ERIC Educational Resources Information Center
Takahashi, Junichi; Gyoba, Jiro; Yamawaki, Nozomi
2013-01-01
This report examines effects of the spatial complexity of configurations on visual short-term memory (VSTM) capacity for individuals from the general population differing on autism-spectrum quotient (AQ) scores. During each trial, nine-line segments with various orientations were arrayed in simple or complex configurations and presented in both…
Kiesel, Andrea; Kunde, Wilfried; Pohl, Carsten; Berner, Michael P; Hoffmann, Joachim
2009-01-01
Expertise in a certain stimulus domain enhances perceptual capabilities. In the present article, the authors investigate whether expertise improves perceptual processing to an extent that allows complex visual stimuli to bias behavior unconsciously. Expert chess players judged whether a target chess configuration entailed a checking configuration. These displays were preceded by masked prime configurations that either represented a checking or a nonchecking configuration. Chess experts, but not novice chess players, revealed a subliminal response priming effect, that is, faster responding when prime and target displays were congruent (both checking or both nonchecking) rather than incongruent. Priming generalized to displays that were not used as targets, ruling out simple repetition priming effects. Thus, chess experts were able to judge unconsciously presented chess configurations as checking or nonchecking. A 2nd experiment demonstrated that experts' priming does not occur for simpler but uncommon chess configurations. The authors conclude that long-term practice prompts the acquisition of visual memories of chess configurations with integrated form-location conjunctions. These perceptual chunks enable complex visual processing outside of conscious awareness.
International Space Station Configuration Analysis and Integration
NASA Technical Reports Server (NTRS)
Anchondo, Rebekah
2016-01-01
Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.
A framework for stochastic simulations and visualization of biological electron-transfer dynamics
NASA Astrophysics Data System (ADS)
Nakano, C. Masato; Byun, Hye Suk; Ma, Heng; Wei, Tao; El-Naggar, Mohamed Y.
2015-08-01
Electron transfer (ET) dictates a wide variety of energy-conversion processes in biological systems. Visualizing ET dynamics could provide key insight into understanding and possibly controlling these processes. We present a computational framework named VizBET to visualize biological ET dynamics, using an outer-membrane Mtr-Omc cytochrome complex in Shewanella oneidensis MR-1 as an example. Starting from X-ray crystal structures of the constituent cytochromes, molecular dynamics simulations are combined with homology modeling, protein docking, and binding free energy computations to sample the configuration of the complex as well as the change of the free energy associated with ET. This information, along with quantum-mechanical calculations of the electronic coupling, provides inputs to kinetic Monte Carlo (KMC) simulations of ET dynamics in a network of heme groups within the complex. Visualization of the KMC simulation results has been implemented as a plugin to the Visual Molecular Dynamics (VMD) software. VizBET has been used to reveal the nature of ET dynamics associated with novel nonequilibrium phase transitions in a candidate configuration of the Mtr-Omc complex due to electron-electron interactions.
Threat captures attention but does not affect learning of contextual regularities.
Yamaguchi, Motonori; Harwood, Sarah L
2017-04-01
Some of the stimulus features that guide visual attention are abstract properties of objects such as potential threat to one's survival, whereas others are complex configurations such as visual contexts that are learned through past experiences. The present study investigated the two functions that guide visual attention, threat detection and learning of contextual regularities, in visual search. Search arrays contained images of threat and non-threat objects, and their locations were fixed on some trials but random on other trials. Although they were irrelevant to the visual search task, threat objects facilitated attention capture and impaired attention disengagement. Search time improved for fixed configurations more than for random configurations, reflecting learning of visual contexts. Nevertheless, threat detection had little influence on learning of the contextual regularities. The results suggest that factors guiding visual attention are different from factors that influence learning to guide visual attention.
Ronald, Kelly L; Fernández-Juricic, Esteban; Lucas, Jeffrey R
2018-05-16
A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird ( Molothrus ater ) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive. © 2018 The Author(s).
ERIC Educational Resources Information Center
Kiesel, Andrea; Kunde, Wilfried; Pohl, Carsten; Berner, Michael P.; Hoffmann, Joachim
2009-01-01
Expertise in a certain stimulus domain enhances perceptual capabilities. In the present article, the authors investigate whether expertise improves perceptual processing to an extent that allows complex visual stimuli to bias behavior unconsciously. Expert chess players judged whether a target chess configuration entailed a checking configuration.…
Interobject grouping facilitates visual awareness.
Stein, Timo; Kaiser, Daniel; Peelen, Marius V
2015-01-01
In organizing perception, the human visual system takes advantage of regularities in the visual input to perceptually group related image elements. Simple stimuli that can be perceptually grouped based on physical regularities, for example by forming an illusory contour, have a competitive advantage in entering visual awareness. Here, we show that regularities that arise from the relative positioning of complex, meaningful objects in the visual environment also modulate visual awareness. Using continuous flash suppression, we found that pairs of objects that were positioned according to real-world spatial regularities (e.g., a lamp above a table) accessed awareness more quickly than the same object pairs shown in irregular configurations (e.g., a table above a lamp). This advantage was specific to upright stimuli and abolished by stimulus inversion, meaning that it did not reflect physical stimulus confounds or the grouping of simple image elements. Thus, knowledge of the spatial configuration of objects in the environment shapes the contents of conscious perception.
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
Face features and face configurations both contribute to visual crowding.
Sun, Hsin-Mei; Balas, Benjamin
2015-02-01
Crowding refers to the inability to recognize an object in peripheral vision when other objects are presented nearby (Whitney & Levi Trends in Cognitive Sciences, 15, 160-168, 2011). A popular explanation of crowding is that features of the target and flankers are combined inappropriately when they are located within an integration field, thus impairing target recognition (Pelli, Palomares, & Majaj Journal of Vision, 4(12), 12:1136-1169, 2004). However, it remains unclear which features of the target and flankers are combined inappropriately to cause crowding (Levi Vision Research, 48, 635-654, 2008). For example, in a complex stimulus (e.g., a face), to what extent does crowding result from the integration of features at a part-based level or at the level of global processing of the configural appearance? In this study, we used a face categorization task and different types of flankers to examine how much the magnitude of visual crowding depends on the similarity of face parts or of global configurations. We created flankers with face-like features (e.g., the eyes, nose, and mouth) in typical and scrambled configurations to examine the impacts of part appearance and global configuration on the visual crowding of faces. Additionally, we used "electrical socket" flankers that mimicked first-order face configuration but had only schematic features, to examine the extent to which global face geometry impacted crowding. Our results indicated that both face parts and configurations contribute to visual crowding, suggesting that face similarity as realized under crowded conditions includes both aspects of facial appearance.
Software For Graphical Representation Of A Network
NASA Technical Reports Server (NTRS)
Mcallister, R. William; Mclellan, James P.
1993-01-01
System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.
2006-12-18
Background - The human heart is composed of a helicalnetwork of muscle fibers. These fibers are organized to form sheets thatare separated by cleavage surfaces. This complex structure of fibers andsheets is responsible for the orthotropic mechanical properties ofcardiac muscle. The understanding of the configuration of the 3D fiberand sheet structure is important for modeling the mechanical andelectrical properties of the heart and changes in this configuration maybe of significant importance to understand the remodeling aftermyocardial infarction.Methods - Anisotropic least square filteringfollowed by fiber and sheet tracking techniques were applied to DiffusionTensor Magnetic Resonance Imaging (DTMRI) data of the excisedmore » humanheart. The fiber configuration was visualized by using thin tubes toincrease 3-dimensional visual perception of the complex structure. Thesheet structures were reconstructed from the DTMRI data, obtainingsurfaces that span the wall from the endo- to the epicardium. Allvisualizations were performed using the high-quality ray-tracing softwarePOV-Ray. Results - The fibers are shown to lie in sheets that haveconcave or convex transmural structure which correspond to histologicalstudies published in the literature. The fiber angles varied depending onthe position between the epi- and endocardium. The sheets had a complexstructure that depended on the location within the myocardium. In theapex region the sheets had more curvature. Conclusions - A high-qualityvisualization algorithm applied to demonstrated high quality DTMRI datais able to elicit the comprehension of the complex 3 dimensionalstructure of the fibers and sheets in the heart.« less
Kaiser, Daniel; Stein, Timo; Peelen, Marius V.
2014-01-01
In virtually every real-life situation humans are confronted with complex and cluttered visual environments that contain a multitude of objects. Because of the limited capacity of the visual system, objects compete for neural representation and cognitive processing resources. Previous work has shown that such attentional competition is partly object based, such that competition among elements is reduced when these elements perceptually group into an object based on low-level cues. Here, using functional MRI (fMRI) and behavioral measures, we show that the attentional benefit of grouping extends to higher-level grouping based on the relative position of objects as experienced in the real world. An fMRI study designed to measure competitive interactions among objects in human visual cortex revealed reduced neural competition between objects when these were presented in commonly experienced configurations, such as a lamp above a table, relative to the same objects presented in other configurations. In behavioral visual search studies, we then related this reduced neural competition to improved target detection when distracter objects were shown in regular configurations. Control studies showed that low-level grouping could not account for these results. We interpret these findings as reflecting the grouping of objects based on higher-level spatial-relational knowledge acquired through a lifetime of seeing objects in specific configurations. This interobject grouping effectively reduces the number of objects that compete for representation and thereby contributes to the efficiency of real-world perception. PMID:25024190
Wood, Bradley M; Jia, Guang; Carmichael, Owen; McKlveen, Kevin; Homberger, Dominique G
2018-05-12
3D imaging techniques enable the non-destructive analysis and modeling of complex structures. Among these, MRI exhibits good soft tissue contrast, but is currently less commonly used for non-clinical research than x-ray CT, even though the latter requires contrast-staining that shrinks and distorts soft tissues. When the objective is the creation of a realistic and complete 3D model of soft tissue structures, MRI data are more demanding to acquire and visualize and require extensive post-processing because they comprise non-cubic voxels with dimensions that represent a trade-off between tissue contrast and image resolution. Therefore, thin soft tissue structures with complex spatial configurations are not always visible in a single MRI dataset, so that standard segmentation techniques are not sufficient for their complete visualization. By using the example of the thin and spatially complex connective tissue myosepta in lampreys, we developed a workflow protocol for the selection of the appropriate parameters for the acquisition of MRI data and for the visualization and 3D modeling of soft tissue structures. This protocol includes a novel recursive segmentation technique for supplementing missing data in one dataset with data from another dataset to produce realistic and complete 3D models. Such 3D models are needed for the modeling of dynamic processes, such as the biomechanics of fish locomotion. However, our methodology is applicable to the visualization of any thin soft tissue structures with complex spatial configurations, such as fasciae, aponeuroses, and small blood vessels and nerves, for clinical research and the further exploration of tensegrity. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Effect of planform and body on supersonic aerodynamics of multibody configurations
NASA Technical Reports Server (NTRS)
Mcmillin, S. Naomi; Bauer, Steven X. S.; Howell, Dorothy T.
1992-01-01
An experimental and theoretical investigation of the effect of the wing planform and bodies on the supersonic aerodynamics of a low-fineness-ratio, multibody configuration has been conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Force and moment data, flow-visualization data, and surface-pressure data were obtained on eight low-fineness-ratio, twin-body configurations. These configurations varied in inboard wing planform shape, outboard wing planform shape, outboard wing planform size, and presence of the bodies. The force and moment data showed that increasing the ratio of outboard wing area to total wing area or increasing the leading-edge sweep of the inboard wing influenced the aerodynamic characteristics. The flow-visualization data showed a complex flow-field system of shocks, shock-induced separation, and body vortex systems occurring between the side bodies. This flow field was substantially affected by the inboard wing planform shape but minimally affected by the outboard wing planform shape. The flow-visualization and surface-pressure data showed that flow over the outboard wing developed as expected with changes in angle of attack and Mach number and was affected by the leading-edge sweep of the inboard wing and the presence of the bodies. Evaluation of the linear-theory prediction methods revealed their general inability to consistently predict the characteristics of these multibody configurations.
Visual pattern image sequence coding
NASA Technical Reports Server (NTRS)
Silsbee, Peter; Bovik, Alan C.; Chen, Dapang
1990-01-01
The visual pattern image coding (VPIC) configurable digital image-coding process is capable of coding with visual fidelity comparable to the best available techniques, at compressions which (at 30-40:1) exceed all other technologies. These capabilities are associated with unprecedented coding efficiencies; coding and decoding operations are entirely linear with respect to image size and entail a complexity that is 1-2 orders of magnitude faster than any previous high-compression technique. The visual pattern image sequence coding to which attention is presently given exploits all the advantages of the static VPIC in the reduction of information from an additional, temporal dimension, to achieve unprecedented image sequence coding performance.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderburg, J. D.
1977-01-01
A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.
NASA Astrophysics Data System (ADS)
Hamprecht, Fred A.; Peter, Christine; Daura, Xavier; Thiel, Walter; van Gunsteren, Wilfred F.
2001-02-01
We propose an approach for summarizing the output of long simulations of complex systems, affording a rapid overview and interpretation. First, multidimensional scaling techniques are used in conjunction with dimension reduction methods to obtain a low-dimensional representation of the configuration space explored by the system. A nonparametric estimate of the density of states in this subspace is then obtained using kernel methods. The free energy surface is calculated from that density, and the configurations produced in the simulation are then clustered according to the topography of that surface, such that all configurations belonging to one local free energy minimum form one class. This topographical cluster analysis is performed using basin spanning trees which we introduce as subgraphs of Delaunay triangulations. Free energy surfaces obtained in dimensions lower than four can be visualized directly using iso-contours and -surfaces. Basin spanning trees also afford a glimpse of higher-dimensional topographies. The procedure is illustrated using molecular dynamics simulations on the reversible folding of peptide analoga. Finally, we emphasize the intimate relation of density estimation techniques to modern enhanced sampling algorithms.
