Masino, Aaron J; Dechene, Elizabeth T; Dulik, Matthew C; Wilkens, Alisha; Spinner, Nancy B; Krantz, Ian D; Pennington, Jeffrey W; Robinson, Peter N; White, Peter S
2014-07-21
Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype. To assist interpretation, we implemented an algorithm that ranks a given set of genes relative to patient phenotype. The algorithm orders genes by the semantic similarity computed between phenotypic descriptors associated with each gene and those describing the patient. Phenotypic descriptor terms are taken from the Human Phenotype Ontology (HPO) and semantic similarity is derived from each term's information content. Model validation was performed via simulation and with clinical data. We simulated 33 Mendelian diseases with 100 patients per disease. We modeled clinical conditions by adding noise and imprecision, i.e. phenotypic terms unrelated to the disease and terms less specific than the actual disease terms. We ranked the causative gene against all 2488 HPO annotated genes. The median causative gene rank was 1 for the optimal and noise cases, 12 for the imprecision case, and 60 for the imprecision with noise case. Additionally, we examined a clinical cohort of subjects with hearing impairment. The disease gene median rank was 22. However, when also considering the patient's exome data and filtering non-exomic and common variants, the median rank improved to 3. Semantic similarity can rank a causative gene highly within a gene list relative to patient phenotype characteristics, provided that imprecision is mitigated. The clinical case results suggest that phenotype rank combined with variant analysis provides significant improvement over the individual approaches. We expect that this combined prioritization approach may increase accuracy and decrease effort for clinical genetic diagnosis.
Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype
Tsuda, Takeshi; Fitzgerald, Kristi K.
2017-01-01
Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts. PMID:29367543
Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases.
Louridas, George E; Lourida, Katerina G
2017-02-21
Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy.
Almeida-Paes, Rodrigo; de Oliveira, Luã Cardoso; Oliveira, Manoel Marques Evangelista; Gutierrez-Galhardo, Maria Clara; Nosanchuk, Joshua Daniel; Zancopé-Oliveira, Rosely Maria
2015-01-01
The Sporothrix complex members cause sporotrichosis, a subcutaneous mycosis with a wide spectrum of clinical manifestations. Several specific phenotypic characteristics are associated with virulence in many fungi, but studies in this field involving the Sporothrix complex species are scarce. Melanization, thermotolerance, and production of proteases, catalase, and urease were investigated in 61 S. brasiliensis, one S. globosa, and 10 S. schenckii strains. The S. brasiliensis strains showed a higher expression of melanin and urease compared with S. schenckii. These two species, however, presented similar thermotolerances. Our S. globosa strain had low expression of all studied virulence factors. The relationship between these phenotypes and clinical aspects of sporotrichosis was also evaluated. Strains isolated from patients with spontaneous regression of infection were heavily melanized and produced high urease levels. Melanin was also related to dissemination of internal organs and protease production was associated with HIV-coinfection. A murine sporotrichosis model showed that a S. brasiliensis strain with high expression of virulence factors was able to disseminate and yield a high fungal burden in comparison with a control S. schenckii strain. Our results show that virulence-related phenotypes are variably expressed within the Sporothrix complex species and might be involved in clinical aspects of sporotrichosis. PMID:25961005
The Human Phenotype Ontology in 2017
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.
2017-01-01
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602
The Human Phenotype Ontology in 2017
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; ...
2016-11-24
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical softwaremore » tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical softwaremore » tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.« less
Woodruff, Prescott G; Agusti, Alvar; Roche, Nicolas; Singh, Dave; Martinez, Fernando J
2015-05-02
Chronic obstructive pulmonary disease (COPD) is a common, complex, and heterogeneous disorder that is responsible for substantial and growing morbidity, mortality, and health-care expense worldwide. Of imperative importance to decipher the complexity of COPD is to identify groups of patients with similar clinical characteristics, prognosis, or therapeutic needs, the so-called clinical phenotypes. This strategy is logical for research but might be of little clinical value because clinical phenotypes can overlap in the same patient and the same clinical phenotype could result from different biological mechanisms. With the goal to match assessment with treatment choices, the latest iteration of guidelines from the Global Initiative for Chronic Obstructive Lung Disease reorganised treatment objectives into two categories: to improve symptoms (ie, dyspnoea and health status) and to decrease future risk (as predicted by forced expiratory volume in 1 s level and exacerbations history). This change thus moves treatment closer to individualised medicine with available bronchodilators and anti-inflammatory drugs. Yet, future treatment options are likely to include targeting endotypes that represent subtypes of patients defined by a distinct pathophysiological mechanism. Specific biomarkers of these endotypes would be particularly useful in clinical practice, especially in patients in which clinical phenotype alone is insufficient to identify the underlying endotype. A few series of potential COPD endotypes and biomarkers have been suggested. Empirical knowledge will be gained from proof-of-concept trials in COPD with emerging drugs that target specific inflammatory pathways. In every instance, specific endotype and biomarker efforts will probably be needed for the success of these trials, because the pathways are likely to be operative in only a subset of patients. Network analysis of human diseases offers the possibility to improve understanding of disease pathobiological complexity and to help with the development of new treatment alternatives and, importantly, a reclassification of complex diseases. All these developments should pave the way towards personalised treatment of patients with COPD in the clinic. Copyright © 2015 Elsevier Ltd. All rights reserved.
Informatics and machine learning to define the phenotype.
Basile, Anna Okula; Ritchie, Marylyn DeRiggi
2018-03-01
For the past decade, the focus of complex disease research has been the genotype. From technological advancements to the development of analysis methods, great progress has been made. However, advances in our definition of the phenotype have remained stagnant. Phenotype characterization has recently emerged as an exciting area of informatics and machine learning. The copious amounts of diverse biomedical data that have been collected may be leveraged with data-driven approaches to elucidate trait-related features and patterns. Areas covered: In this review, the authors discuss the phenotype in traditional genetic associations and the challenges this has imposed.Approaches for phenotype refinement that can aid in more accurate characterization of traits are also discussed. Further, the authors highlight promising machine learning approaches for establishing a phenotype and the challenges of electronic health record (EHR)-derived data. Expert commentary: The authors hypothesize that through unsupervised machine learning, data-driven approaches can be used to define phenotypes rather than relying on expert clinician knowledge. Through the use of machine learning and an unbiased set of features extracted from clinical repositories, researchers will have the potential to further understand complex traits and identify patient subgroups. This knowledge may lead to more preventative and precise clinical care.
From genotype to phenotype: genetics and medical practice in the new millennium.
Weatherall, D
1999-01-01
The completion of the human genome project will provide a vast amount of information about human genetic diversity. One of the major challenges for the medical sciences will be to relate genotype to phenotype. Over recent years considerable progress has been made in relating the molecular pathology of monogenic diseases to the associated clinical phenotypes. Studies of the inherited disorders of haemoglobin, notably the thalassaemias, have shown how even in these, the simplest of monogenic diseases, there is remarkable complexity with respect to their phenotypic expression. Although studies of other monogenic diseases are less far advanced, it is clear that the same level of complexity will exist. This information provides some indication of the difficulties that will be met when trying to define the genes that are involved in common multigenic disorders and, in particular, in trying to relate disease phenotypes to the complex interactions between many genes and multiple environmental factors. PMID:10670020
Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex.
de Vries, Petrus J
2010-07-01
Until recently, the neuropsychiatric phenotype of tuberous sclerosis complex (TSC) was presumed to be caused by the structural brain abnormalities and/or seizures seen in the disorder. However, advances in the molecular biology of the disorder have shown that TSC is a mammalian target of rapamycin (mTOR) overactivation syndrome, and that direct molecular pathways exist between gene mutation and cognitive/neurodevelopmental phenotype. Molecularly-targeted treatments using mTOR inhibitors (such as rapamycin) are showing great promise for the physical and neurological phenotype of TSC. Pre-clinical and early-phase clinical studies of the cognitive and neurodevelopmental features of TSC suggest that some of the neuropsychiatric phenotypes might also be reversible, even in adults with the disorder. TSC, fragile X, neurofibromatosis type 1, and disorders associated with phosphatase and tensin homo (PTEN) mutations, all signal through the mTOR signaling pathway, with the TSC1-TSC2 protein complex as a molecular switchboard at its center. Together, these disorders represent as much as 14% of autism spectrum disorders (ASD). Therefore, we suggest that this signaling pathway is a key to the underlying pathophysiology of a significant subset of individuals with ASD. The study of molecularly targeted treatments in TSC and related disorders, therefore, may be of scientific and clinical value not only to those with TSC, but to a larger population that may have a neuropsychiatric phenotype attributable to mTOR overactivation or dysregulation. (c) 2010 The American Society for Experimental NeuroTherapeutics, Inc. Published by Elsevier Inc. All rights reserved.
Spine malformation complex in 3 diverse syndromic entities: Case reports.
Kaissi, Ali Al; van Egmond-Fröhlich, Andreas; Ryabykh, Sergey; Ochirov, Polina; Kenis, Vladimir; Hofstaetter, Jochen G; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit
2016-12-01
Clinical and radiographic phenotypic characterizations were the base line tool of diagnosis in 3 syndromic disorders in which congenital cervico-thoracic kyphosis was the major deformity. Directing maximal care toward the radiographic analysis is not only the axial malformation but also toward the appendicular abnormalities was our main concern. We fully documented the diversity of the spine phenotypic malformation complex via the clinical and radiographic phenotypes. We established the diagnosis via phenotypic/genotypic confirmation in 3 diverse syndromic entities namely acampomelic campomelic dysplasia, Larsen syndrome and Morquio syndrome type A (mucopolysaccharidosis type IV A). Surgical interventions have been carried out in the Larsen syndrome and Morquio syndrome type A, resepectively. The earliest the diagnosis is, the better the results are. The necessity to diagnose children in their first year of life has many folds, firstly the management would be in favor of the child's growth and development and secondly, the prognosis could be clearer to the family and the medical staff as well. Our current paper is to sensitize paediatricians, physicians and orthopedic surgeons regarding the necessity to detect the aetiological understanding in every child who manifests a constellation of malformation complex. Scoliosis and kyphosis/kyphoscoliosis are not a diagnosis in themselves. Such deformities are mostly a symptom complex correlated to dozens of types of syndromic associations. The rate curve progression and the final severity of congenital spine tilting are related to 3 factors: (a) the type of vertebral malformation present, (b) the patient's phenotype, and (c) the diagnosis.
Schurdak, Mark E; Pei, Fen; Lezon, Timothy R; Carlisle, Diane; Friedlander, Robert; Taylor, D Lansing; Stern, Andrew M
2018-01-01
Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.
Salinas-Torres, Victor M
2016-01-01
In 1981, Casamassima and colleagues described an autosomal recessive syndrome of spondylocostal dysostosis associated with anal and urogenital anomalies. Here, I describe 1 new fetus who presented with limb-body wall defect as a novel association, compile 7 patients, and review the clinical phenotype of Casamassima-Morton-Nance syndrome. This appears to be the 1st Casamassima-Morton-Nance syndrome fetus with this complex malformation. In light of this manifestation, a detailed comparative phenotypic analysis of published patients revealed a heterogeneous syndrome with significant clinical variability. Accordingly, it is proposed that Casamassima-Morton-Nance syndrome should be considered in those patients with the combination of a short and asymmetric thorax with rib and vertebral anomalies and scoliosis (spondylocostal-like pattern), anal atresia, absent external genitalia, renal and urethral abnormalities (caudal dysgenesis complex), craniofacial dysmorphic features (mainly flat nose with anteverted nares, low-set/abnormal ears, and short neck), hydrops, oligohydramnios, and a poor clinical outcome.
Zollino, Marcella; Murdolo, Marina; Marangi, Giuseppe; Pecile, Vanna; Galasso, Cinzia; Mazzanti, Laura; Neri, Giovanni
2008-11-15
Based on genotype-phenotype correlation analysis of 80 Wolf-Hirschhorn syndrome (WHS) patients, as well as on review of relevant literature, we add further insights to the following aspects of WHS: (1) clinical delineation and phenotypic categories; (2) characterization of the basic genomic defect, mechanisms of origin and familiarity; (3) identification of prognostic factors for mental retardation; (4) chromosome mapping of the distinctive clinical signs, in an effort to identify pathogenic genes. Clinically, we consider that minimal diagnostic criteria for WHS, defining a "core" phenotype, are typical facial appearance, mental retardation, growth delay and seizures (or EEG anomalies). Three different categories of the WHS phenotype were defined, generally correlating with the extent of the 4p deletion. The first one comprises a small deletion not exceeding 3.5 Mb, that is usually associated with a mild phenotype, lacking major malformations. This category is likely under-diagnosed. The second and by far the more frequent category is identified by large deletions, averaging between 5 and 18 Mb, and causes the widely recognizable WHS phenotype. The third clinical category results from a very large deletion exceeding 22-25 Mb causing a severe phenotype, that can hardly be defined as typical WHS. Genetically, de novo chromosome abnormalities in WHS include pure deletions but also complex rearrangements, mainly unbalanced translocations. With the exception of t(4p;8p), WHS-associated chromosome abnormalities are neither mediated by segmental duplications, nor associated with a parental inversion polymorphism on 4p16.3. Factors involved in prediction of prognosis include the extent of the deletion, the occurrence of complex chromosome anomalies, and the severity of seizures. We found that the core phenotype maps within the terminal 1.9 Mb region of chromosome 4p. Therefore, WHSCR-2 should be considered the critical region for this condition. We also confirmed that the pathogenesis of WHS is multigenic. Specific and independent chromosome regions were characterized for growth delay and seizures, as well as for the additional clinical signs that characterize this condition. With the exception of parental balanced translocations, familial recurrence is uncommon.
Miravitlles, Marc; Soler-Cataluña, Juan José; Calle, Myriam; Molina, Jesús; Almagro, Pere; Quintano, José Antonio; Trigueros, Juan Antonio; Cosío, Borja G; Casanova, Ciro; Antonio Riesco, Juan; Simonet, Pere; Rigau, David; Soriano, Joan B; Ancochea, Julio
2017-06-01
The clinical presentation of chronic obstructive pulmonary disease (COPD) varies widely, so treatment must be tailored according to the level of risk and phenotype. In 2012, the Spanish COPD Guidelines (GesEPOC) first established pharmacological treatment regimens based on clinical phenotypes. These regimens were subsequently adopted by other national guidelines, and since then, have been backed up by new evidence. In this 2017 update, the original severity classification has been replaced by a much simpler risk classification (low or high risk), on the basis of lung function, dyspnea grade, and history of exacerbations, while determination of clinical phenotype is recommended only in high-risk patients. The same clinical phenotypes have been maintained: non-exacerbator, asthma-COPD overlap (ACO), exacerbator with emphysema, and exacerbator with bronchitis. Pharmacological treatment of COPD is based on bronchodilators, the only treatment recommended in low-risk patients. High-risk patients will receive different drugs in addition to bronchodilators, depending on their clinical phenotype. GesEPOC reflects a more individualized approach to COPD treatment, according to patient clinical characteristics and level of risk or complexity. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Schinwelski, M; Kierdaszuk, B; Dulski, J; Tońska, K; Kodroń, A; Sitek, E J; Bartnik, E; Kamińska, A; Kwieciński, H; Sławek, J
2015-08-01
Mutations in NADH dehydrogenase (ND) subunits of complex I lead to mitochondrial encephalomyopathies associated with various phenotypes. This report aims to present the patient's clinical symptomatology in the context of a very rare 13042G>A de novo mutation and with an emphasis on changing phenotypic expression and pronounced, long-standing response to levetiracetam.
Spine malformation complex in 3 diverse syndromic entities
Kaissi, Ali Al; van Egmond-Fröhlich, Andreas; Ryabykh, Sergey; Ochirov, Polina; Kenis, Vladimir; Hofstaetter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit
2016-01-01
Abstract Rationale: Clinical and radiographic phenotypic characterizations were the base line tool of diagnosis in 3 syndromic disorders in which congenital cervico-thoracic kyphosis was the major deformity. Patients concerns: Directing maximal care toward the radiographic analysis is not only the axial malformation but also toward the appendicular abnormalities was our main concern. We fully documented the diversity of the spine phenotypic malformation complex via the clinical and radiographic phenotypes. Diagnoses: We established the diagnosis via phenotypic/genotypic confirmation in 3 diverse syndromic entities namely acampomelic campomelic dysplasia, Larsen syndrome and Morquio syndrome type A (mucopolysaccharidosis type IV A). Interventions: Surgical interventions have been carried out in the Larsen syndrome and Morquio syndrome type A, resepectively. Outcomes: The earliest the diagnosis is, the better the results are. The necessity to diagnose children in their first year of life has many folds, firstly the management would be in favor of the child's growth and development and secondly, the prognosis could be clearer to the family and the medical staff as well. Our current paper is to sensitize paediatricians, physicians and orthopedic surgeons regarding the necessity to detect the aetiological understanding in every child who manifests a constellation of malformation complex. Lesons: Scoliosis and kyphosis/kyphoscoliosis are not a diagnosis in themselves. Such deformities are mostly a symptom complex correlated to dozens of types of syndromic associations. The rate curve progression and the final severity of congenital spine tilting are related to 3 factors: (a) the type of vertebral malformation present, (b) the patient's phenotype, and (c) the diagnosis. PMID:27977582
Against Genetic Tests for Athletic Talent: The Primacy of the Phenotype.
Loland, Sigmund
2015-09-01
New insights into the genetics of sport performance lead to new areas of application. One area is the use of genetic tests to identify athletic talent. Athletic performances involve a high number of complex phenotypical traits. Based on the ACCE model (review of Analytic and Clinical validity, Clinical utility, and Ethical, legal and social implications), a critique is offered of the lack of validity and predictive power of genetic tests for talent. Based on the ideal of children's right to an open future, a moral argument is given against such tests on children and young athletes. A possible role of genetic tests in sport is proposed in terms of identifying predisposition for injury. In meeting ACCE requirements, such tests could improve individualised injury prevention and increase athlete health. More generally, limitations of science are discussed in the identification of talent and in the understanding of complex human performance phenotypes. An alternative approach to talent identification is proposed in terms of ethically sensitive, systematic and evidence-based holistic observation over time of relevant phenotypical traits by experienced observers. Talent identification in sport should be based on the primacy of the phenotype.
[Genotype/phenotype correlation in autism: genetic models and phenotypic characterization].
Bonnet-Brilhault, F
2011-02-01
Autism spectrum disorders are a class of conditions categorized by communication problems, ritualistic behaviors, and deficits in social behaviors. This class of disorders merges a heterogeneous group of neurodevelopmental disorders regarding some phenotypic and probably physiopathological aspects. Genetic basis is well admitted, however, considering phenotypic and genotypic heterogeneity, correspondences between genotype and phenotype have yet to be established. To better identify such correspondences, genetic models have to be identified and phenotypic markers have to be characterized. Recent insights show that a variety of genetic mechanisms may be involved in autism spectrum disorders, i.e. single gene disorders, copy number variations and polygenic mechanisms. These current genetic models are described. Regarding clinical aspects, several approaches can be used in genetic studies. Nosographical approach, especially with the concept of autism spectrum disorders, merges a large group of disorders with clinical heterogeneity and may fail to identify clear genotype/phenotype correlations. Dimensional approach referred in genetic studies to the notion of "Broad Autism Phenotype" related to a constellation of language, personality, and social-behavioral features present in relatives that mirror the symptom domains of autism, but are much milder in expression. Studies of this broad autism phenotype may provide a potentially important complementary approach for detecting the genes involved in these domains. However, control population used in those studies need to be well characterized too. Identification of endophenotypes seems to offer more promising results. Endophenotypes, which are supposed to be more proximal markers of gene action in the same biological pathway, linking genes and complex clinical symptoms, are thought to be less genetically complex than the broader disease phenotype, indexing a limited aspect of genetic risk for the disorder as a whole. However, strategies useful to characterize such phenotypic markers (for example, electrophysiological markers) have to take into account that autism is an early neurodevelopmental disorder occurring during childhood when brain development and maturation are in process. Recent genetic results have improved our knowledge in genetic basis in autism. Nevertheless, correspondences with phenotypic markers remain challenging according to phenotypic and genotypic heterogeneity. Copyright © 2010 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Systematic review of autosomal recessive ataxias and proposal for a classification.
Beaudin, Marie; Klein, Christopher J; Rouleau, Guy A; Dupré, Nicolas
2017-01-01
The classification of autosomal recessive ataxias represents a significant challenge because of high genetic heterogeneity and complex phenotypes. We conducted a comprehensive systematic review of the literature to examine all recessive ataxias in order to propose a new classification and properly circumscribe this field as new technologies are emerging for comprehensive targeted gene testing. We searched Pubmed and Embase to identify original articles on recessive forms of ataxia in humans for which a causative gene had been identified. Reference lists and public databases, including OMIM and GeneReviews, were also reviewed. We evaluated the clinical descriptions to determine if ataxia was a core feature of the phenotype and assessed the available evidence on the genotype-phenotype association. Included disorders were classified as primary recessive ataxias, as other complex movement or multisystem disorders with prominent ataxia, or as disorders that may occasionally present with ataxia. After removal of duplicates, 2354 references were reviewed and assessed for inclusion. A total of 130 articles were completely reviewed and included in this qualitative analysis. The proposed new list of autosomal recessive ataxias includes 45 gene-defined disorders for which ataxia is a core presenting feature. We propose a clinical algorithm based on the associated symptoms. We present a new classification for autosomal recessive ataxias that brings awareness to their complex phenotypes while providing a unified categorization of this group of disorders. This review should assist in the development of a consensus nomenclature useful in both clinical and research applications.
Shalev, Stavit Allon; Khayat, Morad; Etty, Daniel-Spiegl; Elpeleg, Orly
2015-03-01
Mutations in genes encoding the origin recognition complex subunits cause Meier-Gorlin syndrome. The disease manifests a triad of short stature, small ears, and small and/or absent patellae with variable expressivity. We report on the identification of a homozygous deleterious mutation in the ORC6 gene in previously described fetuses at the severe end of the Meier-Gorlin spectrum. The phenotype included severe intrauterine growth retardation, dislocation of knees, gracile bones, clubfeet, and small mandible and chest. To date, the clinical presentation of ORC6-associated Meier-Gorlin syndrome has been mild compared to other the phenotype associated with other loci. The present report expands the clinical phenotype associated with ORC6 mutations to include severely abnormal embryological development suggesting a possible genotype-phenotype correlation. © 2015 Wiley Periodicals, Inc.
Parenti, Ilaria; Teresa-Rodrigo, María E; Pozojevic, Jelena; Ruiz Gil, Sara; Bader, Ingrid; Braunholz, Diana; Bramswig, Nuria C; Gervasini, Cristina; Larizza, Lidia; Pfeiffer, Lutz; Ozkinay, Ferda; Ramos, Feliciano; Reiz, Benedikt; Rittinger, Olaf; Strom, Tim M; Watrin, Erwan; Wendt, Kerstin; Wieczorek, Dagmar; Wollnik, Bernd; Baquero-Montoya, Carolina; Pié, Juan; Deardorff, Matthew A; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J
2017-03-01
The coordinated tissue-specific regulation of gene expression is essential for the proper development of all organisms. Mutations in multiple transcriptional regulators cause a group of neurodevelopmental disorders termed "transcriptomopathies" that share core phenotypical features including growth retardation, developmental delay, intellectual disability and facial dysmorphism. Cornelia de Lange syndrome (CdLS) belongs to this class of disorders and is caused by mutations in different subunits or regulators of the cohesin complex. Herein, we report on the clinical and molecular characterization of seven patients with features overlapping with CdLS who were found to carry mutations in chromatin regulators previously associated to other neurodevelopmental disorders that are frequently considered in the differential diagnosis of CdLS. The identified mutations affect the methyltransferase-encoding genes KMT2A and SETD5 and different subunits of the SWI/SNF chromatin-remodeling complex. Complementary to this, a patient with Coffin-Siris syndrome was found to carry a missense substitution in NIPBL. Our findings indicate that mutations in a variety of chromatin-associated factors result in overlapping clinical phenotypes, underscoring the genetic heterogeneity that should be considered when assessing the clinical and molecular diagnosis of neurodevelopmental syndromes. It is clear that emerging molecular mechanisms of chromatin dysregulation are central to understanding the pathogenesis of these clinically overlapping genetic disorders.
PhenoTips: patient phenotyping software for clinical and research use.
Girdea, Marta; Dumitriu, Sergiu; Fiume, Marc; Bowdin, Sarah; Boycott, Kym M; Chénier, Sébastien; Chitayat, David; Faghfoury, Hanna; Meyn, M Stephen; Ray, Peter N; So, Joyce; Stavropoulos, Dimitri J; Brudno, Michael
2013-08-01
We have developed PhenoTips: open source software for collecting and analyzing phenotypic information for patients with genetic disorders. Our software combines an easy-to-use interface, compatible with any device that runs a Web browser, with a standardized database back end. The PhenoTips' user interface closely mirrors clinician workflows so as to facilitate the recording of observations made during the patient encounter. Collected data include demographics, medical history, family history, physical and laboratory measurements, physical findings, and additional notes. Phenotypic information is represented using the Human Phenotype Ontology; however, the complexity of the ontology is hidden behind a user interface, which combines simple selection of common phenotypes with error-tolerant, predictive search of the entire ontology. PhenoTips supports accurate diagnosis by analyzing the entered data, then suggesting additional clinical investigations and providing Online Mendelian Inheritance in Man (OMIM) links to likely disorders. By collecting, classifying, and analyzing phenotypic information during the patient encounter, PhenoTips allows for streamlining of clinic workflow, efficient data entry, improved diagnosis, standardization of collected patient phenotypes, and sharing of anonymized patient phenotype data for the study of rare disorders. Our source code and a demo version of PhenoTips are available at http://phenotips.org. © 2013 WILEY PERIODICALS, INC.
Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology
ERIC Educational Resources Information Center
Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.
2013-01-01
22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among…
Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor-McCourt, Maureen
2015-02-01
Tumor genome sequencing leads to documenting thousands of DNA mutations and other genomic alterations. At present, these data cannot be analyzed adequately to aid in the understanding of tumorigenesis and its evolution. Moreover, we have little insight into how to use these data to predict clinical phenotypes and tumor progression to better design patient treatment. To meet these challenges, we discuss a cancer hallmark network framework for modeling genome sequencing data to predict cancer clonal evolution and associated clinical phenotypes. The framework includes: (1) cancer hallmarks that can be represented by a few molecular/signaling networks. 'Network operational signatures' which represent gene regulatory logics/strengths enable to quantify state transitions and measures of hallmark traits. Thus, sets of genomic alterations which are associated with network operational signatures could be linked to the state/measure of hallmark traits. The network operational signature transforms genotypic data (i.e., genomic alterations) to regulatory phenotypic profiles (i.e., regulatory logics/strengths), to cellular phenotypic profiles (i.e., hallmark traits) which lead to clinical phenotypic profiles (i.e., a collection of hallmark traits). Furthermore, the framework considers regulatory logics of the hallmark networks under tumor evolutionary dynamics and therefore also includes: (2) a self-promoting positive feedback loop that is dominated by a genomic instability network and a cell survival/proliferation network is the main driver of tumor clonal evolution. Surrounding tumor stroma and its host immune systems shape the evolutionary paths; (3) cell motility initiating metastasis is a byproduct of the above self-promoting loop activity during tumorigenesis; (4) an emerging hallmark network which triggers genome duplication dominates a feed-forward loop which in turn could act as a rate-limiting step for tumor formation; (5) mutations and other genomic alterations have specific patterns and tissue-specificity, which are driven by aging and other cancer-inducing agents. This framework represents the logics of complex cancer biology as a myriad of phenotypic complexities governed by a limited set of underlying organizing principles. It therefore adds to our understanding of tumor evolution and tumorigenesis, and moreover, potential usefulness of predicting tumors' evolutionary paths and clinical phenotypes. Strategies of using this framework in conjunction with genome sequencing data in an attempt to predict personalized drug targets, drug resistance, and metastasis for cancer patients, as well as cancer risks for healthy individuals are discussed. Accurate prediction of cancer clonal evolution and clinical phenotypes will have substantial impact on timely diagnosis, personalized treatment and personalized prevention of cancer. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Ray, Anuradha; Wenzel, Sally E.
2015-01-01
Our understanding of asthma has evolved over time from a singular disease to a complex of various phenotypes, with varied natural histories, physiologies, and responses to treatment. Early therapies treated most patients with asthma similarly, with bronchodilators and corticosteroids, but these therapies had varying degrees of success. Similarly, despite initial studies that identified an underlying type 2 inflammation in the airways of patients with asthma, biologic therapies targeted toward these type 2 pathways were unsuccessful in all patients. These observations led to increased interest in phenotyping asthma. Clinical approaches, both biased and later unbiased/statistical approaches to large asthma patient cohorts, identified a variety of patient characteristics, but they also consistently identified the importance of age of onset of disease and the presence of eosinophils in determining clinically relevant phenotypes. These paralleled molecular approaches to phenotyping that developed an understanding that not all patients share a type 2 inflammatory pattern. Using biomarkers to select patients with type 2 inflammation, repeated trials of biologics directed toward type 2 cytokine pathways saw newfound success, confirming the importance of phenotyping in asthma. Further research is needed to clarify additional clinical and molecular phenotypes, validate predictive biomarkers, and identify new areas for possible interventions. PMID:26161792
Retinal dystrophies, genomic applications in diagnosis and prospects for therapy
Nash, Benjamin M.; Wright, Dale C.; Grigg, John R.; Bennetts, Bruce
2015-01-01
Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs. PMID:26835369
Intermediate phenotypes and biomarkers of treatment outcome in major depressive disorder
Leuchter, Andrew F.; Hunter, Aimee M.; Krantz, David E.; Cook, Ian A.
2014-01-01
Major depressive disorder (MDD) is a pleomorphic illness originating from gene x environment interactions. Patients with differing symptom phenotypes receive the same diagnosis and similar treatment recommendations without regard to genomics, brain structure or function, or other physiologic or psychosocial factors. Using this present approach, only one third of patients enter remission with the first medication prescribed, and patients may take longer than 1 year to enter remission with repeated trials. Research to improve treatment effectiveness recently has focused on identification of intermediate phenotypes (IPs) that could parse the heterogeneous population of patients with MDD into subgroups with more homogeneous responses to treatment. Such IPs could be used to develop biomarkers that could be applied clinically to match patients with the treatment that would be most likely to lead to remission. Putative biomarkers include genetic polymorphisms, RNA and protein expression (transcriptome and proteome), neurotransmitter levels (metabolome), additional measures of signaling cascades, oscillatory synchrony, neuronal circuits and neural pathways (connectome), along with other possible physiologic measures. All of these measures represent components of a continuum that extends from proximity to the genome to proximity to the clinical phenotype of depression, and there are many levels along this continuum at which useful IPs may be defined. Because of the highly integrative nature of brain systems and the complex neurobiology of depression, the most useful biomarkers are likely to be those with intermediate proximity both to the genome and the clinical phenotype of MDD. Translation of findings across the spectrum from genotype to phenotype promises to better characterize the complex disruptions in signaling and neuroplasticity that accompany MDD, and ultimately to lead to greater understanding of the causes of depressive illness. PMID:25733956
Drawnel, Faye M; Boccardo, Stefano; Prummer, Michael; Delobel, Frédéric; Graff, Alexandra; Weber, Michael; Gérard, Régine; Badi, Laura; Kam-Thong, Tony; Bu, Lei; Jiang, Xin; Hoflack, Jean-Christophe; Kiialainen, Anna; Jeworutzki, Elena; Aoyama, Natsuyo; Carlson, Coby; Burcin, Mark; Gromo, Gianni; Boehringer, Markus; Stahlberg, Henning; Hall, Benjamin J; Magnone, Maria Chiara; Kolaja, Kyle; Chien, Kenneth R; Bailly, Jacques; Iacone, Roberto
2014-11-06
Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Dragovic, Milan; Hammond, Geoff; Badcock, Johanna C; Jablensky, Assen
2005-09-01
Various behavioural indices of brain lateralisation significantly intercorrelate, but current research in this area still focuses on single behavioural asymmetries, such as handedness. To describe a novel approach, which simultaneously integrates various laterality indices and delineates complex phenotypes. Grade of membership analysis was used to describe latent, complex lateralisation phenotypes in patients with schizophrenia (n=157), their siblings (n=74) and controls (n=77). The indices used were asymmetries of eye, foot and hand; hand motor proficiency; and handedness of patient's first-degree relatives. Three distinct pure types of lateralisation ('right', 'left' and 'mixed') were evident in patients compared with two ('right' and 'left') in siblings and controls. The 'mixed' type in patients featured absence of eye and foot lateralisation and presence of familial sinistrality, despite a right-hand dominance for writing. Patients with schizophrenia expressing the 'left' phenotype had a more severe course of illness, significantly increased scores on two schizotypy factors and poorer neurocognitive performance. The pure types in the siblings were similar to those in healthy controls. The findings suggest that a leftward reversal, rather than a reduction in lateralisation, is associated with clinical severity and neurocognitive deficits in patients with schizophrenia.
Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes.
Torraco, Alessandra; Ardissone, Anna; Invernizzi, Federica; Rizza, Teresa; Fiermonte, Giuseppe; Niceta, Marcello; Zanetti, Nadia; Martinelli, Diego; Vozza, Angelo; Verrigni, Daniela; Di Nottia, Michela; Lamantea, Eleonora; Diodato, Daria; Tartaglia, Marco; Dionisi-Vici, Carlo; Moroni, Isabella; Farina, Laura; Bertini, Enrico; Ghezzi, Daniele; Carrozzo, Rosalba
2017-01-01
Defects of the Fe/S cluster biosynthesis represent a subgroup of diseases affecting the mitochondrial energy metabolism. In the last years, mutations in four genes (NFU1, BOLA3, ISCA2 and IBA57) have been related to a new group of multiple mitochondrial dysfunction syndromes characterized by lactic acidosis, hyperglycinemia, multiple defects of the respiratory chain complexes, and impairment of four lipoic acid-dependent enzymes: α-ketoglutarate dehydrogenase complex, pyruvic dehydrogenase, branched-chain α-keto acid dehydrogenase complex and the H protein of the glycine cleavage system. Few patients have been reported with mutations in IBA57 and with variable clinical phenotype. Herein, we describe four unrelated patients carrying novel mutations in IBA57. All patients presented with combined or isolated defect of complex I and II. Clinical features varied widely, ranging from fatal infantile onset of the disease to acute and severe psychomotor regression after the first year of life. Brain MRI was characterized by cavitating leukodystrophy. The identified mutations were never reported previously and all had a dramatic effect on IBA57 stability. Our study contributes to expand the array of the genotypic variation of IBA57 and delineates the leukodystrophic pattern of IBA57 deficient patients.
Careflow Mining Techniques to Explore Type 2 Diabetes Evolution.
Dagliati, Arianna; Tibollo, Valentina; Cogni, Giulia; Chiovato, Luca; Bellazzi, Riccardo; Sacchi, Lucia
2018-03-01
In this work we describe the application of a careflow mining algorithm to detect the most frequent patterns of care in a type 2 diabetes patients cohort. The applied method enriches the detected patterns with clinical data to define temporal phenotypes across the studied population. Novel phenotypes are discovered from heterogeneous data of 424 Italian patients, and compared in terms of metabolic control and complications. Results show that careflow mining can help to summarize the complex evolution of the disease into meaningful patterns, which are also significant from a clinical point of view.
Aldridge, Kristina; Boyadjiev, Simeon A.; Capone, George T.; DeLeon, Valerie B.; Richtsmeier, Joan T.
2015-01-01
The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non-invasively. Before these systems can be broadly implemented the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (N=15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub-millimeter; both the error due to digitization and to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and therefore useful for evaluation of clinical dysmorphology and surgery, analyses of genotype-phenotype correlations, and inheritance of complex phenotypes. PMID:16158436
Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature.
Dell'Isola, A; Allan, R; Smith, S L; Marreiros, S S P; Steultjens, M
2016-10-12
Knee Osteoarthritis (KOA) is a heterogeneous pathology characterized by a complex and multifactorial nature. It has been hypothesised that these differences are due to the existence of underlying phenotypes representing different mechanisms of the disease. The aim of this study is to identify the current evidence for the existence of groups of variables which point towards the existence of distinct clinical phenotypes in the KOA population. A systematic literature search in PubMed was conducted. Only original articles were selected if they aimed to identify phenotypes of patients aged 18 years or older with KOA. The methodological quality of the studies was independently assessed by two reviewers and qualitative synthesis of the evidence was performed. Strong evidence for existence of specific phenotypes was considered present if the phenotype was supported by at least two high-quality studies. A total of 24 studies were included. Through qualitative synthesis of evidence, six main sets of variables proposing the existence of six phenotypes were identified: 1) chronic pain in which central mechanisms (e.g. central sensitisation) are prominent; 2) inflammatory (high levels of inflammatory biomarkers); 3) metabolic syndrome (high prevalence of obesity, diabetes and other metabolic disturbances); 4) Bone and cartilage metabolism (alteration in local tissue metabolism); 5) mechanical overload characterised primarily by varus malalignment and medial compartment disease; and 6) minimal joint disease characterised as minor clinical symptoms with slow progression over time. This study identified six distinct groups of variables which should be explored in attempts to better define clinical phenotypes in the KOA population.
Zhang, Michael Y.; Keel, Siobán B.; Walsh, Tom; Lee, Ming K.; Gulsuner, Suleyman; Watts, Amanda C.; Pritchard, Colin C.; Salipante, Stephen J.; Jeng, Michael R.; Hofmann, Inga; Williams, David A.; Fleming, Mark D.; Abkowitz, Janis L.; King, Mary-Claire; Shimamura, Akiko
2015-01-01
Accurate and timely diagnosis of inherited bone marrow failure and inherited myelodysplastic syndromes is essential to guide clinical management. Distinguishing inherited from acquired bone marrow failure/myelodysplastic syndrome poses a significant clinical challenge. At present, diagnostic genetic testing for inherited bone marrow failure/myelodysplastic syndrome is performed gene-by-gene, guided by clinical and laboratory evaluation. We hypothesized that standard clinically-directed genetic testing misses patients with cryptic or atypical presentations of inherited bone marrow failure/myelodysplastic syndrome. In order to screen simultaneously for mutations of all classes in bone marrow failure/myelodysplastic syndrome genes, we developed and validated a panel of 85 genes for targeted capture and multiplexed massively parallel sequencing. In patients with clinical diagnoses of Fanconi anemia, genomic analysis resolved subtype assignment, including those of patients with inconclusive complementation test results. Eight out of 71 patients with idiopathic bone marrow failure or myelodysplastic syndrome were found to harbor damaging germline mutations in GATA2, RUNX1, DKC1, or LIG4. All 8 of these patients lacked classical clinical stigmata or laboratory findings of these syndromes and only 4 had a family history suggestive of inherited disease. These results reflect the extensive genetic heterogeneity and phenotypic complexity of bone marrow failure/myelodysplastic syndrome phenotypes. This study supports the integration of broad unbiased genetic screening into the diagnostic workup of children and young adults with bone marrow failure and myelodysplastic syndromes. PMID:25239263
Brain White Matter Shape Changes in Amyotrophic Lateral Sclerosis (ALS): A Fractal Dimension Study
Allexandre, Didier; Zhang, Luduan; Wang, Xiao-Feng; Pioro, Erik P.; Yue, Guang H.
2013-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder. Current diagnosis time is about 12-months due to lack of objective methods. Previous brain white matter voxel based morphometry (VBM) studies in ALS reported inconsistent results. Fractal dimension (FD) has successfully been used to quantify brain WM shape complexity in various neurological disorders and aging, but not yet studied in ALS. Therefore, we investigated WM morphometric changes using FD analyses in ALS patients with different clinical phenotypes. We hypothesized that FD would better capture clinical features of the WM morphometry in different ALS phenotypes than VBM analysis. High resolution MRI T1-weighted images were acquired in controls (n = 11), and ALS patients (n = 89). ALS patients were assigned into four subgroups based on their clinical phenotypes.VBM analysis was carried out using SPM8. FD values were estimated for brain WM skeleton, surface and general structure in both controls and ALS patients using our previously published algorithm. No significant VBM WM changes were observed between controls and ALS patients and among the ALS subgroups. In contrast, significant (p<0.05) FD reductions in skeleton and general structure were observed between ALS with dementia and other ALS subgroups. No significant differences in any of the FD measures were observed between control and ALS patients. FD correlated significantly with revised ALS functional rating scale (ALSFRS-R) score a clinical measure of function. Results suggest that brain WM shape complexity is more sensitive to ALS disease process when compared to volumetric VBM analysis and FD changes are dependent on the ALS phenotype. Correlation between FD and clinical measures suggests that FD could potentially serve as a biomarker of ALS pathophysiology, especially after confirmation by longitudinal studies. PMID:24040000
Iredell, Jon; Thomas, Lee; Espedido, Björn
2006-12-01
The greatest impact of microbiology data on clinical care is in the critically ill. Unfortunately, this is also the area in which microbiology laboratories are most often non-contributive. Attempts to move to rapid, culture-independent diagnostics are driven by the need to expedite urgent results. This is difficult in Gram-negative infection because of the complexity of the antibiotic resistance phenotype. Here, we discuss resistance to modern beta-lactams as a case in point. Recent outbreaks of transmissible carbapenem resistance among Gram-negative enteric pathogens in Sydney and Melbourne serve to illustrate the pitfalls of traditional phenotypical approaches. A better understanding of the epidemiology and mosaic nature of antibiotic resistance elements in the microflora is needed for us to move forward.
Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene.
Horvath, Rita; Hudson, Gavin; Ferrari, Gianfrancesco; Fütterer, Nancy; Ahola, Sofia; Lamantea, Eleonora; Prokisch, Holger; Lochmüller, Hanns; McFarland, Robert; Ramesh, V; Klopstock, Thomas; Freisinger, Peter; Salvi, Fabrizio; Mayr, Johannes A; Santer, Rene; Tesarova, Marketa; Zeman, Jiri; Udd, Bjarne; Taylor, Robert W; Turnbull, Douglass; Hanna, Michael; Fialho, Doreen; Suomalainen, Anu; Zeviani, Massimo; Chinnery, Patrick F
2006-07-01
Mutations in the gene coding for the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (POLG1) have recently been described in patients with diverse clinical presentations, revealing a complex relationship between genotype and phenotype in patients and their families. POLG1 was sequenced in patients from different European diagnostic and research centres to define the phenotypic spectrum and advance understanding of the recurrence risks. Mutations were identified in 38 cases, with the majority being sporadic compound heterozygotes. Eighty-nine DNA sequence changes were identified, including 2 predicted to alter a splice site, 1 predicted to cause a premature stop codon and 13 predicted to cause novel amino acid substitutions. The majority of children had a mutation in the linker region, often 1399G-->A (A467T), and a mutation affecting the polymerase domain. Others had mutations throughout the gene, and 11 had 3 or more substitutions. The clinical presentation ranged from the neonatal period to late adult life, with an overlapping phenotypic spectrum from severe encephalopathy and liver failure to late-onset external ophthalmoplegia, ataxia, myopathy and isolated muscle pain or epilepsy. There was a strong gender bias in children, with evidence of an environmental interaction with sodium valproate. POLG1 mutations cause an overlapping clinical spectrum of disease with both dominant and recessive modes of inheritance. 1399G-->A (A467T) is common in children, but complete POLG1 sequencing is required to identify multiple mutations that can have complex implications for genetic counselling.
Phenotypes and enviromental factors: their influence in PCOS.
Diamanti-Kandarakis, Evanthia; Christakou, Charikleia; Marinakis, Evangelos
2012-01-01
Polycystic ovary syndrome (PCOS) is a complex syndrome of unclear etiopathogenesis characterized by heterogeneity in phenotypic manifestations. The clinical phenotype of PCOS includes reproductive and hormonal aberrations, namely anovulation and hyperandrogenism, which coexist with metabolic disturbances. Reflecting the crosstalk between the reproductive system and metabolic tissues, obesity not only deteriorates the metabolic profile but also aggravates ovulatory dysfunction and hyperandrogenism. Although the pathogenesis of PCOS remains unclear, the syndrome appears to involve environmental and genetic components. Starting from early life and extending throughout lifecycle, environmental insults may affect susceptible women who finally demonstrate the clinical phenotype of PCOS. Diet emerges as the major environmental determinant of PCOS. Overnutrition leading to obesity is widely recognized to have an aggravating impact, while another detrimental dietary factor may be the high content of food in advanced glycated end products (AGEs). Environmental exposure to industrial products, particularly Bisphenol A (BPA), may also exacerbate the clinical course of PCOS. AGEs and BPA may act as endocrine disruptors in the pathogenesis of the syndrome. PCOS appears to mirror the harmful influence of the modern environment on the reproductive and metabolic balance of inherently predisposed individuals.
[Phenotypic heterogeneity of chronic obstructive pulmonary disease].
Garcia-Aymerich, Judith; Agustí, Alvar; Barberà, Joan A; Belda, José; Farrero, Eva; Ferrer, Antoni; Ferrer, Jaume; Gáldiz, Juan B; Gea, Joaquim; Gómez, Federico P; Monsó, Eduard; Morera, Josep; Roca, Josep; Sauleda, Jaume; Antó, Josep M
2009-03-01
A functional definition of chronic obstructive pulmonary disease (COPD) based on airflow limitation has largely dominated the field. However, a view has emerged that COPD involves a complex array of cellular, organic, functional, and clinical events, with a growing interest in disentangling the phenotypic heterogeneity of COPD. The present review is based on the opinion of the authors, who have extensive research experience in several aspects of COPD. The starting assumption of the review is that current knowledge on the pathophysiology and clinical features of COPD allows us to classify phenotypic information in terms of the following dimensions: respiratory symptoms and health status, acute exacerbations, lung function, structural changes, local and systemic inflammation, and systemic effects. Twenty-six phenotypic traits were identified and assigned to one of the 6 dimensions. For each dimension, a summary is provided of the best evidence on the relationships among phenotypic traits, in particular among those corresponding to different dimensions, and on the relationship between these traits and relevant events in the natural history of COPD. The information has been organized graphically into a phenotypic matrix where each cell representing a pair of phenotypic traits is linked to relevant references. The information provided has the potential to increase our understanding of the heterogeneity of COPD phenotypes and help us plan future studies on aspects that are as yet unexplored.
Quélin, Chloé; Loget, Philippe; Boutaud, Lucile; Elkhartoufi, Nadia; Milon, Joelle; Odent, Sylvie; Fradin, Mélanie; Demurger, Florence; Pasquier, Laurent; Thomas, Sophie; Attié-Bitach, Tania
2018-04-27
Ciliopathies comprise a group of clinically heterogeneous and overlapping disorders with a wide spectrum of phenotypes ranging from prenatal lethality to adult-onset disorders. Pathogenic variants in more than 100 ciliary protein-encoding genes have been described, most notably those involved in intraflagellar transport (IFT) which comprises two protein complexes, responsible for retrograde (IFT-A) and anterograde transport (IFT-B). Here we describe a fetus with an unclassified severe ciliopathy phenotype including short ribs, polydactyly, bilateral renal agenesis, and imperforate anus, with compound heterozygosity for c.118_125del, p.(Thr40Glyfs*11) and a c.352 +1G > T in IFT27, which encodes a small GTPase component of the IFT-B complex. We conclude that bilateral renal agenesis is a rare feature of this severe ciliopathy and this report highlights the phenotypic overlap of Pallister-Hall syndrome and ciliopathies. The phenotype in patients with IFT27 gene variants is wide ranging from Bardet-Biedl syndrome to a lethal phenotype. © 2018 Wiley Periodicals, Inc.
Carvalho, Claudia M B; Vasanth, Shivakumar; Shinawi, Marwan; Russell, Chad; Ramocki, Melissa B; Brown, Chester W; Graakjaer, Jesper; Skytte, Anne-Bine; Vianna-Morgante, Angela M; Krepischi, Ana C V; Patel, Gayle S; Immken, LaDonna; Aleck, Kyrieckos; Lim, Cynthia; Cheung, Sau Wai; Rosenberg, Carla; Katsanis, Nicholas; Lupski, James R
2014-11-06
The 17p13.1 microdeletion syndrome is a recently described genomic disorder with a core clinical phenotype of intellectual disability, poor to absent speech, dysmorphic features, and a constellation of more variable clinical features, most prominently microcephaly. We identified five subjects with copy-number variants (CNVs) on 17p13.1 for whom we performed detailed clinical and molecular studies. Breakpoint mapping and retrospective analysis of published cases refined the smallest region of overlap (SRO) for microcephaly to a genomic interval containing nine genes. Dissection of this phenotype in zebrafish embryos revealed a complex genetic architecture: dosage perturbation of four genes (ASGR1, ACADVL, DVL2, and GABARAP) impeded neurodevelopment and decreased dosage of the same loci caused a reduced mitotic index in vitro. Moreover, epistatic analyses in vivo showed that dosage perturbations of discrete gene pairings induce microcephaly. Taken together, these studies support a model in which concomitant dosage perturbation of multiple genes within the CNV drive the microcephaly and possibly other neurodevelopmental phenotypes associated with rearrangements in the 17p13.1 SRO. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Lucarelli, Marco; Bruno, Sabina Maria; Pierandrei, Silvia; Ferraguti, Giampiero; Stamato, Antonella; Narzi, Fabiana; Amato, Annalisa; Cimino, Giuseppe; Bertasi, Serenella; Quattrucci, Serena; Strom, Roberto
2015-01-01
Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype–phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype–phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype–phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway. PMID:25910067
ERIC Educational Resources Information Center
Holland, A.; Whittington, J.; Cohen, O.; Curfs, L.; Delahaye, F.; Dudley, O.; Horsthemke, B.; Lindgren, A. -C.; Nourissier, C.; Sharma, N.; Vogels, A.
2009-01-01
Background: Prader-Willi Syndrome (PWS) is a rare genetically determined neurodevelopmental disorder with a complex phenotype that changes with age. The rarity of the syndrome and the need to control for different variables such as genetic sub-type, age and gender limits clinical studies of sufficient size in any one country. A clinical research…
The puzzle of immune phenotypes of childhood asthma.
Landgraf-Rauf, Katja; Anselm, Bettina; Schaub, Bianca
2016-12-01
Asthma represents the most common chronic childhood disease worldwide. Whereas preschool children present with wheezing triggered by different factors (multitrigger and viral wheeze), clinical asthma manifestation in school children has previously been classified as allergic and non-allergic asthma. For both, the underlying immunological mechanisms are not yet understood in depth in children. Treatment is still prescribed regardless of underlying mechanisms, and children are not always treated successfully. This review summarizes recent key findings on the complex mechanisms of the development and manifestation of childhood asthma. Whereas traditional classification of childhood asthma is primarily based on clinical symptoms like wheezing and atopy, novel approaches to specify asthma phenotypes are under way and face challenges such as including the stability of phenotypes over time and transition into adulthood. Epidemiological studies enclose more information on the patient's disease history and environmental influences. Latest studies define endotypes based on molecular and cellular mechanisms, for example defining risk and protective single nucleotide polymorphisms (SNPs) and new immune phenotypes, showing promising results. Also, regulatory T cells and recently discovered T helper cell subtypes such as Th9 and Th17 cells were shown to be important for the development of asthma. Innate lymphoid cells (ILC) could play a critical role in asthma patients as they produce different cytokines associated with asthma. Epigenetic findings showed different acetylation and methylation patterns for children with allergic and non-allergic asthma. On a posttranscriptional level, miRNAs are regulating factors identified to differ between asthma patients and healthy controls and also indicate differences within asthma phenotypes. Metabolomics is another exciting chapter important for endotyping asthmatic children. Despite the development of new biomarkers and the discovery of new immunological molecules, the complex puzzle of childhood asthma is still far from being completed. Addressing the current challenges of distinct clinical asthma and wheeze phenotypes, including their stability and underlying endotypes, involves addressing the interplay of innate and adaptive immune regulatory mechanisms in large, interdisciplinary cohorts.
A knowledge based approach to matching human neurodegenerative disease and animal models
Maynard, Sarah M.; Mungall, Christopher J.; Lewis, Suzanna E.; Imam, Fahim T.; Martone, Maryann E.
2013-01-01
Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have explored the use of ontologies to create formal descriptions of structural phenotypes across scales that are machine processable and amenable to logical inference. As proof of concept, we built a Neurodegenerative Disease Phenotype Ontology (NDPO) and an associated Phenotype Knowledge Base (PKB) using an entity-quality model that incorporates descriptions for both human disease phenotypes and those of animal models. Entities are drawn from community ontologies made available through the Neuroscience Information Framework (NIF) and qualities are drawn from the Phenotype and Trait Ontology (PATO). We generated ~1200 structured phenotype statements describing structural alterations at the subcellular, cellular and gross anatomical levels observed in 11 human neurodegenerative conditions and associated animal models. PhenoSim, an open source tool for comparing phenotypes, was used to issue a series of competency questions to compare individual phenotypes among organisms and to determine which animal models recapitulate phenotypic aspects of the human disease in aggregate. Overall, the system was able to use relationships within the ontology to bridge phenotypes across scales, returning non-trivial matches based on common subsumers that were meaningful to a neuroscientist with an advanced knowledge of neuroanatomy. The system can be used both to compare individual phenotypes and also phenotypes in aggregate. This proof of concept suggests that expressing complex phenotypes using formal ontologies provides considerable benefit for comparing phenotypes across scales and species. PMID:23717278
Infectious and autoantibody-associated encephalitis: clinical features and long-term outcome.
Pillai, Sekhar C; Hacohen, Yael; Tantsis, Esther; Prelog, Kristina; Merheb, Vera; Kesson, Alison; Barnes, Elizabeth; Gill, Deepak; Webster, Richard; Menezes, Manoj; Ardern-Holmes, Simone; Gupta, Sachin; Procopis, Peter; Troedson, Christopher; Antony, Jayne; Ouvrier, Robert A; Polfrit, Yann; Davies, Nicholas W S; Waters, Patrick; Lang, Bethan; Lim, Ming J; Brilot, Fabienne; Vincent, Angela; Dale, Russell C
2015-04-01
Pediatric encephalitis has a wide range of etiologies, clinical presentations, and outcomes. This study seeks to classify and characterize infectious, immune-mediated/autoantibody-associated and unknown forms of encephalitis, including relative frequencies, clinical and radiologic phenotypes, and long-term outcome. By using consensus definitions and a retrospective single-center cohort of 164 Australian children, we performed clinical and radiologic phenotyping blinded to etiology and outcomes, and we tested archived acute sera for autoantibodies to N-methyl-D-aspartate receptor, voltage-gated potassium channel complex, and other neuronal antigens. Through telephone interviews, we defined outcomes by using the Liverpool Outcome Score (for encephalitis). An infectious encephalitis occurred in 30%, infection-associated encephalopathy in 8%, immune-mediated/autoantibody-associated encephalitis in 34%, and unknown encephalitis in 28%. In descending order of frequency, the larger subgroups were acute disseminated encephalomyelitis (21%), enterovirus (12%), Mycoplasma pneumoniae (7%), N-methyl-D-aspartate receptor antibody (6%), herpes simplex virus (5%), and voltage-gated potassium channel complex antibody (4%). Movement disorders, psychiatric symptoms, agitation, speech dysfunction, cerebrospinal fluid oligoclonal bands, MRI limbic encephalitis, and clinical relapse were more common in patients with autoantibodies. An abnormal outcome occurred in 49% of patients after a median follow-up of 5.8 years. Herpes simplex virus and unknown forms had the worst outcomes. According to our multivariate analysis, an abnormal outcome was more common in patients with status epilepticus, magnetic resonance diffusion restriction, and ICU admission. We have defined clinical and radiologic phenotypes of infectious and immune-mediated/autoantibody-associated encephalitis. In this resource-rich cohort, immune-mediated/autoantibody-associated etiologies are common, and the recognition and treatment of these entities should be a clinical priority. Copyright © 2015 by the American Academy of Pediatrics.
Non-coding variants contribute to the clinical heterogeneity of TTR amyloidosis.
Iorio, Andrea; De Lillo, Antonella; De Angelis, Flavio; Di Girolamo, Marco; Luigetti, Marco; Sabatelli, Mario; Pradotto, Luca; Mauro, Alessandro; Mazzeo, Anna; Stancanelli, Claudia; Perfetto, Federico; Frusconi, Sabrina; My, Filomena; Manfellotto, Dario; Fuciarelli, Maria; Polimanti, Renato
2017-09-01
Coding mutations in TTR gene cause a rare hereditary form of systemic amyloidosis, which has a complex genotype-phenotype correlation. We investigated the role of non-coding variants in regulating TTR gene expression and consequently amyloidosis symptoms. We evaluated the genotype-phenotype correlation considering the clinical information of 129 Italian patients with TTR amyloidosis. Then, we conducted a re-sequencing of TTR gene to investigate how non-coding variants affect TTR expression and, consequently, phenotypic presentation in carriers of amyloidogenic mutations. Polygenic scores for genetically determined TTR expression were constructed using data from our re-sequencing analysis and the GTEx (Genotype-Tissue Expression) project. We confirmed a strong phenotypic heterogeneity across coding mutations causing TTR amyloidosis. Considering the effects of non-coding variants on TTR expression, we identified three patient clusters with specific expression patterns associated with certain phenotypic presentations, including late onset, autonomic neurological involvement, and gastrointestinal symptoms. This study provides novel data regarding the role of non-coding variation and the gene expression profiles in patients affected by TTR amyloidosis, also putting forth an approach that could be used to investigate the mechanisms at the basis of the genotype-phenotype correlation of the disease.
Correa, Fernanda A; Jorge, Alexander Al; Nakaguma, Marilena; Canton, Ana Pm; Costa, Silvia S; Funari, Mariana F; Lerario, Antonio M; Franca, Marcela M; Carvalho, Luciani R; Krepischi, Ana Cv; Arnhold, Ivo Jp; Rosenberg, Carla; Mendonca, Berenice B
2018-03-01
The aetiology of congenital hypopituitarism (CH) is unknown in most patients. Rare copy number variants (CNVs) have been implicated as the cause of genetic syndromes with previously unknown aetiology. Our aim was to study the presence of CNVs and their pathogenicity in patients with idiopathic CH associated with complex phenotypes. We selected 39 patients with syndromic CH for array-based comparative genomic hybridization (aCGH). Patients with pathogenic CNVs were also evaluated by whole exome sequencing. Twenty rare CNVs were detected in 19 patients. Among the identified rare CNVs, six were classified as benign, eleven as variants of uncertain clinical significance (VUS) and four as pathogenic. The three patients with pathogenic CNVs had combined pituitary hormone deficiencies, and the associated complex phenotypes were intellectual disabilities: trichorhinophalangeal type I syndrome (TRPS1) and developmental delay/intellectual disability with cardiac malformation, respectively. Patient one has a de novo 1.6-Mb deletion located at chromosome 3q13.31q13.32, which overlaps with the region of the 3q13.31 deletion syndrome. Patient two has a 10.5-Mb de novo deletion at 8q23.1q24.11, encompassing the TRPS1 gene; his phenotype is compatible with TRPS1. Patient three carries a chromosome translocation t(2p24.3;4q35.1) resulting in two terminal alterations: a 2p25.3p24.3 duplication of 14.7 Mb and a 4-Mb deletion at 4q35.1q35.2. Copy number variants explained the phenotype in 8% of patients with hypopituitarism and additional complex phenotypes. This suggests that chromosomal alterations are an important contributor to syndromic hypopituitarism. © 2017 John Wiley & Sons Ltd.
Progressive myoclonic epilepsy as an adult-onset manifestation of Leigh syndrome due to m.14487T>C.
Dermaut, B; Seneca, S; Dom, L; Smets, K; Ceulemans, L; Smet, J; De Paepe, B; Tousseyn, S; Weckhuysen, S; Gewillig, M; Pals, P; Parizel, P; De Bleecker, J L; Boon, P; De Meirleir, L; De Jonghe, P; Van Coster, R; Van Paesschen, W; Santens, P
2010-01-01
m.14487T>C, a missense mutation (p.M63V) affecting the ND6 subunit of complex I of the mitochondrial respiratory chain, has been reported in isolated childhood cases with Leigh syndrome (LS) and progressive dystonia. Adult-onset phenotypes have not been reported. To determine the clinical-neurological spectrum and associated mutation loads in an extended m.14487T>C family. A genotype-phenotype correlation study of a Belgian five-generation family with 12 affected family members segregating m.14487T>C was carried out. Clinical and mutation load data were available for nine family members. Biochemical analysis of the respiratory chain was performed in three muscle biopsies. Heteroplasmic m.14487T>C levels (36-52% in leucocytes, 97-99% in muscle) were found in patients with progressive myoclonic epilepsy (PME) and dystonia or progressive hypokinetic-rigid syndrome. Patients with infantile LS were homoplasmic (99-100% in leucocytes, 100% in muscle). We found lower mutation loads (between 8 and 35% in blood) in adult patients with clinical features including migraine with aura, Leber hereditary optic neuropathy, sensorineural hearing loss and diabetes mellitus type 2. Despite homoplasmic mutation loads, complex I catalytic activity was only moderately decreased in muscle tissue. m.14487T>C resulted in a broad spectrum of phenotypes in our family. Depending on the mutation load, it caused severe encephalopathies ranging from infantile LS to adult-onset PME with dystonia. This is the first report of PME as an important neurological manifestation of an isolated mitochondrial complex I defect.
Chen, Xue; Sheng, Xunlun; Liu, Xiaoxing; Li, Huiping; Liu, Yani; Rong, Weining; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Zhao, Kanxing; Zhao, Chen
2014-01-01
USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also demonstrated that a targeted NGS approach is a valuable tool for the genetic diagnosis of USH2 and RP.
Li, Huiping; Liu, Yani; Rong, Weining; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Zhao, Kanxing; Zhao, Chen
2014-01-01
USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also demonstrated that a targeted NGS approach is a valuable tool for the genetic diagnosis of USH2 and RP. PMID:25133613
Ferris, Elliott; Abegglen, Lisa M; Schiffman, Joshua D; Gregg, Christopher
2018-03-06
The identity of most functional elements in the mammalian genome and the phenotypes they impact are unclear. Here, we perform a genome-wide comparative analysis of patterns of accelerated evolution in species with highly distinctive traits to discover candidate functional elements for clinically important phenotypes. We identify accelerated regions (ARs) in the elephant, hibernating bat, orca, dolphin, naked mole rat, and thirteen-lined ground squirrel lineages in mammalian conserved regions, uncovering ∼33,000 elements that bind hundreds of different regulatory proteins in humans and mice. ARs in the elephant, the largest land mammal, are uniquely enriched near elephant DNA damage response genes. The genomic hotspot for elephant ARs is the E3 ligase subunit of the Fanconi anemia complex, a master regulator of DNA repair. Additionally, ARs in the six species are associated with specific human clinical phenotypes that have apparent concordance with overt traits in each species. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Genotypic and phenotypic predictors of inflammation in patients with chronic kidney disease.
Luttropp, Karin; Debowska, Malgorzata; Lukaszuk, Tomasz; Bobrowski, Leon; Carrero, Juan Jesus; Qureshi, Abdul Rashid; Stenvinkel, Peter; Lindholm, Bengt; Waniewski, Jacek; Nordfors, Louise
2016-12-01
In complex diseases such as chronic kidney disease (CKD), the risk of clinical complications is determined by interactions between phenotypic and genotypic factors. However, clinical epidemiological studies rarely attempt to analyse the combined effect of large numbers of phenotype and genotype features. We have recently shown that the relaxed linear separability (RLS) model of feature selection can address such complex issues. Here, it is applied to identify risk factors for inflammation in CKD. The RLS model was applied in 225 CKD stage 5 patients sampled in conjunction with dialysis initiation. Fifty-seven anthropometric or biochemical measurements and 79 genetic polymorphisms were entered into the model. The model was asked to identify phenotypes and genotypes that, when combined, could separate inflamed from non-inflamed patients. Inflammation was defined as a high-sensitivity C-reactive protein concentration above the median (5 mg/L). Among the 60 genotypic and phenotypic features predicting inflammation, 31 were genetic. Among the 10 strongest predictors of inflammation, 8 were single nucleotide polymorphisms located in the NAMPT, CIITA, BMP2 and PIK3CB genes, whereas fibrinogen and bone mineral density were the only phenotypic biomarkers. These results indicate a larger involvement of hereditary factors in inflammation than might have been expected and suggest that inclusion of genotype features in risk assessment studies is critical. The RLS model demonstrates that inflammation in CKD is determined by an extensive panel of factors and may prove to be a suitable tool that could enable a much-needed multifactorial approach as opposed to the commonly utilized single-factor analysis. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Zepeda-Mendoza, Cinthya J; Bardon, Alexandra; Kammin, Tammy; Harris, David J; Cox, Helen; Redin, Claire; Ordulu, Zehra; Talkowski, Michael E; Morton, Cynthia C
2018-03-01
Molecular characterization of balanced chromosomal abnormalities constitutes a powerful tool in understanding the pathogenic mechanisms of complex genetic disorders. Here we report a male with severe global developmental delay in the presence of a complex karyotype and normal microarray and exome studies. The subject, referred to as DGAP294, has two de novo apparently balanced translocations involving chromosomes 1 and 14, and chromosomes 4 and 10, disrupting several different transcripts of adhesion G protein-coupled receptor L2 (ADGRL2) and protocadherin 15 (PCDH15). In addition, a maternally inherited inversion disrupts peptidyl arginine deiminase types 3 and 4 (PADI3 and PADI4) on chromosome 1. None of these gene disruptions explain the patient's phenotype. Using genome regulatory annotations and chromosome conformation data, we predict a position effect ~370 kb upstream of a translocation breakpoint located at 14q12. The position effect involves forkhead box G1 (FOXG1), mutations in which are associated with the congenital form of Rett syndrome and FOXG1 syndrome. We believe the FOXG1 position effect largely accounts for the clinical phenotype in DGAP294, which can be classified as FOXG1 syndrome like. Our findings emphasize the significance of not only analyzing disrupted genes by chromosomal rearrangements, but also evaluating potential long-range position effects in clinical diagnoses.
Contemporary theories of cervical carcinogenesis: the virus, the host, and the stem cell.
Crum, C P
2000-03-01
Cervical cancer is a complex disease that, by its association with human papillomavirus (HPV), has elicited research in a broad range of areas pertaining to its basic diagnostic and clinical aspects. The complexity of this association lies not only in the fundamental relationship between virus and cancer but also in its translation to pathologic diagnosis and clinical management. Offshoots from the relationship of virus to pathology include studies targeting the link between papillomavirus infection and cervical epithelial abnormalities, the molecular epidemiology of papillomavirus infection, and the potential use of HPV testing as either a screening technique or a tool for managing women who have Pap smear abnormalities. A second variable that is critical to the pathogenesis of cervical neoplasia is the cervical transformation zone. The wide range of invasive and noninvasive lesion phenotypes associated with HPV infection in this region indicate that not only the virus but also specific host target epithelial cells in the transformation zone play an important part in the development of cervical neoplasia. Further understanding of this relationship between the virus and the host epithelium will hinge on determining the subtypes of epithelial cells in the transformation zone and their phenotypic response to infection. New technologies, such as expression arrays, promise to clarify, if not resolve, the complexity of molecular interactions leading to the multiplicity of tumor phenotypes associated with HPV infection of the uterine cervix.
Clinical metabolomics paves the way towards future healthcare strategies
Collino, Sebastiano; Martin, François‐Pierre J.; Rezzi, Serge
2013-01-01
Metabolomics is recognized as a powerful top‐down system biological approach to understand genetic‐environment‐health paradigms paving new avenues to identify clinically relevant biomarkers. It is nowadays commonly used in clinical applications shedding new light on physiological regulatory processes of complex mammalian systems with regard to disease aetiology, diagnostic stratification and, potentially, mechanism of action of therapeutic solutions. A key feature of metabolomics lies in its ability to underpin the complex metabolic interactions of the host with its commensal microbial partners providing a new way to define individual and population phenotypes. This review aims at describing recent applications of metabolomics in clinical fields with insight into diseases, diagnostics/monitoring and improvement of homeostatic metabolic regulation. PMID:22348240
The genetic basis for survivorship in coronary artery disease
Dungan, Jennifer R.; Hauser, Elizabeth R.; Qin, Xuejun; Kraus, William E.
2013-01-01
Survivorship is a trait characterized by endurance and virility in the face of hardship. It is largely considered a psychosocial attribute developed during fatal conditions, rather than a biological trait for robustness in the context of complex, age-dependent diseases like coronary artery disease (CAD). The purpose of this paper is to present the novel phenotype, survivorship in CAD as an observed survival advantage concurrent with clinically significant CAD. We present a model for characterizing survivorship in CAD and its relationships with overlapping time- and clinically-related phenotypes. We offer an optimal measurement interval for investigating survivorship in CAD. We hypothesize genetic contributions to this construct and review the literature for evidence of genetic contribution to overlapping phenotypes in support of our hypothesis. We also present preliminary evidence of genetic effects on survival in people with clinically significant CAD from a primary case-control study of symptomatic coronary disease. Identifying gene variants that confer improved survival in the context of clinically appreciable CAD may improve our understanding of cardioprotective mechanisms acting at the gene level and potentially impact patients clinically in the future. Further, characterizing other survival-variant genetic effects may improve signal-to-noise ratio in detecting gene associations for CAD. PMID:24143143
Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott
2018-05-01
The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.
Miller, F W; Chen, W; O'Hanlon, T P; Cooper, R G; Vencovsky, J; Rider, L G; Danko, K; Wedderburn, L R; Lundberg, I E; Pachman, L M; Reed, A M; Ytterberg, S R; Padyukov, L; Selva-O'Callaghan, A; Radstake, T R; Isenberg, D A; Chinoy, H; Ollier, W E R; Scheet, P; Peng, B; Lee, A; Byun, J; Lamb, J A; Gregersen, P K; Amos, C I
2015-10-01
Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P<5×10(-8)) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations.
Miller, Frederick W.; Chen, Wei; O’Hanlon, Terrance P.; Cooper, Robert G.; Vencovsky, Jiri; Rider, Lisa G.; Danko, Katalin; Wedderburn, Lucy R.; Lundberg, Ingrid E.; Pachman, Lauren M.; Reed, Ann M.; Ytterberg, Steven R.; Padyukov, Leonid; Selva-O’Callaghan, Albert; Radstake, Timothy R.; Isenberg, David A.; Chinoy, Hector; Ollier, William E.R.; Scheet, Paul; Peng, Bo; Lee, Annette; Byun, Jinyoung; Lamb, Janine A.; Gregersen, Peter K.; Amos, Christopher I.
2016-01-01
Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis; 473 juvenile dermatomyositis; 532 polymyositis; and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P < 5 × 10−8) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1haplotype comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations. PMID:26291516
Sofou, Kalliopi; de Coo, Irenaeus F M; Ostergaard, Elsebet; Isohanni, Pirjo; Naess, Karin; De Meirleir, Linda; Tzoulis, Charalampos; Uusimaa, Johanna; Lönnqvist, Tuula; Bindoff, Laurence Albert; Tulinius, Már; Darin, Niklas
2018-01-01
Leigh syndrome is a phenotypically and genetically heterogeneous mitochondrial disorder. While some genetic defects are associated with well-described phenotypes, phenotype-genotype correlations in Leigh syndrome are not fully explored. We aimed to identify phenotype-genotype correlations in Leigh syndrome in a large cohort of systematically evaluated patients. We studied 96 patients with genetically confirmed Leigh syndrome diagnosed and followed in eight European centres specialising in mitochondrial diseases. We found that ataxia, ophthalmoplegia and cardiomyopathy were more prevalent among patients with mitochondrial DNA defects. Patients with mutations in MT-ND and NDUF genes with complex I deficiency shared common phenotypic features, such as early development of central nervous system disease, followed by high occurrence of cardiac and ocular manifestations. The cerebral cortex was affected in patients with NDUF mutations significantly more often than the rest of the cohort. Patients with the m.8993T>G mutation in MT-ATP6 gene had more severe clinical and radiological manifestations and poorer disease outcome compared with patients with the m.8993T>C mutation. Our study provides new insights into phenotype-genotype correlations in Leigh syndrome and particularly in patients with complex I deficiency and with defects in the mitochondrial ATP synthase. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Coffin-Siris syndrome and the BAF complex: genotype-phenotype study in 63 patients.
Santen, Gijs W E; Aten, Emmelien; Vulto-van Silfhout, Anneke T; Pottinger, Caroline; van Bon, Bregje W M; van Minderhout, Ivonne J H M; Snowdowne, Ronelle; van der Lans, Christian A C; Boogaard, Merel; Linssen, Margot M L; Vijfhuizen, Linda; van der Wielen, Michiel J R; Vollebregt, M J Ellen; Breuning, Martijn H; Kriek, Marjolein; van Haeringen, Arie; den Dunnen, Johan T; Hoischen, Alexander; Clayton-Smith, Jill; de Vries, Bert B A; Hennekam, Raoul C M; van Belzen, Martine J
2013-11-01
De novo germline variants in several components of the SWI/SNF-like BAF complex can cause Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD-powered databases to facilitate further genotype-phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype-genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation. © 2013 WILEY PERIODICALS, INC.
Insights from LGI1 and CASPR2 potassium channel complex autoantibody subtyping.
Klein, Christopher J; Lennon, Vanda A; Aston, Paula A; McKeon, Andrew; O'Toole, Orna; Quek, Amy; Pittock, Sean J
2013-02-01
To determine, in patients identified as seropositive for neuronal voltage-gated potassium channel (VGKC) complex autoantibodies, the spectrum of clinical presentations and frequency of leucine-rich glioma-inactivated protein 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) as defined antigenic neuronal targets in the VGKC macromolecular complex. Retrospective cohort study. Clinical practice, Mayo Clinic Neuroimmunology Laboratory and Department of Neurology. A total of 54 853 patients were evaluated, of whom 1992 were found to be VGKC complex IgG positive. From June 1, 2008, to June 30, 2010, comprehensive service serologic evaluation performed on 54853 patients with unexplained neurologic symptoms identified 1992 patients (4%) who were positive for VGKC complex IgG (values ≥ 0.03 nmol/L). Among 316 seropositive patients evaluated clinically at our institution, 82 (26%) were seropositive for LGI1 IgG and/or CASPR2 IgG. Of these 82 patients, 27% had low (0.03-0.09 nmol/L), 51% had medium (0.10-0.99 nmol/L), and 22% had high (≥ 1.00 nmol/L) VGKC complex IgG values. Leucine-rich glioma-inactivated protein 1 IgG positivity was associated with higher VGKC complex IgG values (P< .001) and cortical presentations (P< .001); CASPR2 IgG was associated with peripheral motor excitability (P= .009). However, neither autoantibody was pathognomonic for a specific neurologic presentation or correlated significantly with cancer. Neurologic phenotypes were diverse. Cerebrocortical manifestations (including cognitive impairment and seizures) were recorded in 76% of patients with LGI1 IgG alone (n=46) and 29% with CASPR2 IgG alone (n=28). Peripheral motor hyperexcitability was found in 21% of patients with CASPR2 IgG alone and 6.5% of patients with LGI1 IgG alone. The study emphasizes diverse and overlapping neurologic phenotypes across a range of VGKC complex IgG values and varying LGI1 IgG and CASPR2 IgG specificities. The frequent occurrence of LGI1 IgG and CASPR2 IgG in serum samples with low and medium VGKC complex IgG values supports the clinical significance of low values in clinical evaluation. Additional antigenic components of VGKC macromolecular complexes remain to be defined.
Insights From LGI1 and CASPR2 Potassium Channel Complex Autoantibody Subtyping
Klein, Christopher J.; Lennon, Vanda A.; Aston, Paula A.; McKeon, Andrew; O’Toole, Orna; Quek, Amy; Pittock, Sean J.
