Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the structure of the metastable aluminosilicate material metakaolin (calcined kaolinite) without the use of chemical constraints. The structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimisation using density functional modelling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structural representation of metakaolin provides new insight into the local environment of the aluminium atoms, with evidence of the existence of tri-coordinated aluminium. By the availability of this detailed chemically feasible atomic description, without the need to artificially impose constraints during the refinement process, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin and other complex metastable materials at the atomic level to obtain optimal performance at the macro-scale.
Theoretical Modeling of 99 Tc NMR Chemical Shifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Gabriel B.; Andersen, Amity; Washton, Nancy M.
Technetium (Tc) displays a rich chemistry due to the wide range of oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and 99Tc NMR spec-troscopy is widely used to probe chemical environments of Tc in odd oxidation states. However interpretation of the 99Tc NMR data is hindered by the lack of reference compounds. DFT computations can help fill this gap, but to date few com-putational studies have focused on 99Tc NMR of compounds and complexes. This work systematically evaluates the inclu-sion small percentages of Hartree-Fock exchangemore » correlation and relativistic effects in DFT computations to support in-terpretation of the 99Tc NMR spectra. Hybrid functionals are found to perform better than their pure GGA counterparts, and non-relativistic calculations have been found to generally show a lower mean absolute deviation from experiment. Overall non-relativistic PBE0 and B3PW91 calculations are found to most accurately predict 99Tc NMR chemical shifts.« less
Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory
Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan; ...
2015-06-11
It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
Process engineering concerns in the lunar environment
NASA Technical Reports Server (NTRS)
Sullivan, T. A.
1990-01-01
The paper discusses the constraints on a production process imposed by the lunar or Martian environment on the space transportation system. A proposed chemical route to produce oxygen from iron oxide bearing minerals (including ilmenite) is presented in three different configurations which vary in complexity. A design for thermal energy storage is presented that could both provide power during the lunar night and act as a blast protection barrier for the outpost. A process to release carbon from the lunar regolith as methane is proposed, capitalizing on the greater abundance and favorable physical properties of methane relative to hydrogen to benefit the entire system.
Phytotoxins: environmental micropollutants of concern?
Bucheli, Thomas D
2014-11-18
Natural toxins such as mycotoxins or phytotoxins (bioactive compounds from fungi and plants, respectively) have been widely studied in food and feed, where they are stated to out-compete synthetic chemicals in their overall human and animal toxicological risk. A similar perception and awareness is yet largely missing for environmental safety. This article attempts to raise concern in this regard, by providing (circumstantial) evidence that phytotoxins in particular can be emitted into the environment, where they may contribute to the complex mixture of organic micropollutants. Exposures can be orders-of-magnitude higher in anthropogenically managed/affected (agro-)ecosystems than in the pristine environment.
Garnet: featured mineral group at the 1993 Tucson Show
Modreski, P.J.
1993-01-01
The garnets are a common but complex group of minerals. They are perhaps the mineral kingdom's best example of solid solution: a relationship in which minerals have chemical compositions that are intermediate between two or more ideal end-member species. In garnet, we deal with a complex group of solid-solution series between as many as 14 end-member minerals. The varying intergradations of solid solution between these different end-members help to explain the garnet group's variety of color, environment of occurrence, gem use, and variation in such physical properties as specific gravity, refractive index, and hardness. -from Author
Grasby, Stephen E.; Allen, Carlton C.; Longazo, Teresa G.; Lisle, John T.; Griffin, Dale W.; Beauchamp, Benoit
2003-01-01
Unique springs, discharging from the surface of an arctic glacier, release H2S and deposit native sulfur, gypsum, and calcite. The presence of sulfur in three oxidation states indicates a complex series of redox reactions. Physical and chemical conditions of the spring water and surrounding environment, as well as mineralogical and isotopic signatures, suggest biologically mediated reactions. Cell counts and DNA analyses confirm bacteria are present in the spring system, and a limited number of sequenced isolates suggests that complex communities of bacteria live within the glacial system.
Sterpone, Fabio; Melchionna, Simone; Tuffery, Pierre; Pasquali, Samuela; Mousseau, Normand; Cragnolini, Tristan; Chebaro, Yassmine; Saint-Pierre, Jean-Francois; Kalimeri, Maria; Barducci, Alessandro; Laurin, Yohan; Tek, Alex; Baaden, Marc; Nguyen, Phuong Hoang; Derreumaux, Philippe
2015-01-01
The OPEP coarse-grained protein model has been applied to a wide range of applications since its first release 15 years ago. The model, which combines energetic and structural accuracy and chemical specificity, allows studying single protein properties, DNA/RNA complexes, amyloid fibril formation and protein suspensions in a crowded environment. Here we first review the current state of the model and the most exciting applications using advanced conformational sampling methods. We then present the current limitations and a perspective on the on-going developments. PMID:24759934
Filter-based chemical sensors for hazardous materials
NASA Astrophysics Data System (ADS)
Major, Kevin J.; Ewing, Kenneth J.; Poutous, Menelaos K.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.
2014-05-01
The development of new techniques for the detection of homemade explosive devices is an area of intense research for the defense community. Such sensors must exhibit high selectivity to detect explosives and/or explosives related materials in a complex environment. Spectroscopic techniques such as FTIR are capable of discriminating between the volatile components of explosives; however, there is a need for less expensive systems for wide-range use in the field. To tackle this challenge we are investigating the use of multiple, overlapping, broad-band infrared (IR) filters to enable discrimination of volatile chemicals associated with an explosive device from potential background interferants with similar chemical signatures. We present an optical approach for the detection of fuel oil (the volatile component in ammonium nitrate-fuel oil explosives) that relies on IR absorption spectroscopy in a laboratory environment. Our proposed system utilizes a three filter set to separate the IR signals from fuel oil and various background interferants in the sample headspace. Filter responses for the chemical spectra are calculated using a Gaussian filter set. We demonstrate that using a specifically chosen filter set enables discrimination of pure fuel oil, hexanes, and acetone, as well as various mixtures of these components. We examine the effects of varying carrier gasses and humidity on the collected spectra and corresponding filter response. We study the filter response on these mixtures over time as well as present a variety of methods for observing the filter response functions to determine the response of this approach to detecting fuel oil in various environments.
Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids
Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.
2011-01-01
Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.
Zulkefeli, Mohd; Suzuki, Asami; Shiro, Motoo; Hisamatsu, Yosuke; Kimura, Eiichi; Aoki, Shin
2011-10-17
In Nature, organized nanoscale structures such as proteins and enzymes are formed in aqueous media via intermolecular interactions between multicomponents. Supramolecular and self-assembling strategies provide versatile methods for the construction of artificial chemical architectures for controlling reaction rates and the specificities of chemical reactions, but most are designed in hydrophobic environments. The preparation of artificial catalysts that have potential in aqueous media mimicking natural enzymes such as hydrolases remains a great challenge in the fields of supramolecular chemistry. Herein, we describe that a dimeric Zn(2+) complex having a 2,2'-bipyridyl linker, cyanuric acid, and a Cu(2+) ion automatically assembles in an aqueous solution to form a 4:4:4 complex, which is stabilized by metal-ligand coordination bonds, π-π-stacking interactions, and hydrogen bonding and contains μ-Cu(2)(OH)(2) cores analogous to the catalytic centers of phosphatase, a dinuclear metalloenzyme. The 4:4:4 complex selectively accelerates the hydrolysis of a phosphate monoester, mono(4-nitrophenyl)phosphate, at neutral pH.
Solid State Pathways towards Molecular Complexity in Space
NASA Astrophysics Data System (ADS)
Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng
2011-12-01
It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.
Astakhov, Vadim
2009-01-01
Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment.
Mercury speciation in piscivorous fish from mining-impacted reservoirs
Kuwabara, J.S.; Arai, Y.; Topping, B.R.; Pickering, I.J.; George, G.N.
2007-01-01
Guadalupe Reservoir (GUA), California, and Lahontan Reservoir (LAH), Nevada, U.S. are both affected either directly or indirectly by the legacy of gold and silver mining in the Sierra Nevada during the nineteenth century. Analysis of total mercury in fish from these lentic systems consistently indicate elevated concentrations (>1 ??g??g-1 wet weight; hereinafter, all concentrations are reported as wet weight unless indicated otherwise) well above the U.S. Environmenal Protection Agency's human consumption advisory level for fish (<0.3 ??g??g-1). Replicate X-ray absorption near edge structure (XANES) analyses on largemouth bass and hybrid striped bass from GUA and LAH were performed to determine predominant chemical species of mercury accumulated by these high-trophic-level piscivores that are exposed to elevated mercury through trophic transfer in mining-impacted lentic systems. Despite distinct differences in mercury source, the proximity of the source, and concentrations of complexing ligands, results of XANES analysis clearly indicated that mercury accumulated in these individual fish from the two reservoirs were dominated by methylmercury cysteine complexes. These findings are consistent with results from commercial fish species inhabiting marine environments which are presumed to include differing mercury sources (e.g., atmospheric, hydrothermal, or benthic). The dominance of methylmercury cysteine complexes in muscle tissues of fish obtained from such contrasting environments and exposure conditions suggests that a generic toxicological model for the consumption of fish could be applicable over a wide range of ecologic settings. ?? 2007 American Chemical Society.
Dragonfly: Exploring Titan's Surface with a New Frontiers Relocatable Lander
NASA Astrophysics Data System (ADS)
Barnes, Jason W.; Turtle, Elizabeth P.; Trainer, Melissa G.; Lorenz, Ralph
2017-10-01
We proposed to the NASA New Frontiers 4 mission call a lander to assess Titan's prebiotic chemistry, evaluate its habitability, and search for biosignatures on its surface. Titan as an Ocean World is ideal for the study of prebiotic chemical processes and the habitability of an extraterrestrial environment due to its abundant complex carbon-rich chemistry and because both liquid water and liquid hydrocarbons can occur on its surface. Transient liquid water surface environments can be created by both impacts and cryovolcanic processes. In both cases, the water could mix with surface organics to form a primordial soup. The mission would sample both organic sediments and water ice to measure surface composition, achieving surface mobility by using rotors to take off, fly, and land at new sites. The Dragonfly rotorcraft lander can thus convey a single capable instrument suite to multiple locations providing the capability to explore diverse locations 10s to 100s of kilometers apart to characterize the habitability of Titan's environment, investigate how far prebiotic chemistry has progressed, and search for chemical signatures indicative of water- and/or hydrocarbon-based life.
Hutchinson, Thomas H; Lyons, Brett P; Thain, John E; Law, Robin J
2013-09-30
Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed 'legacy contaminants'; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however,the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L
2013-08-01
We report on the (25)Mg solid-state nuclear magnetic resonance (NMR) characterization of a series of magnesium complexes featuring Mg(2+) ions in organic coordination environments. Six compounds have been synthesized with benzoate and salicylate ligands, which are typically used as linkers in metal organic frameworks (MOFs). The use of ultrahigh-field solid-state NMR has revealed a relatively large range of values for the (25)Mg quadrupolar coupling constant, CQ((25)Mg), in these compounds. In contrast to some previously studied inorganic Mg(2+) complexes, the values of CQ((25)Mg) in organic Mg(2+) complexes are well rationalized by the degree of octahedral strain of the "MgO6" coordination polyhedra. (13)C and (25)Mg isotropic chemical shifts were also found to be sensitive to the binding mode of the carboxylate ligands. The experimental findings are corroborated by gauge-including projector-augmented-wave (GIPAW) density functional theory (DFT) computations, and these have allowed for an interpretation of the experimentally observed trend in the CQ((25)Mg) values and for the visualization of the EFG tensor principal components with respect to the molecular structure. These new insights may prove to be valuable for the understanding and interpretation of (25)Mg NMR data for Mg(2+) ions in organic binding environments such as those found in MOFs and protein-divalent metal binding sites.
Chance, necessity and the origins of life: a physical sciences perspective.
Hazen, Robert M
2017-12-28
Earth's 4.5-billion-year history has witnessed a complex sequence of high-probability chemical and physical processes, as well as 'frozen accidents'. Most models of life's origins similarly invoke a sequence of chemical reactions and molecular self-assemblies in which both necessity and chance play important roles. Recent research adds two important insights into this discussion. First, in the context of chemical reactions, chance versus necessity is an inherently false dichotomy-a range of probabilities exists for many natural events. Second, given the combinatorial richness of early Earth's chemical and physical environments, events in molecular evolution that are unlikely at limited laboratory scales of space and time may, nevertheless, be inevitable on an Earth-like planet at time scales of a billion years.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).
The E-screen assay as a tool to identify estrogens: An update on estrogenic environmental pollutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, A.M.; Sonnenschein, C.; Chung, K.L.
1995-10-01
Estrogens are defined by their ability to induce the proliferation of cells of the female genital tract. The wide chemical diversity of estrogenic compounds precludes an accurate prediction of estrogenic activity on the basis of chemical structure. Rodent bioassays are not suited for the large-scale screening of chemicals before their release into the environment because of their cost, complexity, and ethical concerns. The E-SCREEN assay was developed to assess the estrogenicity of environmental chemicals using the proliferative effect of estrogens on their target cells as an end point. This quantitative assay compares the cell number achieved by similar inocula ofmore » MCF-7 cells in the absence of estrogens (negative control) and in the presence of 17{beta}-estradiol (positive control) and a range of concentrations of chemicals suspected to be estrogenic. Among the compounds tested, several {open_quotes}new{close_quotes} estrogens were found; alkylphenols, phthalates, some PCB congeners and hydroxylated PCBs, and the insecticides dieldrin, endosulfan, and toxaphene were estrogenic by the E-SCREEN assay. In addition, these compounds competed with estradiol for binding to the estrogen receptor and increased the levels of progesterone receptor and pS2 in MCF-7 cells, as expected from estrogen mimics. Recombinant human growth factors (bFGF, EGF, IGF-1) and insulin did not increase cell yields. The aims of the work summarized in this paper were (a) to validate the E-SCREEN assay; (b) to screen a variety of chemicals present in the environment to identify those that may be causing reproductive effects in wildlife and humans; (c) to assess whether environmental estrogens may act cumulatively; and finally (d) to discuss the reliability of this and other assays to screen chemicals for their estrogenicity before they are released into the environment. 57 refs., 3 figs., 9 tabs.« less
Correia, Roberta; Grace, Mary H; Esposito, Debora; Lila, Mary Ann
2017-11-15
Particulate colloidal aggregate food ingredients were prepared by complexing wheat flour, chickpea flour, coconut flour and soy protein isolate with aqueous wild blueberry pomace extracts, then spray drying, freeze drying, or vacuum oven drying to prepare dry, flour-like matrices. Physico-chemical attributes, phytochemical content and stability during storage were compared. Eighteen anthocyanins peaks were identified for samples. Spray dried matrices produced with soy protein isolate had the highest concentration of polyphenols (156.2mg GAE/g) and anthocyanins (13.4mg/g) and the most potent DPPH scavenging activity (714.1μmolesTE/g). Spray dried blueberry polyphenols complexed with protein were protected from degradation during 16weeks at 4°C and 20°C. Soy protein isolate more efficiently captured and stabilized wild blueberry pomace phytochemicals than other protein sources. Overall, spray drying the blueberry extracts complexed with protein proved to be an environment-friendly strategy to produce stable functional ingredients with multiple applications for the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.
Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G
2016-02-16
Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.
Comets - Chemistry and chemical evolution
NASA Technical Reports Server (NTRS)
Donn, B.
1982-01-01
Research on the chemical composition and conditions in comets and their possible role in the origin of life on earth is surveyed. The inorganic and organic compounds and ions indicated in the ultraviolet and visible spectra of comets are noted, and evidence for the existence of at least a small proportion of complex organic molecules in comets is presented. It is then pointed out that while cometary material could have reached the earth and provided volatile elements from which biochemical compounds could have formed, it is unlikely that a cometary nucleus could have withstood the temperatures and pressures necessary to sustain an environment in which life could have originated.
Life on Mars? 1: The chemical environment
NASA Technical Reports Server (NTRS)
Banin, A.; Mancinelli, R. L.
1995-01-01
The origin of life at its abiotic evolutionary stage, requires a combination of constituents and environmental conditions that enable the synthesis of complex replicating macromolecules from simpler monomeric molecules. It is very likely that the early stages of this evolutionary process have been spontaneous, rapid and widespread on the surface of the primitive Earth, resulting in the formation of quite sophisticated living organisms within less than a billion years. To what extend did such conditions prevail on Mars? Two companion-papers will review and discuss the available information related to the chemical, physical and environmental conditions on Mars and assess it from the perspective of potential exobiological evolution.
[Threshold values for chemical agents in the light of the REACH regulation].
Cavallo, Domenico Maria; Cattaneo, Andrea; Colosio, Claudio; Moretto, Angelo; Carrer, Paolo; Bartolucci, Giovanni Battista
2011-01-01
The European Regulation 1907/2006 (REACH--Registration, Evaluation, Authorization and Restriction of Chemicals) obliges manufacture companies and import chemicals to assess the risks arising from their use and to take the necessary measures to manage the risks identified. The Chemical Safety Report provides an accurate assessment of hazards to human health and the environment necessary to prepare an exposure scenario for the "identified uses" of the substance. An exposure scenario is the set of conditions that describe how the substance is manufactured or used during its life cycle and how the manufacturer or importer controls, or recommends downstream users to control the 'exposure to humans and the environment. Firms therefore need specific skills. The spectrum of toxicological risk is extremely large, the information required in some cases are very complex and undoubtedly require a thorough knowledge in toxicology and environmental industry. The expertise and experience in toxicology of the occupational physician in this case may become useful in the environmental field as well as another familiar figure of relevant importance is the occupational hygienist who develop exposure scenarios for workers and their uses experience for the exposure scenarios for the consumer. It provides an obvious involvement of medical toxicologists and occupational hygienists for public tasks of control and inspection of chemical safety reports and, locally, even the accuracy of risk that arise from this.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.
The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here in this paper, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg–DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10 –4. Heteroatomic molecules, especially those containing multiple S and N atoms, weremore » found to be among the most important in forming strong complexes with Hg. Major Hg–DOM complexes of C 10H 21N 2S 4Hg + and C 8H 17N 2S 4Hg + were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. Finally, these findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg–DOM complexes that affect biological uptake and transformation of Hg in the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.
The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg-DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10 -4. Heteroatomic molecules, especially those containing multiple S and N atoms, were found to bemore » among the most important in forming strong complexes with Hg. Major Hg-DOM complexes of C10H21N2S4Hg+ and C8H17N2S4Hg+ were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. These findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg-DOM complexes that affect biological uptake and transformation of Hg in the environment.« less
Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.; ...
2016-12-22
The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here in this paper, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg–DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10 –4. Heteroatomic molecules, especially those containing multiple S and N atoms, weremore » found to be among the most important in forming strong complexes with Hg. Major Hg–DOM complexes of C 10H 21N 2S 4Hg + and C 8H 17N 2S 4Hg + were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. Finally, these findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg–DOM complexes that affect biological uptake and transformation of Hg in the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorkom, L.C.; Horvath, L.I.; Hemminga, M.A.
The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of the choline headgroup (DMPC-d9). Two-component deuterium and phosphorus-31 NMR spectra have been observed from bilayer complexes containing the coat protein, indicating slow exchange (on the deuterium quadrupole anisotropy and phosphorus-31 chemical shift averaging time scales) of lipid molecules of less than 10(3) Hz between two motionally distinct environments in the complexes. The fraction of the isotropic spectral component increases with increasing M13 protein concentration, and this component is attributed to lipid headgroups, which are disordered relative to their order inmore » protein-free bilayers. The activation energy of the fast local motions of the trimethyl groups of the choline residue in the headgroup decreases from 23 kJ mol-1 in the pure lipid bilayers to 20 kJ mol-1 for the protein-associated lipid headgroups. The chemical exchange rate of lipid molecules between the two motionally distinct environments has been estimated to be 20-50 Hz by steady-state line-shape simulations of the deuterium spectra of DMPC-d9/M13 coat protein complexes using exchange-coupled modified Bloch equations. The off-rate was, as expected from one-to-one exchange, independent of the L/P ratio; tau off -1 = 0.23 kHz. It is suggested that the protein-associated lipid may be trapped between closely packed parallel aggregates of M13 coat protein and that the high local concentration of protein in a one-dimensional arrangement in lipid bilayers may be required for the fast reassembly of phage particles before release from an infected cell.« less
Dragonfly: Investigating the Surface Composition of Titan
NASA Technical Reports Server (NTRS)
Brinckerhoff, W. B.; Lawrence, D. J.; Barnes, J. W.; Lorenz, R. D.; Horst, S. M.; Zacny, K.; Freissinet, C.; Parsons, A. M.; Turtle, E. P.; Trainer, M. G.;
2018-01-01
Dragonfly is a rotorcraft lander mission, selected as a finalist in NASA's New Frontiers Program, that is designed to sample materials and determine the surface composition in different geologic settings on Titan. This revolutionary mission concept would explore diverse locations to characterize the habitability of Titan's environment, to investigate how far prebiotic chemistry has progressed, and to search for chemical signatures that could be indicative of water-based and/or hydrocarbon-based life. Here we describe Dragonfly's capabilities to determine the composition of a variety of surface units on Titan, from elemental components to complex organic molecules. The compositional investigation ncludes characterization of local surface environments and finely sampled materials. The Dragonfly flexible sampling approach can robustly accommodate materials from Titan's most intriguing surface environments.
Knowledge environments representing molecular entities for the virtual physiological human.
Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M
2008-09-13
In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.
California Breast Cancer Prevention Initiatives: Setting a research agenda for prevention.
Sutton, P; Kavanaugh-Lynch, M H E; Plumb, M; Yen, I H; Sarantis, H; Thomsen, C L; Campleman, S; Galpern, E; Dickenson, C; Woodruff, T J
2015-07-01
The environment is an underutilized pathway to breast cancer prevention. Current research approaches and funding streams related to breast cancer and the environment are unequal to the task at hand. We undertook the California Breast Cancer Prevention Initiatives, a four-year comprehensive effort to set a research agenda related to breast cancer, the environment, disparities and prevention. We identified 20 topics for Concept Proposals reflecting a life-course approach and the complex etiology of breast cancer; considering the environment as chemical, physical and socially constructed exposures that are experienced concurrently: at home, in the community and at work; and addressing how we should be modifying the world around us to promote a less carcinogenic environment. Redirecting breast cancer research toward prevention-oriented discovery could significantly reduce the incidence and associated disparities of the disease among future generations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension.
Scheckel, Kirk G; Luxton, Todd P; El Badawy, Amro M; Impellitteri, Christopher A; Tolaymat, Thabet M
2010-02-15
Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and surface chemistry. Changing these basic characteristics of nanoparticles may result in a final reaction product that is significantly different than the initial nanomaterial. As such, basing long-term risk and toxicity on the initial properties of a nanomaterial may lead to erroneous conclusions if nanoparticles change upon release to the environment. The influence of aging on the speciation and chemical stability of silver and zinc oxide nanoparticles in kaolin suspensions was examined in batch reactors for up to 18 months. Silver nanoparticles remained unchanged in sodium nitrate suspensions; however, silver chloride was identified with the metallic silver nanoparticles in sodium chloride suspensions and may be attributed to an in situ silver chloride surface coating. Zinc oxide nanoparticles were rapidly converted via destabilization/dissolution mechanisms to Zn(2+) inner-sphere sorption complexes within 1 day of reaction and these sorption complexes were maintained through the 12 month aging processes. Chemical and physical alteration of nanomaterials in the environment must be examined to understand fate, mobility, and toxicology.
Hamaker, Bruce R; Tuncil, Yunus E
2014-11-25
Even though there are many factors that determine the human colon microbiota composition, diet is an important one because most microorganisms in the colon obtain energy for their growth by degrading complex dietary compounds, particularly dietary fibers. While fiber carbohydrates that escape digestion in the upper gastrointestinal tract are recognized to have a range of structures, the vastness in number of chemical structures from the perspective of the bacteria is not well appreciated. In this article, we introduce the concept of "discrete structure" that is defined as a unique chemical structure, often within a fiber molecule, which aligns with encoded gene clusters in bacterial genomes. The multitude of discrete structures originates from the array of different fiber types coupled with structural variations within types due to genotype and growing environment, anatomical parts of the grain or plant, discrete regions within polymers, and size of oligosaccharides and small polysaccharides. These thousands of discrete structures conceivably could be used to favor bacteria in the competitive colon environment. A global framework needs to be developed to better understand how dietary fibers can be used to obtain predicted changes in microbiota composition for improved health. This will require a multi-disciplinary effort that includes biological scientists, clinicians, and carbohydrate specialists. Copyright © 2014 Elsevier Ltd. All rights reserved.
Behavior of complex mixtures in aquatic environments: a synthesis of PNL ecological research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fickeisen, D.H.; Vaughan, B.E.
1984-06-01
The term complex mixture has been recently applied to energy-related process streams, products and wastes that typically contain hundreds or thousands of individual organic compounds, like petroleum or synthetic fuel oils; but it is more generally applicable. A six-year program of ecological research has focused on four areas important to understanding the environmental behavior of complex mixtures: physicochemical variables, individual organism responses, ecosystems-level determinations, and metabolism. Of these areas, physicochemical variables and organism responses were intensively studied; system-level determinations and metabolism represent more recent directions. Chemical characterization was integrated throughout all areas of the program, and state-of-the-art methods were applied.more » 155 references, 35 figures, 4 tables.« less
Semivolatile organic compounds in residential air along the Arizona - Mexico border
Gale, R.W.; Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.; Robertson, G.L.