Developments in the simulation of compressible inviscid and viscous flow on supercomputers
NASA Technical Reports Server (NTRS)
Steger, J. L.; Buning, P. G.
1985-01-01
In anticipation of future supercomputers, finite difference codes are rapidly being extended to simulate three-dimensional compressible flow about complex configurations. Some of these developments are reviewed. The importance of computational flow visualization and diagnostic methods to three-dimensional flow simulation is also briefly discussed.
A visual programming environment for the Navier-Stokes computer
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl; Crockett, Thomas W.; Middleton, David
1988-01-01
The Navier-Stokes computer is a high-performance, reconfigurable, pipelined machine designed to solve large computational fluid dynamics problems. Due to the complexity of the architecture, development of effective, high-level language compilers for the system appears to be a very difficult task. Consequently, a visual programming methodology has been developed which allows users to program the system at an architectural level by constructing diagrams of the pipeline configuration. These schematic program representations can then be checked for validity and automatically translated into machine code. The visual environment is illustrated by using a prototype graphical editor to program an example problem.
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.
Does linear separability really matter? Complex visual search is explained by simple search
Vighneshvel, T.; Arun, S. P.
2013-01-01
Visual search in real life involves complex displays with a target among multiple types of distracters, but in the laboratory, it is often tested using simple displays with identical distracters. Can complex search be understood in terms of simple searches? This link may not be straightforward if complex search has emergent properties. One such property is linear separability, whereby search is hard when a target cannot be separated from its distracters using a single linear boundary. However, evidence in favor of linear separability is based on testing stimulus configurations in an external parametric space that need not be related to their true perceptual representation. We therefore set out to assess whether linear separability influences complex search at all. Our null hypothesis was that complex search performance depends only on classical factors such as target-distracter similarity and distracter homogeneity, which we measured using simple searches. Across three experiments involving a variety of artificial and natural objects, differences between linearly separable and nonseparable searches were explained using target-distracter similarity and distracter heterogeneity. Further, simple searches accurately predicted complex search regardless of linear separability (r = 0.91). Our results show that complex search is explained by simple search, refuting the widely held belief that linear separability influences visual search. PMID:24029822
Azzopardi, George; Petkov, Nicolai
2014-01-01
The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms. PMID:25126068
Fox, Olivia M.; Harel, Assaf; Bennett, Kevin B.
2017-01-01
The perception of a visual stimulus is dependent not only upon local features, but also on the arrangement of those features. When stimulus features are perceptually well organized (e.g., symmetric or parallel), a global configuration with a high degree of salience emerges from the interactions between these features, often referred to as emergent features. Emergent features can be demonstrated in the Configural Superiority Effect (CSE): presenting a stimulus within an organized context relative to its presentation in a disarranged one results in better performance. Prior neuroimaging work on the perception of emergent features regards the CSE as an “all or none” phenomenon, focusing on the contrast between configural and non-configural stimuli. However, it is still not clear how emergent features are processed between these two endpoints. The current study examined the extent to which behavioral and neuroimaging markers of emergent features are responsive to the degree of configurality in visual displays. Subjects were tasked with reporting the anomalous quadrant in a visual search task while being scanned. Degree of configurality was manipulated by incrementally varying the rotational angle of low-level features within the stimulus arrays. Behaviorally, we observed faster response times with increasing levels of configurality. These behavioral changes were accompanied by increases in response magnitude across multiple visual areas in occipito-temporal cortex, primarily early visual cortex and object-selective cortex. Our findings suggest that the neural correlates of emergent features can be observed even in response to stimuli that are not fully configural, and demonstrate that configural information is already present at early stages of the visual hierarchy. PMID:28167924
Optimization Methods for Spiking Neurons and Networks
Russell, Alexander; Orchard, Garrick; Dong, Yi; Mihalaş, Ştefan; Niebur, Ernst; Tapson, Jonathan; Etienne-Cummings, Ralph
2011-01-01
Spiking neurons and spiking neural circuits are finding uses in a multitude of tasks such as robotic locomotion control, neuroprosthetics, visual sensory processing, and audition. The desired neural output is achieved through the use of complex neuron models, or by combining multiple simple neurons into a network. In either case, a means for configuring the neuron or neural circuit is required. Manual manipulation of parameters is both time consuming and non-intuitive due to the nonlinear relationship between parameters and the neuron’s output. The complexity rises even further as the neurons are networked and the systems often become mathematically intractable. In large circuits, the desired behavior and timing of action potential trains may be known but the timing of the individual action potentials is unknown and unimportant, whereas in single neuron systems the timing of individual action potentials is critical. In this paper, we automate the process of finding parameters. To configure a single neuron we derive a maximum likelihood method for configuring a neuron model, specifically the Mihalas–Niebur Neuron. Similarly, to configure neural circuits, we show how we use genetic algorithms (GAs) to configure parameters for a network of simple integrate and fire with adaptation neurons. The GA approach is demonstrated both in software simulation and hardware implementation on a reconfigurable custom very large scale integration chip. PMID:20959265
The audiovisual structure of onomatopoeias: An intrusion of real-world physics in lexical creation.
Taitz, Alan; Assaneo, M Florencia; Elisei, Natalia; Trípodi, Mónica; Cohen, Laurent; Sitt, Jacobo D; Trevisan, Marcos A
2018-01-01
Sound-symbolic word classes are found in different cultures and languages worldwide. These words are continuously produced to code complex information about events. Here we explore the capacity of creative language to transport complex multisensory information in a controlled experiment, where our participants improvised onomatopoeias from noisy moving objects in audio, visual and audiovisual formats. We found that consonants communicate movement types (slide, hit or ring) mainly through the manner of articulation in the vocal tract. Vowels communicate shapes in visual stimuli (spiky or rounded) and sound frequencies in auditory stimuli through the configuration of the lips and tongue. A machine learning model was trained to classify movement types and used to validate generalizations of our results across formats. We implemented the classifier with a list of cross-linguistic onomatopoeias simple actions were correctly classified, while different aspects were selected to build onomatopoeias of complex actions. These results show how the different aspects of complex sensory information are coded and how they interact in the creation of novel onomatopoeias.
Visualization of Fiber Structurein the Left and Right Ventricleof a Human Heart
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.
2006-07-12
The human heart is composed of a helical network of musclefibers. Anisotropic least squares filtering followed by fiber trackingtechniques were applied to Diffusion Tensor Magnetic Resonance Imaging(DTMRI) data of the excised human heart. The fiber configuration wasvisualized by using thin tubes to increase 3-dimensional visualperception of the complex structure. All visualizations were performedusing the high-quality ray-tracing software POV-Ray. The fibers are shownwithin the left and right ventricles. Both ventricles exhibit similarfiber architecture and some bundles of fibers are shown linking right andleft ventricles on the posterior region of the heart.
NASA Astrophysics Data System (ADS)
Jones, A. A.; Holt, R. M.
2017-12-01
Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).
Visual working memory for global, object, and part-based information.
Patterson, Michael D; Bly, Benjamin Martin; Porcelli, Anthony J; Rypma, Bart
2007-06-01
We investigated visual working memory for novel objects and parts of novel objects. After a delay period, participants showed strikingly more accurate performance recognizing a single whole object than the parts of that object. This bias to remember whole objects, rather than parts, persisted even when the division between parts was clearly defined and the parts were disconnected from each other so that, in order to remember the single whole object, the participants needed to mentally combine the parts. In addition, the bias was confirmed when the parts were divided by color. These experiments indicated that holistic perceptual-grouping biases are automatically used to organize storage in visual working memory. In addition, our results suggested that the bias was impervious to top-down consciously directed control, because when task demands were manipulated through instruction and catch trials, the participants still recognized whole objects more quickly and more accurately than their parts. This bias persisted even when the whole objects were novel and the parts were familiar. We propose that visual working memory representations depend primarily on the global configural properties of whole objects, rather than part-based representations, even when the parts themselves can be clearly perceived as individual objects. This global configural bias beneficially reduces memory load on a capacity-limited system operating in a complex visual environment, because fewer distinct items must be remembered.
Contextual cueing: implicit learning and memory of visual context guides spatial attention.
Chun, M M; Jiang, Y
1998-06-01
Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.
Interactive visual optimization and analysis for RFID benchmarking.
Wu, Yingcai; Chung, Ka-Kei; Qu, Huamin; Yuan, Xiaoru; Cheung, S C
2009-01-01
Radio frequency identification (RFID) is a powerful automatic remote identification technique that has wide applications. To facilitate RFID deployment, an RFID benchmarking instrument called aGate has been invented to identify the strengths and weaknesses of different RFID technologies in various environments. However, the data acquired by aGate are usually complex time varying multidimensional 3D volumetric data, which are extremely challenging for engineers to analyze. In this paper, we introduce a set of visualization techniques, namely, parallel coordinate plots, orientation plots, a visual history mechanism, and a 3D spatial viewer, to help RFID engineers analyze benchmark data visually and intuitively. With the techniques, we further introduce two workflow procedures (a visual optimization procedure for finding the optimum reader antenna configuration and a visual analysis procedure for comparing the performance and identifying the flaws of RFID devices) for the RFID benchmarking, with focus on the performance analysis of the aGate system. The usefulness and usability of the system are demonstrated in the user evaluation.
Effect of organizational strategy on visual memory in patients with schizophrenia.
Kim, Myung-Sun; Namgoong, Yoon; Youn, Tak
2008-08-01
The aim of the present study was to examine how copy organization mediated immediate recall among patients with schizophrenia using the Rey-Osterrieth Complex Figure Test (ROCF). The Boston Qualitative Scoring System (BQSS) was applied for qualitative and quantitative analyses of ROCF performances. Subjects included 20 patients with schizophrenia and 20 age- and gender-matched healthy controls. During the copy condition, the schizophrenia group and the control group differed in fragmentation; during the immediate recall condition, the two groups differed in configural presence and planning; and during the delayed recall condition, they differed in several qualitative measurements, including configural presence, cluster presence/placement, detail presence/placement, fragmentation, planning, and neatness. The two groups also differed in several quantitative measurements, including immediate presence and accuracy, immediate retention, delayed retention, and organization. Although organizational strategies used during the copy condition mediated the difference between the two groups during the immediate recall condition, group also had a significant direct effect on immediate recall. Schizophrenia patients are deficient in visual memory, and a piecemeal approach to the figure and organizational deficit seem to be related to the visual memory deficit. But schizophrenia patients also appeared to have some memory problems, including retention and/or retrieval deficits.
Image understanding in terms of semiotics
NASA Astrophysics Data System (ADS)
Zakharko, E.; Kaminsky, Roman M.; Shpytko, V.
1995-06-01
Human perception of pictorial visual information is investigated from iconical sign view-point and appropriate semiotical model is discussed. Image construction (syntactics) is analyzed as a complex hierarchical system and various types of pictorial objects, their relations, regular configurations are represented, studied, and modeled. Relations between image syntactics, its semantics, and pragmatics is investigated. Research results application to the problems of thematic interpretation of Earth surface remote imgages is illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Homer; Ashok Varikuti; Xinming Ou
Various tools exist to analyze enterprise network systems and to produce attack graphs detailing how attackers might penetrate into the system. These attack graphs, however, are often complex and difficult to comprehend fully, and a human user may find it problematic to reach appropriate configuration decisions. This paper presents methodologies that can 1) automatically identify portions of an attack graph that do not help a user to understand the core security problems and so can be trimmed, and 2) automatically group similar attack steps as virtual nodes in a model of the network topology, to immediately increase the understandability ofmore » the data. We believe both methods are important steps toward improving visualization of attack graphs to make them more useful in configuration management for large enterprise networks. We implemented our methods using one of the existing attack-graph toolkits. Initial experimentation shows that the proposed approaches can 1) significantly reduce the complexity of attack graphs by trimming a large portion of the graph that is not needed for a user to understand the security problem, and 2) significantly increase the accessibility and understandability of the data presented in the attack graph by clearly showing, within a generated visualization of the network topology, the number and type of potential attacks to which each host is exposed.« less
The nature of expertise in fingerprint examiners.
Busey, Thomas A; Parada, Francisco J
2010-04-01
Latent print examinations involve a complex set of psychological and cognitive processes. This article summarizes existing work that has addressed how training and experience creates changes in latent print examiners. Experience appears to improve overall accuracy, increase visual working memory, and lead to configural processing of upright fingerprints. Experts also demonstrate a narrower visual filter and, as a group, tend to show greater consistency when viewing ink prints. These findings address recent criticisms of latent print evidence, but many open questions still exist. Cognitive scientists are well positioned to conduct studies that will improve the training and practices of latent print examiners, and suggestions for becoming involved in fingerprint research are provided.
Beltran-Parrazal, Luis; Morgado-Valle, Consuelo; Serrano, Raul E; Manzo, Jorge; Vergara, Julio L
2014-03-30
One of the limitations when establishing an electrophysiology setup, particularly in low resource settings, is the high cost of microscopes. The average cost for a microscope equipped with the optics for infrared (IR) contrast or microfluorometry is $40,000. We hypothesized that optical elements and features included in commercial microscopes are not necessary to IR video-visualize neurons or for microfluorometry. We present instructions for building a low-cost epifluorescence upright microscope suitable for visualized patch-clamp recording and fluorescence detection using mostly catalog-available parts. This microscope supports applications such as visualized whole-cell recording using IR oblique illumination (IR-OI), or more complex applications such as microfluorometry using a photodiode. In both IR-OI and fluorescence, actual resolution measured with 2-μm latex beads is close to theoretical resolution. The lack of movable parts to switch configurations ensures stability when doing intracellular recording. The low cost is a significant advantage of this microscope compared to existent custom-built microscopes. The cost of the simplest configuration with IR-OI is ∼$2000, whereas the cost of the configuration with epifluorescence is ∼$5000. Since this design does not use pieces discarded from commercial microscopes, it is completely reproducible. We suggest that this microscope is a viable alternative for doing in vitro electrophysiology and microfluorometry in low-resource settings. Characteristics such as an open box design, easy assembly, and low-cost make this microscope a useful instrument for science education and teaching for topics such as optics, biology, neuroscience, and for scientific "hands-on" workshops. Copyright © 2014 Elsevier B.V. All rights reserved.