2014-01-01
Objective: To determine, in patients identified as sero-positive for neuronal voltage-gated potassium channel (VGKC) complex autoantibodies, the spectrum of clinical presentations and frequency of leucine-rich glioma-inactivated protein 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) as defined antigenic neuronal targets in the VGKC macromolecular complex. Design: Retrospective cohort study. Setting: Clinical practice, Mayo Clinic Neuroimmunology Laboratory and Department of Neurology. Patients: A total of 54853 patients were evaluated, of whom 1992 were found to be VGKC complex IgG positive. Results: From June 1, 2008, to June 30, 2010, comprehensive service serologic evaluation performed on 54 853 patients with unexplained neurologic symptoms identified 1992 patients (4%) who were positive for VGKC complex IgG (values ≥0.03 nmol/L). Among 316 seropositive patients evaluated clinically at our institution, 82 (26%) were seropositive for LGI1 IgG and/or CASPR2 IgG. Of these 82 patients, 27% had low (0.03-0.09 nmol/L), 51% had medium (0.10-0.99 nmol/L), and 22% had high (≥1.00 nmol/L) VGKC complex IgG values. Leucine-rich glioma-inactivated protein 1 IgG positivity was associated with higher VGKC complex IgG values (P<.001) and cortical presentations (P<.001); CASPR2 IgG was associated with peripheral motor excitability (P=.009). However, neither autoantibody was pathognomonic for a specific neurologic presentation or correlated significantly with cancer. Neurologic phenotypes were diverse. Cerebrocortical manifestations (including cognitive impairment and seizures) were recorded in 76% of patients with LGI1 IgG alone (n=46) and 29% with CASPR2 IgG alone (n=28). Peripheral motor hyperexcitability was found in 21% of patients with CASPR2 IgG alone and 6.5% of patients with LGI1 IgG alone. Conclusions: The study emphasizes diverse and overlapping neurologic phenotypes across a range of VGKC complex IgG values and varying LGI1 IgG and CASPR2 IgG specificities. The frequent occurrence of LGI1 IgG and CASPR2 IgG in serum samples with low and medium VGKC complex IgG values supports the clinical significance of low values in clinical evaluation. Additional antigenic components of VGKC macromolecular complexes remain to be defined. PMID:23407760
Acute movement disorders in the medical setting.
Zawar, Ifrah; Caro, Mario A; Feldman, Lara; Jimenez, Xavier F
2016-07-01
Objective Psychosomatic medicine psychiatrists are often tasked with the evaluation and treatment of complex neuropsychiatric states which may be motoric in phenotype. Little energy has been dedicated to understanding acute movement disorders in the hospital environment. Method Recognizing the importance of frontal-subcortical (corticostriatothalamocortical) circuitry and basal ganglia structures, we present a case series of acute movement disorder phenotypes resulting from underlying medical conditions, commonly-administered medications, or the interaction of both. We organize these scenarios into neurodegenerative disorders, primary psychiatric disorders, neuroinflammation, and polypharmacy, demonstrating a clinical example of each followed by background references on a variety of clinical states and medications contributing to acute movement disorders. In addition, we offer visual illustration of implicated neurocircuitry as well as proposed neurotransmitter imbalances involving glutamate, gamma aminobutyric acid, and dopamine. Furthermore, we review the various clinical syndromes and medications involved in the development of acute movement disorders. Results Acute movement disorder's involve complex interactions between frontal-subcortical circuits and acute events. Given the complexity of interactions, psychopharmacological considerations become critical, as some treatments may alleviate acute movement disorders while others will exacerbate them. Conclusion Integrating underlying medical conditions and acutely administered (or discontinued) pharmacological agents offers an interactional, neuromedical approach to acute movement disorders that is critical to the work of psychosomatic medicine.
Identification of clinical target areas in the brainstem of prion‐infected mice
Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian
2015-01-01
Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251
Saitoh, Shinji
2010-01-01
Prader-Willi syndrome(PWS) is a complex multisystem genetic disorder, of which characteristic phenotypes include neonatal hypotonia, hyperphagia resulting in obesity, mental retardation, hypogonadism, and behavioral and psychiatric problems. The diagnosis can be obtained as early as during neonatal period thanks to development of genetic testing. Clinical features of PWS will change depending on age, although core phenotypes of hyperphagia, obesity and psychiatric issues stay for lifetime. Therefore, integrated multidisciplinary approach starting from neonatal period is mandatory to ensure optimal management to improve lifelong quality of life. For successful transition from childhood to adulthood, multidisciplinary team need to share clinical information, and should keep the same policy about food, environment and psychiatric issues.
2012-01-01
Background The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form “biobanks” where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on a large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypotheses generation. Results In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped for Type 2 Diabetes and Hypothyroidism to discover gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries. Conclusions This study demonstrates how Semantic Web technologies can be applied in conjunction with clinical data stored in EHRs to accurately identify subjects with specific diseases and phenotypes, and identify genotype-phenotype associations. PMID:23244446
Reid, Emma S; Papandreou, Apostolos; Drury, Suzanne; Boustred, Christopher; Yue, Wyatt W; Wedatilake, Yehani; Beesley, Clare; Jacques, Thomas S; Anderson, Glenn; Abulhoul, Lara; Broomfield, Alex; Cleary, Maureen; Grunewald, Stephanie; Varadkar, Sophia M; Lench, Nick; Rahman, Shamima; Gissen, Paul; Clayton, Peter T; Mills, Philippa B
2016-11-01
Neurometabolic disorders are markedly heterogeneous, both clinically and genetically, and are characterized by variable neurological dysfunction accompanied by suggestive neuroimaging or biochemical abnormalities. Despite early specialist input, delays in diagnosis and appropriate treatment initiation are common. Next-generation sequencing approaches still have limitations but are already enabling earlier and more efficient diagnoses in these patients. We designed a gene panel targeting 614 genes causing inborn errors of metabolism and tested its diagnostic efficacy in a paediatric cohort of 30 undiagnosed patients presenting with variable neurometabolic phenotypes. Genetic defects that could, at least partially, explain observed phenotypes were identified in 53% of cases. Where biochemical abnormalities pointing towards a particular gene defect were present, our panel identified diagnoses in 89% of patients. Phenotypes attributable to defects in more than one gene were seen in 13% of cases. The ability of in silico tools, including structure-guided prediction programmes to characterize novel missense variants were also interrogated. Our study expands the genetic, clinical and biochemical phenotypes of well-characterized (POMGNT1, TPP1) and recently identified disorders (PGAP2, ACSF3, SERAC1, AFG3L2, DPYS). Overall, our panel was accurate and efficient, demonstrating good potential for applying similar approaches to clinically and biochemically diverse neurometabolic disease cohorts. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Genetics and risk factors for basal cell carcinoma.
Madan, V; Hoban, P; Strange, R C; Fryer, A A; Lear, J T
2006-05-01
Nonmelanoma skin cancer (NMSC) is the commonest cancer in whites and its incidence is increasing worldwide. The prevalence of this cancer is predicted to equal that of all others combined and it was estimated that there were over 2 million cases diagnosed in the U.S.A. in 2004. Patients exhibit marked differences in clinical phenotype with variations in tumour numbers, rate of tumour accrual, site and histological subtype. Furthermore, patients are at increased risk of other cutaneous and noncutaneous cancers. The factors accounting for this variation are complex and still not completely understood. Clearly, ultraviolet light (UV) exposure is a major influence but its relationship to clinical phenotype is not yet clear. In addition, immunosuppression is a significant risk factor. Our group has identified high-risk groups for the development of further basal cell carcinoma (BCC), namely patients with truncal BCC and those presenting with tumour clusters. This presentation will concentrate on these clinical subgroups as well as immunosuppressed patients. These groups represent significant management challenges and are areas where novel, nonsurgical treatment options may make a significant clinical impact in patient care. The risk factors predisposing to these clinical phenotypes will be discussed, including genetic factors and UV exposure. Potential clinical applications, including predictive indices, will be considered.
El Tarazi, Abdulah; Matar, Jessica; Lussier, Yoann; Arthus, Marie-Françoise; Lonergan, Michèle; Bockenhauer, Detlef; Bissonnette, Pierre
2012-01-01
It is clinically useful to distinguish between two types of hereditary nephrogenic diabetes insipidus (NDI): a ‘pure’ type characterized by loss of water only and a complex type characterized by loss of water and ions. Patients with congenital NDI bearing mutations in the vasopressin 2 receptor gene, AVPR2, or in the aquaporin-2 gene, AQP2, have a pure NDI phenotype with loss of water but normal conservation of sodium, potassium, chloride and calcium. Patients with hereditary hypokalemic salt-losing tubulopathies have a complex phenotype with loss of water and ions. They have polyhydramnios, hypercalciuria and hypo- or isosthenuria and were found to bear KCNJ1 (ROMK) and SLC12A1 (NKCC2) mutations. Patients with polyhydramnios, profound polyuria, hyponatremia, hypochloremia, metabolic alkalosis and sensorineural deafness were found to bear BSND mutations. These clinical phenotypes demonstrate the critical importance of the proteins ROMK, NKCC2 and Barttin to transfer NaCl in the medullary interstitium and thereby to generate, together with urea, a hypertonic milieu. This editorial describes two new developments: (i) the genomic information provided by the sequencing of the AQP2 gene is key to the routine care of these patients, and, as in other genetic diseases, reduces health costs and provides psychological benefits to patients and families and (ii) the expression of AQP2 mutants in Xenopus oocytes and in polarized renal tubular cells recapitulates the clinical phenotypes and reveals a continuum from severe loss of function with urinary osmolalities <150 mOsm/kg H2O to milder defects with urine osmolalities >200 mOsm/kg H2O. PMID:26069764
Giorgio, Elisa; Brussino, Alessandro; Biamino, Elisa; Belligni, Elga Fabia; Bruselles, Alessandro; Ciolfi, Andrea; Caputo, Viviana; Pizzi, Simone; Calcia, Alessandro; Di Gregorio, Eleonora; Cavalieri, Simona; Mancini, Cecilia; Pozzi, Elisa; Ferrero, Marta; Riberi, Evelise; Borelli, Iolanda; Amoroso, Antonio; Ferrero, Giovanni Battista; Tartaglia, Marco; Brusco, Alfredo
2017-05-01
More than 100 X-linked intellectual disability (X-LID) genes have been identified to be involved in 10-15% of intellectual disability (ID). To identify novel possible candidates, we selected 18 families with a male proband affected by isolated or syndromic ID. Pedigree and/or clinical presentation suggested an X-LID disorder. After exclusion of known genetic diseases, we identified seven cases whose mother showed a skewed X-inactivation (>80%) that underwent whole exome sequencing (WES, 50X average depth). WES allowed to solve the genetic basis in four cases, two of which (Coffin-Lowry syndrome, RPS6K3 gene; ATRX syndrome, ATRX gene) had been missed by previous clinical/genetics tests. One further ATRX case showed a complex phenotype including pontocerebellar atrophy (PCA), possibly associated to an unidentified PCA gene mutation. In a case with suspected Lujan-Fryns syndrome, a c.649C>T (p.Pro217Ser) MECP2 missense change was identified, likely explaining the neurological impairment, but not the marfanoid features, which were possibly associated to the p.Thr1020Ala variant in fibrillin 1. Finally, a c.707T>G variant (p.Phe236Cys) in the DMD gene was identified in a patient retrospectively recognized to be affected by Becker muscular dystrophy (BMD, OMIM 300376). Overall, our data show that WES may give hints to solve complex ID phenotypes with a likely X-linked transmission, and that a significant proportion of these orphan conditions might result from concomitant mutations affecting different clinically associated genes. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Kytövuori, Laura; Lipponen, Joonas; Rusanen, Harri; Komulainen, Tuomas; Martikainen, Mika H; Majamaa, Kari
2016-11-01
Defects in the respiratory chain or mitochondrial ATP synthase (complex V) result in mitochondrial dysfunction that is an important cause of inherited neurological disease. Two of the subunits of complex V are encoded by MT-ATP6 and MT-ATP8 in the mitochondrial genome. Pathogenic mutations in MT-ATP6 are associated with the Leigh syndrome, the syndrome of neuropathy, ataxia, and retinitis pigmentosa (NARP), as well as with non-classical phenotypes, while MT-ATP8 is less frequently mutated in patients with mitochondrial disease. We investigated two adult siblings presenting with features of cerebellar ataxia, peripheral neuropathy, diabetes mellitus, sensorineural hearing impairment, and hypergonadotropic hypogonadism. As the phenotype was suggestive of mitochondrial disease, mitochondrial DNA was sequenced and a novel heteroplasmic mutation m.8561C>G in the overlapping region of the MT-ATP6 and MT-ATP8 was found. The mutation changed amino acids in both subunits. Mutation heteroplasmy correlated with the disease phenotype in five family members. An additional assembly intermediate of complex V and increased amount of subcomplex F 1 were observed in myoblasts of the two patients, but the total amount of complex V was unaffected. Furthermore, intracellular ATP concentration was lower in patient myoblasts indicating defective energy production. We suggest that the m.8561C>G mutation in MT-ATP6/8 is pathogenic, leads biochemically to impaired assembly and decreased ATP production of complex V, and results clinically in a phenotype with the core features of cerebellar ataxia, peripheral neuropathy, diabetes mellitus, and hypergonadotropic hypogonadism.
Chung, Dongjun; Kim, Hang J; Zhao, Hongyu
2017-02-01
Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. However, identification of risk variants associated with complex diseases remains challenging as they are often affected by many genetic variants with small or moderate effects. There has been accumulating evidence suggesting that different complex traits share common risk basis, namely pleiotropy. Recently, several statistical methods have been developed to improve statistical power to identify risk variants for complex traits through a joint analysis of multiple GWAS datasets by leveraging pleiotropy. While these methods were shown to improve statistical power for association mapping compared to separate analyses, they are still limited in the number of phenotypes that can be integrated. In order to address this challenge, in this paper, we propose a novel statistical framework, graph-GPA, to integrate a large number of GWAS datasets for multiple phenotypes using a hidden Markov random field approach. Application of graph-GPA to a joint analysis of GWAS datasets for 12 phenotypes shows that graph-GPA improves statistical power to identify risk variants compared to statistical methods based on smaller number of GWAS datasets. In addition, graph-GPA also promotes better understanding of genetic mechanisms shared among phenotypes, which can potentially be useful for the development of improved diagnosis and therapeutics. The R implementation of graph-GPA is currently available at https://dongjunchung.github.io/GGPA/.
[Clinical and genetic study patients with tuberous sclerosis complex].
Rubilar, Carla; López, Francisca; Troncoso, Mónica; Barrios, Andrés; Herrera, Luisa
2017-02-01
Tuberous sclerosis complex (TSC) is a multisystem autosomal dominant disease caused by mutations in the tumor suppressor genes TSC1 or TSC2. To characterize clinically and genetically patients diagnosed with TSC. Descriptive study of clinical records of 42 patients from a pediatric neuropsychiatry department diagnosed with TSC and genetic study in 21 of them. The exon 15 of TSC1 gene and exons 33, 36 and 37 of TSC2 gene were amplified by polymerase chain reaction and sequenced. The relationship between the mutations found with the severity and clinical course were analyzed. In 61.9% of the patients the symptoms began before 6 months of age. The initial most frequent manifestations of TSC were new onset of seizures (73.8%) and the detection of cardiac rhabdomyomas (16.6%). During the evolution of the disease all patients had neurological involvement; 92.9% had epilepsy. All patients presented hypomelanotic spots, 47.6% facial angiofibromas, 23.8% Shagreen patch, 47.6 heart rhabdomyomas and 35.7% retinal hamartomas. In the genetic study of 21 patients two heterozygous pathogenic mutations in TSC1 and one in TSC2 genes were identified. The latter had a more severe clinical phenotype. Neurological and dermatological manifestations were the most frequent ones in patients with TSC. Two pathogenic mutations in TSC1 and one in TSC2 genes were identified. The patient with TSC2 mutation manifested a more severe clinical phenotype.
Myopathology of Adult and Paediatric Mitochondrial Diseases
Phadke, Rahul
2017-01-01
Mitochondria are dynamic organelles ubiquitously present in nucleated eukaryotic cells, subserving multiple metabolic functions, including cellular ATP generation by oxidative phosphorylation (OXPHOS). The OXPHOS machinery comprises five transmembrane respiratory chain enzyme complexes (RC). Defective OXPHOS gives rise to mitochondrial diseases (mtD). The incredible phenotypic and genetic diversity of mtD can be attributed at least in part to the RC dual genetic control (nuclear DNA (nDNA) and mitochondrial DNA (mtDNA)) and the complex interaction between the two genomes. Despite the increasing use of next-generation-sequencing (NGS) and various omics platforms in unravelling novel mtD genes and pathomechanisms, current clinical practice for investigating mtD essentially involves a multipronged approach including clinical assessment, metabolic screening, imaging, pathological, biochemical and functional testing to guide molecular genetic analysis. This review addresses the broad muscle pathology landscape including genotype–phenotype correlations in adult and paediatric mtD, the role of immunodiagnostics in understanding some of the pathomechanisms underpinning the canonical features of mtD, and recent diagnostic advances in the field. PMID:28677615
Klevering, B Jeroen; Blankenagel, Anita; Maugeri, Alessandra; Cremers, Frans P M; Hoyng, Carel B; Rohrschneider, Klaus
2002-06-01
To describe the phenotype of 12 patients with autosomal recessive or isolated cone-rod types of progressive retinal degeneration (CRD) caused by mutations in the ABCA4 gene. The charts of patients who had originally received a diagnosis of isolated or autosomal recessive CRD were reviewed after molecular analysis revealed mutations in the ABCA4 gene. In two of the patients both the photopic and scotopic electroretinogram were nonrecordable. In the remainder, the photopic cone b-wave amplitudes appeared to be more seriously affected than the scotopic rod b-wave amplitudes. Although the clinical presentation was heterogeneous, all patients experienced visual loss early in life, impaired color vision, and a central scotoma. Fundoscopy revealed evidence of early-onset maculopathy, sometimes accompanied by involvement of the retinal periphery in the later stages of the disease. Mutations in the ABCA4 gene are the pathologic cause of the CRD-like dystrophy in these patients, and the resultant clinical pictures are complex and heterogeneous. Given this wide clinical spectrum of CRD-like phenotypes associated with ABCA4 mutations, detailed clinical subclassifications are difficult and may not be very useful.
Brautbar, Ariel; Wang, Jing; Abdenur, Jose E; Chang, Richard C; Thomas, Janet A; Grebe, Theresa A; Lim, Cynthia; Weng, Shao-Wen; Graham, Brett H; Wong, Lee-Jun
2008-08-01
The mitochondrial 13513G>A (D393N) mutation in the ND5 subunit of the respiratory chain complex I was initially described in association with MELAS syndrome. Recent observations have linked this mutation to Leigh disease. We screened for the 13513G>A mutation in a cohort of 265 patients with Leigh and Leigh-like disease. The mutation was found in a total of 5 patients. An additional patient who had clinical presentation consistent with a Leigh-like phenotype but with a normal brain MRI was added to the cohort. None of an additional 88 patients meeting MELAS disease criteria, nor 56 patients with respiratory chain deficiency screened for the 13513G>A were found positive for the mutation. The most frequent clinical manifestations in our patients were hypotonia, ocular and cerebellar involvement. Low mutation heteroplasmy in the range of 20-40% was observed in all 6 patients. This observation is consistent with the previously reported low heteroplasmy of this mutation in some patients with the 13513G>A mutation and complex I deficiency. However, normal complex I activity was observed in two patients in our cohort. As most patients with Leigh-like disease and the 13513G>A mutation have been described with complex I deficiency, this report adds to the previously reported subset of patients with normal respiratory complex function. We conclude that in any patient with Leigh or Leigh-like disease, testing for the 13513G>A mutation is clinically relevant and low mutant loads in blood or muscle may be considered pathogenic, in the presence of normal respiratory chain enzyme activities.
2014-01-01
Background We propose a phenotype-driven analysis of encrypted exome data to facilitate the widespread implementation of exome sequencing as a clinical genetic screening test. Twenty test-patients with varied syndromes were selected from the literature. For each patient, the mutation, phenotypic data, and genetic diagnosis were available. Next, control exome-files, each modified to include one of these twenty mutations, were assigned to the corresponding test-patients. These data were used by a geneticist blinded to the diagnoses to test the efficiency of our software, PhenoVar. The score assigned by PhenoVar to any genetic diagnosis listed in OMIM (Online Mendelian Inheritance in Man) took into consideration both the patient’s phenotype and all variations present in the corresponding exome. The physician did not have access to the individual mutations. PhenoVar filtered the search using a cut-off phenotypic match threshold to prevent undesired discovery of incidental findings and ranked the OMIM entries according to diagnostic score. Results When assigning the same weight to all variants in the exome, PhenoVar predicted the correct diagnosis in 10/20 patients, while in 15/20 the correct diagnosis was among the 4 highest ranked diagnoses. When assigning a higher weight to variants known, or bioinformatically predicted, to cause disease, PhenoVar’s yield increased to 14/20 (18/20 in top 4). No incidental findings were identified using our cut-off phenotypic threshold. Conclusion The phenotype-driven approach described could render widespread use of ES more practical, ethical and clinically useful. The implications about novel disease identification, advancement of complex diseases and personalized medicine are discussed. PMID:24884844
Linkage analysis of alternative anxiety phenotypes in multiply affected panic disorder families
Fyer, Abby J.; Costa, Ramiro; Haghighi, Fatemeh; Logue, Mark W.; Knowles, James A.; Weissman, Myrna M.; Hodge, Susan E.; Hamilton, Steven P.
2013-01-01
Background The choice of phenotype definitions for genetic studies of panic and phobic disorders is complicated by family, twin and neurobiological data indicating both distinct and shared risk factors as well as heterogeneity within categories. We previously reported a genome scan in 120 multiplex panic disorder (PD) families using a phenotype that closely adhered to the DSM IV PD definition. Here we extend this work by conducting exploratory linkage analyses in this same pedigree set using ten additional literature- based panic and phobia-related phenotypes that take into account aspects of these hypothesized complexities. Methods Multiply affected families (> 2 individuals with PD) were recruited from clinical and non-clinical sources, evaluated by clinician administered semi-structured interview and subsequent blind consensus best estimate procedure. Each phenotype was analyzed under dominant and recessive models using parametric 2-point (homogeneity and heterogeneity), multipoint, and non-parametric methods. Empirically based permutations were used to estimate model specific and global (across all phenotypes) p-values. Results The highest score was a 2-point lod (4.27, global p < 0.08) on chromosome 13 (D13S793, 76cM) for the phenotype “specific or social phobia” under a recessive model and conditions of homogeneity. There was minimal support for linkage to any of the remaining nine phenotypes. Conclusions Though interpretation of findings is limited by sample size and the large number of phenotypes and models analyzed these data suggest a region on chromosome 13 as a potential site for further exploration in relation to risk for specific and social phobias. PMID:22525237
Yauy, Kevin; Gatinois, Vincent; Guignard, Thomas; Sati, Satish; Puechberty, Jacques; Gaillard, Jean Baptiste; Schneider, Anouck; Pellestor, Franck
2018-01-01
Apparition of next-generation sequencing (NGS) was a breakthrough on knowledge of genome structure. Bioinformatic tools are a key point to analyze this huge amount of data from NGS and characterize the three-dimensional organization of chromosomes. This chapter describes usage of different browsers to explore publicly available online data and to search for possible 3D chromatin changes involved during complex chromosomal rearrangements as chromothripsis. Their pathogenic impact on clinical phenotype and gene misexpression can also be evaluated with annotated databases.
Al Kaissi, Ali; Chehida, Farid Ben; Ganger, Rudolf; Grill, Franz
2014-01-01
We report on a female fetus noted to have severe malformative type of skeletal dysplasia on ultrasonography done at 35 weeks gestation. The girl died shortly after birth. Clinical examination showed a fetus with severe dwarfism, extensive long and short bones, and bone deficiencies associated with multiple dislocations. Computed tomography (CT) scan-based phenotype showed a complex constellation of malformations consistent with the diagnosis of Grebe syndrome. Parents being first cousins (consanguineous marriage) strongly suggests autosomal recessive pattern of inheritance. To our knowledge, this is the first report of neonatal death dwarfism of Grebe syndrome analyzed by CT scan-based phenotype.
de Munnik, Sonja A; Bicknell, Louise S; Aftimos, Salim; Al-Aama, Jumana Y; van Bever, Yolande; Bober, Michael B; Clayton-Smith, Jill; Edrees, Alaa Y; Feingold, Murray; Fryer, Alan; van Hagen, Johanna M; Hennekam, Raoul C; Jansweijer, Maaike C E; Johnson, Diana; Kant, Sarina G; Opitz, John M; Ramadevi, A Radha; Reardon, Willie; Ross, Alison; Sarda, Pierre; Schrander-Stumpel, Constance T R M; Schoots, Jeroen; Temple, I Karen; Terhal, Paulien A; Toutain, Annick; Wise, Carol A; Wright, Michael; Skidmore, David L; Samuels, Mark E; Hoefsloot, Lies H; Knoers, Nine V A M; Brunner, Han G; Jackson, Andrew P; Bongers, Ernie M H F
2012-01-01
Meier–Gorlin syndrome (MGS) is an autosomal recessive disorder characterized by microtia, patellar aplasia/hypoplasia, and short stature. Recently, mutations in five genes from the pre-replication complex (ORC1, ORC4, ORC6, CDT1, and CDC6), crucial in cell-cycle progression and growth, were identified in individuals with MGS. Here, we report on genotype–phenotype studies in 45 individuals with MGS (27 females, 18 males; age 3 months–47 years). Thirty-five individuals had biallelic mutations in one of the five causative pre-replication genes. No homozygous or compound heterozygous null mutations were detected. In 10 individuals, no definitive molecular diagnosis was made. The triad of microtia, absent/hypoplastic patellae, and short stature was observed in 82% of individuals with MGS. Additional frequent clinical features were mammary hypoplasia (100%) and abnormal genitalia (42% predominantly cryptorchidism and hypoplastic labia minora/majora). One individual with ORC1 mutations only had short stature, emphasizing the highly variable clinical spectrum of MGS. Individuals with ORC1 mutations had significantly shorter stature and smaller head circumferences than individuals from other gene categories. Furthermore, compared with homozygous missense mutations, compound heterozygous mutations appeared to have a more severe effect on phenotype, causing more severe growth retardation in ORC4 and more frequently pulmonary emphysema in CDT1. A lethal phenotype was seen in four individuals with compound heterozygous ORC1 and CDT1 mutations. No other clear genotype–phenotype association was observed. Growth hormone and estrogen treatment may be of some benefit, respectively, to growth retardation and breast hypoplasia, though further studies in this patient group are needed. PMID:22333897
Shamseldin, Hanan E.; Faqeih, Eissa; Alasmari, Ali; Zaki, Maha S.; Gleeson, Joseph G.; Alkuraya, Fowzan S.
2016-01-01
Brain channelopathies represent a growing class of brain disorders that usually result in paroxysmal disorders, although their role in other neurological phenotypes, including the recently described NALCN-related infantile encephalopathy, is increasingly recognized. In three Saudi Arabian families and one Egyptian family all affected by a remarkably similar phenotype (infantile encephalopathy and largely normal brain MRI) to that of NALCN-related infantile encephalopathy, we identified a locus on 2q34 in which whole-exome sequencing revealed three, including two apparently loss-of-function, recessive mutations in UNC80. UNC80 encodes a large protein that is necessary for the stability and function of NALCN and for bridging NALCN to UNC79 to form a functional complex. Our results expand the clinical relevance of the UNC79-UNC80-NALCN channel complex. PMID:26708753
The distribution of clinical phenotypes of preterm birth syndrome: implications for prevention.
Barros, Fernando C; Papageorghiou, Aris T; Victora, Cesar G; Noble, Julia A; Pang, Ruyan; Iams, Jay; Cheikh Ismail, Leila; Goldenberg, Robert L; Lambert, Ann; Kramer, Michael S; Carvalho, Maria; Conde-Agudelo, Agustin; Jaffer, Yasmin A; Bertino, Enrico; Gravett, Michael G; Altman, Doug G; Ohuma, Eric O; Purwar, Manorama; Frederick, Ihunnaya O; Bhutta, Zulfiqar A; Kennedy, Stephen H; Villar, José
2015-03-01
Preterm birth has been difficult to study and prevent because of its complex syndromic nature. To identify phenotypes of preterm delivery syndrome in the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. A population-based, multiethnic, cross-sectional study conducted at 8 geographically demarcated sites in Brazil, China, India, Italy, Kenya, Oman, the United Kingdom, and the United States. A total of 60,058 births over a 12-month fixed period between April 27, 2009, and March 2, 2014. Of these, 53,871 had an ultrasonography estimate of gestational age, among which 5828 were preterm births (10.8%). Pregnancies were prospectively studied using a standardized data collection and online data management system. Newborns had anthropometric and clinical examinations using standardized methods and identical equipment and were followed up until hospital discharge. The main study outcomes were clusters of preterm phenotypes and for each cluster, we analyzed signs of presentation at hospital admission, admission rates for neonatal intensive care for 7 days or more, and neonatal mortality rates. Twelve preterm birth clusters were identified using our conceptual framework. Eleven consisted of combinations of conditions known to be associated with preterm birth, 10 of which were dominated by a single condition. However, the most common single cluster (30.0% of the total preterm cases; n = 1747) was not associated with any severe maternal, fetal, or placental condition that was clinically detectable based on the information available; within this cluster, many cases were caregiver initiated. Only 22% (n = 1284) of all the preterm births occurred spontaneously without any of these severe conditions. Maternal presentation on hospital admission, newborn anthropometry, and risk for death before hospital discharge or admission for 7 or more days to a neonatal intensive care unit, none of which were used to construct the clusters, also differed according to the identified phenotypes. The prevalence of preterm birth ranged from 8.2% in Muscat, Oman, and Oxford, England, to 16.6% in Seattle, Washington. We identified 12 preterm birth phenotypes associated with different patterns of neonatal outcomes. In 22% of all preterm births, parturition started spontaneously and was not associated with any of the phenotypic conditions considered. We believe these results contribute to an improved understanding of this complex syndrome and provide an empirical basis to focus research on a more homogenous set of phenotypes.
The Importance of Clinical Phenotype in Understanding and Preventing Spontaneous Preterm Birth.
Esplin, M Sean
2016-02-01
Spontaneous preterm birth (SPTB) is a well-known cause of maternal and neonatal morbidity. The search for the underlying pathways, documentation of the genetic causes, and identification of markers of spontaneous PTB have been marginally successful due to the fact that it is highly complex, with numerous processes that lead to a final common pathway. There is a great need for a comprehensive, consistent, and uniform classification system, which will be useful in identifying mechanisms, assigning prognosis, aiding in clinical management, and can identify areas of interest for intervention and future study. Effective classification systems must overcome obstacles including the lack of widely accepted definitions and uncertainty about inclusion of classifying features (e.g., presentation at delivery and multiple gestations) and levels of detail of these features. The optimal classification system should be based on the clinical phenotype, including characteristics of the mother, fetus, placenta, and the presentation for delivery. We present a proposed phenotyping system for spontaneous PTB. Future classification systems must establish a universally accepted set of definitions and a standardized clinical workup for all PTBs including the minimum clinical data to be collected and the laboratory and pathologic evaluation that should be completed. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism.
Schaaf, Christian P; Gonzalez-Garay, Manuel L; Xia, Fan; Potocki, Lorraine; Gripp, Karen W; Zhang, Baili; Peters, Brock A; McElwain, Mark A; Drmanac, Radoje; Beaudet, Arthur L; Caskey, C Thomas; Yang, Yaping
2013-11-01
Prader-Willi syndrome (PWS) is caused by the absence of paternally expressed, maternally silenced genes at 15q11-q13. We report four individuals with truncating mutations on the paternal allele of MAGEL2, a gene within the PWS domain. The first subject was ascertained by whole-genome sequencing analysis for PWS features. Three additional subjects were identified by reviewing the results of exome sequencing of 1,248 cases in a clinical laboratory. All four subjects had autism spectrum disorder (ASD), intellectual disability and a varying degree of clinical and behavioral features of PWS. These findings suggest that MAGEL2 is a new gene causing complex ASD and that MAGEL2 loss of function can contribute to several aspects of the PWS phenotype.
Towards an Age-Phenome Knowledge-base
2011-01-01
Background Currently, data about age-phenotype associations are not systematically organized and cannot be studied methodically. Searching for scientific articles describing phenotypic changes reported as occurring at a given age is not possible for most ages. Results Here we present the Age-Phenome Knowledge-base (APK), in which knowledge about age-related phenotypic patterns and events can be modeled and stored for retrieval. The APK contains evidence connecting specific ages or age groups with phenotypes, such as disease and clinical traits. Using a simple text mining tool developed for this purpose, we extracted instances of age-phenotype associations from journal abstracts related to non-insulin-dependent Diabetes Mellitus. In addition, links between age and phenotype were extracted from clinical data obtained from the NHANES III survey. The knowledge stored in the APK is made available for the relevant research community in the form of 'Age-Cards', each card holds the collection of all the information stored in the APK about a particular age. These Age-Cards are presented in a wiki, allowing community review, amendment and contribution of additional information. In addition to the wiki interaction, complex searches can also be conducted which require the user to have some knowledge of database query construction. Conclusions The combination of a knowledge model based repository with community participation in the evolution and refinement of the knowledge-base makes the APK a useful and valuable environment for collecting and curating existing knowledge of the connections between age and phenotypes. PMID:21651792
Ungar, Rachel A; Giri, Neelam; Pao, Maryland; Khincha, Payal P; Zhou, Weiyin; Alter, Blanche P; Savage, Sharon A
2018-06-01
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome caused by germline mutations in telomere biology genes. Patients have extremely short telomeres for their age and a complex phenotype including oral leukoplakia, abnormal skin pigmentation, and dysplastic nails in addition to bone marrow failure, pulmonary fibrosis, stenosis of the esophagus, lacrimal ducts and urethra, developmental anomalies, and high risk of cancer. We evaluated a patient with features of DC, mood dysregulation, diabetes, and lack of pubertal development. Family history was not available but genome-wide genotyping was consistent with consanguinity. Whole exome sequencing identified 82 variants of interest in 80 genes based on the following criteria: homozygous, <0.1% minor allele frequency in public and in-house databases, nonsynonymous, and predicted deleterious by multiple in silico prediction programs. Six genes were identified likely contributory to the clinical presentation. The cause of DC is likely due to homozygous splice site variants in regulator of telomere elongation helicase 1, a known DC and telomere biology gene. A homozygous, missense variant in tryptophan hydroxylase 1 may be clinically important as this gene encodes the rate limiting step in serotonin biosynthesis, a biologic pathway connected with mood disorders. Four additional genes (SCN4A, LRP4, GDAP1L1, and SPTBN5) had rare, missense homozygous variants that we speculate may contribute to portions of the clinical phenotype. This case illustrates the value of conducting detailed clinical and genomic evaluations on rare patients in order to identify new areas of research into the functional consequences of rare variants and their contribution to human disease. © 2018 Wiley Periodicals, Inc.
Ndufs4 related Leigh syndrome: A case report and review of the literature.
Ortigoza-Escobar, Juan Darío; Oyarzabal, Alfonso; Montero, Raquel; Artuch, Rafael; Jou, Cristina; Jiménez, Cecilia; Gort, Laura; Briones, Paz; Muchart, Jordi; López-Gallardo, Ester; Emperador, Sonia; Pesini, Eduardo Ruiz; Montoya, Julio; Pérez, Belén; Rodríguez-Pombo, Pilar; Pérez-Dueñas, Belén
2016-05-01
The genetic causes of Leigh syndrome are heterogeneous, with a poor correlation between the phenotype and genotype. Here, we present a patient with an NDUFS4 mutation to expand the clinical and biochemical spectrum of the disease. A combined defect in the CoQ, PDH and RCC activities in our patient was due to an inappropriate assembly of the RCC complex I (CI), which was confirmed using Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) analysis. Targeted exome sequencing analysis allowed for the genetic diagnosis of this patient. We reviewed 198 patients with 24 different genetic defects causing RCC I deficiency and compared them to 22 NDUFS4 patients. We concluded that NDUFS4-related Leigh syndrome is invariably linked to an early onset severe phenotype that results in early death. Some data, including the clinical phenotype, neuroimaging and biochemical findings, can guide the genetic study in patients with RCC I deficiency. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications.
Malta, Tathiane M; de Souza, Camila F; Sabedot, Thais S; Silva, Tiago C; Mosella, Maritza S; Kalkanis, Steven N; Snyder, James; Castro, Ana Valeria B; Noushmehr, Houtan
2018-04-09
Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties. Despite advances in surgical techniques and clinical regimens, treatment of high-grade glioma remains challenging and carries dismal rates of therapeutic success and overall survival. Challenges include the molecular complexity of gliomas, as well as inconsistencies in histopathological grading, resulting in an inaccurate prediction of disease progression and failure in the use of standard therapy. The updated 2016 World Health Organization (WHO) classification of tumors of the central nervous system reflects a refinement of tumor diagnostics by integrating the genotypic and phenotypic features, thereby narrowing the defined subgroups. The new classification recommends molecular diagnosis of isocitrate dehydrogenase (IDH) mutational status in gliomas. IDH-mutant gliomas manifest the cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). Notably, the recent identification of clinically relevant subsets of G-CIMP tumors (G-CIMP-high and G-CIMP-low) provides a further refinement in glioma classification that is independent of grade and histology. This scheme may be useful for predicting patient outcome and may be translated into effective therapeutic strategies tailored to each patient. In this review, we highlight the evolution of our understanding of the G-CIMP subsets and how recent advances in characterizing the genome and epigenome of gliomas may influence future basic and translational research.
Poly-Omic Prediction of Complex Traits: OmicKriging
Wheeler, Heather E.; Aquino-Michaels, Keston; Gamazon, Eric R.; Trubetskoy, Vassily V.; Dolan, M. Eileen; Huang, R. Stephanie; Cox, Nancy J.; Im, Hae Kyung
2014-01-01
High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of personalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms associated with a broad spectrum of complex traits, the combined predictive power of these associations for any given trait is generally too low to be of clinical relevance. We propose a novel systems approach to complex trait prediction, which leverages and integrates similarity in genetic, transcriptomic, or other omics-level data. We translate the omic similarity into phenotypic similarity using a method called Kriging, commonly used in geostatistics and machine learning. Our method called OmicKriging emphasizes the use of a wide variety of systems-level data, such as those increasingly made available by comprehensive surveys of the genome, transcriptome, and epigenome, for complex trait prediction. Furthermore, our OmicKriging framework allows easy integration of prior information on the function of subsets of omics-level data from heterogeneous sources without the sometimes heavy computational burden of Bayesian approaches. Using seven disease datasets from the Wellcome Trust Case Control Consortium (WTCCC), we show that OmicKriging allows simple integration of sparse and highly polygenic components yielding comparable performance at a fraction of the computing time of a recently published Bayesian sparse linear mixed model method. Using a cellular growth phenotype, we show that integrating mRNA and microRNA expression data substantially increases performance over either dataset alone. Using clinical statin response, we show improved prediction over existing methods. PMID:24799323
Tan, Jin-Ai Mary Anne; Tan, Kim-Lian; Omar, Khairul Zaman; Chan, Lee-Lee; Wee, Yong-Chui; George, Elizabeth
2009-09-01
Interactions of different hemoglobin variants with thalassemia alleles can result in various clinical phenotypes. HbE-beta-thalassemia generally manifests with severe anemia where individuals exhibit beta-thalassemia major with regular blood transfusions or beta-thalassemia intermedia with periodic blood transfusions. This study presents a unique Malay family with three beta-globin gene defects-HbE, Hb South Florida, and IVS1-1 (G-->A). HbE activates a cryptic splice site that produces non-functional mRNAs. Hb South Florida is a rare beta-hemoglobin variant, and its interactions with other beta-thalassemia alleles have not been reported. IVS1-1 is a Mediterranean mutation that affects mRNA processing giving rise to beta(o)-thalassemia. Fifteen mutations along the beta-globin gene complex were analyzed using the amplification refractory mutation system. Hb South Florida was identified by direct sequencing using genomic DNA. The affected child with HbE/IVS1-1 produced a beta-thalassemia major phenotype. Compound heterozygosity for Hb South Florida/IVS1-1 produced a beta-thalassemia carrier phenotype in the mother.
Nikolov, Svetoslav; Santos, Guido; Wolkenhauer, Olaf; Vera, Julio
2018-02-01
Mathematical modeling of cell differentiated in colonic crypts can contribute to a better understanding of basic mechanisms underlying colonic tissue organization, but also its deregulation during carcinogenesis and tumor progression. Here, we combined bifurcation analysis to assess the effect that time delay has in the complex interplay of stem cells and semi-differentiated cells at the niche of colonic crypts, and systematic model perturbation and simulation to find model-based phenotypes linked to cancer progression. The models suggest that stem cell and semi-differentiated cell population dynamics in colonic crypts can display chaotic behavior. In addition, we found that clinical profiling of colorectal cancer correlates with the in silico phenotypes proposed by the mathematical model. Further, potential therapeutic targets for chemotherapy resistant phenotypes are proposed, which in any case will require experimental validation.
Brennan, Marie-Luise; Schrijver, Iris
2016-01-01
Cystic fibrosis (CF) is an autosomal recessive disease with significant associated morbidity and mortality. It is now appreciated that the broad phenotypic CF spectrum is not explained by obvious genotype-phenotype correlations, suggesting that CF transmembrane conductance regulator (CFTR)-related disease may occur because of multiple additive effects. These contributing effects include complex CFTR alleles, modifier genes, mutations in alternative genes that produce CF-like phenotypes, epigenetic factors, and environmental influences. Most patients in the United States are now diagnosed through newborn screening and use of molecular testing methods. We review the molecular testing approaches and laboratory guidelines for carrier screening, prenatal testing, newborn screening, and clinical diagnostic testing, as well as recent developments in CF treatment, and reasons for the lack of a molecular diagnosis in some patients. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Molecular phenotyping of clinical AKI with novel urinary biomarkers
Huen, Sarah C.
2015-01-01
Acute kidney injury (AKI) is a common hospital complication. There are no effective treatments to minimize kidney injury or limit associated morbidity and mortality. Currently, serum creatinine and urine output remain the gold standard used clinically in the diagnosis of AKI. Several novel biomarkers can diagnose AKI earlier than elevations of serum creatinine and changes in urine output. Recent long-term observational studies have elucidated a subgroup of patients who have positive biomarkers of AKI but do not meet criteria for AKI by serum creatinine or urine output, termed subclinical AKI. These patients with subclinical AKI have increased risk of both short- and long-term mortality. In this review, we will highlight the implications of what these patients may represent and the need for better phenotyping of AKI by etiology, severity of injury, and ability to recover. We will discuss two AKI biomarkers, neutrophil gelatinase-associated lipocalin (NGAL) and breast regression protein-39 (BRP-39)/YKL-40, that exemplify the need to characterize the complexity of the biological meaning behind the biomarker, beyond elevated levels reporting on tissue injury. Ultimately, careful phenotyping of AKI will lead to identification of therapeutic targets and appropriate patient populations for clinical trials. PMID:26084933
Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H
2013-08-01
XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD.
Robinson, D; Humbert, M; Buhl, R; Cruz, A A; Inoue, H; Korom, S; Hanania, N A; Nair, P
2017-02-01
Asthma is a complex respiratory disorder characterized by marked heterogeneity in individual patient disease triggers and response to therapy. Several asthma phenotypes have now been identified, each defined by a unique interaction between genetic and environmental factors, including inflammatory, clinical and trigger-related phenotypes. Endotypes further describe the functional or pathophysiologic mechanisms underlying the patient's disease. type 2-driven asthma is an emerging nomenclature for a common subtype of asthma and is characterized by the release of signature cytokines IL-4, IL-5 and IL-13 from cells of both the innate and adaptive immune systems. A number of well-recognized biomarkers have been linked to mechanisms involved in type 2 airway inflammation, including fractional exhaled nitric oxide, serum IgE, periostin, and blood and sputum eosinophils. These type 2 cytokines are targets for pharmaceutical intervention, and a number of therapeutic options are under clinical investigation for the management of patients with uncontrolled severe asthma. Anticipating and understanding the heterogeneity of asthma and subsequent improved characterization of different phenotypes and endotypes must guide the selection of treatment to meet individual patients' needs. © 2017 The Authors. Clinical & Experimental Allergy Published by John Wiley & Sons Ltd.
Iyadurai, Stanley; Arnold, W David; Kissel, John T; Ruhno, Corey; Mcgovern, Vicki L; Snyder, Pamela J; Prior, Thomas W; Roggenbuck, Jennifer; Burghes, Arthur H; Kolb, Stephen J
2017-08-01
Distal hereditary motor neuropathy (dHMN) causes distal-predominant weakness without prominent sensory loss. Myosin heavy chain disorders most commonly result in distal myopathy and cardiomyopathy with or without hearing loss, but a complex phenotype with dHMN, myopathy, hoarseness, and hearing loss was reported in a Korean family with a c.2822G>T mutation in MYH14. In this study we report phenotypic features in a North American family with the c.2822G>T in MYH14. Clinical and molecular characterization was performed in a large, 6-generation, Caucasian family with MYH14 dHMN. A total of 11 affected and 7 unaffected individuals were evaluated and showed varying age of onset and severity of weakness. Genotypic concordance was confirmed with molecular analysis. Electrophysiological studies demonstrated distal motor axonal degeneration without myopathy in all affected subjects tested. Mutation of MYH14 can result in a range of neuromuscular phenotypes that includes a dHMN and hearing loss phenotype with variable age of onset. Muscle Nerve 56: 341-345, 2017. © 2016 Wiley Periodicals, Inc.
Neurocognitive and Neuroplastic Mechanisms of Novel Clinical Signs in CRPS.
Kuttikat, Anoop; Noreika, Valdas; Shenker, Nicholas; Chennu, Srivas; Bekinschtein, Tristan; Brown, Christopher Andrew
2016-01-01
Complex regional pain syndrome (CRPS) is a chronic, debilitating pain condition that usually arises after trauma to a limb, but its precise etiology remains elusive. Novel clinical signs based on body perceptual disturbances have been reported, but their pathophysiological mechanisms remain poorly understood. Investigators have used functional neuroimaging techniques (including MEG, EEG, fMRI, and PET) to study changes mainly within the somatosensory and motor cortices. Here, we provide a focused review of the neuroimaging research findings that have generated insights into the potential neurocognitive and neuroplastic mechanisms underlying perceptual disturbances in CRPS. Neuroimaging findings, particularly with regard to somatosensory processing, have been promising but limited by a number of technique-specific factors (such as the complexity of neuroimaging investigations, poor spatial resolution of EEG/MEG, and use of modeling procedures that do not draw causal inferences) and more general factors including small samples sizes and poorly characterized patients. These factors have led to an underappreciation of the potential heterogeneity of pathophysiology that may underlie variable clinical presentation in CRPS. Also, until now, neurological deficits have been predominantly investigated separately from perceptual and cognitive disturbances. Here, we highlight the need to identify neurocognitive phenotypes of patients with CRPS that are underpinned by causal explanations for perceptual disturbances. We suggest that a combination of larger cohorts, patient phenotyping, the use of both high temporal, and spatial resolution neuroimaging methods, and the identification of simplified biomarkers is likely to be the most fruitful approach to identifying neurocognitive phenotypes in CRPS. Based on our review, we explain how such phenotypes could be characterized in terms of hierarchical models of perception and corresponding disturbances in recurrent processing involving the somatosensory, salience and executive brain networks. We also draw attention to complementary neurological factors that may explain some CRPS symptoms, including the possibility of central neuroinflammation and neuronal atrophy, and how these phenomena may overlap but be partially separable from neurocognitive deficits.
Neurocognitive and Neuroplastic Mechanisms of Novel Clinical Signs in CRPS
Kuttikat, Anoop; Noreika, Valdas; Shenker, Nicholas; Chennu, Srivas; Bekinschtein, Tristan; Brown, Christopher Andrew
2016-01-01
Complex regional pain syndrome (CRPS) is a chronic, debilitating pain condition that usually arises after trauma to a limb, but its precise etiology remains elusive. Novel clinical signs based on body perceptual disturbances have been reported, but their pathophysiological mechanisms remain poorly understood. Investigators have used functional neuroimaging techniques (including MEG, EEG, fMRI, and PET) to study changes mainly within the somatosensory and motor cortices. Here, we provide a focused review of the neuroimaging research findings that have generated insights into the potential neurocognitive and neuroplastic mechanisms underlying perceptual disturbances in CRPS. Neuroimaging findings, particularly with regard to somatosensory processing, have been promising but limited by a number of technique-specific factors (such as the complexity of neuroimaging investigations, poor spatial resolution of EEG/MEG, and use of modeling procedures that do not draw causal inferences) and more general factors including small samples sizes and poorly characterized patients. These factors have led to an underappreciation of the potential heterogeneity of pathophysiology that may underlie variable clinical presentation in CRPS. Also, until now, neurological deficits have been predominantly investigated separately from perceptual and cognitive disturbances. Here, we highlight the need to identify neurocognitive phenotypes of patients with CRPS that are underpinned by causal explanations for perceptual disturbances. We suggest that a combination of larger cohorts, patient phenotyping, the use of both high temporal, and spatial resolution neuroimaging methods, and the identification of simplified biomarkers is likely to be the most fruitful approach to identifying neurocognitive phenotypes in CRPS. Based on our review, we explain how such phenotypes could be characterized in terms of hierarchical models of perception and corresponding disturbances in recurrent processing involving the somatosensory, salience and executive brain networks. We also draw attention to complementary neurological factors that may explain some CRPS symptoms, including the possibility of central neuroinflammation and neuronal atrophy, and how these phenomena may overlap but be partially separable from neurocognitive deficits. PMID:26858626
Hardies, Katia; May, Patrick; Djémié, Tania; Tarta-Arsene, Oana; Deconinck, Tine; Craiu, Dana; Helbig, Ingo; Suls, Arvid; Balling, Rudy; Weckhuysen, Sarah; De Jonghe, Peter; Hirst, Jennifer; Afawi, Zaid; Barisic, Nina; Baulac, Stéphanie; Caglayan, Hande; Depienne, Christel; De Kovel, Carolien G.F.; Dimova, Petia; Guerrero-López, Rosa; Guerrini, Renzo; Hjalgrim, Helle; Hoffman-Zacharska, Dorota; Jahn, Johanna; Klein, Karl Martin; Koeleman, Bobby P.C.; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes; Lerche, Holger; Marini, Carla; Muhle, Hiltrud; Rosenow, Felix; Serratosa, Jose M.; Møller, Rikke S.; Stephani, Ulrich; Striano, Pasquale; Talvik, Tiina; Von Spiczak, Sarah; Weber, Yvonne; Zara, Federico
2015-01-01
We report two siblings with infantile onset seizures, severe developmental delay and spastic paraplegia, in whom whole-genome sequencing revealed compound heterozygous mutations in the AP4S1 gene, encoding the σ subunit of the adaptor protein complex 4 (AP-4). The effect of the predicted loss-of-function variants (p.Gln46Profs*9 and p.Arg97*) was further investigated in a patient's fibroblast cell line. We show that the premature stop mutations in AP4S1 result in a reduction of all AP-4 subunits and loss of AP-4 complex assembly. Recruitment of the AP-4 accessory protein tepsin, to the membrane was also abolished. In retrospect, the clinical phenotype in the family is consistent with previous reports of the AP-4 deficiency syndrome. Our study reports the second family with mutations in AP4S1 and describes the first two patients with loss of AP4S1 and seizures. We further discuss seizure phenotypes in reported patients, highlighting that seizures are part of the clinical manifestation of the AP-4 deficiency syndrome. We also hypothesize that endosomal trafficking is a common theme between heritable spastic paraplegia and some inherited epilepsies. PMID:25552650
Shamseldin, Hanan E; Faqeih, Eissa; Alasmari, Ali; Zaki, Maha S; Gleeson, Joseph G; Alkuraya, Fowzan S
2016-01-07
Brain channelopathies represent a growing class of brain disorders that usually result in paroxysmal disorders, although their role in other neurological phenotypes, including the recently described NALCN-related infantile encephalopathy, is increasingly recognized. In three Saudi Arabian families and one Egyptian family all affected by a remarkably similar phenotype (infantile encephalopathy and largely normal brain MRI) to that of NALCN-related infantile encephalopathy, we identified a locus on 2q34 in which whole-exome sequencing revealed three, including two apparently loss-of-function, recessive mutations in UNC80. UNC80 encodes a large protein that is necessary for the stability and function of NALCN and for bridging NALCN to UNC79 to form a functional complex. Our results expand the clinical relevance of the UNC79-UNC80-NALCN channel complex. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Hengel, H; Keimer, R; Deigendesch, W; Rieß, A; Marzouqa, H; Zaidan, J; Bauer, P; Schöls, L
2018-06-07
Various genetic defects can cause intellectual and developmental disabilities (IDD). Often IDD is a symptom of a more complex neurodevelopmental or neurodegenerative syndrome. Identifying syndromic patterns is substantive for diagnostics and for understanding the pathomechanism of a disease. Recessive GPT2 mutations have recently been associated with IDD in four families. Here, we report a novel recessive GPT2 stop mutation p.Gln24* causing a complex IDD phenotype in a homozygous state in five patients from two consanguineous Arab families. By compiling clinical information of these individuals and previously described GPT2 patients a recognizable neurodevelopmental and potentially neurodegenerative phenotype can be assigned consisting of intellectual disability, pyramidal tract affection with spastic paraplegia, microcephaly and frequently epilepsy. Due to the consistent presence of pyramidal tract affection in GPT2 patients, we further suggest that GPT2 mutations should be considered in cases with complex hereditary spastic paraplegia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Epilepsy with auditory features
Licchetta, Laura; Baldassari, Sara; Palombo, Flavia; Menghi, Veronica; D'Aurizio, Romina; Leta, Chiara; Stipa, Carlotta; Boero, Giovanni; d'Orsi, Giuseppe; Magi, Alberto; Scheffer, Ingrid; Seri, Marco; Tinuper, Paolo; Bisulli, Francesca
2015-01-01
Objective: To identify novel genes implicated in epilepsy with auditory features (EAF) in phenotypically heterogeneous families with unknown molecular basis. Methods: We identified 15 probands with EAF in whom an LGI1 mutation had been excluded. We performed electroclinical phenotyping on all probands and available affected relatives. We used whole-exome sequencing (WES) in 20 individuals with EAF (including all the probands and 5 relatives) to identify single nucleotide variants, small insertions/deletions, and copy number variants. Results: WES revealed likely pathogenic variants in genes that had not been previously associated with EAF: a CNTNAP2 intragenic deletion, 2 truncating mutations of DEPDC5, and a missense SCN1A change. Conclusions: EAF is a clinically and molecularly heterogeneous disease. The association of EAF with CNTNAP2, DEPDC5, and SCN1A mutations widens the phenotypic spectrum related to these genes. CNTNAP2 encodes CASPR2, a member of the voltage-gated potassium channel complex in which LGI1 plays a role. The finding of a CNTNAP2 deletion emphasizes the importance of this complex in EAF and shows biological convergence. PMID:27066544
Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.
2012-01-01
Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999
Kraemer, Kenneth H.; Patronas, Nicholas J.; Schiffmann, Raphael; Brooks, Brian P.; Tamura, Deborah; DiGiovanna, John J.
2008-01-01
Patients with the rare genetic disorders, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS) have defects in DNA nucleotide excision repair (NER). The NER pathway involves at least 28 genes. Three NER genes are also part of the basal transcription factor, TFIIH. Mutations in 11 NER genes have been associated with clinical diseases with at least 8 overlapping phenotypes. The clinical features of these patients have some similarities and but also have marked differences. NER is involved in protection against sunlight induced DNA damage. While XP patients have 1000-fold increase in susceptibility to skin cancer, TTD and CS patients have normal skin cancer risk. Several of the genes involved in NER also affect somatic growth and development. Some patients have short stature and immature sexual development. TTD patients have sulfur deficient brittle hair. Progressive sensorineural deafness is an early feature of XP and CS. Many of these clinical diseases are associated with developmental delay and progressive neurological degeneration. The main neuropathology of XP is a primary neuronal degeneration. In contrast, CS and TTD patients have reduced myelination of the brain. These complex neurological abnormalities are not related to sunlight exposure but may be caused by developmental defects as well as faulty repair of DNA damage to neuronal cells induced by oxidative metabolism or other endogenous processes. PMID:17276014
Whole genome sequencing of one complex pedigree illustrates challenges with genomic medicine.
Fang, Han; Wu, Yiyang; Yang, Hui; Yoon, Margaret; Jiménez-Barrón, Laura T; Mittelman, David; Robison, Reid; Wang, Kai; Lyon, Gholson J
2017-02-23
Human Phenotype Ontology (HPO) has risen as a useful tool for precision medicine by providing a standardized vocabulary of phenotypic abnormalities to describe presentations of human pathologies; however, there have been relatively few reports combining whole genome sequencing (WGS) and HPO, especially in the context of structural variants. We illustrate an integrative analysis of WGS and HPO using an extended pedigree, which involves Prader-Willi Syndrome (PWS), hereditary hemochromatosis (HH), and dysautonomia-like symptoms. A comprehensive WGS pipeline was used to ensure reliable detection of genomic variants. Beyond variant filtering, we pursued phenotypic prioritization of candidate genes using Phenolyzer. Regarding PWS, WGS confirmed a 5.5 Mb de novo deletion of the parental allele at 15q11.2 to 15q13.1. Phenolyzer successfully returned the diagnosis of PWS, and pinpointed clinically relevant genes in the deletion. Further, Phenolyzer revealed how each of the genes is linked with the phenotypes represented by HPO terms. For HH, WGS identified a known disease variant (p.C282Y) in HFE of an affected female. Analysis of HPO terms alone fails to provide a correct diagnosis, but Phenolyzer successfully revealed the phenotype-genotype relationship using a disease-centric approach. Finally, Phenolyzer also revealed the complexity behind dysautonomia-like symptoms, and seven variants that might be associated with the phenotypes were identified by manual filtering based on a dominant inheritance model. The integration of WGS and HPO can inform comprehensive molecular diagnosis for patients, eliminate false positives and reveal novel insights into undiagnosed diseases. Due to extreme heterogeneity and insufficient knowledge of human diseases, it is also important that phenotypic and genomic data are standardized and shared simultaneously.
ERIC Educational Resources Information Center
Ecker, Christine
2017-01-01
Autism spectrum disorder is a complex neurodevelopmental disorder, which is accompanied by differences in brain anatomy, functioning and brain connectivity. Due to its neurodevelopmental character, and the large phenotypic heterogeneity among individuals on the autism spectrum, the neurobiology of autism spectrum disorder is inherently difficult…
The Cognitive and Behavioral Phenotypes of Individuals with CHRNA7 Duplications.
Gillentine, M A; Berry, L N; Goin-Kochel, R P; Ali, M A; Ge, J; Guffey, D; Rosenfeld, J A; Hannig, V; Bader, P; Proud, M; Shinawi, M; Graham, B H; Lin, A; Lalani, S R; Reynolds, J; Chen, M; Grebe, T; Minard, C G; Stankiewicz, P; Beaudet, A L; Schaaf, C P
2017-03-01
Chromosome 15q11q13 is among the least stable regions in the genome due to its highly complex genomic architecture. Low copy repeat elements at 15q13.3 facilitate recurrent copy number variants (CNVs), with deletions established as pathogenic and CHRNA7 implicated as a candidate gene. However, the pathogenicity of duplications of CHRNA7 is unclear, as they are found in affected probands as well as in reportedly healthy parents and unaffected control individuals. We evaluated 18 children with microduplications involving CHRNA7, identified by clinical chromosome microarray analysis (CMA). Comprehensive phenotyping revealed high prevalence of developmental delay/intellectual disability, autism spectrum disorder, and attention deficit/hyperactivity disorder. As CHRNA7 duplications are the most common CNVs identified by clinical CMA, this study provides anticipatory guidance for those involved with care of affected individuals.
Huda, S; Wong, S H; Pettingill, P; O'Connell, D; Vincent, A; Steiger, M
2015-02-01
Acquired diseases classically associated with VGKC-complex antibodies include peripheral nerve hyperexcitability (PNH), Morvan's syndrome, limbic encephalitis (LE), and epilepsy. However, not all such patients have VGKC-complex antibodies and antibodies have been reported in patients without a defined immune-mediated syndrome. To analyse the clinical relevance of positive VGKC-complex antibodies requested on the basis of initial clinical suspicion. We retrospectively analysed patients with positive VGKC-complex antibodies (>100 pM) referred to our institution between 2001 and 2011. 1,614 VGKC-complex assays were performed in 1,298 patients. Titres >100 pM were detected in 57/1,298 (4 %) patients. A classic VGKC-complex channelopathy (60 %) was associated with VGKC-complex antibody titres >400 pM (p = 0.0004). LGI1 or CASPR2 antibodies were only detected in classic VGKC-complex channelopathies (LE; n = 3/4 and PNH; n = 1/5). VGKC-complex antibody titres <400 pM were seen with PNH (n = 15/22; 68 %) but also a heterogeneous range of central and/or peripheral nervous system disorders. Electromyography was supportive of PNH in 65 % of cases and symptomatic treatment was beneficial in 46 % of patients. Irrespective of titre, the rate of malignancy in patients with VGKC-complex antibodies was higher than the age-matched national incidence of malignancy (OR 19.9, 95 % CI 8.97-44.0 p<0.0001). Clinical phenotyping and antibody titres >400 pM can help determine VGKC-complex antibody relevance. Antibody titres <400 pM are associated with PNH but also a more heterogeneous clinical spectrum. The antibody association in the latter is of doubtful clinical relevance. The rate of malignancy was significantly higher than the national incidence irrespective of titre.
Webster, Emily; Cho, Megan T; Alexander, Nora; Desai, Sonal; Naidu, Sakkubai; Bekheirnia, Mir Reza; Lewis, Andrea; Retterer, Kyle; Juusola, Jane; Chung, Wendy K
2016-11-01
Using whole-exome sequencing, we have identified novel de novo heterozygous pleckstrin homology domain-interacting protein ( PHIP ) variants that are predicted to be deleterious, including a frameshift deletion, in two unrelated patients with common clinical features of developmental delay, intellectual disability, anxiety, hypotonia, poor balance, obesity, and dysmorphic features. A nonsense mutation in PHIP has previously been associated with similar clinical features. Patients with microdeletions of 6q14.1, including PHIP , have a similar phenotype of developmental delay, intellectual disability, hypotonia, and obesity, suggesting that the phenotype of our patients is a result of loss-of-function mutations. PHIP produces multiple protein products, such as PHIP1 (also known as DCAF14), PHIP, and NDRP. PHIP1 is one of the multiple substrate receptors of the proteolytic CUL4-DDB1 ubiquitin ligase complex. CUL4B deficiency has been associated with intellectual disability, central obesity, muscle wasting, and dysmorphic features. The overlapping phenotype associated with CUL4B deficiency suggests that PHIP mutations cause disease through disruption of the ubiquitin ligase pathway.
Mining the Human Phenome using Semantic Web Technologies: A Case Study for Type 2 Diabetes
Pathak, Jyotishman; Kiefer, Richard C.; Bielinski, Suzette J.; Chute, Christopher G.
2012-01-01
The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form “biobanks” where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypothesis generation. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped with Type 2 Diabetes for discovering gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries. PMID:23304343
Mining the human phenome using semantic web technologies: a case study for Type 2 Diabetes.
Pathak, Jyotishman; Kiefer, Richard C; Bielinski, Suzette J; Chute, Christopher G
2012-01-01
The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form "biobanks" where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypothesis generation. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped with Type 2 Diabetes for discovering gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries.
Some experiences and opportunities for big data in translational research.
Chute, Christopher G; Ullman-Cullere, Mollie; Wood, Grant M; Lin, Simon M; He, Min; Pathak, Jyotishman
2013-10-01
Health care has become increasingly information intensive. The advent of genomic data, integrated into patient care, significantly accelerates the complexity and amount of clinical data. Translational research in the present day increasingly embraces new biomedical discovery in this data-intensive world, thus entering the domain of "big data." The Electronic Medical Records and Genomics consortium has taught us many lessons, while simultaneously advances in commodity computing methods enable the academic community to affordably manage and process big data. Although great promise can emerge from the adoption of big data methods and philosophy, the heterogeneity and complexity of clinical data, in particular, pose additional challenges for big data inferencing and clinical application. However, the ultimate comparability and consistency of heterogeneous clinical information sources can be enhanced by existing and emerging data standards, which promise to bring order to clinical data chaos. Meaningful Use data standards in particular have already simplified the task of identifying clinical phenotyping patterns in electronic health records.
Some experiences and opportunities for big data in translational research
Chute, Christopher G.; Ullman-Cullere, Mollie; Wood, Grant M.; Lin, Simon M.; He, Min; Pathak, Jyotishman
2014-01-01
Health care has become increasingly information intensive. The advent of genomic data, integrated into patient care, significantly accelerates the complexity and amount of clinical data. Translational research in the present day increasingly embraces new biomedical discovery in this data-intensive world, thus entering the domain of “big data.” The Electronic Medical Records and Genomics consortium has taught us many lessons, while simultaneously advances in commodity computing methods enable the academic community to affordably manage and process big data. Although great promise can emerge from the adoption of big data methods and philosophy, the heterogeneity and complexity of clinical data, in particular, pose additional challenges for big data inferencing and clinical application. However, the ultimate comparability and consistency of heterogeneous clinical information sources can be enhanced by existing and emerging data standards, which promise to bring order to clinical data chaos. Meaningful Use data standards in particular have already simplified the task of identifying clinical phenotyping patterns in electronic health records. PMID:24008998
Celicanin, M; Blaabjerg, M; Maersk-Moller, C; Beniczky, S; Marner, L; Thomsen, C; Bach, F W; Kondziella, D; Andersen, H; Somnier, F; Illes, Z; Pinborg, L H
2017-08-01
The aim of this study was to describe clinical and paraclinical characteristics of all Danish patients who tested positive for anti-voltage-gated potassium channels (VGKC)-complex, anti-leucine-rich glioma-inactivated 1 (LGI1) and anti-contactin-associated protein-2 antibodies in the serum/cerebrospinal fluid between 2009 and 2013 with follow-up interviews in 2015 and 2016. We evaluated antibody status, symptoms leading to testing, course of disease, suspected diagnosis and time of admission as well as diagnosis and treatment. All magnetic resonance imaging, electroencephalography and 18 F-fluorodeoxyglucose positron emission tomography scans were re-evaluated by experts in the field. A total of 28/192 patients tested positive for VGKC-complex antibodies by radioimmunoassay and indirect immunofluorescence; 17 had antibodies to LGI1 and 6/7 of the available cerebrospinal fluids from these patients were seropositive. These 17 patients all had a clinical phenotype appropriate to LGI1 antibodies. The remaining 11 were LGI1 negative (n = 4) or not tested (n = 7). Of these, two had a phenotype consistent with limbic encephalitis. The remaining phenotypes were Guillain-Barré syndrome, Creutzfeldt-Jakob disease, neuromyotonia and anti-N-methyl-D-aspartate receptor encephalitis. Magnetic resonance imaging abnormalities were demonstrated in 69% of the LGI1-positive patients. Two patients with normal magnetic resonance imaging demonstrated temporal lobe hypermetabolism using 18 F-fluorodeoxyglucose positron emission tomography. Abnormal electroencephalography recordings were found in 86% of the patients. Upon follow-up (median 3.2 years), the median modified Rankin Scale score of anti-LGI1-positive patients was 2 and only two patients reported seizures in the past year. Patients diagnosed with anti-LGI1 autoimmune encephalitis increased significantly from 2009 to 2014, probably due to increased awareness. In contrast to seropositive anti-VGKC-complex patients, all anti-LGI1-positive patients presented with a classical limbic encephalitis. The majority of patients recovered well. © 2017 EAN.
Webb, Emma A; Balasubramanian, Meena; Fratzl-Zelman, Nadja; Cabral, Wayne A; Titheradge, Hannah; Alsaedi, Atif; Saraff, Vrinda; Vogt, Julie; Cole, Trevor; Stewart, Susan; Crabtree, Nicola J; Sargent, Brandi M; Gamsjaeger, Sonja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus; Shaw, Nick J; Marini, Joan C; Högler, Wolfgang
2017-06-01
Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Clinical and bone material phenotype description and osteoblast differentiation studies. Natural history study in pediatric research centers. Eight patients with type XIV OI. Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities. Copyright © 2017 Endocrine Society
Blackburn, Patrick R; Zimmermann, Michael T; Gass, Jennifer M; Harris, Kimberly G; Cousin, Margot A; Boczek, Nicole J; Ross, Owen A; Klee, Eric W; Brazis, Paul W; Van Gerpen, Jay A; Atwal, Paldeep S
2016-12-05
Cervical dystonias have a variable presentation and underlying etiology, but collectively represent the most common form of focal dystonia. There are a number of known genetic forms of dystonia (DYT1-27); however the heterogeneity of disease presentation does not always make it easy to categorize the disease by phenotype-genotype comparison. In this report, we describe a 53-year-old female who presented initially with hand tremor following a total hip arthroplasty. The patient developed a mixed hyperkinetic disorder consisting of chorea, dystonia affecting the upper extremities, dysarthria, and blepharospasm. Whole exome sequencing of the patient revealed a novel heterozygous missense variant (Chr11(GRCh38): g.26525644C > G; NM_031418.2(ANO3): c.702C > G; NP_113606.2. p.C234W) in exon 7 in the ANO3 gene. ANO3 encodes anoctamin-3, a Ca +2 -dependent phospholipid scramblase expressed in striatal-neurons, that has been implicated in autosomal dominant craniocervical dystonia (Dystonia-24, DYT24, MIM# 615034). To date, only a handful of cases of DYT-24 have been described in the literature. The complex clinical presentation of the patient described includes hyperkinesias, complex motor movements, and vocal tics, which have not been reported in other patients with DYT24. This report highlights the utility of using clinical whole exome sequencing in patients with complex neurological phenotypes that would not normally fit a classical presentation of a defined genetic disease.
Novel homozygous variants in ATCAY, MCOLN1, and SACS in complex neurological disorders.
Manzoor, Humera; Brüggemann, Norbert; Hussain, Hafiz Muhammad Jafar; Bäumer, Tobias; Hinrichs, Frauke; Wajid, Muhammad; Münchau, Alexander; Naz, Sadaf; Lohmann, Katja
2018-06-01
Neurological disorders comprise a large group of clinically and genetically heterogeneous disorders, many of which have a genetic cause. In addition to a detailed neurological examination, exome sequencing is being increasingly used as a complementary diagnostic tool to identify the underlying genetic cause in patients with unclear, supposedly genetically determined disorders. To identify the genetic cause of a complex movement disorder in five consanguineous Pakistani families. We included five consanguineous Pakistani families with complex recessively inherited movement disorders. Clinical investigation including videotaping was carried out in a total of 59 family members (4-21 per family) and MRI in six patients. Exome sequencing was performed in 4-5 family members per pedigree to explore the underlying genetic cause. Patients presented a wide spectrum of neurological symptoms including ataxia and/or dystonia. We identified three novel homozygous, segregating variants in ATCAY (p.Pro200Profs*20), MCOLN1 (p.Ile184Thr), and SACS (p.Asn3040Lysfs*4) in three of the families. Thus, we were able to identify the likely cause of the disease in a considerable number of families (60%) with the relatively simple and nowadays widely available method of exome sequencing. Of note, close collaboration of neurologists and geneticists was instrumental for proper data interpretation. We expand the phenotypic, genotypic, and ethnical spectrum of mutations in these genes. Our findings alert neurologists that rare genetic causes should be considered in complex phenotypes regardless of ethnicity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wieczorek, Dagmar; Bögershausen, Nina; Beleggia, Filippo; Steiner-Haldenstätt, Sabine; Pohl, Esther; Li, Yun; Milz, Esther; Martin, Marcel; Thiele, Holger; Altmüller, Janine; Alanay, Yasemin; Kayserili, Hülya; Klein-Hitpass, Ludger; Böhringer, Stefan; Wollstein, Andreas; Albrecht, Beate; Boduroglu, Koray; Caliebe, Almuth; Chrzanowska, Krystyna; Cogulu, Ozgur; Cristofoli, Francesca; Czeschik, Johanna Christina; Devriendt, Koenraad; Dotti, Maria Teresa; Elcioglu, Nursel; Gener, Blanca; Goecke, Timm O; Krajewska-Walasek, Malgorzata; Guillén-Navarro, Encarnación; Hayek, Joussef; Houge, Gunnar; Kilic, Esra; Simsek-Kiper, Pelin Özlem; López-González, Vanesa; Kuechler, Alma; Lyonnet, Stanislas; Mari, Francesca; Marozza, Annabella; Mathieu Dramard, Michèle; Mikat, Barbara; Morin, Gilles; Morice-Picard, Fanny; Ozkinay, Ferda; Rauch, Anita; Renieri, Alessandra; Tinschert, Sigrid; Utine, G Eda; Vilain, Catheline; Vivarelli, Rossella; Zweier, Christiane; Nürnberg, Peter; Rahmann, Sven; Vermeesch, Joris; Lüdecke, Hermann-Josef; Zeschnigk, Michael; Wollnik, Bernd
2013-12-20
Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.
Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)(p11.2p11.2)
Walz, Katherina; Paylor, Richard; Yan, Jiong; Bi, Weimin; Lupski, James R.
2006-01-01
Genomic disorders are conditions that result from DNA rearrangements, such as deletions or duplications. The identification of the dosage-sensitive gene(s) within the rearranged genomic interval is important for the elucidation of genes responsible for complex neurobehavioral phenotypes. Smith-Magenis syndrome is associated with a 3.7-Mb deletion in 17p11.2, and its clinical presentation is caused by retinoic acid inducible 1 (RAI1) haploinsufficiency. The reciprocal microduplication syndrome, dup(17)(p11.2p11.2), manifests several neurobehavioral abnormalities, but the responsible dosage-sensitive gene(s) remain undefined. We previously generated a mouse model for dup(17)(p11.2p11.2), Dp(11)17/+, that recapitulated most of the phenotypes observed in human patients. We have now analyzed compound heterozygous mice carrying a duplication [Dp(11)17] in one chromosome 11 along with a null allele of Rai1 in the other chromosome 11 homologue [Dp(11)17/Rai1– mice] in order to study the relationship between Rai1 gene copy number and the Dp(11)17/+ phenotypes. Normal disomic Rai1 gene dosage was sufficient to rescue the complex physical and behavioral phenotypes observed in Dp(11)17/+ mice, despite altered trisomic copy number of the other 18 genes present in the rearranged genomic interval. These data provide a model for variation in copy number of single genes that could influence common traits such as obesity and behavior. PMID:17024248
Exome Sequencing and the Management of Neurometabolic Disorders.
Tarailo-Graovac, Maja; Shyr, Casper; Ross, Colin J; Horvath, Gabriella A; Salvarinova, Ramona; Ye, Xin C; Zhang, Lin-Hua; Bhavsar, Amit P; Lee, Jessica J Y; Drögemöller, Britt I; Abdelsayed, Mena; Alfadhel, Majid; Armstrong, Linlea; Baumgartner, Matthias R; Burda, Patricie; Connolly, Mary B; Cameron, Jessie; Demos, Michelle; Dewan, Tammie; Dionne, Janis; Evans, A Mark; Friedman, Jan M; Garber, Ian; Lewis, Suzanne; Ling, Jiqiang; Mandal, Rupasri; Mattman, Andre; McKinnon, Margaret; Michoulas, Aspasia; Metzger, Daniel; Ogunbayo, Oluseye A; Rakic, Bojana; Rozmus, Jacob; Ruben, Peter; Sayson, Bryan; Santra, Saikat; Schultz, Kirk R; Selby, Kathryn; Shekel, Paul; Sirrs, Sandra; Skrypnyk, Cristina; Superti-Furga, Andrea; Turvey, Stuart E; Van Allen, Margot I; Wishart, David; Wu, Jiang; Wu, John; Zafeiriou, Dimitrios; Kluijtmans, Leo; Wevers, Ron A; Eydoux, Patrice; Lehman, Anna M; Vallance, Hilary; Stockler-Ipsiroglu, Sylvia; Sinclair, Graham; Wasserman, Wyeth W; van Karnebeek, Clara D
2016-06-09
Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.).