2009-01-01
Concerns about indoor air quality and the potential effects on people living in these environments are increasing as more reports about the toxicities and the potential indoor air exposure levels of household-use chemicals and chemicals fromhousingandfurnishingmanufactureinairarebeingassessed. Gas chromatography/mass spectrometry was used to confirm numerous airborne contaminants obtained from the analysis of semipermeable membrane devices deployed inside of 52 homes situated along the border between Arizona and Mexico. We also describe nontarget analytes in the organochlorine pesticide fractions of 12 of these homes; this fraction is also the most likelytocontainthebroadestscopeofbioconcentratablechemicals accumulated from the indoor air. Approximately 400 individual components were identified, ranging from pesticides to a wide array of hydrocarbons, fragrances such as the musk xylenes, flavors relating to spices, aldehydes, alcohols, esters and phthalate esters, and other miscellaneous types of chemicals. The results presented in this study demonstrate unequivocally that the mixture of airborne chemicals present indoors is far more complex than previously demonstrated. ?? 2009 American Chemical Society.
Ultrastable cellulosome-adhesion complex tightens under load.
Schoeler, Constantin; Malinowska, Klara H; Bernardi, Rafael C; Milles, Lukas F; Jobst, Markus A; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Schulten, Klaus; Gaub, Hermann E; Nash, Michael A
2014-12-08
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
NASA Astrophysics Data System (ADS)
Han, Xuesong; Li, Haiyan; Zhao, Fu
2017-07-01
Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.
Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle.
Ruf, Alexander; d'Hendecourt, Louis L S; Schmitt-Kopplin, Philippe
2018-06-01
Astrochemistry, meteoritics and chemical analytics represent a manifold scientific field, including various disciplines. In this review, clarifications on astrochemistry, comet chemistry, laboratory astrophysics and meteoritic research with respect to organic and metalorganic chemistry will be given. The seemingly large number of observed astrochemical molecules necessarily requires explanations on molecular complexity and chemical evolution, which will be discussed. Special emphasis should be placed on data-driven analytical methods including ultrahigh-resolving instruments and their interplay with quantum chemical computations. These methods enable remarkable insights into the complex chemical spaces that exist in meteorites and maximize the level of information on the huge astrochemical molecular diversity. In addition, they allow one to study even yet undescribed chemistry as the one involving organomagnesium compounds in meteorites. Both targeted and non-targeted analytical strategies will be explained and may touch upon epistemological problems. In addition, implications of (metal)organic matter toward prebiotic chemistry leading to the emergence of life will be discussed. The precise description of astrochemical organic and metalorganic matter as seeds for life and their interactions within various astrophysical environments may appear essential to further study questions regarding the emergence of life on a most fundamental level that is within the molecular world and its self-organization properties.
Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris
NASA Astrophysics Data System (ADS)
Ziurys, L. M.; Milam, S. N.; Apponi, A. J.; Woolf, N. J.
2007-06-01
The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.
Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris.
Ziurys, L M; Milam, S N; Apponi, A J; Woolf, N J
2007-06-28
The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.
OVERVIEW OF AN INTEGRATIVE SAMPLER FOR ...
Anthropogenic pollution is recognized as a global problem contributing to degradation of ecosystem quality, to loss of numerous plant and animal species, and to adverse impacts on human health. There is an increasing realization that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants as well. An approach to provide a time-weighted average (TWA) assessment is critical in understanding organism exposure to the complex mixture of pollutants present in the environment. A recently developed device, the polar organic chemical integrative sampler (POCIS), is designed to integratively sample the more polar waterborne organic chemicals. Laboratory trials and field deployments have demonstrated that the POCIS is very effective for sequestering hydrophilic chemicals such as antibiotics, hormones, other pharmaceutically derived chemicals, polar pesticides, surfactants, etc. Environmentally derived sample extracts from the integrative samplers are readily amenable for assays utilizing bio-indicator tests. An overview of the POCIS and selected environmental applications will be presented. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and
Gas-Phase Ion Chemistry in Interstellar, Circumstellar, and Planetary Environments
NASA Astrophysics Data System (ADS)
Demarais, Nicholas J.
In the last century, astronomers, physicists, and chemists have shown that the environments of space are complex. Although we have learned a great amount about the interstellar medium, circumstellar medium, and atmospheres of other planets and moons, many mysteries still remain unsolved. The cooperation of astronomers, modelers, and chemists has lead to the detection of over 180 molecules in the interstellar and circumstellar medium, and the evolution of the new scientific field of astrochemistry. Gas-phase ion chemistry can determine the stability of ions in these complex environments, provide chemical networks, and guide searches for new interstellar molecules. Using the flowing afterglow-selected ion flow tube (FA-SIFT), we have characterized the reactions of positive and negative ions that are important in a variety of astrochemical environments. The detection of CF+ in photodissociation regions highlights the importance of fluorinated species in the interstellar medium. The viability of CF+ as a possible diffuse interstellar band (DIB) carrier is discussed as related to reactions with neutral molecules in various interstellar conditions; the reactions of CF+ with twenty-two molecules of interstellar relevance were investigated. The chemical reactions of HCNH+ with H2, CH 4, C2H2, and C2H4 were reexamined to provide insight into the overprediction of HCNH+ in Titan's ionosphere by current astrochemical models. In addition, this work suggests other chemical reactions that should be included in the current models to fully describe the destruction rates of HCNH+ in Titan's ionosphere. The reactions of polycyclic aromatic hydrocarbon (PAH) ions with H atoms and other small molecules were carried out to determine the stability of these species. In diffuse regions, where the photon flux is high, PAH cations are the dominant ionization state. This work continues our previous research to include PAHs of differing geometries as well as nitrogen-containing PAHs. Extension to larger PAH cations was made possible by the integration of the laser induced acoustic desorption (LIAD) source with the FA-SIFT. In addition, in dense environments, where the photon flux is low, anionic PAHs may exist. The detection of negative ions in the past 10 years has highlighted the importance of their inclusion in astrochemical models. We have investigated the chemistry of deprotonated PAHs with molecules of interstellar relevance to determine their chemical stability in dense regions of the interstellar and circumstellar medium. In addition to PAH anions, H- is an important species in dense interstellar environments. While the reaction of hydride anion has been recognized as a critical mechanism in the initial cooling immediately after the Big Bang, H- + H → H2 + e-, chemistry with neutral molecules was largely unknown. The chemistry of H- with various classes of organic molecules was investigated and conclusions are drawn based on reaction mechanisms.
Considering the cumulative risk of mixtures of chemicals – A challenge for policy makers
2012-01-01
Background The current paradigm for the assessment of the health risk of chemical substances focuses primarily on the effects of individual substances for determining the doses of toxicological concern in order to inform appropriately the regulatory process. These policy instruments place varying requirements on health and safety data of chemicals in the environment. REACH focuses on safety of individual substances; yet all the other facets of public health policy that relate to chemical stressors put emphasis on the effects of combined exposure to mixtures of chemical and physical agents. This emphasis brings about methodological problems linked to the complexity of the respective exposure pathways; the effect (more complex than simple additivity) of mixtures (the so-called 'cocktail effect'); dose extrapolation, i.e. the extrapolation of the validity of dose-response data to dose ranges that extend beyond the levels used for the derivation of the original dose-response relationship; the integrated use of toxicity data across species (including human clinical, epidemiological and biomonitoring data); and variation in inter-individual susceptibility associated with both genetic and environmental factors. Methods In this paper we give an overview of the main methodologies available today to estimate the human health risk of environmental chemical mixtures, ranging from dose addition to independent action, and from ignoring interactions among the mixture constituents to modelling their biological fate taking into account the biochemical interactions affecting both internal exposure and the toxic potency of the mixture. Results We discuss their applicability, possible options available to policy makers and the difficulties and potential pitfalls in implementing these methodologies in the frame of the currently existing policy framework in the European Union. Finally, we suggest a pragmatic solution for policy/regulatory action that would facilitate the evaluation of the health effects of chemical mixtures in the environment and consumer products. Conclusions One universally applicable methodology does not yet exist. Therefore, a pragmatic, tiered approach to regulatory risk assessment of chemical mixtures is suggested, encompassing (a) the use of dose addition to calculate a hazard index that takes into account interactions among mixture components; and (b) the use of the connectivity approach in data-rich situations to integrate mechanistic knowledge at different scales of biological organization. PMID:22759500
NASA Astrophysics Data System (ADS)
Anita, K.; Rajmuhon Singh, N.
2011-10-01
The complexation of thiosemicarbazide with Pr(III) and Nd(III) in absence and presence of Zn(II), a soft metal ion in aqueous and organic solvents like CH 3OH,CH 3CN, dioxane (C 4H 8O 2) and DMF (C 3H 7NO) and their equimolar mixtures are discussed by employing absorption difference and comparative absorption spectrophotometry. Complexation of thiosemicarbazide with Pr(III) and Nd(III) is indicated by the changes in the absorption intensity following the subsequent changes in the oscillator strength of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters like energy interaction parameters namely Slater-Condon ( Fk), Racah ( Ek), Lande ( ξ4f), Nephelauxetic ratio ( β) and bonding parameters ( b1/2) are further computed to explain the nature of complexation. The difference in the energy parameters with respect to donor atoms and solvents reveal that the chemical environment around the lanthanide ions has great impact on f-f transition and any change in the environment result in modification of the spectra. Various solvents and their equimolar mixtures are also used to discuss the participation of solvents in the complexation.
From precision polymers to complex materials and systems
NASA Astrophysics Data System (ADS)
Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof
2016-05-01
Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.
Influence of Magnetic Fields on Magneto-Aerotaxis
Bennet, Mathieu; McCarthy, Aongus; Fix, Dmitri; Edwards, Matthew R.; Repp, Felix; Vach, Peter; Dunlop, John W. C.; Sitti, Metin; Buller, Gerald S.; Klumpp, Stefan; Faivre, Damien
2014-01-01
The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto- aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research. PMID:24983865
Proceedings of "Optical Probes of Dynamics in Complex Environments"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sension, R; Tokmakoff, A
2008-04-01
This document contains the proceedings from the symposium on Optical Probes of Dynamics in Complex Environments, which organized as part of the 235th National Meeting of the American Chemical Society in New Orleans, LA from April 6 to 10, 2008. The study of molecular dynamics in chemical reaction and biological processes using time ÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂresolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE Office of Science because of their role in the development of alternative energy sources, themore » understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time resolved spectroscopy is central to all of DOEs grand challenges for fundamental energy science. This symposium brought together leaders in the field of ultrafast spectroscopy, including experimentalists, theoretical chemists, and simulators, to discuss the most recent scientific and technological advances. DOE support for this conference was used to help young US and international scientists travel to the meeting. The latest technology in ultrafast infrared, optical, and xray spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.« less
Plasmon-driven sequential chemical reactions in an aqueous environment.
Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao
2014-06-24
Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.
Plasmon-driven sequential chemical reactions in an aqueous environment
Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao
2014-01-01
Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight. PMID:24958029
From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective
NASA Astrophysics Data System (ADS)
Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van
2018-01-01
The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.
Lichen-rock interaction in volcanic environments: evidences of soil-precursor formation
NASA Astrophysics Data System (ADS)
Vingiani, S.; Adamo, P.; Terribile, F.
2012-04-01
The weathering action of the lichens Lecidea fuscoatra (L.) Ach. and Stereocaulon vesuvianum Pers. on basaltic rock collected on the slopes of Mt. Etna (Sicily) at 1550 m a.s.l. has been studied using optical (OM) and electron (SEM) microscopy equipped with microanalytical device (EDS). Biological factors associated with lichen growth play a major role in the weathering of minerals on bare rocks and contribute to the preliminary phases of soil formation. The present work investigates the biogeophysical and biogeochemical weathering associated to the growth of epilithic lichens on lava flows from Mt. Etna (Sicily) and Mt. Vesuvius (Campania). The chosen lichen species were the crustose Lecidea fuscoatra (L.) Ach., the foliose Xanthoparmelia conspersa and the fructicose Stereocaulon vesuvianum Pers. An integrated approach based on the study of both disturbed and undisturbed samples of lichenized rock was applied in order to appreciate the complexity of the rock-lichen interface environment in terms of micromorphological, mineralogical and chemical properties. XRD and XRF analyses coupled to microscopical (OM), submicroscopical (SEM) and microanalitical (EDS) observations were the used techniques. In both study environments, the chemical, mineralogical and micromorphological properties of the uncoherent materials found at the lichen-rock interface suggest they consist of rock fragments eroded from the surroundings and accumulated in cavities and fissures of the rough lava flows. According to the thallus morphology, the lichens colonizing the lava preserve the interface materials from further aeolic and water erosion, provide these materials of organic matter and moisture, entrap allochtonous quartz and clay minerals. The calcium oxalate production by L. fuscoatra and X. conspersa, the Al enrichment around S. vesuvianum hyphae and the occurrence of Fe-oxide phases at the rock-lichen interface are evidences of lichens interaction with the underlying sediments. Indeed, according to the young age of the basaltic lava the recent lichen colonization results in a physical reorganization and chemical modification of the interface materials, which are not necessarily produced by the lichen action on the rock substrate. In volcanic environment, the ability of lichens to retain considerable amount of unconsolidated material, which becomes mixed with organic matter, produced by decomposition of the thallus, and trap atmospheric dust may contribute to the andosolization process. Accumulation of Al and Fe, found at the rock-lichen interface likely as organo-metal complexes, can be considered initial stage of Al and Fe active phases formation, distinguishing features of Andosols development. The simple chelating oxalic acid, produced by the lichens, may be involved in the formation of organo-metal complexes.
Magel, Jennifer M T; Pleizier, Naomi; Wilson, Alexander D M; Shultz, Aaron D; Vera Chang, Marilyn N; Moon, Thomas W; Cooke, Steven J
2017-01-01
As human populations continue to expand, increases in coastal development have led to the alteration of much of the world's mangrove habitat, creating problems for the multitude of species that inhabit these unique ecosystems. Habitat alteration often leads to changes in habitat complexity and predation risk, which may serve as additional stressors for those species that rely on mangroves for protection from predators. However, few studies have been conducted to date to assess the effects of these specific stressors on glucocorticoid (GC) stress hormone levels in wild fish populations. Using the checkered puffer as a model, our study sought to examine the effects of physical habitat complexity and predator environment on baseline and acute stress-induced GC levels. This was accomplished by examining changes in glucose and cortisol concentrations of fish placed in artificial environments for short periods (several hours) where substrate type and the presence of mangrove roots and predator cues were manipulated. Our results suggest that baseline and stress-induced GC levels are not significantly influenced by changes in physical habitat complexity or the predator environment using the experimental protocol that we applied. Although more research is required, the current study suggests that checkered puffers may be capable of withstanding changes in habitat complexity and increases in predation risk without experiencing adverse GC-mediated physiological effects, possibly as a result of the puffers' unique morphological and chemical defenses that help them to avoid predation in the wild. Copyright © 2016 Elsevier Inc. All rights reserved.
Towards adaptive, streaming analysis of x-ray tomography data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.
2015-03-04
Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing amore » framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.« less
In-situ Subsurface Soil Analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulmer, Chris
The Department of Energy’s (DOE’s) Terrestrial Ecosystem Science (TES) program is seeking improved sensor systems for monitoring hydro-biogeochemical processes in complex subsurface environments. The TES program is specifically interested in acquiring chemical and structural information regarding the type and nature of the hydration and redox states of subsurface chemical species. The technology should be able to perform on-site and real-time measurements to provide information not available using current sample acquisition and preservation processes. To address the needs of the DOE and the terrestrial science community, Physical Optics Corporation (POC) worked on the development of a new In-Situ Subsurface Soil Analyzermore » (ISSA) based on magnetic resonance technologies. Benchtop testing was performed to assess the feasibility of continuous wave electron pair resonance (CW-EPR) detection of chemical species in subsurface soil systems.« less
Swarming behavior of gradient-responsive Brownian particles in a porous medium.
Grančič, Peter; Štěpánek, František
2012-07-01
Active targeting by Brownian particles in a fluid-filled porous environment is investigated by computer simulation. The random motion of the particles is enhanced by diffusiophoresis with respect to concentration gradients of chemical signals released by the particles in the proximity of a target. The mathematical model, based on a combination of the Brownian dynamics method and a diffusion problem is formulated in terms of key parameters that include the particle diffusiophoretic mobility and the signaling threshold (the distance from the target at which the particles release their chemical signals). The results demonstrate that even a relatively simple chemical signaling scheme can lead to a complex collective behavior of the particles and can be a very efficient way of guiding a swarm of Brownian particles towards a target, similarly to the way colonies of living cells communicate via secondary messengers.
Theory of Epithelial Cell Shape Transitions Induced by Mechanoactive Chemical Gradients.
Dasbiswas, Kinjal; Hannezo, Edouard; Gov, Nir S
2018-02-27
Cell shape is determined by a balance of intrinsic properties of the cell as well as its mechanochemical environment. Inhomogeneous shape changes underlie many morphogenetic events and involve spatial gradients in active cellular forces induced by complex chemical signaling. Here, we introduce a mechanochemical model based on the notion that cell shape changes may be induced by external diffusible biomolecules that influence cellular contractility (or equivalently, adhesions) in a concentration-dependent manner-and whose spatial profile in turn is affected by cell shape. We map out theoretically the possible interplay between chemical concentration and cellular structure. Besides providing a direct route to spatial gradients in cell shape profiles in tissues, we show that the dependence on cell shape helps create robust mechanochemical gradients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Permutation Entropy Applied to Movement Behaviors of Drosophila Melanogaster
NASA Astrophysics Data System (ADS)
Liu, Yuedan; Chon, Tae-Soo; Baek, Hunki; Do, Younghae; Choi, Jin Hee; Chung, Yun Doo
Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assary, R. S.; Redfern, P. C.; Greeley, J.
2011-03-28
Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large,more » about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assary, Rajeev S.; Redfern, Paul C.; Greeley, Jeffrey P.
2011-04-21
Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large,more » about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assary, Rajeev S.; Redfern, Paul C.; Greeley, Jeffrey
2011-03-28
Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large,more » about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.« less
Characterization of synergistic embryotoxicity of nickel and buprofezin in zebrafish.
Ku, Tingting; Yan, Wei; Jia, Wuyao; Yun, Yang; Zhu, Na; Li, Guangke; Sang, Nan
2015-04-07
Multiple pollutants, usually at low levels, coexist and may interact in the environment. It is therefore important to analyze the toxicity of mixtures of coexisting chemicals to evaluate the potential ecological risk. Concern regarding the co-occurrence and combined bioeffects of heavy metals and organic insecticides in aquatic settings has existed for many years, but a clear understanding of the interactions between and potential combined toxicity of these chemicals remains elusive. In the present study, the combined effects of the heavy metal nickel (NiSO4) and insect growth regulator buprofezin on the induction of embryo toxicity in zebrafish were assessed. By applying nonlinear regression to the concentration-response data with each of the chemicals using the Hill and Langmuir functions and computing the predictions using the model of concentration addition (CA), we confirmed that NiSO4 and buprofezin acted together to produce synergistic embryotoxicity in zebrafish. Subsequently, we further found that the combination of NiSO4 and buprofezin formed a complex that facilitated the uptake of nickel (Ni) and buprofezin by the embryos. Following this, we clarified that an oxidative mechanism of the complex might underlie the synergistic embryotoxicity of NiSO4 and buprofezin.
NASA Astrophysics Data System (ADS)
Schünemann, Adriano Luis; Inácio Fernandes Filho, Elpídio; Rocha Francelino, Marcio; Rodrigues Santos, Gérson; Thomazini, Andre; Batista Pereira, Antônio; Gonçalves Reynaud Schaefer, Carlos Ernesto
2017-04-01
The knowledge of environmental variables values, in non-sampled sites from a minimum data set can be accessed through interpolation technique. Kriging and the classifier Random Forest algorithm are examples of predictors with this aim. The objective of this work was to compare methods of soil attributes spatialization in a recent deglaciated environment with complex landforms. Prediction of the selected soil attributes (potassium, calcium and magnesium) from ice-free areas were tested by using morphometric covariables, and geostatistical models without these covariables. For this, 106 soil samples were collected at 0-10 cm depth in Keller Peninsula, King George Island, Maritime Antarctica. Soil chemical analysis was performed by the gravimetric method, determining values of potassium, calcium and magnesium for each sampled point. Digital terrain models (DTMs) were obtained by using Terrestrial Laser Scanner. DTMs were generated from a cloud of points with spatial resolutions of 1, 5, 10, 20 and 30 m. Hence, 40 morphometric covariates were generated. Simple Kriging was performed using the R package software. The same data set coupled with morphometric covariates, was used to predict values of the studied attributes in non-sampled sites through Random Forest interpolator. Little differences were observed on the DTMs generated by Simple kriging and Random Forest interpolators. Also, DTMs with better spatial resolution did not improved the quality of soil attributes prediction. Results revealed that Simple Kriging can be used as interpolator when morphometric covariates are not available, with little impact regarding quality. It is necessary to go further in soil chemical attributes prediction techniques, especially in periglacial areas with complex landforms.
New perspectives on neuronal development via microfluidic environments
Millet, Larry J.; Gillette, Martha U.
2012-01-01
Understanding the signals that guide neuronal development and direct formation of axons, dendrites, and synapses during wiring of the brain is a fundamental challenge of developmental neuroscience. Discovering how local signals shape developing neurons has been impeded by the inability of conventional culture methods to interrogate micro-environments of complex neuronal cytoarchitectures, where different sub-domains encounter distinct chemical, physical, and fluidic features. Micro-fabrication techniques are enabling the creation of micro-environments tailored to neuronal structures and sub-domains, with unprecedented access and control. The design, fabrication, and properties of microfluidic devices offer significant advantages for addressing unresolved issues of neuronal development. These high-resolution approaches are poised to contribute new insights into mechanisms for restoring neuronal function and connectivity compromised by injury, stress, and neurodegeneration. PMID:23031246
From surface to intracellular non-invasive nanoscale study of living cells impairments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewald, Dr. Maxime; Tetard, Laurene; Elie-Caille, Dr. Cecile
Among the enduring challenges in nanoscience, subsurface characterization of live cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale (1,2,3). However, measurements in liquid environments remain complex (4,5,6,7), in particular in the subsurface domain. Here we introduce liquid-Mode Synthesizing Atomic Force Microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach for living cellmore » nanoscale imaging, l-MSAFM, in their physiological environment or in presence of a chemical stress agent confirmed the loss of inner structures induced by glyphosate. The ability to monitor the cell's inner response to external stimuli, non-destructively and in real time, has the potential to unveil critical nanoscale mechanisms of life science.« less
Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang
2014-05-15
Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ((1)H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE. Copyright © 2014 Elsevier B.V. All rights reserved.
From surface to intracellular non-invasive nanoscale study of living cells impairments
NASA Astrophysics Data System (ADS)
Ewald, M.; Tetard, L.; Elie-Caille, C.; Nicod, L.; Passian, A.; Bourillot, E.; Lesniewska, E.
2014-07-01
Among the enduring challenges in nanoscience, subsurface characterization of living cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale. However, measurements in liquid environments remain complex, in particular in the subsurface domain. Here we introduce liquid-mode synthesizing atomic force microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach, l-MSAFM, for nanoscale imaging of living cell in their physiological environment or in presence of a chemical stress agent could resolve the loss of inner structures induced by glyphosate, the main component of a well-known pesticide (RoundUp™). This firsthand ability to monitor the cell’s inner response to external stimuli non-destructively and in liquid, has the potential to unveil critical nanoscale mechanisms of life science.
Access to Formally Ni(I) States in a Heterobimetallic NiZn System
Uyeda, Christopher
2014-01-01
Heterobimetallic NiZn complexes featuring metal centers in distinct coordination environments have been synthesized using diimine-dioxime ligands as binucleating scaffolds. A tetramethylfuran-containing ligand derivative enables a stable one-electron-reduced S = 1/2 species to be accessed using Cp2Co as a chemical reductant. The resulting pseudo-square planar complex exhibits spectroscopic and crystallographic characteristics of a ligand-centered radical bound to a Ni(II) center. Upon coordination of a π-acidic ligand such as PPh3, however, a five-coordinate Ni(I) metalloradical is formed. The electronic structures of these reduced species provide insight into the subtle effects of ligand structure on the potential and reversibility of the NiII/I couple for complexes of redox-active tetraazamacrocycles. PMID:25614786
Echeverria-Beirute, Fabian; Murray, Seth C; Klein, Patricia; Kerth, Chris; Miller, Rhonda; Bertrand, Benoit
2018-05-30
Beverage quality is a complex attribute of coffee ( Coffea arabica L.). Genotype (G), environment (E), management (M), postharvest processing, and roasting are all involved. However, little is known about how G × M interactions influence beverage quality. We investigated how yield and coffee leaf rust (CLR) disease (caused by Hemileia vastatrix Berk. et Br.) management affect cup quality and plant performance, in two coffee cultivars. Sensory and chemical analyses revealed that 10 of 70 attributes and 18 of 154 chemical volatile compounds were significantly affected by G and M. Remarkably, acetaminophen was found for the first time in roasted coffee and in higher concentrations under more stressful conditions. A principal component analysis described 87% of the variation in quality and plant overall performance. This study is a first step in understanding the complexity of the physiological, metabolic, and molecular changes in coffee production, which will be useful for the improvement of coffee cultivars.
Patil, Sunil S.; Thakur, Ganesh A.; Shaikh, Manzoor M.