Real-time distributed video coding for 1K-pixel visual sensor networks
NASA Astrophysics Data System (ADS)
Hanca, Jan; Deligiannis, Nikos; Munteanu, Adrian
2016-07-01
Many applications in visual sensor networks (VSNs) demand the low-cost wireless transmission of video data. In this context, distributed video coding (DVC) has proven its potential to achieve state-of-the-art compression performance while maintaining low computational complexity of the encoder. Despite their proven capabilities, current DVC solutions overlook hardware constraints, and this renders them unsuitable for practical implementations. This paper introduces a DVC architecture that offers highly efficient wireless communication in real-world VSNs. The design takes into account the severe computational and memory constraints imposed by practical implementations on low-resolution visual sensors. We study performance-complexity trade-offs for feedback-channel removal, propose learning-based techniques for rate allocation, and investigate various simplifications of side information generation yielding real-time decoding. The proposed system is evaluated against H.264/AVC intra, Motion-JPEG, and our previously designed DVC prototype for low-resolution visual sensors. Extensive experimental results on various data show significant improvements in multiple configurations. The proposed encoder achieves real-time performance on a 1k-pixel visual sensor mote. Real-time decoding is performed on a Raspberry Pi single-board computer or a low-end notebook PC. To the best of our knowledge, the proposed codec is the first practical DVC deployment on low-resolution VSNs.
Some Observations on the Current Status of Performing Finite Element Analyses
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Knight, Norman F., Jr; Shivakumar, Kunigal N.
2015-01-01
Aerospace structures are complex high-performance structures. Advances in reliable and efficient computing and modeling tools are enabling analysts to consider complex configurations, build complex finite element models, and perform analysis rapidly. Many of the early career engineers of today are very proficient in the usage of modern computers, computing engines, complex software systems, and visualization tools. These young engineers are becoming increasingly efficient in building complex 3D models of complicated aerospace components. However, the current trends demonstrate blind acceptance of the results of the finite element analysis results. This paper is aimed at raising an awareness of this situation. Examples of the common encounters are presented. To overcome the current trends, some guidelines and suggestions for analysts, senior engineers, and educators are offered.
Forejt, J; Gregorová, S; Goetz, P
1981-01-01
Analysis of the chromosome behaviour at pachytene has been performed by means of the silver staining technique visualizing the synaptonemal complexes (SCs) in male mice heterozygous for the male-sterile translocations T(5;12)31Hm T(16;17)43H and T(7;19)145H, respectively. the T(9;17)138Ca male heterozygotes and T43H/T43H homozygous males were used as fertile controls. The sterile mice displayed a high frequency (about 60%) of pachytene spermatocytes with autosomal translocation configuration located in close vicinity of the XY pair. The dense round body (XAB), normally located near the X-chromosome axis in fertile males, exhibited abnormal affinity to translocation configuration in the sterile translocation heterozygotes. The incomplete synapsis of autosomes involved in translocation configuration was observed in more than 70% of the pachytene spermatocytes with the male-sterile translocations but less than 20% of the cells from T138Ca fertile male.s. A hypothesis relating the spermatogenic arrest of carriers of male-sterile rearrangements to the presumed interference with X chromosome inactivation in male meiosis is discussed.
Tax, Chantal M. W.; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A.; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander
2015-01-01
Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model “crossing fibers”, the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally) along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches. PMID:26444010
Tax, Chantal M W; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander
2015-01-01
Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model "crossing fibers", the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally) along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches.
ERIC Educational Resources Information Center
Eidels, Ami; Townsend, James T.; Pomerantz, James R.
2008-01-01
People are especially efficient in processing certain visual stimuli such as human faces or good configurations. It has been suggested that topology and geometry play important roles in configural perception. Visual search is one area in which configurality seems to matter. When either of 2 target features leads to a correct response and the…
Goldstone, Robert L; de Leeuw, Joshua R; Landy, David H
2016-01-01
Attention is often inextricably intertwined with perception, and it is deployed not only to spatial regions, but also to sensory dimensions, learned dimensions, and learned complex configurations. Firestone & Scholl's (F&S)'s tactic of isolating visual perceptual processes from attention and action has the negative consequence of neglecting interactions that are critically important for allowing people to perceive their world in efficient and useful ways.
Configural learning in contextual cuing of visual search.
Beesley, Tom; Vadillo, Miguel A; Pearson, Daniel; Shanks, David R
2016-08-01
Two experiments were conducted to explore the role of configural representations in contextual cuing of visual search. Repeating patterns of distractors (contexts) were trained incidentally as predictive of the target location. Training participants with repeating contexts of consistent configurations led to stronger contextual cuing than when participants were trained with contexts of inconsistent configurations. Computational simulations with an elemental associative learning model of contextual cuing demonstrated that purely elemental representations could not account for the results. However, a configural model of associative learning was able to simulate the ordinal pattern of data. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Internal model of gravity influences configural body processing.
Barra, Julien; Senot, Patrice; Auclair, Laurent
2017-01-01
Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.
RICA: a reliable and image configurable arena for cyborg bumblebee based on CAN bus.
Gong, Fan; Zheng, Nenggan; Xue, Lei; Xu, Kedi; Zheng, Xiaoxiang
2014-01-01
In this paper, we designed a reliable and image configurable flight arena, RICA, for developing cyborg bumblebees. To meet the spatial and temporal requirements of bumblebees, the Controller Area Network (CAN) bus is adopted to interconnect the LED display modules to ensure the reliability and real-time performance of the arena system. Easily-configurable interfaces on a desktop computer implemented by python scripts are provided to transmit the visual patterns to the LED distributor online and configure RICA dynamically. The new arena system will be a power tool to investigate the quantitative relationship between the visual inputs and induced flight behaviors and also will be helpful to the visual-motor research in other related fields.
Evaluating the Efficacy of Wavelet Configurations on Turbulent-Flow Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaomeng; Gruchalla, Kenny; Potter, Kristin
2015-10-25
I/O is increasingly becoming a significant constraint for simulation codes and visualization tools on modern supercomputers. Data compression is an attractive workaround, and, in particular, wavelets provide a promising solution. However, wavelets can be applied in multiple configurations, and the variations in configuration impact accuracy, storage cost, and execution time. While the variation in these factors over wavelet configurations have been explored in image processing, they are not well understood for visualization and analysis of scientific data. To illuminate this issue, we evaluate multiple wavelet configurations on turbulent-flow data. Our approach is to repeat established analysis routines on uncompressed andmore » lossy-compressed versions of a data set, and then quantitatively compare their outcomes. Our findings show that accuracy varies greatly based on wavelet configuration, while storage cost and execution time vary less. Overall, our study provides new insights for simulation analysts and visualization experts, who need to make tradeoffs between accuracy, storage cost, and execution time.« less
Attention Priority Map of Face Images in Human Early Visual Cortex.
Mo, Ce; He, Dongjun; Fang, Fang
2018-01-03
Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1) and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modulated, not only by physical salience and task-goal relevance, but also by the configuration of stimuli images. Copyright © 2018 the authors 0270-6474/18/380149-09$15.00/0.
How high is visual short-term memory capacity for object layout?
Sanocki, Thomas; Sellers, Eric; Mittelstadt, Jeff; Sulman, Noah
2010-05-01
Previous research measuring visual short-term memory (VSTM) suggests that the capacity for representing the layout of objects is fairly high. In four experiments, we further explored the capacity of VSTM for layout of objects, using the change detection method. In Experiment 1, participants retained most of the elements in displays of 4 to 8 elements. In Experiments 2 and 3, with up to 20 elements, participants retained many of them, reaching a capacity of 13.4 stimulus elements. In Experiment 4, participants retained much of a complex naturalistic scene. In most cases, increasing display size caused only modest reductions in performance, consistent with the idea of configural, variable-resolution grouping. The results indicate that participants can retain a substantial amount of scene layout information (objects and locations) in short-term memory. We propose that this is a case of remote visual understanding, where observers' ability to integrate information from a scene is paramount.
STAR: an integrated solution to management and visualization of sequencing data.
Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W; Ecker, Joseph R; Millar, A Harvey; Ren, Bing; Wang, Wei
2013-12-15
Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser.
Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel
NASA Technical Reports Server (NTRS)
Morris, O. A.; Corlett, W. A.; Wassum, D. L.; Babb, C. D.
1985-01-01
The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research.
Short-term memory for spatial configurations in the tactile modality: a comparison with vision.
Picard, Delphine; Monnier, Catherine
2009-11-01
This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.
Philips, Ryan T; Chakravarthy, V Srinivasa
2015-01-01
Primate vision research has shown that in the retinotopic map of the primary visual cortex, eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto the dorsoventral axis. Theoretically such a map has been approximated by a complex log map. Neural models with correlational learning have explained the development of other visual maps like orientation maps and ocular-dominance maps. In this paper it is demonstrated that activity based mechanisms can drive a self-organizing map (SOM) into such a configuration that dilations and rotations of a particular image (in this case a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an appropriate boundary and realistic initial conditions, that a retinotopic map which maps eccentricity and meridional angle to the horizontal and vertical axes respectively can be developed. This developed map bears a strong resemblance to the complex log map. We also simulated lesion studies which indicate that the lateral excitatory connections play a crucial role in development of the retinotopic map.
Visualization tool for human-machine interface designers
NASA Astrophysics Data System (ADS)
Prevost, Michael P.; Banda, Carolyn P.
1991-06-01
As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.
Data Visualization Challenges and Opportunities in User-Oriented Application Development
NASA Astrophysics Data System (ADS)
Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.
2015-12-01
This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.
Silverstein, David N.
2015-01-01
In human perception studies, visual backward masking has been used to understand the temporal dynamics of subliminal vs. conscious perception. When a brief target stimulus is followed by a masking stimulus after a short interval of <100 ms, performance on the target is impaired when the target and mask are in close spatial proximity. While the psychophysical properties of backward masking have been studied extensively, there is still debate on the underlying cortical dynamics. One prevailing theory suggests that the impairment of target performance due to the mask is the result of lateral inhibition between the target and mask in feedforward processing. Another prevailing theory suggests that this impairment is due to the interruption of feedback processing of the target by the mask. This computational study demonstrates that both aspects of these theories may be correct. Using a biophysical model of V1 and V2, visual processing was modeled as interacting neocortical attractors, which must propagate up the visual stream. If an activating target attractor in V1 is quiesced enough with lateral inhibition from a mask, or not reinforced by recurrent feedback, it is more likely to burn out before becoming fully active and progressing through V2 and beyond. Results are presented which simulate metacontrast backward masking with an increasing stimulus interval and with the presence and absence of feedback activity. This showed that recurrent feedback diminishes backward masking effects and can make conscious perception more likely. One model configuration presented a metacontrast noise mask in the same hypercolumns as the target, and produced type-A masking. A second model configuration presented a target line with two parallel adjacent masking lines, and produced type-B masking. Future work should examine how the model extends to more complex spatial mask configurations. PMID:25759672
Zachariou, Valentinos; Nikas, Christine V; Safiullah, Zaid N; Gotts, Stephen J; Ungerleider, Leslie G
2017-08-01
Human face recognition is often attributed to configural processing; namely, processing the spatial relationships among the features of a face. If configural processing depends on fine-grained spatial information, do visuospatial mechanisms within the dorsal visual pathway contribute to this process? We explored this question in human adults using functional magnetic resonance imaging and transcranial magnetic stimulation (TMS) in a same-different face detection task. Within localized, spatial-processing regions of the posterior parietal cortex, configural face differences led to significantly stronger activation compared to featural face differences, and the magnitude of this activation correlated with behavioral performance. In addition, detection of configural relative to featural face differences led to significantly stronger functional connectivity between the right FFA and the spatial processing regions of the dorsal stream, whereas detection of featural relative to configural face differences led to stronger functional connectivity between the right FFA and left FFA. Critically, TMS centered on these parietal regions impaired performance on configural but not featural face difference detections. We conclude that spatial mechanisms within the dorsal visual pathway contribute to the configural processing of facial features and, more broadly, that the dorsal stream may contribute to the veridical perception of faces. Published by Oxford University Press 2016.
Singh, G D; McNamara, J A; Lozanoff, S
1998-01-01
While the dynamics of maxillo-mandibular allometry associated with treatment modalities available for the management of Class III malocclusions currently are under investigation, developmental aberration of the soft tissues in untreated Class III malocclusions requires specification. In this study, lateral cephalographs of 124 prepubertal European-American children (71 with untreated Class III malocclusion; 53 with Class I occlusion) were traced, and 12 soft-tissue landmarks digitized. Resultant geometries were scaled to an equivalent size and mean Class III and Class I configurations compared. Procrustes analysis established statistical difference (P < 0.001) between the mean configurations. Comparing the overall untreated Class III and Class I configurations, thin-plate spline (TPS) analysis indicated that both affine and non-affine transformations contribute towards the deformation (total spline) of the averaged Class III soft tissue configuration. For non-affine transformations, partial warp 8 had the highest magnitude, indicating large-scale deformations visualized as a combination of columellar retrusion and lower labial protrusion. In addition, partial warp 5 also had a high magnitude, demonstrating upper labial vertical compression with antero-inferior elongation of the lower labio-mental soft tissue complex. Thus, children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the maxillary soft tissue complex in combination with antero-inferior mandibular soft tissue elongation. This pattern of deformations may represent gene-environment interactions, resulting in Class III malocclusions with characteristic phenotypes, that are amenable to orthodontic and dentofacial orthopedic manipulations.