Exome Sequencing and the Management of Neurometabolic Disorders
Tarailo-Graovac, M.; Shyr, C.; Ross, C.J.; Horvath, G.A.; Salvarinova, R.; Ye, X.C.; Zhang, L.-H.; Bhavsar, A.P.; Lee, J.J.Y.; Drögemöller, B.I.; Abdelsayed, M.; Alfadhel, M.; Armstrong, L.; Baumgartner, M.R.; Burda, P.; Connolly, M.B.; Cameron, J.; Demos, M.; Dewan, T.; Dionne, J.; Evans, A.M.; Friedman, J.M.; Garber, I.; Lewis, S.; Ling, J.; Mandal, R.; Mattman, A.; McKinnon, M.; Michoulas, A.; Metzger, D.; Ogunbayo, O.A.; Rakic, B.; Rozmus, J.; Ruben, P.; Sayson, B.; Santra, S.; Schultz, K.R.; Selby, K.; Shekel, P.; Sirrs, S.; Skrypnyk, C.; Superti-Furga, A.; Turvey, S.E.; Van Allen, M.I.; Wishart, D.; Wu, J.; Wu, J.; Zafeiriou, D.; Kluijtmans, L.; Wevers, R.A.; Eydoux, P.; Lehman, A.M.; Vallance, H.; Stockler-Ipsiroglu, S.; Sinclair, G.; Wasserman, W.W.; van Karnebeek, C.D.
2016-01-01
BACKGROUND Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient’s clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children’s Hospital Foundation and others.) PMID:27276562
The Challenge and Potential of Metagenomics in the Clinic
Mulcahy-O’Grady, Heidi; Workentine, Matthew L.
2016-01-01
The bacteria, fungi, and viruses that live on and in us have a tremendous impact on our day-to-day health and are often linked to many diseases, including autoimmune disorders and infections. Diagnosing and treating these disorders relies on accurate identification and characterization of the microbial community. Current sequencing technologies allow the sequencing of the entire nucleic acid complement of a sample providing an accurate snapshot of the community members present in addition to the full genetic potential of that microbial community. There are a number of clinical applications that stand to benefit from these data sets, such as the rapid identification of pathogens present in a sample. Other applications include the identification of antibiotic-resistance genes, diagnosis and treatment of gastrointestinal disorders, and many other diseases associated with bacterial, viral, and fungal microbiomes. Metagenomics also allows the physician to probe more complex phenotypes such as microbial dysbiosis with intestinal disorders and disruptions of the skin microbiome that may be associated with skin disorders. Many of these disorders are not associated with a single pathogen but emerge as a result of complex ecological interactions within microbiota. Currently, we understand very little about these complex phenotypes, yet clearly they are important and in some cases, as with fecal microbiota transplants in Clostridium difficile infections, treating the microbiome of the patient is effective. Here, we give an overview of metagenomics and discuss a number of areas where metagenomics is applicable in the clinic, and progress being made in these areas. This includes (1) the identification of unknown pathogens, and those pathogens particularly hard to culture, (2) utilizing functional information and gene content to understand complex infections such as Clostridium difficile, and (3) predicting antimicrobial resistance of the community using genetic determinants of resistance identified from the sequencing data. All of these applications rely on sophisticated computational tools, and we also discuss the importance of skilled bioinformatic support for the implementation and use of metagenomics in the clinic. PMID:26870044
Spinal motor neuron involvement in a patient with homozygous PRUNE mutation.
Iacomino, Michele; Fiorillo, Chiara; Torella, Annalaura; Severino, Mariasavina; Broda, Paolo; Romano, Catia; Falsaperla, Raffaele; Pozzolini, Giulia; Minetti, Carlo; Striano, Pasquale; Nigro, Vincenzo; Zara, Federico
2018-05-01
In the last few years, whole exome sequencing (WES) allowed the identification of PRUNE mutations in patients featuring a complex neurological phenotype characterized by severe neurodevelopmental delay, microcephaly, epilepsy, optic atrophy, and brain or cerebellar atrophy. We describe an additional patient with homozygous PRUNE mutation who presented with spinal muscular atrophy phenotype, in addition to the already known brain developmental disorder. This novel feature expands the clinical consequences of PRUNE mutations and allow to converge PRUNE syndrome with previous descriptions of neurodevelopmental/neurodegenerative disorders linked to altered microtubule dynamics. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Lehman, Li-Wei; Long, William; Saeed, Mohammed; Mark, Roger
2014-01-01
Patients in critical care often exhibit complex disease patterns. A fundamental challenge in clinical research is to identify clinical features that may be characteristic of adverse patient outcomes. In this work, we propose a data-driven approach for phenotype discovery of patients in critical care. We used Hierarchical Dirichlet Process (HDP) as a non-parametric topic modeling technique to automatically discover the latent "topic" structure of diseases, symptoms, and findings documented in hospital discharge summaries. We show that the latent topic structure can be used to reveal phenotypic patterns of diseases and symptoms shared across subgroups of a patient cohort, and may contain prognostic value in stratifying patients' post hospital discharge mortality risks. Using discharge summaries of a large patient cohort from the MIMIC II database, we evaluate the clinical utility of the discovered topic structure in identifying patients who are at high risk of mortality within one year post hospital discharge. We demonstrate that the learned topic structure has statistically significant associations with mortality post hospital discharge, and may provide valuable insights in defining new feature sets for predicting patient outcomes.
The genotype-phenotype map of an evolving digital organism.
Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas
2017-02-01
To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.
The genotype-phenotype map of an evolving digital organism
Zaman, Luis; Wagner, Andreas
2017-01-01
To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039
Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H
2013-01-01
XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD. PMID:23232694
Mutations in mitochondrial complex I assembly factor NDUFAF3 cause Leigh syndrome.
Baertling, Fabian; Sánchez-Caballero, Laura; Timal, Sharita; van den Brand, Mariël Am; Ngu, Lock Hock; Distelmaier, Felix; Rodenburg, Richard Jt; Nijtmans, Leo Gj
2017-03-01
NDUFAF3 is an assembly factor of mitochondrial respiratory chain complex I. Variants in NDUFAF3 have been identified as a cause of severe multisystem mitochondrial disease. In a patient presenting with Leigh syndrome, which has hitherto not been described as a clinical feature of NDUFAF3 deficiency, we identified a novel homozygous variant and confirmed its pathogenicity in patient fibroblasts studies. Furthermore, we present an analysis of complex I assembly routes representative of each functional module and, thereby, link NDUFAF3 to a specific step in complex I assembly. Therefore, our report expands the phenotype of NDUFAF3 deficiency and further characterizes the role of NDUFAF3 in complex I biogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes
Loviglio, M N; Leleu, M; Männik, K; Passeggeri, M; Giannuzzi, G; van der Werf, I; Waszak, S M; Zazhytska, M; Roberts-Caldeira, I; Gheldof, N; Migliavacca, E; Alfaiz, A A; Hippolyte, L; Maillard, A M; Loviglio, Maria Nicla; Männik, Katrin; van der Werf, Ilse; Giannuzzi, Giuliana; Zazhytska, Marianna; Gheldof, Nele; Migliavacca, Eugenia; Alfaiz, Ali A; Roberts-Caldeira, Inês; Hippolyte, Loyse; Maillard, Anne M; Ferrarini, Alessandra; Butschi, Florence Niel; Conrad, Bernard; Addor, Marie-Claude; Belfiore, Marco; Roetzer, Katharina; Dijck, Anke Van; Blaumeiser, Bettina; Kooy, Frank; Roelens, Filip; Dheedene, Annelies; Chiaie, Barbara Delle; Menten, Björn; Oostra, Ann; Caberg, Jean-Hubert; Carter, Melissa; Kellam, Barbara; Stavropoulos, Dimitri J; Marshall, Christian; Scherer, Stephen W; Weksberg, Rosanna; Cytrynbaum, Cheryl; Bassett, Anne; Lowther, Chelsea; Gillis, Jane; MacKay, Sara; Bache, Iben; Ousager, Lilian B; Smerdel, Maja Patricia; Graakjaer, Jesper; Kjaergaard, Susanne; Metspalu, Andres; Mathieu, Michele; Bonneau, Dominique; Guichet, Agnes; Parent, Philippe; Férec, Claude; Gerard, Marion; Plessis, Ghislaine; Lespinasse, James; Masurel, Alice; Marle, Nathalie; Faivre, Laurence; Callier, Patrick; Layet, Valerie; Meur, Nathalie Le; Le Goff, Céline; Duban-Bedu, Bénédicte; Sukno, Sylvie; Boute, Odile; Andrieux, Joris; Blanchet, Patricia; Geneviève, David; Puechberty, Jacques; Schneider, Anouck; Leheup, Bruno; Jonveaux, Philippe; Mercier, Sandra; David, Albert; Le Caignec, Cédric; de Pontual, Loic; Pipiras, Eva; Jacquette, Aurelia; Keren, Boris; Gilbert-Dussardier, Brigitte; Bilan, Frederic; Goldenberg, Alice; Chambon, Pascal; Toutain, Annick; Till, Marianne; Sanlaville, Damien; Leube, Barbara; Royer-Pokora, Brigitte; Grabe, Hans Jörgen; Schmidt, Carsten Oliver; Schurmann, Claudia; Homuth, Georg; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Bernardini, Laura; Novelli, Antonio; Micale, Lucia; Merla, Giuseppe; Zollino, Marcella; Mari, Francesca; Rizzo, Caterina Lo; Renieri, Alessandra; Silengo, Margherita; Vulto-van Silfhout, Anneke T; Schouten, Meyke; Pfundt, Rolph; de Leeuw, Nicole; Vansenne, Fleur; Maas, Saskia M; Barge-Schaapveld, Daniela QCM; Knegt, Alida C; Stadheim, Barbro; Rodningen, Olaug; Houge, Gunnar; Price, Sue; Hawkes, Lara; Campbell, Carolyn; Kini, Usha; Vogt, Julie; Walters, Robin; Blakemore, Alexandra; Gusella, James F; Shen, Yiping; Scott, Daryl; Bacino, Carlos A; Tsuchiya, Karen; Ladda, Roger; Sell, Susan; Asamoah, Alexander; Hamati, Aline I; Rosenfeld, Jill A; Shaffer, Lisa G; Mitchell, Elyse; Hodge, Jennelle C; Beckmann, Jacques S; Jacquemont, Sébastien; Reymond, Alexandre; Reymond, Alexandre; Ewans, Lisa J; Mowat, David; Walker, Jan; Amor, David J; Esch, Hilde Van; Leroy, Patricia; Caberg, Jean-Hubert; Bamforth, John-Steven; Babu, Deepti; Till, Marianne; Sanlaville, Damien; Geneviève, David; Puechberty, Jacques; Isidor, Bertrand; DiDonato, Nataliya; Hackmann, Karl; Passeggeri, Marzia; Haeringen, Arie van; Rosenfeld, Jill A; Shaffer, Lisa G; Smith, Rosemarie; Ellingwood, Sara; Farber, Darren M; Puri, Vinay; Zadeh, Neda; Weaver, David D; Miller, Mandy; Wilks, Timothy; Jorgez, Carolina J; Lafayette, DeeDee; Jacquemont, Sébastien; Van Dijck, A; Kooy, R F; Sanlaville, D; Rosenfeld, J A; Shaffer, L G; Andrieux, J; Marshall, C; Scherer, S W; Shen, Y; Gusella, J F; Thorsteinsdottir, U; Thorleifsson, G; Dermitzakis, E T; Deplancke, B; Beckmann, J S; Rougemont, J; Jacquemont, S; Reymond, A
2017-01-01
Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts’ maps could uncover functionally and clinically related genes. PMID:27240531
Amberger, Joanna S.; Bocchini, Carol A.; Schiettecatte, François; Scott, Alan F.; Hamosh, Ada
2015-01-01
Online Mendelian Inheritance in Man, OMIM®, is a comprehensive, authoritative and timely research resource of curated descriptions of human genes and phenotypes and the relationships between them. The new official website for OMIM, OMIM.org (http://omim.org), was launched in January 2011. OMIM is based on the published peer-reviewed biomedical literature and is used by overlapping and diverse communities of clinicians, molecular biologists and genome scientists, as well as by students and teachers of these disciplines. Genes and phenotypes are described in separate entries and are given unique, stable six-digit identifiers (MIM numbers). OMIM entries have a structured free-text format that provides the flexibility necessary to describe the complex and nuanced relationships between genes and genetic phenotypes in an efficient manner. OMIM also has a derivative table of genes and genetic phenotypes, the Morbid Map. OMIM.org has enhanced search capabilities such as genome coordinate searching and thesaurus-enhanced search term options. Phenotypic series have been created to facilitate viewing genetic heterogeneity of phenotypes. Clinical synopsis features are enhanced with UMLS, Human Phenotype Ontology and Elements of Morphology terms and image links. All OMIM data are available for FTP download and through an API. MIMmatch is a novel outreach feature to disseminate updates and encourage collaboration. PMID:25428349
2018-01-01
ABSTRACT A small group of HIV-1-infected individuals, called long-term nonprogressors (LTNPs), and in particular a subgroup of LTNPs, elite controllers (LTNP-ECs), display permanent control of viral replication and lack of clinical progression. This control is the result of a complex interaction of host, immune, and viral factors. We identified, by phylogenetic analysis, a cluster of LTNP-ECs infected with very similar low-replication HIV-1 viruses, suggesting the contribution of common viral features to the clinical LTNP-EC phenotype. HIV-1 envelope (Env) glycoprotein mediates signaling and promotes HIV-1 fusion, entry, and infection, being a key factor of viral fitness in vitro, cytopathicity, and infection progression in vivo. Therefore, we isolated full-length env genes from viruses of these patients and from chronically infected control individuals. Functional characterization of the initial events of the viral infection showed that Envs from the LTNP-ECs were ineffective in the binding to CD4 and in the key triggering of actin/tubulin-cytoskeleton modifications compared to Envs from chronic patients. The viral properties of the cluster viruses result in a defective viral fusion, entry, and infection, and these properties were inherited by every virus of the cluster. Therefore, inefficient HIV-1 Env functions and signaling defects may contribute to the low viral replication capacity and transmissibility of the cluster viruses, suggesting a direct role in the LTNP-EC phenotype of these individuals. These results highlight the important role of viral characteristics in the LTNP-EC clinical phenotype. These Env viral properties were common to all the cluster viruses and thus support the heritability of the viral characteristics. PMID:29636433
Bastiaansen, Anna E M; van Sonderen, Agnes; Titulaer, Maarten J
2017-06-01
Twenty years since the discovery of voltage-gated potassium channel (VGKC)-related autoimmunity; it is currently known that the antibodies are not directed at the VGKC itself but to two closely associated proteins, anti-leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (Caspr2). Antibodies to LGI1 and Caspr2 give well-described clinical phenotypes. Anti-LGI1 encephalitis patients mostly have limbic symptoms, and anti-Caspr2 patients have variable syndromes with both central and peripheral symptoms. A large group of patients with heterogeneous symptoms are VGKC positive but do not have antibodies against LGI1 or Caspr2. The clinical relevance of VGKC positivity in these 'double-negative' patients is questionable. This review focusses on these three essentially different subgroups. The clinical phenotypes of anti-LGI1 encephalitis and anti-Caspr2 encephalitis have been described in more detail including data on treatment and long-term follow-up. A specific human leukocyte antigen (HLA) association was found in nontumor anti-LGI1 encephalitis, but not clearly in those with tumors. There has been increasing interest in the VGKC patients without LGI1/Caspr2 antibodies questioning its relevance in clinical practice. Anti-LGI1 encephalitis and anti-Caspr2 encephalitis are separate clinical entities. Early recognition and treatment is necessary and rewarding. The term VGKC-complex antibodies, lumping patients with anti-LGI1, anti-Caspr2 antibodies or lacking both, should be considered obsolete.
Wu, Mon-Ju; Mwangi, Benson; Bauer, Isabelle E; Passos, Ives C; Sanches, Marsal; Zunta-Soares, Giovana B; Meyer, Thomas D; Hasan, Khader M; Soares, Jair C
2017-01-15
Diagnosis, clinical management and research of psychiatric disorders remain subjective - largely guided by historically developed categories which may not effectively capture underlying pathophysiological mechanisms of dysfunction. Here, we report a novel approach of identifying and validating distinct and biologically meaningful clinical phenotypes of bipolar disorders using both unsupervised and supervised machine learning techniques. First, neurocognitive data were analyzed using an unsupervised machine learning approach and two distinct clinical phenotypes identified namely; phenotype I and phenotype II. Second, diffusion weighted imaging scans were pre-processed using the tract-based spatial statistics (TBSS) method and 'skeletonized' white matter fractional anisotropy (FA) and mean diffusivity (MD) maps extracted. The 'skeletonized' white matter FA and MD maps were entered into the Elastic Net machine learning algorithm to distinguish individual subjects' phenotypic labels (e.g. phenotype I vs. phenotype II). This calculation was performed to ascertain whether the identified clinical phenotypes were biologically distinct. Original neurocognitive measurements distinguished individual subjects' phenotypic labels with 94% accuracy (sensitivity=92%, specificity=97%). TBSS derived FA and MD measurements predicted individual subjects' phenotypic labels with 76% and 65% accuracy respectively. In addition, individual subjects belonging to phenotypes I and II were distinguished from healthy controls with 57% and 92% accuracy respectively. Neurocognitive task variables identified as most relevant in distinguishing phenotypic labels included; Affective Go/No-Go (AGN), Cambridge Gambling Task (CGT) coupled with inferior fronto-occipital fasciculus and callosal white matter pathways. These results suggest that there may exist two biologically distinct clinical phenotypes in bipolar disorders which can be identified from healthy controls with high accuracy and at an individual subject level. We suggest a strong clinical utility of the proposed approach in defining and validating biologically meaningful and less heterogeneous clinical sub-phenotypes of major psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Temporal abstraction-based clinical phenotyping with Eureka!
Post, Andrew R; Kurc, Tahsin; Willard, Richie; Rathod, Himanshu; Mansour, Michel; Pai, Akshatha Kalsanka; Torian, William M; Agravat, Sanjay; Sturm, Suzanne; Saltz, Joel H
2013-01-01
Temporal abstraction, a method for specifying and detecting temporal patterns in clinical databases, is very expressive and performs well, but it is difficult for clinical investigators and data analysts to understand. Such patterns are critical in phenotyping patients using their medical records in research and quality improvement. We have previously developed the Analytic Information Warehouse (AIW), which computes such phenotypes using temporal abstraction but requires software engineers to use. We have extended the AIW's web user interface, Eureka! Clinical Analytics, to support specifying phenotypes using an alternative model that we developed with clinical stakeholders. The software converts phenotypes from this model to that of temporal abstraction prior to data processing. The model can represent all phenotypes in a quality improvement project and a growing set of phenotypes in a multi-site research study. Phenotyping that is accessible to investigators and IT personnel may enable its broader adoption.
Cryopyrin-associated periodic syndrome: an update on diagnosis and treatment response.
Yu, Justin R; Leslie, Kieron S
2011-02-01
Cryopyrin-associated periodic syndrome (CAPS) is a rare hereditary inflammatory disorder encompassing a continuum of three phenotypes: familial cold autoinflammatory syndrome, Muckle-Wells syndrome, and neonatal-onset multisystem inflammatory disease. Distinguishing features include cutaneous, neurological, ophthalmologic, and rheumatologic manifestations. CAPS results from a gain-of-function mutation of the NLRP3 gene coding for cryopyrin, which forms intracellular protein complexes known as inflammasomes. Defects of the inflammasomes lead to overproduction of interleukin-1, resulting in inflammatory symptoms seen in CAPS. Diagnosis is often delayed and requires a thorough review of clinical symptoms. Remarkable advances in our understanding of the genetics and the molecular pathway that is responsible for the clinical phenotype of CAPS has led to the development of effective treatments. It also has become clear that the NLRP3 inflammasome plays a critical role in innate immune defense and therefore has wider implications for other inflammatory disease states.
Lo, Mindy S
2016-12-01
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease known for its clinical heterogeneity. Over time, new insights into the complex genetic origin of SLE have started to explain some of this clinical variability. These findings, reviewed here, have also yielded important understanding in the immune mechanisms behind SLE pathogenesis. Several new monogenic disorders with lupus-like phenotype have been described. These can be organized into physiologic pathways that parallel mechanisms of disease in SLE. Examples include genes important for DNA damage repair (e.g., TREX1), nucleic acid sensing and type I interferon overproduction (e.g., STING, TREX1), apoptosis (FASLG), tolerance (PRKCD), and clearance of self-antigen (DNASE1L3). Further study of monogenic lupus may lead to better genotype/phenotype correlations in SLE. Eventually, the ability to understand individual patients according to their genetic profile may allow the development of more targeted and personalized approaches to therapy.
Ross, Mindy K; Yoon, Jinsung; van der Schaar, Auke; van der Schaar, Mihaela
2018-01-01
Pediatric asthma has variable underlying inflammation and symptom control. Approaches to addressing this heterogeneity, such as clustering methods to find phenotypes and predict outcomes, have been investigated. However, clustering based on the relationship between treatment and clinical outcome has not been performed, and machine learning approaches for long-term outcome prediction in pediatric asthma have not been studied in depth. Our objectives were to use our novel machine learning algorithm, predictor pursuit (PP), to discover pediatric asthma phenotypes on the basis of asthma control in response to controller medications, to predict longitudinal asthma control among children with asthma, and to identify features associated with asthma control within each discovered pediatric phenotype. We applied PP to the Childhood Asthma Management Program study data (n = 1,019) to discover phenotypes on the basis of asthma control between assigned controller therapy groups (budesonide vs. nedocromil). We confirmed PP's ability to discover phenotypes using the Asthma Clinical Research Network/Childhood Asthma Research and Education network data. We next predicted children's asthma control over time and compared PP's performance with that of traditional prediction methods. Last, we identified clinical features most correlated with asthma control in the discovered phenotypes. Four phenotypes were discovered in both datasets: allergic not obese (A + /O - ), obese not allergic (A - /O + ), allergic and obese (A + /O + ), and not allergic not obese (A - /O - ). Of the children with well-controlled asthma in the Childhood Asthma Management Program dataset, we found more nonobese children treated with budesonide than with nedocromil (P = 0.015) and more obese children treated with nedocromil than with budesonide (P = 0.008). Within the obese group, more A + /O + children's asthma was well controlled with nedocromil than with budesonide (P = 0.022) or with placebo (P = 0.011). The PP algorithm performed significantly better (P < 0.001) than traditional machine learning algorithms for both short- and long-term asthma control prediction. Asthma control and bronchodilator response were the features most predictive of short-term asthma control, regardless of type of controller medication or phenotype. Bronchodilator response and serum eosinophils were the most predictive features of asthma control, regardless of type of controller medication or phenotype. Advanced statistical machine learning approaches can be powerful tools for discovery of phenotypes based on treatment response and can aid in asthma control prediction in complex medical conditions such as asthma.
Obstructive Sleep Apnea Syndrome: From Phenotype to Genetic Basis
Casale, M; Pappacena, M; Rinaldi, V; Bressi, F; Baptista, P; Salvinelli, F
2009-01-01
Obstructive sleep apnea syndrome (OSAS) is a complex chronic clinical syndrome, characterized by snoring, periodic apnea, hypoxemia during sleep, and daytime hypersomnolence. It affects 4-5% of the general population. Racial studies and chromosomal mapping, familial studies and twin studies have provided evidence for the possible link between the OSAS and genetic factors and also most of the risk factors involved in the pathogenesis of OSAS are largely genetically determined. A percentage of 35-40% of its variance can be attributed to genetic factors. It is likely that genetic factors associated with craniofacial structure, body fat distribution and neural control of the upper airway muscles interact to produce the OSAS phenotype. Although the role of specific genes that influence the development of OSAS has not yet been identified, current researches, especially in animal model, suggest that several genetic systems may be important. In this chapter, we will first define the OSAS phenotype, the pathogenesis and the risk factors involved in the OSAS that may be inherited, then, we will review the current progress in the genetics of OSAS and suggest a few future perspectives in the development of therapeutic agents for this complex disease entity. PMID:19794884
Genotypic Complexity of Fisher’s Geometric Model
Hwang, Sungmin; Park, Su-Chan; Krug, Joachim
2017-01-01
Fisher’s geometric model was originally introduced to argue that complex adaptations must occur in small steps because of pleiotropic constraints. When supplemented with the assumption of additivity of mutational effects on phenotypic traits, it provides a simple mechanism for the emergence of genotypic epistasis from the nonlinear mapping of phenotypes to fitness. Of particular interest is the occurrence of reciprocal sign epistasis, which is a necessary condition for multipeaked genotypic fitness landscapes. Here we compute the probability that a pair of randomly chosen mutations interacts sign epistatically, which is found to decrease with increasing phenotypic dimension n, and varies nonmonotonically with the distance from the phenotypic optimum. We then derive expressions for the mean number of fitness maxima in genotypic landscapes comprised of all combinations of L random mutations. This number increases exponentially with L, and the corresponding growth rate is used as a measure of the complexity of the landscape. The dependence of the complexity on the model parameters is found to be surprisingly rich, and three distinct phases characterized by different landscape structures are identified. Our analysis shows that the phenotypic dimension, which is often referred to as phenotypic complexity, does not generally correlate with the complexity of fitness landscapes and that even organisms with a single phenotypic trait can have complex landscapes. Our results further inform the interpretation of experiments where the parameters of Fisher’s model have been inferred from data, and help to elucidate which features of empirical fitness landscapes can be described by this model. PMID:28450460
Mieusset, Roger; Fauquet, Isabelle; Chauveau, Dominique; Monteil, Laetitia; Chassaing, Nicolas; Daudin, Myriam; Huart, Antoine; Isus, François; Prouheze, Cathy; Calvas, Patrick; Bieth, Eric; Bujan, Louis; Faguer, Stanislas
2017-04-01
While reproductive technologies are increasingly used worldwide, epidemiologic, clinical and genetic data regarding infertile men with combined genital tract and renal abnormalities remain scarce, preventing adequate genetic counseling. In a cohort-based study, we assessed the prevalence (1995-2014) and the clinical characteristics of renal disorders in infertile males with genital tract malformation. In a subset of 34 patients, we performed a detailed phenotype analysis of renal and genital tract disorders. Among the 180 patients with congenital uni- or bilateral absence of vas deferens (CU/BAVD), 45 (25 %) had a renal malformation. We also identified 14 infertile men with combined seminal vesicle (SV) and renal malformation but no CU/BAVD. Among the 34 patients with detailed clinical description, renal disease was unknown before the assessment of the infertility in 27 (79.4 %), and 7 (20.6 %) had chronic renal failure. Four main renal phenotypes were observed: solitary kidney (47 %); autosomal-dominant polycystic kidney disease (ADPKD, 0.6 %); uni- or bilateral hypoplastic kidneys (20.6 %); and a complex renal phenotype associated with a mutation of the HNF1B gene (5.8 %). Absence of SV and azoospermia were significantly associated with the presence of a solitary kidney, while dilatation of SV and necroasthenozoospermia were suggestive of ADPKD. A dominantly inherited renal disease (ADPKD or HNF1B-related nephropathy) is frequent in males with infertility and combined renal and genital tract abnormalities (26 %). A systematic renal screening should be proposed in infertile males with CU/BAVD or SV disorders.
Gonzaga-Jauregui, Claudia; Harel, Tamar; Gambin, Tomasz; Kousi, Maria; Griffin, Laurie B.; Francescatto, Ludmila; Ozes, Burcak; Karaca, Ender; Jhangiani, Shalini; Bainbridge, Matthew N.; Lawson, Kim S.; Pehlivan, Davut; Okamoto, Yuji; Withers, Marjorie; Mancias, Pedro; Slavotinek, Anne; Reitnauer, Pamela J; Goksungur, Meryem T.; Shy, Michael; Crawford, Thomas O.; Koenig, Michel; Willer, Jason; Flores, Brittany N.; Pediaditrakis, Igor; Us, Onder; Wiszniewski, Wojciech; Parman, Yesim; Antonellis, Anthony; Muzny, Donna M.; Katsanis, Nicholas; Battaloglu, Esra; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.
2015-01-01
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity. PMID:26257172
Depienne, Christel; Nava, Caroline; Keren, Boris; Heide, Solveig; Rastetter, Agnès; Passemard, Sandrine; Chantot-Bastaraud, Sandra; Moutard, Marie-Laure; Agrawal, Pankaj B; VanNoy, Grace; Stoler, Joan M; Amor, David J; Billette de Villemeur, Thierry; Doummar, Diane; Alby, Caroline; Cormier-Daire, Valérie; Garel, Catherine; Marzin, Pauline; Scheidecker, Sophie; de Saint-Martin, Anne; Hirsch, Edouard; Korff, Christian; Bottani, Armand; Faivre, Laurence; Verloes, Alain; Orzechowski, Christine; Burglen, Lydie; Leheup, Bruno; Roume, Joelle; Andrieux, Joris; Sheth, Frenny; Datar, Chaitanya; Parker, Michael J; Pasquier, Laurent; Odent, Sylvie; Naudion, Sophie; Delrue, Marie-Ange; Le Caignec, Cédric; Vincent, Marie; Isidor, Bertrand; Renaldo, Florence; Stewart, Fiona; Toutain, Annick; Koehler, Udo; Häckl, Birgit; von Stülpnagel, Celina; Kluger, Gerhard; Møller, Rikke S; Pal, Deb; Jonson, Tord; Soller, Maria; Verbeek, Nienke E; van Haelst, Mieke M; de Kovel, Carolien; Koeleman, Bobby; Monroe, Glen; van Haaften, Gijs; Attié-Bitach, Tania; Boutaud, Lucile; Héron, Delphine; Mignot, Cyril
2017-04-01
Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.
Clinical review of genetic epileptic encephalopathies
Noh, Grace J.; Asher, Y. Jane Tavyev; Graham, John M.
2012-01-01
Seizures are a frequently encountered finding in patients seen for clinical genetics evaluations. The differential diagnosis for the cause of seizures is quite diverse and complex, and more than half of all epilepsies have been attributed to a genetic cause. Given the complexity of such evaluations, we highlight the more common causes of genetic epileptic encephalopathies and emphasize the usefulness of recent technological advances. The purpose of this review is to serve as a practical guide for clinical geneticists in the evaluation and counseling of patients with genetic epileptic encephalopathies. Common syndromes will be discussed, in addition to specific seizure phenotypes, many of which are refractory to anti-epileptic agents. Divided by etiology, we overview the more common causes of infantile epileptic encephalopathies, channelopathies, syndromic, metabolic, and chromosomal entities. For each condition, we will outline the diagnostic evaluation and discuss effective treatment strategies that should be considered. PMID:22342633
Barlow, Jane F
2012-06-01
Pharmacogenomics has significant potential to improve the efficacy and safety of medication therapy, but it requires new expertise and adds a new layer of complexity for all healthcare professionals. Pharmacists and pharmacy management systems can play a leading role in providing clinical decision support for the use and interpretation of pharmacogenomic tests. To serve this role effectively, pharmacists will need to expand their expertise in the emerging field of clinical pharmacogenomics. Pharmacy-based clinical programs can expedite the use of pharmacogenomic testing, help physicians interpret the test results and identify future medication risks associated with the patient's phenotype. Over time, some of these functions can be embedded in clinical decision support systems as part of the broader automation of the healthcare system.
Controversies surrounding Jarcho-Levin syndrome.
Cornier, Alberto S; Ramirez, Norman; Carlo, Simón; Reiss, Abilio
2003-12-01
Jarcho-Levin syndrome is an eponym that has been used to describe a variety of clinical phenotypes consisting of short-trunk dwarfism associated with rib and vertebral anomalies. This admixture of phenotypes under Jarcho-Levin syndrome has allowed some confusion in terms of phenotype, prognosis, and mortality. In the past 2 years, few papers have provided more insight into the clinical diagnosis, prognosis, and management of patient with these phenotypes. Recently molecular, clinical, and radiologic data have allowed further characterization of these phenotypes. Based on these findings, we have divided these phenotypes into spondylothoracic dysplasia and spondylocostal dysostosis. A better understanding of the distinct phenotypes under Jarcho-Levin syndrome will help clinicians to understand the pathological factors of the disease, establish mode of inheritance, provide adequate genetic counseling, prognosis, molecular diagnosis, and clinical management recommendations.
Integration of Network Biology and Imaging to Study Cancer Phenotypes and Responses.
Tian, Ye; Wang, Sean S; Zhang, Zhen; Rodriguez, Olga C; Petricoin, Emanuel; Shih, Ie-Ming; Chan, Daniel; Avantaggiati, Maria; Yu, Guoqiang; Ye, Shaozhen; Clarke, Robert; Wang, Chao; Zhang, Bai; Wang, Yue; Albanese, Chris
2014-01-01
Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.
Amberger, Joanna S; Bocchini, Carol A; Schiettecatte, François; Scott, Alan F; Hamosh, Ada
2015-01-01
Online Mendelian Inheritance in Man, OMIM(®), is a comprehensive, authoritative and timely research resource of curated descriptions of human genes and phenotypes and the relationships between them. The new official website for OMIM, OMIM.org (http://omim.org), was launched in January 2011. OMIM is based on the published peer-reviewed biomedical literature and is used by overlapping and diverse communities of clinicians, molecular biologists and genome scientists, as well as by students and teachers of these disciplines. Genes and phenotypes are described in separate entries and are given unique, stable six-digit identifiers (MIM numbers). OMIM entries have a structured free-text format that provides the flexibility necessary to describe the complex and nuanced relationships between genes and genetic phenotypes in an efficient manner. OMIM also has a derivative table of genes and genetic phenotypes, the Morbid Map. OMIM.org has enhanced search capabilities such as genome coordinate searching and thesaurus-enhanced search term options. Phenotypic series have been created to facilitate viewing genetic heterogeneity of phenotypes. Clinical synopsis features are enhanced with UMLS, Human Phenotype Ontology and Elements of Morphology terms and image links. All OMIM data are available for FTP download and through an API. MIMmatch is a novel outreach feature to disseminate updates and encourage collaboration. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Prüss, Harald; Lennox, Belinda R
2016-11-01
Antibodies against the voltage-gated potassium channel (VGKC) were first recognised as having a potential pathogenic role in disorders of the central nervous system in 2001, with VGKC antibodies described in patients with limbic encephalitis, and the subsequent seminal paper describing the clinical phenotype and immunotherapy treatment responsiveness in 13 patients with VGKC antibodies and limbic encephalitis in 2004. These initial case descriptions were of a progressive neuropsychiatric syndrome with abnormalities of mood, sleep and cognition recognised alongside the neurological symptoms of seizures and autonomic instability. The clinical syndromes associated with VGKC complex (VGKCC) antibodies have broadened considerably over the last 15 years, with multiple cases of more restricted 'formes fruste' presentations associated with VGKCC antibodies being described. However, the relevance of antibodies in these cases has remained controversial. The understanding of the pathogenic nature of VGKC antibodies has further advanced since 2010 with the discovery that VGKC antibodies are not usually antibodies against the VGKC subunits themselves, but instead to proteins that are complexed with the potassium channel, in particular leucine-rich, glioma-inactivated protein 1 (LGI1) and contactin-associated protein 2 (Caspr2). Antibodies against these proteins have been associated with particular, although overlapping, clinical phenotypes, each also including neuropsychiatric features. Our aim is to critically review the association between VGKCC, LGI1 and Caspr2 antibodies with isolated psychiatric presentations-with a focus on cognitive impairment, mood disorders and psychosis. We recommend that screening for VGKCC, LGI1 and Caspr2 antibodies be considered for those with neuropsychiatric presentations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Mapping Gene Associations in Human Mitochondria using Clinical Disease Phenotypes
Scharfe, Curt; Lu, Henry Horng-Shing; Neuenburg, Jutta K.; Allen, Edward A.; Li, Guan-Cheng; Klopstock, Thomas; Cowan, Tina M.; Enns, Gregory M.; Davis, Ronald W.
2009-01-01
Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes. PMID:19390613
Evaluation of T-cell activation in the duodenum of dogs with cutaneous food hypersensitivity.
Veenhof, Eveline Z; Rutten, Victor P; van Noort, Ronald; Knol, Edward F; Willemse, Ton
2010-04-01
To determine whether skin-related clinical signs in cutaneous food hypersensitivity (CFH) coincide with immune reactivity in the intestine in dogs. 11 dogs with CFH without intestinal clinical signs and 8 healthy control dogs. After a provocation and elimination diet, the duodenal gene expression levels of Th1-, Th2- and Treg-related cytokines and transcription factors were investigated by means of quantitative PCR assay. The presence of CD3(+), CD8(+), CD4(+), CD1c(+), gammadelta T-cell receptor(+), and major histocompatibility complex II(+) cells in duodenal epithelium and lamina propria were determined. The expression of Th1-, Th2-, and Treg-related genes in dogs with CFH and healthy control dogs was similar. Although clinical signs disappeared, there was no effect of the elimination diet on cytokines, transcription factors, or cellular phenotypes. No change in T-cell phenotypes or a distinct Th1, Th2, or Treg profile was detected in the duodenum of dogs with only cutaneous clinical signs of food hypersensitivity. This suggested that the intestinal mucosa is not the primary site of T-cell activation that eventually leads to cutaneous food hypersensitivity.
Hedera, P; Toriello, H; Petty, E
2002-01-01
Methods: Six affected family members underwent a complete medical genetics physical examination and two affected subjects had skeletal survey. All available medical records were reviewed. Linkage analysis using the markers spanning the TCOF1 locus was performed. One typically affected family member had a high resolution karyotype. Results: Affected subjects had significant craniofacial abnormalities without any significant acral changes and thus had a phenotype consistent with a MFD variant. Distinctive features included hypoplasia of the zygomatic complex, micrognathia with malocclusion, auricular abnormalities with conductive hearing loss, and ptosis. Significantly negative two point lod scores were obtained for markers spanning the TCOF1 locus, excluding the possibility that the disease in our kindred is allelic with TCS. High resolution karyotype was normal. Conclusions: We report a kindred with a novel type of MFD that is not linked to the TCOF1 locus and is also clinically distinct from other types of AD MFD. Identification of additional families will facilitate identification of the gene causing this type of AD MFD and further characterisation of the clinical phenotype. PMID:12114479
LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes
Binks, Sophie N M; Klein, Christopher J; Waters, Patrick; Pittock, Sean J; Irani, Sarosh R
2018-01-01
Recent biochemical observations have helped redefine antigenic components within the voltage-gated potassium channel (VGKC) complex. The related autoantibodies may be now divided into likely pathogenic entities, which target the extracellular domains of leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2), and species that target intracellular neuronal components and are likely non-pathogenic. This distinction has enhanced clinical practice as direct determination of LGI1 and CASPR2 antibodies offers optimal sensitivity and specificity. In this review, we describe and compare the clinical features associated with pathogenic LGI1 and CASPR2 antibodies, illustrate emerging laboratory techniques for antibody determination and describe the immunological mechanisms that may mediate antibody-induced pathology. We highlight marked clinical overlaps between patients with either LGI1 or CASPR2 antibodies that include frequent focal seizures, prominent amnesia, dysautonomia, neuromyotonia and neuropathic pain. Although occurring at differing rates, these commonalities are striking and only faciobrachial dystonic seizures reliably differentiate these two conditions. Furthermore, the coexistence of both LGI1 and CASPR2 antibodies in an individual occurs surprisingly frequently. Patients with either antibody respond well to immunotherapies, although systematic studies are required to determine the magnitude of the effect beyond placebo. Finally, data have suggested that CASPR2 and LGI1 modulation via genetic or autoimmune mechanisms may share common intermediate molecules. Taken together, the biochemical distinction of antigenic targets has led to important clinical advances for patient care. However, the striking syndrome similarities, coexistence of two otherwise rare antibodies and molecular insights suggest the VGKC complex may yet be a common functional effector of antibody action. Hence, we argue for a molecular evolution alongside a clinical and phenotypic re-evaluation. PMID:29055902
Defining the clinical course of multiple sclerosis
Reingold, Stephen C.; Cohen, Jeffrey A.; Cutter, Gary R.; Sørensen, Per Soelberg; Thompson, Alan J.; Wolinsky, Jerry S.; Balcer, Laura J.; Banwell, Brenda; Barkhof, Frederik; Bebo, Bruce; Calabresi, Peter A.; Clanet, Michel; Comi, Giancarlo; Fox, Robert J.; Freedman, Mark S.; Goodman, Andrew D.; Inglese, Matilde; Kappos, Ludwig; Kieseier, Bernd C.; Lincoln, John A.; Lubetzki, Catherine; Miller, Aaron E.; Montalban, Xavier; O'Connor, Paul W.; Petkau, John; Pozzilli, Carlo; Rudick, Richard A.; Sormani, Maria Pia; Stüve, Olaf; Waubant, Emmanuelle; Polman, Chris H.
2014-01-01
Accurate clinical course descriptions (phenotypes) of multiple sclerosis (MS) are important for communication, prognostication, design and recruitment of clinical trials, and treatment decision-making. Standardized descriptions published in 1996 based on a survey of international MS experts provided purely clinical phenotypes based on data and consensus at that time, but imaging and biological correlates were lacking. Increased understanding of MS and its pathology, coupled with general concern that the original descriptors may not adequately reflect more recently identified clinical aspects of the disease, prompted a re-examination of MS disease phenotypes by the International Advisory Committee on Clinical Trials of MS. While imaging and biological markers that might provide objective criteria for separating clinical phenotypes are lacking, we propose refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression. Strategies for future research to better define phenotypes are also outlined. PMID:24871874
Pillai, S G; Tang, Y; van den Oord, E; Klotsman, M; Barnes, K; Carlsen, K; Gerritsen, J; Lenney, W; Silverman, M; Sly, P; Sundy, J; Tsanakas, J; von Berg, A; Whyte, M; Ortega, H G; Anderson, W H; Helms, P J
2008-03-01
Asthma is a clinically heterogeneous disease caused by a complex interaction between genetic susceptibility and diverse environmental factors. In common with other complex diseases the lack of a standardized scheme to evaluate the phenotypic variability poses challenges in identifying the contribution of genes and environments to disease expression. To determine the minimum number of sets of features required to characterize subjects with asthma which will be useful in identifying important genetic and environmental contributors. Methods Probands aged 7-35 years with physician diagnosed asthma and symptomatic siblings were identified in 1022 nuclear families from 11 centres in six countries forming the Genetics of Asthma International Network. Factor analysis was used to identify distinct phenotypes from questionnaire, clinical, and laboratory data, including baseline pulmonary function, allergen skin prick test (SPT). Five distinct factors were identified:(1) baseline pulmonary function measures [forced expiratory volume in 1 s (FEV(1)) and forced vital capacity (FVC)], (2) specific allergen sensitization by SPT, (3) self-reported allergies, (4) symptoms characteristic of rhinitis and (5) symptoms characteristic of asthma. Replication in symptomatic siblings was consistent with shared genetic and/or environmental effects, and was robust across age groups, gender, and centres. Cronbach's alpha ranged from 0.719 to 0.983 suggesting acceptable internal scale consistencies. Derived scales were correlated with serum IgE, methacholine PC(20), age and asthma severity (interrupted sleep). IgE correlated with all three atopy-related factors, the strongest with the SPT factor whereas severity only correlated with baseline lung function, and with symptoms characteristic of rhinitis and of asthma. In children and adolescents with established asthma, five distinct sets of correlated patient characteristics appear to represent important aspects of the disease. Factor scores as quantitative traits may be better phenotypes in epidemiological and genetic analyses than those categories derived from the presence or absence of combinations of +ve SPTs and/or elevated IgE.
Next generation phenotyping using narrative reports in a rare disease clinical data warehouse.
Garcelon, Nicolas; Neuraz, Antoine; Salomon, Rémi; Bahi-Buisson, Nadia; Amiel, Jeanne; Picard, Capucine; Mahlaoui, Nizar; Benoit, Vincent; Burgun, Anita; Rance, Bastien
2018-05-31
Secondary use of data collected in Electronic Health Records opens perspectives for increasing our knowledge of rare diseases. The clinical data warehouse (named Dr. Warehouse) at the Necker-Enfants Malades Children's Hospital contains data collected during normal care for thousands of patients. Dr. Warehouse is oriented toward the exploration of clinical narratives. In this study, we present our method to find phenotypes associated with diseases of interest. We leveraged the frequency and TF-IDF to explore the association between clinical phenotypes and rare diseases. We applied our method in six use cases: phenotypes associated with the Rett, Lowe, Silver Russell, Bardet-Biedl syndromes, DOCK8 deficiency and Activated PI3-kinase Delta Syndrome (APDS). We asked domain experts to evaluate the relevance of the top-50 (for frequency and TF-IDF) phenotypes identified by Dr. Warehouse and computed the average precision and mean average precision. Experts concluded that between 16 and 39 phenotypes could be considered as relevant in the top-50 phenotypes ranked by descending frequency discovered by Dr. Warehouse (resp. between 11 and 41 for TF-IDF). Average precision ranges from 0.55 to 0.91 for frequency and 0.52 to 0.95 for TF-IDF. Mean average precision was 0.79. Our study suggests that phenotypes identified in clinical narratives stored in Electronic Health Record can provide rare disease specialists with candidate phenotypes that can be used in addition to the literature. Clinical Data Warehouses can be used to perform Next Generation Phenotyping, especially in the context of rare diseases. We have developed a method to detect phenotypes associated with a group of patients using medical concepts extracted from free-text clinical narratives.
Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10.
Pingault, Veronique; Pierre-Louis, Laurence; Chaoui, Asma; Verloes, Alain; Sarrazin, Elisabeth; Brandberg, Goran; Bondurand, Nadege; Uldall, Peter; Manouvrier-Hanu, Sylvie
2014-09-01
Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS. © 2014 Wiley Periodicals, Inc.
Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10
Pingault, Veronique; Pierre-Louis, Laurence; Chaoui, Asma; Verloes, Alain; Sarrazin, Elisabeth; Brandberg, Goran; Bondurand, Nadege; Uldall, Peter; Manouvrier-Hanu, Sylvie
2014-01-01
Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS. PMID:24845202
Grosso, Salvatore; Carluccio, Maria Alessandra; Cardaioli, Elena; Cerase, Alfonso; Malandrini, Alessandro; Romano, Chiara; Federico, Antonio; Dotti, Maria Teresa
2017-03-01
Complex I deficiency is the most common energy generation disorder which may clinically present at any age with a wide spectrum of symptoms and signs. The T10158C mutation ND3 gene is rare and occurs in patients showing an early rapid neurological deterioration invariably leading to death after a few months. We report a 9year-old boy with a mtDNA T10158C mutation showing a mild MELAS-like phenotype and brain MRI features congruent with both MELAS and Leigh syndrome. Epilepsia partialis continua also occurred in the clinical course and related to a mild cortical atrophy of the left perisylvian area. The present case confirms that the clinical spectrum of Complex I deficiency related to T10158C mutation ND3 gene is wider than previously described. Our observation further suggests that testing mutation in the MT-ND3 gene should be included in the diagnostic work-up of patients presenting with epilepsia partialis continua accompanied by suspicion of mitochondrial disorder. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Cognition, dopamine and bioactive lipids in schizophrenia
Condray, Ruth; Yao, Jeffrey K.
2011-01-01
Schizophrenia is a remarkably complex disorder with a multitude of behavioral and biological perturbations. Cognitive deficits are a core feature of this disorder, and involve abnormalities across multiple domains, including memory, attention, and perception. The complexity of this debilitating illness has led to a view that the key to unraveling its pathophysiology lies in deconstructing the clinically-defined syndrome into pathophysiologically distinct intermediate phenotypes. Accumulating evidence suggests that one of these intermediate phenotypes may involve phospholipid signaling abnormalities, particularly in relation to arachidonic acid (AA). Our data show relationships between levels of AA and performance on tests of cognition for schizophrenia patients, with defects in AA signaling associated with deficits in cognition. Moreover, dopamine may moderate these relationships between AA and cognition. Taken together, cognitive deficits, dopaminergic neurotransmission, and bioactive lipids have emerged as related features of schizophrenia. Existing treatment options for cognitive deficits in schizophrenia do not specifically target lipid-derived signaling pathways; understanding these processes could inform efforts to identify novel targets for treatment innovation. PMID:21196378
Combining clinical and genomics queries using i2b2 – Three methods
Murphy, Shawn N.; Avillach, Paul; Bellazzi, Riccardo; Phillips, Lori; Gabetta, Matteo; Eran, Alal; McDuffie, Michael T.; Kohane, Isaac S.
2017-01-01
We are fortunate to be living in an era of twin biomedical data surges: a burgeoning representation of human phenotypes in the medical records of our healthcare systems, and high-throughput sequencing making rapid technological advances. The difficulty representing genomic data and its annotations has almost by itself led to the recognition of a biomedical “Big Data” challenge, and the complexity of healthcare data only compounds the problem to the point that coherent representation of both systems on the same platform seems insuperably difficult. We investigated the capability for complex, integrative genomic and clinical queries to be supported in the Informatics for Integrating Biology and the Bedside (i2b2) translational software package. Three different data integration approaches were developed: The first is based on Sequence Ontology, the second is based on the tranSMART engine, and the third on CouchDB. These novel methods for representing and querying complex genomic and clinical data on the i2b2 platform are available today for advancing precision medicine. PMID:28388645
Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation
Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan
2016-01-01
Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747
Pantazatos, Spiro P.; Li, Jianrong; Pavlidis, Paul; Lussier, Yves A.
2009-01-01
An approach towards heterogeneous neuroscience dataset integration is proposed that uses Natural Language Processing (NLP) and a knowledge-based phenotype organizer system (PhenOS) to link ontology-anchored terms to underlying data from each database, and then maps these terms based on a computable model of disease (SNOMED CT®). The approach was implemented using sample datasets from fMRIDC, GEO, The Whole Brain Atlas and Neuronames, and allowed for complex queries such as “List all disorders with a finding site of brain region X, and then find the semantically related references in all participating databases based on the ontological model of the disease or its anatomical and morphological attributes”. Precision of the NLP-derived coding of the unstructured phenotypes in each dataset was 88% (n = 50), and precision of the semantic mapping between these terms across datasets was 98% (n = 100). To our knowledge, this is the first example of the use of both semantic decomposition of disease relationships and hierarchical information found in ontologies to integrate heterogeneous phenotypes across clinical and molecular datasets. PMID:20495688
Protein Interactome of Muscle Invasive Bladder Cancer
Bhat, Akshay; Heinzel, Andreas; Mayer, Bernd; Perco, Paul; Mühlberger, Irmgard; Husi, Holger; Merseburger, Axel S.; Zoidakis, Jerome; Vlahou, Antonia; Schanstra, Joost P.; Mischak, Harald; Jankowski, Vera
2015-01-01
Muscle invasive bladder carcinoma is a complex, multifactorial disease caused by disruptions and alterations of several molecular pathways that result in heterogeneous phenotypes and variable disease outcome. Combining this disparate knowledge may offer insights for deciphering relevant molecular processes regarding targeted therapeutic approaches guided by molecular signatures allowing improved phenotype profiling. The aim of the study is to characterize muscle invasive bladder carcinoma on a molecular level by incorporating scientific literature screening and signatures from omics profiling. Public domain omics signatures together with molecular features associated with muscle invasive bladder cancer were derived from literature mining to provide 286 unique protein-coding genes. These were integrated in a protein-interaction network to obtain a molecular functional map of the phenotype. This feature map educated on three novel disease-associated pathways with plausible involvement in bladder cancer, namely Regulation of actin cytoskeleton, Neurotrophin signalling pathway and Endocytosis. Systematic integration approaches allow to study the molecular context of individual features reported as associated with a clinical phenotype and could potentially help to improve the molecular mechanistic description of the disorder. PMID:25569276
Taylor, Chelsea; Commander, Clayton W.; Collaco, Joseph M.; Strug, Lisa J.; Li, Weili; Wright, Fred A.; Webel, Aaron D.; Pace, Rhonda G.; Stonebraker, Jaclyn R.; Naughton, Kathleen; Dorfman, Ruslan; Sandford, Andrew; Blackman, Scott M.; Berthiaume, Yves; Paré, Peter; Drumm, Mitchell L.; Zielenski, Julian; Durie, Peter; Cutting, Garry R.; Knowles, Michael R.; Corey, Mary
2011-01-01
SUMMARY Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment. Using data from the North American Cystic Fibrosis Modifier Consortium (Canadian Consortium for CF Genetic Studies, Johns Hopkins University CF Twin and Sibling Study, and University of North Carolina/Case Western Reserve University Gene Modifier Study), the authors calculated age-specific CF percentile values of FEV1 which were adjusted for CF age-specific mortality data. The phenotype was computed for 2061 patients representing the Canadian CF population, 1137 extreme phenotype patients in the UNC/Case Western study, and 1323 patients from multiple CF sib families in the CF Twin and Sibling Study. Despite differences in ascertainment and median age, our phenotype score was distributed in all three samples in a manner consistent with ascertainment differences, reflecting the lung disease severity of each individual in the underlying population. The new phenotype score was highly correlated with the previously recommended complex phenotype, but the new phenotype is more robust for shorter follow-up and for extreme ages. A disease progression and mortality adjusted phenotype reduces the need for stratification or additional covariates, increasing statistical power and avoiding possible distortions. This approach will facilitate large scale genetic and environmental epidemiological studies which will provide targeted therapeutic pathways for the clinical benefit of patients with CF. PMID:21462361
Prioritizing Genetic Testing in Patients With Kallmann Syndrome Using Clinical Phenotypes
Costa-Barbosa, Flavia Amanda; Balasubramanian, Ravikumar; Keefe, Kimberly W.; Shaw, Natalie D.; Al-Tassan, Nada; Plummer, Lacey; Dwyer, Andrew A.; Buck, Cassandra L.; Choi, Jin-Ho; Seminara, Stephanie B.; Quinton, Richard; Monies, Dorota; Meyer, Brian; Hall, Janet E.; Pitteloud, Nelly
2013-01-01
Context: The complexity of genetic testing in Kallmann syndrome (KS) is growing and costly. Thus, it is important to leverage the clinical evaluations of KS patients to prioritize genetic screening. Objective: The objective of the study was to determine which reproductive and nonreproductive phenotypes of KS subjects have implications for specific gene mutations. Subjects: Two hundred nineteen KS patients were studied: 151 with identified rare sequence variants (RSVs) in 8 genes known to cause KS (KAL1, NELF, CHD7, HS6ST1, FGF8/FGFR1, or PROK2/PROKR2) and 68 KS subjects who remain RSV negative for all 8 genes. Main Outcome Measures: Reproductive and nonreproductive phenotypes within each genetic group were measured. Results: Male KS subjects with KAL1 RSVs displayed the most severe reproductive phenotype with testicular volumes (TVs) at presentation of 1.5 ± 0.1 mL vs 3.7 ± 0.3 mL, P < .05 vs all non-KAL1 probands. In both sexes, synkinesia was enriched but not unique to patients with KAL1 RSVs compared with KAL1-negative probands (43% vs 12%; P < .05). Similarly, dental agenesis and digital bone abnormalities were enriched in patients with RSVs in the FGF8/FGFR1 signaling pathway compared with all other gene groups combined (39% vs 4% and 23% vs 0%; P < .05, respectively). Hearing loss marked the probands with CHD7 RSVs (40% vs 13% in non-CHD7 probands; P < .05). Renal agenesis and cleft lip/palate did not emerge as statistically significant phenotypic predictors. Conclusions: Certain clinical features in men and women are highly associated with genetic causes of KS. Synkinesia (KAL1), dental agenesis (FGF8/FGFR1), digital bony abnormalities (FGF8/FGFR1), and hearing loss (CHD7) can be useful for prioritizing genetic screening. PMID:23533228
Low, K J; Stals, K; Caswell, R; Wakeling, M; Clayton-Smith, J; Donaldson, A; Foulds, N; Norman, A; Splitt, M; Urankar, K; Vijayakumar, K; Majumdar, A; Study, Ddd; Ellard, S; Smithson, S F
2018-06-01
CHN is genetically heterogeneous and its genetic basis is difficult to determine on features alone. CNTNAP1 encodes CASPR, integral in the paranodal junction high molecular mass complex. Nineteen individuals with biallelic variants have been described in association with severe congenital hypomyelinating neuropathy, respiratory compromise, profound intellectual disability and death within the first year. We report 7 additional patients ascertained through exome sequencing. We identified 9 novel CNTNAP1 variants in 6 families: three missense variants, four nonsense variants, one frameshift variant and one splice site variant. Significant polyhydramnios occurred in 6/7 pregnancies. Severe respiratory compromise was seen in 6/7 (tracheostomy in 5). A complex neurological phenotype was seen in all patients who had marked brain hypomyelination/demyelination and profound developmental delay. Additional neurological findings included cranial nerve compromise: orobulbar dysfunction in 5/7, facial nerve weakness in 4/7 and vocal cord paresis in 5/7. Dystonia occurred in 2/7 patients and limb contractures in 5/7. All had severe gastroesophageal reflux, and a gastrostomy was required in 5/7. In contrast to most previous reports, only one patient died in the first year of life. Protein modelling was performed for all detected CNTNAP1 variants. We propose a genotype-phenotype correlation, whereby hypomorphic missense variants partially ameliorate the phenotype, prolonging survival. This study suggests that biallelic variants in CNTNAP1 cause a distinct recognisable syndrome, which is not caused by other genes associated with CHN. Neonates presenting with this phenotype will benefit from early genetic definition to inform clinical management and enable essential genetic counselling for their families.
Zeng, Ling-Hui; Rensing, Nicholas R; Zhang, Bo; Gutmann, David H; Gambello, Michael J; Wong, Michael
2011-02-01
Tuberous Sclerosis Complex (TSC) is an autosomal dominant, multi-system disorder, typically involving severe neurological symptoms, such as epilepsy, cognitive deficits and autism. Two genes, TSC1 and TSC2, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Although there is a substantial overlap in the clinical phenotype produced by TSC1 and TSC2 mutations, accumulating evidence indicates that TSC2 mutations cause more severe neurological manifestations than TSC1 mutations. In this study, the neurological phenotype of a novel mouse model involving conditional inactivation of the Tsc2 gene in glial-fibrillary acidic protein (GFAP)-positive cells (Tsc2(GFAP1)CKO mice) was characterized and compared with previously generated Tsc1(GFAP1)CKO mice. Similar to Tsc1(GFAP1)CKO mice, Tsc2(GFAP1)CKO mice exhibited epilepsy, premature death, progressive megencephaly, diffuse glial proliferation, dispersion of hippocampal pyramidal cells and decreased astrocyte glutamate transporter expression. However, Tsc2(GFAP1)CKO mice had an earlier onset and higher frequency of seizures, as well as significantly more severe histological abnormalities, compared with Tsc1(GFAP1)CKO mice. The differences between Tsc1(GFAP1)CKO and Tsc2(GFAP1)CKO mice were correlated with higher levels of mammalian target of rapamycin (mTOR) activation in Tsc2(GFAP1)CKO mice and were reversed by the mTOR inhibitor, rapamycin. These findings provide novel evidence in mouse models that Tsc2 mutations intrinsically cause a more severe neurological phenotype than Tsc1 mutations and suggest that the difference in phenotype may be related to the degree to which Tsc1 and Tsc2 inactivation causes abnormal mTOR activation.
γ-Secretase Heterogeneity in the Aph1 Subunit: Relevance for Alzheimer’s Disease
Serneels, Lutgarde; Van Biervliet, Jérôme; Craessaerts, Katleen; Dejaegere, Tim; Horré, Katrien; Van Houtvin, Tine; Esselmann, Hermann; Paul, Sabine; Schäfer, Martin K.; Berezovska, Oksana; Hyman, Bradley T.; Sprangers, Ben; Sciot, Raf; Moons, Lieve; Jucker, Mathias; Yang, Zhixiang; May, Patrick C.; Karran, Eric; Wiltfang, Jens; D’Hooge, Rudi; De Strooper, Bart
2009-01-01
The γ-secretase complex plays a role in Alzheimer’s disease (AD) and cancer progression. The development of clinical useful inhibitors, however, is complicated by the role of the γ-secretase complex in regulated intramembrane proteolysis of Notch and other essential proteins. Different γ-secretase complexes containing different Presenilin or Aph1 protein subunits are present in various tissues. Here we show that these complexes have heterogeneous biochemical and physiological properties. Specific inactivation of the Aph1B γ-secretase in a murine Alzheimer’s disease model led to improvements of Alzheimer’s disease-relevant phenotypic features without any Notch-related side effects. The Aph1B complex contributes to total γ-secretase activity in the human brain, thus specific targeting of Aph1B-containing γ-secretase complexes may be helpful in generating less toxic therapies for Alzheimer’s disease. PMID:19299585
Hope, Elyse A.; Dunham, Maitreya J.
2014-01-01
The ability of yeast to form biofilms contributes to better survival under stressful conditions. We see the impact of yeast biofilms and “flocs” (clumps) in human health and industry, where forming clumps enables yeast to act as a natural filter in brewing and forming biofilms enables yeast to remain virulent in cases of fungal infection. Despite the importance of biofilms in yeast natural isolates, the majority of our knowledge about yeast biofilm genetics comes from work with a few tractable laboratory strains. A new collection of sequenced natural isolates from the Saccharomyces Genome Resequencing Project enabled us to examine the breadth of biofilm-related phenotypes in geographically, ecologically, and genetically diverse strains of Saccharomyces cerevisiae. We present a panel of 31 haploid and 24 diploid strains for which we have characterized six biofilm-related phenotypes: complex colony morphology, complex mat formation, flocculation, agar invasion, polystyrene adhesion, and psuedohyphal growth. Our results show that there is extensive phenotypic variation between and within strains, and that these six phenotypes are primarily uncorrelated or weakly correlated, with the notable exception of complex colony and complex mat formation. We also show that the phenotypic strength of these strains varies significantly depending on ploidy, and the diploid strains demonstrate both decreased and increased phenotypic strength with respect to their haploid counterparts. This is a more complex view of the impact of ploidy on biofilm-related phenotypes than previous work with laboratory strains has suggested, demonstrating the importance and enormous potential of working with natural isolates of yeast. PMID:25060625
Hope, Elyse A; Dunham, Maitreya J
2014-07-24
The ability of yeast to form biofilms contributes to better survival under stressful conditions. We see the impact of yeast biofilms and "flocs" (clumps) in human health and industry, where forming clumps enables yeast to act as a natural filter in brewing and forming biofilms enables yeast to remain virulent in cases of fungal infection. Despite the importance of biofilms in yeast natural isolates, the majority of our knowledge about yeast biofilm genetics comes from work with a few tractable laboratory strains. A new collection of sequenced natural isolates from the Saccharomyces Genome Resequencing Project enabled us to examine the breadth of biofilm-related phenotypes in geographically, ecologically, and genetically diverse strains of Saccharomyces cerevisiae. We present a panel of 31 haploid and 24 diploid strains for which we have characterized six biofilm-related phenotypes: complex colony morphology, complex mat formation, flocculation, agar invasion, polystyrene adhesion, and psuedohyphal growth. Our results show that there is extensive phenotypic variation between and within strains, and that these six phenotypes are primarily uncorrelated or weakly correlated, with the notable exception of complex colony and complex mat formation. We also show that the phenotypic strength of these strains varies significantly depending on ploidy, and the diploid strains demonstrate both decreased and increased phenotypic strength with respect to their haploid counterparts. This is a more complex view of the impact of ploidy on biofilm-related phenotypes than previous work with laboratory strains has suggested, demonstrating the importance and enormous potential of working with natural isolates of yeast. Copyright © 2014 Hope and Dunham.
San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul
2014-12-01
Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.
Tumor-associated macrophages: implications in cancer immunotherapy.
Petty, Amy J; Yang, Yiping
2017-03-01
Tumor-associated macrophages (TAMs), representing most of the leukocyte population in solid tumors, demonstrate great phenotypic heterogeneity and diverse functional capabilities under the influence of the local tumor microenvironment. These anti-inflammatory and protumorigenic macrophages modulate the local microenvironment to facilitate tumor growth and metastasis. In this review, we examine the origin of TAMs and the complex regulatory networks within the tumor microenvironment that facilitate the polarization of TAMs toward a protumoral phenotype. More extensively, we evaluate the mechanisms by which TAMs mediate angiogenesis, metastasis, chemotherapeutic resistance and immune evasion. Lastly, we will highlight novel interventional strategies targeting TAMs in preclinical studies and in early clinical trials that have significant potential in improving efficacy of current chemotherapeutic and/or immunotherapeutic approaches.
Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis.
Goutman, Stephen A; Chen, Kevin S; Paez-Colasante, Ximena; Feldman, Eva L
2018-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive, noncurable neurodegenerative disorder of the upper and lower motor neurons causing weakness and death within a few years of symptom onset. About 10% of patients with ALS have a family history of the disease; however, ALS-associated genetic mutations are also found in sporadic cases. There are over 100 ALS-associated mutations, and importantly, several genetic mutations, including C9ORF72, SOD1, and TARDBP, have led to mechanistic insight into this complex disease. In the clinical realm, knowledge of ALS genetics can also help explain phenotypic heterogeneity, aid in genetic counseling, and in the future may help direct treatment efforts. Copyright © 2018 Elsevier B.V. All rights reserved.
Logroscino, Giancarlo; Capozzo, Rosa; Tortelli, Rosanna; Marin, Benoît
2016-01-01
The investigator is faced with several challenges when planning a randomized clinical trial (RCT). In the early phase, issues are particularly challenging for RCTs in neurodegenerative disorders (NDD). At the time of inclusion in the study, an early and accurate diagnosis is mandatory. Variability of diagnostic criteria, mostly based on clinical grounds, lag time between onset and enrolment, and phenotypic heterogeneity are the main drivers of diagnostic complexity. High-quality data in terms of diagnostic reliability, phenotypic description, follow-up, and evaluation of outcomes are key determinants and are highly conditioned by the expertise of the investigators and center recruitment rate. Representativeness of NDD patients is mandatory to postulate the generalizability of the results of RCTs. There is, however, a systematic selection bias in terms of age (more likely to be younger), sex (more likely to be male), ethnicity (more likely to be of European/Caucasian origin), and other prognostic factors (more likely to be favorable). In the publication phase, researchers need to report properly all of the main features of the RCT. Consolidated Standards of Reporting Trials (CONSORT) facilitates the report and interpretation of RCTs, but adherence to these guidelines needs to be improved. Several issues discussed in this review may alter the internal and external validity of an RCT. To date, the impact on phenotype at study entry has often been overlooked. A differential effect of the selection of subjects and of specific clinical and nonclinical features needs to be systematically explored in the RCT planning phase. © 2016 S. Karger AG, Basel.
GNAO1 encephalopathy: Broadening the phenotype and evaluating treatment and outcome.
Danti, Federica Rachele; Galosi, Serena; Romani, Marta; Montomoli, Martino; Carss, Keren J; Raymond, F Lucy; Parrini, Elena; Bianchini, Claudia; McShane, Tony; Dale, Russell C; Mohammad, Shekeeb S; Shah, Ubaid; Mahant, Neil; Ng, Joanne; McTague, Amy; Samanta, Rajib; Vadlamani, Gayatri; Valente, Enza Maria; Leuzzi, Vincenzo; Kurian, Manju A; Guerrini, Renzo
2017-04-01
To describe better the motor phenotype, molecular genetic features, and clinical course of GNAO1 -related disease. We reviewed clinical information, video recordings, and neuroimaging of a newly identified cohort of 7 patients with de novo missense and splice site GNAO1 mutations, detected by next-generation sequencing techniques. Patients first presented in early childhood (median age of presentation 10 months, range 0-48 months), with a wide range of clinical symptoms ranging from severe motor and cognitive impairment with marked choreoathetosis, self-injurious behavior, and epileptic encephalopathy to a milder phenotype, featuring moderate developmental delay associated with complex stereotypies, mainly facial dyskinesia and mild epilepsy. Hyperkinetic movements were often exacerbated by specific triggers, such as voluntary movement, intercurrent illnesses, emotion, and high ambient temperature, leading to hospital admissions. Most patients were resistant to drug intervention, although tetrabenazine was effective in partially controlling dyskinesia for 2/7 patients. Emergency deep brain stimulation (DBS) was life saving in 1 patient, resulting in immediate clinical benefit with complete cessation of violent hyperkinetic movements. Five patients had well-controlled epilepsy and 1 had drug-resistant seizures. Structural brain abnormalities, including mild cerebral atrophy and corpus callosum dysgenesis, were evident in 5 patients. One patient had a diffuse astrocytoma (WHO grade II), surgically removed at age 16. Our findings support the causative role of GNAO1 mutations in an expanded spectrum of early-onset epilepsy and movement disorders, frequently exacerbated by specific triggers and at times associated with self-injurious behavior. Tetrabenazine and DBS were the most useful treatments for dyskinesia.
Watmuff, Bradley; Berkovitch, Shaunna S; Huang, Joanne H; Iaconelli, Jonathan; Toffel, Steven; Karmacharya, Rakesh
2016-06-01
Schizophrenia and bipolar disorder are complex psychiatric disorders that present unique challenges in the study of disease biology. There are no objective biological phenotypes for these disorders, which are characterized by complex genetics and prominent roles for gene-environment interactions. The study of the neurobiology underlying these severe psychiatric disorders has been hindered by the lack of access to the tissue of interest - neurons from patients. The advent of reprogramming methods that enable generation of induced pluripotent stem cells (iPSCs) from patient fibroblasts and peripheral blood mononuclear cells has opened possibilities for new approaches to study relevant disease biology using iPSC-derived neurons. While early studies with patient iPSCs have led to promising and intriguing leads, significant hurdles remain in our attempts to capture the complexity of these disorders in vitro. We present here an overview of studies to date of schizophrenia and bipolar disorder using iPSC-derived neuronal cells and discuss potential future directions that can result in the identification of robust and valid cellular phenotypes that in turn can lay the groundwork for meaningful clinical advances. Copyright © 2016 Elsevier Inc. All rights reserved.
Clinical Applications of Molecular Genetic Discoveries
Marian, A.J.
2015-01-01
Genome-wide association studies (GWAS) of complex traits have mapped more than 15,000 common single nucleotide variants (SNVs). Likewise, applications of massively parallel nucleic acid sequencing technologies often referred to as Next Generation Sequencing, to molecular genetic studies of complex traits have catalogued a large number of rare variants (population frequency of <0.01) in cases with complex traits. Moreover, high throughput nucleic acid sequencing, variant burden analysis, and linkage studies are illuminating the presence of large number of SNVs in cases and families with single gene disorders. The plethora of the genetic variants has exposed the formidable challenge of identifying the causal and pathogenic variants from the enormous number of innocuous common and rare variants that exist in the population as well as in an individual genome. The arduous task of identifying the causal and pathogenic variants is further compounded by the pleiotropic effects of the variants, complexity of cis and trans interactions in the genome, variability in phenotypic expression of the disease, as well as phenotypic plasticity, and the multifarious determinants of the phenotype. Population genetic studies offer the initial roadmaps and have the potential to elucidate novel pathways involved in the pathogenesis of the disease. However, the genome of an individual is unique, rendering unambiguous identification of the causal or pathogenic variant in a single individual exceedingly challenging. Yet, the focus of the practice of medicine is on the individual, as Sir William Osler elegantly expressed in his insightful quotation: “The good physician treats the disease; the great physician treats the patient who has the disease.” The daunting task facing physicians, patients, and researchers alike is to apply the modern genetic discoveries to care of the individual with or at risk of the disease. PMID:26548329
Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary
2014-10-01
The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.
Application of Genetic/Genomic Approaches to Allergic Disorders
Baye, Tesfaye M.; Martin, Lisa J.; Khurana Hershey, Gurjit K.
2010-01-01
Completion of the human genome project and rapid progress in genetics and bioinformatics have enabled the development of large public databases, which include genetic and genomic data linked to clinical health data. With the massive amount of information available, clinicians and researchers have the unique opportunity to complement and integrate their daily practice with the existing resources to clarify the underlying etiology of complex phenotypes such as allergic diseases. The genome itself is now often utilized as a starting point for many studies and multiple innovative approaches have emerged applying genetic/genomic strategies to key questions in the field of allergy and immunology. There have been several successes, which have uncovered new insights into the biologic underpinnings of allergic disorders. Herein, we will provide an in depth review of genomic approaches to identifying genes and biologic networks involved in allergic diseases. We will discuss genetic and phenotypic variation, statistical approaches for gene discovery, public databases, functional genomics, clinical implications, and the challenges that remain. PMID:20638111
Hu, Qiwen; Peng, Huagang; Rao, Xiancai
2016-01-01
Vancomycin has been used as the last resort in the clinical treatment of serious Staphylococcus aureus infections. Vancomycin-intermediate S. aureus (VISA) was discovered almost two decades ago. Aside from the vancomycin-intermediate phenotype, VISA strains from the clinic or laboratory exhibited common characteristics, such as thickened cell walls, reduced autolysis, and attenuated virulence. However, the genetic mechanisms responsible for the reduced vancomycin susceptibility in VISA are varied. The comparative genomics of vancomycin-susceptible S. aureus (VSSA)/VISA pairs showed diverse genetic mutations in VISA; only a small number of these mutations have been experimentally verified. To connect the diversified genotypes and common phenotypes in VISA, we reviewed the genetic alterations in the relative determinants, including mutations in the vraTSR, graSR, walKR, stk1/stp1, rpoB, clpP, and cmk genes. Especially, we analyzed the mechanism through which diverse mutations mediate vancomycin resistance. We propose a unified model that integrates diverse gene functions and complex biochemical processes in VISA upon the action of vancomycin. PMID:27790199
Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss
Jeney, Viktória
2017-01-01
Diseases/conditions with diverse etiology, such as hemoglobinopathies, hereditary hemochromatosis and menopause, could lead to chronic iron accumulation. This condition is frequently associated with a bone phenotype; characterized by low bone mass, osteoporosis/osteopenia, altered microarchitecture and biomechanics, and increased incidence of fractures. Osteoporotic bone phenotype constitutes a major complication in patients with iron overload. The purpose of this review is to summarize what we have learnt about iron overload-associated bone loss from clinical studies and animal models. Bone is a metabolically active tissue that undergoes continuous remodeling with the involvement of osteoclasts that resorb mineralized bone, and osteoblasts that form new bone. Growing evidence suggests that both increased bone resorption and decreased bone formation are involved in the pathological bone-loss in iron overload conditions. We will discuss the cellular and molecular mechanisms that are involved in this detrimental process. Fuller understanding of this complex mechanism may lead to the development of improved therapeutics meant to interrupt the pathologic effects of excess iron on bone. PMID:28270766
Mikobi, Tite M; Lukusa Tshilobo, Prosper; Aloni, Michel N; Akilimali, Pierre Z; Mvumbi-Lelo, Georges; Mbuyi-Muamba, Jean Marie
2017-11-01
The influence of phenotype on the clinical course and laboratory features of sickle cell anemia (SCA) is rarely described in sub-Saharan Africa. A cross-sectional study was conducted in Kinshasa. A clinical phenotype score was built up. The following definitions were applied: asymptomatic clinical phenotype (ACP; score≤5), moderate clinical phenotype (MCP; score between 6 and 15), and severe clinical phenotype (SCP; score≥16). ANOVA test were used to compare differences among categorical variables. We have studied 140 patients. The mean body mass index (BMI) value of three groups was lower (<25 kg/m 2 ) than the limit defining overweight. BMI of the subjects with ACP was significantly higher than those of other phenotypes (P<.05). Sickle cell patients with ACP have a high mean steady-state hemoglobin concentration compared to those with MCP and SCP (P<.001). A significant elevated baseline leukocyte count is associated with SCP (P<.001). Fetal Hemoglobin (HbF) was significantly higher in ACP. Significant elevation of alpha 1 and alpha 2 globulins in SCP were observed. In our study, fetal hemoglobin has an influence on the clinical severity and the biological parameters of SCA. The study provides data concerning the sickle cell anemia clinical and biological variability in our midst. © 2017 Wiley Periodicals, Inc.
Study of the relationship between tuberous sclerosis complex and autistic disorder.