2011-01-01
Mixed ligand complexes of dioxouranium (VI) of the type [UO2(Q)(L)·2H2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and amino acids (HL) such as L-threonine, L-tryptophan, and L-isoleucine as secondary ligands. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements, and spectral and thermal studies. The electrical conductance studies of the complexes indicate their nonelectrolytic nature. Magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes show intraligand and charge transfer transitions, respectively. Bonding of the metal ion through N- and O-donor atoms of the ligands is revealed by IR studies, and the chemical environment of the protons is confirmed by NMR studies. The thermal analysis data of the complexes indicate the presence of coordinated water molecules. The agar cup and tube dilution methods have been used to study the antibacterial activity of the complexes against the pathogenic bacteria S. aureus, C. diphtheriae, S. typhi, and E. coli. PMID:22389843
Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells
Lembong, Josephine; Sabass, Benedikt; Sun, Bo; Rogers, Matthew E.; Stone, Howard A.
2015-01-01
Cells constantly sense their chemical and mechanical environments. We study the effect of mechanics on the ATP-induced collective calcium response of fibroblast cells in experiments that mimic various tissue environments. We find that closely packed two-dimensional cell cultures on a soft polyacrylamide gel (Young's modulus E = 690 Pa) contain more cells exhibiting calcium oscillations than cultures on a rigid substrate (E = 36 000 Pa). Calcium responses of cells on soft substrates show a slower decay of calcium level relative to those on rigid substrates. Actin enhancement and disruption experiments for the cell cultures allow us to conclude that actin filaments determine the collective Ca2+ oscillatory behaviour in the culture. Inhibition of gap junctions results in a decrease of the oscillation period and reduced correlation of calcium responses, which suggests additional complexity of signalling upon cell–cell contact. Moreover, the frequency of calcium oscillations is independent of the rigidity of the substrate but depends on ATP concentration. We compare our results with those from similar experiments on individual cells. Overall, our observations show that collective chemical signalling in cell cultures via calcium depends critically on the mechanical environment. PMID:26063818
Definition and applications of a versatile chemical pollution footprint methodology.
Zijp, Michiel C; Posthuma, Leo; van de Meent, Dik
2014-09-16
Because of the great variety in behavior and modes of action of chemicals, impact assessment of multiple substances is complex, as is the communication of its results. Given calls for cumulative impact assessments, we developed a methodology that is aimed at expressing the expected cumulative impacts of mixtures of chemicals on aquatic ecosystems for a region and subsequently allows to present these results as a chemical pollution footprint, in short: a chemical footprint. Setting and using a boundary for chemical pollution is part of the methodology. Two case studies were executed to test and illustrate the methodology. The first case illustrates that the production and use of organic substances in Europe, judged with the European water volume, stays within the currently set policy boundaries for chemical pollution. The second case shows that the use of pesticides in Northwestern Europe, judged with the regional water volume, has exceeded the set boundaries, while showing a declining trend over time. The impact of mixtures of substances in the environment could be expressed as a chemical footprint, and the relative contribution of substances to that footprint could be evaluated. These features are a novel type of information to support risk management, by helping prioritization of management among chemicals and environmental compartments.
NASA Astrophysics Data System (ADS)
Ozcelik, Ongun; White, Claire
Alkali-activated materials which have augmented chemical compositions as compared to ordinary Portland cement are sustainable technologies that have the potential to lower CO2 emissions associated with the construction industry. In particular, calcium-silicate-hydrate (C-S-H) gel is altered at the atomic scale due to changes in its chemical composition. Here, based on first-principles calculations, we predict a charge balancing mechanism at the molecular level in C-S-H gels when alkali atoms are introduced into their structure. This charge balancing process is responsible for the formation of novel structures which possess superior mechanical properties compared to their charge unbalanced counterparts. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these charge balancing effects on the structures is assessed by analyzing their formation energies, local bonding environments, diffusion barriers and mechanical properties. These results provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental mechanisms that play a crucial role in these complex disordered materials. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF.
Hormonally active agents in the environment: a state-of-the-art review.
Anwer, Faizan; Chaurasia, Savita; Khan, Abid Ali
2016-12-01
After the Second World War, infatuation with modern products has exponentially widened the spectrum of chemicals used. Some of them are capable of hijacking the endocrine system by blocking or imitating a hormone and are referred to as hormonally active chemicals or endocrine disruptors. These are chemicals that the body was not designed for evolutionarily and they are present in every matrix of the environment. We are living in a chemical world where the exposures are ubiquitous and take place in combinations that can interact with the endocrine system and some other metabolic activities in unexpected ways. The complexity of interaction of these compounds can be understood by the fact that they interfere with gene expression at extremely low levels, consequently harming an individual life form, its offspring or population. As the endocrine system plays a critical role in many biological or physiological functions, by interfering body's endocrine system, endocrine disrupting compounds (EDCs) have various adverse effects on human health, starting from birth defects to developmental disorders, deadly deseases like cancer and even immunological disorders. Most of these compounds have not been tested yet for safety and their effects cannot be assessed by the available techniques. The establishment of proper exposure measurement techniques and integrating correlation is yet to be achieved to completely understand the impacts at various levels of the endocrine axis.
Franco, Antonio; Price, Oliver R; Marshall, Stuart; Jolliet, Olivier; Van den Brink, Paul J; Rico, Andreu; Focks, Andreas; De Laender, Frederik; Ashauer, Roman
2017-03-01
Current regulatory practice for chemical risk assessment suffers from the lack of realism in conventional frameworks. Despite significant advances in exposure and ecological effect modeling, the implementation of novel approaches as high-tier options for prospective regulatory risk assessment remains limited, particularly among general chemicals such as down-the-drain ingredients. While reviewing the current state of the art in environmental exposure and ecological effect modeling, we propose a scenario-based framework that enables a better integration of exposure and effect assessments in a tiered approach. Global- to catchment-scale spatially explicit exposure models can be used to identify areas of higher exposure and to generate ecologically relevant exposure information for input into effect models. Numerous examples of mechanistic ecological effect models demonstrate that it is technically feasible to extrapolate from individual-level effects to effects at higher levels of biological organization and from laboratory to environmental conditions. However, the data required to parameterize effect models that can embrace the complexity of ecosystems are large and require a targeted approach. Experimental efforts should, therefore, focus on vulnerable species and/or traits and ecological conditions of relevance. We outline key research needs to address the challenges that currently hinder the practical application of advanced model-based approaches to risk assessment of down-the-drain chemicals. Integr Environ Assess Manag 2017;13:233-248. © 2016 SETAC. © 2016 SETAC.
François, Brillet; Armand, Maul; Marie-José, Durand; Thouand, Gérald
2016-09-01
With thousands of organic chemicals released every day into our environment, Europe and other continents are confronted with increased risk of health and environmental problems. Even if a strict regulation such as REgistration, Authorization and restriction of CHemicals (REACH) is imposed and followed by industry to ensure that they prove the harmlessness of their substances, not all testing procedures are designed to cope with the complexity of the environment. This is especially true for the evaluation of persistence through biodegradability assessment guidelines. Our new approach has been to adapt "in the lab" biodegradability assessment to the environmental conditions and model the probability for a biodegradation test to be positive in the form of a logistic function of both the temperature and the viable cell density. Here, a proof of this new concept is proposed with the establishment of tri-dimensional biodegradability profiles of six chemicals (sodium benzoate, 4-nitrophenol, diethylene glycol, 2,4,5-trichlorophenol, atrazine, and glyphosate) between 4 to 30 °C and 10(4) to 10(8) cells ml(-1) as can be found in environmental compartments in time and space. The results show a significant increase of the predictive power of existing screening lab-scale tests designed for soluble substances. This strategy can be complementary to those current testing strategies with the creation of new indicators to quantify environmental persistence using lab-scale tests.
Application of Biocatalysis to on-DNA Carbohydrate Library Synthesis.
Thomas, Baptiste; Lu, Xiaojie; Birmingham, William R; Huang, Kun; Both, Peter; Reyes Martinez, Juana Elizabeth; Young, Robert J; Davie, Christopher P; Flitsch, Sabine L
2017-05-04
DNA-encoded libraries are increasingly used for the discovery of bioactive lead compounds in high-throughput screening programs against specific biological targets. Although a number of libraries are now available, they cover limited chemical space due to bias in ease of synthesis and the lack of chemical reactions that are compatible with DNA tagging. For example, compound libraries rarely contain complex biomolecules such as carbohydrates with high levels of functionality, stereochemistry, and hydrophilicity. By using biocatalysis in combination with chemical methods, we aimed to significantly expand chemical space and generate generic libraries with potentially better biocompatibility. For DNA-encoded libraries, biocatalysis is particularly advantageous, as it is highly selective and can be performed in aqueous environments, which is an essential feature for this split-and-mix library technology. In this work, we demonstrated the application of biocatalysis for the on-DNA synthesis of carbohydrate-based libraries by using enzymatic oxidation and glycosylation in combination with traditional organic chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coordinated Chemical and Isotopic Imaging of Bells (CM2) Meteorite Matrix
NASA Technical Reports Server (NTRS)
Clemett, S. J.; Messenger, S.; Naklamura-Messenger, K.; Thomas-Keprta, K. L.
2014-01-01
Meteoritic organic matter is a complex conglomeration of species formed in distinct environments and processes in circumstellar space, the interstellar medium, the Solar Nebula and asteroids. Consequently meteorites constitute a unique record of primordial organic chemical evolution. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is little information as to how these species are spatially distributed and their relationship to the host mineral matrix. The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) aqueous alteration that may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. Here we present the results of the first coordinated in situ isotopic and chemical mapping study of the Bells meteorite using a newly developed two-step laser mass spectrometer (mu-L(sup 2)MS) capable of measuring a broad range of organic compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Alyssa Y.; Baruch, Moshe; Ajo-Franklin, Caroline M.
Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new waymore » of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.« less
Zhou, Alyssa Y.; Baruch, Moshe; Ajo-Franklin, Caroline M.; ...
2017-09-15
Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new waymore » of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.« less
Hydrogen Cyanide In Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore
2018-01-01
The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.
METHODS FOR THE DETERMINATION OF TOTAL ORGANIC ...
Organic matter in soils and sediments is widely distributed over the earth's surface occurring in almost all terrestrial and aquatic environments (Schnitzer, 1978). Soils and sediments contain a large variety of organic materials ranging from simple sugars and carbohydrates to the more complex proteins, fats, waxes, and organic acids. Important characteristics of the organic matter include their ability to: form water-soluble and water- insoluble complexes with metal ions and hydrous oxides; interact with clay minerals and bind particles together; sorb and desorb both naturally-occurring and anthropogenically-introduced organic compounds; absorb and release plant nutrients; and hold water in the soil environment. As a result of these characteristics, the determination of total organic carbon (a measure of one of the chemical components of organic matter that is often used as an indicator of its presence in a soil or sediment) is an essential part of any site characterization since its presence or absence can markedly influence how chemicals will react in the soil or sediment. Soil and sediment total organic carbon (TOC) determinations are typically requested with contaminant analyses as part of an ecological risk assessment data package. TOC contents may be used qualitatively to assess the nature of the sampling location (e.g., was it a depositional area) or may be used to normalize portions of the analytical chemistry data set (e.g., equilibrium partitioning).
NASA Astrophysics Data System (ADS)
Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka
Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y., Marumo, K., Yabashi, S., Kaneko, T., and Kobayashi, K., (2004). Curie-Point Pyrolysis of Complex Organics Simulated by Cosmic Rays Irradiation of Simple Inorganic Gas Mixture. Appl Phys. Lett., 85, 1633.
Semivolatile organic compounds in residential air along the Arizona-Mexico border.
Gale, Robert W; Cranor, Walter L; Alvarez, David A; Huckins, James N; Petty, Jimmie D; Robertson, Gary L
2009-05-01
Concerns about indoor air quality and the potential effects on people living in these environments are increasing as more reports about the toxicities and the potential indoor air exposure levels of household-use chemicals and chemicals from housing and fumishing manufacture in air are being assessed. Gas chromatography/mass spectromery was used to confirm numerous airborne contaminants obtained from the analysis of semipermeable membrane devices deployed inside of 52 homes situated along the border between Arizona and Mexico. We also describe nontarget analytes in the organochlorine pesticide fractions of 12 of these homes; this fraction is also the most likely to contain the broadest scope of bioconcentratable chemicals accumulated from the indoor air. Approximately 400 individual components were identified, ranging from pesticides to a wide array of hydrocarbons, fragrances such as the musk xylenes, flavors relating to spices, aldehydes, alcohols, esters and phthalate esters, and other miscellaneous types of chemicals. The results presented in this study demonstrate unequivocally that the mixture of airborne chemicals present indoors is far more complex than previously demonstrated.
Gao, Shan; Chen, Weiyang; Zeng, Yingxin; Jing, Haiming; Zhang, Nan; Flavel, Matthew; Jois, Markandeya; Han, Jing-Dong J; Xian, Bo; Li, Guojun
2018-04-18
Traditional toxicological studies have relied heavily on various animal models to understand the effect of various compounds in a biological context. Considering the great cost, complexity and time involved in experiments using higher order organisms. Researchers have been exploring alternative models that avoid these disadvantages. One example of such a model is the nematode Caenorhabditis elegans. There are some advantages of C. elegans, such as small size, short life cycle, well defined genome, ease of maintenance and efficient reproduction. As these benefits allow large scale studies to be initiated with relative ease, the problem of how to efficiently capture, organize and analyze the resulting large volumes of data must be addressed. We have developed a new method for quantitative screening of chemicals using C. elegans. 33 features were identified for each chemical treatment. The compounds with different toxicities were shown to alter the phenotypes of C. elegans in distinct and detectable patterns. We found that phenotypic profiling revealed conserved functions to classify and predict the toxicity of different chemicals. Our results demonstrate the power of phenotypic profiling in C. elegans under different chemical environments.
Experimental Studies on Hypersonic Stagnation Point Chemical Environment
2006-02-01
conditions [60]. Having this complete definition we will focus on the chemical environment produce in the SPR. 3.2 Chemical environment evaluation Flow ... chemistry involves a very large number of processes and microscopic phenomena, they are usually summarized in a set of chemical reactions, with their own
A Scheme for the Integrated Assessment of Mitigation Options
NASA Astrophysics Data System (ADS)
Held, H.; Edenhofer, O.
2003-04-01
After some consensus has been achieved that the global mean temperature will have increased by 1.4 to 5.8^oC at the end of this century in case of continued ``business as usual'' greenhouse gas emissions, society has to decide if or which mitigation measures should be taken. A new integrated assessment project on this very issue will be started at PIK in spring 2003. The assessment will cover economic aspects as well as potential side effects of various measures. In the economic module, the effects of investment decisions on technological innovation will be explicitly taken into account. Special emphasize will be put on the issue of uncertainty. Hereby we distinguish the uncertainty related to the Integrated Assessment modules, including the economic module, from the fact that no over-complex system can be fully captured by a model. Therefore, a scheme for the assessment of the ``residual'', the non-modelled part of the system, needs to be worked out. The scheme must be truly interdisciplinary, i.e. must be applicable to at least the natural science and the economic aspects. A scheme based on meta-principles like minimum persistence, ubiquity, or irreversibility of potential measures appears to be a promising candidate. An implementation of ubiquity as at present successfully operated in environmental chemistry may serve as a guideline [1]. Here, the best-known mechanism within a complex impact chain of potentially harmful chemicals, their transport, is captured by a reaction-diffusion mechanism [2]. begin{thebibliography}{0} bibitem{s} M. Scheringer, Persistence and spatial range as endpoints of an exposure-based assessment of organic chemicals. Environ. Sci. Technol. 30: 1652-1659 (1996). bibitem{h} H. Held, Robustness of spatial ranges of environmental chemicals with respect to model dimension, accepted for publication in Stoch. Environ. Res. Risk Assessment.
Advanced Electric Propulsion for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Oleson, Steve
1999-01-01
The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.
Li, Xiang; Sun, Ming-Zhu; Li, Xu; Zhang, Shu-Hui; Dai, Liang-Ti; Liu, Xing-Yu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng
2017-11-01
The extensive usage of xenobiotic endocrine disrupting chemicals (XEDCs), such as Bisphenol A (BPA), has created obvious threat to aquatic ecosystems worldwide. Although a comprehensive understanding of the adverse effect of BPA on behaviors and physiology have been proven, the potential impact of low-dose BPA on altering the basic ability of aquatic organism in adapting to the surrounded complex environment still remains elusive. In this research, we report that treatment of adult male zebrafish with chronic (7 weeks) low-dose (0.22 nM-2.2 nM) BPA, altered the ability in adapting the complex environment by disturbing the natural color preference patterns. In addition, chronic 50 ng/L (0.22 nM) BPA exposure alleviated the anxiety behavior of male zebrafish confronted with the novel environment by enhancing the preference towards light in the light/dark preference test. This phenotype was associated with less expression of serotonin (5-TH) in the hypothalamus and the down-regulation of tyrosine hydroxylase (TH) in brain tissues. As such, our results show that low-dose BPA remnant in surface waters altered zebrafish behavior that are known to have ecological and evolutionary consequences. Here we reported that the impact of chronic low-dose BPA exposure on the basic capability of zebrafish to adapt to the environmental complexity. Specifically, BPA at low concentration, under the environmental safety level and 3000-fold lower than the accepted human daily exposure, interfered with the ability to discriminate color and alleviate anxiety induced by the novel environment, which finally altered the capability of male zebrafish to adapt to the environmental complexity. These findings revealed the ecological effect of low-dose BPA and regular BPA concentration standard are not necessarily safe. The result also provided the consideration of retuning the hazard concentration level of BPA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of point defects on the amorphization of metallic alloys during ion implantation. [NiTi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedraza, D.F.; Mansur, L.K.
1985-01-01
A theoretical model of radiation-induced amorphization of ordered intermetallic compounds is developed. The mechanism is proposed to be the buildup of lattice defects to very high concentrations, which destabilizes the crystalline structure. Because simple point defects do not normally reach such levels during irradiation, a new defect complex containing a vacancy and an interstitial is hypothesized. Crucial properties of the complex are that the interstitial sees a local chemical environment similar to that of an atom in the ordered lattice, that the formation of the complex prevents mutual recombination and that the complex is immobile. The evolution of a disordermore » based on complexes is not accompanied by like point defect aggregation. The latter leads to the development of a sink microstructure in alloys that do not become amorphous. For electron irradiation, the complexes form by diffusional encounters. For ion irradiation, complexes are also formed directly in cascades. The possibility of direct amorphization in cascades is also included. Calculations for the compound NiTi show reasonable agreement with measured amorphization kinetics.« less
A multi target approach to control chemical reactions in their inhomogeneous solvent environment
NASA Astrophysics Data System (ADS)
Keefer, Daniel; Thallmair, Sebastian; Zauleck, Julius P. P.; de Vivie-Riedle, Regina
2015-12-01
Shaped laser pulses offer a powerful tool to manipulate molecular quantum systems. Their application to chemical reactions in solution is a promising concept to redesign chemical synthesis. Along this road, theoretical developments to include the solvent surrounding are necessary. An appropriate theoretical treatment is helpful to understand the underlying mechanisms. In our approach we simulate the solvent by randomly selected snapshots from molecular dynamics trajectories. We use multi target optimal control theory to optimize pulses for the various arrangements of explicit solvent molecules simultaneously. This constitutes a major challenge for the control algorithm, as the solvent configurations introduce a large inhomogeneity to the potential surfaces. We investigate how the algorithm handles the new challenges and how well the controllability of the system is preserved with increasing complexity. Additionally, we introduce a way to statistically estimate the efficiency of the optimized laser pulses in the complete thermodynamical ensemble.
Recent developments in biochar as an effective tool for agricultural soil management: a review.
Laghari, Mahmood; Naidu, Ravi; Xiao, Bo; Hu, Zhiquan; Mirjat, Muhammad Saffar; Hu, Mian; Kandhro, Muhammad Nawaz; Chen, Zhihua; Guo, Dabin; Jogi, Qamardudin; Abudi, Zaidun Naji; Fazal, Saima
2016-12-01
In recent years biochar has been demonstrated to be a useful amendment to sequester carbon and reduce greenhouse gas emission from the soil to the atmosphere. Hence it can help to mitigate global environment change. Some studies have shown that biochar addition to agricultural soils increases crop production. The mechanisms involved are: increased soil aeration and water-holding capacity, enhanced microbial activity and plant nutrient status in soil, and alteration of some important soil chemical properties. This review provides an in-depth consideration of the production, characterization and agricultural use of different biochars. Biochar is a complex organic material and its characteristics vary with production conditions and the feedstock used. The agronomic benefits of biochar solely depend upon the use of particular types of biochar with proper field application rate under appropriate soil types and conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Literally Green Chemical Synthesis of Artemisinin from Plant Extracts.
Triemer, Susann; Gilmore, Kerry; Vu, Giang T; Seeberger, Peter H; Seidel-Morgenstern, Andreas
2018-05-04
Active pharmaceutical ingredients are either extracted from biological sources-where they are synthesized in complex, dynamic environments-or prepared in stepwise chemical syntheses by reacting pure reagents and catalysts under controlled conditions. A combination of these two approaches, where plant extracts containing reagents and catalysts are utilized in intensified chemical syntheses, creates expedient and sustainable processes. We illustrate this principle by reacting crude plant extract, oxygen, acid, and light to produce artemisinin, a key active pharmaceutical ingredient of the most powerful antimalarial drugs. The traditionally discarded extract of Artemisia annua plants contains dihydroartemisinic acid-the final biosynthetic precursor-as well as chlorophyll, which acts as a photosensitizer. Efficient irradiation with visible light in a continuous-flow setup produces artemisinin in high yield, and the artificial biosynthetic process outperforms syntheses with pure reagents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
User-friendly chemistry takes center stage at ACS meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pool, R.
1992-09-11
These days it seems that what chemistry needs more than anything else is a good p.r. agent. If you ask John or Joan Q. Public about the accomplishments of the chemical industry, chances are they'll mention Love Canal, CFCs destroying the ozone layer, or carcinogens in food. However, if the national meeting of the American Chemical Society in Washington, D.C., 2 weeks ago is any indication, chemists are working hard to fix the image problem. Nearly all of the two dozen press conferences held during the meeting focused on food, health topics, environment-friendly technology, or some other subject close tomore » consumers' hearts. And the scientific talks themselves reflected the same interests, with sessions such as Environmental Successes in the Chemical Industry', Food Phytochemicals for Cancer Prevention', Chemistry of Electrophilic Metal Complexes', New Advances in Polyolefin Polymers', Zapping acid rain with microwaves.'« less
NASA Astrophysics Data System (ADS)
Hegrová, Jitka; Steiner, Oliver; Goessler, Walter; Tanda, Stefan; Anděl, Petr
2017-09-01
A comprehensive overview of the influence of transport on the environment is presented in this study. The complex analysis of soil and needle samples provides an extensive set of data, which presents elemental contamination of the environment near roads. Traffic pollution (including winter road treatment) has a significant negative influence on our environment. Besides sodium and chlorine from winter maintenance many other elements are emitted into the environment. Three possible sources of contamination are assumed for environmental contamination evaluation: car emission, winter maintenance and abrasion from breaks and clutches. The chemical analysis focused on the description of samples from inorganic point of view. The influence of the contamination potential on the sodium and chlorine content in the samples of 1st year-old and 2nd year-old needles of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) is discussed. Additional soil samples were taken from each sampling site and analyzed to get insight in the sodium and chlorine distribution. Statistical evaluation was used for interpretation of complex interaction patterns between element concentrations in different aged needles based on localities character including distance from the road and element concentration in soils. This species of needles were chosen because of its heightened sensitivity towards salinization. The study was conducted in different parts of the Czech Republic. The resulting database is a source of valuable information about the influence of transport on the environment.
New Constraints on a Complex Relation between Globular Cluster Colors and Environment
NASA Astrophysics Data System (ADS)
Powalka, Mathieu; Puzia, Thomas H.; Lançon, Ariane; Peng, Eric W.; Schönebeck, Frederik; Alamo-Martínez, Karla; Ángel, Simón; Blakeslee, John P.; Côté, Patrick; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Ferrarese, Laura; Grebel, Eva K.; Guhathakurta, Puragra; Gwyn, S. D. J.; Kuntschner, Harald; Lim, Sungsoon; Liu, Chengze; Lyubenova, Mariya; Mihos, J. Christopher; Muñoz, Roberto P.; Ordenes-Briceño, Yasna; Roediger, Joel; Sánchez-Janssen, Rubén; Spengler, Chelsea; Toloba, Elisa; Zhang, Hongxin
2016-09-01
We present an analysis of high-quality photometry for globular clusters (GCs) in the Virgo cluster core region, based on data from the Next Generation Virgo Cluster Survey (NGVS) pilot field, and in the Milky Way (MW), based on Very Large Telescope/X-Shooter spectrophotometry. We find significant discrepancies in color-color diagrams between sub-samples from different environments, confirming that the environment has a strong influence on the integrated colors of GCs. GC color distributions along a single color are not sufficient to capture the differences we observe in color-color space. While the average photometric colors become bluer with increasing radial distance to the cD galaxy M87, we also find a relation between the environment and the slope and intercept of the color-color relations. A denser environment seems to produce a larger dynamic range in certain color indices. We argue that these results are not due solely to differential extinction, Initial Mass Function variations, calibration uncertainties, or overall age/metallicity variations. We therefore suggest that the relation between the environment and GC colors is, at least in part, due to chemical abundance variations, which affect stellar spectra and stellar evolution tracks. Our results demonstrate that stellar population diagnostics derived from model predictions which are calibrated on one particular sample of GCs may not be appropriate for all extragalactic GCs. These results advocate a more complex model of the assembly history of GC systems in massive galaxies that goes beyond the simple bimodality found in previous decades.
NASA Astrophysics Data System (ADS)
Briggs, V. A.; Sogade, J.; Minsley, B.; Lambert, M.; Coles, D.; Repert, P.; Morgan, F.; Rossabi, J.; Riha, B.