On the maximum-entropy/autoregressive modeling of time series
NASA Technical Reports Server (NTRS)
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
Efficiency of bowel preparation for capsule endoscopy examination: a meta-analysis.
Niv, Yaron
2008-03-07
Good preparation before endoscopic procedures is essential for successful visualization. The small bowel is difficult to evaluate because of its length and complex configuration. A meta-analysis was conducted of studies comparing small bowel visualization by capsule endoscopy with and without preparation. Medical data bases were searched for all studies investigating the preparation for capsule endoscopy of the small bowel up to July 31, 2007. Studies that scored bowel cleanness and measured gastric and small bowel transit time and rate of cecum visualization were included. The primary endpoint was the quality of bowel visualization. The secondary endpoints were transit times and proportion of examinations that demonstrated the cecum, with and without preparation. Meta-analysis was performed with StatDirect Statistical software, version 2.6.1 (http://statsdirect.com). Eight studies met the inclusion criteria. Bowel visualization was scored as "good" in 78% of the examinations performed with preparation and 49% performed without (P<0.0001). There were no significant differences in transit times or in the proportion of examinations that demonstrated the cecum with and without preparation. Capsule endoscopy preparation improves the quality of small bowel visualization, but has no effect on transit times, or demonstration of the cecum.
Efficiency of bowel preparation for capsule endoscopy examination: A meta-analysis
Niv, Yaron
2008-01-01
Good preparation before endoscopic procedures is essential for successful visualization. The small bowel is difficult to evaluate because of its length and complex configuration. A meta-analysis was conducted of studies comparing small bowel visualization by capsule endoscopy with and without preparation. Medical data bases were searched for all studies investigating the preparation for capsule endoscopy of the small bowel up to July 31, 2007. Studies that scored bowel cleanness and measured gastric and small bowel transit time and rate of cecum visualization were included. The primary endpoint was the quality of bowel visualization. The secondary endpoints were transit times and proportion of examinations that demonstrated the cecum, with and without preparation. Meta-analysis was performed with StatDirect Statistical software, version 2.6.1 (http://statsdirect.com). Eight studies met the inclusion criteria. Bowel visualization was scored as “good” in 78% of the examinations performed with preparation and 49% performed without (P < 0.0001). There were no significant differences in transit times or in the proportion of examinations that demonstrated the cecum with and without preparation. Capsule endoscopy preparation improves the quality of small bowel visualization, but has no effect on transit times, or demonstration of the cecum. PMID:18322940
BiNA: A Visual Analytics Tool for Biological Network Data
Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael
2014-01-01
Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056
Web mapping system for complex processing and visualization of environmental geospatial datasets
NASA Astrophysics Data System (ADS)
Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor
2016-04-01
Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.
NASA Astrophysics Data System (ADS)
Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.
2014-12-01
This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.
Ryals, Anthony J.; Wang, Jane X.; Polnaszek, Kelly L.; Voss, Joel L.
2015-01-01
Although hippocampus unequivocally supports explicit/ declarative memory, fewer findings have demonstrated its role in implicit expressions of memory. We tested for hippocampal contributions to an implicit expression of configural/relational memory for complex scenes using eye-movement tracking during functional magnetic resonance imaging (fMRI) scanning. Participants studied scenes and were later tested using scenes that resembled study scenes in their overall feature configuration but comprised different elements. These configurally similar scenes were used to limit explicit memory, and were intermixed with new scenes that did not resemble studied scenes. Scene configuration memory was expressed through eye movements reflecting exploration overlap (EO), which is the viewing of the same scene locations at both study and test. EO reliably discriminated similar study-test scene pairs from study-new scene pairs, was reliably greater for similarity-based recognition hits than for misses, and correlated with hippocampal fMRI activity. In contrast, subjects could not reliably discriminate similar from new scenes by overt judgments, although ratings of familiarity were slightly higher for similar than new scenes. Hippocampal fMRI correlates of this weak explicit memory were distinct from EO-related activity. These findings collectively suggest that EO was an implicit expression of scene configuration memory associated with hippocampal activity. Visual exploration can therefore reflect implicit hippocampal-related memory processing that can be observed in eye-movement behavior during naturalistic scene viewing. PMID:25620526
Ma, Bosen; Wang, Xiaoyun; Li, Degao
2015-01-01
To separate the contribution of phonological from that of visual-orthographic information in the recognition of a Chinese word that is composed of one or two Chinese characters, we conducted two experiments in a priming task of semantic categorization (PTSC), in which length (one- or two-character words), relation, prime (related or unrelated prime-target pairs), and SOA (47, 87, or 187 ms) were manipulated. The prime was similar to the target in meaning or in visual configuration in Experiment A and in meaning or in pronunciation in Experiment B. The results indicate that the two-character words were similar to the one-character words but were less demanding of cognitive resources than the one-character words in the processing of phonological, visual-orthographic, and semantic information. The phonological primes had a facilitating effect at the SOA of 47 ms but an inhibitory effect at the SOA of 187 ms on the participants' reaction times; the visual-orthographic primes only had an inhibitory influence on the participants' reaction times at the SOA of 187 ms. The visual configuration of a Chinese word of one or two Chinese characters has its own contribution in helping retrieve the word's meanings; similarly, the phonological configuration of a one- or two-character word plays its own role in triggering activations of the word's semantic representations.
GenomeD3Plot: a library for rich, interactive visualizations of genomic data in web applications.
Laird, Matthew R; Langille, Morgan G I; Brinkman, Fiona S L
2015-10-15
A simple static image of genomes and associated metadata is very limiting, as researchers expect rich, interactive tools similar to the web applications found in the post-Web 2.0 world. GenomeD3Plot is a light weight visualization library written in javascript using the D3 library. GenomeD3Plot provides a rich API to allow the rapid visualization of complex genomic data using a convenient standards based JSON configuration file. When integrated into existing web services GenomeD3Plot allows researchers to interact with data, dynamically alter the view, or even resize or reposition the visualization in their browser window. In addition GenomeD3Plot has built in functionality to export any resulting genome visualization in PNG or SVG format for easy inclusion in manuscripts or presentations. GenomeD3Plot is being utilized in the recently released Islandviewer 3 (www.pathogenomics.sfu.ca/islandviewer/) to visualize predicted genomic islands with other genome annotation data. However, its features enable it to be more widely applicable for dynamic visualization of genomic data in general. GenomeD3Plot is licensed under the GNU-GPL v3 at https://github.com/brinkmanlab/GenomeD3Plot/. brinkman@sfu.ca. © The Author 2015. Published by Oxford University Press.
Next Generation Monitoring: Tier 2 Experience
NASA Astrophysics Data System (ADS)
Fay, R.; Bland, J.; Jones, S.
2017-10-01
Monitoring IT infrastructure is essential for maximizing availability and minimizing disruption by detecting failures and developing issues. The HEP group at Liverpool have recently updated our monitoring infrastructure with the goal of increasing coverage, improving visualization capabilities, and streamlining configuration and maintenance. Here we present a summary of Liverpool’s experience, the monitoring infrastructure, and the tools used to build it. In brief, system checks are configured in Puppet using Hiera, and managed by Sensu, replacing Nagios. Centralised logging is managed with Elasticsearch, together with Logstash and Filebeat. Kibana provides an interface for interactive analysis, including visualization and dashboards. Metric collection is also configured in Puppet, managed by collectd and stored in Graphite, with Grafana providing a visualization and dashboard tool. The Uchiwa dashboard for Sensu provides a web interface for viewing infrastructure status. Alert capabilities are provided via external handlers. A custom alert handler is in development to provide an easily configurable, extensible and maintainable alert facility.
An underwater robo-leader for collective motion studies
NASA Astrophysics Data System (ADS)
Sanchez, Yair; Wilhelmus, Monica M.
2016-11-01
A wide range of aquatic species, from bacteria to large tuna, exhibits collective behavior. It has long been hypothesized that the formation of complex configurations brings an energetic advantage to the members of a group as well as protection against larger predators or harmful agents. Lately, however, laboratory experiments have suggested that both the physics and the behavioral aspects of collective motion yield more complexity than previously attributed. With the goal to understand the fluid mechanical implications behind collective motion in a laboratory setting, we have developed a new device to induce this behavior on demand. Following recent studies of lab-induced vertical migration of Artemia salina, we have designed and constructed a remotely controlled underwater robotic swimmer that acts as a leader for groups of phototactic organisms. Preliminary quantitative flow visualizations done during vertical migration of brine shrimp show that this new instrument does induce collective motion in the laboratory. With this setup, we can address the hydrodynamic effect of having different swarm configurations, a variable that so far has been challenging to study in a controllable and reproducible manner.
Zimmer, Hubert D; Lehnert, Günther
2006-01-01
If configurations of objects are presented in a S1-S2 matching task for the identity of objects a spatial mismatch effect occurs. Changing the (irrelevant) spatial layout lengthens response times. We investigated what causes this effect. We observed a reliable mismatch effect that was not influenced by a secondary task during maintenance. Neither articulatory suppression (Experiment 1), nor unattended (Experiments 2 and 6) or attended visual material (Experiment 3) reduced the effect, and this was independent of the length of the retention interval (Experiment 6). The effect was also rather independent of the visual appearance of the local elements. It was of similar size with color patches (Experiment 4) and with completely different surface information when testing was cross modal (Experiment 5), and the name-ability of the global configuration was not relevant (Experiments 6 and 7). In contrast, the figurative similarity of the configurations of S1 and S2 systematically influenced the size of the spatial mismatch effect (Experiment 7). We conclude that the spatial mismatch effect is caused by a mismatch of the global shape of the configuration stored together with the objects of S1 and not by a mismatch of templates of perceptual records maintained in a visual cache.
Novel Visualization Approaches in Environmental Mineralogy
NASA Astrophysics Data System (ADS)
Anderson, C. D.; Lopano, C. L.; Hummer, D. R.; Heaney, P. J.; Post, J. E.; Kubicki, J. D.; Sofo, J. O.
2006-05-01
Communicating the complexities of atomic scale reactions between minerals and fluids is fraught with intrinsic challenges. For example, an increasing number of techniques are now available for the interrogation of dynamical processes at the mineral-fluid interface. However, the time-dependent behavior of atomic interactions between a solid and a liquid is often not adequately captured by two-dimensional line drawings or images. At the same time, the necessity for describing these reactions to general audiences is growing more urgent, as funding agencies are amplifying their encouragement to scientists to reach across disciplines and to justify their studies to public audiences. To overcome the shortcomings of traditional graphical representations, the Center for Environmental Kinetics Analysis is creating three-dimensional visualizations of experimental and simulated mineral reactions. These visualizations are then displayed on a stereo 3D projection system called the GeoWall. Made possible (and affordable) by recent improvements in computer and data projector technology, the GeoWall system uses a combination of computer software and hardware, polarizing filters and polarizing glasses, to present visualizations in true 3D. The three-dimensional views greatly improve comprehension of complex multidimensional data, and animations of time series foster better understanding of the underlying processes. The visualizations also offer an effective means to communicate the complexities of environmental mineralogy to colleagues, students and the public. Here we present three different kinds of datasets that demonstrate the effectiveness of the GeoWall in clarifying complex environmental reactions at the atomic scale. First, a time-resolved series of diffraction patterns obtained during the hydrothermal synthesis of metal oxide phases from precursor solutions can be viewed as a surface with interactive controls for peak scaling and color mapping. Second, the results of Rietveld analysis of cation exchange reactions in Mn oxides has provided three-dimensional difference Fourier maps. When stitched together in a temporal series, these offer an animated view of changes in atomic configurations during the process of exchange. Finally, molecular dynamical simulations are visualized as three-dimensional reactions between vibrating atoms in both the solid and the aqueous phases.
CMS Configuration Editor: GUI based application for user analysis job
NASA Astrophysics Data System (ADS)
de Cosa, A.
2011-12-01
We present the user interface and the software architecture of the Configuration Editor for the CMS experiment. The analysis workflow is organized in a modular way integrated within the CMS framework that organizes in a flexible way user analysis code. The Python scripting language is adopted to define the job configuration that drives the analysis workflow. It could be a challenging task for users, especially for newcomers, to develop analysis jobs managing the configuration of many required modules. For this reason a graphical tool has been conceived in order to edit and inspect configuration files. A set of common analysis tools defined in the CMS Physics Analysis Toolkit (PAT) can be steered and configured using the Config Editor. A user-defined analysis workflow can be produced starting from a standard configuration file, applying and configuring PAT tools according to the specific user requirements. CMS users can adopt this tool, the Config Editor, to create their analysis visualizing in real time which are the effects of their actions. They can visualize the structure of their configuration, look at the modules included in the workflow, inspect the dependences existing among the modules and check the data flow. They can visualize at which values parameters are set and change them according to what is required by their analysis task. The integration of common tools in the GUI needed to adopt an object-oriented structure in the Python definition of the PAT tools and the definition of a layer of abstraction from which all PAT tools inherit.
Navigation assistance: a trade-off between wayfinding support and configural learning support.