Wong, Virginia
2006-03-01
There has been increasing awareness that there are behavioral phenotypes in tuberous sclerosis complex with neuropsychiatric symptom complex such as autistic disorder and attention-deficit hyperactivity disorder (ADHD). However, the neurobiologic basis of autistic disorder in tuberous sclerosis complex is still unknown. We studied two cohorts of children followed up since 1986 until 2003, one cohort with tuberous sclerosis complex and another cohort with autistic disorder, to determine the incidence of autistic disorder in tuberous sclerosis complex and the incidence of tuberous sclerosis complex in autistic disorder respectively. We established a Tuberous Sclerosis Complex Registry in 1985 at the University of Hong Kong. In 2004, 44 index cases (the male to female ratio was 0.75:1) were registered. Three had a positive family history of tuberous sclerosis complex. Thus, the total number of tuberous sclerosis complex cases was 47. We adopted the diagnostic criteria of tuberous sclerosis complex for case ascertainment. The period prevalence rate of tuberous sclerosis complex for children and adolescents aged < 20 years is 3.5 per 10,000 (on Hong Kong island, excluding the eastern region with 125,100 aged < 20 years in 2003). Of 44 cases with tuberous sclerosis complex, 7 had autistic disorder. Thus, the incidence of autistic disorder in tuberous sclerosis complex is 16%. During the 17-year period (1986-2003), we collected a database of 753 children (668 boys and 84 girls; male to female ratio 8:1) with autistic disorder and pervasive developmental disorders. For all children with autistic disorder or pervasive developmental disorders, we routinely examined for any features of tuberous sclerosis complex by looking for neurocutaneous markers such as depigmented spots, which appear in 50% of children with tuberous sclerosis complex by the age of 2 years. For those with infantile spasm or epilepsy, the clinical features of tuberous sclerosis complex were monitored regularly during follow-up. Of these, seven had tuberous sclerosis complex. Thus, the incidence of tuberous sclerosis complex in autistic disorder is 0.9%. All of these children are mentally retarded, with moderate to severe grades in an intellectual assessment conducted by a clinical psychologist. Future studies should be directed toward looking at the various behavioral phenotypes in tuberous sclerosis complex and defining these with standardized criteria to look for any real association with the underlying genetic mutation of TSC1 or TSC2 gene or even the site of tubers in the brain.
Autistic traits in children with ADHD index clinical and cognitive problems.
Cooper, Miriam; Martin, Joanna; Langley, Kate; Hamshere, Marian; Thapar, Anita
2014-01-01
Traits of autistic spectrum disorders (ASD) occur frequently in attention deficit hyperactivity disorder (ADHD), but the significance of their presence in terms of phenotype and underlying neurobiology is not properly understood. This analysis aimed to determine whether higher levels of autistic traits, as measured by the Social Communication Questionnaire (SCQ), index a more severe presentation in a large, rigorously phenotyped sample of children with ADHD (N=711). Regression analyses were used to examine association of SCQ scores with core ADHD features, clinical comorbidities and cognitive and developmental features, with adjustment for putative confounders. For outcomes showing association with total SCQ score, secondary analyses determined levels of differential association of the three ASD sub-domains. Results suggest that increasing ASD symptomatology within ADHD is associated with a more severe phenotype in terms of oppositional, conduct and anxiety symptoms, lower full-scale IQ, working memory deficits and general motor problems. These associations persisted after accounting for ADHD severity, suggesting that autistic symptomatology independently indexes the severity of comorbid impairments in the context of ADHD. Sub-domain scores did not show unique contributions to most outcomes, except that social deficits were independently associated with oppositional symptoms and repetitive behaviours independently predicted hyperactive-impulsive symptoms and motor problems. It would be worthwhile for clinicians to consider levels of socio-communicative and repetitive traits in those with ADHD who do not meet diagnostic criteria for ASD, as they index higher levels of phenotypic complexity, which may have implications for efficacy of interventions.
Martinelli, Paola; Cherukuri, Praveen F.; Teer, Jamie K.; Hansen, Nancy F.; Cruz, Pedro; Mullikin for the NISC Comparative Sequencing Program, James C.; Blakesley, Robert W.; Golas, Gretchen; Kwan, Justin; Sandler, Anthony; Fuentes Fajardo, Karin; Markello, Thomas; Tifft, Cynthia; Blackstone, Craig; Rugarli, Elena I.; Langer, Thomas; Gahl, William A.; Toro, Camilo
2011-01-01
We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias. PMID:22022284
Emerging molecular phenotypes of asthma
Ray, Anuradha; Oriss, Timothy B.
2014-01-01
Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years, both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology, and genetics. These combined characteristics have been used to define phenotypes of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. Identification of consistent clinical phenotypes has now been reported across studies. Now the addition of various 'omics and identification of specific molecular pathways have moved the concept of clinical phenotypes toward the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biological therapies. Thus the global term asthma is poised to become obsolete, being replaced by terms that more specifically identify the pathology associated with the disease. PMID:25326577
The molecular genetics of von Willebrand disease.
Berber, Ergül
2012-12-01
Quantitative and/or qualitative deficiency of von Willebrand factor (vWF) is associated with the most common inherited bleeding disease von Willebrand disease (vWD). vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD. None declared.
Hagen, Ferry; Lumbsch, H Thorsten; Arsic Arsenijevic, Valentina; Badali, Hamid; Bertout, Sebastien; Billmyre, R Blake; Bragulat, M Rosa; Cabañes, F Javier; Carbia, Mauricio; Chakrabarti, Arunaloke; Chaturvedi, Sudha; Chaturvedi, Vishnu; Chen, Min; Chowdhary, Anuradha; Colom, Maria-Francisca; Cornely, Oliver A; Crous, Pedro W; Cuétara, Maria S; Diaz, Mara R; Espinel-Ingroff, Ana; Fakhim, Hamed; Falk, Rama; Fang, Wenjie; Herkert, Patricia F; Ferrer Rodríguez, Consuelo; Fraser, James A; Gené, Josepa; Guarro, Josep; Idnurm, Alexander; Illnait-Zaragozi, María-Teresa; Khan, Ziauddin; Khayhan, Kantarawee; Kolecka, Anna; Kurtzman, Cletus P; Lagrou, Katrien; Liao, Wanqing; Linares, Carlos; Meis, Jacques F; Nielsen, Kirsten; Nyazika, Tinashe K; Pan, Weihua; Pekmezovic, Marina; Polacheck, Itzhack; Posteraro, Brunella; de Queiroz Telles, Flavio; Romeo, Orazio; Sánchez, Manuel; Sampaio, Ana; Sanguinetti, Maurizio; Sriburee, Pojana; Sugita, Takashi; Taj-Aldeen, Saad J; Takashima, Masako; Taylor, John W; Theelen, Bart; Tomazin, Rok; Verweij, Paul E; Wahyuningsih, Retno; Wang, Ping; Boekhout, Teun
2017-01-01
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii . In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature " C. neoformans species complex" and " C. gattii species complex." Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances.
Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease
Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.
2015-01-01
The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739
Gal, Moran; Levanon, Erez Y; Hujeirat, Yasir; Khayat, Morad; Pe'er, Jacob; Shalev, Stavit
2014-12-01
Developmental malformations of the vitreoretinal vasculature are a heterogeneous group of conditions with various modes of inheritance, and include familial exudative vitreoretinopathy (FEVR), persistent fetal vasculature (PFV), and Norrie disease. We investigated a large consanguineous kindred with multiple affected individuals exhibiting variable phenotypes of abnormal vitreoretinal vasculature, consistent with the three above-mentioned conditions and compatible with autosomal recessive inheritance. Exome sequencing identified a novel c.542G > T (p.C181F) apparently mutation in the TSPAN12 gene that segregated with the ocular disease in the family. The TSPAN12 gene was previously reported to cause dominant and recessive FEVR, but has not yet been associated with other vitreoretinal manifestations. The intra-familial clinical variability caused by a single mutation in the TSPAN12 gene underscores the complicated phenotype-genotype correlation of mutations in this gene, and suggests that there are additional genetic and environmental factors involved in the complex process of ocular vascularization during embryonic development. Our study supports considering PFV, FEVR, and Norrie disease a spectrum of disorders, with clinical and genetic overlap, caused by mutations in distinct genes acting in the Norrin/β-catenin signaling pathway. © 2014 Wiley Periodicals, Inc.
Iarossi, Giancarlo; Bertelli, Matteo; Maltese, Paolo Enrico; Gusson, Elena; Marchini, Giorgio; Bruson, Alice; Benedetti, Sabrina; Volpetti, Sabrina; Catena, Gino; Buzzonetti, Luca; Ziccardi, Lucia
2017-01-01
Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7-19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4 , LRP5 , TSPAN12 , and NDP . Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands ( NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family.
Marchini, Giorgio; Volpetti, Sabrina; Catena, Gino
2017-01-01
Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7–19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4, LRP5, TSPAN12, and NDP. Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands (NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family. PMID:28758032
Domínguez-Hüttinger, Elisa; Christodoulides, Panayiotis; Miyauchi, Kosuke; Irvine, Alan D; Okada-Hatakeyama, Mariko; Kubo, Masato; Tanaka, Reiko J
2017-06-01
The skin barrier acts as the first line of defense against constant exposure to biological, microbial, physical, and chemical environmental stressors. Dynamic interplay between defects in the skin barrier, dysfunctional immune responses, and environmental stressors are major factors in the development of atopic dermatitis (AD). A systems biology modeling approach can yield significant insights into these complex and dynamic processes through integration of prior biological data. We sought to develop a multiscale mathematical model of AD pathogenesis that describes the dynamic interplay between the skin barrier, environmental stress, and immune dysregulation and use it to achieve a coherent mechanistic understanding of the onset, progression, and prevention of AD. We mathematically investigated synergistic effects of known genetic and environmental risk factors on the dynamic onset and progression of the AD phenotype, from a mostly asymptomatic mild phenotype to a severe treatment-resistant form. Our model analysis identified a "double switch," with 2 concatenated bistable switches, as a key network motif that dictates AD pathogenesis: the first switch is responsible for the reversible onset of inflammation, and the second switch is triggered by long-lasting or frequent activation of the first switch, causing irreversible onset of systemic T H 2 sensitization and worsening of AD symptoms. Our mathematical analysis of the bistable switch predicts that genetic risk factors decrease the threshold of environmental stressors to trigger systemic T H 2 sensitization. This analysis predicts and explains 4 common clinical AD phenotypes from a mild and reversible phenotype through to severe and recalcitrant disease and provides a mechanistic explanation for clinically demonstrated preventive effects of emollient treatments against development of AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Overby, Casey Lynnette; Pathak, Jyotishman; Gottesman, Omri; Haerian, Krystl; Perotte, Adler; Murphy, Sean; Bruce, Kevin; Johnson, Stephanie; Talwalkar, Jayant; Shen, Yufeng; Ellis, Steve; Kullo, Iftikhar; Chute, Christopher; Friedman, Carol; Bottinger, Erwin; Hripcsak, George; Weng, Chunhua
2013-01-01
Objective To describe a collaborative approach for developing an electronic health record (EHR) phenotyping algorithm for drug-induced liver injury (DILI). Methods We analyzed types and causes of differences in DILI case definitions provided by two institutions—Columbia University and Mayo Clinic; harmonized two EHR phenotyping algorithms; and assessed the performance, measured by sensitivity, specificity, positive predictive value, and negative predictive value, of the resulting algorithm at three institutions except that sensitivity was measured only at Columbia University. Results Although these sites had the same case definition, their phenotyping methods differed by selection of liver injury diagnoses, inclusion of drugs cited in DILI cases, laboratory tests assessed, laboratory thresholds for liver injury, exclusion criteria, and approaches to validating phenotypes. We reached consensus on a DILI phenotyping algorithm and implemented it at three institutions. The algorithm was adapted locally to account for differences in populations and data access. Implementations collectively yielded 117 algorithm-selected cases and 23 confirmed true positive cases. Discussion Phenotyping for rare conditions benefits significantly from pooling data across institutions. Despite the heterogeneity of EHRs and varied algorithm implementations, we demonstrated the portability of this algorithm across three institutions. The performance of this algorithm for identifying DILI was comparable with other computerized approaches to identify adverse drug events. Conclusions Phenotyping algorithms developed for rare and complex conditions are likely to require adaptive implementation at multiple institutions. Better approaches are also needed to share algorithms. Early agreement on goals, data sources, and validation methods may improve the portability of the algorithms. PMID:23837993
Masseroli, Marco
2007-07-01
The growing available genomic information provides new opportunities for novel research approaches and original biomedical applications that can provide effective data management and analysis support. In fact, integration and comprehensive evaluation of available controlled data can highlight information patterns leading to unveil new biomedical knowledge. Here, we describe Genome Function INtegrated Discover (GFINDer), a Web-accessible three-tier multidatabase system we developed to automatically enrich lists of user-classified genes with several functional and phenotypic controlled annotations, and to statistically evaluate them in order to identify annotation categories significantly over- or underrepresented in each considered gene class. Genomic controlled annotations from Gene Ontology (GO), KEGG, Pfam, InterPro, and Online Mendelian Inheritance in Man (OMIM) were integrated in GFINDer and several categorical tests were implemented for their analysis. A controlled vocabulary of inherited disorder phenotypes was obtained by normalizing and hierarchically structuring disease accompanying signs and symptoms from OMIM Clinical Synopsis sections. GFINDer modular architecture is well suited for further system expansion and for sustaining increasing workload. Testing results showed that GFINDer analyses can highlight gene functional and phenotypic characteristics and differences, demonstrating its value in supporting genomic biomedical approaches aiming at understanding the complex biomolecular mechanisms underlying patho-physiological phenotypes, and in helping the transfer of genomic results to medical practice.
Carmona-Mora, P; Molina, J; Encina, C.A; Walz, K
2009-01-01
Each human's genome is distinguished by extra and missing DNA that can be “benign” or powerfully impact everything from development to disease. In the case of genomic disorders DNA rearrangements, such as deletions or duplications, correlate with a clinical specific phenotype. The clinical presentations of genomic disorders were thought to result from altered gene copy number of physically linked dosage sensitive genes. Genomic disorders are frequent diseases (~1 per 1,000 births). Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are genomic disorders, associated with a deletion and a duplication, of 3.7 Mb respectively, within chromosome 17 band p11.2. This region includes 23 genes. Both syndromes have complex and distinctive phenotypes including multiple congenital and neurobehavioral abnormalities. Human chromosome 17p11.2 is syntenic to the 32-34 cM region of murine chromosome 11. The number and order of the genes are highly conserved. In this review, we will exemplify how genomic disorders can be modeled in mice and the advantages that such models can give in the study of genomic disorders in particular and gene copy number variation (CNV) in general. The contributions of the SMS and PTLS animal models in several aspects ranging from more specific ones, as the definition of the clinical aspects of the human clinical spectrum, the identification of dosage sensitive genes related to the human syndromes, to the more general contributions as the definition of genetic locus impacting obesity and behavior and the elucidation of general mechanisms related to the pathogenesis of gene CNV are discussed. PMID:19949547
The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes.
Karaa, Amel; Goldstein, Amy
2015-02-01
Primary mitochondrial diseases refer to a group of heterogeneous and complex genetic disorders affecting 1:5000 people. The true prevalence is anticipated to be even higher because of the complexity of achieving a diagnosis in many patients who present with multisystemic complaints ranging from infancy to adulthood. Diabetes is a prominent feature of several of these disorders which might be overlooked by the endocrinologist. We here review mitochondrial disorders and describe the phenotypic and pathogenetic differences between mitochondrial diabetes mellitus (mDM) and other more common forms of diabetes mellitus. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Neurobehavioral phenotype in Prader-Willi syndrome.
Whittington, Joyce; Holland, Anthony
2010-11-15
The focus of this article is on the lifetime development of people with Prader-Willi syndrome (PWS) and specifically on the neurobehavioral phenotype. We consider studies of this aspect of the phenotype (the "behavioral phenotype" of the syndrome) that have confirmed that there are specific behaviors and psychiatric disorders, the propensities to which are increased in those with PWS, and cannot be accounted for by other variables such as IQ or adaptive behavior. Beginning with a description of what is observed in people with PWS, we review the evolving PWS phenotype and consider how some aspects of the phenotype might be best explained, and how this complex phenotype may relate to the equally complex genotype. We then consider in more detail some of the neurobehavioral aspects of the phenotype listed above that raise the greatest management problems for parents and carers. © 2010 Wiley-Liss, Inc.
Innovative approaches to bipolar disorder and its treatment
Cipriani, Andrea; Harmer, Catherine J.; Nobre, Anna C.; Saunders, Kate; Goodwin, Guy M.; Geddes, John R.
2016-01-01
All psychiatric disorders have suffered from a dearth of truly novel pharmacological interventions. In bipolar disorder, lithium remains a mainstay of treatment, six decades since its effects were serendipitously discovered. The lack of progress reflects several factors, including ignorance of the disorder's pathophysiology and the complexities of the clinical phenotype. After reviewing the current status, we discuss some ways forward. First, we highlight the need for a richer characterization of the clinical profile, facilitated by novel devices and new forms of data capture and analysis; such data are already promoting a reevaluation of the phenotype, with an emphasis on mood instability rather than on discrete clinical episodes. Second, experimental medicine can provide early indications of target engagement and therapeutic response, reducing the time, cost, and risk involved in evaluating potential mood stabilizers. Third, genomic data can inform target identification and validation, such as the increasing evidence for involvement of calcium channel genes in bipolar disorder. Finally, new methods and models relevant to bipolar disorder, including stem cells and genetically modified mice, are being used to study key pathways and drug effects. A combination of these approaches has real potential to break the impasse and deliver genuinely new treatments. PMID:27111134
Addressing phenoconversion: the Achilles' heel of personalized medicine
Shah, Rashmi R; Smith, Robert L
2015-01-01
Phenoconversion is a phenomenon that converts genotypic extensive metabolizers (EMs) into phenotypic poor metabolizers (PMs) of drugs, thereby modifying their clinical response to that of genotypic PMs. Phenoconversion, usually resulting from nongenetic extrinsic factors, has a significant impact on the analysis and interpretation of genotype-focused clinical outcome association studies and personalizing therapy in routine clinical practice. The high phenotypic variability or genotype–phenotype mismatch, frequently observed due to phenoconversion within the genotypic EM population, means that the real number of phenotypic PM subjects may be greater than predicted from their genotype alone, because many genotypic EMs would be phenotypically PMs. If the phenoconverted population with genotype–phenotype mismatch, most extensively studied for CYP2D6, is as large as the evidence suggests, there is a real risk that genotype-focused association studies, typically correlating only the genotype with clinical outcomes, may miss clinically strong pharmacogenetic associations, thus compromising any potential for advancing the prospects of personalized medicine. This review focuses primarily on co-medication-induced phenoconversion and discusses potential approaches to rectify some of the current shortcomings. It advocates routine phenotyping of subjects in genotype-focused association studies and proposes a new nomenclature to categorize study populations. Even with strong and reliable data associating patients' genotypes with clinical outcome(s), there are problems clinically in applying this knowledge into routine pharmacotherapy because of potential genotype–phenotype mismatch. Drug-induced phenoconversion during routine clinical practice remains a major public health issue. Therefore, the principal challenges facing personalized medicine, which need to be addressed, include identification of the following factors: (i) drugs that are susceptible to phenoconversion; (ii) co-medications that can cause phenoconversion; and (iii) dosage amendments that need to be applied during and following phenoconversion. PMID:24913012
Symonds, Joseph D; Joss, Shelagh; Metcalfe, Kay A; Somarathi, Suresh; Cruden, Jamie; Devlin, Anita M; Donaldson, Alan; DiDonato, Nataliya; Fitzpatrick, David; Kaiser, Frank J; Lampe, Anne K; Lees, Melissa M; McLellan, Ailsa; Montgomery, Tara; Mundada, Vivek; Nairn, Lesley; Sarkar, Ajoy; Schallner, Jens; Pozojevic, Jelena; Parenti, Ilaria; Tan, Jeen; Turnpenny, Peter; Whitehouse, William P; Zuberi, Sameer M
2017-04-01
The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. Female cases with de novo truncation mutations in SMC1A were identified from the Deciphering Developmental Disorders (DDD) study (n = 8), from postmortem testing of an affected twin (n = 1), and from clinical testing with an epilepsy gene panel (n = 1). Detailed information on the phenotype in each case was obtained. Ten cases with heterozygous de novo mutations in the SMC1A gene are presented. All 10 mutations identified are predicted to result in premature truncation of the SMC1A protein. All cases are female, and none had a clinical diagnosis of CdLS. They presented with onset of epileptic seizures between <4 weeks and 28 months of age. In the majority of cases, a marked preponderance for seizures to occur in clusters was noted. Seizure clusters were associated with developmental regression. Moderate or severe developmental impairment was apparent in all cases. Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.
Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E
2014-05-01
Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.
Towards improving phenotype representation in OWL
2012-01-01
Background Phenotype ontologies are used in species-specific databases for the annotation of mutagenesis experiments and to characterize human diseases. The Entity-Quality (EQ) formalism is a means to describe complex phenotypes based on one or more affected entities and a quality. EQ-based definitions have been developed for many phenotype ontologies, including the Human and Mammalian Phenotype ontologies. Methods We analyze formalizations of complex phenotype descriptions in the Web Ontology Language (OWL) that are based on the EQ model, identify several representational challenges and analyze potential solutions to address these challenges. Results In particular, we suggest a novel, role-based approach to represent relational qualities such as concentration of iron in spleen, discuss its ontological foundation in the General Formal Ontology (GFO) and evaluate its representation in OWL and the benefits it can bring to the representation of phenotype annotations. Conclusion Our analysis of OWL-based representations of phenotypes can contribute to improving consistency and expressiveness of formal phenotype descriptions. PMID:23046625
The Qatar genome project: translation of whole-genome sequencing into clinical practice.
Zayed, Hatem
2016-10-01
Qatar Genome Project was launched in 2013 with the intent to sequence the genome of each Qatari citizen in an effort to protect Qataris from the high rate of indigenous genetic diseases by allowing the mapping of disease-causing variants/rare variants and establishing a Qatari reference genome. Indeed, this project is expected to have numerous global benefits because the elevated homogeneity of the Qatari population, that will make Qatar an excellent genetic laboratory that will generate a wealth of data that will allow us to make sense of the genotype-phenotype correlations of many diseases, especially the complex multifactorial diseases, and will pave the way for changing the traditional medical practice of looking first at the phenotype rather than the genotype. © 2016 John Wiley & Sons Ltd.
Systems and precision medicine approaches to diabetes heterogeneity: a Big Data perspective.
Capobianco, Enrico
2017-12-01
Big Data, and in particular Electronic Health Records, provide the medical community with a great opportunity to analyze multiple pathological conditions at an unprecedented depth for many complex diseases, including diabetes. How can we infer on diabetes from large heterogeneous datasets? A possible solution is provided by invoking next-generation computational methods and data analytics tools within systems medicine approaches. By deciphering the multi-faceted complexity of biological systems, the potential of emerging diagnostic tools and therapeutic functions can be ultimately revealed. In diabetes, a multidimensional approach to data analysis is needed to better understand the disease conditions, trajectories and the associated comorbidities. Elucidation of multidimensionality comes from the analysis of factors such as disease phenotypes, marker types, and biological motifs while seeking to make use of multiple levels of information including genetics, omics, clinical data, and environmental and lifestyle factors. Examining the synergy between multiple dimensions represents a challenge. In such regard, the role of Big Data fuels the rise of Precision Medicine by allowing an increasing number of descriptions to be captured from individuals. Thus, data curations and analyses should be designed to deliver highly accurate predicted risk profiles and treatment recommendations. It is important to establish linkages between systems and precision medicine in order to translate their principles into clinical practice. Equivalently, to realize their full potential, the involved multiple dimensions must be able to process information ensuring inter-exchange, reducing ambiguities and redundancies, and ultimately improving health care solutions by introducing clinical decision support systems focused on reclassified phenotypes (or digital biomarkers) and community-driven patient stratifications.
Ellis, Matthew J; Gillette, Michael; Carr, Steven A; Paulovich, Amanda G; Smith, Richard D; Rodland, Karin K; Townsend, R Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel C
2013-10-01
The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verification using targeted mass spectrometry methods. ©2013 AACR.
Identification of Acinetobacter seifertii isolated from Bolivian hospitals.
Cerezales, Mónica; Xanthopoulou, Kyriaki; Ertel, Julia; Nemec, Alexandr; Bustamante, Zulema; Seifert, Harald; Gallego, Lucia; Higgins, Paul G
2018-06-01
Acinetobacter seifertii is a recently described species that belongs to the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. It has been recovered from clinical samples and is sometimes associated with antimicrobial resistance determinants. We present here the case of three A. seifertii clinical isolates which were initially identified as Acinetobacter sp. by phenotypic methods but no identification at the species level was achieved using semi-automated identification methods. The isolates were further analysed by whole genome sequencing and identified as A. seifertii. Due to the fact that A. seifertii has been isolated from serious infections such as respiratory tract and bloodstream infections, we emphasize the importance of correctly identifying isolates of the genus Acinetobacter at the species level to gain a deeper knowledge of their prevalence and clinical impact.
Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E.
Semplicini, Claudio; Vissing, John; Dahlqvist, Julia R; Stojkovic, Tanya; Bello, Luca; Witting, Nanna; Duno, Morten; Leturcq, France; Bertolin, Cinzia; D'Ambrosio, Paola; Eymard, Bruno; Angelini, Corrado; Politano, Luisa; Laforêt, Pascal; Pegoraro, Elena
2015-04-28
To determine the clinical spectrum of limb-girdle muscular dystrophy 2E (LGMD2E) and to investigate whether genetic or biochemical features can predict the phenotype of the disease. All LGMD2E patients followed in participating centers were included. A specific clinical protocol was created, including quantitative evaluation of motor, respiratory, and cardiac function. Phenotype was defined as severe or mild if the age at loss of ambulation occurred before or after 18 years. Molecular analysis of SGCB gene and biochemical features of muscle biopsies were reviewed. Thirty-two patients were included (16 male, 16 female; age 7-67 years; 15 severe, 12 mild, and 5 unknown). Neurologic examination showed proximal muscle weakness in all patients, but distal involvement was also observed in patients with severe disease early in the disease course. Cardiac involvement was observed in 20 patients (63%) even before overt muscle involvement. Six patients had restrictive respiratory insufficiency requiring assisted ventilation (19%). Seventeen different mutations were identified, and 3 were recurrent. The c.377_384dup (13 alleles) was associated with the severe form, the c.-22_10dup (10) with the milder form, and the c.341C>T (9) with both. The entire sarcoglycan complex was undetectable by muscle immunohistochemistry or Western blot in 9/10 severe cases and reduced in 7/7 mild cases. The residual amount of sarcoglycan in muscle resulted a predictor of age at loss of ambulation. This study expands the spectrum of phenotype in β-sarcoglycanopathy and provides strong evidence that severity of clinical involvement may be predicted by SGCB gene mutation and sarcoglycan protein expression. © 2015 American Academy of Neurology.
Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E
Semplicini, Claudio; Vissing, John; Dahlqvist, Julia R.; Stojkovic, Tanya; Bello, Luca; Witting, Nanna; Duno, Morten; Leturcq, France; Bertolin, Cinzia; D'Ambrosio, Paola; Eymard, Bruno; Angelini, Corrado; Politano, Luisa
2015-01-01
Objective: To determine the clinical spectrum of limb-girdle muscular dystrophy 2E (LGMD2E) and to investigate whether genetic or biochemical features can predict the phenotype of the disease. Methods: All LGMD2E patients followed in participating centers were included. A specific clinical protocol was created, including quantitative evaluation of motor, respiratory, and cardiac function. Phenotype was defined as severe or mild if the age at loss of ambulation occurred before or after 18 years. Molecular analysis of SGCB gene and biochemical features of muscle biopsies were reviewed. Results: Thirty-two patients were included (16 male, 16 female; age 7–67 years; 15 severe, 12 mild, and 5 unknown). Neurologic examination showed proximal muscle weakness in all patients, but distal involvement was also observed in patients with severe disease early in the disease course. Cardiac involvement was observed in 20 patients (63%) even before overt muscle involvement. Six patients had restrictive respiratory insufficiency requiring assisted ventilation (19%). Seventeen different mutations were identified, and 3 were recurrent. The c.377_384dup (13 alleles) was associated with the severe form, the c.-22_10dup (10) with the milder form, and the c.341C>T (9) with both. The entire sarcoglycan complex was undetectable by muscle immunohistochemistry or Western blot in 9/10 severe cases and reduced in 7/7 mild cases. The residual amount of sarcoglycan in muscle resulted a predictor of age at loss of ambulation. Conclusions: This study expands the spectrum of phenotype in β-sarcoglycanopathy and provides strong evidence that severity of clinical involvement may be predicted by SGCB gene mutation and sarcoglycan protein expression. PMID:25862795
McPherson, Andrew S.; Dhungyel, Om P.
2017-01-01
ABSTRACT Dichelobacter nodosus is a fastidious, strictly anaerobic bacterium, an obligate parasite of the ruminant hoof, and the essential causative agent of virulent ovine footrot. The clinical disease results from a complex interplay between the pathogen, the environment, and the host. Sheep flocks diagnosed with virulent but not benign footrot in Australia may be quarantined and required to undergo a compulsory eradication program, with costs met by the farmer. Virulence of D. nodosus at least partially depends on the elaboration of a protease encoded by aprV2 and manifests as elastase activity. Laboratory virulence tests are used to assist diagnosis because clinical differentiation of virulent and benign footrot can be challenging during the early stages of disease or when the disease is not fully expressed due to unfavorable pasture conditions. Using samples collected from foot lesions from 960 sheep from 40 flocks in four different geographic regions, we evaluated the analytical characteristics of qPCR tests for the protease gene alleles aprV2 and aprB2, and compared these with results from phenotypic protease (elastase and gelatin gel) tests. There was a low level of agreement between clinical diagnosis and quantitative PCR (qPCR) test outcomes at both the flock and sample levels and poor agreement between qPCR test outcomes and the results of phenotypic virulence tests. The diagnostic specificity of the qPCR test was low at both the flock and individual swab levels (31.3% and 18.8%, respectively). By contrast, agreement between the elastase test and clinical diagnosis was high at both the flock level (diagnostic sensitivity [DSe], 100%; diagnostic specificity [DSp], 78.6%) and the isolate level (DSe, 69.5%; DSp, 80.5%). PMID:28202796
McPherson, Andrew S; Dhungyel, Om P; Whittington, Richard J
2017-05-01
Dichelobacter nodosus is a fastidious, strictly anaerobic bacterium, an obligate parasite of the ruminant hoof, and the essential causative agent of virulent ovine footrot. The clinical disease results from a complex interplay between the pathogen, the environment, and the host. Sheep flocks diagnosed with virulent but not benign footrot in Australia may be quarantined and required to undergo a compulsory eradication program, with costs met by the farmer. Virulence of D. nodosus at least partially depends on the elaboration of a protease encoded by aprV2 and manifests as elastase activity. Laboratory virulence tests are used to assist diagnosis because clinical differentiation of virulent and benign footrot can be challenging during the early stages of disease or when the disease is not fully expressed due to unfavorable pasture conditions. Using samples collected from foot lesions from 960 sheep from 40 flocks in four different geographic regions, we evaluated the analytical characteristics of qPCR tests for the protease gene alleles aprV2 and aprB2 , and compared these with results from phenotypic protease (elastase and gelatin gel) tests. There was a low level of agreement between clinical diagnosis and quantitative PCR (qPCR) test outcomes at both the flock and sample levels and poor agreement between qPCR test outcomes and the results of phenotypic virulence tests. The diagnostic specificity of the qPCR test was low at both the flock and individual swab levels (31.3% and 18.8%, respectively). By contrast, agreement between the elastase test and clinical diagnosis was high at both the flock level (diagnostic sensitivity [DSe], 100%; diagnostic specificity [DSp], 78.6%) and the isolate level (DSe, 69.5%; DSp, 80.5%). Copyright © 2017 McPherson et al.
Novel throughput phenotyping platforms in plant genetic studies.
Montes, Juan M; Melchinger, Albrecht E; Reif, Jochen C
2007-10-01
Unraveling the genetic basis of complex traits in plants is limited by the lack of appropriate phenotyping platforms that enable high-throughput screening of many genotypes in multilocation field trials. Near-infrared spectroscopy on agricultural harvesters and spectral reflectance of plant canopies have recently been reported as promising components of novel phenotyping platforms. Understanding the genetic basis of complex traits is now within reach with the use of these new techniques.
Neisseria meningitidis; clones, carriage, and disease.
Read, R C
2014-05-01
Neisseria meningitidis, the cause of meningococcal disease, has been the subject of sophisticated molecular epidemiological investigation as a consequence of the significant public health threat posed by this organism. The use of multilocus sequence typing and whole genome sequencing classifies the organism into clonal complexes. Extensive phenotypic, genotypic and epidemiological information is available on the PubMLST website. The human nasopharynx is the sole ecological niche of this species, and carrier isolates show extensive genetic diversity as compared with hyperinvasive lineages. Horizontal gene exchange and recombinant events within the meningococcal genome during residence in the human nasopharynx result in antigenic diversity even within clonal complexes, so that individual clones may express, for example, more than one capsular polysaccharide (serogroup). Successful clones are capable of wide global dissemination, and may be associated with explosive epidemics of invasive disease. © 2014 The Author Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Marian, Ali J.; van Rooij, Eva; Roberts, Robert
2016-01-01
This is the first of 2 review papers on genetics and genomics appearing as part of the series on “omics.” Genomics pertains to all components of an organism’s genes, whereas genetics involves analysis of a specific gene(s) in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper. PMID:28007145
Prader-Willi Syndrome: Clinical Aspects
Elena, Grechi; Bruna, Cammarata; Benedetta, Mariani; Stefania, Di Candia; Giuseppe, Chiumello
2012-01-01
Prader-Willi Syndrome (PWS) is a complex multisystem genetic disorder that shows great variability, with changing clinical features during a patient's life. The syndrome is due to the loss of expression of several genes encoded on the proximal long arm of chromosome 15 (15q11.2–q13). The complex phenotype is most probably caused by a hypothalamic dysfunction that is responsible for hormonal dysfunctions and for absence of the sense of satiety. For this reason a Prader-Willi (PW) child develops hyperphagia during the initial stage of infancy that can lead to obesity and its complications. During infancy many PW child display a range of behavioural problems that become more noticeable in adolescence and adulthood and interfere mostly with quality of life. Early diagnosis of PWS is important for effective long-term management, and a precocious multidisciplinary approach is fundamental to improve quality of life, prevent complications, and prolong life expectancy. PMID:23133744
[Complex heterogeneity phenotypes and genotypes of glutaric aciduria type 1].
Wang, Qiao; Yang, Yan-Ling
2016-05-01
Glutaric aciduria type 1 is a rare autosomal recessive disorder. GCDH gene mutations cause glutaryl-CoA dehydrogenase deficiency and accumulation of glutaric acid and 3-hydroxyglutaric acid, resulting in damage of striatum and other brain nucleus and neurodegeneration. Patients with glutaric aciduria type 1 present with complex heterogeneous phenotypes and genotypes. The symptoms are extremely variable. The ages of the clinical onset of the patients range from the fetus period to adulthood. The patients with mild glutaric aciduria type 1 are almost asymptomatic before onset, however, severe glutaric aciduria type 1 may cause death or disability due to acute encephalopathy. Acute metabolic crisis in patients with underlying glutaric aciduria type 1 is often triggered by febrile illnesses, trauma, hunger, high-protein foods and vaccination during a vulnerable period of brain development in infancy or early childhood. The early-onset patients usually have a poor prognosis. Urinary organic acids analysis, blood acylcarnitines analysis and GCDH study are important for the diagnosis of this disorder. Neonatal screening is essential for the early diagnosis and the improvement of prognosis.
[Differentiation of species within the Mycobacterium tuberculosis complex by molecular techniques].
Herrera-León, Laura; Pozuelo-Díaz, Rodolfo; Molina Moreno, Tamara; Valverde Cobacho, Azucena; Saiz Vega, Pilar; Jiménez Pajares, María Soledad
2009-11-01
The Mycobacterium tuberculosis complex includes the following species: Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium bovis-BCG, Mycobacterium microti, Mycobacterium caprae, Mycobacterium pinnipedii, and Mycobacterium canettii. These species cause tuberculosis in humans and animals. Identification of mycobacterial strains has classically been performed by phenotype study. Over the last years, laboratories have developed several molecular techniques to differentiate between these species. The aim of this study is to evaluate these methods and develop a simple, fast, identification scheme. We analyzed 251 strains randomly obtained from the strains studied in 2004, and 797 strains received by the Reference Laboratory between 2005 and 2007. Phenotype characterization of 4183 strains isolated during that period was done by studying the colony morphology, characteristics in culture, nitrate reduction, niacin accumulation, and growth in the presence of thiophen-2-carboxylic acid hydrazide 10 microg/mL and pyrazinamide 50 microg/mL. The molecular identification scheme designed was as follows: 1) gyrB PCR-RFLP with RsaI, TaqI or SacII and hsp65 RFLP/PCR with HhaI., and 2) multiplex-PCR to determine the presence/absence of the RD9 and RD1 regions. The results showed 100% agreement between phenotype study and the molecular scheme. This molecular identification scheme is a simple and fast method, with 100% sensitivity and specificity, that can be implemented in most clinical laboratories at a low cost.
Luna-Sánchez, Marta; Díaz-Casado, Elena; Barca, Emanuele; Tejada, Miguel Ángel; Montilla-García, Ángeles; Cobos, Enrique Javier; Escames, Germaine; Acuña-Castroviejo, Dario; Quinzii, Catarina M; López, Luis Carlos
2015-01-01
Primary coenzyme Q10 (CoQ10) deficiency is due to mutations in genes involved in CoQ biosynthesis. The disease has been associated with five major phenotypes, but a genotype–phenotype correlation is unclear. Here, we compare two mouse models with a genetic modification in Coq9 gene (Coq9Q95X and Coq9R239X), and their responses to 2,4-dihydroxybenzoic acid (2,4-diHB). Coq9R239X mice manifest severe widespread CoQ deficiency associated with fatal encephalomyopathy and respond to 2,4-diHB increasing CoQ levels. In contrast, Coq9Q95X mice exhibit mild CoQ deficiency manifesting with reduction in CI+III activity and mitochondrial respiration in skeletal muscle, and late-onset mild mitochondrial myopathy, which does not respond to 2,4-diHB. We show that these differences are due to the levels of COQ biosynthetic proteins, suggesting that the presence of a truncated version of COQ9 protein in Coq9R239X mice destabilizes the CoQ multiprotein complex. Our study points out the importance of the multiprotein complex for CoQ biosynthesis in mammals, which may provide new insights to understand the genotype–phenotype heterogeneity associated with human CoQ deficiency and may have a potential impact on the treatment of this mitochondrial disorder. PMID:25802402
Directed evolution and synthetic biology applications to microbial systems.
Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T
2016-06-01
Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bueno, Anibal; Rodríguez-López, Rocío; Reyes-Palomares, Armando; Rojano, Elena; Corpas, Manuel; Nevado, Julián; Lapunzina, Pablo; Sánchez-Jiménez, Francisca; Ranea, Juan A G
2018-06-26
Copy number variations (CNVs) are genomic structural variations (deletions, duplications, or translocations) that represent the 4.8-9.5% of human genome variation in healthy individuals. In some cases, CNVs can also lead to disease, being the etiology of many known rare genetic/genomic disorders. Despite the last advances in genomic sequencing and diagnosis, the pathological effects of many rare genetic variations remain unresolved, largely due to the low number of patients available for these cases, making it difficult to identify consistent patterns of genotype-phenotype relationships. We aimed to improve the identification of statistically consistent genotype-phenotype relationships by integrating all the genetic and clinical data of thousands of patients with rare genomic disorders (obtained from the DECIPHER database) into a phenotype-patient-genotype tripartite network. Then we assessed how our network approach could help in the characterization and diagnosis of novel cases in clinical genetics. The systematic approach implemented in this work is able to better define the relationships between phenotypes and specific loci, by exploiting large-scale association networks of phenotypes and genotypes in thousands of rare disease patients. The application of the described methodology facilitated the diagnosis of novel clinical cases, ranking phenotypes by locus specificity and reporting putative new clinical features that may suggest additional clinical follow-ups. In this work, the proof of concept developed over a set of novel clinical cases demonstrates that this network-based methodology might help improve the precision of patient clinical records and the characterization of rare syndromes.
Božić-Antić, Ivana; Ilić, Dušan; Bjekić-Macut, Jelica; Bogavac, Tamara; Vojnović-Milutinović, Danijela; Kastratovic-Kotlica, Biljana; Milić, Nataša; Stanojlović, Olivera; Andrić, Zoran; Macut, Djuro
2016-12-01
There are limited data on cardiometabolic risk factors and the prevalence of metabolic syndrome (MetS) across the different PCOS phenotypes in Caucasian population. Lipid accumulation product (LAP) is a clinical surrogate marker that could be used for evaluation of MetS in clinical practice. The aim of the study was to analyze metabolic characteristics and the ability of LAP to predict MetS in different PCOS phenotypes. Cross-sectional clinical study analyzing 365 women with PCOS divided into four phenotypes according to the ESHRE/ASRM criteria, and 125 healthy BMI-matched controls. In all subjects, LAP was determined and MetS was diagnosed according to the National Cholesterol Education Program/Adult Treatment Panel III (NCEP-ATP III), the International Diabetes Federation (IDF) and the Joint Interim Statement (JIS) criteria. Logistic regression and ROC curve analyses were used to determine predictors of MetS in each PCOS phenotype. All analyses were performed with age and BMI adjustment. All PCOS phenotypes in comparison to controls had higher prevalence of MetS assessed by NCEP-ATP III criteria, and only classic phenotypes when IDF and JIS criteria were used. All phenotypes had the same prevalence of MetS irrespective of used definition. LAP and exhibited the highest diagnostic accuracy and was an independent predictor of MetS in all phenotypes. LAP is an independent and accurate clinical determinant of MetS in all PCOS phenotypes in our Caucasian population. All PCOS phenotypes, including non-classic ones, are metabolically challenged and with cardiovascular risk, particularly phenotype B. © 2016 European Society of Endocrinology.
Piccini, Barbara; Artuso, Rosangela; Lenzi, Lorenzo; Guasti, Monica; Braccesi, Giulia; Barni, Federica; Casalini, Emilio; Giglio, Sabrina; Toni, Sonia
2016-11-01
Correct diagnosis of Maturity-Onset Diabetes of the Young (MODY) is based on genetic tests requiring an appropriate subject selection by clinicians. Mutations in the insulin (INS) gene rarely occur in patients with MODY. This study is aimed at determining the genetic background and clinical phenotype in patients with suspected MODY. 34 patients with suspected MODY, negative for mutations in the GCK, HNF1α, HNF4α, HNF1β and PDX1 genes, were screened by next generation sequencing (NGS). A heterozygous INS mutation was identified in 4 members of the same family. First genetic tests performed identified two heterozygous silent nucleotide substitutions in MODY3/HNF1α gene. An ineffective attempt to suspend insulin therapy, administering repaglinide and sulphonylureas, was made. DNA was re-sequenced by NGS investigating a set of 102 genes. Genes implicated in the pathway of pancreatic β-cells, candidate genes for type 2 diabetes mellitus and genes causative of diabetes in mice were selected. A novel heterozygous variant in human preproinsulin INS gene (c.125T > C) was found in the affected family members. The new INS mutation broadens the spectrum of possible INS phenotypes. Screening for INS mutations is warranted not only in neonatal diabetes but also in MODYx patients and in selected patients with type 1 diabetes mellitus negative for autoantibodies. Subjects with complex diseases without a specific phenotype should be studied by NGS because Sanger sequencing is ineffective and time consuming in detecting rare variants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Li, Feng; Yao, Li; Wu, Hong; Cao, Shihong
2016-09-01
To discuss the manifestations of endocrine and metabolism for polycystic ovary syndrome patients with different phenotype. This study selected 226 cases of Rotterdam Standard diagnosed polycystic ovary syndrome patients in People's Hospital of Zhengzhou from October 2013 to February 2015. The control group was the 100 cases of non hyperandrogen menstrual women as the control group. Polycystic ovary syndrome included 4 phenotype: /or anovulatio (O) combined with hyperandrogenism (H) and polycystic ovary morphology (P), phenotype of O and P, phenotype of H and P, and phenotype of O and P. All patients were detected for the clinical endocrine and metabolism related parameters. The phenotype of O and P occupied 55.8%, it had significant difference on the comparison between control group and the luteinizing hormone (LH) and luteinizing hormone/follicle stimulating hormone (LH/FSH) of phenotype of O, H and P, phenotype of O and H and phenotype of O and P; the testosterone (T) of phenotype of O,H and P and phenotype of O and H was apparently higher than phenotype of O and P and control group; The total cholesterol (TC) and triglyceride (TG) in phenotype of O, H and P was greatly higher than phenotype of O and P and control group. The phenotype of O and P was the most common phenotype in PCOS patients. It was same for the clinical endocrine and metabolism of two classic characteristics in PCOS. Compared to other PCOS phenotype, the metabolism in phenotype of O and P was lower. The phenotype classification of PCOS patients could better guide clinical individualized treatment in patients with PCOS.
Magnetic resonance imaging features of complex Chiari malformation variant of Chiari 1 malformation.
Moore, Hannah E; Moore, Kevin R
2014-11-01
Complex Chiari malformation is a subgroup of Chiari 1 malformation with distinct imaging features. Children with complex Chiari malformation are reported to have a more severe clinical phenotype and sometimes require more extensive surgical treatment than those with uncomplicated Chiari 1 malformation. We describe reported MR imaging features of complex Chiari malformation and evaluate the utility of craniometric parameters and qualitative anatomical observations for distinguishing complex Chiari malformation from uncomplicated Chiari 1 malformation. We conducted a retrospective search of the institutional imaging database using the keywords "Chiari" and "Chiari 1" to identify children imaged during the 2006-2011 time period. Children with Chiari 2 malformation were excluded after imaging review. We used the first available diagnostic brain or cervical spine MR study for data measurement. Standard measurements and observations were made of obex level (mm), cerebellar tonsillar descent (mm), perpendicular distance to basion-C2 line (pB-C2, mm), craniocervical angle (degrees), clivus length, and presence or absence of syringohydromyelia, basilar invagination and congenital craniovertebral junction osseous anomalies. After imaging review, we accessed the institutional health care clinical database to determine whether each subject clinically met criteria for Chiari 1 malformation or complex Chiari malformation. Obex level and craniocervical angle measurements showed statistically significant differences between the populations with complex Chiari malformation and uncomplicated Chiari 1 malformation. Cerebellar tonsillar descent and perpendicular distance to basion-C2 line measurements trended toward but did not meet statistical significance. Odontoid retroflexion, craniovertebral junction osseous anomalies, and syringohydromyelia were all observed proportionally more often in children with complex Chiari malformation than in those with Chiari 1 malformation. Characteristic imaging features of complex Chiari malformation, especially obex level, permit its distinction from the more common uncomplicated Chiari 1 malformation.
Delineation of C12orf65-related phenotypes: a genotype-phenotype relationship.
Spiegel, Ronen; Mandel, Hanna; Saada, Ann; Lerer, Issy; Burger, Ayala; Shaag, Avraham; Shalev, Stavit A; Jabaly-Habib, Haneen; Goldsher, Dorit; Gomori, John M; Lossos, Alex; Elpeleg, Orly; Meiner, Vardiella
2014-08-01
C12orf65 participates in the process of mitochondrial translation and has been shown to be associated with a spectrum of phenotypes, including early onset optic atrophy, progressive encephalomyopathy, peripheral neuropathy, and spastic paraparesis.We used whole-genome homozygosity mapping as well as exome sequencing and targeted gene sequencing to identify novel C12orf65 disease-causing mutations in seven affected individuals originating from two consanguineous families. In four family members affected with childhood-onset optic atrophy accompanied by slowly progressive peripheral neuropathy and spastic paraparesis, we identified a homozygous frame shift mutation c.413_417 delAACAA, which predicts a truncated protein lacking the C-terminal portion. In the second family, we studied three affected individuals who presented with early onset optic atrophy, peripheral neuropathy, and spastic gait in addition to moderate intellectual disability. Muscle biopsy in two of the patients revealed decreased activities of the mitochondrial respiratory chain complexes I and IV. In these patients, we identified a homozygous splice mutation, g.21043 T>A (c.282+2 T>A) which leads to skipping of exon 2. Our study broadens the phenotypic spectrum of C12orf65 defects and highlights the triad of optic atrophy, axonal neuropathy and spastic paraparesis as its key clinical features. In addition, a clear genotype-phenotype correlation is anticipated in which deleterious mutations which disrupt the GGQ-containing domain in the first coding exon are expected to result in a more severe phenotype, whereas down-stream C-terminal mutations may result in a more favorable phenotype, typically lacking cognitive impairment.
The multiscale backbone of the human phenotype network based on biological pathways.
Darabos, Christian; White, Marquitta J; Graham, Britney E; Leung, Derek N; Williams, Scott M; Moore, Jason H
2014-01-25
Networks are commonly used to represent and analyze large and complex systems of interacting elements. In systems biology, human disease networks show interactions between disorders sharing common genetic background. We built pathway-based human phenotype network (PHPN) of over 800 physical attributes, diseases, and behavioral traits; based on about 2,300 genes and 1,200 biological pathways. Using GWAS phenotype-to-genes associations, and pathway data from Reactome, we connect human traits based on the common patterns of human biological pathways, detecting more pleiotropic effects, and expanding previous studies from a gene-centric approach to that of shared cell-processes. The resulting network has a heavily right-skewed degree distribution, placing it in the scale-free region of the network topologies spectrum. We extract the multi-scale information backbone of the PHPN based on the local densities of the network and discarding weak connection. Using a standard community detection algorithm, we construct phenotype modules of similar traits without applying expert biological knowledge. These modules can be assimilated to the disease classes. However, we are able to classify phenotypes according to shared biology, and not arbitrary disease classes. We present examples of expected clinical connections identified by PHPN as proof of principle. We unveil a previously uncharacterized connection between phenotype modules and discuss potential mechanistic connections that are obvious only in retrospect. The PHPN shows tremendous potential to become a useful tool both in the unveiling of the diseases' common biology, and in the elaboration of diagnosis and treatments.
LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes.
Binks, Sophie N M; Klein, Christopher J; Waters, Patrick; Pittock, Sean J; Irani, Sarosh R
2018-05-01
Recent biochemical observations have helped redefine antigenic components within the voltage-gated potassium channel (VGKC) complex. The related autoantibodies may be now divided into likely pathogenic entities, which target the extracellular domains of leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2), and species that target intracellular neuronal components and are likely non-pathogenic. This distinction has enhanced clinical practice as direct determination of LGI1 and CASPR2 antibodies offers optimal sensitivity and specificity. In this review, we describe and compare the clinical features associated with pathogenic LGI1 and CASPR2 antibodies, illustrate emerging laboratory techniques for antibody determination and describe the immunological mechanisms that may mediate antibody-induced pathology. We highlight marked clinical overlaps between patients with either LGI1 or CASPR2 antibodies that include frequent focal seizures, prominent amnesia, dysautonomia, neuromyotonia and neuropathic pain. Although occurring at differing rates, these commonalities are striking and only faciobrachial dystonic seizures reliably differentiate these two conditions. Furthermore, the coexistence of both LGI1 and CASPR2 antibodies in an individual occurs surprisingly frequently. Patients with either antibody respond well to immunotherapies, although systematic studies are required to determine the magnitude of the effect beyond placebo. Finally, data have suggested that CASPR2 and LGI1 modulation via genetic or autoimmune mechanisms may share common intermediate molecules. Taken together, the biochemical distinction of antigenic targets has led to important clinical advances for patient care. However, the striking syndrome similarities, coexistence of two otherwise rare antibodies and molecular insights suggest the VGKC complex may yet be a common functional effector of antibody action. Hence, we argue for a molecular evolution alongside a clinical and phenotypic re-evaluation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Higdon, Roger; Earl, Rachel K.; Stanberry, Larissa; Hudac, Caitlin M.; Montague, Elizabeth; Stewart, Elizabeth; Janko, Imre; Choiniere, John; Broomall, William; Kolker, Natali
2015-01-01
Abstract Complex diseases are caused by a combination of genetic and environmental factors, creating a difficult challenge for diagnosis and defining subtypes. This review article describes how distinct disease subtypes can be identified through integration and analysis of clinical and multi-omics data. A broad shift toward molecular subtyping of disease using genetic and omics data has yielded successful results in cancer and other complex diseases. To determine molecular subtypes, patients are first classified by applying clustering methods to different types of omics data, then these results are integrated with clinical data to characterize distinct disease subtypes. An example of this molecular-data-first approach is in research on Autism Spectrum Disorder (ASD), a spectrum of social communication disorders marked by tremendous etiological and phenotypic heterogeneity. In the case of ASD, omics data such as exome sequences and gene and protein expression data are combined with clinical data such as psychometric testing and imaging to enable subtype identification. Novel ASD subtypes have been proposed, such as CHD8, using this molecular subtyping approach. Broader use of molecular subtyping in complex disease research is impeded by data heterogeneity, diversity of standards, and ineffective analysis tools. The future of molecular subtyping for ASD and other complex diseases calls for an integrated resource to identify disease mechanisms, classify new patients, and inform effective treatment options. This in turn will empower and accelerate precision medicine and personalized healthcare. PMID:25831060
Waliszewski, P; Molski, M; Konarski, J
1998-06-01
A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self-organization, and natural selection drives formation of malignant phenotype. This concept offers a novel perspective for investigation of tumorigenesis without invalidating current molecular findings. The essay integrates the ideas of the sciences of complexity in a biological context.
Menter, M Alan; Griffiths, Christopher E M
2015-01-01
The umbrella term psoriasis is now understood to incorporate several distinct phenotypes or endotypes along the disease spectrum that in turn will dictate different therapies. A stratified medicine approach to psoriasis using this clinical information coupled with pharmacogenomic and immunologic data will become more widely acceptable in the future. Comorbidities associated with psoriasis, such as diabetes, depression, and Crohn disease, and the debate about the interdependence of psoriasis and cardiovascular disease will also dictate future research and holistic and management plans for this complex disease.
Lee, Jessica J Y; Gottlieb, Michael M; Lever, Jake; Jones, Steven J M; Blau, Nenad; van Karnebeek, Clara D M; Wasserman, Wyeth W
2018-05-01
Phenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses. To channel the benefits of phenomics into the field of inborn errors of metabolism (IEM), we have recently launched IEMbase, an expert-curated knowledgebase of IEM and their disease-characterizing phenotypes. While our efforts with IEMbase have realized benefits, taking full advantage of phenomics requires a comprehensive curation of IEM phenotypes in core phenomics projects, which is dependent upon contributions from the IEM clinical and research community. Here, we assess the inclusion of IEM biochemical phenotypes in a core phenomics project, the Human Phenotype Ontology. We then demonstrate the utility of biochemical phenotypes using a text-based phenomics method to predict gene-disease relationships, showing that the prediction of IEM genes is significantly better using biochemical rather than clinical profiles. The findings herein provide a motivating goal for the IEM community to expand the computationally accessible descriptions of biochemical phenotypes associated with IEM in phenomics resources.
Richieri-Costa-Pereira syndrome: Expanding its phenotypic and genotypic spectrum.
Bertola, D R; Hsia, G; Alvizi, L; Gardham, A; Wakeling, E L; Yamamoto, G L; Honjo, R S; Oliveira, L A N; Di Francesco, R C; Perez, B A; Kim, C A; Passos-Bueno, M R
2018-04-01
Richieri-Costa-Pereira syndrome is a rare autosomal recessive acrofacial dysostosis that has been mainly described in Brazilian individuals. The cardinal features include Robin sequence, cleft mandible, laryngeal anomalies and limb defects. A biallelic expansion of a complex repeated motif in the 5' untranslated region of EIF4A3 has been shown to cause this syndrome, commonly with 15 or 16 repeats. The only patient with mild clinical findings harbored a 14-repeat expansion in 1 allele and a point mutation in the other allele. This proband is described here in more details, as well as is his affected sister, and 5 new individuals with Richieri-Costa-Pereira syndrome, including a patient from England, of African ancestry. This study has expanded the phenotype in this syndrome by the observation of microcephaly, better characterization of skeletal abnormalities, less severe phenotype with only mild facial dysmorphisms and limb anomalies, as well as the absence of cleft mandible, which is a hallmark of the syndrome. Although the most frequent mutation in this study was the recurrent 16-repeat expansion in EIF4A3, there was an overrepresentation of the 14-repeat expansion, with mild phenotypic expression, thus suggesting that the number of these motifs could play a role in phenotypic delineation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Androgens and polycystic ovary syndrome.
Nisenblat, Vicki; Norman, Robert J
2009-06-01
Polycystic ovary syndrome (PCOS) is a common complex endocrine genetic disorder, which involves overproduction of androgens, leading to heterogeneous range of symptoms and associated with increased metabolic and cardiovascular morbidity. This review focuses on androgen biosynthesis, use, metabolism in PCOS and clinical consequences of hyperandrogenism. Controversial definition of the disorder and different phenotypic subgroups present a challenge for clinical and basic research. Further investigation of different phenotypes highlights the fact that PCOS probably represents a group of disorders with different etiologies. Prenatal androgen exposure and adolescent studies suggest early in life androgen excess as initiating factor of PCOS, but insufficient evidence available to confirm this hypothesis. Various intracellular signaling pathways implicated in PCOS steroidogenesis and in androgen action have been studied, however, PCOS pathogenesis remains obscure. Growing evidence links androgens with pathophysiology of PCOS and metabolic derangements. Despite intensive investigation, etiology and underlying mechanisms of PCOS remain unclear, warranting further investigation. Better understanding of molecular and genetic basis might lead to invention of novel therapeutic approaches. Long-term interventional studies that lower androgen levels in women with hyperandrogenism might protect against metabolic and cardiovascular comorbidities are needed.
Haack, Tobias B; Madignier, Florence; Herzer, Martina; Lamantea, Eleonora; Danhauser, Katharina; Invernizzi, Federica; Koch, Johannes; Freitag, Martin; Drost, Rene; Hillier, Ingo; Haberberger, Birgit; Mayr, Johannes A; Ahting, Uwe; Tiranti, Valeria; Rötig, Agnes; Iuso, Arcangela; Horvath, Rita; Tesarova, Marketa; Baric, Ivo; Uziel, Graziella; Rolinski, Boris; Sperl, Wolfgang; Meitinger, Thomas; Zeviani, Massimo; Freisinger, Peter; Prokisch, Holger
2012-02-01
Mitochondrial complex I deficiency is the most common cause of mitochondrial disease in childhood. Identification of the molecular basis is difficult given the clinical and genetic heterogeneity. Most patients lack a molecular definition in routine diagnostics. A large-scale mutation screen of 75 candidate genes in 152 patients with complex I deficiency was performed by high-resolution melting curve analysis and Sanger sequencing. The causal role of a new disease allele was confirmed by functional complementation assays. The clinical phenotype of patients carrying mutations was documented using a standardised questionnaire. Causative mutations were detected in 16 genes, 15 of which had previously been associated with complex I deficiency: three mitochondrial DNA genes encoding complex I subunits, two mitochondrial tRNA genes and nuclear DNA genes encoding six complex I subunits and four assembly factors. For the first time, a causal mutation is described in NDUFB9, coding for a complex I subunit, resulting in reduction in NDUFB9 protein and both amount and activity of complex I. These features were rescued by expression of wild-type NDUFB9 in patient-derived fibroblasts. Mutant NDUFB9 is a new cause of complex I deficiency. A molecular diagnosis related to complex I deficiency was established in 18% of patients. However, most patients are likely to carry mutations in genes so far not associated with complex I function. The authors conclude that the high degree of genetic heterogeneity in complex I disorders warrants the implementation of unbiased genome-wide strategies for the complete molecular dissection of mitochondrial complex I deficiency.
Henderson, Jette; Ke, Junyuan; Ho, Joyce C; Ghosh, Joydeep; Wallace, Byron C
2018-05-04
Researchers are developing methods to automatically extract clinically relevant and useful patient characteristics from raw healthcare datasets. These characteristics, often capturing essential properties of patients with common medical conditions, are called computational phenotypes. Being generated by automated or semiautomated, data-driven methods, such potential phenotypes need to be validated as clinically meaningful (or not) before they are acceptable for use in decision making. The objective of this study was to present Phenotype Instance Verification and Evaluation Tool (PIVET), a framework that uses co-occurrence analysis on an online corpus of publically available medical journal articles to build clinical relevance evidence sets for user-supplied phenotypes. PIVET adopts a conceptual framework similar to the pioneering prototype tool PheKnow-Cloud that was developed for the phenotype validation task. PIVET completely refactors each part of the PheKnow-Cloud pipeline to deliver vast improvements in speed without sacrificing the quality of the insights PheKnow-Cloud achieved. PIVET leverages indexing in NoSQL databases to efficiently generate evidence sets. Specifically, PIVET uses a succinct representation of the phenotypes that corresponds to the index on the corpus database and an optimized co-occurrence algorithm inspired by the Aho-Corasick algorithm. We compare PIVET's phenotype representation with PheKnow-Cloud's by using PheKnow-Cloud's experimental setup. In PIVET's framework, we also introduce a statistical model trained on domain expert-verified phenotypes to automatically classify phenotypes as clinically relevant or not. Additionally, we show how the classification model can be used to examine user-supplied phenotypes in an online, rather than batch, manner. PIVET maintains the discriminative power of PheKnow-Cloud in terms of identifying clinically relevant phenotypes for the same corpus with which PheKnow-Cloud was originally developed, but PIVET's analysis is an order of magnitude faster than that of PheKnow-Cloud. Not only is PIVET much faster, it can be scaled to a larger corpus and still retain speed. We evaluated multiple classification models on top of the PIVET framework and found ridge regression to perform best, realizing an average F1 score of 0.91 when predicting clinically relevant phenotypes. Our study shows that PIVET improves on the most notable existing computational tool for phenotype validation in terms of speed and automation and is comparable in terms of accuracy. ©Jette Henderson, Junyuan Ke, Joyce C Ho, Joydeep Ghosh, Byron C Wallace. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 04.05.2018.
Ke, Junyuan; Ho, Joyce C; Ghosh, Joydeep; Wallace, Byron C
2018-01-01
Background Researchers are developing methods to automatically extract clinically relevant and useful patient characteristics from raw healthcare datasets. These characteristics, often capturing essential properties of patients with common medical conditions, are called computational phenotypes. Being generated by automated or semiautomated, data-driven methods, such potential phenotypes need to be validated as clinically meaningful (or not) before they are acceptable for use in decision making. Objective The objective of this study was to present Phenotype Instance Verification and Evaluation Tool (PIVET), a framework that uses co-occurrence analysis on an online corpus of publically available medical journal articles to build clinical relevance evidence sets for user-supplied phenotypes. PIVET adopts a conceptual framework similar to the pioneering prototype tool PheKnow-Cloud that was developed for the phenotype validation task. PIVET completely refactors each part of the PheKnow-Cloud pipeline to deliver vast improvements in speed without sacrificing the quality of the insights PheKnow-Cloud achieved. Methods PIVET leverages indexing in NoSQL databases to efficiently generate evidence sets. Specifically, PIVET uses a succinct representation of the phenotypes that corresponds to the index on the corpus database and an optimized co-occurrence algorithm inspired by the Aho-Corasick algorithm. We compare PIVET’s phenotype representation with PheKnow-Cloud’s by using PheKnow-Cloud’s experimental setup. In PIVET’s framework, we also introduce a statistical model trained on domain expert–verified phenotypes to automatically classify phenotypes as clinically relevant or not. Additionally, we show how the classification model can be used to examine user-supplied phenotypes in an online, rather than batch, manner. Results PIVET maintains the discriminative power of PheKnow-Cloud in terms of identifying clinically relevant phenotypes for the same corpus with which PheKnow-Cloud was originally developed, but PIVET’s analysis is an order of magnitude faster than that of PheKnow-Cloud. Not only is PIVET much faster, it can be scaled to a larger corpus and still retain speed. We evaluated multiple classification models on top of the PIVET framework and found ridge regression to perform best, realizing an average F1 score of 0.91 when predicting clinically relevant phenotypes. Conclusions Our study shows that PIVET improves on the most notable existing computational tool for phenotype validation in terms of speed and automation and is comparable in terms of accuracy. PMID:29728351
A Phenotypic Change But Not Proliferation Underlies Glial Responses in Alzheimer Disease
Serrano-Pozo, Alberto; Gómez-Isla, Teresa; Growdon, John H.; Frosch, Matthew P.; Hyman, Bradley T.
2014-01-01
Classical immunohistochemical studies in the Alzheimer disease (AD) brain reveal prominent glial reactions, but whether this pathological feature is due primarily to cell proliferation or to a phenotypic change of existing resting cells remains controversial. We performed double-fluorescence immunohistochemical studies of astrocytes and microglia, followed by unbiased stereology-based quantitation in temporal cortex of 40 AD patients and 32 age-matched nondemented subjects. Glial fibrillary acidic protein (GFAP) and major histocompatibility complex II (MHC2) were used as markers of astrocytic and microglial activation, respectively. Aldehyde dehydrogenase 1 L1 and glutamine synthetase were used as constitutive astrocytic markers, and ionized calcium-binding adaptor molecule 1 (IBA1) as a constitutive microglial marker. As expected, AD patients had higher numbers of GFAP+ astrocytes and MHC2+ microglia than the nondemented subjects. However, both groups had similar numbers of total astrocytes and microglia and, in the AD group, these total numbers remained essentially constant over the clinical course of the disease. The GFAP immunoreactivity of astrocytes, but not the MHC2 immunoreactivity of microglia, increased in parallel with the duration of the clinical illness in the AD group. Cortical atrophy contributed to the perception of increased glia density. We conclude that a phenotypic change of existing glial cells, rather than a marked proliferation of glial precursors, accounts for the majority of the glial responses observed in the AD brain. PMID:23602650
Analysis of immunological profile, clinical features and response to treatment in pemphigus.
Bardazzi, Federico; Balestri, Riccardo; Ismaili, Alma; LA Placa, Michelangelo; Barisani, Alessia; Patrizi, Annalisa
2017-12-01
Pemphigus is an autoimmune disease, characterized by the presence of serum autoantibodies against Desmoglein (Dsg) 1 and 3. It can affect the skin and/or the mucous membranes. Some authors found a correlation between the serum levels of autoantibodies, disease activity and clinical phenotype of pemphigus. Anti Dsg1 autoantibodies appear related to cutaneous phenotype, anti Dsg3 autoantibodies to mucosal involvement. From 2011 to 2014, in patients with pemphigus, the serum levels of anti-Dsg1 and 3 antibodies were determined with enzyme-linked immuno-sorbent assay at diagnosis and after 6 months of different therapies. The correlations between levels of autoantibodies, clinical phenotype, clinical activity and response to therapy, were investigated. Thirty-five patients were included. Clinical phenotypes were: mucosal in 17 patients; mucous-cutaneous in 11; and cutaneous in 7. The status of anti-Dsg1 autoantibodies was significantly related to the cutaneous and mucous-cutaneous phenotypes both at diagnosis and after 6 months. The status of anti-Dsg3 autoantibodies was significantly related to the mucosal and mucous-cutaneous phenotypes only at first evaluation. No significant correlations were found between disease activity and the status of autoantibodies. No significant variations of autoantibody levels (between first and second sample) were found with regard to different therapies, except for the variation of anti-Dsg1 autoantibodies in one patient treated with systemic steroids and methotrexate. A correlation between serum levels of autoantibodies and clinical phenotype was found. Further studies over a longer follow-up period may better characterize the correlation between autoantibody levels, clinical activity and response to different therapies of pemphigus.
Na, In Young; Chung, Eun Seon; Jung, Chang-Yun; Kim, Dae Hun; Shin, Juyoun; Kang, KyeongJin; Kim, Seong-Tae; Ko, Kwan Soo
2016-01-01
In this study, we compared the virulence-associated factors of Acinetobacter baumannii complex species. Sixty-three isolates of five A. baumannii complex species, including 19 A. baumannii, 15 A. nosocomialis, 13 A. seifertii, 13 A. pittii, and 3 A. calcoaceticus isolates, were included in this study. For all isolates, biofilm formation, A549 cell adherence, resistance to normal human serum, and motility were evaluated. A. baumannii complex isolates showed diversity in biofilm formation, A549 cell adherence, and serum resistance, and no strong positive relationships among these virulence characteristics. However, A. seifertii showed relatively consistent virulence-associated phenotypes. In addition, A. baumannii clone ST110 exhibited consistently high virulence-associated phenotypes. Motility was observed in seven isolates, and all four A. baumannii ST110 isolates showed twitching motility. Although some inconsistencies in virulence-associated phenotypes were seen, high virulence characteristics were observed in A. seifertii, which has been mainly reported in Korea and shows high rates of colistin resistance.
Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes
Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela
2013-01-01
Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID:24137105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionasescu, V.; Ionasescu, R.; Searby, C.
1996-06-14
We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these familiesmore » showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.« less
Melo, Thaise P; Takada, Luciana; Baldi, Fernando; Oliveira, Henrique N; Dias, Marina M; Neves, Haroldo H R; Schenkel, Flavio S; Albuquerque, Lucia G; Carvalheiro, Roberto
2016-06-21
QTL mapping through genome-wide association studies (GWAS) is challenging, especially in the case of low heritability complex traits and when few animals possess genotypic and phenotypic information. When most of the phenotypic information is from non-genotyped animals, GWAS can be performed using the weighted single-step GBLUP (WssGBLUP) method, which permits to combine all available information, even that of non-genotyped animals. However, it is not clear to what extent phenotypic information from non-genotyped animals increases the power of QTL detection, and whether factors such as the extent of linkage disequilibrium (LD) in the population and weighting SNPs in WssGBLUP affect the importance of using information from non-genotyped animals in GWAS. These questions were investigated in this study using real and simulated data. Analysis of real data showed that the use of phenotypes of non-genotyped animals affected SNP effect estimates and, consequently, QTL mapping. Despite some coincidence, the most important genomic regions identified by the analyses, either using or ignoring phenotypes of non-genotyped animals, were not the same. The simulation results indicated that the inclusion of all available phenotypic information, even that of non-genotyped animals, tends to improve QTL detection for low heritability complex traits. For populations with low levels of LD, this trend of improvement was less pronounced. Stronger shrinkage on SNPs explaining lower variance was not necessarily associated with better QTL mapping. The use of phenotypic information from non-genotyped animals in GWAS may improve the ability to detect QTL for low heritability complex traits, especially in populations in which the level of LD is high.
Scholes, Edwin
2008-01-01
Ethology is rooted in the idea that behavior is composed of discrete units and sub-units that can be compared among taxa in a phylogenetic framework. This means that behavior, like morphology and genes, is inherently modular. Yet, the concept of modularity is not well integrated into how we envision the behavioral components of phenotype. Understanding ethological modularity, and its implications for animal phenotype organization and evolution, requires that we construct interpretive schemes that permit us to examine it. In this study, I describe the structure and composition of a complex part of the behavioral phenotype of Parotia lawesii Ramsay, 1885--a bird of paradise (Aves: Paradisaeidae) from the forests of eastern New Guinea. I use archived voucher video clips, photographic ethograms, and phenotype ontology diagrams to describe the modular units comprising courtship at various levels of integration. Results show P. lawesii to have 15 courtship and mating behaviors (11 males, 4 females) hierarchically arranged within a complex seven-level structure. At the finest level examined, male displays are comprised of 49 modular sub-units (elements) differentially employed to form more complex modular units (phases and versions) at higher-levels of integration. With its emphasis on hierarchical modularity, this study provides an important conceptual framework for understanding courtship-related phenotypic complexity and provides a solid basis for comparative study of the genus Parotia.
Arnedo, Javier; Svrakic, Dragan M; Del Val, Coral; Romero-Zaliz, Rocío; Hernández-Cuervo, Helena; Fanous, Ayman H; Pato, Michele T; Pato, Carlos N; de Erausquin, Gabriel A; Cloninger, C Robert; Zwir, Igor
2015-02-01
The authors sought to demonstrate that schizophrenia is a heterogeneous group of heritable disorders caused by different genotypic networks that cause distinct clinical syndromes. In a large genome-wide association study of cases with schizophrenia and controls, the authors first identified sets of interacting single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (SNP sets) regardless of clinical status. Second, they examined the risk of schizophrenia for each SNP set and tested replicability in two independent samples. Third, they identified genotypic networks composed of SNP sets sharing SNPs or subjects. Fourth, they identified sets of distinct clinical features that cluster in particular cases (phenotypic sets or clinical syndromes) without regard for their genetic background. Fifth, they tested whether SNP sets were associated with distinct phenotypic sets in a replicable manner across the three studies. The authors identified 42 SNP sets associated with a 70% or greater risk of schizophrenia, and confirmed 34 (81%) or more with similar high risk of schizophrenia in two independent samples. Seventeen networks of SNP sets did not share any SNP or subject. These disjoint genotypic networks were associated with distinct gene products and clinical syndromes (i.e., the schizophrenias) varying in symptoms and severity. Associations between genotypic networks and clinical syndromes were complex, showing multifinality and equifinality. The interactive networks explained the risk of schizophrenia more than the average effects of all SNPs (24%). Schizophrenia is a group of heritable disorders caused by a moderate number of separate genotypic networks associated with several distinct clinical syndromes.
Phenotypic and immunohistochemical characterization of sarcoglycanopathies
Ferreira, Ana F. B.; Carvalho, Mary S.; Resende, Maria Bernadete D.; Wakamatsu, Alda; Reed, Umbertina Conti; Marie, Suely Kazue Nagahashi
2011-01-01
INTRODUCTION: Limb-girdle muscular dystrophy presents with heterogeneous clinical and molecular features. The primary characteristic of this disorder is proximal muscular weakness with variable age of onset, speed of progression, and intensity of symptoms. Sarcoglycanopathies, which are a subgroup of the limb-girdle muscular dystrophies, are caused by mutations in sarcoglycan genes. Mutations in these genes cause secondary deficiencies in other proteins, due to the instability of the dystrophin-glycoprotein complex. Therefore, determining the etiology of a given sarcoglycanopathy requires costly and occasionally inaccessible molecular methods. OBJECTIVE: The aim of this study was to identify phenotypic differences among limb-girdle muscular dystrophy patients who were grouped according to the immunohistochemical phenotypes for the four sarcoglycans. METHODS: To identify phenotypic differences among patients with different types of sarcoglycanopathies, a questionnaire was used and the muscle strength and range of motion of nine joints in 45 patients recruited from the Department of Neurology – HC-FMUSP (Clinics Hospital of the Faculty of Medicine of the University of São Paulo) were evaluated. The findings obtained from these analyses were compared with the results of the immunohistochemical findings. RESULTS: The patients were divided into the following groups based on the immunohistochemical findings: α-sarcoglycanopathies (16 patients), β-sarcoglycanopathies (1 patient), γ-sarcoglycanopathies (5 patients), and non-sarcoglycanopathies (23 patients). The muscle strength analysis revealed significant differences for both upper and lower limb muscles, particularly the shoulder and hip muscles, as expected. No pattern of joint contractures was found among the four groups analyzed, even within the same family. However, a high frequency of tiptoe gait was observed in patients with α-sarcoglycanopathies, while calf pseudo-hypertrophy was most common in patients with non-sarcoglycanopathies. The α-sarcoglycanopathy patients presented with more severe muscle weakness than did γ-sarcoglycanopathy patients. CONCLUSION: The clinical differences observed in this study, which were associated with the immunohistochemical findings, may help to prioritize the mutational investigation of sarcoglycan genes. PMID:22012042
Taboada, María; Martínez, Diego; Pilo, Belén; Jiménez-Escrig, Adriano; Robinson, Peter N; Sobrido, María J
2012-07-31
Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.