2003-12-01
The purpose of this study is to image contaminant plumes of tetrachloroethylene (PCE) and Trichloroethylene (TCE) in a subsurface environment. PCE and TCE have been used in the metals fabrication industry since the start of the second word war and subsequently millions of tons of these chemicals have been released in to the environment. Once in the water supply these contaminants are difficult to remove and can be toxic at the part per billion level. Remediation at the source of many of these contaminated sites, in the form of vapour extraction, can effectively remove alot of the chemicals but without techniques to delineate the size and shape of the contaminated zone, or to monitor the effectiveness of the remediation effort, it is difficult to quantify the remediation success. Using complex resistivity methods it is possible to determine the spatial extent and concentration of these chemicals due to their effect on the pore space chemistry. Even at parts per billion the contaminantas can significantly alter the IP signature enabling detection. Data were collected from a site in South Carolina where these chemcals are known to have been released in large quantities from the 1950's through to the 1980's. Induced Polarization data were measured in a multi-borehole environment to ensure good data coverage. Data is inverted using a 3D finite difference bi-conjugate gradient method and correlated to ground truth boreholes within the region of interest.
Ultrastable cellulosome-adhesion complex tightens under load
Schoeler, Constantin; Malinowska, Klara H.; Bernardi, Rafael C.; Milles, Lukas F.; Jobst, Markus A.; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B.; Bayer, Edward A.; Schulten, Klaus; Gaub, Hermann E.; Nash, Michael A.
2014-01-01
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass. PMID:25482395
Lambreva, Maya D.; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K.
2013-01-01
Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA − state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space. PMID:23691201
Relationship between femtosecond-picosecond dynamics to enzyme catalyzed H-transfer
Cheatum, Christopher M.; Kohen, Amnon
2015-01-01
At physiological temperatures, enzymes exhibit a broad spectrum of conformations, which interchange via thermally activated dynamics. These conformations are sampled differently in different complexes of the protein and its ligands, and the dynamics of exchange between these conformers depends on the mass of the group that is moving and the length scale of the motion, as well as restrictions imposed by the globular fold of the enzymatic complex. Many of these motions have been examined and their role in the enzyme function illuminated, yet most experimental tools applied so far have identified dynamics at time scales of seconds to nanoseconds, which are much slower than the time scale for H-transfer between two heavy atoms. This chemical conversion and other processes involving cleavage of covalent bonds occur on picosecond to femtosecond time scales, where slower processes mask both the kinetics and dynamics. Here we present a combination of kinetic and spectroscopic methods that may enable closer examination of the relationship between enzymatic C-H→C transfer and the dynamics of the active site environment at the chemically relevant time scale. These methods include kinetic isotope effects and their temperature dependence, which are used to study the kinetic nature of the H-transfer, and 2D IR spectroscopy, which is used to study the dynamics of transition-state- and ground-state-analog complexes. The combination of these tools is likely to provide a new approach to examine the protein dynamics that directly influence the chemical conversion catalyzed by enzymes. PMID:23539379
Deep Biosphere Secrets of the Mediterranean Salt Giant
NASA Astrophysics Data System (ADS)
Aloisi, Giovanni; Lugli, Stefano; McGenity, Terry; Kuroda, Junichiro; Takai, Ken; Treude, Tina; Camerlenghi, Angelo
2015-04-01
One component of the IODP multi-platform drilling proposal called DREAM (Deep-Sea Record of Mediterranean Messisnian Events), plans to investigate the deep biosphere associated to the Messinian Salinity Crisis (MSC) Salt Giant. We propose that the MSC Salt Giant, because of the variety of chemical environments it produces, has the potential to harbour an unprecedented diversity of microbial life with exceptional metabolic activity. Gypsum and anhydrite deposits provide a virtually unlimited source of sulphate at depths where oxidants are a rarity in other sedimentary environments. When reduced organic carbon comes into contact with these minerals there is the potential for a dynamic deep biosphere community of sulphate reducers to develop, with implications for sedimentary biogeochemical cycles and the souring of cruide oil. But the thickness of the Messinian evaporites and the range of chemical environments it harbours poses fundamental questions: will the interaction of several extreme conditions of temperature, salinity, pressure and chemical composition limit the ability of microbes to take advantage of such favourable thermodynamic conditions? And has such a diverse set of physical and chemical environments fostered microbal diversity, rather than phylogenetic specialization, as recent research into deep Mediterranean brine systems seems to indicate ? Over three kilometres in thickness, approaching the known temperature limits of life and with fluids precipitating carbonate, sulphate, halite and potash salts, microbes living within and around the MSC Salt Giant will be subject to the most exotic combinations of extremes, and have likely evolved yet unknown adaptations. Gypsum and Halite crystals contain fluid inclusions that are a micro-habitat in which microbes survive for tens of thousands, to possibly millions, of years, posing the fundamental question of cells devoting nearly all of their energy flow to somatic maintenance needs, rather than growth and reproduction, and opening new avenues for research for life on other planets. Fluid inclusions and the microbes they contain also inform us on the chemical and physical conditions of the sedimentary environment at the moment of deposition. This information will be key in deciphering the complex succession of paleoclimatic and hydrological events that led to the formation of the MSC Salt Giant. Drilling the MSC Salt Giant is an unprecedented opportunity to sample and investigate this highly reactive association of microbial communities, pore fluids and minerals which is the modern analogue for ancient deep biosphere communities developed in the salt giants of the geological past.
2016-10-27
AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis, dynamics and activity 5a. CONTRACT NUMBER 5b...report Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and Activity Ulrich Heiz
Chronic obstructive pulmonary disease: nature-nurture interactions.
Clancy, John; Nobes, Maggie
A person's health status is rarely constant, it is usually subject to continual change as a person moves from health to illness and usually back to health again; the health-illness continuum illustrates this dynamism. This highlights the person's various states of health and illness (ranging from extremely good health to clinically defined mild, moderate and severe illness) and their fluctuations throughout the life span, until ultimately leading to the pathology associated with the person's death. Maintenance of a stable homeostatic environment within the body to support the stability of this continuum depends on a complex series of ultimately intracellular chemical reactions. These reactions are activated by environmental factors that cause the expression of genes associated with healthy phenotypes as well as illness susceptibility genes associated with homeostatic imbalances. Obviously, the body aims to support intracellular and extracellular environments allied with health; however, the complexity of these nature-nurture interactions results in illness throughout an individual's life span. This paper will discuss the nature-nurture interactions of chronic obstructive pulmonary disease.
EPA's Chemical Safety research protects human health and the environment by evaluating chemicals for potential risk and providing tools and guidance for improved chemical production that supports a sustainable environment.
Engineering the oxygen coordination in digital superlattices
NASA Astrophysics Data System (ADS)
Cook, Seyoung; Andersen, Tassie K.; Hong, Hawoong; Rosenberg, Richard A.; Marks, Laurence D.; Fong, Dillon D.
2017-12-01
The oxygen sublattice in complex oxides is typically composed of corner-shared polyhedra, with transition metals at their centers. The electronic and chemical properties of the oxide depend on the type and geometric arrangement of these polyhedra, which can be controlled through epitaxial synthesis. Here, we use oxide molecular beam epitaxy to create SrCoOx:SrTiO3 superlattices with tunable oxygen coordination environments and sublattice geometries. Using synchrotron X-ray scattering in combination with soft X-ray spectroscopy, we find that the chemical state of Co can be varied with the polyhedral arrangement, with higher Co oxidation states increasing the valence band maximum. This work demonstrates a new strategy for engineering unique electronic structures in the transition metal oxides using short-period superlattices.
NASA Technical Reports Server (NTRS)
1988-01-01
Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.
Spacecraft Water Exposure Guidelines For Selected Contaminants. Volume 3
NASA Technical Reports Server (NTRS)
2008-01-01
Construction of the International Space Station (ISS)a multinational effort began in 1999. In its present configuration, the ISS is expected to carry a crew of three to six astronauts for up to 180 days (d). Because the space station is a closed and complex environment, some contamination of its internal atmosphere and water system is unavoidable. Several hundred chemical contaminants are likely to be found in the closed-loop atmosphere and recycled water of the ISS. To protect space crews from contaminants in potable and hygiene water, the National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) provide guidance on how to develop water exposure guidelines and subsequently review NASA's development of the exposure guidelines for specific chemicals.
Formation of E-cyanomethamine in a nitrile rich environment
NASA Astrophysics Data System (ADS)
Shivani; Misra, Alka; Tandon, Poonam
2017-01-01
Recently a new molecule, cyanomethamine, has been detected towards Sagittarius B2(N) (Sgr B2(N)). Studying the formation mechanisms of complex interstellar molecules is difficult. Hence, a theoretical quantum chemical approach for analyzing the reaction mechanism describing the formation of interstellar cyanomethamine through detected interstellar molecules and radicals (NCCN+H) is discussed in the present work. Calculations are performed by using quantum chemical techniques, such as Density Functional Theory (DFT) and Møller-Plesset perturbation (MP2) theory with a 6-311G(d,p) basis set, both in the gas phase and in icy grains. The proposed reaction path (NCCN+H+H) has exothermicity with no barrier which indicates the possibility of cyanomethamine formation in the interstellar medium.
Chemosensory orientation behavior in juvenile sea turtles.
Grassman, M
1993-01-01
It has been widely believed for several decades that hatchling sea turtles imprint to chemical cues characteristic of their natal beach and use this information as part of a repertoire of mechanisms enabling their return to the same beach for mating and nesting. This has proven very difficult to test. Although the imprinting theory is conceptually simple, functionally it is quite complex. This involves not only chemical imprinting of nestlings but growth and migration to habitats where the adults are found, long-term memory of their earlier chemical exposure, reproductive maturation, and homing. A few studies have been conducted to examine these elements of the imprinting theory. Experiments involving the exposure of embryos and hatchlings to chemicals suggest that juvenile turtles 'imprint' to the chemical environment of their nest. This can be termed chemical imprinting. Loggerhead turtles, Caretta caretta, and ridley turtles, Lepidochelys kempi, appear to be attracted to chemicals (morpholine and natural seawater, respectively) to which they were exposed as embryos. The strongest support for chemical imprinting is that six-month-old green turtles, Chelonia mydas, exposed to either morpholine or 2-phenylethanol in the nest and for a period of time after hatching, respond similarly to the chemical to which they were exposed as nestlings. Although chemical imprinting does not 'prove' the imprinting theory of turtle homing, it is a necessary component of the theory not previously examined.
Comprehensive chemical characterization of industrial PM2.5 from steel industry activities
NASA Astrophysics Data System (ADS)
Sylvestre, Alexandre; Mizzi, Aurélie; Mathiot, Sébastien; Masson, Fanny; Jaffrezo, Jean L.; Dron, Julien; Mesbah, Boualem; Wortham, Henri; Marchand, Nicolas
2017-03-01
Industrial sources are among the least documented PM (Particulate Matter) source in terms of chemical composition, which limits our understanding of their effective impact on ambient PM concentrations. We report 4 chemical emission profiles of PM2.5 for multiple activities located in a vast metallurgical complex. Emissions profiles were calculated as the difference of species concentrations between an upwind and a downwind site normalized by the absolute PM2.5 enrichment between both sites. We characterized the PM2.5 emissions profiles of the industrial activities related to the cast iron (complex 1) and the iron ore conversion processes (complex 2), as well as 2 storage areas: a blast furnace slag area (complex 3) and an ore terminal (complex 4). PM2.5 major fractions (Organic Carbon (OC) and Elemental Carbon (EC), major ions), organic markers as well as metals/trace elements are reported for the 4 industrial complexes. Among the trace elements, iron is the most emitted for the complex 1 (146.0 mg g-1 of PM2.5), the complex 2 (70.07 mg g-1) and the complex 3 (124.4 mg g-1) followed by Al, Mn and Zn. A strong emission of Polycyclic Aromatic Hydrocarbons (PAH), representing 1.3% of the Organic Matter (OM), is observed for the iron ore transformation complex (complex 2) which merges the activities of coke and iron sinter production and the blast furnace processes. In addition to unsubstituted PAHs, sulfur containing PAHs (SPAHs) are also significantly emitted (between 0.011 and 0.068 mg g-1) by the complex 2 and could become very useful organic markers of steel industry activities. For the complexes 1 and 2 (cast iron and iron ore converters), a strong fraction of sulfate ranging from 0.284 to 0.336 g g-1) and only partially neutralized by ammonium, is observed indicating that sulfates, if not directly emitted by the industrial activity, are formed very quickly in the plume. Emission from complex 4 (Ore terminal) are characterized by high contribution of Al (125.7 mg g-1 of PM2.5) but also, in a lesser extent, of Fe, Mn, Ti and Zn. We also highlighted high contribution of calcium ranging from 0.123 to 0.558 g g-1 for all of the industrial complexes under study. Since calcium is also widely used as a proxy of the dust contributions in source apportionment studies, our results suggest that this assumption should be reexamined in environments impacted by industrial emissions.
Austin, Caitlin M.; Stoy, William; Su, Peter; Harber, Marie C.; Bardill, J. Patrick; Hammer, Brian K.; Forest, Craig R.
2014-01-01
Biosensors exploiting communication within genetically engineered bacteria are becoming increasingly important for monitoring environmental changes. Currently, there are a variety of mathematical models for understanding and predicting how genetically engineered bacteria respond to molecular stimuli in these environments, but as sensors have miniaturized towards microfluidics and are subjected to complex time-varying inputs, the shortcomings of these models have become apparent. The effects of microfluidic environments such as low oxygen concentration, increased biofilm encapsulation, diffusion limited molecular distribution, and higher population densities strongly affect rate constants for gene expression not accounted for in previous models. We report a mathematical model that accurately predicts the biological response of the autoinducer N-acyl homoserine lactone-mediated green fluorescent protein expression in reporter bacteria in microfluidic environments by accommodating these rate constants. This generalized mass action model considers a chain of biomolecular events from input autoinducer chemical to fluorescent protein expression through a series of six chemical species. We have validated this model against experimental data from our own apparatus as well as prior published experimental results. Results indicate accurate prediction of dynamics (e.g., 14% peak time error from a pulse input) and with reduced mean-squared error with pulse or step inputs for a range of concentrations (10 μM–30 μM). This model can help advance the design of genetically engineered bacteria sensors and molecular communication devices. PMID:25379076
Bovino, S; Grassi, T; Gianturco, F A
2015-12-17
A detailed analysis of an ionic reaction that plays a crucial role in the carbon chemistry of the interstellar medium (ISM) is carried out by computing ab initio reactive cross sections with a quantum method and by further obtaining the corresponding CH(+) destruction rates over a range of temperatures that shows good overall agreement with existing experiments. The differences found between all existing calculations and the very-low-T experiments are discussed and explored via a simple numerical model that links these cross section reductions to collinear approaches where nonadiabatic crossing is expected to dominate. The new rates are further linked to a complex chemical network that models the evolution of the CH(+) abundance in the photodissociation region (PDR) and molecular cloud (MC) environments of the ISM. The abundances of CH(+) are given by numerical solutions of a large set of coupled, first-order kinetics equations that employs our new chemical package krome. The analysis that we carry out reveals that the important region for CH(+) destruction is that above 100 K, hence showing that, at least for this reaction, the differences with the existing laboratory low-T experiments are of essentially no importance within the astrochemical environments discussed here because, at those temperatures, other chemical processes involving the title molecule are taking over. A detailed analysis of the chemical network involving CH(+) also shows that a slight decrease in the initial oxygen abundance might lead to higher CH(+) abundances because the main chemical carbon ion destruction channel is reduced in efficiency. This might provide an alternative chemical route to understand the reason why general astrochemical models fail when the observed CH(+) abundances are matched with the outcomes of their calculations.
Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata
2014-11-18
Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.
Fraser, F C; Todman, L C; Corstanje, R; Deeks, L K; Harris, J A; Pawlett, M; Whitmore, A P; Ritz, K
2016-12-01
Factors governing the turnover of organic matter (OM) added to soils, including substrate quality, climate, environment and biology, are well known, but their relative importance has been difficult to ascertain due to the interconnected nature of the soil system. This has made their inclusion in mechanistic models of OM turnover or nutrient cycling difficult despite the potential power of these models to unravel complex interactions. Using high temporal-resolution respirometery (6 min measurement intervals), we monitored the respiratory response of 67 soils sampled from across England and Wales over a 5 day period following the addition of a complex organic substrate (green barley powder). Four respiratory response archetypes were observed, characterised by different rates of respiration as well as different time-dependent patterns. We also found that it was possible to predict, with 95% accuracy, which type of respiratory behaviour a soil would exhibit based on certain physical and chemical soil properties combined with the size and phenotypic structure of the microbial community. Bulk density, microbial biomass carbon, water holding capacity and microbial community phenotype were identified as the four most important factors in predicting the soils' respiratory responses using a Bayesian belief network. These results show that the size and constitution of the microbial community are as important as physico-chemical properties of a soil in governing the respiratory response to OM addition. Such a combination suggests that the 'architecture' of the soil, i.e. the integration of the spatial organisation of the environment and the interactions between the communities living and functioning within the pore networks, is fundamentally important in regulating such processes.
NASA Astrophysics Data System (ADS)
Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd
2013-04-01
Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.
Schroeder, Anthony L.; Martinovic-Weigelt, Dalma; Ankley, Gerald T.; Lee, Kathy E.; Garcia-Reyero, Natalia; Perkins, Edward J.; Schoenfuss, Heiko L.; Villeneuve, Daniel L.
2017-01-01
Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.
Schroeder, Anthony L; Martinović-Weigelt, Dalma; Ankley, Gerald T; Lee, Kathy E; Garcia-Reyero, Natalia; Perkins, Edward J; Schoenfuss, Heiko L; Villeneuve, Daniel L
2017-02-01
Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation. Published by Elsevier Ltd.
Experimental simulation of aerosols evolution in Titan's ionosphere
NASA Astrophysics Data System (ADS)
Chatain, A.; Carrasco, N.; Guaitella, O.
2017-09-01
Many recent studies on Titan are concerned with aerosols. In particular, questions are asked on how these complex organic molecules are formed and evolve in Titan's atmosphere. Here for the first time we experimentally study how harsh plasma environment simulating Titan ionosphere can affect these aerosols. Titan tholins are placed in a N2-H2 plasma reactor and sample signatures are measured by infrared transmission spectroscopy. First results show an evolution of the absorption bands. Therefore, plasma conditions seem to change tholin chemical structure.
NASA Technical Reports Server (NTRS)
2003-01-01
The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station
2003-01-12
The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station
NASA Astrophysics Data System (ADS)
Duan, Wentao; Pavlick, Ryan; Sen, Ayusman
2013-12-01
One of the more interesting recent discoveries has been the ability to design nano/microbots which catalytically harness the chemical energy in their environment to move autonomously. Their potential applications include delivery of materials, self-assembly of superstructures, and roving sensors. One emergent area of research is the study of their collective behavior and how they emulate living systems. The aim of this chapter is to describe the "biology" of nanobots, summarizing the fundamentals physics behind their motion and how the bots interact with each other to initiate complex emergent behavior.
Pandis, Spyros N; Donahue, Neil M; Murphy, Benjamin N; Riipinen, Ilona; Fountoukis, Christos; Karnezi, Eleni; Patoulias, David; Skyllakou, Ksakousti
2013-01-01
The formation, atmospheric evolution, properties, and removal of organic particulate matter remain some of the least understood aspects of atmospheric chemistry despite the importance of organic aerosol (OA) for both human health and climate change. Here, we summarize our recent efforts to deal with the chemical complexity of the tens of thousands of organic compounds in the atmosphere using the volatility-oxygen content framework (often called the 2D-Volatility Basis Set, 2D-VBS). Our current ability to measure the ambient OA concentration as a function of its volatility and oxygen to carbon (O:C) ratio is evaluated. The combination of a thermodenuder, isothermal dilution and Aerosol Mass Spectrometry (AMS) together with a mathematical aerosol dynamics model is a promising approach. The development of computational modules based on the 2D-VBS that can be used in chemical transport models (CTMs) is described. Approaches of different complexity are tested against ambient observations, showing the challenge of simulating the complex chemical evolution of atmospheric OA. The results of the simplest approach describing the net change due to functionalization and fragmentation are quite encouraging, reproducing both the observed OA levels and O : C in a variety of conditions. The same CTM coupled with source-apportionment algorithms can be used to gain insights into the travel distances and age of atmospheric OA. We estimate that the average age of OA near the ground in continental locations is 1-2 days and most of it was emitted (either as precursor vapors or particles) hundreds of kilometers away. Condensation of organic vapors on fresh particles is critical for the growth of these new particles to larger sizes and eventually to cloud condensation nuclei (CCN) sizes. The semivolatile organics currently simulated by CTMs are too volatile to condense on these tiny particles with high curvature. We show that chemical aging reactions converting these semivolatile compounds to extremely low volatility compounds can explain the observed growth rates of new particles in rural environments.
Carter, Rhys A A; Joll, Cynthia A
2017-08-01
Disinfection of water for human use is essential to protect against microbial disease; however, disinfection also leads to formation of disinfection by-products (DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water. Chlorine and/or bromine is continually introduced via the addition of chemical disinfectants to the pool. Human body excretions (sweat, urine and saliva) and pharmaceuticals and personal care products (sunscreens, cosmetics, hair products and lotions) are introduced by swimmers. High addition of disinfectant leads to a high formation of DBPs from reaction of some of the chemicals with the disinfectant. Swimming pool air is also of concern as volatile DBPs partition into the air above the pool. The presence of bromine leads to the formation of a wide range of bromo- and bromo/chloro-DBPs, and Br-DBPs are more toxic than their chlorinated analogues. This is particularly important for seawater-filled pools or pools using a bromine-based disinfectant. This review summarises chemical contaminants and DBPs in swimming pool waters, as well as in the air above pools. Factors that have been found to affect DBP formation in pools are discussed. The impact of the swimming pool environment on human health is reviewed. Copyright © 2017. Published by Elsevier B.V.
Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications.
Lee, Seung Hwan; Shim, Kyu Young; Kim, Bumsang; Sung, Jong Hwan
2017-05-01
Recent studies have reported that three-dimensionally cultured cells have more physiologically relevant functions than two-dimensionally cultured cells. Cells are three-dimensionally surrounded by the extracellular matrix (ECM) in complex in vivo microenvironments and interact with the ECM and neighboring cells. Therefore, replicating the ECM environment is key to the successful cell culture models. Various natural and synthetic hydrogels have been used to mimic ECM environments based on their physical, chemical, and biological characteristics, such as biocompatibility, biodegradability, and biochemical functional groups. Because of these characteristics, hydrogels have been combined with microtechnologies and used in organ-on-a-chip applications to more closely recapitulate the in vivo microenvironment. Therefore, appropriate hydrogels should be selected depending on the cell types and applications. The porosity of the selected hydrogel should be controlled to facilitate the movement of nutrients and oxygen. In this review, we describe various types of hydrogels, external stimulation-based gelation of hydrogels, and control of their porosity. Then, we introduce applications of hydrogels for organ-on-a-chip. Last, we also discuss the challenges of hydrogel-based three-dimensional cell culture techniques and propose future directions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:580-589, 2017. © 2017 American Institute of Chemical Engineers.
Avaliani, S L; Novikov, S M; Shashina, T A; Dodina, N S; Kislitsin, V A; Mishina, A L
2014-01-01
The lack of adequate legislative and regulatory framework for ensuring minimization of the health risks in the field of environmental protection is the obstacle for the application of the risk analysis methodology as a leading tool for administrative activity in Russia. "Principles of the state policy in the sphere of ensuring chemical and biological safety of the Russian Federation for the period up to 2025 and beyond", approved by the President of the Russian Federation on 01 November 2013, No PR-25 73, are aimed at the legal support for the health risk analysis methodology. In the article there have been supposed the main stages of the operative control of the environmental quality, which lead to the reduction of the health risk to the acceptable level. The further improvement of the health risk analysis methodology in Russia should contribute to the implementation of the state policy in the sphere of chemical and biological safety through the introduction of complex measures on neutralization of chemical and biological threats to the human health and the environment, as well as evaluation of the economic effectiveness of these measures. The primary step should be the legislative securing of the quantitative value for the term: "acceptable risk".
NASA Astrophysics Data System (ADS)
Rosales Lagarde, Laura; Boston, Penelope J.; Campbell, Andrew R.; Hose, Louise D.; Axen, Gary; Stafford, Kevin W.
2014-09-01
Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.
Shocks and Molecules in Protostellar Outflows
NASA Astrophysics Data System (ADS)
Arce, Héctor
2014-06-01
As protostars form through the gravitational infall of material from their parent molecular cloud, they power energetic bipolar outflows that interact with the surrounding medium. Protostellar outflows are important to the chemical evolution of star forming regions, as the shocks produced by the interaction of the high-velocity protostellar wind and the ambient cloud can heat the surrounding medium and trigger chemical and physical processes that would otherwise not take place in a quiescent molecular cloud. Protostellar outflows, are therefore a great laboratory to study shock physics and shock-induced chemistry. I will present results from millimeter-wave observations of a small sample of outflow shocks. The spectra show clear evidence of the existence of complex organic molecules (e.g., methyl formate, ethanol, acetaldehyde) and high abundance of certain simple molecules (e.g., HCO^+, HCN, H_2O) in outflows. Results indicate that, most likely, the complex species formed on the surface of grains and were then ejected from the grain mantles by the shock. Spectral surveys of shocked regions using ALMA could therefore be used to probe the composition of dust in molecular clouds. Our results demonstrate that outflows modify the chemical composition of the surrounding gaseous environment and that this needs to be considered when using certain species to study active star forming regions.
Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth
2014-08-01
The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.