Münzer, Stefan; Zimmer, Hubert D; Baus, Jörg
2012-03-01
Current GPS-based mobile navigation assistance systems support wayfinding, but they do not support learning about the spatial configuration of an environment. The present study examined effects of visual presentation modes for navigation assistance on wayfinding accuracy, route learning, and configural learning. Participants (high-school students) visited a university campus for the first time and took a predefined assisted tour. In Experiment 1 (n = 84, 42 females), a presentation mode showing wayfinding information from eye-level was contrasted with presentation modes showing wayfinding information included in views that provided comprehensive configural information. In Experiment 2 (n = 48, 24 females), wayfinding information was included in map fragments. A presentation mode which always showed north on top of the device was compared with a mode which rotated according to the orientation of the user. Wayfinding accuracy (deviations from the route), route learning, and configural learning (direction estimates, sketch maps) were assessed. Results indicated a trade-off between wayfinding and configural learning: Presentation modes providing comprehensive configural information supported the acquisition of configural knowledge at the cost of accurate wayfinding. The route presentation mode supported wayfinding at the cost of configural knowledge acquisition. Both presentation modes based on map fragments supported wayfinding. Individual differences in visual-spatial working memory capacity explained a considerable portion of the variance in wayfinding accuracy, route learning, and configural learning. It is concluded that learning about an unknown environment during assisted navigation is based on the integration of spatial information from multiple sources and can be supported by appropriate visualization. PsycINFO Database Record (c) 2012 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Bowles, R. L.
1983-01-01
This paper addresses the issues of motion/visual cueing fidelity requirements for vortex encounters during simulated transport visual approaches and landings. Four simulator configurations were utilized to provide objective performance measures during simulated vortex penetrations, and subjective comments from pilots were collected. The configurations used were as follows: fixed base with visual degradation (delay), fixed base with no visual degradation, moving base with visual degradation (delay), and moving base with no visual degradation. The statistical comparisons of the objective measures and the subjective pilot opinions indicated that although both minimum visual delay and motion cueing are recommended for the vortex penetration task, the visual-scene delay characteristics were not as significant a fidelity factor as was the presence of motion cues. However, this indication was applicable to a restricted task, and to transport aircraft. Although they were statistically significant, the effects of visual delay and motion cueing on the touchdown-related measures were considered to be of no practical consequence.
STAR: an integrated solution to management and visualization of sequencing data
Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W.; Ecker, Joseph R.; Millar, A. Harvey; Ren, Bing; Wang, Wei
2013-01-01
Motivation: Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. Results: STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. Availability and implementation: STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser. Contact: wei-wang@ucsd.edu PMID:24078702
Hall, Aaron C.; Hosking, F. Michael ,; Reece, Mark
2003-06-24
A capillary test specimen, method, and system for visualizing and quantifying capillary flow of liquids under realistic conditions, including polymer underfilling, injection molding, soldering, brazing, and casting. The capillary test specimen simulates complex joint geometries and has an open cross-section to permit easy visual access from the side. A high-speed, high-magnification camera system records the location and shape of the moving liquid front in real-time, in-situ as it flows out of a source cavity, through an open capillary channel between two surfaces having a controlled capillary gap, and into an open fillet cavity, where it subsequently forms a fillet on free surfaces that have been configured to simulate realistic joint geometries. Electric resistance heating rapidly heats the test specimen, without using a furnace. Image-processing software analyzes the recorded images and calculates the velocity of the moving liquid front, fillet contact angles, and shape of the fillet's meniscus, among other parameters.
The role of memory for visual search in scenes
Võ, Melissa Le-Hoa; Wolfe, Jeremy M.
2014-01-01
Many daily activities involve looking for something. The ease with which these searches are performed often allows one to forget that searching represents complex interactions between visual attention and memory. While a clear understanding exists of how search efficiency will be influenced by visual features of targets and their surrounding distractors or by the number of items in the display, the role of memory in search is less well understood. Contextual cueing studies have shown that implicit memory for repeated item configurations can facilitate search in artificial displays. When searching more naturalistic environments, other forms of memory come into play. For instance, semantic memory provides useful information about which objects are typically found where within a scene, and episodic scene memory provides information about where a particular object was seen the last time a particular scene was viewed. In this paper, we will review work on these topics, with special emphasis on the role of memory in guiding search in organized, real-world scenes. PMID:25684693
Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.
El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher
2018-01-01
Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.
The role of memory for visual search in scenes.
Le-Hoa Võ, Melissa; Wolfe, Jeremy M
2015-03-01
Many daily activities involve looking for something. The ease with which these searches are performed often allows one to forget that searching represents complex interactions between visual attention and memory. Although a clear understanding exists of how search efficiency will be influenced by visual features of targets and their surrounding distractors or by the number of items in the display, the role of memory in search is less well understood. Contextual cueing studies have shown that implicit memory for repeated item configurations can facilitate search in artificial displays. When searching more naturalistic environments, other forms of memory come into play. For instance, semantic memory provides useful information about which objects are typically found where within a scene, and episodic scene memory provides information about where a particular object was seen the last time a particular scene was viewed. In this paper, we will review work on these topics, with special emphasis on the role of memory in guiding search in organized, real-world scenes. © 2015 New York Academy of Sciences.
Secondary motion in three-dimensional branching networks
NASA Astrophysics Data System (ADS)
Guha, Abhijit; Pradhan, Kaustav
2017-06-01
A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity | v → S | , streamwise vorticity ω S , and λ 2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P, δ S F , and δ G n ) for a quantitative description of the overall features of the secondary flow field. δ S F represents a non-uniformity index of the secondary flow in an individual branch, ES/P represents the mass-flow-averaged relative kinetic energy of the secondary motion in an individual branch, and δ G n provides a measure of the non-uniformity of the secondary flow between various branches of the same generation Gn. The repeated enhancement of the secondary kinetic energy in the bifurcation modules is responsible for the occurrence of significant values of ES/P even in generation G5. For both configurations, it is found that for any bifurcation module, the value of ES/P is greater in that daughter branch in which the mass-flow rate is greater. Even though the various contour plots of the complex secondary flow structure appear visually very different from one another, the values of δ S F are found to lie within a small range ( 0.37 ≤ δ S F ≤ 0.66 ) for the six-generation networks studied. It is shown that δ G n grows as the generation number Gn increases. It is established that the out-of-plane configuration, in general, creates more secondary kinetic energy (higher ES/P), a similar level of non-uniformity in the secondary flow in an individual branch (similar δ S F ), and a significantly lower level of non-uniformity in the distribution of secondary motion among various branches of the same generation (much lower δ G n ), as compared to the in-plane arrangement of the same branches.
Secondary motion in three-dimensional branching networks
Guha, Abhijit; Pradhan, Kaustav
2017-01-01
A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity v→S, streamwise vorticity ωS, and λ2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P, δSF, and δGn) for a quantitative description of the overall features of the secondary flow field. δSF represents a non-uniformity index of the secondary flow in an individual branch, ES/P represents the mass-flow-averaged relative kinetic energy of the secondary motion in an individual branch, and δGn provides a measure of the non-uniformity of the secondary flow between various branches of the same generation Gn. The repeated enhancement of the secondary kinetic energy in the bifurcation modules is responsible for the occurrence of significant values of ES/P even in generation G5. For both configurations, it is found that for any bifurcation module, the value of ES/P is greater in that daughter branch in which the mass-flow rate is greater. Even though the various contour plots of the complex secondary flow structure appear visually very different from one another, the values of δSF are found to lie within a small range (0.37≤δSF≤0.66) for the six-generation networks studied. It is shown that δGn grows as the generation number Gn increases. It is established that the out-of-plane configuration, in general, creates more secondary kinetic energy (higher ES/P), a similar level of non-uniformity in the secondary flow in an individual branch (similar δSF), and a significantly lower level of non-uniformity in the distribution of secondary motion among various branches of the same generation (much lower δGn), as compared to the in-plane arrangement of the same branches. PMID:28713213
Evaluating the effects of bilingual traffic signs on driver performance and safety.
Jamson, S L; Tate, F N; Jamson, A H
2005-12-15
Variable message signs (VMS) can provide immediate and relevant information to road users and bilingual VMS can provide great flexibility in countries where a significant proportion of the population speak an alternative language to the majority. The study reported here evaluates the effect of various bilingual VMS configurations on driver behaviour and safety. The aim of the study was to determine whether or not the visual distraction associated with bilingual VMS signs of different configurations (length, complexity) impacted on driving performance. A driving simulator was used to allow full control over the scenarios, road environment and sign configuration and both longitudinal and lateral driver performance was assessed. Drivers were able to read one- and two-line monolingual signs and two-line bilingual signs without disruption to their driving behaviour. However, drivers significantly reduced their speed in order to read four-line monolingual and four-line bilingual signs, accompanied by an increase in headway to the vehicle in front. This implies that drivers are possibly reading the irrelevant text on the bilingual sign and various methods for reducing this effect are discussed.
Barriga-Rivera, Alejandro; Morley, John W; Lovell, Nigel H; Suaning, Gregg J
2016-08-01
Researchers continue to develop visual prostheses towards safer and more efficacious systems. However limitations still exist in the number of stimulating channels that can be integrated. Therefore there is a need for spatial and time multiplexing techniques to provide improved performance of the current technology. In particular, bright and high-contrast visual scenes may require simultaneous activation of several electrodes. In this research, a 24-electrode array was suprachoroidally implanted in three normally-sighted cats. Multi-unit activity was recorded from the primary visual cortex. Four stimulation strategies were contrasted to provide activation of seven electrodes arranged hexagonally: simultaneous monopolar, sequential monopolar, sequential bipolar and hexapolar. Both monopolar configurations showed similar cortical activation maps. Hexapolar and sequential bipolar configurations activated a lower number of cortical channels. Overall, the return configuration played a more relevant role in cortical activation than time multiplexing and thus, rapid sequential stimulation may assist in reducing the number of channels required to activate large retinal areas.
SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan
2013-01-01
Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108
Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team
NASA Technical Reports Server (NTRS)
Lamar, John E. (Editor)
2001-01-01
This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.
Visual probes and methods for placing visual probes into subsurface areas
Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.
2004-11-23
Visual probes and methods for placing visual probes into subsurface areas in either contaminated or non-contaminated sites are described. In one implementation, the method includes driving at least a portion of a visual probe into the ground using direct push, sonic drilling, or a combination of direct push and sonic drilling. Such is accomplished without providing an open pathway for contaminants or fugitive gases to reach the surface. According to one implementation, the invention includes an entry segment configured for insertion into the ground or through difficult materials (e.g., concrete, steel, asphalt, metals, or items associated with waste), at least one extension segment configured to selectively couple with the entry segment, at least one push rod, and a pressure cap. Additional implementations are contemplated.
Franosch, Jan-Moritz P; Urban, Sebastian; van Hemmen, J Leo
2013-12-01
How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as "supervisor." Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.
Fam, Justine; Holmes, Nathan; Delaney, Andrew; Crane, James; Westbrook, R Frederick
2018-06-14
Oxytocin (OT) is a neuropeptide which influences the expression of social behavior and regulates its distribution according to the social context - OT is associated with increased pro-social effects in the absence of social threat and defensive aggression when threats are present. The present experiments investigated the effects of OT beyond that of social behavior by using a discriminative Pavlovian fear conditioning protocol with rats. In Experiment 1, an OT receptor agonist (TGOT) microinjected into the basolateral amygdala facilitated the discrimination between an auditory cue that signaled shock and another auditory cue that signaled the absence of shock. This TGOT-facilitated discrimination was replicated in a second experiment where the shocked and non-shocked auditory cues were accompanied by a common visual cue. Conditioned responding on probe trials of the auditory and visual elements indicated that TGOT administration produced a qualitative shift in the learning mechanisms underlying the discrimination between the two compounds. This was confirmed by comparisons between the present results and simulated predictions of elemental and configural associative learning models. Overall, the present findings demonstrate that the neuromodulatory effects of OT influence behavior outside of the social domain. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.
Feldmann-Wüstefeld, Tobias; Schubö, Anna
2014-04-01
Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.
Brughmans, Tom; de Waal, Maaike S; Hofman, Corinne L; Brandes, Ulrik
2018-01-01
This paper presents a study of the visual properties of natural and Amerindian cultural landscapes in late pre-colonial East-Guadeloupe and of how these visual properties affected social interactions. Through a review of descriptive and formal visibility studies in Caribbean archaeology, it reveals that the ability of visual properties to affect past human behaviour is frequently evoked but the more complex of these hypotheses are rarely studied formally. To explore such complex hypotheses, the current study applies a range of techniques: total viewsheds, cumulative viewsheds, visual neighbourhood configurations and visibility networks. Experiments were performed to explore the control of seascapes, the functioning of hypothetical smoke signalling networks, the correlation of these visual properties with stylistic similarities of material culture found at sites and the change of visual properties over time. The results of these experiments suggest that only few sites in Eastern Guadeloupe are located in areas that are particularly suitable to visually control possible sea routes for short- and long-distance exchange; that visual control over sea areas was not a factor of importance for the existence of micro-style areas; that during the early phase of the Late Ceramic Age networks per landmass are connected and dense and that they incorporate all sites, a structure that would allow hypothetical smoke signalling networks; and that the visual properties of locations of the late sites Morne Souffleur and Morne Cybèle-1 were not ideal for defensive purposes. These results led us to propose a multi-scalar hypothesis for how lines of sight between settlements in the Lesser Antilles could have structured past human behaviour: short-distance visibility networks represent the structuring of navigation and communication within landmasses, whereas the landmasses themselves served as focal points for regional navigation and interaction. We conclude by emphasising that since our archaeological theories about visual properties usually take a multi-scalar landscape perspective, there is a need for this perspective to be reflected in our formal visibility methods as is made possible by the methods used in this paper.