Fernández-Hidalgo, N; Ribera, A; Larrosa, M N; Viedma, E; Origüen, J; de Alarcón, A; Fariñas, M C; Sáez, C; Peña, C; Múñez, E; García López, M V; Gavaldà, J; Pérez-Montarelo, D; Chaves, F; Almirante, B
2017-12-18
We aimed to evaluate the impact of Staphylococcus aureus phenotype (vancomycin MIC) and genotype (agr group, clonal complex CC) on the prognosis and clinical characteristics of infective endocarditis (IE). We performed a multicentre, longitudinal, prospective, observational study (June 2013 to March 2016) in 15 Spanish hospitals. Two hundred and thirteen consecutive adults (≥18 years) with a definite diagnosis of S. aureus IE were included. Primary outcome was death during hospital stay. Main secondary end points were persistent bacteraemia, sepsis/septic shock, peripheral embolism and osteoarticular involvement. Overall in-hospital mortality was 37% (n = 72). Independent risk factors for death were age-adjusted Charlson co-morbidity index (OR 1.20; 95% CI 1.08-1.34), congestive heart failure (OR 3.60; 95% CI 1.72-7.50), symptomatic central nervous system complication (OR 3.17; 95% CI 1.41-7.11) and severe sepsis/septic shock (OR 4.41; 95% CI 2.18-8.96). In the subgroup of methicillin-susceptible S. aureus IE (n = 173), independent risk factors for death were the age-adjusted Charlson co-morbidity index (OR 1.17; 95% CI 1.03-1.31), congestive heart failure (OR 3.39; 95% CI 1.51-7.64), new conduction abnormality (OR 4.42; 95% CI 1.27-15.34), severe sepsis/septic shock (OR 5.76; 95% CI 2.57-12.89) and agr group III (OR 0.27; 0.10-0.75). Vancomycin MIC ≥1.5 mg/L was not independently associated with death during hospital nor was it related to secondary end points. No other genotype variables were independently associated with in-hospital death. This is the first prospective study to assess the impact of S. aureus phenotype and genotype. Phenotype and genotype provided no additional predictive value beyond conventional clinical characteristics. No evidence was found to justify therapeutic decisions based on vancomycin MIC for either methicillin-resistant or methicillin-susceptible S. aureus. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Girolami, Francesca; Frisso, Giulia; Benelli, Matteo; Crotti, Lia; Iascone, Maria; Mango, Ruggiero; Mazzaccara, Cristina; Pilichou, Kalliope; Arbustini, Eloisa; Tomberli, Benedetta; Limongelli, Giuseppe; Basso, Cristina; Olivotto, Iacopo
2018-01-01
: Inherited cardiac diseases comprise a wide and heterogeneous spectrum of diseases of the heart, including the cardiomyopathies and the arrhythmic diseases in structurally normal hearts, that is, channelopathies. With a combined estimated prevalence of 3% in the general population, these conditions represent a relevant epidemiological entity worldwide, and are a major cause of cardiac morbidity and mortality in the young. The extraordinary progress achieved in molecular genetics over the last three decades has unveiled the complex molecular basis of many familial cardiac conditions, paving the way for routine use of gene testing in clinical practice. In current practice, genetic testing can be used in a clinically affected patient to confirm diagnosis, or to formulate a differential diagnosis among overlapping phenotypes or between hereditary and acquired (nongenetic) forms of disease. Although genotype-phenotype correlations are generally unpredictable, a precise molecular diagnosis can help predict prognosis in specific patient subsets and may guide management. In clinically unaffected relatives, genetic cascade testing is recommended, after the initial identification of a pathogenic variation, with the aim of identifying asymptomatic relatives who might be at risk of disease-related complications, including unexpected sudden cardiac death. Future implications include the identification of novel therapeutic targets and development of tailored treatments including gene therapy. This document reflects the multidisciplinary, 'real-world' experience required when implementing genetic testing in cardiomyopathies and arrhythmic syndromes, along the recommendations of various guidelines.
Girolami, Francesca; Frisso, Giulia; Benelli, Matteo; Crotti, Lia; Iascone, Maria; Mango, Ruggiero; Mazzaccara, Cristina; Pilichou, Kalliope; Arbustini, Eloisa; Tomberli, Benedetta; Limongelli, Giuseppe; Basso, Cristina; Olivotto, Iacopo
2018-01-01
Inherited cardiac diseases comprise a wide and heterogeneous spectrum of diseases of the heart, including the cardiomyopathies and the arrhythmic diseases in structurally normal hearts, that is, channelopathies. With a combined estimated prevalence of 3% in the general population, these conditions represent a relevant epidemiological entity worldwide, and are a major cause of cardiac morbidity and mortality in the young. The extraordinary progress achieved in molecular genetics over the last three decades has unveiled the complex molecular basis of many familial cardiac conditions, paving the way for routine use of gene testing in clinical practice. In current practice, genetic testing can be used in a clinically affected patient to confirm diagnosis, or to formulate a differential diagnosis among overlapping phenotypes or between hereditary and acquired (nongenetic) forms of disease. Although genotype–phenotype correlations are generally unpredictable, a precise molecular diagnosis can help predict prognosis in specific patient subsets and may guide management. In clinically unaffected relatives, genetic cascade testing is recommended, after the initial identification of a pathogenic variation, with the aim of identifying asymptomatic relatives who might be at risk of disease-related complications, including unexpected sudden cardiac death. Future implications include the identification of novel therapeutic targets and development of tailored treatments including gene therapy. This document reflects the multidisciplinary, ‘real-world’ experience required when implementing genetic testing in cardiomyopathies and arrhythmic syndromes, along the recommendations of various guidelines. PMID:29176389
PhenoLines: Phenotype Comparison Visualizations for Disease Subtyping via Topic Models.
Glueck, Michael; Naeini, Mahdi Pakdaman; Doshi-Velez, Finale; Chevalier, Fanny; Khan, Azam; Wigdor, Daniel; Brudno, Michael
2018-01-01
PhenoLines is a visual analysis tool for the interpretation of disease subtypes, derived from the application of topic models to clinical data. Topic models enable one to mine cross-sectional patient comorbidity data (e.g., electronic health records) and construct disease subtypes-each with its own temporally evolving prevalence and co-occurrence of phenotypes-without requiring aligned longitudinal phenotype data for all patients. However, the dimensionality of topic models makes interpretation challenging, and de facto analyses provide little intuition regarding phenotype relevance or phenotype interrelationships. PhenoLines enables one to compare phenotype prevalence within and across disease subtype topics, thus supporting subtype characterization, a task that involves identifying a proposed subtype's dominant phenotypes, ages of effect, and clinical validity. We contribute a data transformation workflow that employs the Human Phenotype Ontology to hierarchically organize phenotypes and aggregate the evolving probabilities produced by topic models. We introduce a novel measure of phenotype relevance that can be used to simplify the resulting topology. The design of PhenoLines was motivated by formative interviews with machine learning and clinical experts. We describe the collaborative design process, distill high-level tasks, and report on initial evaluations with machine learning experts and a medical domain expert. These results suggest that PhenoLines demonstrates promising approaches to support the characterization and optimization of topic models.
Progeny Clustering: A Method to Identify Biological Phenotypes
Hu, Chenyue W.; Kornblau, Steven M.; Slater, John H.; Qutub, Amina A.
2015-01-01
Estimating the optimal number of clusters is a major challenge in applying cluster analysis to any type of dataset, especially to biomedical datasets, which are high-dimensional and complex. Here, we introduce an improved method, Progeny Clustering, which is stability-based and exceptionally efficient in computing, to find the ideal number of clusters. The algorithm employs a novel Progeny Sampling method to reconstruct cluster identity, a co-occurrence probability matrix to assess the clustering stability, and a set of reference datasets to overcome inherent biases in the algorithm and data space. Our method was shown successful and robust when applied to two synthetic datasets (datasets of two-dimensions and ten-dimensions containing eight dimensions of pure noise), two standard biological datasets (the Iris dataset and Rat CNS dataset) and two biological datasets (a cell phenotype dataset and an acute myeloid leukemia (AML) reverse phase protein array (RPPA) dataset). Progeny Clustering outperformed some popular clustering evaluation methods in the ten-dimensional synthetic dataset as well as in the cell phenotype dataset, and it was the only method that successfully discovered clinically meaningful patient groupings in the AML RPPA dataset. PMID:26267476
Allanson, Judith; Smith, Amanda; Hare, Heather; Albrecht, Beate; Bijlsma, Emilia; Dallapiccola, Bruno; Donti, Emilio; Fitzpatrick, David; Isidor, Bertrand; Lachlan, Katherine; Le Caignec, Cedric; Prontera, Paolo; Raas-Rothschild, Annick; Rogaia, Daniela; van Bon, Bregje; Aradhya, Swaroop; Crocker, Susan F; Jarinova, Olga; McGowan-Jordan, Jean; Boycott, Kym; Bulman, Dennis; Fagerberg, Christina Ringmann
2012-09-01
Nablus mask-like facial syndrome (NMLFS) has many distinctive phenotypic features, particularly tight glistening skin with reduced facial expression, blepharophimosis, telecanthus, bulky nasal tip, abnormal external ear architecture, upswept frontal hairline, and sparse eyebrows. Over the last few years, several individuals with NMLFS have been reported to have a microdeletion of 8q21.3q22.1, demonstrated by microarray analysis. The minimal overlapping region is 93.98-96.22 Mb (hg19). Here we present clinical and microarray data from five singletons and two mother-child pairs who have heterozygous deletions significantly overlapping the region associated with NMLFS. Notably, while one mother and child were said to have mild tightening of facial skin, none of these individuals exhibited reduced facial expression or the classical facial phenotype of NMLFS. These findings indicate that deletion of the 8q21.3q22.1 region is necessary but not sufficient for development of the NMLFS. We discuss possible genetic mechanisms underlying the complex pattern of inheritance for this condition. Copyright © 2012 Wiley Periodicals, Inc.
Determining Multiple Sclerosis Phenotype from Electronic Medical Records.
Nelson, Richard E; Butler, Jorie; LaFleur, Joanne; Knippenberg, Kristin; C Kamauu, Aaron W; DuVall, Scott L
2016-12-01
Multiple sclerosis (MS), a central nervous system disease in which nerve signals are disrupted by scarring and demyelination, is classified into phenotypes depending on the patterns of cognitive or physical impairment progression: relapsing-remitting MS (RRMS), primary-progressive MS (PPMS), secondary-progressive MS (SPMS), or progressive-relapsing MS (PRMS). The phenotype is important in managing the disease and determining appropriate treatment. The ICD-9-CM code 340.0 is uninformative about MS phenotype, which increases the difficulty of studying the effects of phenotype on disease. To identify MS phenotype using natural language processing (NLP) techniques on progress notes and other clinical text in the electronic medical record (EMR). Patients with at least 2 ICD-9-CM codes for MS (340.0) from 1999 through 2010 were identified from nationwide EMR data in the Department of Veterans Affairs. Clinical experts were interviewed for possible keywords and phrases denoting MS phenotype in order to develop a data dictionary for NLP. For each patient, NLP was used to search EMR clinical notes, since the first MS diagnosis date for these keywords and phrases. Presence of phenotype-related keywords and phrases were analyzed in context to remove mentions that were negated (e.g., "not relapsing-remitting") or unrelated to MS (e.g., "RR" meaning "respiratory rate"). One thousand mentions of MS phenotype were validated, and all records of 150 patients were reviewed for missed mentions. There were 7,756 MS patients identified by ICD-9-CM code 340.0. MS phenotype was identified for 2,854 (36.8%) patients, with 1,836 (64.3%) of those having just 1 phenotype mentioned in their EMR clinical notes: 1,118 (39.2%) RRMS, 325 (11.4%) PPMS, 374 (13.1%) SPMS, and 19 (0.7%) PRMS. A total of 747 patients (26.2%) had 2 phenotypes, the most common being 459 patients (16.1%) with RRMS and SPMS. A total of 213 patients (7.5%) had 3 phenotypes, and 58 patients (2.0%) had 4 phenotypes mentioned in their EMR clinical notes. Positive predictive value of phenotype identification was 93.8% with sensitivity of 94.0%. Phenotype was documented for slightly more than one third of MS patients, an important but disappointing finding that sets a limit on studying the effects of phenotype on MS in general. However, for cases where the phenotype was documented, NLP accurately identified the phenotypes. Having multiple phenotypes documented is consistent with disease progression. The most common misidentification was because of ambiguity while clinicians were trying to determine phenotype. This study brings attention to the need for care providers to document MS phenotype more consistently and provides a solution for capturing phenotype from clinical text. This study was funded by Anolinx and F. Hoffman-La Roche. Nelson serves as a consultant for Anolinx. Kamauu is owner of Anolinx, which has received multiple research grants from pharmaceutical and biotechnology companies. LaFleur has received a Novartis grant for ongoing work. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the U.S. government. Study concept and design were contributed by Butler, LaFleur, Kamauu, DuVall, and Nelson. DuVall collected the data, and interpretation was performed by Nelson, DuVall, and Kamauu, along with Butler, LaFleur, and Knippenberg. The manuscript was written primarily by Nelson, along with Knippenberg and assisted by the other authors, and revised by Knippenberg, Nelson, and DuVall, along with the other authors.
Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study.
Loza, Matthew J; Djukanovic, Ratko; Chung, Kian Fan; Horowitz, Daniel; Ma, Keying; Branigan, Patrick; Barnathan, Elliot S; Susulic, Vedrana S; Silkoff, Philip E; Sterk, Peter J; Baribaud, Frédéric
2016-12-15
Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED. Fuzzy partition-around-medoid clustering was performed on pre-specified data from the ADEPT participants (n = 156) and independently on data from a subset of U-BIOPRED asthma participants (n = 82) for whom the same variables were available. Models for cluster classification probabilities were derived and applied to the 12-month longitudinal ADEPT data and to a larger subset of the U-BIOPRED asthma dataset (n = 397). High and low type-2 inflammation phenotypes were defined as high or low Th2 activity, indicated by endobronchial biopsies gene expression changes downstream of IL-4 or IL-13. Four phenotypes were identified in the ADEPT (training) cohort, with distinct clinical and biomarker profiles. Phenotype 1 was "mild, good lung function, early onset", with a low-inflammatory, predominantly Type-2, phenotype. Phenotype 2 had a "moderate, hyper-responsive, eosinophilic" phenotype, with moderate asthma control, mild airflow obstruction and predominant Type-2 inflammation. Phenotype 3 had a "mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic" phenotype, with moderate asthma control and low Type-2 inflammation. Phenotype 4 had a "severe uncontrolled, severe reversible obstruction, mixed granulocytic" phenotype, with moderate Type-2 inflammation. These phenotypes had good longitudinal stability in the ADEPT cohort. They were reproduced and demonstrated high classification probability in two subsets of the U-BIOPRED asthma cohort. Focusing on the biology of the four clinical independently-validated easy-to-assess ADEPT asthma phenotypes will help understanding the unmet need and will aid in developing tailored therapies. NCT01274507 (ADEPT), registered October 28, 2010 and NCT01982162 (U-BIOPRED), registered October 30, 2013.
Ab initio genotype–phenotype association reveals intrinsic modularity in genetic networks
Slonim, Noam; Elemento, Olivier; Tavazoie, Saeed
2006-01-01
Microbial species express an astonishing diversity of phenotypic traits, behaviors, and metabolic capacities. However, our molecular understanding of these phenotypes is based almost entirely on studies in a handful of model organisms that together represent only a small fraction of this phenotypic diversity. Furthermore, many microbial species are not amenable to traditional laboratory analysis because of their exotic lifestyles and/or lack of suitable molecular genetic techniques. As an adjunct to experimental analysis, we have developed a computational information-theoretic framework that produces high-confidence gene–phenotype predictions using cross-species distributions of genes and phenotypes across 202 fully sequenced archaea and eubacteria. In addition to identifying the genetic basis of complex traits, our approach reveals the organization of these genes into generic preferentially co-inherited modules, many of which correspond directly to known enzymatic pathways, molecular complexes, signaling pathways, and molecular machines. PMID:16732191
Pediatric schwannomatosis, a rare but distinct form of neurofibromatosis.
Thomas, Anna K; Egelhoff, John C; Curran, John G; Thomas, Bobby
2016-03-01
Schwannomatosis is the third major form of neurofibromatosis, distinct from neurofibromatosis type 2 (NF2) and type 1 (NF1). This condition is rare with a variable phenotypic presentation and complex molecular and genetic findings. In this case, a previously healthy teenager was found to have multiple spinal lesions and an enhancing right parotid mass on MRI. On extensive further work-up, this patient met the existing clinical criteria for schwannomatosis. This case report aims to review the clinical features and current diagnostic criteria for schwannomatosis and compare it to NF1 and NF2. Special emphasis will be placed on imaging features that should prompt the radiologist to suggest this rare diagnosis.
Jiang, Li; Edwards, Stefan M; Thomsen, Bo; Workman, Christopher T; Guldbrandtsen, Bernt; Sørensen, Peter
2014-09-24
Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic profile of genes with respect to their connection to disease phenotypes. The importance of protein-protein interaction networks in the genetic heterogeneity of common diseases or complex traits is becoming increasingly recognized. Thus, the development of a network-based approach combined with phenotypic profiling would be useful for disease gene prioritization. We developed a random-set scoring model and implemented it to quantify phenotype relevance in a network-based disease gene-prioritization approach. We validated our approach based on different gene phenotypic profiles, which were generated from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text-mining of the phenotype data. Our method demonstrated good precision and sensitivity compared with those of two alternative complex-based prioritization approaches. We then conducted a global ranking of all human genes according to their relevance to a range of human diseases. The resulting accurate ranking of known causal genes supported the reliability of our approach. Moreover, these data suggest many promising novel candidate genes for human disorders that have a complex mode of inheritance. We have implemented and validated a network-based approach to prioritize genes for human diseases based on their phenotypic profile. We have devised a powerful and transparent tool to identify and rank candidate genes. Our global gene prioritization provides a unique resource for the biological interpretation of data from genome-wide association studies, and will help in the understanding of how the associated genetic variants influence disease or quantitative phenotypes.
Hopkins, W J; Heisey, D M; Lorentzen, D F; Uehling, D T
1998-05-01
Recurrent urinary tract infections (RUTI) are a significant health problem for many women, and host characteristics that increase susceptibility are not completely defined. This study evaluated data from 99 patients to examine further the question of a possible association between major histocompatibility complex (MHC) or red blood cell (RBC) antigen phenotype and predisposition to RUTIs. MHC class I and II, ABO, and Lewis RBC phenotypes were determined serologically. The MHC class II phenotypes of 55 subjects were also determined by DNA polymerase chain reaction techniques. There were no significant differences in the proportions of HLA-A or -B antigen types between patients and controls, nor in the frequencies of serologically or DNA-defined HLA-DR or -DQ phenotypes. Patient ABO and Lewis RBC phenotypes were not statistically different than those for controls. Thus, the overall risk for women to develop RUTIs does not appear to be associated with any single HLA, ABO, or Lewis phenotype.
Novel therapeutic strategy in the management of COPD: a systems medicine approach.
Lococo, Filippo; Cesario, Alfredo; Del Bufalo, Alessandra; Ciarrocchi, Alessia; Prinzi, Giulia; Mina, Marco; Bonassi, Stefano; Russo, Patrizia
2015-01-01
Respiratory diseases including chronic-obstructive-pulmonary-disease (COPD) are globally increasing, with COPD predicted to become the third leading cause of global mortality by 2020. COPD is a heterogeneous disease with COPD-patients displaying different phenotypes as a result of a complex interaction between various genetic, environmental and life-style factors. In recent years, several investigations have been performed to better define such interactions, but the identification of the resulting phenotypes is still somewhat difficult, and may lead to inadequate assessment and management of COPD (usually based solely on the severity of airflow limitation parameter FEV1). In this new scenario, the management of COPD has been driven towards an integrative and holistic approach. The degree of complexity requires analyses based on large datasets (also including advanced functional genomic assays) and novel computational biology approaches (essential to extract information relevant for the clinical decision process and for the development of new drugs). Therefore, according to the emerging "systems/network medicine", COPD should be re.-evaluated considering multiple network(s) perturbations such as genetic and environmental changes. Systems Medicine (SM) platforms, in which patients are extensively characterized, offer a basis for a more targeted clinical approach, which is predictive, preventive, personalized and participatory ("P4-medicine"). It clearly emerges that in the next future, new opportunities will become available for clinical research on rare COPD patterns and for the identification of new biomarkers of comorbidity, severity, and progression. Herein, we overview the literature discussing the opportunity coming from the adoption of SMapproaches in COPD management, focusing on proteomics and metabolomics, and emphasizing the identification of disease sub-clusters, to improve the development of more effective therapies.
Maneuvering in the Complex Path from Genotype to Phenotype
NASA Astrophysics Data System (ADS)
Strohman, Richard
2002-04-01
Human disease phenotypes are controlled not only by genes but by lawful self-organizing networks that display system-wide dynamics. These networks range from metabolic pathways to signaling pathways that regulate hormone action. When perturbed, networks alter their output of matter and energy which, depending on the environmental context, can produce either a pathological or a normal phenotype. Study of the dynamics of these networks by approaches such as metabolic control analysis may provide new insights into the pathogenesis and treatment of complex diseases.
The clinical maze of mitochondrial neurology
DiMauro, Salvatore; Schon, Eric A.; Carelli, Valerio; Hirano, Michio
2014-01-01
Mitochondrial diseases involve the respiratory chain, which is under the dual control of nuclear and mitochondrial DNA (mtDNA). The complexity of mitochondrial genetics provides one explanation for the clinical heterogeneity of mitochondrial diseases, but our understanding of disease pathogenesis remains limited. Classification of Mendelian mitochondrial encephalomyopathies has been laborious, but whole-exome sequencing studies have revealed unexpected molecular aetiologies for both typical and atypical mitochondrial disease phenotypes. Mendelian mitochondrial defects can affect five components of mitochondrial biology: subunits of respiratory chain complexes (direct hits); mitochondrial assembly proteins; mtDNA translation; phospholipid composition of the inner mitochondrial membrane; or mitochondrial dynamics. A sixth category—defects of mtDNA maintenance—combines features of Mendelian and mitochondrial genetics. Genetic defects in mitochondrial dynamics are especially important in neurology as they cause optic atrophy, hereditary spastic paraplegia, and Charcot–Marie–Tooth disease. Therapy is inadequate and mostly palliative, but promising new avenues are being identified. Here, we review current knowledge on the genetics and pathogenesis of the six categories of mitochondrial disorders outlined above, focusing on their salient clinical manifestations and highlighting novel clinical entities. An outline of diagnostic clues for the various forms of mitochondrial disease, as well as potential therapeutic strategies, is also discussed. PMID:23835535
Sorrentino, F S; Gallenga, C E; Bonifazzi, C; Perri, P
2016-01-01
Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by a complex association between tremendous genotypic multiplicity and great phenotypic heterogeneity. The severity of the clinical manifestation depends on penetrance and expressivity of the disease-gene. Also, various interactions between gene expression and environmental factors have been hypothesized. More than 250 genes with ~4500 causative mutations have been reported to be involved in different RP-related mechanisms. Nowadays, not more than the 50% of RPs are attributable to identified genes, whereas the rest of molecular defects are still undetectable, especially in populations where few genetic screenings have been performed. Therefore, new genetic strategies can be a remarkably useful tool to aid clinical diagnosis, potentially modifying treatment options, and family counseling. Genome-wide analytical techniques (array comparative genomic hybridization and single-nucleotide polymorphism genotyping) and DNA sequencing strategies (arrayed primer extension, Sanger sequencing, and ultra high-throughput sequencing) are successfully used to early make molecular diagnosis detecting single or multiple mutations in the huge heterogeneity of RPs. To date, further research needs to be carried out to better investigate the genotype/phenotype correlation, putting together genetic and clinical findings to provide detailed information concerning the risk of RP development and novel effective treatments. PMID:27564722
Liang, Fenghe; Zhao, Min; Fan, Lynn; Zhang, Hongyan; Shi, Yang; Han, Rui; Qu, Chunyan
2016-12-01
Waardenburg syndrome is a rare genetic disorder, characterized by the association of sensorineural hearing loss and pigmentation abnormalities. Four subtypes have been classified. The present study aimed to analyze the clinical feature and investigate the genetic cause for a Chinese case of Waardenburg type IV (WS4). The patient and his family members were subjected to mutation detection in the candidate gene SOX10 by Sanger sequencing. The patient has the clinical features of WS4, including sensorineural hearing loss, bright blue irides, premature graying of the hair and Hirschsprung disease. A novel heterozygous frameshift mutation, c.752_753ins7 (p.Gly252Alafs*31) in the exon 5 of SOX10 was detected in the patient, but not found in the unaffected family members and 100 normal controls. This mutation results in a premature stop codon 31 amino acid downstream. The novel mutation c.752_753ins7 (p.Gly252Alafs*31) arose de novo and was considered as the cause of WS4 in the proband. This study further characterized the molecular complexity of WS4 and provided a clinical case for genotype-phenotype correlation studies of different phenotypes caused by SOX10 mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Aberrant expression of long noncoding RNAs in autistic brain.
Ziats, Mark N; Rennert, Owen M
2013-03-01
The autism spectrum disorders (ASD) have a significant hereditary component, but the implicated genetic loci are heterogeneous and complex. Consequently, there is a gap in understanding how diverse genomic aberrations all result in one clinical ASD phenotype. Gene expression studies from autism brain tissue have demonstrated that aberrantly expressed protein-coding genes may converge onto common molecular pathways, potentially reconciling the strong heritability and shared clinical phenotypes with the genomic heterogeneity of the disorder. However, the regulation of gene expression is extremely complex and governed by many mechanisms, including noncoding RNAs. Yet no study in ASD brain tissue has assessed for changes in regulatory long noncoding RNAs (lncRNAs), which represent a large proportion of the human transcriptome, and actively modulate mRNA expression. To assess if aberrant expression of lncRNAs may play a role in the molecular pathogenesis of ASD, we profiled over 33,000 annotated lncRNAs and 30,000 mRNA transcripts from postmortem brain tissue of autistic and control prefrontal cortex and cerebellum by microarray. We detected over 200 differentially expressed lncRNAs in ASD, which were enriched for genomic regions containing genes related to neurodevelopment and psychiatric disease. Additionally, comparison of differences in expression of mRNAs between prefrontal cortex and cerebellum within individual donors showed ASD brains had more transcriptional homogeneity. Moreover, this was also true of the lncRNA transcriptome. Our results suggest that further investigation of lncRNA expression in autistic brain may further elucidate the molecular pathogenesis of this disorder.
Mobarrez, Fariborz; Vikerfors, Anna; Gustafsson, Johanna T.; Gunnarsson, Iva; Zickert, Agneta; Larsson, Anders; Pisetsky, David S.; Wallén, Håkan; Svenungsson, Elisabet
2016-01-01
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by circulating autoantibodies and the formation of immune complexes. In these responses, the selecting self-antigens likely derive from the remains of dead and dying cells, as well as from disturbances in clearance. During cell death/activation, microparticles (MPs) can be released to the circulation. Previous MP studies in SLE have been limited in size and differ regarding numbers and phenotypes. Therefore, to characterize MPs more completely, we investigated 280 SLE patients and 280 individually matched controls. MPs were measured with flow cytometry and phenotyped according to phosphatidylserine expression (PS+/PS−), cellular origin and inflammatory markers. MPs, regardless of phenotype, are 2–10 times more abundant in SLE blood compared to controls. PS− MPs predominated in SLE, but not in controls (66% vs. 42%). Selectively in SLE, PS− MPs were more numerous in females and smokers. MP numbers decreased with declining renal function, but no clear association with disease activity was observed. The striking abundance of MPs, especially PS− MPs, suggests a generalized disturbance in SLE. MPs may be regarded as “liquid biopsies” to assess the production and clearance of dead, dying and activated cells, i.e. pivotal events for SLE pathogenesis. PMID:27777414
Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome.
Bénit, P; Slama, A; Cartault, F; Giurgea, I; Chretien, D; Lebon, S; Marsac, C; Munnich, A; Rötig, A; Rustin, P
2004-01-01
Respiratory chain complex I deficiency represents a genetically heterogeneous group of diseases resulting from mutations in mitochondrial or nuclear genes. Mutations have been reported in 13 of the 14 subunits encoding the core of complex I (seven mitochondrial and six nuclear genes) and these result in Leigh or Leigh-like syndromes or cardiomyopathy. In this study, a combination of denaturing high performance liquid chromatography and sequence analysis was used to study the NDUFS3 gene in a series of complex I deficient patients. Mutations found in this gene (NADH dehydrogenase iron-sulphur protein 3), coding for the seventh and last subunit of complex I core, were shown to cause late onset Leigh syndrome, optic atrophy, and complex I deficiency. A biochemical diagnosis of complex I deficiency on cultured amniocytes from a later pregnancy was confirmed through the identification of disease causing NDUFS3 mutations in these cells. While mutations in the NDUFS3 gene thus result in Leigh syndrome, a dissimilar clinical phenotype is observed in mutations in the NDUFV2 and NDUFS2 genes, resulting in encephalomyopathy and cardiomyopathy. The reasons for these differences are uncertain.
Boisson, Bertrand; Laplantine, Emmanuel; Dobbs, Kerry; Cobat, Aurélie; Tarantino, Nadine; Hazen, Melissa; Lidov, Hart G.W.; Hopkins, Gregory; Du, Likun; Belkadi, Aziz; Chrabieh, Maya; Itan, Yuval; Picard, Capucine; Fournet, Jean-Christophe; Eibel, Hermann; Tsitsikov, Erdyni; Pai, Sung-Yun; Abel, Laurent; Al-Herz, Waleed; Israel, Alain
2015-01-01
Inherited, complete deficiency of human HOIL-1, a component of the linear ubiquitination chain assembly complex (LUBAC), underlies autoinflammation, infections, and amylopectinosis. We report the clinical description and molecular analysis of a novel inherited disorder of the human LUBAC complex. A patient with multiorgan autoinflammation, combined immunodeficiency, subclinical amylopectinosis, and systemic lymphangiectasia, is homozygous for a mutation in HOIP, the gene encoding the catalytic component of LUBAC. The missense allele (L72P, in the PUB domain) is at least severely hypomorphic, as it impairs HOIP expression and destabilizes the whole LUBAC complex. Linear ubiquitination and NF-κB activation are impaired in the patient’s fibroblasts stimulated by IL-1β or TNF. In contrast, the patient’s monocytes respond to IL-1β more vigorously than control monocytes. However, the activation and differentiation of the patient’s B cells are impaired in response to CD40 engagement. These cellular and clinical phenotypes largely overlap those of HOIL-1-deficient patients. Clinical differences between HOIL-1- and HOIP-mutated patients may result from differences between the mutations, the loci, or other factors. Our findings show that human HOIP is essential for the assembly and function of LUBAC and for various processes governing inflammation and immunity in both hematopoietic and nonhematopoietic cells. PMID:26008899
VISCHER, ANNINA S.; CONNOLLY, DAVID J.; COATS, CAROLINE J.; FUENTES, VIRGINIA LUIS; MCKENNA, WILLIAM J.; CASTELLETTI, SILVIA; PANTAZIS, ANTONIOS A.
2017-01-01
Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease with an increased risk for ventricular arrhythmias. The condition, which occurs in Boxer dogs, shares phenotypic features with the human disease arrhythmogenic cardiomyopathy (ACM) suggesting its potential as a natural animal model. However, there are currently no universally accepted clinical criteria to diagnose ARVC in Boxer dogs. We aimed to identify diagnostic criteria for ARVC in Boxer dogs defining a more uniform and consistent phenotype. Methods and Results Clinical records from 264 Boxer dogs from a referral veterinary hospital were retrospectively analysed. ARVC was initially diagnosed according to the number of ventricular premature complexes (VPCs) in the 24-hour-Holter-ECG in the absence of another obvious cause. Dogs diagnosed this way had more VPCs, polymorphic VPCs, couplets, triplets, VTs and R-on-T-phenomenon and syncope, decreased right ventricular function and dilatation in comparison to a control group of all other Boxer dogs seen by the Cardiology Service over the same period. Presence of couplets and R-on-T-phenomenon on a 24h-ECG were identified as independent predictors of the diagnosis. A diagnosis based on ≥100 VPCs in 24 hours, presence of couplets and R-on-T phenomenon on a 24h-ECG was able to select Boxer dogs with a phenotype most similar to human ACM. Conclusion We suggest the diagnosis of ARVC in Boxer dogs requires two out of the three following criteria: presence of ≥ 100 VPCs, presence of couplets or R-on-T-phenomenon on a 24 h-ECG. This results in a uniform phenotype similar to that described in human ACM and may result in the adoption of the term ACM for this analogous condition in Boxer dogs. PMID:29774304
Genetic variants associated with sleep disorders.
Kripke, Daniel F; Kline, Lawrence E; Nievergelt, Caroline M; Murray, Sarah S; Shadan, Farhad F; Dawson, Arthur; Poceta, J Steven; Cronin, John; Jamil, Shazia M; Tranah, Gregory J; Loving, Richard T; Grizas, Alexandra P; Hahn, Elizabeth K
2015-02-01
The diagnostic boundaries of sleep disorders are under considerable debate. The main sleep disorders are partly heritable; therefore, defining heritable pathophysiologic mechanisms could delineate diagnoses and suggest treatment. We collected clinical data and DNA from consenting patients scheduled to undergo clinical polysomnograms, to expand our understanding of the polymorphisms associated with the phenotypes of particular sleep disorders. Patients at least 21 years of age were recruited to contribute research questionnaires, and to provide access to their medical records, saliva for deoxyribonucleic acid (DNA), and polysomnographic data. From these complex data, 38 partly overlapping phenotypes were derived indicating complaints, subjective and objective sleep timing, and polysomnographic disturbances. A custom chip was used to genotype 768 single-nucleotide polymorphisms (SNPs). Additional assays derived ancestry-informative markers (eg, 751 participants of European ancestry). Linear regressions controlling for age, gender, and ancestry were used to assess the associations of each phenotype with each of the SNPs, highlighting those with Bonferroni-corrected significance. In peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B), rs6888451 was associated with several markers of obstructive sleep apnea. In aryl hydrocarbon receptor nuclear translocator-like (ARNTL), rs10766071 was associated with decreased polysomnographic sleep duration. The association of rs3923809 in BTBD9 with periodic limb movements in sleep was confirmed. SNPs in casein kinase 1 delta (CSNK1D rs11552085), cryptochrome 1 (CRY1 rs4964515), and retinoic acid receptor-related orphan receptor A (RORA rs11071547) were less persuasively associated with sleep latency and time of falling asleep. SNPs associated with several sleep phenotypes were suggested, but due to risks of false discovery, independent replications are needed before the importance of these associations can be assessed, followed by investigation of molecular mechanisms. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
A novel microduplication of ARID1B: Clinical, genetic, and proteomic findings.
Seabra, Catarina M; Szoko, Nicholas; Erdin, Serkan; Ragavendran, Ashok; Stortchevoi, Alexei; Maciel, Patrícia; Lundberg, Kathleen; Schlatzer, Daniela; Smith, Janice; Talkowski, Michael E; Gusella, James F; Natowicz, Marvin R
2017-09-01
Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF-A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78-98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT-PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subject's lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up- or down-regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down-regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non-syndromic developmental disabilities. © 2017 Wiley Periodicals, Inc.
Mechanisms of the Development of Allergy (MeDALL): Introducing novel concepts in allergy phenotypes.
Anto, Josep M; Bousquet, Jean; Akdis, Mubeccel; Auffray, Charles; Keil, Thomas; Momas, Isabelle; Postma, Dirkje S; Valenta, Rudolf; Wickman, Magnus; Cambon-Thomsen, Anne; Haahtela, Tari; Lambrecht, Bart N; Lodrup Carlsen, Karin C; Koppelman, Gerard H; Sunyer, Jordi; Zuberbier, Torsten; Annesi-Maesano, Isabelle; Arno, Albert; Bindslev-Jensen, Carsten; De Carlo, Giuseppe; Forastiere, Francesco; Heinrich, Joachim; Kowalski, Marek L; Maier, Dieter; Melén, Erik; Smit, Henriette A; Standl, Marie; Wright, John; Asarnoj, Anna; Benet, Marta; Ballardini, Natalia; Garcia-Aymerich, Judith; Gehring, Ulrike; Guerra, Stefano; Hohmann, Cynthia; Kull, Inger; Lupinek, Christian; Pinart, Mariona; Skrindo, Ingebjorg; Westman, Marit; Smagghe, Delphine; Akdis, Cezmi; Andersson, Niklas; Bachert, Claus; Ballereau, Stephane; Ballester, Ferran; Basagana, Xavier; Bedbrook, Anna; Bergstrom, Anna; von Berg, Andrea; Brunekreef, Bert; Burte, Emilie; Carlsen, Kai-Hakon; Chatzi, Leda; Coquet, Jonathan M; Curin, Mirela; Demoly, Pascal; Eller, Esben; Fantini, Maria Pia; von Hertzen, Leena; Hovland, Vergard; Jacquemin, Benedicte; Just, Jocelyne; Keller, Theresa; Kiss, Renata; Kogevinas, Manolis; Koletzko, Sibylle; Lau, Susanne; Lehmann, Irina; Lemonnier, Nicolas; Mäkelä, Mika; Mestres, Jordi; Mowinckel, Peter; Nadif, Rachel; Nawijn, Martijn C; Pellet, Johan; Pin, Isabelle; Porta, Daniela; Rancière, Fanny; Rial-Sebbag, Emmanuelle; Saeys, Yvan; Schuijs, Martijn J; Siroux, Valerie; Tischer, Christina G; Torrent, Mathies; Varraso, Raphaelle; Wenzel, Kalus; Xu, Cheng-Jian
2017-02-01
Asthma, rhinitis, and eczema are complex diseases with multiple genetic and environmental factors interlinked through IgE-associated and non-IgE-associated mechanisms. Mechanisms of the Development of ALLergy (MeDALL; EU FP7-CP-IP; project no: 261357; 2010-2015) studied the complex links of allergic diseases at the clinical and mechanistic levels by linking epidemiologic, clinical, and mechanistic research, including in vivo and in vitro models. MeDALL integrated 14 European birth cohorts, including 44,010 participants and 160 cohort follow-ups between pregnancy and age 20 years. Thirteen thousand children were prospectively followed after puberty by using a newly standardized MeDALL Core Questionnaire. A microarray developed for allergen molecules with increased IgE sensitivity was obtained for 3,292 children. Estimates of air pollution exposure from previous studies were available for 10,000 children. Omics data included those from historical genome-wide association studies (23,000 children) and DNA methylation (2,173), targeted multiplex biomarker (1,427), and transcriptomic (723) studies. Using classical epidemiology and machine-learning methods in 16,147 children aged 4 years and 11,080 children aged 8 years, MeDALL showed the multimorbidity of eczema, rhinitis, and asthma and estimated that only 38% of multimorbidity was attributable to IgE sensitization. MeDALL has proposed a new vision of multimorbidity independent of IgE sensitization, and has shown that monosensitization and polysensitization represent 2 distinct phenotypes. The translational component of MeDALL is shown by the identification of a novel allergic phenotype characterized by polysensitization and multimorbidity, which is associated with the frequency, persistence, and severity of allergic symptoms. The results of MeDALL will help integrate personalized, predictive, preventative, and participatory approaches in allergic diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Machine Learning in Medical Imaging.
Giger, Maryellen L
2018-03-01
Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision medicine. Copyright © 2018. Published by Elsevier Inc.
The genotypic and phenotypic spectrum of MTO1 deficiency.
O'Byrne, James J; Tarailo-Graovac, Maja; Ghani, Aisha; Champion, Michael; Deshpande, Charu; Dursun, Ali; Ozgul, Riza K; Freisinger, Peter; Garber, Ian; Haack, Tobias B; Horvath, Rita; Barić, Ivo; Husain, Ralf A; Kluijtmans, Leo A J; Kotzaeridou, Urania; Morris, Andrew A; Ross, Colin J; Santra, Saikat; Smeitink, Jan; Tarnopolsky, Mark; Wortmann, Saskia B; Mayr, Johannes A; Brunner-Krainz, Michaela; Prokisch, Holger; Wasserman, Wyeth W; Wevers, Ron A; Engelke, Udo F; Rodenburg, Richard J; Ting, Teck Wah; McFarland, Robert; Taylor, Robert W; Salvarinova, Ramona; van Karnebeek, Clara D M
2018-01-01
Mitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10). Thirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail. For the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal, phenotype. These data suggest that complete loss of MTO1 is not viable. A ketogenic diet may have exerted a favourable effect on seizures in 2/5 patients. MTO1 deficiency is lethal in some but not all cases, and a genotype-phenotype relation is suggested. Aside from lactic acidosis and cardiomyopathy, developmental delay and other phenotypic features affecting multiple organ systems are often present in these patients, suggesting a broader spectrum than hitherto reported. The diagnosis should be suspected on clinical features and the presence of markers of mitochondrial dysfunction in body fluids, especially low residual complex I, III and IV activity in muscle. Molecular confirmation is required and targeted genomic testing may be the most efficient approach. Although subjective clinical improvement was observed in a small number of patients on therapies such as ketogenic diet and dichloroacetate, no evidence-based effective therapy exists. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Reichert, Michael S; Höbel, Gerlinde
2018-03-01
Animal signals are inherently complex phenotypes with many interacting parts combining to elicit responses from receivers. The pattern of interrelationships between signal components reflects the extent to which each component is expressed, and responds to selection, either in concert with or independently of others. Furthermore, many species have complex repertoires consisting of multiple signal types used in different contexts, and common morphological and physiological constraints may result in interrelationships extending across the multiple signals in species' repertoires. The evolutionary significance of interrelationships between signal traits can be explored within the framework of phenotypic integration, which offers a suite of quantitative techniques to characterize complex phenotypes. In particular, these techniques allow for the assessment of modularity and integration, which describe, respectively, the extent to which sets of traits covary either independently or jointly. Although signal and repertoire complexity are thought to be major drivers of diversification and social evolution, few studies have explicitly measured the phenotypic integration of signals to investigate the evolution of diverse communication systems. We applied methods from phenotypic integration studies to quantify integration in the two primary vocalization types (advertisement and aggressive calls) in the treefrogs Hyla versicolor , Hyla cinerea, and Dendropsophus ebraccatus . We recorded male calls and calculated standardized phenotypic variance-covariance ( P ) matrices for characteristics within and across call types. We found significant integration across call types, but the strength of integration varied by species and corresponded with the acoustic similarity of the call types within each species. H. versicolor had the most modular advertisement and aggressive calls and the least acoustically similar call types. Additionally, P was robust to changing social competition levels in H. versicolor . Our findings suggest new directions in animal communication research in which the complex relationships among the traits of multiple signals are a key consideration for understanding signal evolution.
USDA-ARS?s Scientific Manuscript database
The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...
Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.
2016-01-01
Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays. PMID:27452732
NASA Astrophysics Data System (ADS)
Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.
2016-07-01
Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays.
2012-01-01
Background Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Methods Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. Results A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. Conclusions This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research. PMID:22849591
Devaraju, Panneer; Gulati, Reena; Antony, Paul T; Mithun, C B; Negi, Vir S
2015-03-01
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder with complex etiology. Genetics plays an important role in lupus pathogenesis through its influence on clinical and autoantibody phenotype of the disease. Toll like receptors (TLR) recognize molecular patterns of pathogens and activate the innate immune system. Their ability to identify nucleic acids makes them suitable candidates for investigation of their role in lupus pathogenesis. Hence, this study was carried out to analyze the G to A and C to T transitions in TLR2 and TLR9 genes respectively and to test their association with lupus susceptibility, clinical and autoantibody phenotypes in South Indian Tamils. Three hundred SLE patients fulfilling ACR 2012 criteria for SLE and 460 age, sex similar, ethnicity matched controls were recruited as cases and controls. TLR2 (R753Q) and TLR9 (-1237C/T) polymorphisms were analyzed by real time PCR. The TLR2 gene remained monomorphic in patients and controls, the frequency of the homozygous wild type allele being 100% and 99.6% respectively. Hence, it did not confer susceptibility to SLE. The more frequent T allele of TLR9 gene conferred a significant risk to develop SLE (p=0.011, OR 1.69, 95% CI 1.1-2.6). Both the polymorphisms did not influence clinical or autoantibody phenotype of the disease. Prevailing endemic infections in the Indian subcontinent may have exerted a selection pressure resulting in TLR2 gene remaining monomorphic and the TLR9 adapting to a mutation for its increased expression. These may have an additive effect in the presence of other genetic and environmental risk factors to confer susceptibility to SLE in South Indian Tamils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biagosch, Caroline; Ediga, Raga Deepthi; Hensler, Svenja-Viola; Faerberboeck, Michael; Kuehn, Ralf; Wurst, Wolfgang; Meitinger, Thomas; Kölker, Stefan; Sauer, Sven; Prokisch, Holger
2017-09-01
Glutaric aciduria type I (GA-I) is a rare organic aciduria caused by the autosomal recessive inherited deficiency of glutaryl-CoA dehydrogenase (GCDH). GCDH deficiency leads to disruption of l-lysine degradation with characteristic accumulation of glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, 3-hydroxyglutaric acid (3-OHGA). DHTKD1 acts upstream of GCDH, and its deficiency leads to none or often mild clinical phenotype in humans, 2-aminoadipic 2-oxoadipic aciduria. We hypothesized that inhibition of DHTKD1 may prevent the accumulation of neurotoxic dicarboxylic metabolites suggesting DHTKD1 inhibition as a possible treatment strategy for GA-I. In order to validate this hypothesis we took advantage of an existing GA-I (Gcdh -/- ) mouse model and established a Dhtkd1 deficient mouse model. Both models reproduced the biochemical and clinical phenotype observed in patients. Under challenging conditions of a high lysine diet, only Gcdh -/- mice but not Dhtkd1 -/- mice developed clinical symptoms such as lethargic behaviour and weight loss. However, the genetic Dhtkd1 inhibition in Dhtkd1 -/- /Gcdh -/- mice could not rescue the GA-I phenotype. Biochemical results confirm this finding with double knockout mice showing similar metabolite accumulations as Gcdh -/- mice with high GA in brain and liver. This suggests that DHTKD1 inhibition alone is not sufficient to treat GA-I, but instead a more complex strategy is needed. Our data highlights the many unresolved questions within the l-lysine degradation pathway and provides evidence for a so far unknown mechanism leading to glutaryl-CoA. Copyright © 2017 Elsevier B.V. All rights reserved.
Anderson, Julia; Lemmer, Darrin; Lehmkuhl, Erik; Georghiou, Sophia B.; Heaton, Hannah; Wiggins, Kristin; Gillece, John D.; Schupp, James M.; Catanzaro, Donald G.; Crudu, Valeriu; Cohen, Ted; Rodwell, Timothy C.; Engelthaler, David M.
2016-01-01
Increasingly complex drug-resistant tuberculosis (DR-TB) is a major global health concern and one of the primary reasons why TB is now the leading infectious cause of death worldwide. Rapid characterization of a DR-TB patient's complete drug resistance profile would facilitate individualized treatment in place of empirical treatment, improve treatment outcomes, prevent amplification of resistance, and reduce the transmission of DR-TB. The use of targeted next-generation sequencing (NGS) to obtain drug resistance profiles directly from patient sputum samples has the potential to enable comprehensive evidence-based treatment plans to be implemented quickly, rather than in weeks to months, which is currently needed for phenotypic drug susceptibility testing (DST) results. In this pilot study, we evaluated the performance of amplicon sequencing of Mycobacterium tuberculosis DNA from patient sputum samples using a tabletop NGS technology and automated data analysis to provide a rapid DST solution (the Next Gen-RDST assay). One hundred sixty-six out of 176 (94.3%) sputum samples from the Republic of Moldova yielded complete Next Gen-RDST assay profiles for 7 drugs of interest. We found a high level of concordance of our Next Gen-RDST assay results with phenotypic DST (97.0%) and pyrosequencing (97.8%) results from the same clinical samples. Our Next Gen-RDST assay was also able to estimate the proportion of resistant-to-wild-type alleles down to mixtures of ≤1%, which demonstrates the ability to detect very low levels of resistant variants not detected by pyrosequencing and possibly below the threshold for phenotypic growth methods. The assay as described here could be used as a clinical or surveillance tool. PMID:27225403
Paisán-Ruiz, Coro; Guevara, Rocio; Federoff, Monica; Hanagasi, Hasmet; Sina, Fardaz; Elahi, Elahe; Schneider, Susanne A; Schwingenschuh, Petra; Bajaj, Nin; Emre, Murat; Singleton, Andrew B; Hardy, John; Bhatia, Kailash P; Brandner, Sebastian; Lees, Andrew J; Houlden, Henry
2010-09-15
Seven autosomal recessive genes associated with juvenile and young-onset Levodopa-responsive parkinsonism have been identified. Mutations in PRKN, DJ-1, and PINK1 are associated with a rather pure parkinsonian phenotype, and have a more benign course with sustained treatment response and absence of dementia. On the other hand, Kufor-Rakeb syndrome has additional signs, which distinguish it clearly from Parkinson's disease including supranuclear vertical gaze palsy, myoclonic jerks, pyramidal signs, and cognitive impairment. Neurodegeneration with brain iron accumulation type I (Hallervorden-Spatz syndrome) due to mutations in PANK2 gene may share similar features with Kufor-Rakeb syndrome. Mutations in three other genes, PLA2G6 (PARK14), FBXO7 (PARK15), and Spatacsin (SPG11) also produce clinical similar phenotypes in that they presented with rapidly progressive parkinsonism, initially responsive to Levodopa treatment but later, developed additional features including cognitive decline and loss of Levodopa responsiveness. Here, using homozygosity mapping and sequence analysis in families with complex parkinsonisms, we identified genetic defects in the ATP13A2 (1 family), PLA2G6 (1 family) FBXO7 (2 families), and SPG11 (1 family). The genetic heterogeneity was surprising given their initially common clinical features. On careful review, we found the FBXO7 cases to have a phenotype more similar to PRKN gene associated parkinsonism. The ATP13A2 and PLA2G6 cases were more seriously disabled with additional swallowing problems, dystonic features, severe in some, and usually pyramidal involvement including pyramidal weakness. These data suggest that these four genes account for many cases of Levodopa responsive parkinsonism with pyramidal signs cases formerly categorized clinically as pallido-pyramidal syndrome. © 2010 Movement Disorder Society.
Paisán-Ruiz, Coro; Guevara, Rocio; Federoff, Monica; Hanagasi, Hasmet; Sina, Fardaz; Elahi, Elahe; Schneider, Susanne A.; Schwingenschuh, Petra; Bajaj, Nin; Emre, Murat; Singleton, Andrew B.; Hardy, John; Bhatia, Kailash P.; Brandner, Sebastian; Lees, Andrew J.; Houlden, Henry
2018-01-01
Seven autosomal recessive genes associated with juvenile and young-onset Levodopa-responsive parkinsonism have been identified. Mutations in PRKN, DJ-1, and PINK1 are associated with a rather pure parkinsonian phenotype, and have a more benign course with sustained treatment response and absence of dementia. On the other hand, Kufor-Rakeb syndrome has additional signs, which distinguish it clearly from Parkinson’s disease including supranu-clear vertical gaze palsy, myoclonic jerks, pyramidal signs, and cognitive impairment. Neurodegeneration with brain iron accumulation type I (Hallervorden-Spatz syndrome) due to mutations in PANK2 gene may share similar features with Kufor-Rakeb syndrome. Mutations in three other genes, PLA2G6 (PARK14), FBXO7 (PARK15), and Spatacsin (SPG11) also produce clinical similar phenotypes in that they presented with rapidly progressive parkinsonism, initially responsive to Levodopa treatment but later, developed additional features including cognitive decline and loss of Levodopa responsiveness. Here, using homozygosity mapping and sequence analysis in families with complex parkinsonisms, we identified genetic defects in the ATP13A2 (1 family), PLA2G6 (1 family) FBXO7 (2 families), and SPG11 (1 family). The genetic heterogeneity was surprising given their initially common clinical features. On careful review, we found the FBXO7 cases to have a phenotype more similar to PRKN gene associated parkinsonism. The ATP13A2 and PLA2G6 cases were more seriously disabled with additional swallowing problems, dystonic features, severe in some, and usually pyramidal involvement including pyramidal weakness. These data suggest that these four genes account for many cases of Levodopa responsive parkinsonism with pyramidal signs cases formerly categorized clinically as pallido-pyramidal syndrome. 3 2010 Movement Disorder Society PMID:20669327
SHARMA, ANKIT; GHATGE, MADANKUMAR; MUNDKUR, LAKSHMI; VANGALA, RAJANI KANTH
2016-01-01
Translational informatics approaches are required for the integration of diverse and accumulating data to enable the administration of effective translational medicine specifically in complex diseases such as coronary artery disease (CAD). In the current study, a novel approach for elucidating the association between infection, inflammation and CAD was used. Genes for CAD were collected from the CAD-gene database and those for infection and inflammation were collected from the UniProt database. The cytomegalovirus (CMV)-induced genes were identified from the literature and the CAD-associated clinical phenotypes were obtained from the Unified Medical Language System. A total of 55 gene ontologies (GO) termed functional communicator ontologies were identifed in the gene sets linking clinical phenotypes in the diseasome network. The network topology analysis suggested that important functions including viral entry, cell adhesion, apoptosis, inflammatory and immune responses networked with clinical phenotypes. Microarray data was extracted from the Gene Expression Omnibus (dataset: GSE48060) for highly networked disease myocardial infarction. Further analysis of differentially expressed genes and their GO terms suggested that CMV infection may trigger a xenobiotic response, oxidative stress, inflammation and immune modulation. Notably, the current study identified γ-glutamyl transferase (GGT)-5 as a potential biomarker with an odds ratio of 1.947, which increased to 2.561 following the addition of CMV and CMV-neutralizing antibody (CMV-NA) titers. The C-statistics increased from 0.530 for conventional risk factors (CRFs) to 0.711 for GGT in combination with the above mentioned infections and CRFs. Therefore, the translational informatics approach used in the current study identified a potential molecular mechanism for CMV infection in CAD, and a potential biomarker for risk prediction. PMID:27035874
The Impact of Data Fragmentation on High-Throughput Clinical Phenotyping
ERIC Educational Resources Information Center
Wei, Weiqi
2012-01-01
Subject selection is essential and has become the rate-limiting step for harvesting knowledge to advance healthcare through clinical research. Present manual approaches inhibit researchers from conducting deep and broad studies and drawing confident conclusions. High-throughput clinical phenotyping (HTCP), a recently proposed approach, leverages…
Dyslipidemias and Cardiovascular Prevention: Tailoring Treatment According to Lipid Phenotype.
Sanin, Veronika; Pfetsch, Vanessa; Koenig, Wolfgang
2017-07-01
This study aimed to present the current information on the genetic background of dyslipidemias and provide insights into the complex pathophysiological role of several plasma lipids/lipoproteins in the pathogenesis of atherosclerotic cardiovascular disease. Furthermore, we aim to summarize established therapies and describe the scientific rationale for the development of novel therapeutic strategies. Evidence from genetic studies suggests that besides lowering low-density lipoprotein cholesterol, pharmacological reduction of triglyceride-rich lipoproteins, or lipoprotein(a) will reduce risk for coronary heart disease. Dyslipidemia, in particular hypercholesterolemia, is a common clinical condition and represents an important determinant of atherosclerotic vascular disease. Treatment decisions are currently guided by the causative lipid phenotype and the presence of other risk factors suggesting a very high cardiovascular risk. Therefore, the identification of lipid disorders and the optimal combination of therapeutic strategies provide an outstanding opportunity for reducing the onset and burden of cardiovascular disease.
Morphometricity as a measure of the neuroanatomical signature of a trait.
Sabuncu, Mert R; Ge, Tian; Holmes, Avram J; Smoller, Jordan W; Buckner, Randy L; Fischl, Bruce
2016-09-27
Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer's disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques.
Morphometricity as a measure of the neuroanatomical signature of a trait
Sabuncu, Mert R.; Ge, Tian; Holmes, Avram J.; Smoller, Jordan W.; Buckner, Randy L.; Fischl, Bruce
2016-01-01
Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer’s disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques. PMID:27613854
Emerging targets and therapeutic approaches for the treatment of osteoarthritis pain.
Rahman, Wahida; Dickenson, Anthony H
2015-06-01
Osteoarthritis is a complex and often painful disease that is inadequately controlled with current analgesics. This review discusses emerging targets and therapeutic approaches that may lead to the development of better analgesics. Aberrant excitability in peripheral and central pain pathways drives osteoarthritis pain, reversing this via modulation of nerve growth factor, voltage-gated sodium channel, voltage-gated calcium channel and transient receptor potential vanilloid one activity, and increasing inhibitory mechanisms through modulation of cannabinoid and descending modulatory systems hold promise for osteoarthritis pain therapy. Somatosensory phenotyping of chronic pain patients, as a surrogate of putative pain generating mechanisms, may predict patient response to treatment. Identification of new targets will inform and guide future research, aiding the development of more effective analgesics. Future clinical trial designs should implement sensory phenotyping of patients, as an inclusion or stratification criterion, in order to establish an individualized, mechanism-based treatment of osteoarthritis pain.
Social disinhibition is a heritable subphenotype of tics in Tourette syndrome
Hirschtritt, Matthew E.; Darrow, Sabrina M.; Illmann, Cornelia; Osiecki, Lisa; Grados, Marco; Sandor, Paul; Dion, Yves; King, Robert A.; Pauls, David L.; Budman, Cathy L.; Cath, Danielle C.; Greenberg, Erica; Lyon, Gholson J.; Yu, Dongmei; McGrath, Lauren M.; McMahon, William M.; Lee, Paul C.; Delucchi, Kevin L.; Scharf, Jeremiah M.
2016-01-01
Objective: To identify heritable symptom-based subtypes of Tourette syndrome (TS). Methods: Forty-nine motor and phonic tics were examined in 3,494 individuals (1,191 TS probands and 2,303 first-degree relatives). Item-level exploratory factor and latent class analyses (LCA) were used to identify tic-based subtypes. Heritabilities of the subtypes were estimated, and associations with clinical characteristics were examined. Results: A 6-factor exploratory factor analysis model provided the best fit, which paralleled the somatotopic representation of the basal ganglia, distinguished simple from complex tics, and separated out socially disinhibited and compulsive tics. The 5-class LCA model best distinguished among the following groups: unaffected, simple tics, intermediate tics without social disinhibition, intermediate with social disinhibition, and high rates of all tic types. Across models, a phenotype characterized by high rates of social disinhibition emerged. This phenotype was associated with increased odds of comorbid psychiatric disorders, in particular, obsessive-compulsive disorder and attention-deficit/hyperactivity disorder, earlier age at TS onset, and increased tic severity. The heritability estimate for this phenotype based on the LCA was 0.53 (SE 0.08, p 1.7 × 10−18). Conclusions: Expanding on previous modeling approaches, a series of TS-related phenotypes, including one characterized by high rates of social disinhibition, were identified. These phenotypes were highly heritable and may reflect underlying biological networks more accurately than traditional diagnoses, thus potentially aiding future genetic, imaging, and treatment studies. PMID:27371487
Social disinhibition is a heritable subphenotype of tics in Tourette syndrome.
Hirschtritt, Matthew E; Darrow, Sabrina M; Illmann, Cornelia; Osiecki, Lisa; Grados, Marco; Sandor, Paul; Dion, Yves; King, Robert A; Pauls, David L; Budman, Cathy L; Cath, Danielle C; Greenberg, Erica; Lyon, Gholson J; Yu, Dongmei; McGrath, Lauren M; McMahon, William M; Lee, Paul C; Delucchi, Kevin L; Scharf, Jeremiah M; Mathews, Carol A
2016-08-02
To identify heritable symptom-based subtypes of Tourette syndrome (TS). Forty-nine motor and phonic tics were examined in 3,494 individuals (1,191 TS probands and 2,303 first-degree relatives). Item-level exploratory factor and latent class analyses (LCA) were used to identify tic-based subtypes. Heritabilities of the subtypes were estimated, and associations with clinical characteristics were examined. A 6-factor exploratory factor analysis model provided the best fit, which paralleled the somatotopic representation of the basal ganglia, distinguished simple from complex tics, and separated out socially disinhibited and compulsive tics. The 5-class LCA model best distinguished among the following groups: unaffected, simple tics, intermediate tics without social disinhibition, intermediate with social disinhibition, and high rates of all tic types. Across models, a phenotype characterized by high rates of social disinhibition emerged. This phenotype was associated with increased odds of comorbid psychiatric disorders, in particular, obsessive-compulsive disorder and attention-deficit/hyperactivity disorder, earlier age at TS onset, and increased tic severity. The heritability estimate for this phenotype based on the LCA was 0.53 (SE 0.08, p 1.7 × 10(-18)). Expanding on previous modeling approaches, a series of TS-related phenotypes, including one characterized by high rates of social disinhibition, were identified. These phenotypes were highly heritable and may reflect underlying biological networks more accurately than traditional diagnoses, thus potentially aiding future genetic, imaging, and treatment studies. © 2016 American Academy of Neurology.
Familial Hypercholesterolaemia
Marais, A David
2004-01-01
Familial hypercholesterolaemia (FH), defined as the heritable occurrence of severe hypercholesterolaemia with cholesterol deposits in tendons and premature heart disease, is caused by at least four genes in sterol and lipoprotein pathways and displays varying gene-dose effects. The genes are the low-density lipoprotein (LDL) receptor, apolipoprotein (apo) B, proprotein convertase subtilisin/kexin 9, and the autosomal recessive hypercholesterolaemia (ARH) adaptor protein. All of these disorders have in common defective clearance of LDL within a complex system of lipid and lipoprotein metabolism and regulation. Normal cellular cholesterol and lipoprotein metabolism is reviewed before describing the disorders, their metabolic derangements and their clinical effects. FH is classified as two simplified phenotypes of disease according to the severity of the metabolic derangement. The dominantly inherited heterozygous phenotype comprises defects in the LDL receptor, apoB100, and neural apoptosis regulatory cleavage protein. The homozygous phenotype is co-dominant in defects of the LDL receptor, and occurs also as the ARH of adapter protein mutations. Defective binding of apoB100 does not result in a significant gene dose effect, but enhances the severity of heterozygotes for LDL receptor mutations. The genetic diagnosis of FH has provided greater accuracy in definition and detection of disease and exposes information about migration of populations. All of these disorders pose a high risk of atherosclerosis, especially in the homozygous phenotype. Studies of influences on the phenotype and responses to treatment are also discussed in the context of the metabolic derangements. PMID:18516203
Macrophage Phenotype and Function in Different Stages of Atherosclerosis
Tabas, Ira; Bornfeldt, Karin E.
2016-01-01
The remarkable plasticity and plethora of biological functions performed by macrophages have enticed scientists to study these cells in relation to atherosclerosis for more than 50 years, and major discoveries continue to be made today. It is now understood that macrophages play important roles in all stages of atherosclerosis, from initiation of lesions and lesion expansion, to necrosis leading to rupture and the clinical manifestations of atherosclerosis, to resolution and regression of atherosclerotic lesions. Lesional macrophages are derived primarily from blood monocytes, although recent research has shown that lesional macrophage-like cells can also be derived from smooth muscle cells. Lesional macrophages take on different phenotypes depending on their environment and which intracellular signaling pathways are activated. Rather than a few distinct populations of macrophages, the phenotype of the lesional macrophage is more complex and likely changes during the different phases of atherosclerosis and with the extent of lipid and cholesterol loading, activation by a plethora of receptors, and metabolic state of the cells. These different phenotypes allow the macrophage to engulf lipids, dead cells, and other substances perceived as danger signals; efflux cholesterol to HDL; proliferate and migrate; undergo apoptosis and death; and secrete a large number of inflammatory and pro-resolving molecules. This review article, part of the Compendium on Atherosclerosis, discusses recent advances in our understanding of lesional macrophage phenotype and function in different stages of atherosclerosis. With the increasing understanding of the roles of lesional macrophages, new research areas and treatment strategies are beginning to emerge. PMID:26892964
Sandhu, Kam; Flintoff, Kaledas; Chatfield, Mark D; Dixon, Jeannette L; Ramm, Louise E; Ramm, Grant A; Powell, Lawrie W; Subramaniam, V Nathan; Wallace, Daniel F
2018-05-09
The clinical progression of HFE-related hereditary hemochromatosis (HH) and its phenotypic variability has been well studied. Less is known about the natural history of non-HFE HH caused by mutations in the HJV , HAMP or TFR2 genes. The purpose of this study was to compare the phenotypic and clinical presentations of hepcidin-deficient forms of HH. A literature review of all published cases of genetically confirmed HJV, HAMP and TFR2 HH was performed. Phenotypic and clinical data from a total of 156 subjects with non-HFE HH was extracted from 53 publications and compared with data from 984 subjects with HFE -p.C282Y homozygous HH from the QIMR Berghofer Hemochromatosis Database. Analyses confirmed that non-HFE forms of HH have an earlier age of onset and a more severe clinical course than HFE HH. HJV and HAMP HH are phenotypically and clinically very similar and have the most severe presentation, with cardiomyopathy and hypogonadism being particularly prevalent findings. TFR2 HH is more intermediate in its age of onset and severity. All clinical outcomes analyzed were more prevalent in the juvenile forms of HH, with the exception of arthritis and arthropathy which were more commonly seen in HFE HH. This is the first comprehensive analysis comparing the different phenotypic and clinical aspects of the genetic forms of HH and the results will be valuable for the differential diagnosis and management of these conditions. Importantly, our analyses indicate that factors other than iron overload may be contributing to joint pathology in subjects with HFE HH. Copyright © 2018 American Society of Hematology.
Systems Biology and Biomechanical Model of Heart Failure
Louridas, George E; Lourida, Katerina G
2012-01-01
Heart failure is seen as a complex disease caused by a combination of a mechanical disorder, cardiac remodeling and neurohormonal activation. To define heart failure the systems biology approach integrates genes and molecules, interprets the relationship of the molecular networks with modular functional units, and explains the interaction between mechanical dysfunction and cardiac remodeling. The biomechanical model of heart failure explains satisfactorily the progression of myocardial dysfunction and the development of clinical phenotypes. The earliest mechanical changes and stresses applied in myocardial cells and/or myocardial loss or dysfunction activate left ventricular cavity remodeling and other neurohormonal regulatory mechanisms such as early release of natriuretic peptides followed by SAS and RAAS mobilization. Eventually the neurohormonal activation and the left ventricular remodeling process are leading to clinical deterioration of heart failure towards a multi-organic damage. It is hypothesized that approaching heart failure with the methodology of systems biology we promote the elucidation of its complex pathophysiology and most probably we can invent new therapeutic strategies. PMID:22935019
TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.
2013-01-01
To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524
A phenotype of early infancy predicts reactivity of the amygdala in male adults.
Schwartz, C E; Kunwar, P S; Greve, D N; Kagan, J; Snidman, N C; Bloch, R B
2012-10-01
One of the central questions that has occupied those disciplines concerned with human development is the nature of continuities and discontinuities from birth to maturity. The amygdala has a central role in the processing of novelty and emotion in the brain. Although there is considerable variability among individuals in the reactivity of the amygdala to novel and emotional stimuli, the origin of these individual differences is not well understood. Four-month old infants called high reactive (HR) demonstrate a distinctive pattern of vigorous motor activity and crying to specific unfamiliar visual, auditory and olfactory stimuli in the laboratory. Low-reactive infants show the complementary pattern. Here, we demonstrate that the HR infant phenotype predicts greater amygdalar reactivity to novel faces almost two decades later in adults. A prediction of individual differences in brain function at maturity can be made on the basis of a single behavioral assessment made in the laboratory at 4 months of age. This is the earliest known human behavioral phenotype that predicts individual differences in patterns of neural activity at maturity. These temperamental differences rooted in infancy may be relevant to understanding individual differences in vulnerability and resilience to clinical psychiatric disorder. Males who were HR infants showed particularly high levels of reactivity to novel faces in the amygdala that distinguished them as adults from all other sex/temperament subgroups, suggesting that their amygdala is particularly prone to engagement by unfamiliar faces. These findings underline the importance of taking gender into account when studying the developmental neurobiology of human temperament and anxiety disorders. The genetic study of behavioral and biologic intermediate phenotypes (or 'endophenotypes') indexing anxiety-proneness offers an important alternative to examining phenotypes based on clinically defined disorder. As the HR phenotype is characterized by specific patterns of reactivity to elemental visual, olfactory and auditory stimuli, well before complex social behaviors such as shyness or fearful interaction with strangers can be observed, it may be closer to underlying neurobiological mechanisms than behavioral profiles observed later in life. This possibility, together with the fact that environmental factors have less time to impact the 4-month phenotype, suggests that this temperamental profile may be a fruitful target for high-risk genetic studies.
2012-01-01
Background Hypertrophic Cardiomyopathy (HCM) is a complex myocardial disorder with a recognized genetic heterogeneity. The elevated number of genes and mutations involved in HCM limits a gene-based diagnosis that should be considered of most importance for basic research and clinical medicine. Methodology In this report, we evaluated High Resolution Melting (HRM) robustness, regarding HCM genetic testing, by means of analyzing 28 HCM-associated genes, including the most frequent 4 HCM-associated sarcomere genes, as well as 24 genes with lower reported HCM-phenotype association. We analyzed 80 Portuguese individuals with clinical phenotype of HCM allowing simultaneously a better characterization of this disease in the Portuguese population. Results HRM technology allowed us to identify 60 mutated alleles in 72 HCM patients: 49 missense mutations, 3 nonsense mutations, one 1-bp deletion, one 5-bp deletion, one in frame 3-bp deletion, one insertion/deletion, 3 splice mutations, one 5'UTR mutation in MYH7, MYBPC3, TNNT2, TNNI3, CSRP3, MYH6 and MYL2 genes. Significantly 22 are novel gene mutations. Conclusions HRM was proven to be a technique with high sensitivity and a low false positive ratio allowing a rapid, innovative and low cost genotyping of HCM. In a short return, HRM as a gene scanning technique could be a cost-effective gene-based diagnosis for an accurate HCM genetic diagnosis and hopefully providing new insights into genotype/phenotype correlations. PMID:22429680
Barbato, Ersilia; Traversa, Alice; Guarnieri, Rosanna; Giovannetti, Agnese; Genovesi, Maria Luce; Magliozzi, Maria Rosa; Paolacci, Stefano; Ciolfi, Andrea; Pizzi, Simone; Di Giorgio, Roberto; Tartaglia, Marco; Pizzuti, Antonio; Caputo, Viviana
2018-07-01
The aim of this study was the clinical and molecular characterization of a family segregating a trait consisting of a phenotype specifically involving the maxillary canines, including agenesis, impaction and ectopic eruption, characterized by incomplete penetrance and variable expressivity. Clinical standardized assessment of 14 family members and a whole-exome sequencing (WES) of three affected subjects were performed. WES data analyses (sequence alignment, variant calling, annotation and prioritization) were carried out using an in-house implemented pipeline. Variant filtering retained coding and splice-site high quality private and rare variants. Variant prioritization was performed taking into account both the disruptive impact and the biological relevance of individual variants and genes. Sanger sequencing was performed to validate the variants of interest and to carry out segregation analysis. Prioritization of variants "by function" allowed the identification of multiple variants contributing to the trait, including two concomitant heterozygous variants in EDARADD (c.308C>T, p.Ser103Phe) and COL5A1 (c.1588G>A, p.Gly530Ser), specifically associated with a more severe phenotype (i.e. canine agenesis). Differently, heterozygous variants in genes encoding proteins with a role in the WNT pathway were shared by subjects showing a phenotype of impacted/ectopic erupted canines. This study characterized the genetic contribution underlying a complex trait consisting of isolated canine anomalies in a medium-sized family, highlighting the role of WNT and EDA cell signaling pathways in tooth development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kölker, Stefan; Valayannopoulos, Vassili; Burlina, Alberto B; Sykut-Cegielska, Jolanta; Wijburg, Frits A; Teles, Elisa Leão; Zeman, Jiri; Dionisi-Vici, Carlo; Barić, Ivo; Karall, Daniela; Arnoux, Jean-Baptiste; Avram, Paula; Baumgartner, Matthias R; Blasco-Alonso, Javier; Boy, S P Nikolas; Rasmussen, Marlene Bøgehus; Burgard, Peter; Chabrol, Brigitte; Chakrapani, Anupam; Chapman, Kimberly; Cortès I Saladelafont, Elisenda; Couce, Maria L; de Meirleir, Linda; Dobbelaere, Dries; Furlan, Francesca; Gleich, Florian; González, Maria Julieta; Gradowska, Wanda; Grünewald, Stephanie; Honzik, Tomas; Hörster, Friederike; Ioannou, Hariklea; Jalan, Anil; Häberle, Johannes; Haege, Gisela; Langereis, Eveline; de Lonlay, Pascale; Martinelli, Diego; Matsumoto, Shirou; Mühlhausen, Chris; Murphy, Elaine; de Baulny, Hélène Ogier; Ortez, Carlos; Pedrón, Consuelo C; Pintos-Morell, Guillem; Pena-Quintana, Luis; Ramadža, Danijela Petković; Rodrigues, Esmeralda; Scholl-Bürgi, Sabine; Sokal, Etienne; Summar, Marshall L; Thompson, Nicholas; Vara, Roshni; Pinera, Inmaculada Vives; Walter, John H; Williams, Monique; Lund, Allan M; Garcia-Cazorla, Angeles; Garcia Cazorla, Angeles
2015-11-01
The disease course and long-term outcome of patients with organic acidurias (OAD) and urea cycle disorders (UCD) are incompletely understood. To evaluate the complex clinical phenotype of OAD and UCD patients at different ages. Acquired microcephaly and movement disorders were common in OAD and UCD highlighting that the brain is the major organ involved in these diseases. Cardiomyopathy [methylmalonic (MMA) and propionic aciduria (PA)], prolonged QTc interval (PA), optic nerve atrophy [MMA, isovaleric aciduria (IVA)], pancytopenia (PA), and macrocephaly [glutaric aciduria type 1 (GA1)] were exclusively found in OAD patients, whereas hepatic involvement was more frequent in UCD patients, in particular in argininosuccinate lyase (ASL) deficiency. Chronic renal failure was often found in MMA, with highest frequency in mut(0) patients. Unexpectedly, chronic renal failure was also observed in adolescent and adult patients with GA1 and ASL deficiency. It had a similar frequency in patients with or without a movement disorder suggesting different pathophysiology. Thirteen patients (classic OAD: 3, UCD: 10) died during the study interval, ten of them during the initial metabolic crisis in the newborn period. Male patients with late-onset ornithine transcarbamylase deficiency were presumably overrepresented in the study population. Neurologic impairment is common in OAD and UCD, whereas the involvement of other organs (heart, liver, kidneys, eyes) follows a disease-specific pattern. The identification of unexpected chronic renal failure in GA1 and ASL deficiency emphasizes the importance of a systematic follow-up in patients with rare diseases.
Study designs to enhance identification of genetic factors in healthy aging.
Manolio, Teri A
2007-12-01
The sequencing of the human genome and the growing understanding of its function are providing powerful new research tools for identifying genetic variants that are associated with complex diseases and traits. Somewhat less emphasis has been given to genes related to healthy aging, although the approaches for studying health-related traits are analogous to those used for disease-related studies. A critical step prior to the design of such studies is to define a healthy aging phenotype, which should be standardized to permit comparisons across studies and should involve more than simple longevity. Phenotypes of particular value for genetic research are those with high heritability and close relationships to gene products or pathways, preferably with minimal or at least measurable environmental influences. Appropriate study designs to identify genotype-phenotype associations include family-based linkage studies, candidate gene association analyses, and genome-wide association studies. Advances in genotyping and sequencing technologies, and the generation of the human haplotype map database, now permit the cost-effective investigation of the very large sample sizes needed for genome-wide association studies in unrelated individuals. Challenges in interpretation and translation of such studies include assessing the potential for bias and confounding, as well as determining the clinical validity and utility of findings proposed for wider application. Many such studies are currently supported or being planned across the National Institutes of Health (NIH), and lend themselves to the kind of coordinated clinical research envisioned in programs such as the NIH Roadmap.