Peng, Ying; Fang, Wendi; Krauss, Martin; Brack, Werner; Wang, Zhihao; Li, Feilong; Zhang, Xiaowei
2018-06-04
Increased synthetic chemical production and diversification in developing countries caused serious aquatic pollution worldwide with emerging organic pollutants (EOPs) detected in surface water rising health concerns to human and aquatic ecosystem even at low ng/L concentration with long-term exposure. The Yangtze River Delta (YRD) area serves agriculture and industry for people in eastern China. However, the current knowledge on the occurrence and ecological risk of diverse EOPs which are present in the aquatic environment is limited. This study was to investigate the complexity and diversity of EOPs in surface water from 28 sampling sites, which were selected to represent urban, industrial or agriculture areas in the YRD area. In total 484 chemicals were analyze by a target screening approach using liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-HRMS/MS). 181 out of 484 EOPs were detected at least one site in the YRD area, and 44 analytes, mostly industrial chemicals and pesticides, were ubiquitous at all sampling sites. Most EOPs were industrial chemicals with 1H-benzotriazole and organophosphate flame retardants (PFRs) as the chemicals with highest concentrations. For 21 pesticides, mostly herbicides, maximum concentrations of atrazine and isoproturon were above the annual average environmental quality standards of Europe. Amantadine and DEET were the dominant pharmceuticals and personal care products (PPCPs) in the YRD area. Compared to urban areas (mostly in Qinhuai River), chemical profiles from industrial areas were more complex. Industrial activities likely have a strong impact on the composition of chemical mixtures in surface water from the YRD area. ISO E Super, 4-methylbenzylidene camphor and clotrimazole detected in this study are potentially persistent and bioaccumulative chemicals. Furthermore, results of risk assessment showed that hazard quotients of dimethyldioctadecylammonium, didecyldimethylammonium and octocrylene were higher than one and occur frequently, which indicates possibly adverse effects on fish species in the YRD area. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G.; Woodbury, Neal W.; Yan, Hao
2014-07-01
Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.
Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G; Woodbury, Neal W; Yan, Hao
2014-07-01
Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.
Product Deformulation to Inform High-throughput Exposure ...
The health risks posed by the thousands of chemicals in our environment depends on both chemical hazard and exposure. However, relatively few chemicals have estimates of exposure intake, limiting the understanding of risks. We have previously developed a heuristics-based exposure estimation method that depends on simple factors such as the presence or absence of chemicals in consumer products to estimate exposure for thousands of chemicals. Although this method was predictive when compared with human biomonitoring data, limited data are available on the chemical constituents within most articles of commerce. We aim to broaden the number of products with constituent chemical information and refine exposure models by quantifying constituent concentration. A selection of five samples each from 20 diverse consumer product categories (e.g., lotion, clothing, carpet) were analyzed using solvent extraction followed by gas chromatograph (GC) x GC Time of Flight Mass Spectrometry (GCxGC-TOF/MS), which is suited for forensic investigation of complex matrices. In an examination of five plastic children’s toys, a total of 306 unique compounds were identified across all toys, including 102 Tox21 chemicals such as diethyl phthalate and bisphenol AF. As many as 114 and as few as 56 chemicals were identified in each toy. Across the five toys, a range of 0 to 40 unique peaks remain unidentified. Interestingly, bisphenol A (BPA) was identified in a children’s toy marked
Review of Non-Chemical Stressors from the Social Environment
Non-chemical stressors (e.g., noise, diet, temperature, overcrowding) are found in the built, natural and social environments. Correlations between exposure to non-chemical stressors in the social environment (e.g., SES, exposure to violence, acculturation) and negative health ou...
Can species-specific prey responses to chemical cues explain prey susceptibility to predation?
Šmejkal, Marek; Ricard, Daniel; Sajdlová, Zuzana; Čech, Martin; Vejřík, Lukáš; Blabolil, Petr; Vejříková, Ivana; Prchalová, Marie; Vašek, Mojmír; Souza, Allan T; Brönmark, Christer; Peterka, Jiří
2018-05-01
The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish ( Silurus glanis ) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd ( Scardinius erythrophthalmus ), roach ( Rutilus rutilus ), and perch ( Perca fluviatilis ). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.
Identifying Metabolically Active Chemicals Using a Consensus ...
Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in a large number of resources. The new paradigm of testing approaches involves rapid screening studies able to evaluate thousands of chemicals across hundreds of biological targets through use of in vitro assays. Endocrine disrupting chemicals (EDCs) are of concern due to their ability to alter neurodevelopment, behavior, and reproductive success of humans and other species. A recent integrated computational model examined results across 18 ER-related assays in the ToxCast in vitro screening program to eliminate chemicals that produce a false signal by possibly interfering with the technological attributes of an individual assay. However, in vitro assays can also lead to false negatives when the complex metabolic processes that render a chemical bioactive in a living system might be unable to be replicated in an in vitro environment. In the current study, the influence of metabolism was examined for over 1,400 chemicals considered inactive using the integrated computational model. Over 2,000 first-generation and over 4,000 second-generation metabolites were generated for the inactive chemicals using in silico techniques. Next, a consensus model comprised of individual structure activity relationship (SAR) models was used to predict ER-binding activity for each of the metabolites. Binding activity was predicted for 8-10% of the meta
gases were passed to emerge at the heated surface, permitted these data to be gathered in chemically reactive environments. Correlation of all these data...in both inert and chemically reactive environments, was possible both on the basis of an energy balance struck at the regressing surface and an...Arrhenius type of chemical kinetic description of the surface degradation process. Although expected, this represents the first demonstration that both
Pharmaceuticals and personal care products in the environment: agents of subtle change?
Daughton, C G; Ternes, T A
1999-01-01
During the last three decades, the impact of chemical pollution has focused almost exclusively on the conventional "priority" pollutants, especially those acutely toxic/carcinogenic pesticides and industrial intermediates displaying persistence in the environment. This spectrum of chemicals, however, is only one piece of the larger puzzle in "holistic" risk assessment. Another diverse group of bioactive chemicals receiving comparatively little attention as potential environmental pollutants includes the pharmaceuticals and active ingredients in personal care products (in this review collectively termed PPCPs), both human and veterinary, including not just prescription drugs and biologics, but also diagnostic agents, "nutraceuticals," fragrances, sun-screen agents, and numerous others. These compounds and their bioactive metabolites can be continually introduced to the aquatic environment as complex mixtures via a number of routes but primarily by both untreated and treated sewage. Aquatic pollution is particularly troublesome because aquatic organisms are captive to continual life-cycle, multigenerational exposure. The possibility for continual but undetectable or unnoticed effects on aquatic organisms is particularly worrisome because effects could accumulate so slowly that major change goes undetected until the cumulative level of these effects finally cascades to irreversible change--change that would otherwise be attributed to natural adaptation or ecologic succession. As opposed to the conventional, persistent priority pollutants, PPCPs need not be persistent if they are continually introduced to surface waters, even at low parts-per-trillion/parts-per-billion concentrations (ng-microg/L). Even though some PPCPs are extremely persistent and introduced to the environment in very high quantities and perhaps have already gained ubiquity worldwide, others could act as if they were persistent, simply because their continual infusion into the aquatic environment serves to sustain perpetual life-cycle exposures for aquatic organisms. This review attempts to synthesize the literature on environmental origin, distribution/occurrence, and effects and to catalyze a more focused discussion in the environmental science community. PMID:10592150
NASA Astrophysics Data System (ADS)
Dror, I.; Menahem, A.; Berkowitz, B.
2014-12-01
The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt or organic complex).
Amino acids in the cultivation of mammalian cells.
Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg
2016-05-01
Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.
Interstellar Ice and Dust: The Feedstock of the Solar System
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Morrison, David (Technical Monitor)
1994-01-01
Studying the chemical and isotopic composition of interstellar ice and dust provides insight into the composition and chemical history of the solid bodies in the solar nebula and the nature of the material subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to probe the composition of these microscopic interstellar particles (some hundreds of light years away), thanks to substantial progress in two areas: astronomical spectroscopic techniques in the middle-infrared, the spectral region most diagnostic of composition; and laboratory simulations which realistically reproduce the critical conditions in various interstellar environments. High quality infrared spectra of many different astronomical sources, some associated with dark molecular clouds, and others in the diffuse interstellar medium (DISM) are now available. What comparisons of these spectra with laboratory spectra tell us about the complex organic components of these materials is the subject of this talk. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by gas phase and dust grain surface reactions. Gaseous species (except H2) striking the cold (10K) dust will stick, forming an icy grain mantle. This accretion, coupled with energetic particle bombardment and UV photolysis, will produce a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. One can compare spectra of the diffuse and dense interstellar medium with the spectra of analogs produced in the laboratory under conditions which mimic those in these different environments. In this way one can determine the composition and abundances of the major constituents present and place general constraints on the types and relative abundances of organics coating the grains. Ices in dense clouds contain H2O, CH3OH, CO, perhaps some NH3 and H2CO, as well as nitriles and ketones or esters. There is some evidence that the later, more complex species, are also present on the grains in the DISM. The evidence for these materials, in addition to carbon rich materials such as amorphous carbon, microdiamonds, and polycyclic aromatic hydrocarbons will be reviewed and the possible connection with meteoritic organics will be discussed.
Surface modification: advantages, techniques, and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.
2000-03-01
Adequate performance of materials at elevated temperatures is a potential problem in many systems within the chemical, petroleum, process, and power-generating industries. Degradation of materials occurs because of interaction between the structural material and the exposure environment. These interactions are generally undesired chemical reactions that can lead to accelerated wastage and alter the functional requirements and/or structural integrity of the materials. Therefore, material selection for high-temperature applications must be based not only on a material strength properties but also on resistance to the complex environments prevalent in the anticipated exposure environment. As plants become larger, the satisfactory performance and reliabilitymore » of components play a greater role in plant availability and economics. However, system designers are becoming increasingly concerned with finding the least expensive material that will satisfactorily perform the design function for the desired service life. This present paper addresses the benefits of surface modification and identified several criteria for selection and application of modified surfaces in the power sector. A brief review is presented on potential methods for modification of surfaces, with the emphasis on coatings. In the final section of the paper, several examples address the requirements of different energy systems and surface modification avenues that have been applied to resolve the issues.« less
Souza, Iara da Costa; Morozesk, Mariana; Duarte, Ian Drumond; Bonomo, Marina Marques; Rocha, Lívia Dorsch; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso
2014-08-01
Roots of mangrove trees have an important role in depurating water and sediments by retaining metals that may accumulate in different plant tissues, affecting physiological processes and anatomy. The present study aimed to evaluate adaptive changes in root of Rhizophora mangle in response to different levels of chemical elements (metals/metalloids) in interstitial water and sediments from four neotropical mangroves in Brazil. What sets this study apart from other studies is that we not only investigate adaptive modifications in R. mangle but also changes in environments where this plant grows, evaluating correspondence between physical, chemical and biological issues by a combined set of multivariate statistical methods (pattern recognition). Thus, we looked to match changes in the environment with adaptations in plants. Multivariate statistics highlighted that the lignified periderm and the air gaps are directly related to the environmental contamination. Current results provide new evidences of root anatomical strategies to deal with contaminated environments. Multivariate statistics greatly contributes to extrapolate results from complex data matrixes obtained when analyzing environmental issues, pointing out parameters involved in environmental changes and also evidencing the adaptive response of the exposed biota. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Musallam, Ramsey
Chemistry is a complex knowledge domain. Specifically, research notes that Chemical Equilibrium presents greater cognitive challenges than other topics in chemistry. Cognitive Load Theory describes the impact a subject, and the learning environment, have on working memory. Intrinsic load is the facet of Cognitive Load Theory that explains the complexity innate to complex subjects. The purpose of this study was to build on the limited research into intrinsic cognitive load, by examining the effects of using multimedia screencasts as a pre-training technique to manage the intrinsic cognitive load of chemical equilibrium instruction for advanced high school chemistry students. A convenience sample of 62 fourth-year high school students enrolled in an advanced chemistry course from a co-ed high school in urban San Francisco were given a chemical equilibrium concept pre-test. Upon conclusion of the pre-test, students were randomly assigned to two groups: pre-training and no pre-training. The pre-training group received a 10 minute and 52 second pre-training screencast that provided definitions, concepts and an overview of chemical equilibrium. After pre-training both group received the same 50-minute instructional lecture. After instruction, all students were given a chemical equilibrium concept post-test. Independent sample t-tests were conducted to examine differences in performance and intrinsic load. No significant differences in performance or intrinsic load, as measured by ratings of mental effort, were observed on the pre-test. Significant differences in performance, t(60)=3.70, p=.0005, and intrinsic load, t(60)=5.34, p=.0001, were observed on the post-test. A significant correlation between total performance scores and total mental effort ratings was also observed, r(60)=-0.44, p=.0003. Because no significant differences in prior knowledge were observed, it can be concluded that pre-training was successful at reducing intrinsic load. Moreover, a significant correlation between performance and mental effort strengthens the argument that performance measures can be used to approximate intrinsic cognitive load.
Bio-chemo-mechanics of thoracic aortic aneurysms.
Wagenseil, Jessica E
2018-03-01
Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.
Cartilage-like electrostatic stiffening of responsive cryogel scaffolds
NASA Astrophysics Data System (ADS)
Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.
2017-02-01
Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.
[Pressing problems of labor hygiene and occupational pathology among office workers].
Dudarev, A A; Sorokin, G A
2012-01-01
Northwest public health research center, Ministry of health and social affairs, St.-Petersburg. The article substantiates the conception of "office room", "office worker", estimates the basic diseases and symptoms among office workers (SBS-syndrome, BRI-illnesses, BRS-symptoms). Complex of indoor factors of office environment are analyzed, which influence the health status of personnel--indoor air quality (microclimate, aerosols, chemical, biological pollution, air ionization), external physical factors, ergonomics, intensity and tension of work, psychosocial factors. Comparison of Russian and foreign approaches to the hygienic estimation and rating of these factors was carried out. Owing to inadequacy of Russian hygienic rules to modern requirements, the necessity of working out of a complex of sanitary rules focused particularly on office workers is proved.
The origin of aliphatic hydrocarbons in olive oil.
Pineda, Manuel; Rojas, María; Gálvez-Valdivieso, Gregorio; Aguilar, Miguel
2017-11-01
There are many substances that can interfere with olive oil quality. Some of them are well characterized, but many others have an unknown origin. Saturated hydrocarbons make an extraordinary complex family of numerous molecules, some of them present naturally in vegetable oils. When major natural saturated hydrocarbons are analyzed by standard chromatographic methods, this complex mixture of saturated hydrocarbons appears as a hump in the chromatogram and is commonly named as unresolved complex mixture (UCM), whose origin remains unknown. In this work we studied the occurrence and the origin of aliphatic saturated hydrocarbons in olive oil. Hydrocarbons were analyzed in olive oil and along the industrial process of oil extraction. We also analyzed n-alkanes and the UCM fraction of hydrocarbons in leaf, fruit and oil from different varieties and different locations, and we also analyzed the soils at these locations. We conclude that the hydrocarbons present in olive oil do not necessarily have their origin in a contamination during olive oil elaboration; they seem to have a natural origin, as a result of olive tree metabolism and/or as the result of an intake and accumulation by the olive tree directly from the environment during its entire life cycle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Materials for Sustainable Energy
NASA Astrophysics Data System (ADS)
Crabtree, George
2009-03-01
The global dependence on fossil fuels for energy is among the greatest challenges facing our economic, social and political future. The uncertainty in the cost and supply of oil threatens the global economy and energy security, the pollution of fossil combustion threatens human health, and the emission of greenhouse gases threatens global climate. Meeting the demand for double the current global energy use in the next 50 years without damaging our economy, security, environment or climate requires finding alternative sources of energy that are clean, abundant, accessible and sustainable. The transition to greater sustainability involves tapping unused energy flows such as sunlight and wind, producing electricity without carbon emissions from clean coal and high efficiency nuclear power plants, and using energy more efficiently in solid-state lighting, fuel cells and transportation based on plug-in hybrid and electric cars. Achieving these goals requires creating materials of increasing complexity and functionality to control the transformation of energy between light, electrons and chemical bonds. Challenges and opportunities for developing the complex materials and controlling the chemical changes that enable greater sustainability will be presented.
Multifrequency Pulsed EPR Studies of Biologically Relevant Manganese(II) Complexes
Stich, T. A.; Lahiri, S.; Yeagle, G.; Dicus, M.; Brynda, M.; Gunn, A.; Aznar, C.; DeRose, V. J.; Britt, R. D.
2011-01-01
Electron paramagnetic resonance studies at multiple frequencies (MF EPR) can provide detailed electronic structure descriptions of unpaired electrons in organic radicals, inorganic complexes, and metalloenzymes. Analysis of these properties aids in the assignment of the chemical environment surrounding the paramagnet and provides mechanistic insight into the chemical reactions in which these systems take part. Herein, we present results from pulsed EPR studies performed at three different frequencies (9, 31, and 130 GHz) on [Mn(II)(H2O)6]2+, Mn(II) adducts with the nucleotides ATP and GMP, and the Mn(II)-bound form of the hammerhead ribozyme (MnHH). Through line shape analysis and interpretation of the zero-field splitting values derived from successful simulations of the corresponding continuous-wave and field-swept echo-detected spectra, these data are used to exemplify the ability of the MF EPR approach in distinguishing the nature of the first ligand sphere. A survey of recent results from pulsed EPR, as well as pulsed electron-nuclear double resonance and electron spin echo envelope modulation spectroscopic studies applied to Mn(II)-dependent systems, is also presented. PMID:22190766
Quantum chemical investigation of levofloxacin-boron complexes: A computational approach
NASA Astrophysics Data System (ADS)
Sayin, Koray; Karakaş, Duran
2018-04-01
Quantum chemical calculations are performed over some boron complexes with levofloxacin. Boron complex with fluorine atoms are optimized at three different methods (HF, B3LYP and M062X) with 6-31 + G(d) basis set. The best level is determined as M062X/6-31 + G(d) by comparison of experimental and calculated results of complex (1). The other complexes are optimized by using the best level. Structural properties, IR and NMR spectrum are examined in detail. Biological activities of mentioned complexes are investigated by some quantum chemical descriptors and molecular docking analyses. As a result, biological activities of complex (2) and (4) are close to each other and higher than those of other complexes. Additionally, NLO properties of mentioned complexes are investigated by some quantum chemical parameters. It is found that complex (3) is the best candidate for NLO applications.
Moissette, A; Hureau, M; Kokaislova, A; Le Person, A; Cornard, J P; De Waele, I; Batonneau-Gener, I
2015-10-21
Due to its chemical and photochemical properties and potential applications in numerous domains as a molecular probe, 3-hydroxyflavone (3HF) is a molecule of high interest. In particular, the processes of intramolecular proton transfer in the excited state and metallic complexation are known to be dependent on the chemical environment. In this context, the particular properties of zeolites make these microporous materials an environment adapted to study the reactivity of isolated molecules adsorbed in their porous void space. Thus, this report investigates the incorporation without any solvent of 3HF into the internal volume of various channel-type MFI zeolites. Using complementary techniques (diffuse reflectance UV-vis absorption, Raman scattering, FTIR, fluorescence emission and molecular modelling), very different spectral behaviours are observed in totally dealuminated silicalite-1 and in Al rich MZSM-5 (M = H(+), Na(+), Zn(2+)). In silicalite-1, the non-polar and non-protic internal micro-environment does not induce any valuable interaction between 3HF and the channel walls. Therefore, the molecule shows easy tautomer formation upon excitation. Within HZSM-5, 3HF is adsorbed in close proximity of the acid proton of the zeolite which inhibits the intramolecular proton transfer and then, only the normal form is observed at the excited state. For NaZSM-5, the spectral data show an intermediary behaviour due to the aprotic but polar environment, in agreement with 3HF sorption in close proximity of the Na(+) extra framework cation. After mixing 3HF and ZnZSM-5, the spectral features clearly indicate metallic complexation of the guest molecule. The zeolite dependent reactivity reported here demonstrates the adsorption of the guest within the internal volume because the charge balancing cations which clearly control the reaction are principally located in the zeolite channels. The 3HF incorporation into the internal volume is proved by the decrease of the microporous volume observed by nitrogen adsorption-desorption isotherm measurements. The experimental data are confirmed by Monte Carlo molecular modelling which also predicts 3HF sorption in the zeolite channels in the proximity of charge compensating cations. Consequently, as the molecule dimensions are assumed to be slightly larger than the channel size, the flexibility of the molecule and the lattice deformation have to be considered to allow 3HF penetration into the zeolite void space.
The environmental geochemistry of Arsenic – An overview
Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, D. Kirk; Majzlan, Juraj
2014-01-01
Arsenic is one of the most prevalent toxic elements in the environment. The toxicity, mobility, and fate of arsenic in the environment are determined by a complex series of controls dependent on mineralogy, chemical speciation, and biological processes. The element was first described by Theophrastus in 300 B.C. and named arsenikon (also arrhenicon; Caley and Richards 1956) referring to its “potent” nature, although it was originally considered an alternative form of sulfur (Boyle and Jonasson 1973). Arsenikon is believed to be derived from the earlier Persian, zarnik (online etymology dictionary, http://www.etymonline.com/index.php?term=arsenic). It was not until the thirteenth century that an alchemist, Albertus Magnus, was able to isolate the element from orpiment, an arsenic sulfide (As2S3). The complex chemistry required to do this led to arsenic being considered a “bastard metal” or what we now call a “metalloid,” having properties of both metals and non-metals. As a chemical element, arsenic is widely distributed in nature and can be concentrated in many different ways. In the Earth’s crust, arsenic is concentrated by magmatic and hydrothermal processes and has been used as a “pathfinder” for metallic ore deposits, particularly gold, tin, copper, and tungsten (Boyle and Jonasson 1973; Cohen and Bowell 2014). It has for centuries been considered a potent toxin, is a common poison in actual and fictional crimes, and has led to significant impacts on human health in many areas of the world (Cullen 2008; Wharton 2010).
Zhang, Can; Liu, Wen-Jun; Zhang, Ming-Lu; Tian, Fang; Yang, Yi; An, Dai-Zhi
2014-04-01
Endotoxins, also known as lipopolysaccharide complexes, are anchored in the outer membrane cell wall of most Gram-negative bacteria and some cyanobacteria. They are continuously released to environment during cell decay. Being common pyrogens and highly immunogenic molecules, endotoxins are related to many human diseases. Due to the tolerances and thermo-stability of endotoxin molecules, they were hard to be removed by common methods. The health risk caused by the endotoxin contamination in drinking water and water environment by various exposure pathways have attracted more and more attention in recent years. In this paper, the physical and chemical properties, biological activities and detection assay of the endotoxin contamination were reviewed, and interfere factors of the main assay, the LAL/TAL (Limulus amebocyte lysate/Tachypleus amebocyte lysate) assay, for detecting endotoxin in water sample were investigated, and the development tendency of the endotoxin detection assay was analyzed.
NASA Astrophysics Data System (ADS)
Rackwitz, Sergej; Faus, Isabelle; Schmitz, Markus; Kelm, Harald; Krüger, Hans-Jörg; Andersson, K. Kristoffer; Hersleth, Hans-Petter; Achterhold, Klaus; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker; Wolny, Juliusz A.
2014-04-01
In order to carry out orientation dependent nuclear resonance scattering (NRS) experiments on small single crystals of e.g. iron proteins and/or chemical complexes but also on surfaces and other micrometer-sized samples a 2-circle goniometer including sample positioning optics has been installed at beamline P01, PETRA III, DESY, Hamburg. This sample environment is now available for all users of this beamline. Sample cooling is performed with a cryogenic gas stream which allows NRS measurements in the temperature range from 80 up to 400 K. In a first test this new sample environment has been used in order to investigate the orientation dependence of the nuclear inelastic scattering (NIS) signature of (i) a dinuclear iron(II) spin crossover (SCO) system and (ii) a hydrogen peroxide treated metmyoglobin single crystal.
Biodegradability of Plastics: Challenges and Misconceptions.
Kubowicz, Stephan; Booth, Andy M
2017-11-07
Plastics are one of the most widely used materials and, in most cases, they are designed to have long life times. Thus, plastics contain a complex blend of stabilizers that prevent them from degrading too quickly. Unfortunately, many of the most advantageous properties of plastics such as their chemical, physical and biological inertness and durability present challenges when plastic is released into the environment. Common plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) are extremely persistent in the environment, where they undergo very slow fragmentation (projected to take centuries) into small particles through photo-, physical, and biological degradation processes 1 . The fragmentation of the material into increasingly smaller pieces is an unavoidable stage of the degradation process. Ultimately, plastic materials degrade to micron-sized particles (microplastics), which are persistent in the environment and present a potential source of harm for organisms.
Multicriteria ranking of workplaces regarding working conditions in a mining company.
Bogdanović, Dejan; Stanković, Vladimir; Urošević, Snežana; Stojanović, Miloš
2016-12-01
Ranking of workplaces with respect to working conditions is very significant for each company. It indicates the positions where employees are most exposed to adverse effects resulting from the working environment, which endangers their health. This article presents the results obtained for 12 different production workplaces in the copper mining and smelting complex RTB Bor - 'Veliki Krivelj' open pit, based on six parameters measured regularly which defined the following working environment conditions: air temperature, light, noise, dustiness, chemical hazards and vibrations. The ranking of workplaces has been performed by PROMETHEE/GAIA. Additional optimization of workplaces is done by PROMETHEE V with the given limits related to maximum permitted values for working environment parameters. The obtained results indicate that the most difficult workplace is on the excavation location (excavator operator). This method can be successfully used for solving similar kinds of problems, in order to improve working conditions.
NEW CONSTRAINTS ON A COMPLEX RELATION BETWEEN GLOBULAR CLUSTER COLORS AND ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powalka, Mathieu; Lançon, Ariane; Puzia, Thomas H.