Introduction to the Special Issue on Visual Working Memory
Wolfe, Jeremy M
2014-01-01
Objects are not represented individually in visual working memory (VWM), but in relation to the contextual information provided by other memorized objects. We studied whether the contextual information provided by the spatial configuration of all memorized objects is viewpoint-dependent. We ran two experiments asking participants to detect changes in locations between memory and probe for one object highlighted in the probe image. We manipulated the changes in viewpoint between memory and probe (Exp. 1: 0°, 30°, 60°; Exp. 2: 0°, 60°), as well as the spatial configuration visible in the probe image (Exp. 1: full configuration, partial configuration; Exp. 2: full configuration, no configuration). Location change detection was higher with the full spatial configuration than with the partial configuration or with no spatial configuration at viewpoint changes of 0°, thus replicating previous findings on the nonindependent representations of individual objects in VWM. Most importantly, the effect of spatial configurations decreased with increasing viewpoint changes, suggesting a viewpoint-dependent representation of contextual information in VWM. We discuss these findings within the context of this special issue, in particular whether research performed within the slots-versus-resources debate and research on the effects of contextual information might focus on two different storage systems within VWM. PMID:25341647
Model for Predicting the Performance of Planetary Suit Hip Bearing Designs
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar
2012-01-01
Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance
Comparing different stimulus configurations for population receptive field mapping in human fMRI
Alvarez, Ivan; de Haas, Benjamin; Clark, Chris A.; Rees, Geraint; Schwarzkopf, D. Samuel
2015-01-01
Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time. PMID:25750620
An evaluation of unisensory and multisensory adaptive flight-path navigation displays
NASA Astrophysics Data System (ADS)
Moroney, Brian W.
1999-11-01
The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added benefit of the adaptive interfaces. In the return-to-course scenario, the relative advantages of the three adaptive interfaces were dependent upon the nature of the CT in a complex way. In the absence of a CT, recovery heading performance was superior with the adaptive visual and adaptive composite interfaces compared to the adaptive auditory interface. In the context of a visual CT, recovery when using the adaptive composite interface was superior to that when using the adaptive visual interface. Post-experimental inquiry indicated that when faced with a visual CT, the pilots used the auditory component of the multimodal guidance display to detect gross heading errors and the visual component to make more fine-grained heading adjustments. In the context of the auditory CT, navigation performance using the adaptive visual interface tended to be superior to that when using the adaptive auditory interface. Neither CT performance nor NASA-TLX workload level was influenced differentially by the interface configurations. Thus, the potential benefits associated with the proposed interfaces appear to be unaccompanied by negative side effects involving CT interference and workload. The adaptive interface configurations were altered without any direct input from the pilot. Thus, it was feared that pilots might reject the activation of interfaces independent of their control. However, pilots' debriefing comments about the efficacy of the adaptive interface approach were very positive. (Abstract shortened by UMI.)
Towards Infusing Giovanni with a Semantic and Provenance Aware Visualization System
NASA Astrophysics Data System (ADS)
Del Rio, N.; Pinheiro da Silva, P.; Leptoukh, G. G.; Lynnes, C.
2011-12-01
Giovanni is a Web-based application developed by GES DISC that provides simple and intuitive ways to visualize, analyze, and access vast amounts of Earth science remote sensed data. Currently, the Giovanni visualization module is only aware of the physical links (i.e., hard-coded) between data and services and consequently cannot be easily adapted to new visualization scenarios. VisKo, a semantically enabled visualization framework, can be leveraged by Giovanni as a semantic bridge between data and visualization. VisKo relates data and visualization services at conceptual (i.e., ontological) levels and relies on reasoning systems to leverage the conceptual relationships to automatically infer physical links, facilitating an adaptable environment for new visualization scenarios. This is particularly useful for Giovanni, which has been constantly retrofitted with new visualization software packages to keep up with advancement in visualization capabilities. During our prototype integration of Giovanni with VisKo, a number of future steps were identified that if implemented could cement the integration and promote our prototype to operational status. A number of integration issues arose including the mediation of different languages used by each system to characterize datasets; VisKo relies on semantic data characterization to "match-up" data with visualization processes. It was necessary to identify mappings between Giovanni XML provenance and Proof Markup Language, which is understood by VisKo. Although a translator was implemented based on identified mappings, a more elegant solution is to develop a domain data ontology specific to Giovanni and to "align" this ontology with PML, enabling VisKo to directly ingest the semantic descriptions of Giovanni data. Additionally, the relationship between dataset components (e.g., variables and attributes) and visualization plot components (e.g., geometries, axes, titles) should also be modeled. In Giovanni, meta-data descriptions are used to configure the different properties of the plots such as titles, color-tables, and variable-to-axis bindings. Giovanni services rely on a set of custom attributes and naming conventions that help identify the relationships between dataset components and plot properties. VisKo visualization services however are generic modules that do not rely on any domain specific conventions for identifying relationships between dataset attributes and plot configuration. Rather, VisKo services rely on parameters to configure specific behaviors of the generic services. The relationship between VisKo parameters and plot properties however has yet to formally documented, partly because VisKo regards plots as holistic entities without any internal structure from which to relate parameters. We understand the need for a visualization plot ontology that defines plot components, their retinal properties, such as position and color, and the relationship between the plot properties to controlling service parameter sets. The plot ontology would also be linked to our domain data ontology, providing VisKo with the comprehensive understanding about how data attributes can cue the configuration of plots, and how a specific plot configuration relates to service parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, M.; Haakon Nordby, L.; Dailey, D.V.
High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, M.; Haakon Nordby, L.; Dailey, D.V.
High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less
Visual Control for Multirobot Organized Rendezvous.
Lopez-Nicolas, G; Aranda, M; Mezouar, Y; Sagues, C
2012-08-01
This paper addresses the problem of visual control of a set of mobile robots. In our framework, the perception system consists of an uncalibrated flying camera performing an unknown general motion. The robots are assumed to undergo planar motion considering nonholonomic constraints. The goal of the control task is to drive the multirobot system to a desired rendezvous configuration relying solely on visual information given by the flying camera. The desired multirobot configuration is defined with an image of the set of robots in that configuration without any additional information. We propose a homography-based framework relying on the homography induced by the multirobot system that gives a desired homography to be used to define the reference target, and a new image-based control law that drives the robots to the desired configuration by imposing a rigidity constraint. This paper extends our previous work, and the main contributions are that the motion constraints on the flying camera are removed, the control law is improved by reducing the number of required steps, the stability of the new control law is proved, and real experiments are provided to validate the proposal.
Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-01
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777
Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-05
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.
NASA Technical Reports Server (NTRS)
Chan, William M.; Akien, Edwin (Technical Monitor)
2002-01-01
For many years, generation of overset grids for complex configurations has required the use of a number of different independently developed software utilities. Results created by each step were then visualized using a separate visualization tool before moving on to the next. A new software tool called OVERGRID was developed which allows the user to perform all the grid generation steps and visualization under one environment. OVERGRID provides grid diagnostic functions such as surface tangent and normal checks as well as grid manipulation functions such as extraction, extrapolation, concatenation, redistribution, smoothing, and projection. Moreover, it also contains hyperbolic surface and volume grid generation modules that are specifically suited for overset grid generation. It is the first time that such a unified interface existed for the creation of overset grids for complex geometries. New concepts on automatic overset surface grid generation around surface discontinuities will also be briefly presented. Special control curves on the surface such as intersection curves, sharp edges, open boundaries, are called seam curves. The seam curves are first automatically extracted from a multiple panel network description of the surface. Points where three or more seam curves meet are automatically identified and are called seam corners. Seam corner surface grids are automatically generated using a singular axis topology. Hyperbolic surface grids are then grown from the seam curves that are automatically trimmed away from the seam corners.
Navigation Assistance: A Trade-Off between Wayfinding Support and Configural Learning Support
ERIC Educational Resources Information Center
Munzer, Stefan; Zimmer, Hubert D.; Baus, Jorg
2012-01-01
Current GPS-based mobile navigation assistance systems support wayfinding, but they do not support learning about the spatial configuration of an environment. The present study examined effects of visual presentation modes for navigation assistance on wayfinding accuracy, route learning, and configural learning. Participants (high-school students)…
Media/Device Configurations for Platoon Leader Tactical Training
1985-02-01
munication and visual communication sig- na ls, VInputs to the The device should simulate the real- Platoon Leader time receipt of all tactical voice...communication, audio and visual battle- field cues, and visual communication signals. 14- Table 4 (Continued) Functional Capability Categories and...battlefield cues, and visual communication signals. 0.8 Receipt of limited tactical voice communication, plus audio and visual battlefield cues, and visual
Integrated workflows for spiking neuronal network simulations
Antolík, Ján; Davison, Andrew P.
2013-01-01
The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages. PMID:24368902
Integrated workflows for spiking neuronal network simulations.
Antolík, Ján; Davison, Andrew P
2013-01-01
The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages.
A Cross-Modal Perspective on the Relationships between Imagery and Working Memory
Likova, Lora T.
2013-01-01
Mapping the distinctions and interrelationships between imagery and working memory (WM) remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and WM involve a form of internal representation available to our awareness. In WM, there is a further emphasis on goal-oriented, active maintenance, and use of this conscious representation to guide voluntary action. Multicomponent WM models incorporate representational buffers, such as the visuo-spatial sketchpad, plus central executive functions. If there is a visuo-spatial “sketchpad” for WM, does imagery involve the same representational buffer? Alternatively, does WM employ an imagery-specific representational mechanism to occupy our awareness? Or do both constructs utilize a more generic “projection screen” of an amodal nature? To address these issues, in a cross-modal fMRI study, I introduce a novel Drawing-Based Memory Paradigm, and conceptualize drawing as a complex behavior that is readily adaptable from the visual to non-visual modalities (such as the tactile modality), which opens intriguing possibilities for investigating cross-modal learning and plasticity. Blindfolded participants were trained through our Cognitive-Kinesthetic Method (Likova, 2010a, 2012) to draw complex objects guided purely by the memory of felt tactile images. If this WM task had been mediated by transfer of the felt spatial configuration to the visual imagery mechanism, the response-profile in visual cortex would be predicted to have the “top-down” signature of propagation of the imagery signal downward through the visual hierarchy. Remarkably, the pattern of cross-modal occipital activation generated by the non-visual memory drawing was essentially the inverse of this typical imagery signature. The sole visual hierarchy activation was isolated to the primary visual area (V1), and accompanied by deactivation of the entire extrastriate cortex, thus ’cutting-off’ any signal propagation from/to V1 through the visual hierarchy. The implications of these findings for the debate on the interrelationships between the core cognitive constructs of WM and imagery and the nature of internal representations are evaluated. PMID:23346061
Flow visualization of mast-mounted-sight/main rotor aerodynamic interactions
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Kelley, Henry L.
1993-01-01
Flow visualization tests were conducted on a 27 percent-scale AH-64 attack helicopter model fitted with various mast-mounted-sight configurations in an attempt to identify the cause of adverse vibration encountered during full-scale flight tests of an Apache/Longbow configuration. The tests were conducted at the NASA Langley Research Center in the 14- by 22-Foot Subsonic Tunnel. A symmetric and an asymmetric mast-mounted-sight oriented at several skew angles were tested at forward and rearward flight speeds of 30 and 45 knots. A laser light sheet seeded with vaporized propylene glycol was used to visualize the wake of the sight in planes parallel and perpendicular to the freestream flow. Analysis of the flow visualization data identified the frequency of the wake shed from the sight, the angle-of-attack at the sight, and the location where the sight wake crossed the rotor plane. Differences in wake structure were observed between the various sight configurations and slew angles. Postulations into the cause of the adverse vibration found in flight test are given along with considerations for future tests.
Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Andres, Kristin N; Powell, David K; Zhong, Xiaodong; Fornwalt, Brandon K
2017-03-01
To determine the optimal respiratory navigator gating configuration for the quantification of left ventricular strain using spiral cine displacement encoding with stimulated echoes (DENSE) MRI. Two-dimensional spiral cine DENSE was performed on a 3 Tesla MRI using two single-navigator configurations (retrospective, prospective) and a combined "dual-navigator" configuration in 10 healthy adults and 20 healthy children. The adults also underwent breathhold DENSE as a reference standard for comparisons. Peak left ventricular strains, signal-to-noise ratio (SNR), and navigator efficiency were compared. Subjects also underwent dual-navigator gating with and without visual feedback to determine the effect on navigator efficiency. There were no differences in circumferential, radial, and longitudinal strains between navigator-gated and breathhold DENSE (P = 0.09-0.95) (as confidence intervals, retrospective: [-1.0%-1.1%], [-7.4%-2.0%], [-1.0%-1.2%]; prospective: [-0.6%-2.7%], [-2.8%-8.3%], [-0.3%-2.9%]; dual: [-1.6%-0.5%], [-8.3%-3.2%], [-0.8%-1.9%], respectively). The dual configuration maintained SNR compared with breathhold acquisitions (16 versus 18, P = 0.06). SNR for the prospective configuration was lower than for the dual navigator in adults (P = 0.004) and children (P < 0.001). Navigator efficiency was higher (P < 0.001) for both retrospective (54%) and prospective (56%) configurations compared with the dual configuration (35%). Visual feedback improved the dual configuration navigator efficiency to 55% (P < 0.001). When quantifying left ventricular strains using spiral cine DENSE MRI, a dual navigator configuration results in the highest SNR in adults and children. In adults, a retrospective configuration has good navigator efficiency without a substantial drop in SNR. Prospective gating should be avoided because it has the lowest SNR. Visual feedback represents an effective option to maintain navigator efficiency while using a dual navigator configuration. 2 J. Magn. Reson. Imaging 2017;45:786-794. © 2016 International Society for Magnetic Resonance in Medicine.