Rosser, Tena
2018-02-01
This article presents an up-to-date summary of the genetic etiology, diagnostic criteria, clinical features, and current management recommendations for the most common neurocutaneous disorders encountered in clinical adult and pediatric neurology practices. The phakomatoses are a phenotypically and genetically diverse group of multisystem disorders that primarily affect the skin and central nervous system. A greater understanding of the genetic and biological underpinnings of numerous neurocutaneous disorders has led to better clinical characterization, more refined diagnostic criteria, and improved treatments in neurofibromatosis type 1, Legius syndrome, neurofibromatosis type 2, Noonan syndrome with multiple lentigines, tuberous sclerosis complex, Sturge-Weber syndrome, and incontinentia pigmenti. Neurologists require a basic knowledge of and familiarity with a wide variety of neurocutaneous disorders because of the frequent involvement of the central and peripheral nervous systems. A simple routine skin examination can often open a broad differential diagnosis and lead to improved patient care.
Intrafamilial phenotypic heterogeneity of the Poland complex: a case report.
Parano, E; Falsaperla, R; Pavone, V; Toscano, A; Bolan, E A; Trifiletti, R R
1995-08-01
Three cases of familial unilateral gluteal hypoplasia are reported. The index case in addition to having gluteal hypoplasia also has unilateral pectoral muscle hypoplasia. Another relative has unilateral symbrachydactyly of the distal phalanges of one foot. All four affected individuals in our pedigree were female. We propose that our cases are best classified as part of the Poland complex of anomalies. Our cases emphasize that intrafamilial phenotypic heterogeneity is possible within the Poland complex.
USDA-ARS?s Scientific Manuscript database
Acinetobacter baumannii-calcoaceticus complex (ABC) infections have complicated the care of U.S. combat casualties. In this study, 102 ABC isolates from wounded soldiers treated at National Naval Medical Center (NNMC) were characterized by phenotype and genotype to identify clones in this population...
GiNA, an efficient and high-throughput software for horticultural phenotyping
USDA-ARS?s Scientific Manuscript database
Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed,...
Mishra, Manjari; Hatanpaa, Kimmo J.; White, Charles L.; Johnson, Nancy; Rademaker, Alfred; Weitner, Bing Bing; Deng, Han-Xiang; Dubner, Steven D.; Weintraub, Sandra; Mesulam, Marsel
2010-01-01
The clinical syndrome of primary progressive aphasia (PPA) can be associated with a variety of neuropathologic diagnoses at autopsy. Thirty percent of cases have Alzheimer disease (AD) pathology, most often in the usual distribution, which defies principles of brain–behavior organization, in that aphasia is not symptomatic of limbic disease. The present study investigated whether concomitant TDP-43 pathology could resolve the lack of clinicoanatomic concordance. In this paper, 16 cases of clinical PPA and 10 cases of primarily non-aphasic frontotemporal dementia (FTD), all with AD pathology, were investigated to determine whether their atypical clinical phenotypes reflected the presence of additional TDP-43 pathology. A comparison group consisted of 27 cases of pathologic AD with the typical amnestic clinical phenotype of probable AD. Concomitant TDP-43 pathology was discovered in only three of the FTD and PPA but in more than half of the typical amnestic clinical phenotypes. Hippocampal sclerosis (HS) was closely associated with TDP-43 pathology when all groups were combined for analysis. Therefore, the clinical phenotypes of PPA and FTD in cases with pathologic AD are only rarely associated with TDP-43 proteinopathy. Furthermore, medial temporal TDP-43 pathology is more tightly linked to HS than to clinical phenotype. These findings challenge the current notions about clinicopathologic correlation, especially about the role of multiple pathologies. PMID:20361198
Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.
Koizume, Shiro; Miyagi, Yohei
2015-01-01
Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.
Schiebel, Juliane; Böhm, Alexander; Nitschke, Jörg; Burdukiewicz, Michał; Weinreich, Jörg; Ali, Aamir; Roggenbuck, Dirk; Rödiger, Stefan; Schierack, Peter
2017-12-15
Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli ). We investigated the presence of biofilm-associated genes ("genotype") and phenotypically analyzed the isolates for motility and curli and cellulose production ("phenotype"). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device-related infections due to their high resistance to antibiotics and the host immune system. In nonpathogenic Escherichia coli , cell surface components playing a pivotal role in biofilm formation are well known. In contrast, there is poor information for their role in biofilm formation of pathogenic isolates. Our study provides insights into the correlation of biofilm-associated genes or specific phenotypes with the biofilm formation ability of commensal and pathogenic E. coli Additionally, we describe a newly developed method enabling qualitative biofilm analysis by automated image analysis, which is beneficial for high-throughput screenings. Our results help to establish a better understanding of E. coli biofilm formation. Copyright © 2017 American Society for Microbiology.
Strange, Charlie; Senior, Robert M; Sciurba, Frank; O'Neal, Scott; Morris, Alison; Wisniewski, Stephen R; Bowler, Russell; Hochheiser, Harry S; Becich, Michael J; Zhang, Yingze; Leader, Joseph K; Methé, Barbara A; Kaminski, Naftali; Sandhaus, Robert A
2015-10-01
Severe deficiency of alpha-1 antitrypsin has a highly variable clinical presentation. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis α1 Study is a prospective, multicenter, cross-sectional study of adults older than age 35 years with PiZZ or PiMZ alpha-1 antitrypsin genotypes. It is designed to better understand if microbial factors influence this heterogeneity. Clinical symptoms, pulmonary function testing, computed chest tomography, exercise capacity, and bronchoalveolar lavage (BAL) will be used to define chronic obstructive pulmonary disease (COPD) phenotypes that can be studied with an integrated systems biology approach that includes plasma proteomics; mouth, BAL, and stool microbiome and virome analysis; and blood microRNA and blood mononuclear cell RNA and DNA profiling. We will rely on global genome, transcriptome, proteome, and metabolome datasets. Matched cohorts of PiZZ participants on or off alpha-1 antitrypsin augmentation therapy, PiMZ participants not on augmentation therapy, and control participants from the Subpopulations and Intermediate Outcome Measures in COPD Study who match on FEV1 and age will be compared. In the primary analysis, we will determine if the PiZZ individuals on augmentation therapy have a difference in lower respiratory tract microbes identified compared with matched PiZZ individuals who are not on augmentation therapy. By characterizing the microbiome in alpha-1 antitrypsin deficiency (AATD), we hope to define new phenotypes of COPD that explain some of the diversity of clinical presentations. As a unique genetic cause of COPD, AATD may inform typical COPD pathogenesis, and better understanding of it may illuminate the complex interplay between environment and genetics. Although the biologic approaches are hypothesis generating, the results may lead to development of novel biomarkers, better understanding of COPD phenotypes, and development of novel diagnostic and therapeutic trials in AATD and COPD. Clinical trial registered with www.clinicaltrials.gov (NCT01832220).
Senior, Robert M.; Sciurba, Frank; O’Neal, Scott; Morris, Alison; Wisniewski, Stephen R.; Bowler, Russell; Hochheiser, Harry S.; Becich, Michael J.; Zhang, Yingze; Leader, Joseph K.; Methé, Barbara A.; Kaminski, Naftali; Sandhaus, Robert A.
2015-01-01
Severe deficiency of alpha-1 antitrypsin has a highly variable clinical presentation. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis α1 Study is a prospective, multicenter, cross-sectional study of adults older than age 35 years with PiZZ or PiMZ alpha-1 antitrypsin genotypes. It is designed to better understand if microbial factors influence this heterogeneity. Clinical symptoms, pulmonary function testing, computed chest tomography, exercise capacity, and bronchoalveolar lavage (BAL) will be used to define chronic obstructive pulmonary disease (COPD) phenotypes that can be studied with an integrated systems biology approach that includes plasma proteomics; mouth, BAL, and stool microbiome and virome analysis; and blood microRNA and blood mononuclear cell RNA and DNA profiling. We will rely on global genome, transcriptome, proteome, and metabolome datasets. Matched cohorts of PiZZ participants on or off alpha-1 antitrypsin augmentation therapy, PiMZ participants not on augmentation therapy, and control participants from the Subpopulations and Intermediate Outcome Measures in COPD Study who match on FEV1 and age will be compared. In the primary analysis, we will determine if the PiZZ individuals on augmentation therapy have a difference in lower respiratory tract microbes identified compared with matched PiZZ individuals who are not on augmentation therapy. By characterizing the microbiome in alpha-1 antitrypsin deficiency (AATD), we hope to define new phenotypes of COPD that explain some of the diversity of clinical presentations. As a unique genetic cause of COPD, AATD may inform typical COPD pathogenesis, and better understanding of it may illuminate the complex interplay between environment and genetics. Although the biologic approaches are hypothesis generating, the results may lead to development of novel biomarkers, better understanding of COPD phenotypes, and development of novel diagnostic and therapeutic trials in AATD and COPD. Clinical trial registered with www.clinicaltrials.gov (NCT01832220) PMID:26153726
Baranzelli, M C; Sérsic, A N; Cocucci, A A
2014-04-01
Pollinator-mediated natural selection on single traits, such as corolla tube or spur length, has been well documented. However, flower phenotypes are usually complex, and selection is expected to act on several traits that functionally interact rather than on a single isolated trait. Despite the fact that selection on complex phenotypes is expectedly widespread, multivariate selection modelling on such phenotypes still remains under-explored in plants. Species of the subfamily Asclepiadoideae (Apocynaceae) provide an opportunity to study such complex flower contrivances integrated by fine-scaled organs from disparate developmental origin. We studied the correlation structure among linear floral traits (i) by testing a priori morphological, functional or developmental hypotheses among traits and (ii) by exploring the organization of flower covariation, considering alternative expectations of modular organization or whole flower integration through conditional dependence analysis (CDA) and integration matrices. The phenotypic selection approach was applied to determine whether floral traits involved in the functioning of the pollination mechanism were affected by natural selection. Floral integration was low, suggesting that flowers are organized in more than just one correlation pleiad; our hypothetical functional correlation matrix was significantly correlated with the empirical matrix, and the CDA revealed three putative modules. Analyses of phenotypic selection showed significant linear and correlational gradients, lending support to expectations of functional interactions between floral traits. Significant correlational selection gradients found involved traits of different floral whorls, providing evidence for the existence of functional integration across developmental domains. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Hardaway, J. A.; Crowley, N. A.; Bulik, C. M.; Kash, T. L.
2015-01-01
Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders. PMID:25366309
Marimon, Rita; Cano, Josep; Gené, Josepa; Sutton, Deanna A.; Kawasaki, Masako; Guarro, Josep
2007-01-01
Sporothrix schenckii is the species responsible for sporotrichosis, a fungal infection caused by the traumatic implantation of this dimorphic fungus. Recent molecular studies have demonstrated that this species constitutes a complex of numerous phylogenetic species. Since the delineation of such species could be of extreme importance from a clinical point of view, we have studied a total of 127 isolates, most of which were received as S. schenckii, including the available type strains of species currently considered synonyms, and also some close morphological species. We have phenotypically characterized all these isolates using different culture media, growth rates at different temperatures, and numerous nutritional tests and compared their calmodulin gene sequences. The molecular analysis revealed that Sporothrix albicans, S. inflata, and S. schenckii var. luriei are species that are clearly different from S. schenckii. The combination of these phenetic and genetic approaches allowed us to propose the new species Sporothrix brasiliensis, S. globosa, and S. mexicana. The key phenotypic features for recognizing these species are the morphology of the sessile pigmented conidia, growth at 30, 35, and 37°C, and the assimilation of sucrose, raffinose, and ribitol. PMID:17687013
AKT-ions with a TWIST between EMT and MET.
Tang, Huifang; Massi, Daniela; Hemmings, Brian A; Mandalà, Mario; Hu, Zhengqiang; Wicki, Andreas; Xue, Gongda
2016-09-20
The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings.
Life at the extreme limit: phenotypic characteristics of supercentenarians in Okinawa.
Willcox, D Craig; Willcox, Bradley J; Wang, Nien-Chiang; He, Qimei; Rosenbaum, Matthew; Suzuki, Makoto
2008-11-01
As elite representatives of the rapidly increasing "oldest-old" population, centenarians have become an important model population for understanding human aging. However, as we are beginning to understand more about this important phenotype, another demographic group of even more elite survivors is emerging-so-called "supercentenarians" or those who survive 110-plus years. Little is known about these exceptional survivors. We assessed the Okinawa Centenarian Study (OCS) database for all information on supercentenarians. The database includes dates of birth and year of death for all residents of Okinawa 99 years old or older and a yearly geriatric assessment of all centenarians who consented, enabling prospective study of age-related traits. Of 20 potential supercentenarians identified, 15 had agreed to participate in the OCS interview, physical examination, and blood draw. Of these 15, 12 (3 men and 9 women) met our age validation criteria and were accepted as supercentenarians. Phenotypic variables studied include medical and social history, activities of daily living (ADLs), and clinical phenotypes (physiology, hematology, biochemistry, and immunology). Age at death ranged from 110 to 112 years. The majority of supercentenarians had minimal clinically apparent disease until late in life, with cataracts (42%) and fractures (33%) being common and coronary heart disease (8%), stroke (8%), cancer (0%), and diabetes (0%) rare or not evident on clinical examination. Functionally, most supercentenarians were independent in ADLs at age 100 years, and few were institutionalized before the age of 105 years. Most had normal clinical parameters at age 100 years, but by age 105 exhibited multiple clinical markers of frailty coincident with a rapid ADL decline. Supercentenarians displayed an exceptionally healthy aging phenotype where clinically apparent major chronic diseases and disabilities were markedly delayed, often beyond age 100. They had little clinical history of cardiovascular disease and reported no history of cancer or diabetes. This phenotype is consistent with a more elite phenotype than has been observed in prior studies of centenarians. The genetic and environmental antecedents of this exceptionally healthy aging phenotype deserve further study.
Hedera, P; Toriello, H V; Petty, E M
2002-07-01
Treacher Collins syndrome (TCS), the most common type of mandibulofacial dysostosis (MFD), is genetically homogeneous. Other types of MFD are less common and, of these, only the Bauru type of MFD has an autosomal dominant (AD) mode of inheritance established. Here we report clinical features of a kindred with a unique AD MFD with the exclusion of linkage to the TCS locus (TCOF1) on chromosome 5q31-q32. Six affected family members underwent a complete medical genetics physical examination and two affected subjects had skeletal survey. All available medical records were reviewed. Linkage analysis using the markers spanning the TCOF1 locus was performed. One typically affected family member had a high resolution karyotype. Affected subjects had significant craniofacial abnormalities without any significant acral changes and thus had a phenotype consistent with a MFD variant. Distinctive features included hypoplasia of the zygomatic complex, micrognathia with malocclusion, auricular abnormalities with conductive hearing loss, and ptosis. Significantly negative two point lod scores were obtained for markers spanning the TCOF1 locus, excluding the possibility that the disease in our kindred is allelic with TCS. High resolution karyotype was normal. We report a kindred with a novel type of MFD that is not linked to the TCOF1 locus and is also clinically distinct from other types of AD MFD. Identification of additional families will facilitate identification of the gene causing this type of AD MFD and further characterisation of the clinical phenotype.
Desiderata for computable representations of electronic health records-driven phenotype algorithms
Mo, Huan; Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Jiang, Guoqian; Kiefer, Richard; Zhu, Qian; Xu, Jie; Montague, Enid; Carrell, David S; Lingren, Todd; Mentch, Frank D; Ni, Yizhao; Wehbe, Firas H; Peissig, Peggy L; Tromp, Gerard; Larson, Eric B; Chute, Christopher G; Pathak, Jyotishman; Speltz, Peter; Kho, Abel N; Jarvik, Gail P; Bejan, Cosmin A; Williams, Marc S; Borthwick, Kenneth; Kitchner, Terrie E; Roden, Dan M; Harris, Paul A
2015-01-01
Background Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM). Methods A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms. Results We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility. Conclusion A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages. PMID:26342218
Genetic and environmental pathways to complex diseases.
Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J
2009-05-05
Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.
Patel, Chirag J
2017-01-01
Mixtures, or combinations and interactions between multiple environmental exposures, are hypothesized to be causally linked with disease and health-related phenotypes. Established and emerging molecular measurement technologies to assay the exposome , the comprehensive battery of exposures encountered from birth to death, promise a new way of identifying mixtures in disease in the epidemiological setting. In this opinion, we describe the analytic complexity and challenges in identifying mixtures associated with phenotype and disease. Existing and emerging machine-learning methods and data analytic approaches (e.g., "environment-wide association studies" [EWASs]), as well as large cohorts may enhance possibilities to identify mixtures of correlated exposures associated with phenotypes; however, the analytic complexity of identifying mixtures is immense. If the exposome concept is realized, new analytical methods and large sample sizes will be required to ascertain how mixtures are associated with disease. The author recommends documenting prevalent correlated exposures and replicated main effects prior to identifying mixtures.
Calle Rubio, Myriam; Casamor, Ricard; Miravitlles, Marc
2017-01-01
Background The Spanish Guidelines for COPD (GesEPOC) describe four clinical phenotypes: non-exacerbator (NE), asthma-COPD overlap syndrome (ACO), frequent exacerbator with emphysema (EE), and exacerbator with chronic bronchitis (ECB). The objective of this study was to determine the frequency of COPD phenotypes, their clinical characteristics, and the availability of diagnostic tools to classify COPD phenotypes in clinical practice. Materials and methods This study was an epidemiological, cross-sectional, and multi-centered study. Patients ≥40 years old with a post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity ratio of <0.7 and who were smokers or former smokers (with at least 10 pack-years) were included. The availability of diagnostic tools to classify COPD phenotypes was assessed by an ad hoc questionnaire. Results A total of 647 patients (294 primary care [PC], 353 pulmonology centers) were included. Most patients were male (80.8%), with a mean age (SD) of 68.2 (9.2) years, mean post-bronchodilator FEV1 was 53.2% (18.9%) and they suffered a mean of 2.2 (2.1) exacerbations in the last year. NE was the most frequent phenotype (47.5%) found, followed by ECB (29.1%), EE (17.0%), and ACO (6.5%). Significant differences between the four phenotypes were found regarding age; sex; body mass index; FEV1; body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE)/body mass index, airflow obstruction, dyspnea and exacerbations (BODEx) index; modified Medical Research Council dyspnea scale; respiratory symptoms; comorbidi-ties; hospitalizations; and exacerbations in the last year. Physicians considered that >80% of the diagnostic tools needed to classify COPD phenotypes were available, with the exception of computed tomography (26.9%) and carbon monoxide transfer test (13.5%) in PC, and sputum eosinophilia count in PC and pulmonology centers (40.4% and 49.4%, respectively). Conclusion In Spanish clinical practice, almost half of the patients with COPD presented with NE phenotype. The prevalence of ACO according to the Spanish consensus definition was very low. In general, physicians indicated that they had the necessary tools for diagnosing COPD phenotypes. PMID:28848338
Calle Rubio, Myriam; Casamor, Ricard; Miravitlles, Marc
2017-01-01
The Spanish Guidelines for COPD (GesEPOC) describe four clinical phenotypes: non-exacerbator (NE), asthma-COPD overlap syndrome (ACO), frequent exacerbator with emphysema (EE), and exacerbator with chronic bronchitis (ECB). The objective of this study was to determine the frequency of COPD phenotypes, their clinical characteristics, and the availability of diagnostic tools to classify COPD phenotypes in clinical practice. This study was an epidemiological, cross-sectional, and multi-centered study. Patients ≥40 years old with a post-bronchodilator forced expiratory volume in 1 s (FEV 1 )/forced vital capacity ratio of <0.7 and who were smokers or former smokers (with at least 10 pack-years) were included. The availability of diagnostic tools to classify COPD phenotypes was assessed by an ad hoc questionnaire. A total of 647 patients (294 primary care [PC], 353 pulmonology centers) were included. Most patients were male (80.8%), with a mean age (SD) of 68.2 (9.2) years, mean post-bronchodilator FEV 1 was 53.2% (18.9%) and they suffered a mean of 2.2 (2.1) exacerbations in the last year. NE was the most frequent phenotype (47.5%) found, followed by ECB (29.1%), EE (17.0%), and ACO (6.5%). Significant differences between the four phenotypes were found regarding age; sex; body mass index; FEV 1 ; body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE)/body mass index, airflow obstruction, dyspnea and exacerbations (BODEx) index; modified Medical Research Council dyspnea scale; respiratory symptoms; comorbidi-ties; hospitalizations; and exacerbations in the last year. Physicians considered that >80% of the diagnostic tools needed to classify COPD phenotypes were available, with the exception of computed tomography (26.9%) and carbon monoxide transfer test (13.5%) in PC, and sputum eosinophilia count in PC and pulmonology centers (40.4% and 49.4%, respectively). In Spanish clinical practice, almost half of the patients with COPD presented with NE phenotype. The prevalence of ACO according to the Spanish consensus definition was very low. In general, physicians indicated that they had the necessary tools for diagnosing COPD phenotypes.
Ewen-Campen, Ben; Mohr, Stephanie E; Hu, Yanhui; Perrimon, Norbert
2017-10-09
Single-gene knockout experiments can fail to reveal function in the context of redundancy, which is frequently observed among duplicated genes (paralogs) with overlapping functions. We discuss the complexity associated with studying paralogs and outline how recent advances in CRISPR will help address the "phenotype gap" and impact biomedical research. Copyright © 2017 Elsevier Inc. All rights reserved.
Treatment outcome of creatine transporter deficiency: international retrospective cohort study.
Bruun, Theodora U J; Sidky, Sarah; Bandeira, Anabela O; Debray, Francoise-Guillaume; Ficicioglu, Can; Goldstein, Jennifer; Joost, Kairit; Koeberl, Dwight D; Luísa, Diogo; Nassogne, Marie-Cecile; O'Sullivan, Siobhan; Õunap, Katrin; Schulze, Andreas; van Maldergem, Lionel; Salomons, Gajja S; Mercimek-Andrews, Saadet
2018-06-01
To evaluate the outcome of current treatment for creatine transporter (CRTR) deficiency, we developed a clinical severity score and initiated an international treatment registry. An online questionnaire was completed by physicians following patients with CRTR deficiency on a treatment, including creatine and/or arginine, and/or glycine. Clinical severity score included 1) global developmental delay/intellectual disability; 2) seizures; 3) behavioural disorder. Phenotype scored 1-3 = mild; 4-6 = moderate; and 7-9 = severe. We applied the clinical severity score pre- and on-treatment. Seventeen patients, 14 males and 3 females, from 16 families were included. Four patients had severe, 6 patients had moderate, and 7 patients had a mild phenotype. The phenotype ranged from mild to severe in patients diagnosed at or before 2 years of age or older than 6 years of age. The phenotype ranged from mild to severe in patients with mildly elevated urine creatine to creatinine ratio. Fourteen patients were on the combined creatine, arginine and glycine therapy. On the combined treatment with creatine, arginine and glycine, none of the males showed either deterioration or improvements in their clinical severity score, whereas two females showed improvements in the clinical severity score. Creatine monotherapy resulted in deterioration of the clinical severity score in one male. There seems to be no correlation between phenotype and degree of elevation in urine creatine to creatinine ratio, genotype, or age at diagnosis. Combined creatine, arginine and glycine therapy might have stopped disease progression in males and improved phenotype in females.
Unlocking Proteomic Heterogeneity in Complex Diseases through Visual Analytics
Bhavnani, Suresh K.; Dang, Bryant; Bellala, Gowtham; Divekar, Rohit; Visweswaran, Shyam; Brasier, Allan; Kurosky, Alex
2015-01-01
Despite years of preclinical development, biological interventions designed to treat complex diseases like asthma often fail in phase III clinical trials. These failures suggest that current methods to analyze biomedical data might be missing critical aspects of biological complexity such as the assumption that cases and controls come from homogeneous distributions. Here we discuss why and how methods from the rapidly evolving field of visual analytics can help translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles of patients with complex diseases. Because a primary goal of visual analytics is to amplify the cognitive capacities of humans for detecting patterns in complex data, we begin with an overview of the cognitive foundations for the field of visual analytics. Next, we organize the primary ways in which a specific form of visual analytics called networks have been used to model and infer biological mechanisms, which help to identify the properties of networks that are particularly useful for the discovery and analysis of proteomic heterogeneity in complex diseases. We describe one such approach called subject-protein networks, and demonstrate its application on two proteomic datasets. This demonstration provides insights to help translational teams overcome theoretical, practical, and pedagogical hurdles for the widespread use of subject-protein networks for analyzing molecular heterogeneities, with the translational goal of designing biomarker-based clinical trials, and accelerating the development of personalized approaches to medicine. PMID:25684269
Readmission prediction via deep contextual embedding of clinical concepts.
Xiao, Cao; Ma, Tengfei; Dieng, Adji B; Blei, David M; Wang, Fei
2018-01-01
Hospital readmission costs a lot of money every year. Many hospital readmissions are avoidable, and excessive hospital readmissions could also be harmful to the patients. Accurate prediction of hospital readmission can effectively help reduce the readmission risk. However, the complex relationship between readmission and potential risk factors makes readmission prediction a difficult task. The main goal of this paper is to explore deep learning models to distill such complex relationships and make accurate predictions. We propose CONTENT, a deep model that predicts hospital readmissions via learning interpretable patient representations by capturing both local and global contexts from patient Electronic Health Records (EHR) through a hybrid Topic Recurrent Neural Network (TopicRNN) model. The experiment was conducted using the EHR of a real world Congestive Heart Failure (CHF) cohort of 5,393 patients. The proposed model outperforms state-of-the-art methods in readmission prediction (e.g. 0.6103 ± 0.0130 vs. second best 0.5998 ± 0.0124 in terms of ROC-AUC). The derived patient representations were further utilized for patient phenotyping. The learned phenotypes provide more precise understanding of readmission risks. Embedding both local and global context in patient representation not only improves prediction performance, but also brings interpretable insights of understanding readmission risks for heterogeneous chronic clinical conditions. This is the first of its kind model that integrates the power of both conventional deep neural network and the probabilistic generative models for highly interpretable deep patient representation learning. Experimental results and case studies demonstrate the improved performance and interpretability of the model.
Enzymes involved in branched-chain amino acid metabolism in humans.
Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina
2017-06-01
Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.
Powell, Christopher A; Kopajtich, Robert; D'Souza, Aaron R; Rorbach, Joanna; Kremer, Laura S; Husain, Ralf A; Dallabona, Cristina; Donnini, Claudia; Alston, Charlotte L; Griffin, Helen; Pyle, Angela; Chinnery, Patrick F; Strom, Tim M; Meitinger, Thomas; Rodenburg, Richard J; Schottmann, Gudrun; Schuelke, Markus; Romain, Nadine; Haller, Ronald G; Ferrero, Ileana; Haack, Tobias B; Taylor, Robert W; Prokisch, Holger; Minczuk, Michal
2015-08-06
Deficiencies in respiratory-chain complexes lead to a variety of clinical phenotypes resulting from inadequate energy production by the mitochondrial oxidative phosphorylation system. Defective expression of mtDNA-encoded genes, caused by mutations in either the mitochondrial or nuclear genome, represents a rapidly growing group of human disorders. By whole-exome sequencing, we identified two unrelated individuals carrying compound heterozygous variants in TRMT5 (tRNA methyltransferase 5). TRMT5 encodes a mitochondrial protein with strong homology to members of the class I-like methyltransferase superfamily. Both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory-chain-complex deficiencies in skeletal muscle, although the clinical presentation of the two affected subjects was remarkably different; one presented in childhood with failure to thrive and hypertrophic cardiomyopathy, and the other was an adult with a life-long history of exercise intolerance. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mitochondrial tRNA; this hypomodification was particularly prominent in skeletal muscle. Deficiency of the G37 modification was also detected in human cells subjected to TRMT5 RNAi. The pathogenicity of the detected variants was further confirmed in a heterologous yeast model and by the rescue of the molecular phenotype after re-expression of wild-type TRMT5 cDNA in cells derived from the affected individuals. Our study highlights the importance of post-transcriptional modification of mitochondrial tRNAs for faithful mitochondrial function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi.
Putignani, Lorenza; Del Chierico, Federica; Onori, Manuela; Mancinelli, Livia; Argentieri, Marta; Bernaschi, Paola; Coltella, Luana; Lucignano, Barbara; Pansani, Laura; Ranno, Stefania; Russo, Cristina; Urbani, Andrea; Federici, Giorgio; Menichella, Donato
2011-03-01
Proteomics is particularly suitable for characterising human pathogens with high life cycle complexity, such as fungi. Protein content and expression levels may be affected by growth states and life cycle morphs and correlate to species and strain variation. Identification and typing of fungi by conventional methods are often difficult, time-consuming and frequently, for unusual species, inconclusive. Proteomic phenotypes from MALDI-TOF MS were employed as analytical and typing expression profiling of yeast, yeast-like species and strain variants in order to achieve a microbial proteomics population study. Spectra from 303 clinical isolates were generated and processed by standard pattern matching with a MALDI-TOF Biotyper (MT). Identifications (IDs) were compared to a reference biochemical-based system (Vitek-2) and, when discordant, MT IDs were verified with genotyping IDs, obtained by sequencing the 25-28S rRNA hypervariable D2 region. Spectra were converted into virtual gel-like formats, and hierarchical clustering analysis was performed for 274 Candida profiles to investigate species and strain typing correlation. MT provided 257/303 IDs consistent with Vitek-2 ones. However, amongst 26/303 discordant MT IDs, only 5 appeared "true". No MT identification was achieved for 20/303 isolates for incompleteness of database species variants. Candida spectra clustering agreed with identified species and topology of Candida albicans and Candida parapsilosis specific dendrograms. MT IDs show a high analytical performance and profiling heterogeneity which seems to complement or even outclass existing typing tools. This variability reflects the high biological complexity of yeasts and may be properly exploited to provide epidemiological tracing and infection dispersion patterns.
Popp, Bernt; Støve, Svein I; Endele, Sabine; Myklebust, Line M; Hoyer, Juliane; Sticht, Heinrich; Azzarello-Burri, Silvia; Rauch, Anita; Arnesen, Thomas; Reis, André
2015-01-01
Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl, with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity. PMID:25099252
Serotonin at the Nexus of Impulsivity and Cue Reactivity in Cocaine Addiction
Cunningham, Kathryn A.; Anastasio, Noelle C.
2014-01-01
Cocaine abuse and addiction remain great challenges on the public health agendas in the U.S. and the world. Increasingly sophisticated perspectives on addiction to cocaine and other drugs of abuse have evolved with concerted research efforts over the last 30 years. Relapse remains a particularly powerful clinical problem as, even upon termination of drug use and initiation of abstinence, the recidivism rates can be very high. The cycling course of cocaine intake, abstinence and relapse is tied to a multitude of behavioral and cognitive processes including impulsivity (a predisposition toward rapid unplanned reactions to stimuli without regard to the negative consequences), and cocaine cue reactivity (responsivity to cocaine-associated stimuli) cited as two key phenotypes that contribute to relapse vulnerability even years into recovery. Preclinical studies suggest that serotonin (5-hydroxytryptamine; 5-HT) neurotransmission in key neural circuits may contribute to these interlocked phenotypes well as the altered neurobiological states evoked by cocaine that precipitate relapse events. As such, 5-HT is an important target in the quest to to understand the neurobiology of relapse-predictive phenotypes, to successfully treat this complex disorder and improve diagnostic and prognostic capabilities. This review emphasizes the role of 5-HT and its receptor proteins in key addiction phenotypes and the implications of current findings to the future of therapeutics in addiction. PMID:23850573
Rajkomar, Alvin; Yim, Joanne Wing Lan; Grumbach, Kevin; Parekh, Ami
2016-10-14
Characterizing patient complexity using granular electronic health record (EHR) data regularly available to health systems is necessary to optimize primary care processes at scale. To characterize the utilization patterns of primary care patients and create weighted panel sizes for providers based on work required to care for patients with different patterns. We used EHR data over a 2-year period from patients empaneled to primary care clinicians in a single academic health system, including their in-person encounter history and virtual encounters such as telephonic visits, electronic messaging, and care coordination with specialists. Using a combination of decision rules and k-means clustering, we identified clusters of patients with similar health care system activity. Phenotypes with basic demographic information were used to predict future health care utilization using log-linear models. Phenotypes were also used to calculate weighted panel sizes. We identified 7 primary care utilization phenotypes, which were characterized by various combinations of primary care and specialty usage and were deemed clinically distinct by primary care physicians. These phenotypes, combined with age-sex and primary payer variables, predicted future primary care utilization with R 2 of .394 and were used to create weighted panel sizes. Individual patients' health care utilization may be useful for classifying patients by primary care work effort and for predicting future primary care usage.
Lowe, Chinn-Woan; Thiriot, Joseph D.; Heder, Michael J.; March, Jordon K.; Drake, David S.; Lew, Cynthia S.; Bunnell, Annette J.; Moore, Emily S.; O'Neill, Kim L.; Robison, Richard A.
2016-01-01
The Burkholderia pseudomallei complex classically consisted of B. mallei, B. pseudomallei, and B. thailandensis, but has now expanded to include B. oklahomensis, B. humptydooensis, and three unassigned Burkholderia clades. Methods for detecting and differentiating the B. pseudomallei complex has been the topic of recent research due to phenotypic and genotypic similarities of these species. B. mallei and B. pseudomallei are recognized as CDC Tier 1 select agents, and are the causative agents of glanders and melioidosis, respectively. Although B. thailandensis and B. oklahomensis are generally avirulent, both display similar phenotypic characteristics to that of B. pseudomallei. B. humptydooensis and the Burkholderia clades are genetically similar to the B. pseudomallei complex, and are not associated with disease. Optimal identification of these species remains problematic, and PCR-based methods can resolve issues with B. pseudomallei complex detection and differentiation. Currently, no PCR assay is available that detects the major species of the B. pseudomallei complex. A real-time PCR assay in a multiplex single-tube format was developed to simultaneously detect and differentiate B. mallei, B. pseudomallei, and B. thailandensis, and a common sequence found in B. pseudomallei, B. mallei, B. thailandensis, and B. oklahomensis. A total of 309 Burkholderia isolates and 5 other bacterial species were evaluated. The assay was 100% sensitive and specific, demonstrated sensitivity beyond culture and GC methods for the isolates tested, and is completed in about an hour with a detection limit between 2.6pg and 48.9pg of gDNA. Bioinformatic analyses also showed the assay is likely 100% specific and sensitive for all 84 fully sequenced B. pseudomallei, B. mallei, B. thailandensis, and B. oklahomensis strains currently available in GenBank. For these reasons, this assay could be a rapid and sensitive tool in the detection and differentiation for those species of the B. pseudomallei complex with recognized clinical and practical significance. PMID:27736903
Lowe, Chinn-Woan; Satterfield, Benjamin A; Nelson, Daniel B; Thiriot, Joseph D; Heder, Michael J; March, Jordon K; Drake, David S; Lew, Cynthia S; Bunnell, Annette J; Moore, Emily S; O'Neill, Kim L; Robison, Richard A
2016-01-01
The Burkholderia pseudomallei complex classically consisted of B. mallei, B. pseudomallei, and B. thailandensis, but has now expanded to include B. oklahomensis, B. humptydooensis, and three unassigned Burkholderia clades. Methods for detecting and differentiating the B. pseudomallei complex has been the topic of recent research due to phenotypic and genotypic similarities of these species. B. mallei and B. pseudomallei are recognized as CDC Tier 1 select agents, and are the causative agents of glanders and melioidosis, respectively. Although B. thailandensis and B. oklahomensis are generally avirulent, both display similar phenotypic characteristics to that of B. pseudomallei. B. humptydooensis and the Burkholderia clades are genetically similar to the B. pseudomallei complex, and are not associated with disease. Optimal identification of these species remains problematic, and PCR-based methods can resolve issues with B. pseudomallei complex detection and differentiation. Currently, no PCR assay is available that detects the major species of the B. pseudomallei complex. A real-time PCR assay in a multiplex single-tube format was developed to simultaneously detect and differentiate B. mallei, B. pseudomallei, and B. thailandensis, and a common sequence found in B. pseudomallei, B. mallei, B. thailandensis, and B. oklahomensis. A total of 309 Burkholderia isolates and 5 other bacterial species were evaluated. The assay was 100% sensitive and specific, demonstrated sensitivity beyond culture and GC methods for the isolates tested, and is completed in about an hour with a detection limit between 2.6pg and 48.9pg of gDNA. Bioinformatic analyses also showed the assay is likely 100% specific and sensitive for all 84 fully sequenced B. pseudomallei, B. mallei, B. thailandensis, and B. oklahomensis strains currently available in GenBank. For these reasons, this assay could be a rapid and sensitive tool in the detection and differentiation for those species of the B. pseudomallei complex with recognized clinical and practical significance.
The mTOR signalling cascade: paving new roads to cure neurological disease.
Crino, Peter B
2016-07-01
Defining the multiple roles of the mechanistic (formerly 'mammalian') target of rapamycin (mTOR) signalling pathway in neurological diseases has been an exciting and rapidly evolving story of bench-to-bedside translational research that has spanned gene mutation discovery, functional experimental validation of mutations, pharmacological pathway manipulation, and clinical trials. Alterations in the dual contributions of mTOR - regulation of cell growth and proliferation, as well as autophagy and cell death - have been found in developmental brain malformations, epilepsy, autism and intellectual disability, hypoxic-ischaemic and traumatic brain injuries, brain tumours, and neurodegenerative disorders. mTOR integrates a variety of cues, such as growth factor levels, oxygen levels, and nutrient and energy availability, to regulate protein synthesis and cell growth. In line with the positioning of mTOR as a pivotal cell signalling node, altered mTOR activation has been associated with a group of phenotypically diverse neurological disorders. To understand how altered mTOR signalling leads to such divergent phenotypes, we need insight into the differential effects of enhanced or diminished mTOR activation, the developmental context of these changes, and the cell type affected by altered signalling. A particularly exciting feature of the tale of mTOR discovery is that pharmacological mTOR inhibitors have shown clinical benefits in some neurological disorders, such as tuberous sclerosis complex, and are being considered for clinical trials in epilepsy, autism, dementia, traumatic brain injury, and stroke.
The evolution of cellular deficiency in GATA2 mutation
Dickinson, Rachel E.; Milne, Paul; Jardine, Laura; Zandi, Sasan; Swierczek, Sabina I.; McGovern, Naomi; Cookson, Sharon; Ferozepurwalla, Zaveyna; Langridge, Alexander; Pagan, Sarah; Gennery, Andrew; Heiskanen-Kosma, Tarja; Hämäläinen, Sari; Seppänen, Mikko; Helbert, Matthew; Tholouli, Eleni; Gambineri, Eleonora; Reykdal, Sigrún; Gottfreðsson, Magnús; Thaventhiran, James E.; Morris, Emma; Hirschfield, Gideon; Richter, Alex G.; Jolles, Stephen; Bacon, Chris M.; Hambleton, Sophie; Haniffa, Muzlifah; Bryceson, Yenan; Allen, Carl; Prchal, Josef T.; Dick, John E.; Bigley, Venetia
2014-01-01
Constitutive heterozygous GATA2 mutation is associated with deafness, lymphedema, mononuclear cytopenias, infection, myelodysplasia (MDS), and acute myeloid leukemia. In this study, we describe a cross-sectional analysis of 24 patients and 6 relatives with 14 different frameshift or substitution mutations of GATA2. A pattern of dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency (DCML deficiency) with elevated Fms-like tyrosine kinase 3 ligand (Flt3L) was observed in all 20 patients phenotyped, including patients with Emberger syndrome, monocytopenia with Mycobacterium avium complex (MonoMAC), and MDS. Four unaffected relatives had a normal phenotype indicating that cellular deficiency may evolve over time or is incompletely penetrant, while 2 developed subclinical cytopenias or elevated Flt3L. Patients with GATA2 mutation maintained higher hemoglobin, neutrophils, and platelets and were younger than controls with acquired MDS and wild-type GATA2. Frameshift mutations were associated with earlier age of clinical presentation than substitution mutations. Elevated Flt3L, loss of bone marrow progenitors, and clonal myelopoiesis were early signs of disease evolution. Clinical progression was associated with increasingly elevated Flt3L, depletion of transitional B cells, CD56bright NK cells, naïve T cells, and accumulation of terminally differentiated NK and CD8+ memory T cells. These studies provide a framework for clinical and laboratory monitoring of patients with GATA2 mutation and may inform therapeutic decision-making. PMID:24345756
Clinical and molecular features of Joubert syndrome and related disorders
Parisi, Melissa A.
2009-01-01
Joubert syndrome (JBTS; OMIM 213300) is a rare, autosomal recessive disorder characterized by a specific congenital malformation of the hindbrain and a broad spectrum of other phenotypic findings that is now known to be caused by defects in the structure and/or function of the primary cilium. The complex hindbrain malformation that is characteristic of JBTS can be identified on axial magnetic resonance imaging and is known as the molar tooth sign (MTS); other diagnostic criteria include intellectual disability, hypotonia, and often, abnormal respiratory pattern and/or abnormal eye movements. In addition, a broad spectrum of other anomalies characterize Joubert syndrome and related disorders (JSRD), and may include retinal dystrophy, ocular coloboma, oral frenulae and tongue tumors, polydactyly, cystic renal disease (including cystic dysplasia or juvenile nephronophthisis), and congenital hepatic fibrosis. The clinical course can be variable, but most children with this condition survive infancy to reach adulthood. At least 8 genes cause JSRD, with some genotype-phenotype correlations emerging, including the association between mutations in the MKS3 gene and hepatic fibrosis characteristic of the JSRD subtype known as COACH syndrome. Several of the causative genes for JSRD are implicated in other ciliary disorders, such as juvenile nephronophthisis and Meckel syndrome, illustrating the close association between these conditions and their overlapping clinical features that reflect a shared etiology involving the primary cilium. PMID:19876931
Collaboratively charting the gene-to-phenotype network of human congenital heart defects
2010-01-01
Background How to efficiently integrate the daily practice of molecular biologists, geneticists, and clinicians with the emerging computational strategies from systems biology is still much of an open question. Description We built on the recent advances in Wiki-based technologies to develop a collaborative knowledge base and gene prioritization portal aimed at mapping genes and genomic regions, and untangling their relations with corresponding human phenotypes, congenital heart defects (CHDs). This portal is not only an evolving community repository of current knowledge on the genetic basis of CHDs, but also a collaborative environment for the study of candidate genes potentially implicated in CHDs - in particular by integrating recent strategies for the statistical prioritization of candidate genes. It thus serves and connects the broad community that is facing CHDs, ranging from the pediatric cardiologist and clinical geneticist to the basic investigator of cardiogenesis. Conclusions This study describes the first specialized portal to collaboratively annotate and analyze gene-phenotype networks. Of broad interest to the biological community, we argue that such portals will play a significant role in systems biology studies of numerous complex biological processes. CHDWiki is accessible at http://www.esat.kuleuven.be/~bioiuser/chdwiki PMID:20193066
Sarntivijai, Sirarat; Vasant, Drashtti; Jupp, Simon; Saunders, Gary; Bento, A Patrícia; Gonzalez, Daniel; Betts, Joanna; Hasan, Samiul; Koscielny, Gautier; Dunham, Ian; Parkinson, Helen; Malone, James
2016-01-01
The Centre for Therapeutic Target Validation (CTTV - https://www.targetvalidation.org/) was established to generate therapeutic target evidence from genome-scale experiments and analyses. CTTV aims to support the validity of therapeutic targets by integrating existing and newly-generated data. Data integration has been achieved in some resources by mapping metadata such as disease and phenotypes to the Experimental Factor Ontology (EFO). Additionally, the relationship between ontology descriptions of rare and common diseases and their phenotypes can offer insights into shared biological mechanisms and potential drug targets. Ontologies are not ideal for representing the sometimes associated type relationship required. This work addresses two challenges; annotation of diverse big data, and representation of complex, sometimes associated relationships between concepts. Semantic mapping uses a combination of custom scripting, our annotation tool 'Zooma', and expert curation. Disease-phenotype associations were generated using literature mining on Europe PubMed Central abstracts, which were manually verified by experts for validity. Representation of the disease-phenotype association was achieved by the Ontology of Biomedical AssociatioN (OBAN), a generic association representation model. OBAN represents associations between a subject and object i.e., disease and its associated phenotypes and the source of evidence for that association. The indirect disease-to-disease associations are exposed through shared phenotypes. This was applied to the use case of linking rare to common diseases at the CTTV. EFO yields an average of over 80% of mapping coverage in all data sources. A 42% precision is obtained from the manual verification of the text-mined disease-phenotype associations. This results in 1452 and 2810 disease-phenotype pairs for IBD and autoimmune disease and contributes towards 11,338 rare diseases associations (merged with existing published work [Am J Hum Genet 97:111-24, 2015]). An OBAN result file is downloadable at http://sourceforge.net/p/efo/code/HEAD/tree/trunk/src/efoassociations/. Twenty common diseases are linked to 85 rare diseases by shared phenotypes. A generalizable OBAN model for association representation is presented in this study. Here we present solutions to large-scale annotation-ontology mapping in the CTTV knowledge base, a process for disease-phenotype mining, and propose a generic association model, 'OBAN', as a means to integrate disease using shared phenotypes. EFO is released monthly and available for download at http://www.ebi.ac.uk/efo/.
Desmet, Eline; Ramadhas, Anesh; Lambert, Jo
2017-01-01
Psoriasis is a complex chronic immune-mediated inflammatory cutaneous disease associated with the development of inflammatory plaques on the skin. Studies proved that the disease results from a deregulated interplay between skin keratinocytes, immune cells and the environment leading to a persisting inflammatory process modulated by pro-inflammatory cytokines and activation of T cells. However, a major hindrance to study the pathogenesis of psoriasis more in depth and subsequent development of novel therapies is the lack of suitable pre-clinical models mimicking the complex phenotype of this skin disorder. Recent advances in and optimization of three-dimensional skin equivalent models have made them attractive and promising alternatives to the simplistic monolayer cultures, immunological different in vivo models and scarce ex vivo skin explants. Moreover, human skin equivalents are increasing in complexity level to match human biology as closely as possible. Here, we critically review the different types of three-dimensional skin models of psoriasis with relevance to their application potential and advantages over other models. This will guide researchers in choosing the most suitable psoriasis skin model for therapeutic drug testing (including gene therapy via siRNA molecules), or to examine biological features contributing to the pathology of psoriasis. However, the addition of T cells (as recently applied to a de-epidermized dermis-based psoriatic skin model) or other immune cells would make them even more attractive models and broaden their application potential. Eventually, the ultimate goal would be to substitute animal models by three-dimensional psoriatic skin models in the pre-clinical phases of anti-psoriasis candidate drugs. Impact statement The continuous development of novel in vitro models mimicking the psoriasis phenotype is important in the field of psoriasis research, as currently no model exists that completely matches the in vivo psoriasis skin or the disease pathology. This work provides a complete overview of the different available in vitro psoriasis models and suggests improvements for future models. Moreover, a focus was given to psoriatic skin equivalent models, as they offer several advantages over the other models, including commercial availability and validity. The potential and reported applicability of these models in psoriasis pre-clinical research is extensively discussed. As such, this work offers a guide to researchers in their choice of pre-clinical psoriasis model depending on their type of research question. PMID:28585891
Desmet, Eline; Ramadhas, Anesh; Lambert, Jo; Van Gele, Mireille
2017-06-01
Psoriasis is a complex chronic immune-mediated inflammatory cutaneous disease associated with the development of inflammatory plaques on the skin. Studies proved that the disease results from a deregulated interplay between skin keratinocytes, immune cells and the environment leading to a persisting inflammatory process modulated by pro-inflammatory cytokines and activation of T cells. However, a major hindrance to study the pathogenesis of psoriasis more in depth and subsequent development of novel therapies is the lack of suitable pre-clinical models mimicking the complex phenotype of this skin disorder. Recent advances in and optimization of three-dimensional skin equivalent models have made them attractive and promising alternatives to the simplistic monolayer cultures, immunological different in vivo models and scarce ex vivo skin explants. Moreover, human skin equivalents are increasing in complexity level to match human biology as closely as possible. Here, we critically review the different types of three-dimensional skin models of psoriasis with relevance to their application potential and advantages over other models. This will guide researchers in choosing the most suitable psoriasis skin model for therapeutic drug testing (including gene therapy via siRNA molecules), or to examine biological features contributing to the pathology of psoriasis. However, the addition of T cells (as recently applied to a de-epidermized dermis-based psoriatic skin model) or other immune cells would make them even more attractive models and broaden their application potential. Eventually, the ultimate goal would be to substitute animal models by three-dimensional psoriatic skin models in the pre-clinical phases of anti-psoriasis candidate drugs. Impact statement The continuous development of novel in vitro models mimicking the psoriasis phenotype is important in the field of psoriasis research, as currently no model exists that completely matches the in vivo psoriasis skin or the disease pathology. This work provides a complete overview of the different available in vitro psoriasis models and suggests improvements for future models. Moreover, a focus was given to psoriatic skin equivalent models, as they offer several advantages over the other models, including commercial availability and validity. The potential and reported applicability of these models in psoriasis pre-clinical research is extensively discussed. As such, this work offers a guide to researchers in their choice of pre-clinical psoriasis model depending on their type of research question.
Diana, Anna; Polizzi, Angela Maria; Santostasi, Teresa; Ratclif, Luigi; Pantaleo, Maria Giuseppina; Leonetti, Giuseppina; Iusco, Danila Rosa; Gallo, Crescenzio; Conese, Massimo; Manca, Antonio
2016-06-01
Few mutations in cis have been annotated for F508del homozygous patients. Southern Italy patients who at a first analysis appeared homozygous for the F508del mutation (n=63) or compound heterozygous for the F508del and another mutation in the cystic fibrosis transmembrane conductance regulator gene (n=155) were searched for the A238V mutation in exon 6. The allelic frequency of the complex allele [A238V;F508del] was 0.04. When the whole data set was used (comprised also of 56 F508del/F508del and 34 F508del/other mutation controls), no differences reached the statistical significance in the clinical parameters, except chloride concentrations which were lower in [A238V;F508del]/other mutation compared with F508del/other mutation (P=0.03). The two study groups presented less complications than the control groups. Within the minimal data set (34 F508del/F508del, 27 F508del/other mutation, 4 [A238V;F508del]/F508del cases and 5 [A238V;F508del]/other mutation cases); that is, presenting all the variables in each patient, forced expiratory volume in 1 s and forced vital capacity presented a trend to lower levels in the study groups in comparison with the F508del/F508del group, and C-reactive protein approximated statistically significant higher levels in the [A238V;F508del]/other mutation as compared with F508del/F508del patients (P=0.09). The analysis of statistical dependence among the variables showed a significant anticorrelation between chloride and body mass index in the [A238V;F508del]/other mutation group. In conclusion, the complex allele [A238V;F508del] seems to be associated with less general complications than in the control groups, on the other hand possibly giving a worse pulmonary phenotype and higher systemic/local inflammatory response. These findings have implications for the correct recruitment and clinical response of F508del patients in the clinical trials testing the new etiological drugs for cystic fibrosis.
Yang, James J; Li, Jia; Williams, L Keoki; Buu, Anne
2016-01-05
In genome-wide association studies (GWAS) for complex diseases, the association between a SNP and each phenotype is usually weak. Combining multiple related phenotypic traits can increase the power of gene search and thus is a practically important area that requires methodology work. This study provides a comprehensive review of existing methods for conducting GWAS on complex diseases with multiple phenotypes including the multivariate analysis of variance (MANOVA), the principal component analysis (PCA), the generalizing estimating equations (GEE), the trait-based association test involving the extended Simes procedure (TATES), and the classical Fisher combination test. We propose a new method that relaxes the unrealistic independence assumption of the classical Fisher combination test and is computationally efficient. To demonstrate applications of the proposed method, we also present the results of statistical analysis on the Study of Addiction: Genetics and Environment (SAGE) data. Our simulation study shows that the proposed method has higher power than existing methods while controlling for the type I error rate. The GEE and the classical Fisher combination test, on the other hand, do not control the type I error rate and thus are not recommended. In general, the power of the competing methods decreases as the correlation between phenotypes increases. All the methods tend to have lower power when the multivariate phenotypes come from long tailed distributions. The real data analysis also demonstrates that the proposed method allows us to compare the marginal results with the multivariate results and specify which SNPs are specific to a particular phenotype or contribute to the common construct. The proposed method outperforms existing methods in most settings and also has great applications in GWAS on complex diseases with multiple phenotypes such as the substance abuse disorders.
Trans-ethnic meta-analysis of white blood cell phenotypes
Keller, Margaux F.; Reiner, Alexander P.; Okada, Yukinori; van Rooij, Frank J.A.; Johnson, Andrew D.; Chen, Ming-Huei; Smith, Albert V.; Morris, Andrew P.; Tanaka, Toshiko; Ferrucci, Luigi; Zonderman, Alan B.; Lettre, Guillaume; Harris, Tamara; Garcia, Melissa; Bandinelli, Stefania; Qayyum, Rehan; Yanek, Lisa R.; Becker, Diane M.; Becker, Lewis C.; Kooperberg, Charles; Keating, Brendan; Reis, Jared; Tang, Hua; Boerwinkle, Eric; Kamatani, Yoichiro; Matsuda, Koichi; Kamatani, Naoyuki; Nakamura, Yusuke; Kubo, Michiaki; Liu, Simin; Dehghan, Abbas; Felix, Janine F.; Hofman, Albert; Uitterlinden, André G.; van Duijn, Cornelia M.; Franco, Oscar H.; Longo, Dan L.; Singleton, Andrew B.; Psaty, Bruce M.; Evans, Michelle K.; Cupples, L. Adrienne; Rotter, Jerome I.; O'Donnell, Christopher J.; Takahashi, Atsushi; Wilson, James G.; Ganesh, Santhi K.; Nalls, Mike A.
2014-01-01
White blood cell (WBC) count is a common clinical measure used as a predictor of certain aspects of human health, including immunity and infection status. WBC count is also a complex trait that varies among individuals and ancestry groups. Differences in linkage disequilibrium structure and heterogeneity in allelic effects are expected to play a role in the associations observed between populations. Prior genome-wide association study (GWAS) meta-analyses have identified genomic loci associated with WBC and its subtypes, but much of the heritability of these phenotypes remains unexplained. Using GWAS summary statistics for over 50 000 individuals from three diverse populations (Japanese, African-American and European ancestry), a Bayesian model methodology was employed to account for heterogeneity between ancestry groups. This approach was used to perform a trans-ethnic meta-analysis of total WBC, neutrophil and monocyte counts. Ten previously known associations were replicated and six new loci were identified, including several regions harboring genes related to inflammation and immune cell function. Ninety-five percent credible interval regions were calculated to narrow the association signals and fine-map the putatively causal variants within loci. Finally, a conditional analysis was performed on the most significant SNPs identified by the trans-ethnic meta-analysis (MA), and nine secondary signals within loci previously associated with WBC or its subtypes were identified. This work illustrates the potential of trans-ethnic analysis and ascribes a critical role to multi-ethnic cohorts and consortia in exploring complex phenotypes with respect to variants that lie outside the European-biased GWAS pool. PMID:25096241
Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando
2012-07-06
A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.
Linking Genes to Cardiovascular Diseases: Gene Action and Gene–Environment Interactions
2016-01-01
A unique myocardial characteristic is its ability to grow/remodel in order to adapt; this is determined partly by genes and partly by the environment and the milieu intérieur. In the “post-genomic” era, a need is emerging to elucidate the physiologic functions of myocardial genes, as well as potential adaptive and maladaptive modulations induced by environmental/epigenetic factors. Genome sequencing and analysis advances have become exponential lately, with escalation of our knowledge concerning sometimes controversial genetic underpinnings of cardiovascular diseases. Current technologies can identify candidate genes variously involved in diverse normal/abnormal morphomechanical phenotypes, and offer insights into multiple genetic factors implicated in complex cardiovascular syndromes. The expression profiles of thousands of genes are regularly ascertained under diverse conditions. Global analyses of gene expression levels are useful for cataloging genes and correlated phenotypes, and for elucidating the role of genes in maladies. Comparative expression of gene networks coupled to complex disorders can contribute insights as to how “modifier genes” influence the expressed phenotypes. Increasingly, a more comprehensive and detailed systematic understanding of genetic abnormalities underlying, for example, various genetic cardiomyopathies is emerging. Implementing genomic findings in cardiology practice may well lead directly to better diagnosing and therapeutics. There is currently evolving a strong appreciation for the value of studying gene anomalies, and doing so in a non-disjointed, cohesive manner. However, it is challenging for many—practitioners and investigators—to comprehend, interpret, and utilize the clinically increasingly accessible and affordable cardiovascular genomics studies. This survey addresses the need for fundamental understanding in this vital area. PMID:26545598
Hollow silica microspheres for buoyancy-assisted separation of infectious pathogens from stool.
Weigum, Shannon E; Xiang, Lichen; Osta, Erica; Li, Linying; López, Gabriel P
2016-09-30
Separation of cells and microorganisms from complex biological mixtures is a critical first step in many analytical applications ranging from clinical diagnostics to environmental monitoring for food and waterborne contaminants. Yet, existing techniques for cell separation are plagued by high reagent and/or instrumentation costs that limit their use in many remote or resource-poor settings, such as field clinics or developing countries. We developed an innovative approach to isolate infectious pathogens from biological fluids using buoyant hollow silica microspheres that function as "molecular buoys" for affinity-based target capture and separation by floatation. In this process, antibody functionalized glass microspheres are mixed with a complex biological sample, such as stool. When mixing is stopped, the target-bound, low-density microspheres float to the air/liquid surface, which simultaneously isolates and concentrates the target analytes from the sample matrix. The microspheres are highly tunable in terms of size, density, and surface functionality for targeting diverse analytes with separation times of ≤2min in viscous solutions. We have applied the molecular buoy technique for isolation of a protozoan parasite that causes diarrheal illness, Cryptosporidium, directly from stool with separation efficiencies over 90% and low non-specific binding. This low-cost method for phenotypic cell/pathogen separation from complex mixtures is expected to have widespread use in clinical diagnostics as well as basic research. Copyright © 2016 Elsevier B.V. All rights reserved.
Braverman, Nancy E; Raymond, Gerald V; Rizzo, William B; Moser, Ann B; Wilkinson, Mark E; Stone, Edwin M; Steinberg, Steven J; Wangler, Michael F; Rush, Eric T; Hacia, Joseph G; Bose, Mousumi
2016-03-01
Peroxisome biogenesis disorders in the Zellweger spectrum (PBD-ZSD) are a heterogeneous group of genetic disorders caused by mutations in PEX genes responsible for normal peroxisome assembly and functions. As a result of impaired peroxisomal activities, individuals with PBD-ZSD can manifest a complex spectrum of clinical phenotypes that typically result in shortened life spans. The extreme variability in disease manifestation ranging from onset of profound neurologic symptoms in newborns to progressive degenerative disease in adults presents practical challenges in disease diagnosis and medical management. Recent advances in biochemical methods for newborn screening and genetic testing have provided unprecedented opportunities for identifying patients at the earliest possible time and defining the molecular bases for their diseases. Here, we provide an overview of current clinical approaches for the diagnosis of PBD-ZSD and provide broad guidelines for the treatment of disease in its wide variety of forms. Although we anticipate future progress in the development of more effective targeted interventions, the current guidelines are meant to provide a starting point for the management of these complex conditions in the context of personalized health care. Copyright © 2015 Elsevier Inc. All rights reserved.
Bourgeois, James A
2016-08-01
Clinical neuropsychologists benefit from clinical currency in recently ascertained neuropsychiatric illness, such as fragile X premutation (FXPM) disorders. The author reviewed the clinical literature through 2016 for neuropsychiatric phenotypes in FXPM disorders, including patients with fragile X-associated tremor/ataxia syndrome (FXTAS). A PubMed search using the search terms 'Fragile X,' 'Premutation,' 'Carriers,' 'Psychiatric,' 'Dementia,' 'Mood,' and 'Anxiety' for citations in the clinical literature through 2016 was reviewed for studies specifically examining the neuropsychiatric phenotype in FXPM patients. The relevant articles were classified according to specific neuropsychiatric syndromes, including child onset, adult onset with and without FXTAS, as well as common systemic comorbidities in FXPM patients. Eighty-six articles were reviewed for the neuropsychiatric and other phenotypes in FXPM patients. The neuropsychiatric phenotype in FXPM patients is distinct from that of full mutation (Fragile X Syndrome) patients. FXTAS is associated with a specific cortical-subcortical major or mild neurocognitive disorder (NCD). FXPM patients are at risk for neuropsychiatric illness. In addition, FXPM patients are at risk for other systemic conditions that should raise suspicion for FXPM-associated illnesses. Clinicians should consider a diagnosis of FXPM-associated neuropsychiatric illness when patients with specific clinical scenarios are encountered; especially in patient pedigrees consistent with a typical (often multigenerational) presentation of fragile X-associated conditions, confirmatory genetic testing should be considered. Clinical management should take into account the psychological challenges of a multigenerational genetic neuropsychiatric illness with a variable CNS and systemic clinical phenotype.
Illingworth, Marjorie A; Hanrahan, Donncha; Anderson, Claire E; O'Kane, Kathryn; Anderson, Jennifer; Casey, Maureen; de Sousa, Carlos; Cross, J Helen; Wright, Sukvhir; Dale, Russell C; Vincent, Angela; Kurian, Manju A
2011-11-01
Fever-induced refractory epileptic encephalopathy in school-age children (FIRES) is a clinically recognized epileptic encephalopathy of unknown aetiology. Presentation in previously healthy children is characterized by febrile status epilepticus. A pharmacoresistant epilepsy ensues, occurring in parallel with dramatic cognitive decline and behavioural difficulties. We describe a case of FIRES in a 4-year-old boy that was associated with elevated voltage-gated potassium channel (VGKC) complex antibodies and a significant clinical and immunological response to immunomodulation. This case, therefore, potentially expands the clinical phenotype of VGKC antibody-associated disease to include that of FIRES. Prior to immunomodulation, neuropsychology assessment highlighted significant attention, memory, and word-finding difficulties. The UK version of the Wechsler Preschool and Primary Scale of Intelligence assessment indicated particular difficulties with verbal skills (9th centile). Immunomodulation was initially administered as intravenous methylprednisolone (followed by maintenance oral prednisolone) and later in the disease course as regular monthly intravenous immunoglobulin infusions and low-dose azathioprine. Now aged 6 years, the seizure burden in this child is much reduced, although increased seizure frequency is observed in the few days before his monthly immunoglobulin infusions. Formal IQ assessment has not been repeated but there is no clinical suggestion of further cognitive regression. VGKC complex antibodies have been reported in a range of central and peripheral neurological disorders (predominantly presenting in adulthood), and the identification of elevated VGKC complex antibodies, combined with the response to immunotherapies in this child, supports an autoimmune pathogenesis in FIRES with potential diagnostic and therapeutic implications. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
2013-01-01
Background Mutations in EFTUD2 were proven to cause a very distinct mandibulofacial dysostosis type Guion-Almeida (MFDGA, OMIM #610536). Recently, gross deletions and mutations in EFTUD2 were determined to cause syndromic esophageal atresia (EA), as well. We set forth to find further conditions caused by mutations in the EFTUD2 gene (OMIM *603892). Methods and results We performed exome sequencing in two familial cases with clinical features overlapping with MFDGA and EA, but which were previously assumed to represent distinct entities, a syndrome with esophageal atresia, hypoplasia of zygomatic complex, microcephaly, cup-shaped ears, congenital heart defect, and intellectual disability in a mother and her two children [AJMG 143A(11):1135-1142, 2007] and a supposedly autosomal recessive oto-facial syndrome with midline malformations in two sisters [AJMG 132(4):398-401, 2005]. While the analysis of our exome data was in progress, a recent publication made EFTUD2 mutations highly likely in these families. This hypothesis could be confirmed with exome as well as with Sanger sequencing. Also, in three further sporadic patients, clinically overlapping to these two families, de novo mutations within EFTUD2 were identified by Sanger sequencing. Our clinical and molecular workup of the patients discloses a broad phenotypic spectrum, and describes for the first time an instance of germline mosaicism for an EFTUD2 mutation. Conclusions The clinical features of the eight patients described here further broaden the phenotypic spectrum caused by EFTUD2 mutations or deletions. We here show, that it not only includes mandibulofacial dysostosis type Guion-Almeida, which should be reclassified as an acrofacial dysostosis because of thumb anomalies (present in 12/35 or 34% of patients) and syndromic esophageal atresia [JMG 49(12). 737-746, 2012], but also the two new syndromes, namely oto-facial syndrome with midline malformations published by Mégarbané et al. [AJMG 132(4): 398-401, 2005] and the syndrome published by Wieczorek et al. [AJMG 143A(11): 1135-1142, 2007] The finding of mild phenotypic features in the mother of one family that could have been overlooked and the possibility of germline mosaicism in apparently healthy parents in the other family should be taken into account when counseling such families. PMID:23879989
Kanekura, Takuro; Sakuraba, Hitoshi; Matsuzawa, Fumiko; Aikawa, Seiichi; Doi, Hirofumi; Hirabayashi, Yoshio; Yoshii, Noriko; Fukushige, Tomoko; Kanzaki, Tamotsu
2005-01-01
Kanzaki disease (OMIM#104170) is attributable to a deficiency in alpha-N-acetylgalactosaminidase (alpha-NAGA; E.C.3.2.1.49), which hydrolyzes GalNAcalpha1-O-Ser/Thr. Missense mutations, R329W or R329Q were identified in two Japanese Kanzaki patients. Although they are on the same codon, the clinical manifestation was more severe in R329W because an amino acid substitution led to protein instability resulting in structural change, which is greater in R329W than in R329Q. To examine whether the different clinical phenotypes are attributable to the two mutations. Plasma alpha-NAGA activity and urinary excreted glycopeptides were measured and three-dimensional models of human alpha-NAGA and its complexes with GalNAcalpha1-O-Ser and GalNAcalpha1-O-Thr were constructed by homology modeling. Residual enzyme activity was significantly higher in the R329Q- than the R329W mutant (0.022+/-0.005 versus 0.005+/-0.001 nmol/h/ml: p<0.05); the urinary ratios of GalNAcalpha1-O-Ser:GalNAcalpha1-O-Thr were 2:10 and 8:10, respectively. GalNAcalpha1-O-Ser/Thr fit tightly in a narrow space of the active site pocket of alpha-NAGA. GalNAcalpha1-O-Thr requires a larger space to associate with alpha-NAGA because of the side chain (CH3) of the threonine residue. Our findings suggest that the association of alpha-NAGA with its substrates is strongly affected by the amino acid substitution at R329 and that the association with GalNAcalpha1-O-Thr is more highly susceptible to structural changes. The residual mutant enzyme in R329W could not associate with GalNAcalpha1-O-Thr and GalNAcalpha1-O-Ser. However, the residual mutant enzyme in R329Q catalyzed GalNAcalpha1-O-Ser to some extent. Therefore, the urinary ratio of GalNAcalpha1-O-Ser:GalNAcalpha1-O-Thr was lower and the clinical phenotype was milder in the R329Q mutation. Structural analysis revealed biochemical and phenotypic differences in these Kanzaki patients with the R329Q and R329W mutation.
Doebeli, Michael; Ispolatov, Iaroslav
2010-04-23
The mechanisms for the origin and maintenance of biological diversity are not fully understood. It is known that frequency-dependent selection, generating advantages for rare types, can maintain genetic variation and lead to speciation, but in models with simple phenotypes (that is, low-dimensional phenotype spaces), frequency dependence needs to be strong to generate diversity. However, we show that if the ecological properties of an organism are determined by multiple traits with complex interactions, the conditions needed for frequency-dependent selection to generate diversity are relaxed to the point where they are easily satisfied in high-dimensional phenotype spaces. Mathematically, this phenomenon is reflected in properties of eigenvalues of quadratic forms. Because all living organisms have at least hundreds of phenotypes, this casts the potential importance of frequency dependence for the origin and maintenance of diversity in a new light.
Koblizek, Vladimir; Chlumsky, Jan; Zindr, Vladimir; Neumannova, Katerina; Zatloukal, Jakub; Zak, Jaroslav; Sedlak, Vratislav; Kocianova, Jana; Zatloukal, Jaromir; Hejduk, Karel; Pracharova, Sarka
2013-06-01
COPD is a global concern. Currently, several sets of guidelines, statements and strategies to managing COPD exist around the world. The Czech Pneumological and Phthisiological Society (CPPS) has commissioned an Expert group to draft recommended guidelines for the management of stable COPD. Subsequent revisions were further discussed at the National Consensus Conference (NCC). Reviewers' comments contributed to the establishment of the document's final version. The hallmark of the novel approach to COPD is the integrated evaluation of the patient's lung functions, symptoms, exacerbations and identifications of clinical phenotype(s). The CPPS defines 6 clinically relevant phenotypes: frequent exacerbator, COPD-asthma overlap, COPD-bronchiectasis overlap, emphysematic phenotype, bronchitic phenotype and pulmonary cachexia phenotype. Treatment recommendations can be divided into four steps. 1(st) step = Risk exposure elimination: reduction of smoking and environmental tobacco smoke (ETS), decrease of home and occupational exposure risks. 2(nd) step = Standard treatment: inhaled bronchodilators, regular physical activity, pulmonary rehabilitation, education, inhalation training, comorbidity treatment, vaccination. 3(rd) step = Phenotype-specific therapy: PDE4i, ICS+LABA, LVRS, BVR, AAT augmentation, physiotherapy, mucolytic, ABT. 4(th) step = Care for respiratory insufficiency and terminal COPD: LTOT, lung transplantation, high intensity-NIV and palliative care. Optimal treatment of COPD patients requires an individualised, multidisciplinary approach to the patient's symptoms, clinical phenotypes, needs and wishes. The new Czech COPD guideline reflects and covers these requirements.
Deconstructing breast cancer heterogeneity: clinical implications for women with Basal-like tumors.
Rattani, Nabila S; Swift-Scanlan, Theresa
2014-11-01
To compare and contrast the molecular and environmental factors contributing to basal-like breast cancer and highlight the clinical implications for women with this phenotype. CINAHL® and PubMed databases, journals, and citation indices were searched using the key word basal-like in combination with breast cancer, epigenetic, treatment, subtype, risk factor, and BRCA1 to synthesize the literature on the multiple underpinnings of basal-like breast cancer. Research findings related to the molecular foundation of basal-like breast cancer were integrated with knowledge of nongenetic contributing risk factors. Approved therapies and those under development were summarized with the goal of improving understanding for research and practice. Of the five subtypes of breast cancer, the basal-like subtype has the shortest survival and poorest prognosis. The development of gene expression assays with epigenetic studies has enabled reliable identification of the basal-like subtype and has shed light on novel therapeutic possibilities. Clinical trials for basal-like breast cancer are underway, and the potential for individualized treatments for women with this subtype show promise. The main difficulties with basal-like breast cancer are its aggressive course, treatment refractory nature, and complex biology, all of which pose real challenges for clinical management and patient education. Oncology nurses play a pivotal role in providing holistic care and patient support. Therefore, nurses must understand the complexity of the clinical presentation and the underlying biology of this cancer subtype.
Desiderata for computable representations of electronic health records-driven phenotype algorithms.
Mo, Huan; Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Jiang, Guoqian; Kiefer, Richard; Zhu, Qian; Xu, Jie; Montague, Enid; Carrell, David S; Lingren, Todd; Mentch, Frank D; Ni, Yizhao; Wehbe, Firas H; Peissig, Peggy L; Tromp, Gerard; Larson, Eric B; Chute, Christopher G; Pathak, Jyotishman; Denny, Joshua C; Speltz, Peter; Kho, Abel N; Jarvik, Gail P; Bejan, Cosmin A; Williams, Marc S; Borthwick, Kenneth; Kitchner, Terrie E; Roden, Dan M; Harris, Paul A
2015-11-01
Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM). A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms. We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility. A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Diagnostic Challenges in Retinitis Pigmentosa: Genotypic Multiplicity and Phenotypic Variability
Chang, Susie; Vaccarella, Leah; Olatunji, Sunday; Cebulla, Colleen; Christoforidis, John
2011-01-01
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders. Diagnosis can be challenging as more than 40 genes are known to cause non-syndromic RP and phenotypic expression can differ significantly resulting in variations in disease severity, age of onset, rate of progression, and clinical findings. We describe the clinical manifestations of RP, the more commonly known causative gene mutations, and the genotypic-phenotypic correlation of RP. PMID:22131872
Koch, Robin; Kupczok, Anne; Stucken, Karina; Ilhan, Judith; Hammerschmidt, Katrin; Dagan, Tal
2017-08-31
Filamentous cyanobacteria that differentiate multiple cell types are considered the peak of prokaryotic complexity and their evolution has been studied in the context of multicellularity origins. Species that form true-branching filaments exemplify the most complex cyanobacteria. However, the mechanisms underlying the true-branching morphology remain poorly understood despite of several investigations that focused on the identification of novel genes or pathways. An alternative route for the evolution of novel traits is based on existing phenotypic plasticity. According to that scenario - termed genetic assimilation - the fixation of a novel phenotype precedes the fixation of the genotype. Here we show that the evolution of transcriptional regulatory elements constitutes a major mechanism for the evolution of new traits. We found that supplementation with sucrose reconstitutes the ancestral branchless phenotype of two true-branching Fischerella species and compared the transcription start sites (TSSs) between the two phenotypic states. Our analysis uncovers several orthologous TSSs whose transcription level is correlated with the true-branching phenotype. These TSSs are found in genes that encode components of the septosome and elongasome (e.g., fraC and mreB). The concept of genetic assimilation supplies a tenable explanation for the evolution of novel traits but testing its feasibility is hindered by the inability to recreate and study the evolution of present-day traits. We present a novel approach to examine transcription data for the plasticity first route and provide evidence for its occurrence during the evolution of complex colony morphology in true-branching cyanobacteria. Our results reveal a route for evolution of the true-branching phenotype in cyanobacteria via modification of the transcription level of pre-existing genes. Our study supplies evidence for the 'plasticity-first' hypothesis and highlights the importance of transcriptional regulation in the evolution of novel traits.
Divergent sensory phenotypes in nonspecific arm pain: comparisons with cervical radiculopathy.
Moloney, Niamh; Hall, Toby; Doody, Catherine
2015-02-01
To investigate whether distinct sensory phenotypes were identifiable in individuals with nonspecific arm pain (NSAP) and whether these differed from those in people with cervical radiculopathy. A secondary question considered whether the frequency of features of neuropathic pain, kinesiophobia, high pain ratings, hyperalgesia, and allodynia differed according to subgroups of sensory phenotypes. Cross-sectional study. Higher education institution. Forty office workers with NSAP, 17 people with cervical radiculopathy, and 40 age- and sex-matched healthy controls (N=97). Not applicable. Participants were assessed using quantitative sensory testing (QST) comprising thermal and vibration detection thresholds and thermal and pressure pain thresholds; clinical examination; and relevant questionnaires. Sensory phenotypes were identified for each individual in the patient groups using z-score transformation of the QST data. Individuals with NSAP and cervical radiculopathy present with a spectrum of sensory abnormalities; a dominant sensory phenotype was not identifiable in individuals with NSAP. No distinct pattern between clinical features and questionnaire results across sensory phenotypes was identified in either group. When considering sensory phenotypes, neither individuals with NSAP nor individuals with cervical radiculopathy should be considered homogeneous. Therefore, people with either condition may warrant different intervention approaches according to their individual sensory phenotype. Issues relating to the clinical identification of sensory hypersensitivity and the validity of QST are highlighted. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Sibley, Christopher D; Peirano, Gisele; Church, Deirdre L
2012-04-01
Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections. Copyright © 2012 Elsevier B.V. All rights reserved.
Signs and genetics of rare cancer syndromes with gastroenterological features
Bruno, William; Fornarini, Giuseppe; Ghiorzo, Paola
2015-01-01
Although the genetic bases of most hereditary cancer syndromes are known, and genetic tests are available for them, the incidence of the most rare of these syndromes is likely underestimated, partially because the clinical expression is neither fully understood nor easily diagnosed due to the variable and complex expressivity. The clinical features of a small pool of rare cancer syndromes include gastroenterological signs, though not necessarily tumors, that could require the intervention of a gastroenterologist during any of the phases of the clinical management. Herein we will attempt to spread the knowledge on these rare syndromes by summarizing the phenotype and genetic basis, and revising the peculiar gastroenterological signs whose underlying role in these rare hereditary cancer syndromes is often neglected. Close collaboration between geneticists and gastroenterologists could facilitate both the early identification of patients or relatives at-risk and the planning of multidisciplinary and tailored management of these subjects. PMID:26290627
Assessing pathophysiology of cancer anorexia.