We present an analysis of high-quality photometry for globular clusters (GCs) in the Virgo cluster core region, based on data from the Next Generation Virgo Cluster Survey (NGVS) pilot field, and in the Milky Way (MW), based on Very Large Telescope/X-Shooter spectrophotometry. We find significant discrepancies in color–color diagrams between sub-samples from different environments, confirming that the environment has a strong influence on the integrated colors of GCs. GC color distributions along a single color are not sufficient to capture the differences we observe in color–color space. While the average photometric colors become bluer with increasing radial distance to themore » cD galaxy M87, we also find a relation between the environment and the slope and intercept of the color–color relations. A denser environment seems to produce a larger dynamic range in certain color indices. We argue that these results are not due solely to differential extinction, Initial Mass Function variations, calibration uncertainties, or overall age/metallicity variations. We therefore suggest that the relation between the environment and GC colors is, at least in part, due to chemical abundance variations, which affect stellar spectra and stellar evolution tracks. Our results demonstrate that stellar population diagnostics derived from model predictions which are calibrated on one particular sample of GCs may not be appropriate for all extragalactic GCs. These results advocate a more complex model of the assembly history of GC systems in massive galaxies that goes beyond the simple bimodality found in previous decades.« less
Characterization of surface complexes in enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Roy, D.; Furtak, T. E.
1984-11-01
An indicator molecule, para-nitrosodimethylanaline (p-NDMA), has been used to study the chemical nature of surface complexes involving the active site for SERS in the electrochemical environment. We present evidence for positively charged Ag atoms stabilized by coadsorbed Cl- ions as the primary sites which are produced during the oxidation reduction cycle treatment of an Ag electrode. Depending on the relative number of Cl- ions which influence the Ag site the active site demonstrates a greater or lesser electron accepting character toward p-NDMA. This character is influenced by the applied voltage and by the presence of Tl+ ions in the bulk of the solution near the surface. As in previously studied systems p-NDMA/Cl-/Ag complexes demonstrate charge transfer excitation which in this case is from the p-NDMA to the Ag site. These results further solidify the importance of complex formation in electrochemical SERS and suggest that caution should be applied when using SERS as a quantitative measure of surface coverage.
Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation
NASA Astrophysics Data System (ADS)
Li, Yajuan; Cupo, Michela; Guo, Liangran; Scott, Julie; Chen, Yi-Tzai; Yan, Bingfang; Lu, Wei
2017-12-01
CuS-based nanostructures loading the chemotherapeutic agent doxorubicin (DOX) exerted excellent cancer photothermal chemotherapy under multi-external stimuli. The DOX loading was generally designed through electrostatic interaction or chemical linkers. However, the interaction between DOX molecules and CuS nanoparticles has not been investigated. In this work, we use PEGylated hollow copper sulfide nanoparticles (HCuSNPs) to directly load DOX through the DOX/Cu2+ chelation process. Distinctively, the synthesized PEG-HCuSNPs-DOX release the DOX/Cu2+ complexes into surrounding environment, which generate significant reactive oxygen species (ROS) in a controlled manner by near-infrared laser. The CuS nanoparticle-mediated photothermal ablation facilitates the ROS-induced cancer cell killing effect. Our current work reveals a DOX/Cu2+-mediated ROS-enhanced cell-killing effect in addition to conventional photothermal chemotherapy through the direct CuS nanoparticle-DOX complexation.
Supramolecular complexation for environmental control.
Albelda, M Teresa; Frías, Juan C; García-España, Enrique; Schneider, Hans-Jörg
2012-05-21
Supramolecular complexes offer a new and efficient way for the monitoring and removal of many substances emanating from technical processes, fertilization, plant and animal protection, or e.g. chemotherapy. Such pollutants range from toxic or radioactive metal ions and anions to chemical side products, herbicides, pesticides to drugs including steroids, and include degradation products from natural sources. The applications involve usually fast and reversible complex formation, due to prevailing non-covalent interactions. This is of importance for sensing as well as for separation techniques, where the often expensive host compounds can then be reused almost indefinitely. Immobilization of host compounds, e.g. on exchange resins or on membranes, and their implementation in smart new materials hold particular promise. The review illustrates how the design of suitable host compounds in combination with modern sensing and separation methods can contribute to solve some of the biggest problems facing chemistry, which arise from the everyday increasing pollution of the environment.
Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan
2015-12-08
Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.
Cowell, Whitney J; Wright, Rosalind J
2017-12-01
Environmental toxicants and psychosocial stressors share many biological substrates and influence overlapping physiological pathways. Increasing evidence indicates stress-induced changes to the maternal milieu may prime rapidly developing physiological systems for disruption by concurrent or subsequent exposure to environmental chemicals. In this review, we highlight putative mechanisms underlying sex-specific susceptibility of the developing neuroendocrine system to the joint effects of stress or stress correlates and environmental toxicants (bisphenol A, alcohol, phthalates, lead, chlorpyrifos, and traffic-related air pollution). We provide evidence indicating that concurrent or tandem exposure to chemical and non-chemical stressors during windows of rapid development is associated with sex-specific synergistic, potentiated and reversed effects on several neuroendocrine endpoints related to hypothalamic-pituitary-adrenal axis function, sex steroid levels, neurotransmitter circuits, and innate immune function. We additionally identify gaps, such as the role that the endocrine-active placenta plays, in our understanding of these complex interactions. Finally, we discuss future research needs, including the investigation of non-hormonal biomarkers of stress. We demonstrate multiple physiologic systems are impacted by joint exposure to chemical and non-chemical stressors differentially among males and females. Collectively, the results highlight the importance of evaluating sex-specific endpoints when investigating the neuroendocrine system and underscore the need to examine exposure to chemical toxicants within the context of the social environment.
Chemotaxis and auto-chemotaxis of self-propelling artificial droplet swimmers
NASA Astrophysics Data System (ADS)
Jin, Chenyu; Krueger, Carsten; Maass, Corinna
Chemotaxis and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behavior. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. Simple experimental systems showing similar features could provide vital insights. We present such a swimmer system, as well as controlled assays to study chemotactic effects quantitatively and reproducibly. In our experiments, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical model based on balancing stochastic forces versus a diffusing chemical gradient matching the experimental data. supported by the DFG SPP 1726 ''Microswimmers'' and the MaxSynBio network.
Spatio-mechanical EphA2/ephrin-A1 Signaling in Cancer Cells
NASA Astrophysics Data System (ADS)
Xu, Qian
2011-12-01
Communication strategies in nature are an integral part to the survival of multi-cellular organisms. Cell membranes provide the chemical environment in which intercellular signaling begins. The vast complexity of this signaling requires that a relatively conserved set of chemical constituents be able to generate enormous signal diversity. Spatial sorting of signaling molecules within the membrane allows for this diversity. My research uses synthetic lipid membranes, solid-state nanostructures, and high-resolution imaging to study a potentially novel spatio-mechanical regulatory mechanism in the EphA2 signaling pathway. My hypothesis is that the multi-scale organization of the EphA2 receptor in the cell membrane regulates its biochemical function. This hypothesis is motivated by the idea that extracellular mechanical inputs have an important role in intracellular signaling cascades.
Somogyi, Endre; Glazier, James A.
2017-01-01
Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment. PMID:29303160
Joubert, Ruan; Steyn, Johan Dewald; Heystek, Hendrik Jacobus; Steenekamp, Jan Harm; Du Preez, Jan Lourens; Hamman, Josias Hendrik
2017-02-01
The assessment of intestinal membrane permeability properties of new chemical entities is a crucial step in the drug discovery and development process and a variety of in vitro models, methods and techniques are available to estimate the extent of oral drug absorption in humans. However, variations in certain physiological and physico-chemical factors are often not reflected in the results and the complex dynamic interplay between these factors is sometimes oversimplified with in vitro models. Areas covered: In vitro models to evaluate drug pharmacokinetics are briefly outlined, while both physiological and physico-chemical factors that may have an influence on these techniques are critically reviewed. The shortcomings identified for some of the in vitro techniques are discussed in conjunction with novel ways to improve and thereby overcome some challenges. Expert opinion: Although conventional in vitro methods and theories are used as basic guidelines to predict drug absorption, critical evaluations have identified some shortcomings. Advancements in technology have made it possible to investigate and understand the role of physiological and physico-chemical factors in drug delivery more clearly, which can be used to improve and refine the techniques to more closely mimic the in vivo environment.
Somogyi, Endre; Glazier, James A
2017-04-01
Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
Bioavailability of xenobiotics in the soil environment.
Katayama, Arata; Bhula, Raj; Burns, G Richard; Carazo, Elizabeth; Felsot, Allan; Hamilton, Denis; Harris, Caroline; Kim, Yong-Hwa; Kleter, Gijs; Koedel, Werner; Linders, Jan; Peijnenburg, J G M Willie; Sabljic, Aleksandar; Stephenson, R Gerald; Racke, D Kenneth; Rubin, Baruch; Tanaka, Keiji; Unsworth, John; Wauchope, R Donald
2010-01-01
It is often presumed that all chemicals in soil are available to microorganisms, plant roots, and soil fauna via dermal exposure. Subsequent bioaccumulation through the food chain may then result in exposure to higher organisms. Using the presumption of total availability, national governments reduce environmental threshold levels of regulated chemicals by increasing guideline safety margins. However, evidence shows that chemical residues in the soil environment are not always bioavailable. Hence, actual chemical exposure levels of biota are much less than concentrations present in soil would suggest. Because "bioavailability" conveys meaning that combines implications of chemical sol persistency, efficacy, and toxicity, insights on the magnitude of a chemicals soil bioavailability is valuable. however, soil bioavailability of chemicals is a complex topic, and is affected by chemical properties, soil properties, species exposed, climate, and interaction processes. In this review, the state-of-art scientific basis for bioavailability is addressed. Key points covered include: definition, factors affecting bioavailability, equations governing key transport and distributive kinetics, and primary methods for estimating bioavailability. Primary transport mechanisms in living organisms, critical to an understanding of bioavailability, also presage the review. Transport of lipophilic chemicals occurs mainly by passive diffusion for all microorganisms, plants, and soil fauna. Therefore, the distribution of a chemical between organisms and soil (bioavailable proportion) follows partition equilibrium theory. However, a chemical's bioavailability does not always follow partition equilibrium theory because of other interactions with soil, such as soil sorption, hysteretic desorption, effects of surfactants in pore water, formation of "bound residue", etc. Bioassays for estimating chemical bioavailability have been introduced with several targeted endpoints: microbial degradation, uptake by higher plants and soil fauna, and toxicity to organisms. However, there bioassays are often time consuming and laborious. Thus, mild extraction methods have been employed to estimate bioavailability of chemicals. Mild methods include sequential extraction using alcohols, hexane/water, supercritical fluids (carbon dioxide), aqueous hydroxypropyl-beta-cyclodextrin extraction, polymeric TENAX beads extraction, and poly(dimethylsiloxane)-coated solid-phase microextraction. It should be noted that mild extraction methods may predict bioavailability at the moment when measurements are carried out, but not the changes in bioavailability that may occur over time. Simulation models are needed to estimate better bioavailability as a function of exposure time. In the past, models have progressed significantly by addressing each group of organisms separately: microbial degradation, plant uptake via evapotranspiration processes, and uptake of soil fauna in their habitat. This approach has been used primarily because of wide differences in the physiology and behaviors of such disparate organisms. However, improvement of models is badly needed, Particularly to describe uptake processes by plant and animals that impinge on bioavailability. Although models are required to describe all important factors that may affect chemical bioavailability to individual organisms over time (e.g., sorption/desorption to soil/sediment, volatilization, dissolution, aging, "bound residue" formation, biodegradation, etc.), these models should be simplified, when possible, to limit the number of parameters to the practical minimum. Although significant scientific progress has been made in understanding the complexities in specific methodologies dedicated to determining bioavailability, no method has yet emerged to characterized bioavailability across a wide range of chemicals, organisms, and soils/sediments. The primary aim in studying bioavailability is to define options for addressing bioremediation or environmental toxicity (risk assessment), and that is unlikely to change. Because of its importance in estimating research is needed to more comprehensively address the key environmental issue of "bioavailability of chemicals in soil/sediment."
Energy Conversion and Storage Program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1993-06-01
This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.
Applications of AOPs to ecotoxicology | Science Inventory | US ...
Toxicologists conducting safety assessments for either human or ecological health are responsible for generating data for possible adverse effects of a rapidly increasing number of substances. For example, the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) program in Europe, and the recent reauthorization of the Toxic Substances Control Act (TSCA) in the United States (US) both explicitly mandate consideration of the potential toxicity of many thousands of chemicals that, in the past, would not have been assessed. There also is an increasing emphasis on understanding the effects of existing chemical mixtures on human health and the environment; for example in North America, the Great Lakes Restoration Initiative, sponsored by the Office of the President of the US, has identified complex mixtures of chemicals of emerging concern as one of the highest priority stressors in the lakes. These types of new regulatory programs and monitoring initiatives highlight the necessity of identifying and developing novel, rapid approaches for assessing the potential toxicity of substances, to augment (or, in some instances, replace) the more costly, long-term in vivo test methods that historically have supported chemical risk assessments. Fortunately, these chemical evaluation challenges are occurring against a backdrop of evolving data collection and analysis techniques that enable generation of biological information in manners previously conside
Monisha, S; Mathavan, T; Selvasekarapandian, S; Milton Franklin Benial, A; Aristatil, G; Mani, N; Premalatha, M; Vinoth Pandi, D
2017-02-10
Proton conducting materials create prime interest in electro chemical device development. Present work has been carried out to design environment friendly new biopolymer electrolytes (BPEs) using cellulose acetate (CA) complex with different concentrations of ammonium nitrate (NH 4 NO 3 ), which have been prepared as film and characterized. The 50mol% CA and 50mol% NH 4 NO 3 complex has highest ionic conductivity (1.02×10 -3 Scm -1 ). Differential scanning calorimetry shows the changes in glass transition temperature depends on salt concentration. Structural analysis indicates that the highest ionic conductivity complex exhibits more amorphous nature. Vibrational analysis confirms the complex formation, which has been validated theoretically by Gaussian 09 software. Conducting element in the BPEs has been predicted. Primary proton battery and proton exchange membrane fuel cell have been developed for highest ionic conductivity complex. Output voltage and power performance has been compared for single fuel cell application, which manifests the present BPE holds promise application in electrochemical devices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emergence of life: Physical chemistry changes the paradigm.
Spitzer, Jan; Pielak, Gary J; Poolman, Bert
2015-06-10
Origin of life research has been slow to advance not only because of its complex evolutionary nature (Franklin Harold: In Search of Cell History, 2014) but also because of the lack of agreement on fundamental concepts, including the question of 'what is life?'. To re-energize the research and define a new experimental paradigm, we advance four premises to better understand the physicochemical complexities of life's emergence: (1) Chemical and Darwinian (biological) evolutions are distinct, but become continuous with the appearance of heredity. (2) Earth's chemical evolution is driven by energies of cycling (diurnal) disequilibria and by energies of hydrothermal vents. (3) Earth's overall chemical complexity must be high at the origin of life for a subset of (complex) chemicals to phase separate and evolve into living states. (4) Macromolecular crowding in aqueous electrolytes under confined conditions enables evolution of molecular recognition and cellular self-organization. We discuss these premises in relation to current 'constructive' (non-evolutionary) paradigm of origins research - the process of complexification of chemical matter 'from the simple to the complex'. This paradigm artificially avoids planetary chemical complexity and the natural tendency of molecular compositions toward maximum disorder embodied in the second law of thermodynamics. Our four premises suggest an empirical program of experiments involving complex chemical compositions under cycling gradients of temperature, water activity and electromagnetic radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrall, K.D.
The purpose of this project was to demonstrate the ``Exposure-to- Risk`` monitoring system in an actual occupational environment. The system is a unique combination of existing hardware with proprietary software to create an integrated means of assessing occupational exposures to volatile organic compounds. One component of this system utilizes a portable mass spectrometer developed by Teledyne Electronic Technologies. Integration of the system was accomplished under Laboratory Directed Research and Development (LDRD) funding. Commercialization of the system will take place following demonstration in an actual occupational environment, and will include, in part, Teledyne Electronic Technologies. The Exposure-to-Risk monitoring system will benefitmore » DOE by overcoming present-day limitations in worker health protection monitoring. There are numerous sites within the` DOE complex where many different hazardous chemicals are used on a routine basis. These chemicals range from paint stripers and cleaning solvents to chemical warfare agents, each having its own degree of potential adverse health risk to a worker. Thus, a real concern for DOE is to ensure that a worker is properly monitored to assess any adverse health risk from exposure to potentially hazardous chemicals. With current industrial hygiene technologies, this is an arduous task. The Exposure-to-Risk monitoring system integrates a patented breath-inlet device connecting a subject`s exhaled breath directly with a field-portable mass spectrometer with physiologically based pharmacokinetic (PBPK) modeling to estimate the target tissue dose following a chemical exposure. Estimation of the adverse health risk prediction follows from the exposure/dose calculation based on currently accepted methodologies. This new system can determine, in the field, the possible adverse health risks on a daily basis to an individual worker.« less
Hotchkiss, Andrew K.; Rider, Cynthia V.; Blystone, Chad R.; Wilson, Vickie S.; Hartig, Phillip C.; Ankley, Gerald T.; Foster, Paul M.; Gray, Clark L.; Gray, L. Earl
2008-01-01
In 1991, a group of expert scientists at a Wingspread work session on endocrine-disrupting chemicals (EDCs) concluded that “Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and humans. Endocrine disruption can be profound because of the crucial role hormones play in controlling development.” Since that time, there have been numerous documented examples of adverse effects of EDCs in invertebrates, fish, wildlife, domestic animals, and humans. Hormonal systems can be disrupted by numerous different anthropogenic chemicals including antiandrogens, androgens, estrogens, AhR agonists, inhibitors of steroid hormone synthesis, antithyroid substances, and retinoid agonists. In addition, pathways and targets for endocrine disruption extend beyond the traditional estrogen/androgen/thyroid receptor–mediated reproductive and developmental systems. For example, scientists have expressed concern about the potential role of EDCs in increasing trends in early puberty in girls, obesity and type II diabetes in the United States and other populations. New concerns include complex endocrine alterations induced by mixtures of chemicals, an issue broadened due to the growing awareness that EDCs present in the environment include a variety of potent human and veterinary pharmaceutical products, personal care products, nutraceuticals and phytosterols. In this review we (1) address what have we learned about the effects of EDCs on fish, wildlife, and human health, (2) discuss representative animal studies on (anti)androgens, estrogens and 2,3,7,8-tetrachlorodibenzo-p-dioxin–like chemicals, and (3) evaluate regulatory proposals being considered for screening and testing these chemicals. PMID:18281716
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomatova, Natalia V.; Jackson, Jennifer M.; Sturhahn, Wolfgang
The physical properties of silicate melts within Earth's mantle affect the chemical and thermal evolution of its interior. Chemistry and coordination environments affect such properties. We have measured the hyperfine parameters of iron-bearing rhyolitic and basaltic glasses up to ~120 GPa and ~100 GPa, respectively, in a neon pressure medium using time domain synchrotron Mössbauer spectroscopy. The spectra for rhyolitic and basaltic glasses are well explained by three high-spin Fe2+-like sites with distinct quadrupole splittings. Absence of detectable ferric iron was confirmed with optical absorption spectroscopy. The sites with relatively high and intermediate quadrupole splittings are likely a result ofmore » fivefold and sixfold coordination environments of ferrous iron that transition to higher coordination with increasing pressure. The ferrous site with a relatively low quadrupole splitting and isomer shift at low pressures may be related to a fourfold or a second fivefold ferrous iron site, which transitions to higher coordination in basaltic glass, but likely remains in low coordination in rhyolitic glass. These results indicate that iron experiences changes in its coordination environment with increasing pressure without undergoing a high-spin to low-spin transition. We compare our results to the hyperfine parameters of silicate glasses of different compositions. With the assumption that coordination environments in silicate glasses may serve as a good indicator for those in a melt, this study suggests that ferrous iron in chemically complex silicate melts likely exists in a high-spin state throughout most of Earth's mantle.« less
Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model
NASA Astrophysics Data System (ADS)
Gantt, B.; Bash, J. O.; Kelly, J.
2014-12-01
Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.
Geometric and electronic structures of potassium-adsorbed rubrene complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tsung-Lung, E-mail: quantum@mail.ncyu.edu.tw; Lu, Wen-Cai, E-mail: wencailu@jlu.edu.cn; State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021
2015-06-28
The geometric and electronic structures of potassium-adsorbed rubrene complexes are studied in this article. It is found that the potassium-rubrene (K{sub 1}RUB) complexes inherit the main symmetry characteristics from their pristine counterparts and are thus classified into D{sub 2}- and C{sub 2h}-like complexes according to the relative orientations of the four phenyl side groups. The geometric structures of K{sub 1}RUB are governed by two general effects on the total energy: Deformation of the carbon frame of the pristine rubrene increases the total energy, while proximity of the potassium ion to the phenyl ligands decreases the energy. Under these general rules,more » the structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB, however, exhibit their respective peculiarities. These peculiarities can be illustrated by their energy profiles of equilibrium structures. For the potassium adsorption-sites, the D{sub 2}-like complexes show minimum-energy basins, whereas the C{sub 2h}-like ones have single-point minimum-energies. If the potassium atom ever has the energy to diffuse from the minimum-energy site, the potassium diffusion path on the D{sub 2}-like complexes is most likely along the backbone in contrast to the C{sub 2h}-like ones. Although the electronic structures of the minimum-energy structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB are very alike, decompositions of their total spectra reveal insights into the electronic structures. First, the spectral shapes are mainly determined by the facts that, in comparison with the backbone carbons, the phenyl carbons have more uniform chemical environments and far less contributions to the electronic structures around the valence-band edge. Second, the electron dissociated from the potassium atom mainly remains on the backbone and has little effects on the electronic structures of the phenyl groups. Third, the two phenyls on the same side of the backbone as the potassium atom have more similar chemical environments than the other two on the opposite side, which leads to the largely enhanced resemblance of the simulated to the experimental spectra. Fourth, the HOMO and LUMO are mainly the α and β components of the 2p orbitals of the backbone carbons, respectively.« less
Chemicals, Health, Environment, and Me.
ERIC Educational Resources Information Center
California Univ., Berkeley. Lawrence Hall of Science.
The CHEM (Chemicals, Health, Environment, and Me) Project is a series of 10 units designed to provide experiences for fifth and sixth graders that help them to accomplish an understanding of: (1) the nature of chemicals and how they interact with the environment; (2) how to collect, process, and analyze information; (3) how to use scientific…
Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics
Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.
2012-01-01
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726
CEST: from basic principles to applications, challenges and opportunities
Vinogradov, Elena; Sherry, A Dean; Lenkinski, Robert E
2012-01-01
Chemical Exchange Saturation Transfer (CEST) offers a new type of contrast for MRI that is molecule specific. In this approach, a slowly exchanging NMR active nucleus, typically a proton, possessing a chemical shift distinct from water is selectively saturated and the saturated spin is transferred to the bulk water via chemical exchange. Many molecules can act as CEST agents, both naturally occurring endogenous molecules and new types of exogenous agents. A large variety of molecules have been demonstrated as potential agents, including small diamagnetic molecules, complexes of paramagnetic ions, endogenous macromolecules, dendrimers and liposomes. In this review we described the basic principles of the CEST experiment, with emphasis on the similarity to earlier saturation transfer experiments described in the literature. Interest in quantitative CEST has also resulted in the development of new exchange-sensitive detection schemes. Some emerging clinical applications of CEST are described and the challenges and opportunities associated with translation of these methods to the clinical environment are discussed. PMID:23273841
Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.
Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang
Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13 C Metabolic Flux Analysis ( 13 C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13 C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13 C-MFA and illustrate how 13 C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.
Numerical investigation of spray ignition of a multi-component fuel surrogate
NASA Astrophysics Data System (ADS)
Backer, Lara; Narayanaswamy, Krithika; Pepiot, Perrine
2014-11-01
Simulating turbulent spray ignition, an important process in engine combustion, is challenging, since it combines the complexity of multi-scale, multiphase turbulent flow modeling with the need for an accurate description of chemical kinetics. In this work, we use direct numerical simulation to investigate the role of the evaporation model on the ignition characteristics of a multi-component fuel surrogate, injected as droplets in a turbulent environment. The fuel is represented as a mixture of several components, each one being representative of a different chemical class. A reduced kinetic scheme for the mixture is extracted from a well-validated detailed chemical mechanism, and integrated into the multiphase turbulent reactive flow solver NGA. Comparisons are made between a single-component evaporation model, in which the evaporating gas has the same composition as the liquid droplet, and a multi-component model, where component segregation does occur. In particular, the corresponding production of radical species, which are characteristic of the ignition of individual fuel components, is thoroughly analyzed.
Risk-Screening Environmental Indicators (RSEI)
EPA's Risk-Screening Environmental Indicators (RSEI) is a geographically-based model that helps policy makers and communities explore data on releases of toxic substances from industrial facilities reporting to EPA??s Toxics Release Inventory (TRI). By analyzing TRI information together with simplified risk factors, such as the amount of chemical released, its fate and transport through the environment, each chemical??s relative toxicity, and the number of people potentially exposed, RSEI calculates a numeric score, which is designed to only be compared to other scores calculated by RSEI. Because it is designed as a screening-level model, RSEI uses worst-case assumptions about toxicity and potential exposure where data are lacking, and also uses simplifying assumptions to reduce the complexity of the calculations. A more refined assessment is required before any conclusions about health impacts can be drawn. RSEI is used to establish priorities for further investigation and to look at changes in potential impacts over time. Users can save resources by conducting preliminary analyses with RSEI.
The application of computer modeling to health effect research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, R.S.H.