Hamlet, Sean M.; Haggerty, Christopher M.; Suever, Jonathan D.; Wehner, Gregory J.; Andres, Kristin N.; Powell, David K.; Fornwalt, Brandon K.
2016-01-01
Purpose To determine the optimal respiratory navigator gating configuration for the quantification of left ventricular strain using spiral cine displacement encoding with stimulated echoes (DENSE) MRI. Materials and Methods 2D spiral cine DENSE was performed on a 3T MRI using two single-navigator configurations (retrospective, prospective), and a combined “dual-navigator” configuration in 10 healthy adults and 20 healthy children. The adults also underwent breath-hold DENSE as a reference standard for comparisons. Peak left ventricular strains, signal-to-noise ratio (SNR) and navigator efficiency were compared. Subjects also underwent dual-navigator gating with and without visual feedback to determine the effect on navigator efficiency. Results There were no differences in circumferential, radial and longitudinal strains between navigator-gated and breath-hold DENSE (p=0.09–0.95) (as confidence intervals, retrospective: [−1.0%,1.1%],[−7.4%,2.0%],[−1.0%,1.2%]; prospective: [−0.6%,2.7%],[−2.8%,8.3%],[−0.3%,2.9%]; dual: [−1.6%,0.5%],[−8.3%,3.2%],[−0.8%,1.9%], respectively). The dual configuration maintained SNR compared to breath-hold acquisitions (16 vs. 18, p=0.06). SNR for the prospective configuration was lower than for the dual navigator in adults (p=0.004) and children (p<0.001). Navigator efficiency was higher (p<0.001) for both retrospective (54%) and prospective (56%) configurations compared to the dual configuration (35%). Visual feedback improved the dual configuration navigator efficiency to 55% (p<0.001). Conclusion When quantifying left ventricular strains using spiral cine DENSE MRI, a dual navigator configuration results in the highest SNR in adults and children. In adults, a retrospective configuration has good navigator efficiency without a substantial drop in SNR. Prospective gating should be avoided since it has the lowest SNR. Visual feedback represents an effective option to maintain navigator efficiency while using a dual navigator configuration. PMID:27458823
The contribution of dynamic visual cues to audiovisual speech perception.
Jaekl, Philip; Pesquita, Ana; Alsius, Agnes; Munhall, Kevin; Soto-Faraco, Salvador
2015-08-01
Seeing a speaker's facial gestures can significantly improve speech comprehension, especially in noisy environments. However, the nature of the visual information from the speaker's facial movements that is relevant for this enhancement is still unclear. Like auditory speech signals, visual speech signals unfold over time and contain both dynamic configural information and luminance-defined local motion cues; two information sources that are thought to engage anatomically and functionally separate visual systems. Whereas, some past studies have highlighted the importance of local, luminance-defined motion cues in audiovisual speech perception, the contribution of dynamic configural information signalling changes in form over time has not yet been assessed. We therefore attempted to single out the contribution of dynamic configural information to audiovisual speech processing. To this aim, we measured word identification performance in noise using unimodal auditory stimuli, and with audiovisual stimuli. In the audiovisual condition, speaking faces were presented as point light displays achieved via motion capture of the original talker. Point light displays could be isoluminant, to minimise the contribution of effective luminance-defined local motion information, or with added luminance contrast, allowing the combined effect of dynamic configural cues and local motion cues. Audiovisual enhancement was found in both the isoluminant and contrast-based luminance conditions compared to an auditory-only condition, demonstrating, for the first time the specific contribution of dynamic configural cues to audiovisual speech improvement. These findings imply that globally processed changes in a speaker's facial shape contribute significantly towards the perception of articulatory gestures and the analysis of audiovisual speech. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saif, M.; El-Shafiy, Hoda F.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Nabeel, A. I.; Fouad, R.
2018-06-01
Three novel Eu(III) phosphor complexes, [Eu(HL)(OH2)2(C2H5OH)](NO3)2 (1), [Eu(HL)(Bpy)(NO3)2(EtOH)] (2) and [Eu(HL)(Phen)(NO3)2(H2O)] (3) (HL = (11E)-2-hydroxy-N/-((4-oxo-4H-chromen-3-yl)methylene)benzohydrazide; Bpy = 2,2/-bibyridyl and Phen = 1,10-phenanthroline) were prepared. Elemental, thermal, FT-IR and XRD methods were used to characterize their structural configuration. The HL behaves as a monoanionic tridentate ligand. The XRD analysis shows that the ligand and its Eu3+complexes are in nano domain. From fluorescence spectroscopy, all the prepared complexes are highly luminescent, having an impressive visual emission under UV excitation. The H2L and its Eu3+nano-complexes (1-3) were tested for their in vitro cytotoxicity against Ehrlich Ascites Carcinoma cell line (EAC). The Eu(III) nano-complexes (1-3) effectively inhibited EAC growth with IC50 value of 25 μM. The high antitumor activity of the Eu(III) nano-complexes (1-3) were attributed to its chemical structure, and nano size properties.
Visualization in Science and the Arts.
ERIC Educational Resources Information Center
Roth, Susan King
Visualization as a factor of intelligence includes the mental manipulation of spatial configurations and has been associated with spatial abilities, creative thinking, and conceptual problem solving. There are numerous reports of scientists and mathematicians using visualization to anticipate transformation of the external world. Artists and…
Can responses to basic non-numerical visual features explain neural numerosity responses?
Harvey, Ben M; Dumoulin, Serge O
2017-04-01
Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
McKean, Danielle L.; Tsao, Jack W.; Chan, Annie W.-Y.
2017-01-01
The Body Inversion Effect (BIE; reduced visual discrimination performance for inverted compared to upright bodies) suggests that bodies are visually processed configurally; however, the specific importance of head posture information in the BIE has been indicated in reports of BIE reduction for whole bodies with fixed head position and for headless bodies. Through measurement of gaze patterns and investigation of the causal relation of fixation location to visual body discrimination performance, the present study reveals joint contributions of feature and configuration processing to visual body discrimination. Participants predominantly gazed at the (body-centric) upper body for upright bodies and the lower body for inverted bodies in the context of an experimental paradigm directly comparable to that of prior studies of the BIE. Subsequent manipulation of fixation location indicates that these preferential gaze locations causally contributed to the BIE for whole bodies largely due to the informative nature of gazing at or near the head. Also, a BIE was detected for both whole and headless bodies even when fixation location on the body was held constant, indicating a role of configural processing in body discrimination, though inclusion of the head posture information was still highly discriminative in the context of such processing. Interestingly, the impact of configuration (upright and inverted) to the BIE appears greater than that of differential preferred gaze locations. PMID:28085894
Reconfigurable Auditory-Visual Display
NASA Technical Reports Server (NTRS)
Begault, Durand R. (Inventor); Anderson, Mark R. (Inventor); McClain, Bryan (Inventor); Miller, Joel D. (Inventor)
2008-01-01
System and method for visual and audible communication between a central operator and N mobile communicators (N greater than or equal to 2), including an operator transceiver and interface, configured to receive and display, for the operator, visually perceptible and audibly perceptible signals from each of the mobile communicators. The interface (1) presents an audible signal from each communicator as if the audible signal is received from a different location relative to the operator and (2) allows the operator to select, to assign priority to, and to display, the visual signals and the audible signals received from a specified communicator. Each communicator has an associated signal transmitter that is configured to transmit at least one of the visual signals and the audio signal associated with the communicator, where at least one of the signal transmitters includes at least one sensor that senses and transmits a sensor value representing a selected environmental or physiological parameter associated with the communicator.
Effects of Action Relations on the Configural Coding between Objects
ERIC Educational Resources Information Center
Riddoch, M. J.; Pippard, B.; Booth, L.; Rickell, J.; Summers, J.; Brownson, A.; Humphreys, G. W.
2011-01-01
Configural coding is known to take place between the parts of individual objects but has never been shown between separate objects. We provide novel evidence here for configural coding between separate objects through a study of the effects of action relations between objects on extinction. Patients showing visual extinction were presented with…
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Raney, David L.; Glaab, Louis J.; Derry, Stephen D.
2002-01-01
An assessment of a proposed configuration of a high-speed civil transport was conducted by using NASA and industry research pilots. The assessment was conducted to evaluate operational aspects of the configuration from a pilot's perspective, with the primary goal being to identify potential deficiencies in the configuration. The configuration was evaluated within and at the limits of the design operating envelope to determine the suitability of the configuration to maneuver in a typical mission as well as in emergency or envelope-limit conditions. The Cooper-Harper rating scale was used to evaluate the flying qualities of the configuration. A summary flying qualities metric was also calculated. The assessment was performed in the Langley six-degree-of-freedom Visual Motion Simulator. The effect of a restricted cockpit field-of-view due to obstruction by the vehicle nose was not included in this study. Tasks include landings, takeoffs, climbs, descents, overspeeds, coordinated turns, and recoveries from envelope limit excursions. Emergencies included engine failures, loss of stability augmentation, engine inlet unstarts, and emergency descents. Minimum control speeds and takeoff decision, rotation, and safety speeds were also determined.
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
Avian visual behavior and the organization of the telencephalon.
Shimizu, Toru; Patton, Tadd B; Husband, Scott A
2010-01-01
Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. 2010 S. Karger AG, Basel.
Avian Visual Behavior and the Organization of the Telencephalon
Shimizu, Toru; Patton, Tadd B.; Husband, Scott A.
2010-01-01
Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. PMID:20733296
van Hoesel, Richard J M
2015-04-01
One of the key benefits of using cochlear implants (CIs) in both ears rather than just one is improved localization. It is likely that in complex listening scenes, improved localization allows bilateral CI users to orient toward talkers to improve signal-to-noise ratios and gain access to visual cues, but to date, that conjecture has not been tested. To obtain an objective measure of that benefit, seven bilateral CI users were assessed for both auditory-only and audio-visual speech intelligibility in noise using a novel dynamic spatial audio-visual test paradigm. For each trial conducted in spatially distributed noise, first, an auditory-only cueing phrase that was spoken by one of four talkers was selected and presented from one of four locations. Shortly afterward, a target sentence was presented that was either audio-visual or, in another test configuration, audio-only and was spoken by the same talker and from the same location as the cueing phrase. During the target presentation, visual distractors were added at other spatial locations. Results showed that in terms of speech reception thresholds (SRTs), the average improvement for bilateral listening over the better performing ear alone was 9 dB for the audio-visual mode, and 3 dB for audition-alone. Comparison of bilateral performance for audio-visual and audition-alone showed that inclusion of visual cues led to an average SRT improvement of 5 dB. For unilateral device use, no such benefit arose, presumably due to the greatly reduced ability to localize the target talker to acquire visual information. The bilateral CI speech intelligibility advantage over the better ear in the present study is much larger than that previously reported for static talker locations and indicates greater everyday speech benefits and improved cost-benefit than estimated to date.
Algorithm-enabled partial-angular-scan configurations for dual-energy CT.
Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan
2018-05-01
We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some differences in texture details. Moreover, quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation indicate that the short- and half-scan configurations yield results in close agreement with the ground-truth information and that of the full-scan configuration. The one-step method considered can compensate effectively for the nonlinear spectral response in full- and partial-angular-scan dual-energy CT. It can be exploited for enabling partial-angular-scan configurations on standard CT scanner without involving additional hardware. Visual inspection and quantitative studies reveal that, with the one-step method, partial-angular-scan configurations considered can perform at a level comparable to that of the full-scan configuration, thus suggesting the potential of the two partial-angular-scan configurations in reducing imaging dose and scan time in the standard single-kVp-switch full-scan CT in which two full rotations are performed. The work also yields insights into the investigation and design of other nonstandard scan configurations of potential practical significance in dual-energy CT. © 2018 American Association of Physicists in Medicine.
Scalable Multi-Platform Distribution of Spatial 3d Contents
NASA Astrophysics Data System (ADS)
Klimke, J.; Hagedorn, B.; Döllner, J.
2013-09-01
Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.
NASA Astrophysics Data System (ADS)
Poertner, T.
1993-11-01
Glow discharge flow visualization experiments are demonstrated which have been performed to enable a first assessment of the HERMES 1.0 leading edge thruster configuration concerning interference between the thruster plumes of the reaction control system (RCS) and the surrounding flow field. The results of the flow visualization tests are presented in exemplary selected photographs. Additional Pitot pressure measurements support assumptions concerning interference induced pressure changes that may result from the observed significant flow field disturbances.
An Effective Algorithm Research of Scenario Voxelization Organization and Occlusion Culling
NASA Astrophysics Data System (ADS)
Lai, Guangling; Ding, Lu; Qin, Zhiyuan; Tong, Xiaochong
2016-11-01
Compared with the traditional triangulation approaches, the voxelized point cloud data can reduce the sensitivity of scenario and complexity of calculation. While on the base of the point cloud data, implementation scenario organization could be accomplishment by subtle voxel, but it will add more memory consumption. Therefore, an effective voxel representation method is very necessary. At present, the specific study of voxel visualization algorithm is less. This paper improved the ray tracing algorithm by the characteristics of voxel configuration. Firstly, according to the scope of point cloud data, determined the scope of the pixels on the screen. Then, calculated the light vector came from each pixel. Lastly, used the rules of voxel configuration to calculate all the voxel penetrated through by light. The voxels closest to viewpoint were named visible ones, the rest were all obscured ones. This experimental showed that the method could realize voxelization organization and voxel occlusion culling of implementation scenario efficiently, and increased the render efficiency.