Laviano, Alessandro; Koverech, Angela; Seelaender, Marilia
2017-09-01
Cancer anorexia is a negative prognostic factor and is broadly defined as the loss of the interest in food. However, multiple clinical domains contribute to the phenotype of cancer anorexia. The characterization of the clinical and molecular pathophysiology of cancer anorexia may enhance the efficacy of preventive and therapeutic strategies. Clinical trials showed that cancer anorexia should be considered as an umbrella encompassing different signs and symptoms contributing to appetite disruption in cancer patients. Loss of appetite, early satiety, changes in taste and smell are determinants of cancer anorexia, whose presence should be assessed in cancer patients. Interestingly, neuronal correlates of cancer anorexia-related symptoms have been revealed by brain imaging techniques. The pathophysiology of cancer anorexia is complex and involves different domains influencing eating behavior. Limiting the assessment of cancer anorexia to questions investigating changes in appetite may impede correct identification of the targets to address.
The Influence of Big (Clinical) Data and Genomics on Precision Medicine and Drug Development.
Denny, Joshua C; Van Driest, Sara L; Wei, Wei-Qi; Roden, Dan M
2018-03-01
Drug development continues to be costly and slow, with medications failing due to lack of efficacy or presence of toxicity. The promise of pharmacogenomic discovery includes tailoring therapeutics based on an individual's genetic makeup, rational drug development, and repurposing medications. Rapid growth of large research cohorts, linked to electronic health record (EHR) data, fuels discovery of new genetic variants predicting drug action, supports Mendelian randomization experiments to show drug efficacy, and suggests new indications for existing medications. New biomedical informatics and machine-learning approaches advance the ability to interpret clinical information, enabling identification of complex phenotypes and subpopulations of patients. We review the recent history of use of "big data" from EHR-based cohorts and biobanks supporting these activities. Future studies using EHR data, other information sources, and new methods will promote a foundation for discovery to more rapidly advance precision medicine. © 2017 American Society for Clinical Pharmacology and Therapeutics.
Dahdul, Wasila M; Balhoff, James P; Engeman, Jeffrey; Grande, Terry; Hilton, Eric J; Kothari, Cartik; Lapp, Hilmar; Lundberg, John G; Midford, Peter E; Vision, Todd J; Westerfield, Monte; Mabee, Paula M
2010-05-20
The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of the detailed variations in phenotype, whether between mutant or wildtype, among individual humans, or across the diversity of species, requires a process by which a precise combination of terms from domain ontologies are selected and organized according to logical relations. The efficiencies that we have developed in this process will be useful for any attempt to annotate complex phenotypic descriptions using ontologies. We also discuss some ramifications of EQ representation for the domain of systematics.
Assessing the complex architecture of polygenic traits in diverged yeast populations.
Cubillos, Francisco A; Billi, Eleonora; Zörgö, Enikö; Parts, Leopold; Fargier, Patrick; Omholt, Stig; Blomberg, Anders; Warringer, Jonas; Louis, Edward J; Liti, Gianni
2011-04-01
Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits. © 2011 Blackwell Publishing Ltd.
Moller, David R; Koth, Laura L; Maier, Lisa A; Morris, Alison; Drake, Wonder; Rossman, Milton; Leader, Joseph K; Collman, Ronald G; Hamzeh, Nabeel; Sweiss, Nadera J; Zhang, Yingze; O'Neal, Scott; Senior, Robert M; Becich, Michael; Hochheiser, Harry S; Kaminski, Naftali; Wisniewski, Stephen R; Gibson, Kevin F
2015-10-01
Sarcoidosis is a systemic disease characterized by noncaseating granulomatous inflammation with tremendous clinical heterogeneity and uncertain pathobiology and lacking in clinically useful biomarkers. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study is an observational cohort study designed to explore the role of the lung microbiome and genome in these two diseases. This article describes the design and rationale for the GRADS study sarcoidosis protocol. The study addresses the hypothesis that distinct patterns in the lung microbiome are characteristic of sarcoidosis phenotypes and are reflected in changes in systemic inflammatory responses as measured by peripheral blood changes in gene transcription. The goal is to enroll 400 participants, with a minimum of 35 in each of 9 clinical phenotype subgroups prioritized by their clinical relevance to understanding of the pathobiology and clinical heterogeneity of sarcoidosis. Participants with a confirmed diagnosis of sarcoidosis undergo a baseline visit with self-administered questionnaires, chest computed tomography, pulmonary function tests, and blood and urine testing. A research or clinical bronchoscopy with a research bronchoalveolar lavage will be performed to obtain samples for genomic and microbiome analyses. Comparisons will be made by blood genomic analysis and with clinical phenotypic variables. A 6-month follow-up visit is planned to assess each participant's clinical course. By the use of an integrative approach to the analysis of the microbiome and genome in selected clinical phenotypes, the GRADS study is powerfully positioned to inform and direct studies on the pathobiology of sarcoidosis, identify diagnostic or prognostic biomarkers, and provide novel molecular phenotypes that could lead to improved personalized approaches to therapy for sarcoidosis.
Koth, Laura L.; Maier, Lisa A.; Morris, Alison; Drake, Wonder; Rossman, Milton; Leader, Joseph K.; Collman, Ronald G.; Hamzeh, Nabeel; Sweiss, Nadera J.; Zhang, Yingze; O’Neal, Scott; Senior, Robert M.; Becich, Michael; Hochheiser, Harry S.; Kaminski, Naftali; Wisniewski, Stephen R.; Gibson, Kevin F.
2015-01-01
Sarcoidosis is a systemic disease characterized by noncaseating granulomatous inflammation with tremendous clinical heterogeneity and uncertain pathobiology and lacking in clinically useful biomarkers. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study is an observational cohort study designed to explore the role of the lung microbiome and genome in these two diseases. This article describes the design and rationale for the GRADS study sarcoidosis protocol. The study addresses the hypothesis that distinct patterns in the lung microbiome are characteristic of sarcoidosis phenotypes and are reflected in changes in systemic inflammatory responses as measured by peripheral blood changes in gene transcription. The goal is to enroll 400 participants, with a minimum of 35 in each of 9 clinical phenotype subgroups prioritized by their clinical relevance to understanding of the pathobiology and clinical heterogeneity of sarcoidosis. Participants with a confirmed diagnosis of sarcoidosis undergo a baseline visit with self-administered questionnaires, chest computed tomography, pulmonary function tests, and blood and urine testing. A research or clinical bronchoscopy with a research bronchoalveolar lavage will be performed to obtain samples for genomic and microbiome analyses. Comparisons will be made by blood genomic analysis and with clinical phenotypic variables. A 6-month follow-up visit is planned to assess each participant’s clinical course. By the use of an integrative approach to the analysis of the microbiome and genome in selected clinical phenotypes, the GRADS study is powerfully positioned to inform and direct studies on the pathobiology of sarcoidosis, identify diagnostic or prognostic biomarkers, and provide novel molecular phenotypes that could lead to improved personalized approaches to therapy for sarcoidosis. PMID:26193069
Michaels, Maike Anna; Jendrek, Sebastian Torben; Korf, Tobias; Nitzsche, Thomas; Teegen, Bianca; Komorowski, Lars; Derer, Stefanie; Schröder, Torsten; Baer, Florian; Lehnert, Henrik; Büning, Jürgen; Fellerman, Klaus; Sina, Christian
2015-12-01
Inflammatory bowel disease (IBD) is characterized by a broad spectrum of clinical phenotypes with different outcomes. In the last decades, several IBD-associated autoantibodies have been identified and investigated for their diagnostic relevance. Autoantibodies against the pancreatic glycoproteins (PAB) CUB and zona pellucida-like domains-containing protein 1 (CUZD1), and glycoprotein 2 (GP2) have been demonstrated to possess high specificity for the diagnosis of IBD. Although several studies have shown significant interrelations of anti-GP2 positivity with disease phenotype, associations of clinical phenotypes with anti-CUZD1 are still unknown. The aim was to identify the association of clinical phenotypes with anti-CUZD1 and anti-GP2 in a well-defined German IBD cohort. Patients with IBD (224 patients with Crohn's disease and 136 patients with ulcerative colitis), who were tested for anti-GP2 and anti-CUZD1 immunoglobulin G and immunoglobulin A by indirect immunofluorescence on transfected cells between 2005 and 2013, were included. Serotype and specified phenotypic data were collected in retrospect and statistically analyzed. Both anti-GP2 (P < 0.001) and anti-CUZD1 (P < 0.001) were significantly more prevalent in patients with Crohn's disease than in ulcerative colitis. PAB positivity was associated with ileocolonic disease (P = 0.002), perianal disease (P = 0.011), immunosuppressive treatment (P = 0.036), and ASCA positivity (P = 0.036). Anti-CUZD1 positivity was associated with ileocolonic (P = 0.016) and perianal disease (P = 0.002), whereas anti-GP2 positivity was positively associated with stricturing behavior (P = 0.016). We found distinct clinical phenotypes to be associated with PAB positivity. Therefore, determination of PABs and their subgroup analysis might identify patients with complicated disease behavior. However, the clinical relevance of our findings should be further evaluated in prospective cohorts.
Relational machine learning for electronic health record-driven phenotyping.
Peissig, Peggy L; Santos Costa, Vitor; Caldwell, Michael D; Rottscheit, Carla; Berg, Richard L; Mendonca, Eneida A; Page, David
2014-12-01
Electronic health records (EHR) offer medical and pharmacogenomics research unprecedented opportunities to identify and classify patients at risk. EHRs are collections of highly inter-dependent records that include biological, anatomical, physiological, and behavioral observations. They comprise a patient's clinical phenome, where each patient has thousands of date-stamped records distributed across many relational tables. Development of EHR computer-based phenotyping algorithms require time and medical insight from clinical experts, who most often can only review a small patient subset representative of the total EHR records, to identify phenotype features. In this research we evaluate whether relational machine learning (ML) using inductive logic programming (ILP) can contribute to addressing these issues as a viable approach for EHR-based phenotyping. Two relational learning ILP approaches and three well-known WEKA (Waikato Environment for Knowledge Analysis) implementations of non-relational approaches (PART, J48, and JRIP) were used to develop models for nine phenotypes. International Classification of Diseases, Ninth Revision (ICD-9) coded EHR data were used to select training cohorts for the development of each phenotypic model. Accuracy, precision, recall, F-Measure, and Area Under the Receiver Operating Characteristic (AUROC) curve statistics were measured for each phenotypic model based on independent manually verified test cohorts. A two-sided binomial distribution test (sign test) compared the five ML approaches across phenotypes for statistical significance. We developed an approach to automatically label training examples using ICD-9 diagnosis codes for the ML approaches being evaluated. Nine phenotypic models for each ML approach were evaluated, resulting in better overall model performance in AUROC using ILP when compared to PART (p=0.039), J48 (p=0.003) and JRIP (p=0.003). ILP has the potential to improve phenotyping by independently delivering clinically expert interpretable rules for phenotype definitions, or intuitive phenotypes to assist experts. Relational learning using ILP offers a viable approach to EHR-driven phenotyping. Copyright © 2014 Elsevier Inc. All rights reserved.
CKD Self-management: Phenotypes and Associations With Clinical Outcomes.
Schrauben, Sarah J; Hsu, Jesse Y; Rosas, Sylvia E; Jaar, Bernard G; Zhang, Xiaoming; Deo, Rajat; Saab, Georges; Chen, Jing; Lederer, Swati; Kanthety, Radhika; Hamm, L Lee; Ricardo, Ana C; Lash, James P; Feldman, Harold I; Anderson, Amanda H
2018-03-24
To slow chronic kidney disease (CKD) progression and its complications, patients need to engage in self-management behaviors. The objective of this study was to classify CKD self-management behaviors into phenotypes and assess the association of these phenotypes with clinical outcomes. Prospective cohort study. Adults with mild to moderate CKD enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study. 3,939 participants in the CRIC Study recruited between 2003 and 2008 served as the derivation cohort and 1,560 participants recruited between 2013 and 2015 served as the validation cohort. CKD self-management behavior phenotypes. CKD progression, atherosclerotic events, heart failure events, death from any cause. Latent class analysis stratified by diabetes was used to identify CKD self-management phenotypes based on measures of body mass index, diet, physical activity, blood pressure, smoking status, and hemoglobin A 1c concentration (if diabetic); Cox proportional hazards models. 3 identified phenotypes varied according to the extent of implementation of recommended CKD self-management behaviors: phenotype I characterized study participants with the most recommended behaviors; phenotype II, participants with a mixture of recommended and not recommended behaviors; and phenotype III, participants with minimal recommended behaviors. In multivariable-adjusted models for those with and without diabetes, phenotype III was strongly associated with CKD progression (HRs of 1.82 and 1.49), death (HRs of 1.95 and 4.14), and atherosclerotic events (HRs of 2.54 and 1.90; each P < 0.05). Phenotype II was associated with atherosclerotic events and death among those with and without diabetes. No consensus definition of CKD self-management; limited to baseline behavior data. There are potentially 3 CKD self-management behavior phenotypes that distinguish risk for clinical outcomes. These phenotypes may inform the development of studies and guidelines regarding optimal self-management. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Kulkarni, Sughosh S; Madalgi, Radhika; Ajantha, Ganavalli S; Kulkarni, Raghavendra D
2017-01-01
Acinetobacter is grouped under nonfermenting Gram-negative bacilli. It is increasingly isolated from pathological samples. The ability of this genus to acquire drug resistance and spread in the hospital settings is posing a grave problem in healthcare. Specific treatment protocols are advocated for Acinetobacter infections. Hence, rapid identification and drug susceptibility profiling are critical in the management of these infections. To standardize an in-house polymerase chain reaction (PCR) for identification of genus Acinetobacter and to compare PCR with two protocols for its phenotypic identification. A total of 96 clinical isolates of Acinetobacter were included in the study. An in-house PCR for genus level identification of Acinetobacter was standardized. All the isolates were phenotypically identified by two protocols. The results of PCR and phenotypic identification protocols were compared. The in-house PCR standardized was highly sensitive and specific for the genus Acinetobacter . There was 100% agreement between the phenotypic and molecular identification of the genus. The preliminary identification tests routinely used in clinical laboratories were also in complete agreement with phenotypic and molecular identification. The in-house PCR for genus level identification is specific and sensitive. However, it may not be essential for routine identification as the preliminary phenotypic identification tests used in the clinical laboratory reliably identify the genus Acinetobacter .
Jdila, Marwa Ben; Issa, Abir Ben; Khabou, Boudour; Rhouma, Bochra Ben; Kamoun, Fatma; Ammar-Keskes, Leila; Triki, Chahnez; Fakhfakh, Faiza
2017-10-01
West syndrome is a rare epileptic encephalopathy of early infancy, characterized by epileptic spasms, hypsarrhythmia, and psychomotor retardation beginning in the first year of life. The present study reports the clinical, molecular and bioinformatic investigation in the three studied West patients. The results revealed a complex genotype with more than one mutation in each patient including the known mutations c.1910C>G (P2, P3); c.2372A>C in P3 and c.2395C>G in P1 and novel variants including c.616G>A, shared by the three patients P1, P2 and P3; c.1403G>C shared by P2 and P3 and c.2288A>G in patient P1. All the mutations were at somatic mosaic state and were de novo in the patients except ones (c.2372A>C). To our knowledge; the somatic mosaic state is described for the first time in patients with West syndrome. Five identified mutations were located in the C-terminal domain of the protein, while the novel mutation (c.616G>A) was in the catalytic domain. Bioinformatic tools predicted that this latter is the most pathogenic substitution affecting 3D protein structure and the secondary mRNA structure. Complex genotype composed of different combinations of mutations in each patient seems to be related to the phenotype variability. Copyright © 2017. Published by Elsevier B.V.
Grizelj, Ruža; Bojanić, Katarina; Vuković, Jurica; Weingarten, Toby N; Schroeder, Darrell R; Sprung, Juraj
2017-07-01
Background Congenital diaphragmatic hernia (CDH) has different clinical presentations depending on whether it is right sided (R-CDH) or left sided (L-CDH). Some have suggested that L-CDH and R-CDH may represent different syndromic phenotypes. This theory would be indirectly supported if different nondiaphragmatic anomalies were associated with laterality. We assessed whether CDH laterality is associated with specific types of nondiaphragmatic anomalies. Methods Cases of CDH were retrospectively identified from five centers, and associated congenital anomalies, prenatal diagnosis, demographics, birth characteristics, and side of the CDH were analyzed. CDH characteristics were summarized according to the absence (isolated) or presence (complex) of nondiaphragmatic malformations. Results Among 228 neonates with CDH, 140 (61%) had isolated CDH and 88 (39%) had complex CDH. Complex CDH was significantly associated with being small for gestational age (odds ratio [95% confidence interval, CI]: 8.3 [1.9-35.7]; p = 0.005) and having L-CDH (odds ratio [95% CI]: 3.6 [1.5-8.9]; p = 0.005). The overall proportion with anomalies differed by side (42% for L-CDH, 23% for R-CDH; p = 0.02), but the rates of anomalies in specific organ systems did not differ. Conclusion The rate of associated nondiaphragmatic anomalies by specific organ system did not differ between L-CDH and R-CDH, which suggests that they represent the same phenotypic entity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Identification of Clinical Phenotypes in Idiopathic Interstitial Pneumonia with Pulmonary Emphysema.
Sato, Suguru; Tanino, Yoshinori; Misa, Kenichi; Fukuhara, Naoko; Nikaido, Takefumi; Uematsu, Manabu; Fukuhara, Atsuro; Wang, Xintao; Ishida, Takashi; Munakata, Mitsuru
2016-01-01
Objective Since the term "combined pulmonary fibrosis and emphysema" (CPFE) was first proposed, the co-existence of pulmonary fibrosis and pulmonary emphysema (PE) has drawn considerable attention. However, conflicting results on the clinical characteristics of patients with both pulmonary fibrosis and PE have been published because of the lack of an exact definition of CPFE. The goal of this study was thus to clarify the clinical characteristics and phenotypes of idiopathic interstitial pneumonia (IIP) with PE. Methods We retrospectively analyzed IIP patients who had been admitted to our hospital. Their chest high-resolution computed tomography images were classified into two groups according to the presence of PE. We then performed a cluster analysis to identify the phenotypes of IIP patients with PE. Results Forty-four (53.7%) out of 82 patients had at least mild emphysema in their bilateral lungs. The cluster analysis separated the IIP patients with PE into three clusters. The overall survival rate of one cluster that consisted of mainly idiopathic pulmonary fibrosis (IPF) patients was significantly worse than those of the other clusters. Conclusion Three different phenotypes can be identified in IIP patients with PE, and IPF with PE is a distinct clinical phenotype with a poor prognosis.
Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research.
Manolio, Teri A; Fowler, Douglas M; Starita, Lea M; Haendel, Melissa A; MacArthur, Daniel G; Biesecker, Leslie G; Worthey, Elizabeth; Chisholm, Rex L; Green, Eric D; Jacob, Howard J; McLeod, Howard L; Roden, Dan; Rodriguez, Laura Lyman; Williams, Marc S; Cooper, Gregory M; Cox, Nancy J; Herman, Gail E; Kingsmore, Stephen; Lo, Cecilia; Lutz, Cathleen; MacRae, Calum A; Nussbaum, Robert L; Ordovas, Jose M; Ramos, Erin M; Robinson, Peter N; Rubinstein, Wendy S; Seidman, Christine; Stranger, Barbara E; Wang, Haoyi; Westerfield, Monte; Bult, Carol
2017-03-23
Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. Published by Elsevier Inc.
Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research
Manolio, Teri A.; Fowler, Douglas M.; Starita, Lea M.; Haendel, Melissa A.; MacArthur, Daniel G.; Biesecker, Leslie G.; Worthey, Elizabeth; Chisholm, Rex L.; Green, Eric D.; Jacob, Howard J.; McLeod, Howard L.; Roden, Dan; Rodriguez, Laura Lyman; Williams, Marc S.; Cooper, Gregory M.; Cox, Nancy J.; Herman, Gail E.; Kingsmore, Stephen; Lo, Cecilia; Lutz, Cathleen; MacRae, Calum A.; Nussbaum, Robert L.; Ordovas, Jose M.; Ramos, Erin M.; Robinson, Peter N.; Rubinstein, Wendy S.; Seidman, Christine; Stranger, Barbara E.; Wang, Haoyi; Westerfield, Monte; Bult, Carol
2017-01-01
Summary Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. PMID:28340351
Ogilvie, Isla; Kennaway, Nancy G.; Shoubridge, Eric A.
2005-01-01
NADH:ubiquinone oxidoreductase (complex I) deficiency is a common cause of mitochondrial oxidative phosphorylation disease. It is associated with a wide range of clinical phenotypes in infants, including Leigh syndrome, cardiomyopathy, and encephalomyopathy. In at least half of patients, enzyme deficiency results from a failure to assemble the holoenzyme complex; however, the molecular chaperones required for assembly of the mammalian enzyme remain unknown. Using whole genome subtraction of yeasts with and without a complex I to generate candidate assembly factors, we identified a paralogue (B17.2L) of the B17.2 structural subunit. We found a null mutation in B17.2L in a patient with a progressive encephalopathy and showed that the associated complex I assembly defect could be completely rescued by retroviral expression of B17.2L in patient fibroblasts. An anti-B17.2L antibody did not associate with the holoenzyme complex but specifically recognized an 830-kDa subassembly in several patients with complex I assembly defects and coimmunoprecipitated a subset of complex I structural subunits from normal human heart mitochondria. These results demonstrate that B17.2L is a bona fide molecular chaperone that is essential for the assembly of complex I and for the normal function of the nervous system. PMID:16200211
Landmark lecture on cardiac intensive care and anaesthesia: continuum and conundrums.
Laussen, Peter C
2017-12-01
Cardiac anesthesia and critical care provide an important continuum of care for patients with congenital heart disease. Clinicians in both areas work in complex environments in which the interactions between humans and technology is critical. Understanding our contributions to outcomes (modifiable risk) and our ability to perceive and predict an evolving clinical state (low failure-to-predict rate) are important performance metrics. Improved methods for capturing continuous physiologic signals will allow for new and interactive approaches to data visualization, and for sophisticated and iterative data modeling that will help define a patient's phenotype and response to treatment (precision physiology).
Pemov, Alexander; Sung, Heejong; Hyland, Paula L.; Sloan, Jennifer L.; Ruppert, Sarah L.; Baldwin, Andrea M.; Boland, Joseph F.; Bass, Sara E.; Lee, Hyo Jung; Jones, Kristine M.; Zhang, Xijun; Mullikin, James C.; Widemann, Brigitte C.; Wilson, Alexander F.; Stewart, Douglas R.
2014-01-01
Neurofibromatosis type 1 (NF1) is an autosomal dominant, monogenic disorder of dysregulated neurocutaneous tissue growth. Pleiotropy, variable expressivity and few NF1 genotype-phenotype correlates limit clinical prognostication in NF1. Phenotype complexity in NF1 is hypothesized to derive in part from genetic modifiers unlinked to the NF1 locus. In this study, we hypothesized that normal variation in germline gene expression confers risk for certain phenotypes in NF1. In a set of 79 individuals with NF1, we examined the association between gene expression in lymphoblastoid cell lines with NF1-associated phenotypes and sequenced select genes with significant phenotype/expression correlations. In a discovery cohort of 89 self-reported European-Americans with NF1 we examined the association between germline sequence variants of these genes with café-au-lait macule (CALM) count, a tractable, tumor-like phenotype in NF1. Two correlated, common SNPs (rs4660761 and rs7161) between DPH2 and ATP6V0B were significantly associated with the CALM count. Analysis with tiled regression also identified SNP rs4660761 as significantly associated with CALM count. SNP rs1800934 and 12 rare variants in the mismatch repair gene MSH6 were also associated with CALM count. Both SNPs rs7161 and rs4660761 (DPH2 and ATP6V0B) were highly significant in a mega-analysis in a combined cohort of 180 self-reported European-Americans; SNP rs1800934 (MSH6) was near-significant in a meta-analysis assuming dominant effect of the minor allele. SNP rs4660761 is predicted to regulate ATP6V0B, a gene associated with melanosome biology. Individuals with homozygous mutations in MSH6 can develop an NF1-like phenotype, including multiple CALMs. Through a multi-platform approach, we identified variants that influence NF1 CALM count. PMID:25329635
A weighted U statistic for association analyses considering genetic heterogeneity.
Wei, Changshuai; Elston, Robert C; Lu, Qing
2016-07-20
Converging evidence suggests that common complex diseases with the same or similar clinical manifestations could have different underlying genetic etiologies. While current research interests have shifted toward uncovering rare variants and structural variations predisposing to human diseases, the impact of heterogeneity in genetic studies of complex diseases has been largely overlooked. Most of the existing statistical methods assume the disease under investigation has a homogeneous genetic effect and could, therefore, have low power if the disease undergoes heterogeneous pathophysiological and etiological processes. In this paper, we propose a heterogeneity-weighted U (HWU) method for association analyses considering genetic heterogeneity. HWU can be applied to various types of phenotypes (e.g., binary and continuous) and is computationally efficient for high-dimensional genetic data. Through simulations, we showed the advantage of HWU when the underlying genetic etiology of a disease was heterogeneous, as well as the robustness of HWU against different model assumptions (e.g., phenotype distributions). Using HWU, we conducted a genome-wide analysis of nicotine dependence from the Study of Addiction: Genetics and Environments dataset. The genome-wide analysis of nearly one million genetic markers took 7h, identifying heterogeneous effects of two new genes (i.e., CYP3A5 and IKBKB) on nicotine dependence. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition.
Basel, Donald; Steiner, Robert D
2009-06-01
Osteogenesis imperfecta is a systemic heritable disorder of connective tissue whose cardinal manifestation is bone fragility. In approximately 90% of individuals with osteogenesis imperfecta, mutations in either of the genes encoding the pro-alpha1 or pro-alpha2 chains of type I collagen (COL1A1 or COL1A2) can be identified. Of those without collagen mutations, a number of them will have mutations involving the enzyme complex responsible for posttranslational hydroxylation of the position 3 proline residue of COL1A1. Two of the genes encoding proteins involved in that enzyme complex, LEPRE1 and cartilage-associated protein, when mutated have been shown to cause autosomal recessive osteogenesis imperfecta, which has a moderate to severe clinical phenotype, often indistinguishable from osteogenesis imperfecta types II or III. Mutations in COL1A1 or COL1A2 which result in an abnormal protein still capable of forming a triple helix cause a more severe phenotype than mutations that lead to decreased collagen production as a result of the dominant negative effect mediated by continuous protein turnover. The current standard of care includes a multidisciplinary approach with surgical intervention when necessary, proactive physiotherapy, and consideration for the use of bisphosphonates all in attempts to improve quality of life.
Optimizing complex phenotypes through model-guided multiplex genome engineering
Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.; ...
2017-05-25
Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.
Optimizing complex phenotypes through model-guided multiplex genome engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.
Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.
Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).
Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T
2014-10-01
Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Asarnow, Daniel; Rojo-Arreola, Liliana; Suzuki, Brian M; Caffrey, Conor R; Singh, Rahul
2015-05-01
Neglected tropical diseases (NTDs) caused by helminths constitute some of the most common infections of the world's poorest people. The etiological agents are complex and recalcitrant to standard techniques of molecular biology. Drug screening against helminths has often been phenotypic and typically involves manual description of drug effect and efficacy. A key challenge is to develop automated, quantitative approaches to drug screening against helminth diseases. The quantal dose-response calculator (QDREC) constitutes a significant step in this direction. It can be used to automatically determine quantitative dose-response characteristics and half-maximal effective concentration (EC50) values using image-based readouts from phenotypic screens, thereby allowing rigorous comparisons of the efficacies of drug compounds. QDREC has been developed and validated in the context of drug screening for schistosomiasis, one of the most important NTDs. However, it is equally applicable to general phenotypic screening involving helminths and other complex parasites. QDREC is publically available at: http://haddock4.sfsu.edu/qdrec2/. Source code and datasets are at: http://tintin.sfsu.edu/projects/phenotypicAssays.html. rahul@sfsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cancer cell: using inflammation to invade the host
Arias, José-Ignacio; Aller, María-Angeles; Arias, Jaime
2007-01-01
Background Inflammation is increasingly recognized as an important component of tumorigenesis, although the mechanisms involved are not fully characterized. The invasive capacity of cancers is reflected in the classic metastatic cascade: tumor (T), node (N) and metastasis (M). However, this staging system for cancer would also have a tumoral biological significance. Presentation of the hypothesis To integrate the mechanisms that control the inflammatory response in the actual staging system of cancer. It is considered that in both processes of inflammation and cancer, three successive phenotypes are presented that represent the expression of trophic functional systems of increasing metabolic complexity for using oxygen. Testing the hypothesis While a malignant tumor develops it express phenotypes that also share the inflammatory response such as: an ischemic phenotype (anoxic-hypoxic), a leukocytic phenotype with anaerobic glycolysis and migration, and an angiogenic phenotype with hyperactivity of glycolytic enzymes, tumor proliferation and metastasis, and cachexia of the host. The increasing metabolic complexity of the tumor cell to use oxygen allows for it to be released, migrate and proliferate, thus creating structures of growing complexity. Implication of the hypothesis One aim of cancer gene therapy could be the induction of oxidative phosphorylation, the last metabolic step required by inflammation in order to differentiate the tissue that it produces. PMID:17437633
Targeted therapy in severe asthma today: focus on immunoglobulin E.
Pelaia, Girolamo; Canonica, Giorgio Walter; Matucci, Andrea; Paolini, Rossella; Triggiani, Massimo; Paggiaro, Pierluigi
2017-01-01
Asthma is a complex chronic inflammatory disease of multifactorial etiology. International guidelines increasingly recognize that a standard "one size fits all" approach is no longer an effective approach to achieve optimal treatment outcomes, and a number of disease phenotypes have been proposed for asthma, which has the potential to guide treatment decisions. Among the many asthma phenotypes, allergic asthma represents the widest and most easily recognized asthma phenotype, present in up to two-thirds of adults with asthma. Immunoglobulin E (IgE) production is the primary and key cause of allergic asthma leading to persistent symptoms, exacerbations and a poor quality of life. Therefore, limiting IgE activity upstream could stop the entire allergic inflammation cascade in IgE-mediated allergic asthma. The anti-IgE treatment omalizumab has an accepted place in the management of severe asthma (Global Initiative for Asthma [GINA] step 5) and represents the first (and, currently, only) targeted therapy with a specific target in severe allergic asthma. This review summarizes current knowledge of the mechanisms and pathogenesis of severe asthma, examines the actual role of IgE in asthma and the biological rationale for targeting IgE in allergic asthma and reviews the data for the efficacy and safety of omalizumab in the treatment of severe asthma. Current knowledge of the role of IgE in asthma, extensive clinical trial data and a decade of use in clinical practice has established omalizumab as a safe and effective targeted therapy for the treatment of patients with severe persistent IgE-mediated allergic asthma.
Targeted therapy in severe asthma today: focus on immunoglobulin E
Pelaia, Girolamo; Canonica, Giorgio Walter; Matucci, Andrea; Paolini, Rossella; Triggiani, Massimo; Paggiaro, Pierluigi
2017-01-01
Asthma is a complex chronic inflammatory disease of multifactorial etiology. International guidelines increasingly recognize that a standard “one size fits all” approach is no longer an effective approach to achieve optimal treatment outcomes, and a number of disease phenotypes have been proposed for asthma, which has the potential to guide treatment decisions. Among the many asthma phenotypes, allergic asthma represents the widest and most easily recognized asthma phenotype, present in up to two-thirds of adults with asthma. Immunoglobulin E (IgE) production is the primary and key cause of allergic asthma leading to persistent symptoms, exacerbations and a poor quality of life. Therefore, limiting IgE activity upstream could stop the entire allergic inflammation cascade in IgE-mediated allergic asthma. The anti-IgE treatment omalizumab has an accepted place in the management of severe asthma (Global Initiative for Asthma [GINA] step 5) and represents the first (and, currently, only) targeted therapy with a specific target in severe allergic asthma. This review summarizes current knowledge of the mechanisms and pathogenesis of severe asthma, examines the actual role of IgE in asthma and the biological rationale for targeting IgE in allergic asthma and reviews the data for the efficacy and safety of omalizumab in the treatment of severe asthma. Current knowledge of the role of IgE in asthma, extensive clinical trial data and a decade of use in clinical practice has established omalizumab as a safe and effective targeted therapy for the treatment of patients with severe persistent IgE-mediated allergic asthma. PMID:28721017
Cleft Lip and Palate in CHARGE Syndrome: Phenotypic Features That Influence Management.
Isaac, Kathryn V; Ganske, Ingrid M; Rottgers, Stephen A; Lim, So Young; Mulliken, John B
2018-03-01
Infants with syndromic cleft lip and/or cleft palate (CL/P) often require more complex care than their nonsyndromic counterparts. Our purpose was to (1) determine the prevalence of CL/P in patients with CHARGE syndrome and (2) highlight factors that affect management in this subset of children. This is a retrospective review from 1998 to 2016. Patients with CHARGE syndrome were diagnosed clinically and genetically. Prevalence of CL/P was determined and clinical details tabulated: phenotypic anomalies, cleft types, operative treatment, and results of repair. CHARGE syndrome was confirmed in 44 patients: 11 (25%) had cleft lip and palate and 1 had cleft palate only. Surgical treatment followed our usual protocols. Two patients with cardiac anomalies had prolonged recovery following surgical correction, necessitating palatal closure prior to nasolabial repair. One of these patients was too old for dentofacial orthopedics and underwent combined premaxillary setback and palatoplasty, prior to labial closure. Velopharyngeal insufficiency was frequent (n = 3/7). All patients had feeding difficulty and required a gastrostomy tube. All patients had neurosensory hearing loss; anomalies of the semicircular canals were frequent (n = 3/4). External auricular anomalies, colobomas, and cardiovascular anomalies were also common (n = 8/11). Other associated anomalies were choanal atresia (n = 4/11) and tracheoesophageal fistula (n = 2/11). CHARGE syndrome is an under-recognized genetic cause of cleft lip and palate. Hearing loss and speech and feeding difficulties often occur in these infants. Diagnosis can be delayed if the child presents with covert phenotypic features, such as chorioretinal colobomas, semicircular canal hypoplasia, and unilateral choanal atresia.
Design of an extensive information representation scheme for clinical narratives.
Deléger, Louise; Campillos, Leonardo; Ligozat, Anne-Laure; Névéol, Aurélie
2017-09-11
Knowledge representation frameworks are essential to the understanding of complex biomedical processes, and to the analysis of biomedical texts that describe them. Combined with natural language processing (NLP), they have the potential to contribute to retrospective studies by unlocking important phenotyping information contained in the narrative content of electronic health records (EHRs). This work aims to develop an extensive information representation scheme for clinical information contained in EHR narratives, and to support secondary use of EHR narrative data to answer clinical questions. We review recent work that proposed information representation schemes and applied them to the analysis of clinical narratives. We then propose a unifying scheme that supports the extraction of information to address a large variety of clinical questions. We devised a new information representation scheme for clinical narratives that comprises 13 entities, 11 attributes and 37 relations. The associated annotation guidelines can be used to consistently apply the scheme to clinical narratives and are https://cabernet.limsi.fr/annotation_guide_for_the_merlot_french_clinical_corpus-Sept2016.pdf . The information scheme includes many elements of the major schemes described in the clinical natural language processing literature, as well as a uniquely detailed set of relations.
Defining drug response for stratified medicine.
Lonergan, Mike; Senn, Stephen J; McNamee, Christine; Daly, Ann K; Sutton, Robert; Hattersley, Andrew; Pearson, Ewan; Pirmohamed, Munir
2017-01-01
The premise for stratified medicine is that drug efficacy, drug safety, or both, vary between groups of patients, and biomarkers can be used to facilitate more targeted prescribing, with the aim of improving the benefit:risk ratio of treatment. However, many factors can contribute to the variability in response to drug treatment. Inadequate characterisation of the nature and degree of variability can lead to the identification of biomarkers that have limited utility in clinical settings. Here, we discuss the complexities associated with the investigation of variability in drug efficacy and drug safety, and how consideration of these issues a priori, together with standardisation of phenotypes, can increase both the efficiency of stratification procedures and identification of biomarkers with the potential for clinical impact. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pathak, Jyotishman; Kiefer, Richard C.; Chute, Christopher G.
2012-01-01
The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. One of the key requirements to perform GWAS is the identification of subject cohorts with accurate classification of disease phenotypes. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical data stored in electronic health records (EHRs) to accurately identify subjects with specific diseases for inclusion in cohort studies. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR data and enabling federated querying and inferencing via standardized Web protocols for identifying subjects with Diabetes Mellitus. Our study highlights the potential of using Web-scale data federation approaches to execute complex queries. PMID:22779040
Hardaway, J A; Crowley, N A; Bulik, C M; Kash, T L
2015-01-01
Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
CXCL4-platelet factor 4, heparin-induced thrombocytopenia and cancer.
Sandset, Per Morten
2012-04-01
Platelet factor 4 (CXCL4-PF4) is a chemokine that binds to and neutralizes heparin and other negatively charged proteoglycans, but is also involved in angiogenesis and cancer development. In some patients exposed to heparin, antibodies are generated against the CXCL-PF4/heparin complex that may activate platelets and coagulation and lead to thrombocytopenia and arterial or venous thrombosis, a condition commonly named heparin induced thrombocytopenia (HIT). HIT has been investigated in numerous clinical settings, but there is limited data on the epidemiology and phenotype of HIT in cancer patients. The present review describes the role of CXCL4-PF4 in cancer, the immunobiology, clinical presentation and diagnosis of HIT, and the specific problems faced in cancer patients. Copyright © 2012 Elsevier Ltd. All rights reserved.
Santos Mateo, Juan José; Sabater Molina, María; Gimeno Blanes, Juan Ramón
2018-06-08
Hypertrophic cardiomyopathy is the most common inherited cardiovascular disease. It is characterized by increased ventricular wall thickness and is highly complex due to its heterogeneous clinical presentation, several phenotypes, large number of associated causal mutations and broad spectrum of complications. It is caused by mutations in sarcomeric proteins, which are identified in up to 60% of cases of the disease. Clinical manifestations of Hypertrophic Cardiomyopathy include shortness of breath, chest pain, palpitations and syncope, which are related to the onset of diastolic dysfunction, left ventricular outflow tract obstruction, ischemia, atrial fibrillation and abnormal vascular responses. It is associated with an increased risk of sudden cardiac death, heart failure and thromboembolic events. In this article, we discuss the diagnostic and therapeutic aspects of this disease. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Characterizing heterogeneous cellular responses to perturbations.
Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J
2008-12-09
Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.
Mandible shape in hybrid mice.
Renaud, Sabrina; Alibert, Paul; Auffray, Jean-Christophe
2009-09-01
Hybridisation between closely related species is frequently seen as retarding evolutionary divergence and can also promote it by creating novel phenotypes due to new genetic combinations and developmental interactions. We therefore investigated how hybridisation affects the shape of the mouse mandible, a well-known feature in evo-devo studies. Parental groups corresponded to two strains of the European mouse sub-species Mus musculus domesticus and Mus musculus musculus. Parents and hybrids were bred in controlled conditions. The mandibles of F(1) hybrids are mostly intermediate between parental phenotypes as expected for a complex multigenic character. Nevertheless, a transgressive effect as well as an increased phenotypic variance characterise the hybrids. This suggests that hybridisation between the two subspecies could lead to a higher phenotypic variance due to complex interactions among the parental genomes including non-additive genetic effects. The major direction of variance is conserved, however, among hybrids and parent groups. Hybridisation may thus play a role in the production of original transgressive phenotypes occurring following pre-existing patterns of variance.
Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J
2013-08-01
Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Food allergy phenotypes: The key to personalized therapy.
Deschildre, A; Lejeune, S; Cap, M; Flammarion, S; Jouannic, L; Amat, F; Just, J
2017-09-01
Food allergies (FAs) are of increasing public health concern and are characterized by a large spectrum of diseases. Their diversity is well known for immunologic pathways (IgE, non-IgE-mediated FAs) and natural history. Many other factors and patient characteristics are involved including type of food, exposure route, allergic comorbidities, gender, racial and ethnic backgrounds, cofactors and health conditions. Food allergen components and sensitization profiles are also involved in FA phenotypes. A new approach to chronic disorders based on the identification of phenotypes through extensive knowledge of all the complex components is also applicable to FAs and could lead towards integrative care management. Diagnostic biomarkers for FAs are emerging which also contribute to better care modalities. The aim of this article was to highlight current knowledge regarding the phenotypic diversity of FA. This review will focus on IgE-mediated FAs and how identifying phenotypes may help to better understand the pathophysiological complexity, improve diagnosis and lead to personalized treatment strategies. © 2017 John Wiley & Sons Ltd.
Skiba, Thomas; Landi, Nicole; Wagner, Richard
2011-01-01
Reading ability and specific reading disability (SRD) are complex traits involving several cognitive processes and are shaped by a complex interplay of genetic and environmental forces. Linkage studies of these traits have identified several susceptibility loci. Association studies have gone further in detecting candidate genes that might underlie these signals. These results have been obtained in samples of mainly European ancestry, which vary in their languages, inclusion criteria, and phenotype assessments. Such phenotypic heterogeneity across samples makes understanding the relationship between reading (dis)ability and reading-related processes and the genetic factors difficult; in addition, it may negatively influence attempts at replication. In moving forward, the identification of preferable phenotypes for future sample collection may improve the replicability of findings. This review of all published linkage and association results from the past 15 years was conducted to determine if certain phenotypes produce more replicable and consistent results than others. PMID:21243420
Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.
2013-01-01
Summary Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PaperClip PMID:23890820
2013-01-01
Background Molecular diagnostics can resolve locus heterogeneity underlying clinical phenotypes that may otherwise be co-assigned as a specific syndrome based on shared clinical features, and can associate phenotypically diverse diseases to a single locus through allelic affinity. Here we describe an apparently novel syndrome, likely caused by de novo truncating mutations in ASXL3, which shares characteristics with Bohring-Opitz syndrome, a disease associated with de novo truncating mutations in ASXL1. Methods We used whole-genome and whole-exome sequencing to interrogate the genomes of four subjects with an undiagnosed syndrome. Results Using genome-wide sequencing, we identified heterozygous, de novo truncating mutations in ASXL3, a transcriptional repressor related to ASXL1, in four unrelated probands. We found that these probands shared similar phenotypes, including severe feeding difficulties, failure to thrive, and neurologic abnormalities with significant developmental delay. Further, they showed less phenotypic overlap with patients who had de novo truncating mutations in ASXL1. Conclusion We have identified truncating mutations in ASXL3 as the likely cause of a novel syndrome with phenotypic overlap with Bohring-Opitz syndrome. PMID:23383720
Konno, Satoshi; Taniguchi, Natsuko; Makita, Hironi; Nakamaru, Yuji; Shimizu, Kaoruko; Shijubo, Noriharu; Fuke, Satoshi; Takeyabu, Kimihiro; Oguri, Mitsuru; Kimura, Hirokazu; Maeda, Yukiko; Suzuki, Masaru; Nagai, Katsura; Ito, Yoichi M; Wenzel, Sally E; Nishimura, Masaharu
2015-12-01
Smoking may have multifactorial effects on asthma phenotypes, particularly in severe asthma. Cluster analysis has been applied to explore novel phenotypes, which are not based on any a priori hypotheses. To explore novel severe asthma phenotypes by cluster analysis when including cigarette smokers. We recruited a total of 127 subjects with severe asthma, including 59 current or ex-smokers, from our university hospital and its 29 affiliated hospitals/pulmonary clinics. Twelve clinical variables obtained during a 2-day hospital stay were used for cluster analysis. After clustering using clinical variables, the sputum levels of 14 molecules were measured to biologically characterize the clinical clusters. Five clinical clusters were identified, including two characterized by high pack-year exposure to cigarette smoking and low FEV1/FVC. There were marked differences between the two clusters of cigarette smokers. One had high levels of circulating eosinophils, high IgE levels, and a high sinus disease score. The other was characterized by low levels of the same parameters. Sputum analysis revealed increased levels of IL-5 in the former cluster and increased levels of IL-6 and osteopontin in the latter. The other three clusters were similar to those previously reported: young onset/atopic, nonsmoker/less eosinophilic, and female/obese. Key clinical variables were confirmed to be stable and consistent 1 year later. This study reveals two distinct phenotypes of severe asthma in current and former cigarette smokers with potentially different biological pathways contributing to fixed airflow limitation. Clinical trial registered with www.umin.ac.jp (000003254).
The nature of stable insomnia phenotypes.
Pillai, Vivek; Roth, Thomas; Drake, Christopher L
2015-01-01
We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Longitudinal. Urban, community-based. Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). None. At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the 'neither criterion' phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With the exception of daytime sleepiness, few clinical differences are apparent across stable phenotypes. © 2014 Associated Professional Sleep Societies, LLC.
Using Mouse Models to Explore Genotype-Phenotype Relationship in Down Syndrome
ERIC Educational Resources Information Center
Salehi, Ahmad; Faizi, Mehrdad; Belichenko, Pavel V.; Mobley, William C.
2007-01-01
Down Syndrome (DS) caused by trisomy 21 is characterized by a variety of phenotypes and involves multiple organs. Sequencing of human chromosome 21 (HSA21) and subsequently of its orthologues on mouse chromosome 16 have created an unprecedented opportunity to explore the complex relationship between various DS phenotypes and the extra copy of…
Samwald, Matthias; Miñarro Giménez, Jose Antonio; Boyce, Richard D; Freimuth, Robert R; Adlassnig, Klaus-Peter; Dumontier, Michel
2015-02-22
Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions (ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create reliable information technology systems for enabling clinical pharmacogenomics. We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test our approach with a large collection of publicly available genetic profiles. Our methodology proved to be a novel and useful choice for representing, analyzing and using pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with 707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing treatment recommendations. Only a modest number of clinical decision support rules were triggered for a collection of 943 public genetic profiles. We found significant performance differences across available OWL reasoners. The ontology-based framework we developed can be used to represent, organize and reason over the growing wealth of pharmacogenomic knowledge, as well as to identify errors, inconsistencies and insufficient definitions in source data sets or individual patient data. Our study highlights both advantages and potential practical issues with such an ontology-based approach.
Camacho, Emma; León-Navarro, Isabel; Rodríguez-Brito, Sabrina; Mendoza, Mireya; Niño-Vega, Gustavo A
2015-02-25
Sporotrichosis is a cutaneous and subcutaneous fungal disease of humans and other mammals, known to be caused by the Sporothrix schenckii species complex, which comprises four species of clinical importance: S. brasiliensis, S. globosa, S. luriei, and S. schenckii sensu stricto. Of them, S. globosa and S. schenckii s. str. show global distribution and differences in global frequency as causal agents of the disease. In the Americas, only three species are present: S. schenckii s. str., S. brasiliensis (so far, only reported in Brazil), and S. globosa. In Venezuela, since the first case of sporotrichosis reported in 1935, S. schenckii have been considered its unique etiological agent. In the present work, the presence of more than one species in the country was evaluated. By phenotypic key features and molecular phylogeny analyses, we re-examined 30 isolates from diverse Venezuelan regions belonging to the fungi collection of Instituto de Biomedicina, Caracas, Venezuela, and national reference center for skin diseases. All isolates were collected between 1973 and 2013, and maintained in distilled water. Sporotrichosis in Venezuela is mainly caused by S. schenckii s. str. (70%). However, a significant proportion (30%) of sporotrichosis cases in the country can be attributable to S. globosa. A correlation between intraspecific genotypes and clinical presentation is proposed. Our data suggest that sporotrichosis various clinical forms might be related to genetic diversity of isolates, and possibly, to diverse virulence profiles previously reported in the S. schenckii species complex. Sporothrix globosa was found to be the causative agent of 30% of sporotrichosis for the Venezuelan cases re-examined, the highest frequency of this species so far reported in the Americas. The high genetic variability presented by S. schenckii s. str. indicates that species distinction based on phenotypic key features could be a challenging and uncertain task; molecular identification should be always employed.
Autism Phenotypes in Tuberous Sclerosis Complex: Diagnostic and Treatment Considerations.
Gipson, Tanjala T; Poretti, Andrea; Thomas, Emily A; Jenkins, Kosunique T; Desai, Sonal; Johnston, Michael V
2015-12-01
Tuberous sclerosis complex is a multisystem, chronic genetic condition characterized by systemic growth of benign tumors and often accompanied by epilepsy, autism spectrum disorders, and intellectual disability. Nonetheless, the neurodevelopmental phenotype of these patients is not often detailed. The authors describe 3 individuals with tuberous sclerosis complex who share common characteristics that can help to identify a distinct profile of autism spectrum disorder. These findings include typical cognitive development, expressive and pragmatic language deficits, and anxiety. The authors also describe features specific to tuberous sclerosis complex that require consideration before diagnosing an autism spectrum disorder. Identifying distinct profiles of autism spectrum disorder in tuberous sclerosis complex can help optimize treatment across the life span. © The Author(s) 2015.
Wesolowska, Maria; Gorman, Grainne S; Alston, Charlotte L; Pajak, Aleksandra; Pyle, Angela; He, Langping; Griffin, Helen; Chinnery, Patrick F; Miller, James A L; Schaefer, Andrew M; Taylor, Robert W; Lightowlers, Robert N; Chrzanowska-Lightowlers, Zofia M
2015-10-07
Mitochondrial disease can present at any age, with dysfunction in almost any tissue making diagnosis a challenge. It can result from inherited or sporadic mutations in either the mitochondrial or the nuclear genome, many of which affect intraorganellar gene expression. The estimated prevalence of 1/4300 indicates these to be amongst the commonest inherited neuromuscular disorders, emphasising the importance of recognition of the diagnostic clinical features. Despite major advances in our understanding of the molecular basis of mitochondrial diseases, accurate and early diagnoses are critically dependent on the fastidious clinical and biochemical characterisation of patients. Here we describe a patient harbouring a previously reported homozygous mutation in C12orf65, a mitochondrial protein of unknown function, which does not adhere to the proposed distinct genotype-phenotype relationship. We performed clinical, biochemical and molecular analysis including whole exome sequencing on patient samples and cell lines. We report an extremely rare case of an adult presenting with Leigh-like disease, in intensive care, in the 5th decade of life, harbouring a recessively inherited mutation previously reported in children. A global reduction in intra-mitochondrial protein synthesis was observed despite normal or elevated levels of mt-RNA, leading to an isolated complex IV deficiency. All the reported C12orf65 mutations have shown an autosomal recessive pattern of inheritance. Mitochondrial disease causing mutations inherited in this manner are usually of early onset and associated with a severe, often fatal clinical phenotype. Presentations in adulthood are usually less severe. This patient's late adulthood presentation is in sharp contrast emphasising the clinical variability that is characteristic of mitochondrial disease and illustrates why making a definitive diagnosis remains a formidable challenge.
König, Jens Christian; Titieni, Andrea; Konrad, Martin; Bergmann, C.
2018-01-01
Hereditary cystic kidney diseases comprise a complex group of genetic disorders representing one of the most common causes of end-stage renal failure in childhood. The main representatives are autosomal recessive polycystic kidney disease, nephronophthisis, Bardet–Biedl syndrome, and hepatocyte nuclear factor-1beta nephropathy. Within the last years, genetic efforts have brought tremendous progress for the molecular understanding of hereditary cystic kidney diseases identifying more than 70 genes. Yet, genetic heterogeneity, phenotypic variability, a lack of reliable genotype–phenotype correlations and the absence of disease-specific biomarkers remain major challenges for physicians treating children with cystic kidney diseases. To tackle these challenges comprehensive scientific approaches are urgently needed that match the ongoing “revolution” in genetics and molecular biology with an improved efficacy of clinical data collection. Network for early onset cystic kidney diseases (NEOCYST) is a multidisciplinary, multicenter collaborative combining a detailed collection of clinical data with translational scientific approaches addressing the genetic, molecular, and functional background of hereditary cystic kidney diseases. Consisting of seven work packages, including an international registry as well as a biobank, NEOCYST is not only dedicated to current scientific questions, but also provides a platform for longitudinal clinical surveillance and provides precious sources for high-quality research projects and future clinical trials. Funded by the German Federal Government, the NEOCYST collaborative started in February 2016. Here, we would like to introduce the rationale, design, and objectives of the network followed by a short overview on the current state of progress. PMID:29497606
König, Jens Christian; Titieni, Andrea; Konrad, Martin
2018-01-01
Hereditary cystic kidney diseases comprise a complex group of genetic disorders representing one of the most common causes of end-stage renal failure in childhood. The main representatives are autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome, and hepatocyte nuclear factor-1beta nephropathy. Within the last years, genetic efforts have brought tremendous progress for the molecular understanding of hereditary cystic kidney diseases identifying more than 70 genes. Yet, genetic heterogeneity, phenotypic variability, a lack of reliable genotype-phenotype correlations and the absence of disease-specific biomarkers remain major challenges for physicians treating children with cystic kidney diseases. To tackle these challenges comprehensive scientific approaches are urgently needed that match the ongoing "revolution" in genetics and molecular biology with an improved efficacy of clinical data collection. Network for early onset cystic kidney diseases (NEOCYST) is a multidisciplinary, multicenter collaborative combining a detailed collection of clinical data with translational scientific approaches addressing the genetic, molecular, and functional background of hereditary cystic kidney diseases. Consisting of seven work packages, including an international registry as well as a biobank, NEOCYST is not only dedicated to current scientific questions, but also provides a platform for longitudinal clinical surveillance and provides precious sources for high-quality research projects and future clinical trials. Funded by the German Federal Government, the NEOCYST collaborative started in February 2016. Here, we would like to introduce the rationale, design, and objectives of the network followed by a short overview on the current state of progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chenchen; Yue, Ben; Yuan, Chenwei
The THO complex 1 (Thoc1) is a nuclear matrix protein playing vital roles in transcription elongation and mRNA export. Recently, aberrant expression of Thoc1 has been reported in an increasing array of tumor types. However, the clinical significance of Thoc1 expression in colorectal cancer (CRC) is still unknown. The present study aimed to characterize the expression of Thoc1 in human CRC and evaluate its clinical significance. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analyses showed that the mRNA and protein expression of Thoc1 in CRC specimens was significantly higher than that in adjacent normal colon mucosae. Immunohistochemistry (IHC)more » was conducted to characterize the expression pattern of Thoc1 in 185 archived paraffin-embedded CRC specimens. Statistical analyses revealed that high levels of Thoc1 expression were associated with the clinical stages and tumor differentiation. CRC patients with high levels of Thoc1 expression had poorer overall-survival and disease-free survival, whereas those with lower levels of Thoc1 expression survived longer. Furthermore, multivariate Cox regression analyses demonstrated that Thoc1 expression remained an independent prognostic factor for increased disease recurrence and decreased survival. Our results suggest for the first time that Thoc1 is involved in the development and progression of CRC, and elevated expression of Thoc1 is associated with aggressive phenotype and poor prognosis in CRC. These findings may prove to be clinically useful for developing a new therapeutic target of CRC treatment.« less
Espay, Alberto J.; Schwarzschild, Michael A.; Tanner, Caroline M.; Fernandez, Hubert H; Simon, David K.; Leverenz, James B.; Merola, Aristide; Chen-Plotkin, Alice; Brundin, Patrik; Kauffman, Marcelo A.; Erro, Roberto; Kieburtz, Karl; Woo, Daniel; Macklin, Eric A.; Standaert, David G.; Lang, Anthony E.
2016-01-01
Past clinical trials of putative neuroprotective therapies have targeted Parkinson disease (PD) as a single pathogenic disease entity. From an Oslerian clinico-pathologic perspective, the wide complexity of PD converges into Lewy bodies and justifies a reductionist approach to PD: a single-mechanism therapy can affect most of those sharing the classic pathologic hallmark. From a systems-biology perspective, PD is a group of disorders that, while related by sharing the feature of nigral dopamine-neuron degeneration, exhibit unique genetic, biological and molecular abnormalities, which probably respond differentially to a given therapeutic approach, particularly for strategies aimed at neuroprotection. Under this model, only biomarker-defined, homogenous subtypes of PD are likely to respond optimally to therapies proven to affect the biological processes within each subtype. Therefore, we suggest that precision medicine applied to PD requires a reevaluation of the biomarker-discovery effort. This effort is currently centered on correlating biological measures to clinical features of PD and on identifying factors that predict whether various prodromal states will convert into the classical movement disorder. We suggest, instead, that subtyping of PD requires the reverse view, where abnormal biological signals (i.e., biomarkers) rather than clinical definitions are used to define disease phenotypes. Successful development of disease-modifying strategies will depend on how relevant the specific biological processes addressed by an intervention are to the pathogenetic mechanisms in the subgroup of targeted patients. This precision-medicine approach will likely yield smaller but well-defined subsets of PD amenable to successful neuroprotection. PMID:28233927
Kline, Antonie D.; Krantz, Ian D.; Deardorff, Matthew A.; Shirahige, Katsuhiko; Dorsett, Dale; Gerton, Jennifer L.; Wu, Meng; Mehta, Devanshi; Mills, Jason A.; Carrico, Cheri S.; Noon, Sarah; Herrera, Pamela S.; Horsfield, Julia A.; Bettale, Chiara; Morgan, Jeremy; Huisman, Sylvia A.; Moss, Jo; McCleery, Joseph; Grados, Marco; Hansen, Blake D.; Srivastava, Siddharth; Taylor-Snell, Emily; Kerr, Lynne M.; Katz, Olivia; Calof, Anne L.; Musio, Antonio; Egense, Alena; Haaland, Richard E.
2017-01-01
Cornelia de Lange Syndrome (CdLS) is due to mutations in the genes for the structural and regulatory proteins that make up the cohesin complex, and is considered a cohesinopathy disorder or, more recently, a transcriptomopathy. New phenotypes have been recognized in this expanding field. There are multiple clinical issues facing individuals with all forms of CdLS, particularly in the neurodevelopmental system, but also gastrointestinal, cardiac, and musculoskeletal. Aspects of developmental and cell biology have found common endpoints in the biology of the cohesin complex, with improved understanding of the mechanisms, easier diagnostic tests, and the possibility of potential therapeutics, all major clinical implications for the individual with CdLS. The following abstracts are the presentations from the 7th Cornelia de Lange Syndrome Scientific and Educational Symposium, June 22–23, 2016, in Orlando, FL, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting. In addition to the scientific and clinical discussions, there were talks related to practical aspects of behavior including autism, transitions, communication, access to medical care, and databases. At the end of the symposium, a panel was held, which included several parents, affected individuals and genetic counselors, and discussed the greatest challenges in life and how this information can assist in guiding future research. The Research Committee of the CdLS Foundation organizes this meeting, reviews, and accepts abstracts, and subsequently disseminates the information to the families through members of the Clinical Advisory Board and publications. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD. PMID:28190301
Tripathy, Priyadarshini; Sahu, Asutosh; Sahu, Mahija; Nagy, Attila
2018-05-01
Though polycystic ovarian syndrome (PCOS) is associated with multiple metabolic abnormalities, the metabolic risk profile of various PCOS phenotypes is still debated. Here we sought to compare the clinical, biochemical and metabolic parameters among the different PCOS phenotypes and controls. A total of 394 newly diagnosed PCOS women and 108 controls were enrolled consecutively. PCOS women were divided into four phenotypes based on the presence of two of the following Rotterdam criteria: oligo/anovulation (O), hyperandrogenism (H), and polycystic ovaries (P): A (O + H + P), B (O + H), C (H + P), D (O + P). Phenotype A (55.8%) was the most common phenotype in the PCOS cohort. Prevalence of metabolic syndrome was highest in phenotype A and B compared to other two phenotypes and controls. The clinical, biochemical and metabolic characteristics, of phenotypes A and B, were similar, but phenotype A had higher hirsutism score and androgen level. Phenotype C had intermediate metabolic characteristics between A and controls whereas phenotype D had the mildest metabolic abnormalities among the four phenotypes. Significant predictors for metabolic syndrome within the PCOS cohort are waist circumference >80 cm, hypertension, fasting glucose >100 mg/dL, HDL-cholesterol <50 mg/dL and triglyceride >150 mg/dL (p < 0.001). Indian PCOS women with Phenotype A and B lie at increased metabolic risk compared to other phenotypes. Phenotypic classification of PCOS women may facilitate more effective application of screening and treatment strategies for high-risk metabolic phenotypes. Copyright © 2018 Elsevier B.V. All rights reserved.
Low, Andrew J; Dong, Winnie; Chan, Dennison; Sing, Tobias; Swanstrom, Ronald; Jensen, Mark; Pillai, Satish; Good, Benjamin; Harrigan, P Richard
2007-09-12
Integrating CCR5 antagonists into clinical practice would benefit from accurate assays of co-receptor usage (CCR5 versus CXCR4) with fast turnaround and low cost. Published HIV V3-loop based predictors of co-receptor usage were compared with actual phenotypic tropism results in a large cohort of antiretroviral naive individuals to determine accuracy on clinical samples and identify areas for improvement. Aligned HIV envelope V3 loop sequences (n = 977), derived by bulk sequencing were analyzed by six methods: the 11/25 rule; a neural network (NN), two support vector machines, and two subtype-B position specific scoring matrices (PSSM). Co-receptor phenotype results (Trofile Co-receptor Phenotype Assay; Monogram Biosciences) were stratified by CXCR4 relative light unit (RLU) readout and CD4 cell count. Co-receptor phenotype was available for 920 clinical samples with V3 genotypes having fewer than seven amino acid mixtures (n = 769 R5; n = 151 X4-capable). Sensitivity and specificity for predicting X4 capacity were evaluated for the 11/25 rule (30% sensitivity/93% specificity), NN (44%/88%), PSSM(sinsi) (34%/96%), PSSM(x4r5) (24%/97%), SVMgenomiac (22%/90%) and SVMgeno2pheno (50%/89%). Quantitative increases in sensitivity could be obtained by optimizing the cut-off for methods with continuous output (PSSM methods), and/or integrating clinical data (CD4%). Sensitivity was directly proportional to strength of X4 signal in the phenotype assay (P < 0.05). Current default implementations of co-receptor prediction algorithms are inadequate for predicting HIV X4 co-receptor usage in clinical samples, particularly those X4 phenotypes with low CXCR4 RLU signals. Significant improvements can be made to genotypic predictors, including training on clinical samples, using additional data to improve predictions and optimizing cutoffs and increasing genotype sensitivity.
McIntyre, Roger S; Cha, Danielle S; Jerrell, Jeanette M; Swardfager, Walter; Kim, Rachael D; Costa, Leonardo G; Baskaran, Anusha; Soczynska, Joanna K; Woldeyohannes, Hanna O; Mansur, Rodrigo B; Brietzke, Elisa; Powell, Alissa M; Gallaugher, Ashley; Kudlow, Paul; Kaidanovich-Beilin, Oksana; Alsuwaidan, Mohammad
2014-08-01
To provide a strategic framework for the prevention of bipolar disorder (BD) that incorporates a 'Big Data' approach to risk assessment for BD. Computerized databases (e.g., Pubmed, PsychInfo, and MedlinePlus) were used to access English-language articles published between 1966 and 2012 with the search terms bipolar disorder, prodrome, 'Big Data', and biomarkers cross-referenced with genomics/genetics, transcriptomics, proteomics, metabolomics, inflammation, oxidative stress, neurotrophic factors, cytokines, cognition, neurocognition, and neuroimaging. Papers were selected from the initial search if the primary outcome(s) of interest was (were) categorized in any of the following domains: (i) 'omics' (e.g., genomics), (ii) molecular, (iii) neuroimaging, and (iv) neurocognitive. The current strategic approach to identifying individuals at risk for BD, with an emphasis on phenotypic information and family history, has insufficient predictive validity and is clinically inadequate. The heterogeneous clinical presentation of BD, as well as its pathoetiological complexity, suggests that it is unlikely that a single biomarker (or an exclusive biomarker approach) will sufficiently augment currently inadequate phenotypic-centric prediction models. We propose a 'Big Data'- bioinformatics approach that integrates vast and complex phenotypic, anamnestic, behavioral, family, and personal 'omics' profiling. Bioinformatic processing approaches, utilizing cloud- and grid-enabled computing, are now capable of analyzing data on the order of tera-, peta-, and exabytes, providing hitherto unheard of opportunities to fundamentally revolutionize how psychiatric disorders are predicted, prevented, and treated. High-throughput networks dedicated to research on, and the treatment of, BD, integrating both adult and younger populations, will be essential to sufficiently enroll adequate samples of individuals across the neurodevelopmental trajectory in studies to enable the characterization and prevention of this heterogeneous disorder. Advances in bioinformatics using a 'Big Data' approach provide an opportunity for novel insights regarding the pathoetiology of BD. The coordinated integration of research centers, inclusive of mixed-age populations, is a promising strategic direction for advancing this line of neuropsychiatric research. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative
Calkins, Monica E.; Merikangas, Kathleen R.; Moore, Tyler M.; Burstein, Marcy; Behr, Meckenzie A; Satterthwaite, Theodore D.; Ruparel, Kosha; Wolf, Daniel H.; Roalf, David R.; Mentch, Frank D.; Qiu, Haijun; Chiavacci, Rosetta; Connolly, John J.; Sleiman, Patrick M.A.; Gur, Ruben C.
2015-01-01
Background An integrative multidisciplinary approach is required to elucidate the multiple factors that shape neurodevelopmental trajectories of mental disorders. The Philadelphia Neurodevelopmental Cohort (PNC), funded by the National Institute of Mental Health Grand Opportunity (GO) mechanism of the American Recovery and Reinvestment Act, was designed to characterize clinical and neurobehavioral phenotypes of genotyped youths. Data generated, which are recently available through the NIMH Database of Genotypes and Phenotypes (dbGaP), have garnered considerable interest. We provide an overview of PNC recruitment and clinical assessment methods to allow informed use and interpretation of the PNC resource by the scientific community. We also evaluate the structure of the assessment tools and their criterion validity. Methods Participants were recruited from a large pool of youths (n=13,958) previously identified and genotyped at The Children's Hospital of Philadelphia. A comprehensive computerized tool for structured evaluation of psychopathology domains (GOASSESS) was constructed. We administered GOASSESS to all participants and used factor analysis to evaluate its structure. Results A total of 9,498 youths (ages 8-21; mean age=14.2; European-American=55.8%; African-American=32.9%; Other=11.4%) were enrolled. Factor analysis revealed a strong general psychopathology factor, and specific ‘anxious-misery’, ‘fear’ and ‘behavior’ factors. The ‘behavior’ factor had a small negative correlation (−0.21) with overall accuracy of neurocognitive performance, particularly in tests of executive and complex reasoning. Being female had a high association with the ‘anxious-misery’ and low association with the ‘behavior’ factors. The psychosis spectrum was also best characterized by a general factor and three specific factors: ideas about ‘special abilities/persecution,’ ‘unusual thoughts/perceptions,’ and ‘negative/disorganized’ symptoms. Conclusions The PNC assessment mechanism yielded psychopathology data with strong factorial validity in a large diverse community cohort of genotyped youths. Factor scores should be useful for dimensional integration with other modalities (neuroimaging, genomics). Thus, PNC public domain resources can advance understanding of complex inter-relationships among genes, cognition, brain and behavior involved in neurodevelopment of common mental disorders. PMID:25858255
López, Luis Carlos ; Schuelke, Markus ; Quinzii, Catarina M. ; Kanki, Tomotake ; Rodenburg, Richard J. T. ; Naini, Ali ; DiMauro, Salvatore ; Hirano, Michio
2006-01-01
Coenzyme Q10 (CoQ10) is a vital lipophilic molecule that transfers electrons from mitochondrial respiratory chain complexes I and II to complex III. Deficiency of CoQ10 has been associated with diverse clinical phenotypes, but, in most patients, the molecular cause is unknown. The first defect in a CoQ10 biosynthetic gene, COQ2, was identified in a child with encephalomyopathy and nephrotic syndrome and in a younger sibling with only nephropathy. Here, we describe an infant with severe Leigh syndrome, nephrotic syndrome, and CoQ10 deficiency in muscle and fibroblasts and compound heterozygous mutations in the PDSS2 gene, which encodes a subunit of decaprenyl diphosphate synthase, the first enzyme of the CoQ10 biosynthetic pathway. Biochemical assays with radiolabeled substrates indicated a severe defect in decaprenyl diphosphate synthase in the patient’s fibroblasts. This is the first description of pathogenic mutations in PDSS2 and confirms the molecular and clinical heterogeneity of primary CoQ10 deficiency. PMID:17186472
Lumbsch, H. Thorsten; Bertout, Sebastien; Cabañes, F. Javier; Carbia, Mauricio; Chen, Min; Cuétara, Maria S.; Espinel-Ingroff, Ana; Falk, Rama; Ferrer Rodríguez, Consuelo; Fraser, James A.; Khan, Ziauddin; Kurtzman, Cletus P.; Lagrou, Katrien; Liao, Wanqing; Linares, Carlos; Nielsen, Kirsten; Pan, Weihua; Pekmezovic, Marina; Romeo, Orazio; Sánchez, Manuel; Sampaio, Ana; Sriburee, Pojana; Sugita, Takashi; Takashima, Masako; Taylor, John W.; Theelen, Bart; Tomazin, Rok; Verweij, Paul E.; Wahyuningsih, Retno
2017-01-01
ABSTRACT Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii. In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature “C. neoformans species complex” and “C. gattii species complex.” Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances. PMID:28875175
Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease
Alfadhel, Majid; Nashabat, Marwan; Ali, Qais Abu; Hundallah, Khalid
2017-01-01
Iron–sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications. PMID:28064324
The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks.
Morozova, Tatiana V; Goldman, David; Mackay, Trudy F C; Anholt, Robert R H
2012-02-20
Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms.
Congenital myopathy associated with the triadin knockout syndrome
Redhage, Keeley R.; Tester, David J.; Ackerman, Michael J.; Selcen, Duygu
2017-01-01
Objective: Triadin is a component of the calcium release complex of cardiac and skeletal muscle. Our objective was to analyze the skeletal muscle phenotype of the triadin knockout syndrome. Methods: We performed clinical evaluation, analyzed morphologic features by light and electron microscopy, and immunolocalized triadin in skeletal muscle. Results: A 6-year-old boy with lifelong muscle weakness had a triadin knockout syndrome caused by compound heterozygous null mutations in triadin. Light microscopy of a deltoid muscle specimen shows multiple small abnormal spaces in all muscle fibers. Triadin immunoreactivity is absent from type 1 fibers and barely detectable in type 2 fibers. Electron microscopy reveals focally distributed dilation and degeneration of the lateral cisterns of the sarcoplasmic reticulum and loss of the triadin anchors from the preserved lateral cisterns. Conclusions: Absence of triadin in humans can result in a congenital myopathy associated with profound pathologic alterations in components of the sarcoplasmic reticulum. Why only some triadin-deficient patients develop a skeletal muscle phenotype remains an unsolved question. PMID:28202702
Autoimmune gastritis: Pathologist's viewpoint.
Coati, Irene; Fassan, Matteo; Farinati, Fabio; Graham, David Y; Genta, Robert M; Rugge, Massimo
2015-11-14
Western countries are seeing a constant decline in the incidence of Helicobacter pylori-associated gastritis, coupled with a rising epidemiological and clinical impact of autoimmune gastritis. This latter gastropathy is due to autoimmune aggression targeting parietal cells through a complex interaction of auto-antibodies against the parietal cell proton pump and intrinsic factor, and sensitized T cells. Given the specific target of this aggression, autoimmune gastritis is typically restricted to the gastric corpus-fundus mucosa. In advanced cases, the oxyntic epithelia are replaced by atrophic (and metaplastic) mucosa, creating the phenotypic background in which both gastric neuroendocrine tumors and (intestinal-type) adenocarcinomas may develop. Despite improvements in our understanding of the phenotypic changes or cascades occurring in this autoimmune setting, no reliable biomarkers are available for identifying patients at higher risk of developing a gastric neoplasm. The standardization of autoimmune gastritis histology reports and classifications in diagnostic practice is a prerequisite for implementing definitive secondary prevention strategies based on multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling.
Autoimmune gastritis: Pathologist’s viewpoint
Coati, Irene; Fassan, Matteo; Farinati, Fabio; Graham, David Y; Genta, Robert M; Rugge, Massimo
2015-01-01
Western countries are seeing a constant decline in the incidence of Helicobacter pylori-associated gastritis, coupled with a rising epidemiological and clinical impact of autoimmune gastritis. This latter gastropathy is due to autoimmune aggression targeting parietal cells through a complex interaction of auto-antibodies against the parietal cell proton pump and intrinsic factor, and sensitized T cells. Given the specific target of this aggression, autoimmune gastritis is typically restricted to the gastric corpus-fundus mucosa. In advanced cases, the oxyntic epithelia are replaced by atrophic (and metaplastic) mucosa, creating the phenotypic background in which both gastric neuroendocrine tumors and (intestinal-type) adenocarcinomas may develop. Despite improvements in our understanding of the phenotypic changes or cascades occurring in this autoimmune setting, no reliable biomarkers are available for identifying patients at higher risk of developing a gastric neoplasm. The standardization of autoimmune gastritis histology reports and classifications in diagnostic practice is a prerequisite for implementing definitive secondary prevention strategies based on multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling. PMID:26576102
Promoter Methylation in the Genesis of Gastrointestinal Cancer
Shin, Sung Kwan; Goel, Ajay
2009-01-01
Colorectal cancers (CRC)-and probably all cancers-are caused by alterations in genes. This includes activation of oncogenes and inactivation of tumor suppressor genes (TSGs). There are many ways to achieve these alterations. Oncogenes are frequently activated by point mutation, gene amplification, or changes in the promoter (typically caused by chromosomal rearrangements). TSGs are typically inactivated by mutation, deletion, or promoter methylation, which silences gene expression. About 15% of CRC is associated with loss of the DNA mismatch repair system, and the resulting CRCs have a unique phenotype that is called microsatellite instability, or MSI. This paper reviews the types of genetic alterations that can be found in CRCs and hepatocellular carcinoma (HCC), and focuses upon the epigenetic alterations that result in promoter methylation and the CpG island methylator phenotype (CIMP). The challenge facing CRC research and clinical care at this time is to deal with the heterogeneity and complexity of these genetic and epigenetic alterations, and to use this information to direct rational prevention and treatment strategies. PMID:19568590
Epigenomic alterations define lethal CIMP-positive ependymomas of infancy
Mack, S. C.; Witt, H.; Piro, R. M.; Gu, L.; Zuyderduyn, S.; Stütz, A. M.; Wang, X.; Gallo, M.; Garzia, L.; Zayne, K.; Zhang, X.; Ramaswamy, V.; Jäger, N.; Jones, D. T. W.; Sill, M.; Pugh, T. J.; Ryzhova, M.; Wani, K. M.; Shih, D. J. H.; Head, R.; Remke, M.; Bailey, S. D.; Zichner, T.; Faria, C. C.; Barszczyk, M.; Stark, S.; Seker-Cin, H.; Hutter, S.; Johann, P.; Bender, S.; Hovestadt, V.; Tzaridis, T.; Dubuc, A. M.; Northcott, P. A.; Peacock, J.; Bertrand, K. C.; Agnihotri, S.; Cavalli, F. M. G.; Clarke, I.; Nethery-Brokx, K.; Creasy, C. L.; Verma, S. K.; Koster, J.; Wu, X.; Yao, Y.; Milde, T.; Sin-Chan, P.; Zuccaro, J.; Lau, L.; Pereira, S.; Castelo-Branco, P.; Hirst, M.; Marra, M. A.; Roberts, S. S.; Fults, D.; Massimi, L.; Cho, Y. J.; Van Meter, T.; Grajkowska, W.; Lach, B.; Kulozik, A. E.; von Deimling, A.; Witt, O.; Scherer, S. W.; Fan, X.; Muraszko, K. M.; Kool, M.; Pomeroy, S. L.; Gupta, N.; Phillips, J.; Huang, A.; Tabori, U.; Hawkins, C.; Malkin, D.; Kongkham, P. N.; Weiss, W. A.; Jabado, N.; Rutka, J. T.; Bouffet, E.; Korbel, J. O.; Lupien, M.; Aldape, K. D.; Bader, G. D.; Eils, R.; Lichter, P.; Dirks, P. B.; Pfister, S. M.; Korshunov, A.; Taylor, M. D.