1996-12-31
In the United States, estimates show that more than 30,000 hazardous waste disposal sites exist, not including military installations, U.S. Department of Energy nuclear facilities, and hundreds and thousands of underground fuel storage tanks; these sites undoubtedly have their own respective hazardous waste chemical problems. When so many sites contain hazardous chemicals, how does one study the health effects of the chemicals at these sites? There could be many different answers, but none would be perfect. For an area as complex and difficult as the study of chemical mixtures associated with hazardous waste disposal sites, there are no perfect approachesmore » and protocols. Human exposure to chemicals, be it environmental or occupational, is rarely, if ever, limited to a single chemical. Therefore, it is essential that we consider multiple chemical effects and interactions in our risk assessment process. Systematic toxicity testing of chemical mixtures in the environment or workplace that uses conventional toxicology methodologies is highly impractical because of the immense numbers of mixtures involved. For example, about 600,000 chemicals are being used in our society. Just considering binary chemical mixtures, this means that there could be 600,000 x 599,999/2 = 359,999,400,000 pairs of chemicals. Assuming that only one in a million of these pairs of chemicals acts synergistically or has other toxicologic interactions, there would still be 359,999 binary chemical mixtures possessing toxicologic interactions. Moreover, toxicologic interactions undoubtedly exist among chemical mixtures with three or more component chemicals; the number of possible combinations for these latter mixtures is almost infinite. These are astronomically large numbers with respect to systematic toxicity testing. 22 refs., 5 figs., 1 tab.« less
Stresslets Induced by Active Swimmers.
Lauga, Eric; Michelin, Sébastien
2016-09-30
Active particles disturb the fluid around them as force dipoles, or stresslets, which govern their collective dynamics. Unlike swimming speeds, the stresslets of active particles are rarely determined due to the lack of a suitable theoretical framework for arbitrary geometry. We propose a general method, based on the reciprocal theorem of Stokes flows, to compute stresslets as integrals of the velocities on the particle's surface, which we illustrate for spheroidal chemically active particles. Our method will allow tuning the stresslet of artificial swimmers and tailoring their collective motion in complex environments.
Remote Systems Design & Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ
2009-08-28
The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.
Electrokinetic Phenomena in Chemically Manipulated Environments
NASA Astrophysics Data System (ADS)
Nery Azevedo, Rodrigo
Suspended particles are integral part of many systems and engineering technologies. They can be found in the form of colloidal suspensions, emulsions, polymer precursor solutions, and in biological materials such as blood. The miniaturization of new technologies and the advent of microfludics has made the manipulation of suspended particles in the microscale particularly important for a variety of fields. The ability to easily impart complex chemical environments to suspensions in microfluidic devices enables us to characterize these systems, modify their properties and drive their motion. Nonetheless, precise manipulation of the chemistry surrounding suspended particles has been particularly difficult up until recently. This thesis dissertation shows how microfluidic devices integrated with hydrogel membranes can be used to control the chemical environment of suspended particles for a variety of studies and practical applications. First, I demonstrate how particles move diffusiophoretically under ionic surfactant gradients. Diffusiophoresis, the motion of particles under concentration gradients, has been known for several decades but it has rarely been studied experimentally outside the context of simple electrolytes. Here, we show that diffusiophoresis in ionic surfactants below the CMC can be understood in terms of the classic theory for electrolytes. Above the CMC, however, the drive for diffsuiophoresis is significantly diminished due to a large drop in the change in chemical potential with added solute. Next, I show that gradients of dipolar molecules such a zwitterions can drive diffusiophoresis. I derive the diffusiophoretic migration of particles under gradients of dipolar molecules. This theory is backed up by experiments which reveal that, in such systems, particle velocities are directly proportional to the imposed gradient but do not scale with the inverse of the local concentration, as occurs under electrolyte gradients. Furthermore, I show that the diffusiophoretic velocity in zwitterions scales with the square of the intercharge distance. Finally, I demonstrate further applications of our hydrogel membrane-integrated devices by showcasing several case studies of unique experiments using our technique. I show diffusiophoresis under previously untested solutes such as butanol, acids, glycerol, and sucrose. I demonstrate a proof-of-principle experiment for colloidal tagging in microfluidic devices and for the study of chemotaxis. Lastly, I examine AC electrophoresis in chemically manipulated environments and I show the ability of our device to perform electrophoretic measurements in spatially homogeneous and time-evolving systems.
Liu, Ting; Ye, Cheng-Long; Chen, Xiao-Yun; Ran, Wei; Shen, Qi-Rong; Hu, Feng; Li, Hui-Xin
2013-12-01
A comparative study was conducted to investigate the effects of different fertilization modes on the soil nematode community structure in a paddy field with paddy rice and wheat rotation in Jintan County (31 degrees 39'41.8" N, 119 degrees 28'23.5" E) of Jiangsu Province, East China. Six treatments were installed, i. e., no fertilization (CK), 100% chemical NPK fertilization (F), pig manure compost plus 50% chemical fertilization (PF), straw returning plus 100% chemical fertilization (SF), pig manure compost and straw returning plus 50% chemical fertilization (PSF), and application of commercial pig manure-inorganic complex fertilizer (PMF). The soil samples were collected from the field after the paddy rice harvested in autumn. The two continuous years study showed that the soil nematode community structure varied with fertilization treatments and years. The combined application of chemical fertilizers and organic manures increased the total number of soil nematodes, decreased the abundance of soil bacterivorous nematodes, and made the abundance of predator- and omnivore nematodes increased significantly. No significant differences were observed in the abundance of soil fungivorous nematodes among all the treatments. Chemical fertilization alone and the application of commercial pig manure-inorganic complex fertilizer had no obvious suppression effect on the soil phytophagous nematodes. The abundance of soil bacteriavorous nematodes under the combined application of chemical fertilizers and organic manures was relatively increased in the second year, as compared with that in the first year, while the abundance of soil phytophagous nematodes (Hirschmanniella) was relatively decreased in the second year. From the aspect of nematode ecological indices, the Margalef diversity index (H) under the combined application of chemical fertilizers and organic manures in the second year had an increasing trend, while the NCR index had less change. The Wasilewka index had a relative increase in the second year, while the plant-parasitic index had a relative decrease. It was suggested that the application of organic manure could increase the abundance of soil microbivorous nematodes, and made the soil environment tend to be healthy.
Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.
2016-01-01
Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters. PMID:26988070
NASA Astrophysics Data System (ADS)
Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.
2016-03-01
Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters.
Chiral Polychlorinated Biphenyl Transport, Metabolism and Distribution - A Review
Lehmler, Hans-Joachim; Harrad, Stuart J.; Hühnerfuss, Heinrich; Kania-Korwel, Izabela; Lee, Cindy M.; Lu, Zhe; Wong, Charles S.
2009-01-01
Chirality can be exploited to gain insight into enantioselective fate processes that may otherwise remain undetected because only biological, but not physical and chemical transport and transformation processes in an achiral environment will change enantiomer compositions. This review provides an in-depth overview of the application of chirality to the study of chiral polychlorinated biphenyls (PCBs), an important group of legacy pollutants. Like other chiral compounds, individual PCB enantiomers may interact enantioselectively (or enantiospecifically) with chiral macromolecules, such as cytochrome P-450 enzymes or ryanodine receptors, leading to differences in their toxicological effects and the enantioselective formation of chiral biotransformation products. Species and congener-specific enantiomer enrichment has been demonstrated in environmental compartments, wildlife and mammals, including humans, typically due to a complex combination of biotransformation processes and uptake via the diet by passive diffusion. Changes in the enantiomer composition of chiral PCBs in the environment have been used to understand complex aerobic and anaerobic microbial transformation pathways, to delineate and quantify PCB sources and transport in the environment, to gain insight into the biotransformation of PCBs in aquatic food webs, and to investigate the enantioselective disposition of PCBs and their methylsulfonyl PCBs metabolites in rodents. Overall, changes in chiral signatures are powerful, but currently underutilized tools for studies of environmental and biological processes of PCBs. PMID:20384371
40 CFR 721.10003 - Manganese heterocyclic tetraamine complex (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10003 Manganese heterocyclic tetraamine complex (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically...
40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as iron...
40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as iron...
40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as iron...
Vertical nanopillars for highly localized fluorescence imaging
Xie, Chong; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao
2011-01-01
Observing individual molecules in a complex environment by fluorescence microscopy is becoming increasingly important in biological and medical research, for which critical reduction of observation volume is required. Here, we demonstrate the use of vertically aligned silicon dioxide nanopillars to achieve below-the-diffraction-limit observation volume in vitro and inside live cells. With a diameter much smaller than the wavelength of visible light, a transparent silicon dioxide nanopillar embedded in a nontransparent substrate restricts the propagation of light and affords evanescence wave excitation along its vertical surface. This effect creates highly confined illumination volume that selectively excites fluorescence molecules in the vicinity of the nanopillar. We show that this nanopillar illumination can be used for in vitro single-molecule detection at high fluorophore concentrations. In addition, we demonstrate that vertical nanopillars interface tightly with live cells and function as highly localized light sources inside the cell. Furthermore, specific chemical modification of the nanopillar surface makes it possible to locally recruit proteins of interest and simultaneously observe their behavior within the complex, crowded environment of the cell. PMID:21368157
Deep, Broadband Spectral Line Surveys of Molecule-rich Interstellar Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widicus Weaver, Susanna L.; Laas, Jacob C.; Zou, Luyao
2017-09-01
Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature,more » density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ∼0.35 km s{sup −1}. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.« less
40 CFR 372.65 - Chemicals and chemical categories to which this part applies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Chemicals and chemical categories to which this part applies. 372.65 Section 372.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Specifi...
40 CFR 372.65 - Chemicals and chemical categories to which this part applies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Chemicals and chemical categories to which this part applies. 372.65 Section 372.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Specifi...
Fluoroquinolone antibiotics: an emerging class of environmental micropollutants.
Van Doorslaer, Xander; Dewulf, Jo; Van Langenhove, Herman; Demeestere, Kristof
2014-12-01
The aim of this review paper is to provide a comprehensive overview of different chemical and environmental aspects concerning fluoroquinolone antibiotics as emerging contaminants. A literature survey has been performed based on 204 papers from 1998 to mid-2013, resulting in a dataset consisting out of 4100 data points related to physical-chemical properties, environmental occurrence, removal efficiencies, and ecotoxicological data. In a first part, an overview is given on relevant physical-chemical parameters to better understand the behavior of fluoroquinolones during wastewater treatment and in the environment. Secondly, the route of these antibiotics after their application in both human and veterinary surroundings is discussed. Thirdly, the occurrence of fluoroquinolone residues is discussed for different environmental matrices. The final part of this review provides a tentative risk assessment of fluoroquinolone compounds and their transformation products in surface waters by means of hazard quotients. Overall, this review shows that fluoroquinolone antibiotics have a wide spread use and that their behavior during wastewater treatment is complex with an incomplete removal. As a result, it is observed that these biorecalcitrant compounds are present in different environmental matrices at potentially hazardous concentrations for the aquatic environment. The latter calls for actions on both the consumption as well as the wastewater treatment aspect to diminish the discharge of these biological active compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Exploring consumer exposure pathways and patterns of use for chemicals in the environment through the Chemical/Product Categories Database (CPCat) (Presented by: Kathie Dionisio, Sc.D., NERL, US EPA, Research Triangle Park, NC (1/23/2014).
40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical...
Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction.
Herrera, Aude; Cockell, Charles S
2007-07-01
The last decade has been marked by a large number of studies focused on understanding the distribution of microorganisms in volcanic environments. These studies are motivated by the desire to elucidate how the geochemically extreme conditions of such environments can influence microbial diversity both on the surface and in the subsurface of the Earth. The exploration of microbial community diversity has generally not relied on culture-dependent methods, but has been carried out using environmental DNA extraction. Because of the large diversity of chemically and physically complex samples, extracting DNA from volcanic environments is technically challenging. In view of the emerging literature, and our own experience in the optimisation of methods for DNA extraction from volcanic materials, it is timely to provide a methodological comparison. This review highlights and discusses new insights and methods published on DNA extraction methods from volcanic samples, considering the different volcanic environments. A description of a recent method for DNA extraction from basalt and obsidian glass rock samples from Iceland is included. Finally, we discuss these approaches in the wider context of modern work to understand the microbial diversity of volcanic environments.
Non-Chemical Stressors in a Child's Social Environment ...
Non-chemical stressors exist in the built, natural and social environments including physical factors (e.g., noise, temperature and humidity) and psychosocial factors (e.g., poor diet, smoking, illicit drug use)[1]. Scientists study how non-chemical stressors (e.g., social support, stress, exposure to violence) from the social environment (e.g., places where children live, learn, play) affect the biological response to chemical exposures; impacting children’s health[2-5]. Poster for the 2017 CEHN Conference.
Localized aliphatic organic material on the surface of Ceres
NASA Astrophysics Data System (ADS)
De Sanctis, M. C.; Ammannito, E.; McSween, H. Y.; Raponi, A.; Marchi, S.; Capaccioni, F.; Capria, M. T.; Carrozzo, F. G.; Ciarniello, M.; Fonte, S.; Formisano, M.; Frigeri, A.; Giardino, M.; Longobardo, A.; Magni, G.; McFadden, L. A.; Palomba, E.; Pieters, C. M.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.
2017-02-01
Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.
Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Yoreo, James J.; Gilbert, Pupa U.; Sommerdijk, Nico
Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. These non-classical pathways to crystallization are diverse, in contrast to classical models that consider the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle attachment processes and show that multiple pathways result from the interplay of free energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects; particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemblemore » behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems and patterns of mineralization in natural environments.« less
NASA Technical Reports Server (NTRS)
Combi, Michael R.
2004-01-01
In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.
Challenges in breeding for yield increase for drought.
Sinclair, Thomas R
2011-06-01
Crop genetic improvement for environmental stress at the molecular and physiological level is very complex and challenging. Unlike the example of the current major commercial transgenic crops for which biotic stress tolerance is based on chemicals alien to plants, the complex, redundant and homeostatic molecular and physiological systems existing in plants must be altered for drought tolerance improvement. Sophisticated tools must be developed to monitor phenotype expression at the crop level to characterize variation among genotypes across a range of environments. Once stress-tolerant cultivars are developed, regional probability distributions describing yield response across years will be necessary. This information can then aid in identifying environmental conditions for positive and negative responses to genetic modification to guide farmer selection of stress-tolerant cultivars. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dos Santos, Hélio F; Paschoal, Diego; Burda, Jaroslav V
2012-11-15
The reactivity of gold(III) complexes is analyzed for a series of derivatives of 3-azapentane-1,5-diamine (dien) tridentate ligand that can contain some bulky substituents. Two distinct series of compounds are considered where the dien ligand is either deprotonated (R-dien-H) or protonated (R-dien) at the secondary amine where R = ethyl (Et) or methyl (Me). While the deprotonated species will occur in neutral and basic solutions, the protonated forms are likely to be present in acidic environment. Hydration reaction (water/Cl(-) ligand exchange) of 14 complexes is modeled with quantum chemical calculations. Our calculations predict that the reactivity decreases with the increase in the molecular volume of the substituted dien ligand, and the calculated rate constants are in satisfactory agreement with experimental results. In addition, quantitative structure/reactivity models are proposed where the angle between the entering and leaving groups in the transition state structure (the reactivity angle) is used as a molecular descriptor. These models explain the trend of the relative reactivity of these complexes and can be used to design new ligands for gold(III) complexes aiming to adjust the reactivity of the complex.
Municipal solid waste landfills harbor distinct microbiomes
Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.
2016-01-01
Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.
Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rye, Danny M.; Bolton, Edward W.
2002-11-04
The objective is to initiate new: modeling of coupled fluid flow and chemical reactions of geologic environments; experimental and theoretical studies of water-rock reactions; collection and interpretation of stable isotopic and geochemical field data at many spatial scales of systems involving fluid flow and reaction in environments ranging from soils to metamorphic rocks. Theoretical modeling of coupled fluid flow and chemical reactions, involving kinetics, has been employed to understand the differences between equilibrium, steady-state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. The numerical codes developed in this project treat multi-component, finite-rate reactions combined with advective andmore » dispersive transport in multi-dimensions. The codes incorporate heat, mass, and isotopic transfer in both porous and fractured media. Experimental work has obtained the kinetic rate laws of pertinent silicate-water reactions and the rates of Sr release during chemical weathering. Ab-initio quantum mechanical techniques have been applied to obtain the kinetics and mechanisms of silicate surface reactions and isotopic exchange between water and dissolved species. Geochemical field-based studies were carried out on the Wepawaug metamorphic schist, on the Irish base-metal sediment-hosted ore system, in the Dalradian metamorphic complex in Scotland, and on weathering in the Columbia River flood basalts. The geochemical and isotopic field data, and the experimental and theoretical rate data, were used as constraints on the numerical models and to determine the length and time scales relevant to each of the field areas.« less
Preparation and Characterization of Biofunctionalized Inorganic Substrates.
Dugger, Jason W; Webb, Lauren J
2015-09-29
Integrating the function of biological molecules into traditional inorganic materials and substrates couples biologically relevant function to synthetic devices and generates new materials and capabilities by combining biological and inorganic functions. At this so-called "bio/abio interface," basic biological functions such as ligand binding and catalysis can be co-opted to detect analytes with exceptional sensitivity or to generate useful molecules with chiral specificity under entirely benign reaction conditions. Proteins function in dynamic, complex, and crowded environments (the living cell) and are therefore appropriate for integrating into multistep, multiscale, multimaterial devices such as integrated circuits and heterogeneous catalysts. However, the goal of reproducing the highly specific activities of biomolecules in the perturbed chemical and electrostatic environment at an inorganic interface while maintaining their native conformations is challenging to achieve. Moreover, characterizing protein structure and function at a surface is often difficult, particularly if one wishes to compare the activity of the protein to that of the dilute, aqueous solution phase. Our laboratory has developed a general strategy to address this challenge by taking advantage of the structural and chemical properties of alkanethiol self-assembled monolayers (SAMs) on gold surfaces that are functionalized with covalently tethered peptides. These surface-bound peptides then act as the chemical recognition element for a target protein, generating a biomimetic surface in which protein orientation, structure, density, and function are controlled and variable. Herein we discuss current research and future directions related to generating a chemically tunable biofunctionalization strategy that has potential to successfully incorporate the highly specialized functions of proteins onto inorganic substrates.
Fates of Chemical Elements in Biomass during Its Pyrolysis.
Liu, Wu-Jun; Li, Wen-Wei; Jiang, Hong; Yu, Han-Qing
2017-05-10
Biomass is increasingly perceived as a renewable resource rather than as an organic solid waste today, as it can be converted to various chemicals, biofuels, and solid biochar using modern processes. In the past few years, pyrolysis has attracted growing interest as a promising versatile platform to convert biomass into valuable resources. However, an efficient and selective conversion process is still difficult to be realized due to the complex nature of biomass, which usually makes the products complicated. Furthermore, various contaminants and inorganic elements (e.g., heavy metals, nitrogen, phosphorus, sulfur, and chlorine) embodied in biomass may be transferred into pyrolysis products or released into the environment, arousing environmental pollution concerns. Understanding their behaviors in biomass pyrolysis is essential to optimizing the pyrolysis process for efficient resource recovery and less environmental pollution. However, there is no comprehensive review so far about the fates of chemical elements in biomass during its pyrolysis. Here, we provide a critical review about the fates of main chemical elements (C, H, O, N, P, Cl, S, and metals) in biomass during its pyrolysis. We overview the research advances about the emission, transformation, and distribution of elements in biomass pyrolysis, discuss the present challenges for resource-oriented conversion and pollution abatement, highlight the importance and significance of understanding the fate of elements during pyrolysis, and outlook the future development directions for process control. The review provides useful information for developing sustainable biomass pyrolysis processes with an improved efficiency and selectivity as well as minimized environmental impacts, and encourages more research efforts from the scientific communities of chemistry, the environment, and energy.
Municipal Solid Waste Landfills Harbor Distinct Microbiomes
Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.
2016-01-01
Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222
40 CFR 721.10536 - Long-chain perfluoroalkyl carboxylate chemical substances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Long-chain perfluoroalkyl carboxylate chemical substances. 721.10536 Section 721.10536 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...
Organic compounds in circumstellar and interstellar environments.
Kwok, Sun
2015-06-01
Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.
Ziurys, Lucy M
2006-08-15
Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C(8)H, C(3)S, SiC(3), and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO(+), SO(2), and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO(+), HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.
Smith, Joseph V.; Arnold, Frederick P.; Parsons, Ian; Lee, Martin R.
1999-01-01
Catalysis at organophilic silica-rich surfaces of zeolites and feldspars might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and other geological sources. Crystal–chemical modeling yielded packings for amino acids neatly encapsulated in 10-ring channels of the molecular sieve silicalite-ZSM-5-(mutinaite). Calculation of binding and activation energies for catalytic assembly into polymers is progressing for a chemical composition with one catalytic Al–OH site per 25 neutral Si tetrahedral sites. Internal channel intersections and external terminations provide special stereochemical features suitable for complex organic species. Polymer migration along nano/micrometer channels of ancient weathered feldspars, plus exploitation of phosphorus and various transition metals in entrapped apatite and other microminerals, might have generated complexes of replicating catalytic biomolecules, leading to primitive cellular organisms. The first cell wall might have been an internal mineral surface, from which the cell developed a protective biological cap emerging into a nutrient-rich “soup.” Ultimately, the biological cap might have expanded into a complete cell wall, allowing mobility and colonization of energy-rich challenging environments. Electron microscopy of honeycomb channels inside weathered feldspars of the Shap granite (northwest England) has revealed modern bacteria, perhaps indicative of Archean ones. All known early rocks were metamorphosed too highly during geologic time to permit simple survival of large-pore zeolites, honeycombed feldspar, and encapsulated species. Possible microscopic clues to the proposed mineral adsorbents/catalysts are discussed for planning of systematic study of black cherts from weakly metamorphosed Archaean sediments. PMID:10097060
Chapman, Robert W; Mancia, Annalaura; Beal, Marion; Veloso, Artur; Rathburn, Charles; Blair, Anne; Holland, A F; Warr, G W; Didinato, Guy; Sokolova, Inna M; Wirth, Edward F; Duffy, Edward; Sanger, Denise
2011-04-01
Understanding the mechanisms by which organisms adapt to environmental conditions is a fundamental question for ecology and evolution. In this study, we evaluate changes in gene expression of a marine mollusc, the eastern oyster Crassostrea virginica, associated with the physico-chemical conditions and the levels of metals and other contaminants in their environment. The results indicate that transcript signatures can effectively disentangle the complex interactive gene expression responses to the environment and are also capable of disentangling the complex dynamic effects of environmental factors on gene expression. In this context, the mapping of environment to gene and gene to environment is reciprocal and mutually reinforcing. In general, the response of transcripts to the environment is driven by major factors known to affect oyster physiology such as temperature, pH, salinity, and dissolved oxygen, with pollutant levels playing a relatively small role, at least within the range of concentrations found in the studied oyster habitats. Further, the two environmental factors that dominate these effects (temperature and pH) interact in a dynamic and nonlinear fashion to impact gene expression. Transcriptomic data obtained in our study provide insights into the mechanisms of physiological responses to temperature and pH in oysters that are consistent with the known effects of these factors on physiological functions of ectotherms and indicate important linkages between transcriptomics and physiological outcomes. Should these linkages hold in further studies and in other organisms, they may provide a novel integrated approach for assessing the impacts of climate change, ocean acidification and anthropogenic contaminants on aquatic organisms via relatively inexpensive microarray platforms. © 2011 Blackwell Publishing Ltd.
A Framework for Integrating Multiple Biological Networks to Predict MicroRNA-Disease Associations.
Peng, Wei; Lan, Wei; Yu, Zeng; Wang, Jianxin; Pan, Yi
2017-03-01
MicroRNAs have close relationship with human diseases. Therefore, identifying disease related MicroRNAs plays an important role in disease diagnosis, prognosis and therapy. However, designing an effective computational method which can make good use of various biological resources and correctly predict the associations between MicroRNA and disease is still a big challenge. Previous researchers have pointed out that there are complex relationships among microRNAs, diseases and environment factors. There are inter-relationships between microRNAs, diseases or environment factors based on their functional similarity or phenotype similarity or chemical structure similarity and so on. There are also intra-relationships between microRNAs and diseases, microRNAs and environment factors, diseases and environment factors. Moreover, functionally similar microRNAs tend to associate with common diseases and common environment factors. The diseases with similar phenotypes are likely caused by common microRNAs and common environment factors. In this work, we propose a framework namely ThrRWMDE which can integrate these complex relationships to predict microRNA-disease associations. In this framework, microRNA similarity network (MFN), disease similarity network (DSN) and environmental factor similarity network (ESN) are constructed according to certain biological properties. Then, an unbalanced three random walking algorithm is implemented on the three networks so as to obtain information from neighbors in corresponding networks. This algorithm not only can flexibly infer information from different levels of neighbors with respect to the topological and structural differences of the three networks, but also in the course of working the functional information will be transferred from one network to another according to the associations between the nodes in different networks. The results of experiment show that our method achieves better prediction performance than other state-of-the-art methods.
Biomonitoring and risk assessment on earth and during exploratory missions using AquaHab ®
NASA Astrophysics Data System (ADS)
Slenzka, K.; Dünne, M.; Jastorff, B.