2014-01-01
Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland. PMID:24553142
Epigenomic alterations define lethal CIMP-positive ependymomas of infancy.
Mack, S C; Witt, H; Piro, R M; Gu, L; Zuyderduyn, S; Stütz, A M; Wang, X; Gallo, M; Garzia, L; Zayne, K; Zhang, X; Ramaswamy, V; Jäger, N; Jones, D T W; Sill, M; Pugh, T J; Ryzhova, M; Wani, K M; Shih, D J H; Head, R; Remke, M; Bailey, S D; Zichner, T; Faria, C C; Barszczyk, M; Stark, S; Seker-Cin, H; Hutter, S; Johann, P; Bender, S; Hovestadt, V; Tzaridis, T; Dubuc, A M; Northcott, P A; Peacock, J; Bertrand, K C; Agnihotri, S; Cavalli, F M G; Clarke, I; Nethery-Brokx, K; Creasy, C L; Verma, S K; Koster, J; Wu, X; Yao, Y; Milde, T; Sin-Chan, P; Zuccaro, J; Lau, L; Pereira, S; Castelo-Branco, P; Hirst, M; Marra, M A; Roberts, S S; Fults, D; Massimi, L; Cho, Y J; Van Meter, T; Grajkowska, W; Lach, B; Kulozik, A E; von Deimling, A; Witt, O; Scherer, S W; Fan, X; Muraszko, K M; Kool, M; Pomeroy, S L; Gupta, N; Phillips, J; Huang, A; Tabori, U; Hawkins, C; Malkin, D; Kongkham, P N; Weiss, W A; Jabado, N; Rutka, J T; Bouffet, E; Korbel, J O; Lupien, M; Aldape, K D; Bader, G D; Eils, R; Lichter, P; Dirks, P B; Pfister, S M; Korshunov, A; Taylor, M D
2014-02-27
Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.
MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease.
Schiffer, Lina; Kempegowda, Punith; Arlt, Wiebke; O'Reilly, Michael W
2017-09-01
Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies examining the associations between metabolic disease and disorders of androgen metabolism in men and women. We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver lipid accumulation, central fat mass expansion and insulin resistance. © 2017 The authors.
CCL3L1 copy number and susceptibility to malaria
Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A.L.; Shaw, Marie-Anne
2012-01-01
Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n = 922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. PMID:22484763
MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease
Schiffer, Lina; Kempegowda, Punith; Arlt, Wiebke
2017-01-01
Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies examining the associations between metabolic disease and disorders of androgen metabolism in men and women. We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver lipid accumulation, central fat mass expansion and insulin resistance. PMID:28566439
CCL3L1 copy number and susceptibility to malaria.
Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A L; Shaw, Marie-Anne
2012-07-01
Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n=922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. Copyright © 2012 Elsevier B.V. All rights reserved.
George, Steven Z.; Maluf, Katrina S.; Stevens-Lapsley, Jennifer E.
2014-01-01
This perspective article proposes a conceptual model for the pain experience for individuals diagnosed with knee osteoarthritis (OA). Pain in knee OA is likely a heterogeneous, multifactorial phenomenon that involves not only the OA disease process but also elements specific to patient psychology and pain neurophysiology. The relevant contributions to the pain experience for any individual patient remain difficult, if not impossible, to definitively determine, and the rationale for many clinical treatment decisions arises primarily from a mechanistic understanding of OA pathophysiology. The Osteoarthritis Research Society International (OARSI) recently identified “phenotyping” of OA pain as a research priority to “better target pain therapies to individual patients.” This perspective article proposes that contributions from 3 domains—knee pathology, psychological distress, and pain neurophysiology—should be considered equally important in future efforts to understand pain phenotypes in knee OA. Ultimately, characterization of pain phenotypes may aid in the understanding of the pain experience and the development of interventions specific to pain for individual patients. PMID:24179141
The tool extracts deep phenotypic information from the clinical narrative at the document-, episode-, and patient-level. The final output is FHIR compliant patient-level phenotypic summary which can be consumed by research warehouses or the DeepPhe native visualization tool.
Mapping of interaction domains between human repair proteins ERCC1 and XPF.
de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H
1998-09-15
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1.
Mapping of interaction domains between human repair proteins ERCC1 and XPF.
de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H
1998-01-01
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1. PMID:9722633
[Waardenburg syndrome. A heterogenic disorder with variable penetrance].
Apaydin, F; Bereketoglu, M; Turan, O; Hribar, K; Maassen, M M; Günhan, O; Zenner, H-P; Pfister, M
2004-06-01
Waardenburg syndrome (WS) is an autosomal dominant disorder characterised by pigmentary anomalies of the skin, hairs, eyes and various defects of other neural crest derived tissues. It accounts for over 2% of congenital hearing impairment. At least four types are recognized on the basis of clinical and genetic criteria. Based on a screening of congenitally hearing impaired children, 12 families with WS type II were detected. Of special interest was the phenotype of these families, in particular the reduced penetrance of hearing impairment within the families. In all cases a high variability of the disease phenotype was detected and the penetrance of the clinical traits varied accordingly. Therefore, it is not possible to predict the clinical phenotype even in a single family. Based on these studies, we plan to identify the pathogenetic cause of the disease in order to perform a detailed genotype/phenotype analysis.
Kabir, Z D; Lee, A S; Rajadhyaksha, A M
2016-10-15
Brain Ca v 1.2 and Ca v 1.3 L-type Ca 2+ channels play key physiological roles in various neuronal processes that contribute to brain function. Genetic studies have recently identified CACNA1C as a candidate risk gene for bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder (MDD) and autism spectrum disorder (ASD), and CACNA1D for BD and ASD, suggesting a contribution of Ca v 1.2 and Ca v 1.3 Ca 2+ signalling to the pathophysiology of neuropsychiatric disorders. Once considered sole clinical entities, it is now clear that BD, SCZ, MDD and ASD share common phenotypic features, most likely due to overlapping neurocircuitry and common molecular mechanisms. A major future challenge lies in translating the human genetic findings to pathological mechanisms that are translatable back to the patient. One approach for tackling such a daunting scientific endeavour for complex behaviour-based neuropsychiatric disorders is to examine intermediate biological phenotypes in the context of endophenotypes within distinct behavioural domains. This will better allow us to integrate findings from genes to behaviour across species, and improve the chances of translating preclinical findings to clinical practice. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Dietary patterns and the phenotype of polycystic ovary syndrome: the chance of ongoing pregnancy.
Huijgen, Nicole A; Louwers, Yvonne V; Willemsen, Sten P; de Vries, Jeanne H M; Steegers-Theunissen, Régine P M; Laven, Joop S E
2017-06-01
Polycystic ovary syndrome (PCOS) is generally considered a complex disorder caused by interactions between genetic and environmental factors. In a sub-cohort of women with PCOS visiting the preconception outpatient clinic of a tertiary hospital with follow-up in a periconception cohort, we identified specific dietary patterns and adherence in patients with PCOS with and without hyperandrogenism and the chance of ongoing pregnancy. Food frequency questionnaires were available from 55 patients diagnosed with PCOS during follow-up in routine clinical practice, including 25 with hyperandrogenism and 30 without hyperandrogenism. Strong adherence to the healthy dietary pattern was inversely associated with the hyperandrogenic PCOS phenotype (Adjusted OR 0.27; 95% CI 0.07 to 0.99). In women with PCOS overall, a strong adherence to the healthy dietary pattern showed a three-fold higher chance of ongoing pregnancy (adjusted OR 3.38; 95% CI 1.01 to 11.36) and an association with anti-Müllerian hormone concentration (β -0.569 µg/L; 95% CI -0.97 to -0.17). The effect of this dietary pattern on the chance of ongoing pregnancy and AMH suggests causality, which needs further investigation in prospective studies in the general population. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Romagnuolo, Joseph; Talluri, Jyothsna; Kennard, Elizabeth; Sandhu, Bimaljit S; Sherman, Stuart; Cote, Gregory A; Al-Kaade, Samer; Gardner, Timothy B; Gelrud, Andres; Lewis, Michele D; Forsmark, Christopher E; Guda, Nalini M; Conwell, Darwin L; Banks, Peter A; Muniraj, Thiruvengadam; Wisniewski, Stephen R; Tian, Ye; Wilcox, C Mel; Anderson, Michelle A; Brand, Randall E; Slivka, Adam; Whitcomb, David C; Yadav, Dhiraj
2016-08-01
Historically, chronic pancreatitis (CP) was considered a disease of alcoholic males, but recent data suggest its etiology to be complex. To better understand CP in women, we compared data on women and men with CP in a large, prospectively ascertained multicenter US cohort. Patients with CP enrolled in the NAPS2 Continuation and Validation study were studied. Information on demographics, etiology, risk factors, phenotype, and treatment(s) used was obtained from detailed questionnaires completed by the patients and physicians. Of 521 cases, 45% were women. Women were significantly (P < 0.05) less likely to have alcohol etiology (30% vs 58.5%) and more likely to have nonalcoholic etiologies (idiopathic, 32% vs 18%; obstructive, 12% vs 2.4%; genetic, 12.8% vs 7.3%). Demographics, pain experience, morphologic findings, exocrine and endocrine insufficiency, CP-related disability, and use of medical therapies were mostly similar in both sexes. Sphincterotomy (biliary, 33% vs 24%; pancreatic, 38% vs 28%; P < 0.05) was performed more frequently in women, whereas cyst/pseudocyst operations were more common in men (6.6 vs 2.6%, P = 0.02). Most CP cases in women are from nonalcoholic etiologies. In contrast to many other chronic diseases, clinical phenotype of CP is determined by the disease and is independent of sex.
Blackett, Piers R; Sanghera, Dharambir K
2013-01-01
This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes, and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus, it follows that the genetics of dyslipidemia, obesity, and nonalcoholic fatty liver disease are central in triggering progression of the syndrome to overt expression of disease traits and have become a key focus of interest for early detection and for designing prevention and treatments. To support the "birds' eye view" approach, we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacologic targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Blackett, Piers R; Sanghera, Dharambir K
2012-01-01
This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus it follows that the genetics of dyslipidemia, obesity, and non-alcoholic fatty liver (NAFLD) disease are central in triggering progression of the syndrome to overt expression of disease traits, and have become a key focus of interest for early detection and for designing prevention and treatments. To support the “birds’ eye view” approach we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacological targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance. PMID:23351585
Complex Homology and the Evolution of Nervous Systems
Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.
2016-01-01
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806
Fibromyalgia, mood disorders, and intense creative energy: A1AT polymorphisms are not always silent.
Schmechel, Donald E; Edwards, Christopher L
2012-12-01
Persons with single copies of common alpha-1-antitrypsin polymorphisms such as S and Z are often considered "silent carriers". Published evidence however supports a complex behavioral phenotype or trait - intense creative energy ("ICE")-associated with A1AT polymorphisms. We now confirm that phenotype and present an association of fibromyalgia syndrome (FMS) and A1AT in a consecutive series of neurological patients. This is a retrospective case control series of 3176 consecutive patients presenting to Duke University Memory Clinic (747 patients) and to regional community-based Caldwell Hospital Neurology and Memory center (2429 patients). Work-up included medical history and examination, psychological evaluation, and genetic analysis. Chronic widespread pain (CWP) or FMS were diagnosed according to clinical guidelines, mostly as secondary diagnoses. Neurological patients carrying A1AT polymorphisms were common (ca 16% prevalence) and carriers had significantly higher use of inhaler and anxiolytic medications. Patients with ICE phenotype had a significantly higher proportion of A1AT polymorphisms (42%) compared to non-ICE patients (13%). Presence of CWP or FMS was common (14-22%) with average age at presentation of 56 years old and mostly female gender (82%). Patients with CWP/FMS had again significantly higher proportion of A1AT polymorphisms (38%) compared to other neurological patients (13%). Patients with anxiety disorders, bipolar I or bipolar II disorders or PTSD also had increased proportion of A1AT polymorphisms and significant overlap with ICE and FMS phenotype. Significant reductions in CWP/FMS prevalence are seen in apolipoprotein E4 carriers and methylene tetrahydrofolate reductase (MTHFR) mutation homozygotes. Since ICE phenotype is reported as a lifelong behavioral attribute, the presumption is that A1AT carriers have fundamental differences in brain development and inflammatory response. In support of this concept is finding those persons reporting a diagnosis of juvenile rheumatoid or idiopathic arthritis (JRA, JIA) had a significantly high proportion of A1AT polymorphisms (63%), suggesting a spectrum for JRA to later FMS presentations. Likewise, persons reporting a history of attention deficit disorder (ADD) had an increased proportion of A1AT polymorphisms (26%) compared to non-ADD persons (13%). Toxic environmental exposures are common (23%) and associated with diagnoses of PSP, PPA, FTD, FTD-PD, PD and ADVD. A1AT carriers were increased in cases of toxic exposure and PSP, PPA and FTD-PD. Our findings support the ICE behavioral phenotype for A1AT polymorphism carriers and the reported association with anxiety and bipolar spectrum disorders. We now extend that phenotype to apparent vulnerability to inflammatory muscle disease in a spectrum from JRA to fibromyalgia (FMS) and specific behavioral subsets of ADD, PTSD, and specific late onset neurological syndromes (FTD-PD and PPA). High and low risk FMS subsets can be defined using A1AT, MTHFR and APOE genotyping. Clinical diagnoses associated with A1AT polymorphisms included fibromyalgia, JRA/JIA, bipolar disorder, PTSD, primary progressive aphasia and FTDPD, but not most Alzheimer Disease subtypes. These results support an extended phenotype for A1AT mutation carriers beyond liver and lung vulnerability to selective advantages: ICE phenotype and disadvantages: fibromyalgia, affective disorders, and selected late onset neurological syndromes. Copyright © 2012 Elsevier Inc. All rights reserved.
Which ante mortem clinical features predict progressive supranuclear palsy pathology?
Respondek, Gesine; Kurz, Carolin; Arzberger, Thomas; Compta, Yaroslau; Englund, Elisabet; Ferguson, Leslie W; Gelpi, Ellen; Giese, Armin; Irwin, David J; Meissner, Wassilios G; Nilsson, Christer; Pantelyat, Alexander; Rajput, Alex; van Swieten, John C; Troakes, Claire; Josephs, Keith A; Lang, Anthony E; Mollenhauer, Brit; Müller, Ulrich; Whitwell, Jennifer L; Antonini, Angelo; Bhatia, Kailash P; Bordelon, Yvette; Corvol, Jean-Christophe; Colosimo, Carlo; Dodel, Richard; Grossman, Murray; Kassubek, Jan; Krismer, Florian; Levin, Johannes; Lorenzl, Stefan; Morris, Huw; Nestor, Peter; Oertel, Wolfgang H; Rabinovici, Gil D; Rowe, James B; van Eimeren, Thilo; Wenning, Gregor K; Boxer, Adam; Golbe, Lawrence I; Litvan, Irene; Stamelou, Maria; Höglinger, Günter U
2017-07-01
Progressive supranuclear palsy (PSP) is a neuropathologically defined disease presenting with a broad spectrum of clinical phenotypes. To identify clinical features and investigations that predict or exclude PSP pathology during life, aiming at an optimization of the clinical diagnostic criteria for PSP. We performed a systematic review of the literature published since 1996 to identify clinical features and investigations that may predict or exclude PSP pathology. We then extracted standardized data from clinical charts of patients with pathologically diagnosed PSP and relevant disease controls and calculated the sensitivity, specificity, and positive predictive value of key clinical features for PSP in this cohort. Of 4166 articles identified by the database inquiry, 269 met predefined standards. The literature review identified clinical features predictive of PSP, including features of the following 4 functional domains: ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction. No biomarker or genetic feature was found reliably validated to predict definite PSP. High-quality original natural history data were available from 206 patients with pathologically diagnosed PSP and from 231 pathologically diagnosed disease controls (54 corticobasal degeneration, 51 multiple system atrophy with predominant parkinsonism, 53 Parkinson's disease, 73 behavioral variant frontotemporal dementia). We identified clinical features that predicted PSP pathology, including phenotypes other than Richardson's syndrome, with varying sensitivity and specificity. Our results highlight the clinical variability of PSP and the high prevalence of phenotypes other than Richardson's syndrome. The features of variant phenotypes with high specificity and sensitivity should serve to optimize clinical diagnosis of PSP. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Coutinho, Carla P.; dos Santos, Sandra C.; Madeira, Andreia; Mira, Nuno P.; Moreira, Ana S.; Sá-Correia, Isabel
2011-01-01
Long-term respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients generally lead to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the “cepacia syndrome.” Bcc bacteria are ubiquitous in the environment and are recognized as serious opportunistic pathogens that are virtually impossible to eradicate from the CF lung, posing a serious clinical threat. The epidemiological survey of Bcc bacteria involved in respiratory infections at the major Portuguese CF Treatment Center at Santa Maria Hospital, in Lisbon, has been carried out by our research group for the past 16 years, covering over 500 clinical isolates where B. cepacia and B. cenocepacia are the predominant species, with B. stabilis, B. contaminans, B. dolosa, and B. multivorans also represented. The systematic and longitudinal study of this CF population during such an extended period of time represents a unique case–study, comprehending 41 Bcc-infected patients (29 pediatric and 12 adult) of whom around 70% have been persistently colonized between 7 months and 9 years. During chronic infection, the CF airways represent an evolving ecosystem, with multiple phenotypic variants emerging from the clonal population and becoming established in the patients’ airways as the result of genetic adaptation. Understanding the evolutionary mechanisms involved is crucial for an improved therapeutic outcome of chronic infections in CF. This review focuses on our contribution to the understanding of these adaptive mechanisms based on extensive phenotypic, genotypic, and genome-wide expression approaches of selected Bcc clonal variants obtained during long-term colonization of the CF airways. PMID:22919578
Coutinho, Carla P; Dos Santos, Sandra C; Madeira, Andreia; Mira, Nuno P; Moreira, Ana S; Sá-Correia, Isabel
2011-01-01
Long-term respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients generally lead to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the "cepacia syndrome." Bcc bacteria are ubiquitous in the environment and are recognized as serious opportunistic pathogens that are virtually impossible to eradicate from the CF lung, posing a serious clinical threat. The epidemiological survey of Bcc bacteria involved in respiratory infections at the major Portuguese CF Treatment Center at Santa Maria Hospital, in Lisbon, has been carried out by our research group for the past 16 years, covering over 500 clinical isolates where B. cepacia and B. cenocepacia are the predominant species, with B. stabilis, B. contaminans, B. dolosa, and B. multivorans also represented. The systematic and longitudinal study of this CF population during such an extended period of time represents a unique case-study, comprehending 41 Bcc-infected patients (29 pediatric and 12 adult) of whom around 70% have been persistently colonized between 7 months and 9 years. During chronic infection, the CF airways represent an evolving ecosystem, with multiple phenotypic variants emerging from the clonal population and becoming established in the patients' airways as the result of genetic adaptation. Understanding the evolutionary mechanisms involved is crucial for an improved therapeutic outcome of chronic infections in CF. This review focuses on our contribution to the understanding of these adaptive mechanisms based on extensive phenotypic, genotypic, and genome-wide expression approaches of selected Bcc clonal variants obtained during long-term colonization of the CF airways.
Córdova-Fletes, Carlos; Becerra-Solano, Luis E; Rangel-Sosa, Martha M; Rivas-Estilla, Ana María; Alberto Galán-Huerta, Kame; Ortiz-López, Rocío; Rojas-Martínez, Augusto; Juárez-Vázquez, Clara I; García-Ortiz, José E
2018-03-01
We describe a patient severely affected with multiple congenital anomalies, including brain malformations and skeletal dysplasia suggestive of cranioectodermal dysplasia (CED) ciliopathy, who unusually carries several homozygosity tracts involving homozygous missense mutations in SPAG17 (exon 8; c.1069G > C; p.Asp357His) and WDR35 (exon 13; c.1415G > A; p.Arg472Gln) as revealed by homozygosity mapping and next generation sequencing. SPAG17 is essential for the function and structure of motile cilia, while WDR35 belongs to the same intraflagellar transport (IFT) gene family whose protein products are part of functional IFT A and B complexes. Formerly, SPAG17 was related - through polymorphic variants - to an influence on individuals' height; more recently, Spag17-/- mice models were reported to present skeletal and bone defects, reduced mucociliary clearance, respiratory distress, and cerebral ventricular enlargement. Homozygous or compound heterozygous mutations in WDR35 have mainly been related to CED2 or short-rib thoracic dysplasia 7, with only three cases showing some brain anomalies. Given that our patient presents these clinical features and the close functional relationship between SPAG17 and WDR35, it is feasible that the combined effects from both mutations contribute to his phenotype. To our knowledge, this patient is the first to harbor a likely pathogenic homozygous mutation in both genes at the same time. Thus, the resulting complex phenotype of this patient illustrates the heterogeneity associated with ciliopathies and further expands the clinical and mutational spectrum of these diseases. Finally, we highlight the combined use of high-throughput tools to diagnose and support the proper handling of this and other patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
High-Density SNP Genotyping to Define β-Globin Locus Haplotypes
Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S.; Quinn, Charles T.; Onyekwere, Onyinye C.; Pace, Betty S.
2014-01-01
Five major β-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, β-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the β-locus, which consists of five functional β-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the β-locus using DNA samples from either healthy African Americans with normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the β-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Gγ-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high density SNP mapping may be required to accurately define β-haplotypes that correlate with the different clinical phenotypes observed in SCD. PMID:18829352
Deletion 1q43 encompassing only CHRM3 in a patient with autistic disorder.
Petersen, Andrea Klunder; Ahmad, Ausaf; Shafiq, Mustafa; Brown-Kipphut, Brigette; Fong, Chin-To; Anwar Iqbal, M
2013-02-01
Deletions on the distal portion of the long arm of chromosome 1 result in complex and highly variable clinical phenotypes which include intellectual disability, autism, seizures, microcephaly/craniofacial dysmorphology, corpus callosal agenesis/hypogenesis, cardiac and genital anomalies, hand and foot abnormalities and short stature. Genotype-phenotype correlation reported a minimum region of 2 Mb at 1q43-q44. We report on a 3 ½ year old male patient diagnosed with autistic disorder who has social withdrawal, eating problems, repetitive stereotypic behaviors including self-injurious head banging and hair pulling, and no seizures, anxiety, or mood swings. Array comparative genomic hybridization (aCGH) showed an interstitial deletion of 473 kb at 1q43 region (239,412,391-239,885,394; NCBI build37/hg19) harboring only CHRM3 (Acetylcholine Receptor, Muscarinic, 3; OMIM: 118494). Recently, another case with a de novo interstitial deletion of 911 kb at 1q43 encompassing three genes including CHRM3 was reported. The M3 muscarinic receptor influences a multitude of central and peripheral nervous system processes via its interaction with acetylcholine and may be an important modulator of behavior, learning and memory. We propose CHRM3 as a candidate gene responsible for our patient's specific phenotype as well as the overlapping phenotypic features of other patients with 1q43 or 1q43-q44 deletions. Copyright © 2013. Published by Elsevier Masson SAS.
Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1
Slavotinek, Anne M; Baranzini, Sergio E; Schanze, Denny; Labelle-Dumais, Cassandre; Short, Kieran M; Chao, Ryan; Yahyavi, Mani; Bijlsma, Emilia K; Chu, Catherine; Musone, Stacey; Wheatley, Ashleigh; Kwok, Pui-Yan; Marles, Sandra; Fryns, Jean-Pierre; Maga, A Murat; Hassan, Mohamed G; Gould, Douglas B; Madireddy, Lohith; Li, Chumei; Cox, Timothy C; Smyth, Ian; Chudley, Albert E; Zenker, Martin
2014-01-01
Background Manitoba-oculo-tricho-anal (MOTA) syndrome is a rare condition defined by eyelid colobomas, cryptophthalmos and anophthalmia/ microphthalmia, an aberrant hairline, a bifid or broad nasal tip, and gastrointestinal anomalies such as omphalocele and anal stenosis. Autosomal recessive inheritance had been assumed because of consanguinity in the Oji-Cre population of Manitoba and reports of affected siblings, but no locus or cytogenetic aberration had previously been described. Methods and results This study shows that MOTA syndrome is caused by mutations in FREM1, a gene previously mutated in bifid nose, renal agenesis, and anorectal malformations (BNAR) syndrome. MOTA syndrome and BNAR syndrome can therefore be considered as part of a phenotypic spectrum that is similar to, but distinct from and less severe than, Fraser syndrome. Re-examination of Frem1bat/bat mutant mice found new evidence that Frem1 is involved in anal and craniofacial development, with anal prolapse, eyelid colobomas, telecanthus, a shortened snout and reduced philtral height present in the mutant mice, similar to the human phenotype in MOTA syndrome. Conclusions The milder phenotypes associated with FREM1 deficiency in humans (MOTA syndrome and BNAR syndrome) compared to that resulting from FRAS1 and FREM2 loss of function (Fraser syndrome) are also consistent with the less severe phenotypes resulting from Frem1 loss of function in mice. Together, Fraser, BNAR and MOTA syndromes constitute a clinically overlapping group of FRAS–FREM complex diseases. PMID:21507892
Zhang, Hongkai; Torkamani, Ali; Jones, Teresa M; Ruiz, Diana I; Pons, Jaume; Lerner, Richard A
2011-08-16
Use of large combinatorial antibody libraries and next-generation sequencing of nucleic acids are two of the most powerful methods in modern molecular biology. The libraries are screened using the principles of evolutionary selection, albeit in real time, to enrich for members with a particular phenotype. This selective process necessarily results in the loss of information about less-fit molecules. On the other hand, sequencing of the library, by itself, gives information that is mostly unrelated to phenotype. If the two methods could be combined, the full potential of very large molecular libraries could be realized. Here we report the implementation of a phenotype-information-phenotype cycle that integrates information and gene recovery. After selection for phage-encoded antibodies that bind to targets expressed on the surface of Escherichia coli, the information content of the selected pool is obtained by pyrosequencing. Sequences that encode specific antibodies are identified by a bioinformatic analysis and recovered by a stringent affinity method that is uniquely suited for gene isolation from a highly degenerate collection of nucleic acids. This approach can be generalized for selection of antibodies against targets that are present as minor components of complex systems.
3M syndrome: an easily recognizable yet underdiagnosed cause of proportionate short stature.
Al-Dosari, Mohammed S; Al-Shammari, Muneera; Shaheen, Ranad; Faqeih, Eissa; Alghofely, Mohammed A; Boukai, Ahmad; Alkuraya, Fowzan S
2012-07-01
To characterize, via clinical and molecul criteria, a cohort of patients with 3M syndrome and thereby increase awareness of this syndrome as a recognizable cause of proportionate short stature. We conducted a case series of patients referred to clinical genetics for proportionate short stature. CUL7, OBSL1, and CCDC8 genes were clinically phenotyped and sequenced. In 6 Saudi families with 3M syndrome, we identified three CUL7, one OBSL1, and one CCDC8 novel mutations, which we show result in a remarkably similar clinical phenotype. Despite their typical and easily discernible clinical phenotype, all these patients have been extensively investigated for alternative causes of their short stature and received erroneous diagnoses. Increased awareness about this syndrome among pediatricians and endocrinologists is needed to avoid a costly and unnecessary diagnostic odyssey. Copyright © 2012 Mosby, Inc. All rights reserved.
Li, Hong; Sheridan, Ryan; Williams, Trevor
2013-01-01
Multiple lines of evidence indicate that the AP-2 transcription factor family has an important regulatory function in human craniofacial development. Notably, mutations in TFAP2A, the gene encoding AP-2α, have been identified in patients with Branchio-Oculo-Facial Syndrome (BOFS). BOFS is an autosomal-dominant trait that commonly presents with facial clefting, eye defects and branchial skin anomalies. Examination of multiple cases has suggested either simple haploinsufficiency or more complex genetic causes for BOFS, especially as the clinical manifestations are variable, with no clear genotype–phenotype correlation. Mutations occur throughout TFAP2A, but mostly within conserved sequences within the DNA contact domain of AP-2α. However, the consequences of the various mutations for AP-2α protein function have not been evaluated. Therefore, it remains unclear if all BOFS mutations result in similar changes to the AP-2α protein or if they each produce specific alterations that underlie the spectrum of phenotypes. Here, we have investigated the molecular consequences of the mutations that localize to the DNA-binding region. We show that although individual mutations have different effects on DNA binding, they all demonstrate significantly reduced transcriptional activities. Moreover, all mutant derivatives have an altered nuclear:cytoplasmic distribution compared with the predominantly nuclear localization of wild-type AP-2α and several can exert a dominant-negative activity on the wild-type AP-2α protein. Overall, our data suggest that the individual TFAP2A BOFS mutations can generate null, hypomorphic or antimorphic alleles and that these differences in activity, combined with a role for AP-2α in epigenetic events, may influence the resultant pathology and the phenotypic variability. PMID:23578821
Genetic basis of Bartter syndrome in Korea.
Lee, Beom Hee; Cho, Hee Yeon; Lee, HyunKyung; Han, Kyoung Hee; Kang, Hee Gyung; Ha, Il Soo; Lee, Joo Hoon; Park, Young Seo; Shin, Jae Il; Lee, Dae-Yeol; Kim, Su-Yung; Choi, Yong; Cheong, Hae Il
2012-04-01
Bartter syndrome (BS) is clinically classified into antenatal or neonatal BS (aBS) and classic BS (cBS) as well as five subtypes based on the underlying mutant gene; SLC12A1 (BS I), KCNJ1 (BS II), CLCNKB (BS III), BSND (BS IV) and CASR (BS V). Clinico-genetic features of a nationwide cohort of 26 Korean children with BS were investigated. The clinical diagnosis was aBS in 8 (30.8%), cBS in 15 (57.7%) and mixed Bartter-Gitelman phenotype in 3 cases (11.5%). Five of eight patients with aBS and all 18 patients with either cBS or mixed Bartter-Gitelman phenotype had CLCNKB mutations. Among the 23 patients (46 alleles) with CLCNKB mutations, p.W610X and large deletions were detected in 25 (54.3%) and 10 (21.7%) alleles, respectively. There was no genotype-phenotype correlation in patients with CLCNKB mutations. Twenty-three (88.5%) of the 26 BS patients involved in this study had CLCNKB mutations. The p.W610X mutation and large deletion were two common types of mutations in CLCNKB. The clinical manifestations of BS III were heterogeneous without a genotype-phenotype correlation, typically manifesting cBS phenotype but also aBS or mixed Bartter-Gitelman phenotypes. The molecular diagnostic steps for patients with BS in our population should be designed taking these peculiar genotype distributions into consideration, and a new more clinically relevant classification including BS and Gitelman syndrome is required.
A new case of a severe clinical phenotype of the cat-eye syndrome.
Denavit, T Martin; Malan, V; Grillon, C; Sanlaville, D; Ardalan, A; Jacquemont, M L; Burglen, L; Taillemite, J L; Portnoi, M F
2004-01-01
A new case of severe clinical phenotype of the cat-eye syndrome: We report on a female infant with severe clinical phenotype of Cat-Eye Syndrome (CES). At birth, she had respiratory distress and marked hypotonia. Physical examination showed major craniofacial anomalies including microcephaly, bilateral total absence of the external ears, hypertelorism, bilateral ocular coloboma of iris and micrognathia. In addition, she had anal stenosis, a patent ductus arteriosus and intra- and extra- hepatic biliary atresia. She deteriorated with the development of bradycardia. She died at age one month of cardiac failure. Cytogenetic analysis of the proband showed an extra de novo small bisatelllited marker chromosome in all cells examined. Molecular cytogenetic analysis with fluorescence in situ hybridization (FISH) identified the marker as a CES chromosome. Thus, the patient's karyotype was: 47, XX, +idic(22)(pter-->q11.2 ::q11.2-->pter). The duplication breakpoints giving rise to the CES chromosome were distal to the DiGeorge Syndrome (DGS) locus 22q11.2. The marker could be classed as a type 11 symmetrical (10). According to a recent review of CES literature (1) only 41 % of the CES patients have the combination of iris coloboma, anal anomalies and preauricular anomalies. Almost 60% are hard to recognize by their phenotype alone. Only twelve patients showed a severe clinical phenotype leading to the death of the child. This phenotypic variability increases the difficulties of genetic counseling.
Variant of Rett syndrome and CDKL5 gene: clinical and autonomic description of 10 cases.
Pini, Giorgio; Bigoni, Stefania; Engerström, Ingegerd Witt; Calabrese, Olga; Felloni, Beatrice; Scusa, Maria Flora; Di Marco, Pietro; Borelli, Paolo; Bonuccelli, Ubaldo; Julu, Peter O O; Nielsen, Jytte Bieber; Morin, Bodil; Hansen, Stig; Gobbi, Giuseppe; Visconti, Paola; Pintaudi, Maria; Edvige, Veneselli; Romanelli, Anna; Bianchi, Fabrizio; Casarano, Manuela; Battini, Roberta; Cioni, Giovanni; Ariani, Francesca; Renieri, Alessandra; Benincasa, Alberto; Delamont, Robert S; Zappella, Michele
2012-02-01
Rett syndrome (RTT) is a severe neurodevelopmental disorder affecting almost exclusively females. The Hanefeld variant, or early-onset seizure variant, has been associated with mutations in CDKL5 gene. In recent years more than 60 patients with mutations in the CDKL5 gene have been described in the literature, but the cardiorespiratory phenotype has not been reported. Our aim is to describe clinical and autonomic features of these girls. 10 girls with CDKL5 mutations and a diagnosis of Hanefeld variant have been evaluated on axiological and clinical aspects. In all subjects an evaluation of the autonomic system was performed using the Neuroscope. Common features were gaze avoidance, repetitive head movements and hand stereotypies. The autonomic evaluation disclosed eight cases with the Forceful breather cardiorespiratory phenotype and two cases with the Apneustic breather phenotype. The clinical picture remains within the RTT spectrum but some symptoms are more pronounced in addition to the very early onset of seizures. The cardiorespiratory phenotype was dominated by Forceful breathers, while Feeble breathers were not found, differently from the general Rett population, suggesting a specific behavioral and cardiorespiratory phenotype of the RTT the Hanefeld variant. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Teber, Ozge Altug; Gillessen-Kaesbach, Gabriele; Fischer, Sven; Böhringer, Stefan; Albrecht, Beate; Albert, Angelika; Arslan-Kirchner, Mine; Haan, Eric; Hagedorn-Greiwe, Monika; Hammans, Christof; Henn, Wolfram; Hinkel, Georg Klaus; König, Rainer; Kunstmann, Erdmute; Kunze, Jürgen; Neumann, Luitgard M; Prott, Eva-Christina; Rauch, Anita; Rott, Hans-Dieter; Seidel, Heide; Spranger, Stephanie; Sprengel, Martin; Zoll, Barbara; Lohmann, Dietmar R; Wieczorek, Dagmar
2004-11-01
To define the range of phenotypic expression in Treacher Collins syndrome (TCS; Franceschetti-Klein syndrome), we performed mutation analysis in the TCOF1 gene in 46 patients with tentative diagnosis of TCS and evaluated the clinical data, including a scoring system. A total of 27 coding exons of TCOF1 and adjacent splice junctions were analysed by direct sequencing. In 36 patients with a clinically unequivocal diagnosis of TCS, we detected 28 pathogenic mutations, including 25 novel alterations. No mutation was identified in the remaining eight patients with unequivocal diagnosis of TCS and 10 further patients, in whom the referring diagnosis of TCS was clinically doubtful. There is no overt genotype-phenotype correlation except that conductive deafness is significantly less frequent in patients with mutations in the 3' part of the open reading frame. Inter- and intrafamilial variation is wide. Some mutation carriers, parents of typically affected patients, are so mildly affected that the diagnosis might be overlooked clinically. This suggests that modifying factors are important for phenotypic expression. Based on these findings, minimal diagnostic criteria were defined: downward slanting palpebral fissures and hypoplasia of the zygomatic arch. The difficulties in genetic counselling, especially diagnosis of family members with a mild phenotype, are described.
Identification and characterization of near-fatal asthma phenotypes by cluster analysis.
Serrano-Pariente, J; Rodrigo, G; Fiz, J A; Crespo, A; Plaza, V
2015-09-01
Near-fatal asthma (NFA) is a heterogeneous clinical entity and several profiles of patients have been described according to different clinical, pathophysiological and histological features. However, there are no previous studies that identify in a unbiased way--using statistical methods such as clusters analysis--different phenotypes of NFA. Therefore, the aim of the present study was to identify and to characterize phenotypes of near fatal asthma using a cluster analysis. Over a period of 2 years, 33 Spanish hospitals enrolled 179 asthmatics admitted for an episode of NFA. A cluster analysis using two-steps algorithm was performed from data of 84 of these cases. The analysis defined three clusters of patients with NFA: cluster 1, the largest, including older patients with clinical and therapeutic criteria of severe asthma; cluster 2, with an high proportion of respiratory arrest (68%), impaired consciousness level (82%) and mechanical ventilation (93%); and cluster 3, which included younger patients, characterized by an insufficient anti-inflammatory treatment and frequent sensitization to Alternaria alternata and soybean. These results identify specific asthma phenotypes involved in NFA, confirming in part previous findings observed in studies with a clinical approach. The identification of patients with a specific NFA phenotype could suggest interventions to prevent future severe asthma exacerbations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Association of Immunological Cell Profiles with Specific Clinical Phenotypes of Scleroderma Disease
Calzada, David; Mayayo, Teodoro; González-Rodríguez, María Luisa; Rabasco, Antonio María; Lahoz, Carlos
2014-01-01
This study aimed to search the correlation among immunological profiles and clinical phenotypes of scleroderma in well-characterized groups of scleroderma patients, comparing forty-nine scleroderma patients stratified according to specific clinical phenotypes with forty-nine healthy controls. Five immunological cell subpopulations (B, CD4+ and CD8+ T-cells, NK, and monocytes) and their respective stages of apoptosis and activation were analyzed by flow cytometry, in samples of peripheral blood mononuclear cells (PBMCs). Analyses of results were stratified according to disease stage, time since the diagnosis, and visceral damage (pulmonary fibrosis, pulmonary hypertension, and cardiac affliction) and by time of treatment with corticosteroids. An increase in the percentages of monocytes and a decrease in the B cells were mainly related to the disease progression. A general apoptosis decrease was found in all phenotypes studied, except in localized scleroderma. An increase of B and NK cells activation was found in patients diagnosed more than 10 years ago. Specific cell populations like monocytes, NK, and B cells were associated with the type of affected organ. This study shows how, in a heterogeneous disease, proper patient's stratification according to clinical phenotypes allows finding specific cellular profiles. Our data may lead to improvements in the knowledge of prognosis factors and to aid in the analysis of future specific therapies. PMID:24818126
Phenotype comparison confirms ZMYND11 as a critical gene for 10p15.3 microdeletion syndrome.
Tumiene, Birute; Čiuladaitė, Ž; Preikšaitienė, E; Mameniškienė, R; Utkus, A; Kučinskas, V
2017-11-01
Proper epigenetic regulation processes are crucial in the normal development of the human brain. An ever-increasing group of neurodevelopmental disorders due to derangements of epigenetic regulation involve both microdeletion and monogenic syndromes. Some of these syndromes have overlapping clinical phenotypes due to haploinsufficiency-sensitive genes involved in microdeletions. It was shown recently that the ZMYND11 gene has important functions in epigenetic regulation as an unconventional transcription co-repressor of highly expressed genes, possibly acting in the repression of cryptic transcription from gene bodies. The aim of our study was to compare the clinical phenotypes of patients with 10p15.3 deletions with the phenotypes of patients with loss-of-function ZMYND11 mutations. The results of our study further confirm that the ZMYND11 gene is the critical gene for the clinical phenotype of 10p15.3 microdeletion involving the terminal ~4 Mb of chromosome 10p. In addition, accumulating clinical data allow for further characterisation of this syndrome, including neurodevelopmental disorder, characteristic dysmorphic features and some other more frequent symptoms, such as behavioural disturbances, hypotonia, seizures, low birth weight, short stature in those older than 10 years of age, genitourinary malformations and recurrent infections.
Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance.
Mezzatesta, Maria Lina; Gona, Floriana; Stefani, Stefania
2012-07-01
Species of the Enterobacter cloacae complex are widely encountered in nature, but they can act as pathogens. The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species: Enterobacter cloacae, Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii and Enterobacter nimipressuralis, E. cloacae and E. hormaechei are the most frequently isolated in human clinical specimens. Phenotypic identification of all species belonging to this taxon is usually difficult and not always reliable; therefore, molecular methods are often used. Although the E. cloacae complex strains are among the most common Enterobacter spp. causing nosocomial bloodstream infections in the last decade, little is known about their virulence-associated properties. By contrast, much has been published on the antibiotic-resistance features of these microorganisms. In fact, they are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or by the acquisition of a transferable ampC gene on plasmids conferring the antibiotic resistance. Many other resistance determinants that are able to render ineffective almost all antibiotic families have been recently acquired. Most studies on antimicrobial susceptibility are focused on E. cloacae, E. hormaechei and E. asburiae; these studies reported small variations between the species, and the only significant differences had no discriminating features.
The impact of network medicine in gastroenterology and hepatology.
Baffy, György
2013-10-01
In the footsteps of groundbreaking achievements made by biomedical research, another scientific revolution is unfolding. Systems biology draws from the chaos and complexity theory and applies computational models to predict emerging behavior of the interactions between genes, gene products, and environmental factors. Adaptation of systems biology to translational and clinical sciences has been termed network medicine, and is likely to change the way we think about preventing, predicting, diagnosing, and treating complex human diseases. Network medicine finds gene-disease associations by analyzing the unparalleled digital information discovered and created by high-throughput technologies (dubbed as "omics" science) and links genetic variance to clinical disease phenotypes through intermediate organizational levels of life such as the epigenome, transcriptome, proteome, and metabolome. Supported by large reference databases, unprecedented data storage capacity, and innovative computational analysis, network medicine is poised to find links between conditions that were thought to be distinct, uncover shared disease mechanisms and key drivers of the pathogenesis, predict individual disease outcomes and trajectories, identify novel therapeutic applications, and help avoid off-target and undesirable drug effects. Recent advances indicate that these perspectives are increasingly within our reach for understanding and managing complex diseases of the digestive system. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks
2012-01-01
Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms. PMID:22348705
Operation Brain Trauma Therapy
2016-12-01
either clinical trials in TBI if shown to be highly effective across OBTT, or tested in a precision medicine TBI phenotype (such as contusion) based...clinical trial if shown to be potently effective in one of the models in OBTT (i.e., a model that mimicked a specific clinical TBI phenotype). In... effective drug seen thus far in primary screening albeit with benefit highly model dependent, largely restricted to the CCI model. This suggests
Narayan, Srinivas B.; Master, Stephen R.; Sireci, Anthony N.; Bierl, Charlene; Stanley, Paige E.; Li, Changhong; Stanley, Charles A.; Bennett, Michael J.
2012-01-01
Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein. PMID:22496890
Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L
2018-02-21
Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.
The Nature of Stable Insomnia Phenotypes
Pillai, Vivek; Roth, Thomas; Drake, Christopher L.
2015-01-01
Study Objectives: We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Design: Longitudinal. Setting: Urban, community-based. Participants: Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). Interventions: None. Measurements and results: At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the “neither criterion” phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. Conclusions: By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With the exception of daytime sleepiness, few clinical differences are apparent across stable phenotypes. Citation: Pillai V, Roth T, Drake CL. The nature of stable insomnia phenotypes. SLEEP 2015;38(1):127–138. PMID:25325468
[Psychogenic tics: clinical characteristics and prevalence].
Janik, Piotr; Milanowski, Lukasz; Szejko, Natalia
2014-01-01
Clinical characteristics and the prevalence of psychogenic tics (PT) METHODS: 268 consecutively examined patients aged 4 to 54 years (221 men, 47 females; 134 children, 134 adults) with tic phenotype: Gilles de la Tourette syndrome (GTS, n = 255), chronic motor tics (n = 6), chronic vocal tics (n= 1), transient tics (n = 1), tics unclassified (n = 2), PT (n= 5) were analyzed. The diagnosis of tic disorders was made on the DSM-IV-TR criteria and mental disorders by psychiatrists. PT were found in 5 patients (1.9%), aged 17 to 51 years, four men and one woman. The phenotype included vocalizations and complex movements. In none of the patients simple motor facial tics, inability to tic suppress, unchanging clinical pattern, peak severity from the beginning of the disease, lack of concern about the disease were present. The absence of premonitory urges, regression in unexpected positions, and the presence of atypical for GTS mental disorders were found in two persons. PT occurred in three persons in whom organic tics were present in childhood. Pharmacological treatment and psychotherapy were unsuccessful. In two persons spontaneous resolution occurred, in two patients the tics persist, in one person the course of PT is unknown. PT are rare and may occur in patients with organic tics. The most typical features of PT are: early onset in adulthood, lack of simple motor tics, inability to tic suppress. The diagnosis is established if a few atypical symptoms for organic tics occur.
Modeling thrombin generation: plasma composition based approach.
Brummel-Ziedins, Kathleen E; Everse, Stephen J; Mann, Kenneth G; Orfeo, Thomas
2014-01-01
Thrombin has multiple functions in blood coagulation and its regulation is central to maintaining the balance between hemorrhage and thrombosis. Empirical and computational methods that capture thrombin generation can provide advancements to current clinical screening of the hemostatic balance at the level of the individual. In any individual, procoagulant and anticoagulant factor levels together act to generate a unique coagulation phenotype (net balance) that is reflective of the sum of its developmental, environmental, genetic, nutritional and pharmacological influences. Defining such thrombin phenotypes may provide a means to track disease progression pre-crisis. In this review we briefly describe thrombin function, methods for assessing thrombin dynamics as a phenotypic marker, computationally derived thrombin phenotypes versus determined clinical phenotypes, the boundaries of normal range thrombin generation using plasma composition based approaches and the feasibility of these approaches for predicting risk.
Schiebel, Juliane; Böhm, Alexander; Nitschke, Jörg; Burdukiewicz, Michał; Weinreich, Jörg; Ali, Aamir; Roggenbuck, Dirk; Rödiger, Stefan
2017-01-01
ABSTRACT Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli). We investigated the presence of biofilm-associated genes (“genotype”) and phenotypically analyzed the isolates for motility and curli and cellulose production (“phenotype”). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device-related infections due to their high resistance to antibiotics and the host immune system. In nonpathogenic Escherichia coli, cell surface components playing a pivotal role in biofilm formation are well known. In contrast, there is poor information for their role in biofilm formation of pathogenic isolates. Our study provides insights into the correlation of biofilm-associated genes or specific phenotypes with the biofilm formation ability of commensal and pathogenic E. coli. Additionally, we describe a newly developed method enabling qualitative biofilm analysis by automated image analysis, which is beneficial for high-throughput screenings. Our results help to establish a better understanding of E. coli biofilm formation. PMID:28986371
MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome.
Naess, Karin; Freyer, Christoph; Bruhn, Helene; Wibom, Rolf; Malm, Gunilla; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran
2009-05-01
Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.
O'Brien, M Emmet; Pennycooke, Kevin; Carroll, Tomás P; Shum, Jonathan; Fee, Laura T; O'Connor, Catherine; Logan, P Mark; Reeves, Emer P; McElvaney, Noel G
2015-05-01
Individuals with Alpha-1 antitrypsin deficiency (AATD) have mutations in the SERPINA1 gene causing genetic susceptibility to early onset lung and liver disease that may result in premature death. Environmental interactions have a significant impact in determining the disease phenotype and outcome in AATD. The aim of this study was to assess the impact of smoke exposure on the clinical phenotype of AATD in Ireland. Clinical demographics and available thoracic computerised tomography (CT) imaging were detected from 139 PiZZ individuals identified from the Irish National AATD Registry. Clinical information was collected by questionnaire. Data was analysed to assess AATD disease severity and evaluate predictors of clinical phenotype. Questionnaires were collected from 107/139 (77%) and thoracic CT evaluation was available in 72/107 (67.2%). 74% of respondents had severe Chronic Obstructive Pulmonary Disease (COPD) (GOLD stage C or D). Cigarette smoking was the greatest predictor of impairment in FEV1 and DLCO (%predicted) and the extent of emphysema correlated most significantly with DLCO. Interestingly the rate of FEV1 decline was similar in ex-smokers when compared to never-smokers. Passive smoke exposure in childhood resulted in a greater total pack-year smoking history. Radiological evidence of bronchiectasis was a common finding and associated with increasing age. The Irish National AATD Registry facilitates clinical and basic science research of this condition in Ireland. This study illustrates the detrimental effect of smoke exposure on the clinical phenotype of AATD in Ireland and the benefit of immediate smoking cessation at any stage of lung disease.
Schmied, Julie; Rupa, Prithy; Garvie, Sarah; Wilkie, Bruce
2013-07-15
The prevalence of childhood food allergy and the duration of these allergies, particularly those considered to be transient, like egg and milk allergy, are increasing. The identification of allergic individuals using minimally invasive, non-anaphylaxis-threatening methods is therefore of increasing importance. In this experiment, correlates were sought of an allergic immune response (IR) phenotype in pigs. Using pigs pre-treated with heat-killed bacteria or bacterial components before allergic sensitization with the egg white protein ovomucoid (Ovm), differences were determined in IR phenotype of pigs in the categories treated-allergic, treated-tolerant, control-allergic (CA) and control-tolerant. Phenotype was established by measuring immunoglobulin (Ig)-associated antibody activity (AbA), cytokine profiles and the proportion of blood T-regulatory cells (T-regs) and observing late-phase allergen-specific skin tests (ST). Although 100% of pigs became sensitized to Ovm, only 33% of pigs had clinical signs of allergy after oral challenge with egg white. Pigs without clinical signs were classified as clinically tolerant. Sixty-seven percent of allergic pigs had a positive, late-phase ST classified as very strong or strong, while 84% of clinically tolerant pigs did not have late-phase ST. Treated-allergic pigs and CA pigs had greater total antibody IgG (H+L), IgE and IgG1 AbA than clinically tolerant pigs. Cytokine profiles of allergic pigs and the proportion of circulating T-regs, did not differ significantly between allergic and clinically tolerant pigs. Therefore, measurement of allergen-specific IgG, IgG1 and/or IgE activity and evaluation of late-phase ID ST may be useful in identifying allergic IR phenotypes in swine models of food allergy, which may be extended toward human use. Copyright © 2013 Elsevier B.V. All rights reserved.
Factor VII Deficiency: Clinical Phenotype, Genotype and Therapy.
Napolitano, Mariasanta; Siragusa, Sergio; Mariani, Guglielmo
2017-03-28
Factor VII deficiency is the most common among rare inherited autosomal recessive bleeding disorders, and is a chameleon disease due to the lack of a direct correlation between plasma levels of coagulation Factor VII and bleeding manifestations. Clinical phenotypes range from asymptomatic condition-even in homozygous subjects-to severe life-threatening bleedings (central nervous system, gastrointestinal bleeding). Prediction of bleeding risk is thus based on multiple parameters that challenge disease management. Spontaneous or surgical bleedings require accurate treatment schedules, and patients at high risk of severe hemorrhages may need prophylaxis from childhood onwards. The aim of the current review is to depict an updated summary of clinical phenotype, laboratory diagnosis, and treatment of inherited Factor VII deficiency.
Factor VII Deficiency: Clinical Phenotype, Genotype and Therapy
Napolitano, Mariasanta; Siragusa, Sergio; Mariani, Guglielmo
2017-01-01
Factor VII deficiency is the most common among rare inherited autosomal recessive bleeding disorders, and is a chameleon disease due to the lack of a direct correlation between plasma levels of coagulation Factor VII and bleeding manifestations. Clinical phenotypes range from asymptomatic condition—even in homozygous subjects—to severe life-threatening bleedings (central nervous system, gastrointestinal bleeding). Prediction of bleeding risk is thus based on multiple parameters that challenge disease management. Spontaneous or surgical bleedings require accurate treatment schedules, and patients at high risk of severe hemorrhages may need prophylaxis from childhood onwards. The aim of the current review is to depict an updated summary of clinical phenotype, laboratory diagnosis, and treatment of inherited Factor VII deficiency. PMID:28350321
Partial epilepsy and 47,XXX karyotype: report of four cases.
Roubertie, Agathe; Humbertclaude, Véronique; Leydet, Julie; Lefort, Geneviève; Echenne, Bernard
2006-07-01
Epilepsy is a common finding in chromosomal imbalances, but only a few chromosome abnormalities have a characteristic electro-clinical pattern. Trisomy X is one of the most common sex chromosome abnormalities in females, and is associated with considerable phenotypic variability. This report describes four 47,XXX females with mental deficiency and epilepsy. Although a specific electro-clinical pattern could not be defined, the epileptic phenotypes of these patients share many features; we suggest that the association 47,XXX/epilepsy/mental retardation may not be coincidental. This report also enlarges the clinical spectrum of the 47,XXX phenotype. Moreover, these observations highlight the critical role of chromosome X in epilepsy and mental retardation.
Beunders, Gea; van de Kamp, Jiddeke; Vasudevan, Pradeep; Morton, Jenny; Smets, Katrien; Kleefstra, Tjitske; de Munnik, Sonja A; Schuurs-Hoeijmakers, Janneke; Ceulemans, Berten; Zollino, Marcella; Hoffjan, Sabine; Wieczorek, Stefan; So, Joyce; Mercer, Leanne; Walker, Tanya; Velsher, Lea; Parker, Michael J; Magee, Alex C; Elffers, Bart; Kooy, R Frank; Yntema, Helger G; Meijers-Heijboer, Elizabeth J; Sistermans, Erik A
2016-08-01
AUTS2 syndrome is an 'intellectual disability (ID) syndrome' caused by genomic rearrangements, deletions, intragenic duplications or mutations disrupting AUTS2. So far, 50 patients with AUTS2 syndrome have been described, but clinical data are limited and almost all cases involved young children. We present a detailed clinical description of 13 patients (including six adults) with AUTS2 syndrome who have a pathogenic mutation or deletion in AUTS2. All patients were systematically evaluated by the same clinical geneticist. All patients have borderline to severe ID/developmental delay, 83-100% have microcephaly and feeding difficulties. Congenital malformations are rare, but mild heart defects, contractures and genital malformations do occur. There are no major health issues in the adults; the oldest of whom is now 59 years of age. Behaviour is marked by it is a friendly outgoing social interaction. Specific features of autism (like obsessive behaviour) are seen frequently (83%), but classical autism was not diagnosed in any. A mild clinical phenotype is associated with a small in-frame 5' deletions, which are often inherited. Deletions and other mutations causing haploinsufficiency of the full-length AUTS2 transcript give a more severe phenotype and occur de novo. The 13 patients with AUTS2 syndrome with unique pathogenic deletions scattered around the AUTS2 locus confirm a phenotype-genotype correlation. Despite individual variations, AUTS2 syndrome emerges as a specific ID syndrome with microcephaly, feeding difficulties, dysmorphic features and a specific behavioural phenotype. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Picchio, Gaston; Vingerhoets, Johan; Tambuyzer, Lotke; Coakley, Eoin; Haddad, Mojgan; Witek, James
2011-12-01
Abstract The prevalence of susceptibility to etravirine was investigated among clinical samples submitted for routine clinical testing in the United States using two separate weighted genotypic scoring systems. The presence of etravirine mutations and susceptibility to etravirine by phenotype of clinical samples from HIV-1-infected patients, submitted to Monogram Biosciences for routine resistance testing between June 2008 and June 2009, were analyzed. Susceptibility by genotype was determined using the Monogram and Tibotec etravirine-weighted genotypic scoring systems, with scores of ≤3 and ≤2, respectively, indicating full susceptibility. Susceptibility by phenotype was determined using the PhenoSense HIV assay, with lower and higher clinical cut-offs of 2.9 and 10, respectively. The frequency of individual etravirine mutations and the impact of the K103N mutation on susceptibility to etravirine by genotype were also determined. Among the 5482 samples with ≥1 defined nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations associated with resistance, 67% were classed as susceptible to etravirine by genotype by both scoring systems. Susceptibility to etravirine by phenotype was higher (76%). The proportion of first-generation NNRTI-resistant samples with (n=3598) and without (n=1884) K103N with susceptibility to etravirine by genotype was 77% and 49%, respectively. Among samples susceptible to first-generation NNRTIs (n=9458), >99% of samples were susceptible to etravirine by phenotype (FC <2.9); the remaining samples had FC ≥2.9-10. In summary, among samples submitted for routine clinical testing in the United States, a high proportion of samples with first-generation NNRTI resistance was susceptible to etravirine by genotype and phenotype. A higher proportion of NNRTI-resistant samples with K103N than without was susceptible to etravirine.
de Diego, Rebeca Pérez; Sánchez-Ramón, Silvia; López-Collazo, Eduardo; Martínez-Barricarte, Rubén; Cubillos-Zapata, Carolina; Cerdán, Antonio Ferreira; Casanova, Jean-Laurent; Puel, Anne
2016-01-01
Three members of the caspase recruitment domain (CARD) family of adaptors (CARD9, CARD10, and CARD11) are known to form heterotrimers with B-cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (MALT1). These three CARD-BCL10-MALT1 (CBM) complexes activate NF-κB in both the innate and adaptive arms of immunity. Human inherited defects of the three components of the CBM complex, including the two adaptors CARD9 and CARD11 and the two core components BCL10 and MALT1, have recently been reported. Bi-allelic loss-of-function (LOF) mutant alleles underlie several different immunological and clinical phenotypes, which can be assigned to two distinct categories. Isolated invasive fungal infections, of unclear cellular basis, are associated with CARD9 deficiency, whereas a broad range of clinical manifestations, including those characteristic of T- and B-lymphocyte defects, are associated with CARD11, MALT1 and BCL10 deficiencies. Interestingly, humans with these mutations have some features in common with the corresponding knockout mice, but other features are different between humans and mice. Moreover, germline and somatic gain-of-function (GOF) mutations of MALT1, BCL10 and CARD11 have also been found in other patients with lymphoproliferative disorders. This broad range of germline and somatic CBM lesions, including LOF and GOF mutations, highlights the contribution of each of the components of the CBM to human immunity. PMID:26277595
Jalili, Mahdi; Gebhardt, Tom; Wolkenhauer, Olaf; Salehzadeh-Yazdi, Ali
2018-06-01
Decoding health and disease phenotypes is one of the fundamental objectives in biomedicine. Whereas high-throughput omics approaches are available, it is evident that any single omics approach might not be adequate to capture the complexity of phenotypes. Therefore, integrated multi-omics approaches have been used to unravel genotype-phenotype relationships such as global regulatory mechanisms and complex metabolic networks in different eukaryotic organisms. Some of the progress and challenges associated with integrated omics studies have been reviewed previously in comprehensive studies. In this work, we highlight and review the progress, challenges and advantages associated with emerging approaches, integrating gene expression and protein-protein interaction networks to unravel network-based functional features. This includes identifying disease related genes, gene prioritization, clustering protein interactions, developing the modules, extract active subnetworks and static protein complexes or dynamic/temporal protein complexes. We also discuss how these approaches contribute to our understanding of the biology of complex traits and diseases. This article is part of a Special Issue entitled: Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. Copyright © 2018 Elsevier B.V. All rights reserved.
Procopio, V; Manti, S; Bianco, G; Conti, G; Romeo, A; Maimone, F; Arrigo, T; Cutrupi, M C; Salpietro, C; Cuppari, C
2018-01-30
Uncertainty remains on the pathogenetic mechanisms, model of inheritance as well as genotype-phenotype correlation of FMF disease. To investigate the impact of genetic factors on the FMF phenotype and the disease inheritance model. A total of 107 FMF patients were enrolled. Patients were diagnosed clinically. All patients underwent genetic analysis of the FMF locus on 16p13.3. 9 distinct mutations were detected. Specifically, the 85.98% of patients showed a heterozygous genotype. The most common genotypes were p.Met680Ile/wt and p.Met694Val/wt. The most frequent clinical findings were fever, abdominal pain, joint pain, thoracic pain, and erysipelas-like erythema. Analysis of clinical data did not detect any significant difference in clinical phenotype among heterozygous, homozygous as well as compound homozygous subjects, further supporting the evidence that, contrary to the recessive autosomal inheritance, heterozygous patients fulfilled the criteria of clinical FMF. Moreover, subjects with p.Met694Val/wt and p.Met680Ile/wt genotype reported the most severe clinical phenotype. p.Ala744Ser/wt, p.Glu148Gln/Met680Ile, p.Met680Ile/Met680Ile, p.Met680Ile/Met694Val, p.Pro369Ser/wt, p.Met694Ile/wt, p.Glu148Gln/Glu148Gln, p.Lys695Arg/wt resulted in 100% pathogenicity. The existence of a "non classic" autosomal recessive inheritance as well as of an "atypical" dominant autosomal inheritance with incomplete penetrance and variable expressivity cannot be excluded in FMF. Copyright © 2017 Elsevier B.V. All rights reserved.
Lesch-Nyhan variant syndrome: variable presentation in 3 affected family members.
Sarafoglou, Kyriakie; Grosse-Redlinger, Krista; Boys, Christopher J; Charnas, Laurence; Otten, Noelle; Broock, Robyn; Nyhan, William L
2010-06-01
Lesch-Nyhan disease is an inborn error of purine metabolism that results from deficiency of the activity of hypoxanthine phosphoribosyltransferase (HPRT). The heterogeneity of clinical phenotypes seen in HPRT deficiency corresponds to an inverse relationship between HPRT enzyme activity and clinical severity. With rare exception, each mutation produces a stereotypical pattern of clinical disease; onset of neurologic symptoms occurs during infancy and is thought to be nonprogressive. To document a family in which a single HPRT gene mutation has led to 3 different clinical and enzymatic phenotypes. Case report. Settings A university-based outpatient metabolic clinic and a biochemical genetics laboratory. Patients Three males (2 infants and their grandfather) from the same family with Lesch-Nyhan variant, including one of the oldest patients with Lesch-Nyhan variant at diagnosis (65 years). Clinical and biochemical observations. Sequencing of 5 family members revealed a novel mutation c.550G>T in exon 7 of the HPRT gene. The considerably variable clinical phenotype corresponded with the variable enzymatic activity in the 3 males, with the grandfather being the most severely affected. The different phenotypes encountered in the enzymatic analysis of cultured fibroblasts from a single mutation in the same family is unprecedented. The significant decrease in the grandfather's HPRT enzymatic activity compared with that of his grandchildren could be a function of the Hayflick Limit Theory of cell senescence.
Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L
2007-06-01
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.
Mutants of the Paf1 Complex Alter Phenotypic Expression of the Yeast Prion [PSI+
Strawn, Lisa A.; Lin, Changyi A.; Tank, Elizabeth M.H.; Osman, Morwan M.; Simpson, Sarah A.
2009-01-01
The yeast [PSI+] prion is an epigenetic modifier of translation termination fidelity that causes nonsense suppression. The prion [PSI+] forms when the translation termination factor Sup35p adopts a self-propagating conformation. The presence of the [PSI+] prion modulates survivability in a variety of growth conditions. Nonsense suppression is essential for many [PSI+]-mediated phenotypes, but many do not appear to be due to read-through of a single stop codon, but instead are multigenic traits. We hypothesized that other global mechanisms act in concert with [PSI+] to influence [PSI+]-mediated phenotypes. We have identified one such global regulator, the Paf1 complex (Paf1C). Paf1C is conserved in eukaryotes and has been implicated in several aspects of transcriptional and posttranscriptional regulation. Mutations in Ctr9p and other Paf1C components reduced [PSI+]-mediated nonsense suppression. The CTR9 deletion also alters nonsense suppression afforded by other genetic mutations but not always to the same extent as the effects on [PSI+]-mediated read-through. Our data suggest that the Paf1 complex influences mRNA translatability but not solely through changes in transcript stability or abundance. Finally, we demonstrate that the CTR9 deletion alters several [PSI+]-dependent phenotypes. This provides one example of how [PSI+] and genetic modifiers can interact to uncover and regulate phenotypic variability. PMID:19225160
Viollet, Louis; Glusman, Gustavo; Murphy, Kelley J.; Newcomb, Tara M.; Reyna, Sandra P.; Sweney, Matthew; Nelson, Benjamin; Andermann, Frederick; Andermann, Eva; Acsadi, Gyula; Barbano, Richard L.; Brown, Candida; Brunkow, Mary E.; Chugani, Harry T.; Cheyette, Sarah R.; Collins, Abigail; DeBrosse, Suzanne D.; Galas, David; Friedman, Jennifer; Hood, Lee; Huff, Chad; Jorde, Lynn B.; King, Mary D.; LaSalle, Bernie; Leventer, Richard J.; Lewelt, Aga J.; Massart, Mylynda B.; Mérida, Mario R.; Ptáček, Louis J.; Roach, Jared C.; Rust, Robert S.; Renault, Francis; Sanger, Terry D.; Sotero de Menezes, Marcio A.; Tennyson, Rachel; Uldall, Peter; Zhang, Yue; Zupanc, Mary; Xin, Winnie; Silver, Kenneth; Swoboda, Kathryn J.
2015-01-01
Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers’ questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clustered in exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K (26%) and 11 had G937R (8%) mutations. Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies. PMID:25996915
Fernandez, Bridget A; Green, Jane S; Bursey, Ford; Barrett, Brendan; MacMillan, Andrée; McColl, Sarah; Fernandez, Sara; Rahman, Proton; Mahoney, Krista; Pereira, Sergio L; Scherer, Stephen W; Boycott, Kym M; Woods, Michael O
2012-11-21
Severe congenital neutropenia type 4 (SCN4) is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3). Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4) is caused by autosomal recessive mutations in SLC45A2. We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. The siblings' phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with "partial OCA" in childhood. This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.
Qiu, Jingya; Darabos, Christian
2016-01-01
ABSTRACT Genome‐wide association studies (GWAS) have led to the discovery of over 200 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes mellitus (T2DM). Additionally, East Asians develop T2DM at a higher rate, younger age, and lower body mass index than their European ancestry counterparts. The reason behind this occurrence remains elusive. With comprehensive searches through the National Human Genome Research Institute (NHGRI) GWAS catalog literature, we compiled a database of 2,800 ancestry‐specific SNPs associated with T2DM and 70 other related traits. Manual data extraction was necessary because the GWAS catalog reports statistics such as odds ratio and P‐value, but does not consistently include ancestry information. Currently, many statistics are derived by combining initial and replication samples from study populations of mixed ancestry. Analysis of all‐inclusive data can be misleading, as not all SNPs are transferable across diverse populations. We used ancestry data to construct ancestry‐specific human phenotype networks (HPN) centered on T2DM. Quantitative and visual analysis of network models reveal the genetic disparities between ancestry groups. Of the 27 phenotypes in the East Asian HPN, six phenotypes were unique to the network, revealing the underlying ancestry‐specific nature of some SNPs associated with T2DM. We studied the relationship between T2DM and five phenotypes unique to the East Asian HPN to generate new interaction hypotheses in a clinical context. The genetic differences found in our ancestry‐specific HPNs suggest different pathways are involved in the pathogenesis of T2DM among different populations. Our study underlines the importance of ancestry in the development of T2DM and its implications in pharmocogenetics and personalized medicine. PMID:27061195
The digital revolution in phenotyping
Oellrich, Anika; Collier, Nigel; Groza, Tudor; Rebholz-Schuhmann, Dietrich; Shah, Nigam; Bodenreider, Olivier; Boland, Mary Regina; Georgiev, Ivo; Liu, Hongfang; Livingston, Kevin; Luna, Augustin; Mallon, Ann-Marie; Manda, Prashanti; Robinson, Peter N.; Rustici, Gabriella; Simon, Michelle; Wang, Liqin; Winnenburg, Rainer; Dumontier, Michel
2016-01-01
Phenotypes have gained increased notoriety in the clinical and biological domain owing to their application in numerous areas such as the discovery of disease genes and drug targets, phylogenetics and pharmacogenomics. Phenotypes, defined as observable characteristics of organisms, can be seen as one of the bridges that lead to a translation of experimental findings into clinical applications and thereby support ‘bench to bedside’ efforts. However, to build this translational bridge, a common and universal understanding of phenotypes is required that goes beyond domain-specific definitions. To achieve this ambitious goal, a digital revolution is ongoing that enables the encoding of data in computer-readable formats and the data storage in specialized repositories, ready for integration, enabling translational research. While phenome research is an ongoing endeavor, the true potential hidden in the currently available data still needs to be unlocked, offering exciting opportunities for the forthcoming years. Here, we provide insights into the state-of-the-art in digital phenotyping, by means of representing, acquiring and analyzing phenotype data. In addition, we provide visions of this field for future research work that could enable better applications of phenotype data. PMID:26420780
Corruption of the intra-gene DNA methylation architecture is a hallmark of cancer.
Bartlett, Thomas E; Zaikin, Alexey; Olhede, Sofia C; West, James; Teschendorff, Andrew E; Widschwendter, Martin
2013-01-01
Epigenetic processes--including DNA methylation--are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test [Formula: see text] in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers.
ADHD latent class clusters: DSM-IV subtypes and comorbidity
Elia, Josephine; Arcos-Burgos, Mauricio; Bolton, Kelly L.; Ambrosini, Paul J.; Berrettini, Wade; Muenke, Maximilian
2014-01-01
ADHD (Attention Deficit Hyperactivity Disorder) has a complex, heterogeneous phenotype only partially captured by Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. In this report, latent class analyses (LCA) are used to identify ADHD phenotypes using K-SADS-IVR (Schedule for Affective Disorders & Schizophrenia for School Age Children-IV-Revised) symptoms and symptom severity data from a clinical sample of 500 ADHD subjects, ages 6–18, participating in an ADHD genetic study. Results show that LCA identified six separate ADHD clusters, some corresponding to specific DSM-IV subtypes while others included several subtypes. DSM-IV comorbid anxiety and mood disorders were generally similar across all clusters, and subjects without comorbidity did not aggregate within any one cluster. Age and gender composition also varied. These results support findings from population-based LCA studies. The six clusters provide additional homogenous groups that can be used to define ADHD phenotypes in genetic association studies. The limited age ranges aggregating in the different clusters may prove to be a particular advantage in genetic studies where candidate gene expression may vary during developmental phases. DSM-IV comorbid mood and anxiety disorders also do not appear to increase cluster heterogeneity; however, longitudinal studies that cover period of risk are needed to support this finding. PMID:19900717
A novel nonsense mutation in the NDP gene in a Chinese family with Norrie disease.
Liu, Deyuan; Hu, Zhengmao; Peng, Yu; Yu, Changhong; Liu, Yalan; Mo, Xiaoyun; Li, Xiaoping; Lu, Lina; Xu, Xiaojuan; Su, Wei; Pan, Qian; Xia, Kun
2010-12-08
Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and, occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes, such as cerebellar atrophy, motor disorders, and mental disorders. We conducted an extensive clinical examination of the proband and performed a computed tomography (CT) scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing for 26 individuals from the proband's extended family. The proband's computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of the NDP gene identified a novel nonsense mutation, c.343C>T, in this region. Although recent research has shown that multiple different mutations can be responsible for the ND phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by mutations in the NDP gene.
Jaillard, Magali; van Belkum, Alex; Cady, Kyle C; Creely, David; Shortridge, Dee; Blanc, Bernadette; Barbu, E Magda; Dunne, W Michael; Zambardi, Gilles; Enright, Mark; Mugnier, Nathalie; Le Priol, Christophe; Schicklin, Stéphane; Guigon, Ghislaine; Veyrieras, Jean-Baptiste
2017-08-01
Genetic determinants of antibiotic resistance (AR) have been extensively investigated. High-throughput sequencing allows for the assessment of the relationship between genotype and phenotype. A panel of 672 Pseudomonas aeruginosa strains was analysed, including representatives of globally disseminated multidrug-resistant and extensively drug-resistant clones; genomes and multiple antibiograms were available. This panel was annotated for AR gene presence and polymorphism, defining a resistome in which integrons were included. Integrons were present in >70 distinct cassettes, with In5 being the most prevalent. Some cassettes closely associated with clonal complexes, whereas others spread across the phylogenetic diversity, highlighting the importance of horizontal transfer. A resistome-wide association study (RWAS) was performed for clinically relevant antibiotics by correlating the variability in minimum inhibitory concentration (MIC) values with resistome data. Resistome annotation identified 147 loci associated with AR. These loci consisted mainly of acquired genomic elements and intrinsic genes. The RWAS allowed for correct identification of resistance mechanisms for meropenem, amikacin, levofloxacin and cefepime, and added 46 novel mutations. Among these, 29 were variants of the oprD gene associated with variation in meropenem MIC. Using genomic and MIC data, phenotypic AR was successfully correlated with molecular determinants at the whole-genome sequence level. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
A novel nonsense mutation in the NDP gene in a Chinese family with Norrie disease
Liu, Deyuan; Hu, Zhengmao; Peng, Yu; Yu, Changhong; Liu, Yalan; Mo, Xiaoyun; Li, Xiaoping; Lu, Lina; Xu, Xiaojuan; Su, Wei; Pan, Qian
2010-01-01
Purpose Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and, occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes, such as cerebellar atrophy, motor disorders, and mental disorders. Methods We conducted an extensive clinical examination of the proband and performed a computed tomography (CT) scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing for 26 individuals from the proband’s extended family. Results The proband’s computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of the NDP gene identified a novel nonsense mutation, c.343C>T, in this region. Conclusions Although recent research has shown that multiple different mutations can be responsible for the ND phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by mutations in the NDP gene. PMID:21179243
Gemenetzi, M; Lotery, A J
2013-11-01
To investigate phenotypic variability in terms of best-corrected visual acuity (BCVA) in patients with Stargardt disease (STGD) and confirmed ABCA4 mutations. Entire coding region analysis of the ABCA4 gene by direct sequencing of seven patients with clinical findings of STGD seen in the Retina Clinics of Southampton Eye Unit between 2002 and 2011.Phenotypic variables recorded were BCVA, fluorescein angiographic appearance, electrophysiology, and visual fields. All patients had heterozygous amino acid-changing variants (missense mutations) in the ABCA4 gene. A splice sequence change was found in a 30-year-old patient with severly affected vision. Two novel sequence changes were identified: a missense mutation in a mildly affected 44-year-old patient and a frameshift mutation in a severly affected 34-year-old patient. The identified ABCA4 mutations were compatible with the resulting phenotypes in terms of BCVA. Higher BCVAs were recorded in patients with missense mutations. Sequence changes, predicted to have more deleterious effect on protein function, resulted in a more severe phenotype. This case series of STGD patients demonstrates novel genotype/phenotype correlations, which may be useful to counselling of patients. This information may prove useful in selection of candidates for clinical trials in ABCA4 disease.
The changing face of Usher syndrome: clinical implications.
Cohen, Mazal; Bitner-Glindzicz, Maria; Luxon, Linda
2007-02-01
Usher syndrome is both genetically and phenotypically heterogeneous. Traditionally, the condition has been classified into three clinical types, differentiated by the severity and progression of the hearing impairment and by the presence or absence of vestibular symptoms. Recent advances in molecular genetics have enabled researchers to study the phenotypic expression in confirmed molecular groups of Usher. In response to the expansion of clinical and genetic information on Usher, we report an up to date review of the different clinical forms of Usher in known molecular groups and use the emerging evidence to appraise the diagnostic utility of the traditional classification of Usher. Our findings undermine the traditional view that the clinical types of Usher have distinct genetic causes. The pleiotropic effects of some of the major causes of Usher lead to considerable overlap between the different clinical types, with very little evidence for phenotypic-genotypic correlations. The novel synthesis emerging from this review suggests more productive approaches to the diagnosis of Usher in hearing-impaired children which would provide more accurate prognostic information to families.