2008-12-01
Bioregenerative closed ecological life support systems (CELSS) will be necessary in the exploration context revitalizing atmosphere, waste water and producing food for the human CELSS mates. During these long-term space travels and stays far away from Earth in an hostile environment as well as far for example from any hospital and surgery potential, it will be necessary to know much more about chemical and drug contamination in the special sense and by human's themselves in detail. Additionally, there is a strong need on Earth for more relevant standardized test systems including aquatic ones for the prospective risk assessment of chemicals and drugs in general on a laboratory scale. Current standardized test systems are mono species tests, and thus do not represent system aspects and have reduced environmental relevance. The experience gained during the last years in our research group lead to the development of a self-sustaining closed aquatic habitat/facility, called AquaHab ® which can serve regarding space exploration and Earth application. The AquaHab ® module can be the home of several fish species, snails, plants, amphipods and bacteria. The possibility to use different effect endpoints with certain beneficial characteristics is the basis for the application of AquaHab ® in different fields. Influence of drugs and chemicals can be tested on several trophic levels and ecosystem levels; guaranteeing a high relevance for aquatic systems in the real environment. Analyses of effect parameters of different complexity (e.g. general biological and water chemical parameters, activity of biotransforming enzymes) result in broad spectra of sensitivity. Combined with residual analyses (including all metabolites), this leads to an extended prospective risk assessment of a chemical on Earth and in a closed Life Support System. The possibility to measure also sensitive "online" parameters (e.g. behavior, respiration/photosynthetic activity) enables a quick and sensitive effect analysis of water contaminants in respective environments. AquaHab ® is currently under development to an early warning biomonitoring system using genetically modified fish and green algae. The implementation of biosensors/biochip in addition is also discussed.
NASA Astrophysics Data System (ADS)
Ritter, M.; Strock, K.; Edwards, B. R.
2017-12-01
Glaciers and their associated paraglacial landscapes have changed rapidly over the past century, and may see increased rates of melt as temperatures increase in high latitude environments. As glaciers recede, glacial meltwater subsidies increase to inland freshwater systems, influencing their structure and function. Evidence suggests melting ice influences the chemical characteristics of systems by providing nutrient subsidies, while inputs of glacial flour influence their physical structure by affecting temperature, reducing water clarity and increasing turbidity. Together, changes in physical and chemical structure of these systems have subsequent effects on biota, with the potential to lower taxonomic richness. This study characterized the chemistry of rivers and lakes fed by glacial meltwater in sub-arctic environments of Iceland, where there is limited limnological data. The survey characterized nutrient chemistry, dissolved organic carbon, and ion chemistry. We surveyed glacial meltwater from six glaciers in south and west Iceland, using the drainage basin of Gigjökull glacier along the southern coast as a detailed study area to examine the interactions between groundwater and surface runoff. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse, located in older bedrock with more extensively weathered soil. Key differences were observed between aquatic environments subsidized with glacial meltwater and those without. This included physical effects, such as lower temperatures and chemical effects such as lower conductivity and higher pH in glacially fed systems. In the drainage basin of Gigjökull glacier, lakes formed after the former lagoon was emptied and then partly refilled with debris from jokulhlaups during the 2010 Eyjafjallajökull eruption. These newly formed lakes resembled non-glacial melt systems despite receiving glacial melt via indirect pathways. The effects of changing glacial inputs to inland freshwater systems are complex, and will be felt over a wide range of time scales. The systems in Gigjökull basin suggest once systems no longer receive glacial surface water melt, they will experience rapid shifts in physical and chemical structure.
Biological responses to engineered nanomaterials: Needs for the next decade
Murphy, Catherine J.; Vartanian, Ariane M.; Geiger, Franz M.; ...
2015-06-09
In this study, the interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterialmore » effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.« less
Volatile affairs in microbial interactions
Schmidt, Ruth; Cordovez, Viviane; de Boer, Wietse; Raaijmakers, Jos; Garbeva, Paolina
2015-01-01
Microorganisms are important factors in shaping our environment. One key characteristic that has been neglected for a long time is the ability of microorganisms to release chemically diverse volatile compounds. At present, it is clear that the blend of volatiles released by microorganisms can be very complex and often includes many unknown compounds for which the chemical structures remain to be elucidated. The biggest challenge now is to unravel the biological and ecological functions of these microbial volatiles. There is increasing evidence that microbial volatiles can act as infochemicals in interactions among microbes and between microbes and their eukaryotic hosts. Here, we review and discuss recent advances in understanding the natural roles of volatiles in microbe–microbe interactions. Specific emphasis will be given to the antimicrobial activities of microbial volatiles and their effects on bacterial quorum sensing, motility, gene expression and antibiotic resistance. PMID:26023873
Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves
Hui, Jie; Li, Rui; Phillips, Evan H.; Goergen, Craig J.; Sturek, Michael; Cheng, Ji-Xin
2016-01-01
The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology. PMID:27069873
Analytical separations of mammalian decomposition products for forensic science: a review.
Swann, L M; Forbes, S L; Lewis, S W
2010-12-03
The study of mammalian soft tissue decomposition is an emerging area in forensic science, with a major focus of the research being the use of various chemical and biological methods to study the fate of human remains in the environment. Decomposition of mammalian soft tissue is a postmortem process that, depending on environmental conditions and physiological factors, will proceed until complete disintegration of the tissue. The major stages of decomposition involve complex reactions which result in the chemical breakdown of the body's main constituents; lipids, proteins, and carbohydrates. The first step to understanding this chemistry is identifying the compounds present in decomposition fluids and determining when they are produced. This paper provides an overview of decomposition chemistry and reviews recent advances in this area utilising analytical separation science. Copyright © 2010 Elsevier B.V. All rights reserved.
Transport and release of chemicals from plastics to the environment and to wildlife.
Teuten, Emma L; Saquing, Jovita M; Knappe, Detlef R U; Barlaz, Morton A; Jonsson, Susanne; Björn, Annika; Rowland, Steven J; Thompson, Richard C; Galloway, Tamara S; Yamashita, Rei; Ochi, Daisuke; Watanuki, Yutaka; Moore, Charles; Viet, Pham Hung; Tana, Touch Seang; Prudente, Maricar; Boonyatumanond, Ruchaya; Zakaria, Mohamad P; Akkhavong, Kongsap; Ogata, Yuko; Hirai, Hisashi; Iwasa, Satoru; Mizukawa, Kaoruko; Hagino, Yuki; Imamura, Ayako; Saha, Mahua; Takada, Hideshige
2009-07-27
Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2'-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g(-1) to microg g(-1). Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub microg l(-1) to mg l(-1) and were correlated with the level of economic development.
Transport and release of chemicals from plastics to the environment and to wildlife
Teuten, Emma L.; Saquing, Jovita M.; Knappe, Detlef R. U.; Barlaz, Morton A.; Jonsson, Susanne; Björn, Annika; Rowland, Steven J.; Thompson, Richard C.; Galloway, Tamara S.; Yamashita, Rei; Ochi, Daisuke; Watanuki, Yutaka; Moore, Charles; Viet, Pham Hung; Tana, Touch Seang; Prudente, Maricar; Boonyatumanond, Ruchaya; Zakaria, Mohamad P.; Akkhavong, Kongsap; Ogata, Yuko; Hirai, Hisashi; Iwasa, Satoru; Mizukawa, Kaoruko; Hagino, Yuki; Imamura, Ayako; Saha, Mahua; Takada, Hideshige
2009-01-01
Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2′-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g–1 to µg g–1. Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub µg l–1 to mg l–1 and were correlated with the level of economic development. PMID:19528054
Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability
NASA Astrophysics Data System (ADS)
Turtle, E. P.; Barnes, J. W.; Trainer, M. G.; Lorenz, R. D.
2017-12-01
Titan's abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and document the habitability of an extraterrestrial environment. Titan exploration is a high science priority due to the level of organic synthesis that it supports. Moreover, opportunities for organics to have interacted with liquid water at the surface (e.g., in impact melt sheets) increase the potential for chemical processes to progress further, providing an unparalleled opportunity to investigate prebiotic chemistry, as well as to search for signatures of potential water-based or even hydrocarbon-based life. The diversity of Titan's surface materials and environments drives the scientific need to be able to sample a variety of locations, thus mobility is key for in situ measurements. Titan's atmosphere is 4 times denser than Earth's reducing the wing/rotor area required to generate a given amount of lift, and the low gravity reduces the required magnitude of lift, making heavier-than-air mobility highly efficient. Dragonfly is a rotorcraft lander mission proposed to NASA's New Frontiers Program to take advantage of Titan's unique natural laboratory to understand how far chemistry can progress in environments that provide key ingredients for life. Measuring the compositions of materials in different environments will reveal how far organic chemistry has progressed. Surface material can be sampled into a mass spectrometer to identify the chemical components available and processes at work to produce biologically relevant compounds. Bulk elemental surface composition can be determined by a neutron-activated gamma-ray spectrometer. Meteorology measurements can characterize Titan's atmosphere and diurnal and spatial variations therein. Geologic features can be characterized via remote-sensing observations, which also provide context for samples. Seismic sensing can probe subsurface structure and activity. In addition to surface investigations, Dragonfly can perform measurements during flight, including atmospheric profiles and aerial observations of surface geology, which also provide sampling context and scouting for landing sites.
IceAge: Chemical Evolution of Ices during Star Formation
NASA Astrophysics Data System (ADS)
McClure, Melissa; Bailey, J.; Beck, T.; Boogert, A.; Brown, W.; Caselli, P.; Chiar, J.; Egami, E.; Fraser, H.; Garrod, R.; Gordon, K.; Ioppolo, S.; Jimenez-Serra, I.; Jorgensen, J.; Kristensen, L.; Linnartz, H.; McCoustra, M.; Murillo, N.; Noble, J.; Oberg, K.; Palumbo, M.; Pendleton, Y.; Pontoppidan, K.; Van Dishoeck, E.; Viti, S.
2017-11-01
Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. We propose to trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R 1500-3000) and sensitivity (S/N 100-300) observations from 3 to 15 um to template spectra, we will map the spatial distribution of ices down to 20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies,thermal histories, and mixing environments. The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.
Transport and transportation pathways of hazardous chemicals from solid waste disposal.
Van Hook, R I
1978-01-01
To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceanic environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources. PMID:367772
A Complex Organic Slushy Bathing Low-Mass Protostars
NASA Astrophysics Data System (ADS)
Drozdovskaya, Maria; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine
2015-08-01
Complex organic molecules are ubiquitous companions of young forming stars. They were first observed in hot cores surrounding high-mass protostars [e.g., 1], but have since also been detected in the environs of several low-mass counterparts [e.g., 2]. Recent studies have shown that colder envelopes and positions with impinging outflows may also glow with emission from complex organic species [e.g., 3, 4]. For this meeting, I would like to present physicochemical modeling results on the synthesis of complex organics in an envelope-cavity system that is subject to non-thermal processing. This includes wavelength-dependent radiative transfer calculations with RADMC [5] and a comprehensive gas-grain chemical network [6]. The results show that the morphology of such a system delineates three distinct regions: the cavity wall layer with time-dependent and species-variant enhancements; a torus rich in complex organic ices, but not reflected in gas-phase abundances; and the remaining outer envelope abundant in simpler solid and gaseous molecules. Within the adopted paradigm, complex organic molecules are demonstrated to have unique lifetimes and be grouped into early and late species [7]. Key chemical processes for forming and destroying complex organic molecules will be discussed. In addition, the results of adding newly experimentally verified routes [8] into the existing chemical networks will be shown.[1] Blake G. A., Sutton E. C., Masson C. R., Phillips T. G., 1987, ApJ, 315, 621[2] Jørgensen J. K., Favre C., Bisschop S. E., Bourke T. L., van Dishoeck E. F., Schmalzl M., 2012, ApJ, 757, L4[3] Arce H. G., Santiago-García J., Jørgensen J. K., Tafalla M., Bachiller R., 2008, ApJ, 681, L21[4] Öberg K. I., Bottinelli S., Jørgensen J. K., van Dishoeck E. F., 2010, ApJ, 716, 825[5] Dullemond C. P., Dominik C., 2004, A&A, 417, 159[6] Walsh C., Millar T. J., Nomura H., Herbst E., Widicus Weaver S., Aikawa Y., Laas J. C., Vasyunin A. I., 2014, A&A, 563, A33[7] Drozdovskaya M. N., Walsh C., Visser R., Harsono D., van Dishoeck E. F., MNRAS, subm.[8] Fedoseev G., Cuppen H. M., Ioppolo S., Lamberts T., Linnartz H., 2015, MNRAS, 448, 128
Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.
Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung
2003-08-01
Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.
Lange, Yvonne; Ali Tabei, S. M.; Ye, Jin; Steck, Theodore L.
2013-01-01
Does cholesterol distribute among intracellular compartments by passive equilibration down its chemical gradient? If so, its distribution should reflect the relative cholesterol affinity of the constituent membrane phospholipids as well as their ability to form stoichiometric cholesterol complexes. We tested this hypothesis by analyzing the reactivity to cholesterol oxidase of large unilamellar vesicles (LUVs) containing biological phospholipids plus varied cholesterol. The rates of cholesterol oxidation differed among the various phospholipid environments by roughly four orders of magnitude. Furthermore, accessibility to the enzyme increased by orders of magnitude at cholesterol thresholds that suggested stoichiometries of association of 1:1, 2:3 or 1:2 cholesterol:phospholipid (mol:mol). Cholesterol accessibility above the threshold was still constrained by its particular phospholipid environment. One phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine, exhibited no threshold. The analysis suggested values for the relative stabilities of the cholesterol-phospholipid complexes and for the fractions of bilayer cholesterol not in complexes at the threshold equivalence points; predictably, the saturated phosphorylcholine species had the lowest stoichiometries and the strongest affinities for cholesterol. These results were in general agreement with the equilibrium distribution of cholesterol between the various LUVs and methyl-β-cyclodextrin. In addition, the properties of the cholesterol in intact human red blood cells matched predictions made from LUVs of the corresponding composition. These results support a passive mechanism for the intracellular distribution of cholesterol that can provide a signal for its homeostatic regulation. PMID:24000774
Origin, transport and burial of organic matter in the Whittard Canyon, North East Atlantic
NASA Astrophysics Data System (ADS)
Kershaw, C. E.
2016-02-01
Submarine canyons, large and complex topographic features commonly found at all continental margins, are usually considered efficient conduits of material to the deep sea that can also harbour varied and well developed ecosystems. Recent work from canyons of the Portuguese margin have revealed a highly heterogeneous environment home to diverse habitats, highlighting the significance of submarine canyons and the need for a more comprehensive understanding of the processes within them. Submarine environments are influenced by the variability of the oceanographic and biogeochemical regimes and the interaction with complex topography. The purpose of this research is to examine the provenance, transportation, burial potential and ecological function of sedimentary organic matter at targeted sites of the Whittard submarine canyon (Celtic Sea, North East Atlantic), one of the largest ( 100 km across, down to 4500 m depth) most complex topographic features in the North Western European Margin, and home to an array of diverse benthic ecosystems. Sediment cores down to 50 cm were collected during three surveys in 2013, 2014 and 2015 at various depths across different channels and sedimentological and biogeochemical analyses have begun. Preliminary results have provided a glimpse of the distinct energy regime of the different canyon channels and differing carbon concentrations, emphasizing the complexity of the system. The project aims to elucidate the significance of the Whittard system in marine biogeochemical cycling and deep-sea ecosystem functioning, through further mineralogical and chemical characterization.
Ecological Assembly of Chemical Mixtures
Human-environment interactions have a significant role in the formation of chemical mixtures in the environment and by extension in human tissues and fluids. These interactions, which include decisions to purchase and use products containing chemicals as well as behaviors and act...
Park, Youngja H; Lee, Kichun; Soltow, Quinlyn A; Strobel, Frederick H; Brigham, Kenneth L; Parker, Richard E; Wilson, Mark E; Sutliff, Roy L; Mansfield, Keith G; Wachtman, Lynn M; Ziegler, Thomas R; Jones, Dean P
2012-05-16
High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses, we applied HPMP and bioinformatics analysis to plasma of humans, rhesus macaques, marmosets, pigs, sheep, rats and mice to determine: (1) whether more chemicals are detected in humans living in a less controlled environment than captive species and (2) whether a subset of plasma chemicals with similar inter-species and intra-species variation could be identified for use in comparative toxicology. Results show that the number of chemicals detected was similar in humans (3221) and other species (range 2537-3373). Metabolite patterns were most similar within species and separated samples according to family and order. A total of 1485 chemicals were common to all species; 37% of these matched chemicals in human metabolomic databases and included chemicals in 137 out of 146 human metabolic pathways. Probability-based modularity clustering separated 644 chemicals, including many endogenous metabolites, with inter-species variation similar to intra-species variation. The remaining chemicals had greater inter-species variation and included environmental chemicals as well as GSH and methionine. Together, the data suggest that HPMP provides a platform that can be useful within human populations and controlled animal studies to simultaneously evaluate environmental exposures and biological responses to such exposures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Millar, T. J.
2015-08-01
In the last 40 years a wide range of molecules, including neutrals, cations and anions, containing up to 13 atoms—in addition to detections of {{\\text{C}}60} and {{\\text{C}}70} —have been found in the harsh environment of the interstellar medium. The exquisite sensitivity and very high spectral and, more recently, spatial resolution, of modern telescopes has enabled the physics of star formation to be probed through rotational line emission. In this article, I review the basic properties of interstellar clouds and the processes that initiate the chemistry and generate chemical complexity, particularly in regions of star and planet formation. Our understanding of astrochemistry has evolved over the years. Before 1990, the general consensus was that molecules were formed in binary, gas-phase, or volume, reactions, most importantly ion-neutral reactions despite the very low ionization in clouds. Since then, observations have indicated unambiguously that there is also a contribution from surface processes, particularly on the icy mantles that form around refractory grain cores in cold, dense gas. The balance between these two processes depends on particular physical conditions and can vary during the life cycle of a particular volume of interstellar cloud. The complex chemistry that occurs in space is driven mostly through interaction of the gas with cosmic ray protons, a source of ionization that enables a rich ion-neutral chemistry. In addition, I show that the interaction between the gas and the dust in cold, dense regions also leads to additional chemical complexity through reactions that take place in ices at only a few tens of degrees above absolute zero. Although densities are low compared to those in terrestrial environments, the extremely long life times of interstellar clouds and their enormous sizes, enable complex molecules to be synthesised and detected. I show that in some instances, particularly in reactions involving deuterium, the rotational populations of reactants, together with spin-selection rules, can determine the detailed abundances. Although the review is mainly focused on regions associated with star formation, I also consider chemistry in other interesting astronomical regions—in the early Universe and in the envelopes formed by mass loss during the final stages of stellar evolution.
My encounters with bacteria—learning about communication, cooperation and choice
NASA Astrophysics Data System (ADS)
Ben-Jacob, Eshel
2014-10-01
My journey into the physics of living systems began with the most fundamental organisms on Earth, bacteria, that three decades ago were perceived as solitary, primitive creatures of limited capabilities. A decade later this notion had faded away and bacteria came to be recognized as the smart beasts they are, engaging in intricate social life through a sophisticated chemical language. Acting jointly, these tiny organisms can sense the environment, process information, solve problems and make decisions so as to thrive in harsh environments. The bacterial power of cooperation manifests in their ability to develop large colonies of astonishing complexity. The number of bacteria in a colony can amount to many billions, yet they exchange ‘chemical tweets’ that reach each and every one of them so they all know what they’re all doing, each cell being both actor and spectator in the bacterial Game of Life. I share my encounters with bacteria, what I learned about the secrets of their social life and wisdom of the crowd, and why and how, starting as a theoretical physicist, I found myself studying social intelligence of bacteria. The story ends with a bacteria guide to cyber-war on cancer.
El Zrelli, Radhouan; Rabaoui, Lotfi; Daghbouj, Nabil; Abda, Heithem; Castet, Sylvie; Josse, Claudie; van Beek, Pieter; Souhaut, Marc; Michel, Sylvain; Bejaoui, Nejla; Courjault-Radé, Pierre
2018-05-01
Since the establishment of the coastal industrial complex in Gabes city (Gulf of Gabes, SE Tunisia), hundred million tons of untreated phosphogypsum have been discharged in the open sea causing serious environmental problems. To better understand the dynamic and behavior of phosphate/phosphogypsum contaminants from raw ores to marine environment, a chemical, organic, mineralogical, and morphological characterization of phosphate rock and phosphogypsum was conducted using several sophisticated techniques. The chemical analysis showed that phosphate and phosphogypsum contain high loads of trace elements and that the transfer factors of pollutants varied from 5.83% (U) to 140% (Hg). Estimated annual flows of phosphogypsum contaminants into the marine environment ranged between 0.05 (Re) and 87,249.60 (F) tons. The phosphate rock was found to be formed by carbonate fluorapatite, calcite, dolomite, natural gypsum, quartz, calcite-Mg, apatite, pyrite, fluorite, and sphalerite-Cd and phosphogypsum by synthetic gypsum and sphalerite-Cd. The phosphate was found to be richer in organic compounds compared to phosphogypsum. Based on this work, the Tunisian phosphogypsum has a high mining potential and encourages the development of an economically beneficial and environmentally friendly phosphogypsum-treating industry.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.
Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
Pollution monitoring using networks of honey bees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromenshenk, J.J.; Dewart, M.L.; Thomas, J.M.
1983-08-01
Each year thousands of chemicals in large quantities are introduced into the global environment and the need for effective methods of monitoring these substances has steadily increased. Most monitoring programs rely upon instrumentation to measure specific contaminants in air, water, or soil. However, it has become apparent that humans and their environment are exposed to complex mixtures of chemicals rather than single entities. As our ability to detect ever smaller quantities of pollutants has increased, the biological significance of these findings has become more uncertain. Also, it is clear that monitoring efforts should shift from short-term studies of easily identifiablemore » sources in localized areas to long-term studies of multiple sources over widespread regions. Our investigations aim at providing better tools to meet these exigencies. Honey bees are discussed as an effective, long-term, self-sustaining system for monitoring environmental impacts. Our results indicate that the use of regional, and possibly national or international, capability can be realized with the aid of beekeepers in obtaining samples and conducting measurements. This approach has the added advantage of public involvement in environmental problem solving and protection of human health and environmental quality.« less
Guarnieri, Daniela; Sánchez-Moreno, Paola; Del Rio Castillo, Antonio Esaú; Bonaccorso, Francesco; Gatto, Francesca; Bardi, Giuseppe; Martín, Cristina; Vázquez, Ester; Catelani, Tiziano; Sabella, Stefania; Pompa, Pier Paolo
2018-06-01
The biotransformation and biological impact of few layer graphene (FLG) and graphene oxide (GO) are studied, following ingestion as exposure route. An in vitro digestion assay based on a standardized operating procedure (SOP) is exploited. The assay simulates the human ingestion of nanomaterials during their dynamic passage through the different environments of the gastrointestinal tract (salivary, gastric, intestinal). Physical-chemical changes of FLG and GO during digestion are assessed by Raman spectroscopy. Moreover, the effect of chronic exposure to digested nanomaterials on integrity and functionality of an in vitro model of intestinal barrier is also determined according to a second SOP. These results show a modulation of the aggregation state of FLG and GO nanoflakes after experiencing the complex environments of the different digestive compartments. In particular, chemical doping effects are observed due to FLG and GO interaction with digestive juice components. No structural changes/degradation of the nanomaterials are detected, suggesting that they are biopersistent when administered by oral route. Chronic exposure to digested graphene does not affect intestinal barrier integrity and is not associated with inflammation and cytotoxicity, though possible long-term adverse effects cannot be ruled out. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S.; Genovese, L.
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and themore » linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.« less
The impacts of fracking on the environment: A total environmental study paradigm.
Meng, Qingmin
2017-02-15
Fracking has become a hot topic in the media and public discourse not only because of its economic benefit but also its environmental impacts. Recently, scientists have investigated the environmental impacts of fracking, and most studies focus on its air and ground water pollution. A systematic research structure and an overall evaluation of fracking's impacts on the environment are needed, because fracking does not only influence ground water but most environmental elements including but not limited to air, water, soil, rock, vegetation, wildlife, human, and many other ecosystem components. From the standpoint of the total environment, this communication assesses the overall impacts of fracking on the environment and then designs a total environmental study paradigm that effectively examines the complicated relationship among the total environment. Fracking dramatically changes the anthroposphere, which in turn significantly impacts the atmosphere, hydrosphere, lithosphere, and biosphere through the significant input or output of water, air, liquid or solid waste disposals, and the complex chemical components in fracking fluids. The proposed total environment study paradigm of fracking can be applied to other significant human activities that have dramatic impacts on the environment, such as mountain top coal mining or oil sands for environmental studies. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpio, M.M.; Kerr, J.B.
2005-01-01
Biosensing devices are important because they can detect, record, and transmit information regarding the presence of, or physiological changes in, different chemical or biological materials in the environment. The goal of this research is to prepare a biosensing device that is effective, quick, and low cost. This is done by examining which chemicals will work best when placed in a biosensor. The first study involved experimenting on a rhodium catalyst complexed with ligands such as bipyridine and imidazole. The rhodium catalyst is important because it is reduced from RhIII to RhI, forms a hydride by reaction with water and releasesmore » the hydride to react with nicotinamide adenine dinucleotide (NAD+) to selectively produce 1,4-NADH, the reduced form of NAD+. The second study looked at different types of ketones and enzymes for the enzyme-substrate reaction converting a ketone into an alcohol. Preliminary results showed that the rhodium complexed with bipyridine was able to carry out all the reactions, while the rhodium complexed with imidazole was not able to produce and release hydrides. In addition, the most effective ketone to use is benzylacetone with the enzyme alcohol dehydrogenase from baker’s yeast. Future work includes experimenting with bis-imidazole, which mimics the structure of bipyridine to see if it has the capability to reduce and if the reduction rate is comparable to the bipyridine complex. Once all testing is completed, the fastest catalysts will be combined with polymer membranes designed for fuel cells to prepare biosensing devices that can be used in a variety of applications including ones in the medical and environmental fields.« less