Automatic blocking for complex three-dimensional configurations
NASA Technical Reports Server (NTRS)
Dannenhoffer, John F., III
1995-01-01
A new blocking technique for complex three-dimensional configurations is described. This new technique is based upon the concept of an abstraction, or squared-up representation, of the configuration and the associated grid. By allowing the user to describe blocking requirements in natural terms (such as 'wrap a grid around this leading edge' or 'make all grid lines emanating from this wall orthogonal to it'), users can quickly generate complex grids around complex configurations, while still maintaining a high level of control where desired. An added advantage of the abstraction concept is that once a blocking is defined for a class of configurations, it can be automatically applied to other configurations of the same class, making the new technique particularly well suited for the parametric variations which typically occur during design processes. Grids have been generated for a variety of real-world, two- and three-dimensional configurations. In all cases, the time required to generate the grid, given just an electronic form of the configuration, was at most a few days. Hence with this new technique, the generation of a block-structured grid is only slightly more expensive than the generation of an unstructured grid for the same configuration.
Observation-Driven Configuration of Complex Software Systems
NASA Astrophysics Data System (ADS)
Sage, Aled
2010-06-01
The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.
A new neural net approach to robot 3D perception and visuo-motor coordination
NASA Technical Reports Server (NTRS)
Lee, Sukhan
1992-01-01
A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.
Design and wind tunnel tests of winglets on a DC-10 wing
NASA Technical Reports Server (NTRS)
Gilkey, R. D.
1979-01-01
Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets
Rennig, Johannes; Bilalić, Merim; Huberle, Elisabeth; Karnath, Hans-Otto; Himmelbach, Marc
2013-01-01
In a recent neuroimaging study the comparison of intact vs. disturbed perception of global gestalt indicated a significant role of the temporo-parietal junction (TPJ) in the intact perception of global gestalt (Huberle and Karnath, 2012). This location corresponded well with the areas known to be damaged or impaired in patients with simultanagnosia after stroke or due to neurodegenerative diseases. It was concluded that the TPJ plays an important role in the integration of individual items to a holistic percept. Thus, increased BOLD signals should be found in this region whenever a task calls for the integration of multiple visual items. Behavioral experiments in chess experts suggested that their superior skills in comparison to chess novices are partly based on fast holistic processing of chess positions with multiple pieces. We thus analyzed BOLD data from four fMRI studies that compared chess experts with chess novices during the presentation of complex chess-related visual stimuli (Bilalić et al., 2010, 2011a,b, 2012). Three regions of interests were defined by significant TPJ clusters in the abovementioned study of global gestalt perception (Huberle and Karnath, 2012) and BOLD signal amplitudes in these regions were compared between chess experts and novices. These cross-paradigm ROI analyses revealed higher signals at the TPJ in chess experts in comparison to novices during presentations of complex chess positions. This difference was consistent across the different tasks in five independent experiments. Our results confirm the assumption that the TPJ region identified in previous work on global gestalt perception plays an important role in the processing of complex visual stimulus configurations.
Rennig, Johannes; Bilalić, Merim; Huberle, Elisabeth; Karnath, Hans-Otto; Himmelbach, Marc
2013-01-01
In a recent neuroimaging study the comparison of intact vs. disturbed perception of global gestalt indicated a significant role of the temporo-parietal junction (TPJ) in the intact perception of global gestalt (Huberle and Karnath, 2012). This location corresponded well with the areas known to be damaged or impaired in patients with simultanagnosia after stroke or due to neurodegenerative diseases. It was concluded that the TPJ plays an important role in the integration of individual items to a holistic percept. Thus, increased BOLD signals should be found in this region whenever a task calls for the integration of multiple visual items. Behavioral experiments in chess experts suggested that their superior skills in comparison to chess novices are partly based on fast holistic processing of chess positions with multiple pieces. We thus analyzed BOLD data from four fMRI studies that compared chess experts with chess novices during the presentation of complex chess-related visual stimuli (Bilalić et al., 2010, 2011a,b, 2012). Three regions of interests were defined by significant TPJ clusters in the abovementioned study of global gestalt perception (Huberle and Karnath, 2012) and BOLD signal amplitudes in these regions were compared between chess experts and novices. These cross-paradigm ROI analyses revealed higher signals at the TPJ in chess experts in comparison to novices during presentations of complex chess positions. This difference was consistent across the different tasks in five independent experiments. Our results confirm the assumption that the TPJ region identified in previous work on global gestalt perception plays an important role in the processing of complex visual stimulus configurations. PMID:24009574
Matsumoto, Narihisa; Eldridge, Mark A G; Saunders, Richard C; Reoli, Rachel; Richmond, Barry J
2016-01-06
In primates, visual recognition of complex objects depends on the inferior temporal lobe. By extension, categorizing visual stimuli based on similarity ought to depend on the integrity of the same area. We tested three monkeys before and after bilateral anterior inferior temporal cortex (area TE) removal. Although mildly impaired after the removals, they retained the ability to assign stimuli to previously learned categories, e.g., cats versus dogs, and human versus monkey faces, even with trial-unique exemplars. After the TE removals, they learned in one session to classify members from a new pair of categories, cars versus trucks, as quickly as they had learned the cats versus dogs before the removals. As with the dogs and cats, they generalized across trial-unique exemplars of cars and trucks. However, as seen in earlier studies, these monkeys with TE removals had difficulty learning to discriminate between two simple black and white stimuli. These results raise the possibility that TE is needed for memory of simple conjunctions of basic features, but that it plays only a small role in generalizing overall configural similarity across a large set of stimuli, such as would be needed for perceptual categorical assignment. The process of seeing and recognizing objects is attributed to a set of sequentially connected brain regions stretching forward from the primary visual cortex through the temporal lobe to the anterior inferior temporal cortex, a region designated area TE. Area TE is considered the final stage for recognizing complex visual objects, e.g., faces. It has been assumed, but not tested directly, that this area would be critical for visual generalization, i.e., the ability to place objects such as cats and dogs into their correct categories. Here, we demonstrate that monkeys rapidly and seemingly effortlessly categorize large sets of complex images (cats vs dogs, cars vs trucks), surprisingly, even after removal of area TE, leaving a puzzle about how this generalization is done. Copyright © 2016 the authors 0270-6474/16/360043-11$15.00/0.
Remote visualization and scale analysis of large turbulence datatsets
NASA Astrophysics Data System (ADS)
Livescu, D.; Pulido, J.; Burns, R.; Canada, C.; Ahrens, J.; Hamann, B.
2015-12-01
Accurate simulations of turbulent flows require solving all the dynamically relevant scales of motions. This technique, called Direct Numerical Simulation, has been successfully applied to a variety of simple flows; however, the large-scale flows encountered in Geophysical Fluid Dynamics (GFD) would require meshes outside the range of the most powerful supercomputers for the foreseeable future. Nevertheless, the current generation of petascale computers has enabled unprecedented simulations of many types of turbulent flows which focus on various GFD aspects, from the idealized configurations extensively studied in the past to more complex flows closer to the practical applications. The pace at which such simulations are performed only continues to increase; however, the simulations themselves are restricted to a small number of groups with access to large computational platforms. Yet the petabytes of turbulence data offer almost limitless information on many different aspects of the flow, from the hierarchy of turbulence moments, spectra and correlations, to structure-functions, geometrical properties, etc. The ability to share such datasets with other groups can significantly reduce the time to analyze the data, help the creative process and increase the pace of discovery. Using the largest DOE supercomputing platforms, we have performed some of the biggest turbulence simulations to date, in various configurations, addressing specific aspects of turbulence production and mixing mechanisms. Until recently, the visualization and analysis of such datasets was restricted by access to large supercomputers. The public Johns Hopkins Turbulence database simplifies the access to multi-Terabyte turbulence datasets and facilitates turbulence analysis through the use of commodity hardware. First, one of our datasets, which is part of the database, will be described and then a framework that adds high-speed visualization and wavelet support for multi-resolution analysis of turbulence will be highlighted. The addition of wavelet support reduces the latency and bandwidth requirements for visualization, allowing for many concurrent users, and enables new types of analyses, including scale decomposition and coherent feature extraction.
The influence of visual contrast and case changes on parafoveal preview benefits during reading.
Wang, Chin-An; Inhoff, Albrecht W
2010-04-01
Reingold and Rayner (2006) showed that the visual contrast of a fixated target word influenced its viewing duration, but not the viewing of the next (posttarget) word in the text that was shown in regular contrast. Configurational target changes, by contrast, influenced target and posttarget viewing. The current study examined whether this effect pattern can be attributed to differential processing of the posttarget word during target viewing. A boundary paradigm (Rayner, 1975) was used to provide an informative or uninformative posttarget preview and to reveal the word when it was fixated. Consistent with the earlier study, more time was spent viewing the target when its visual contrast was low and its configuration unfamiliar. Critically, target contrast had no effect on the acquisition of useful information from a posttarget preview, but an unfamiliar target configuration diminished the usefulness of an informative posttarget preview. These findings are consistent with Reingold and Rayner's (2006) claim that saccade programming and attention shifting during reading can be controlled by functionally distinct word recognition processes.
Task modulates functional connectivity networks in free viewing behavior.
Seidkhani, Hossein; Nikolaev, Andrey R; Meghanathan, Radha Nila; Pezeshk, Hamid; Masoudi-Nejad, Ali; van Leeuwen, Cees
2017-10-01
In free visual exploration, eye-movement is immediately followed by dynamic reconfiguration of brain functional connectivity. We studied the task-dependency of this process in a combined visual search-change detection experiment. Participants viewed two (nearly) same displays in succession. First time they had to find and remember multiple targets among distractors, so the ongoing task involved memory encoding. Second time they had to determine if a target had changed in orientation, so the ongoing task involved memory retrieval. From multichannel EEG recorded during 200 ms intervals time-locked to fixation onsets, we estimated the functional connectivity using a weighted phase lag index at the frequencies of theta, alpha, and beta bands, and derived global and local measures of the functional connectivity graphs. We found differences between both memory task conditions for several network measures, such as mean path length, radius, diameter, closeness and eccentricity, mainly in the alpha band. Both the local and the global measures indicated that encoding involved a more segregated mode of operation than retrieval. These differences arose immediately after fixation onset and persisted for the entire duration of the lambda complex, an evoked potential commonly associated with early visual perception. We concluded that encoding and retrieval differentially shape network configurations involved in early visual perception, affecting the way the visual input is processed at each fixation. These findings demonstrate that task requirements dynamically control the functional connectivity networks involved in early visual perception. Copyright © 2017 Elsevier Inc. All rights reserved.
Kokame, Gregg T; Shantha, Jessica G; Hirai, Kelsi; Ayabe, Julia
2016-08-01
To evaluate the diagnostic capability of en face spectral-domain optical coherence tomography (SD-OCT) in patients with polypoidal choroidal vasculopathy (PCV) diagnosed by indocyanine green angiography (ICGA). A retrospective, consecutive case series of 100 eyes diagnosed with PCV by ICGA were imaged with en face SD-OCT. Evaluation of the PCV complex on en face SD-OCT was performed on the ability to diagnose PCV by the characteristic configuration of the PCV complex and the extent and size of the PCV lesion. The PCV complex was better visualized on ICGA in 45 eyes, on en face SD-OCT in 44 eyes, and equally well in 11 eyes. The extent of the PCV complex was larger on en face SD-OCT in 65 eyes, larger on ICGA in 23 eyes, and equal in size in 12 eyes. En face SD-OCT images the characteristic findings of PCV and provides a noninvasive way to diagnose and treat PCV when ICGA is not available. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:737-744.]. Copyright 2016, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Ratamero, Erick Martins; Bellini, Dom; Dowson, Christopher G.; Römer, Rudolf A.
2018-06-01
The ability to precisely visualize the atomic geometry of the interactions between a drug and its protein target in structural models is critical in predicting the correct modifications in previously identified inhibitors to create more effective next generation drugs. It is currently common practice among medicinal chemists while attempting the above to access the information contained in three-dimensional structures by using two-dimensional projections, which can preclude disclosure of useful features. A more accessible and intuitive visualization of the three-dimensional configuration of the atomic geometry in the models can be achieved through the implementation of immersive virtual reality (VR). While bespoke commercial VR suites are available, in this work, we present a freely available software pipeline for visualising protein structures through VR. New consumer hardware, such as the uc(HTC Vive) and the uc(Oculus Rift) utilized in this study, are available at reasonable prices. As an instructive example, we have combined VR visualization with fast algorithms for simulating intramolecular motions of protein flexibility, in an effort to further improve structure-led drug design by exposing molecular interactions that might be hidden in the less informative static models. This is a paradigmatic test case scenario for many similar applications in computer-aided molecular studies and design.
Ratamero, Erick Martins; Bellini, Dom; Dowson, Christopher G; Römer, Rudolf A
2018-06-07
The ability to precisely visualize the atomic geometry of the interactions between a drug and its protein target in structural models is critical in predicting the correct modifications in previously identified inhibitors to create more effective next generation drugs. It is currently common practice among medicinal chemists while attempting the above to access the information contained in three-dimensional structures by using two-dimensional projections, which can preclude disclosure of useful features. A more accessible and intuitive visualization of the three-dimensional configuration of the atomic geometry in the models can be achieved through the implementation of immersive virtual reality (VR). While bespoke commercial VR suites are available, in this work, we present a freely available software pipeline for visualising protein structures through VR. New consumer hardware, such as the HTC VIVE and the OCULUS RIFT utilized in this study, are available at reasonable prices. As an instructive example, we have combined VR visualization with fast algorithms for simulating intramolecular motions of protein flexibility, in an effort to further improve structure-led drug design by exposing molecular interactions that might be hidden in the less informative static models. This is a paradigmatic test case scenario for many similar applications in computer-aided molecular studies and design.
Electricity generation using electromagnetic radiation
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2017-08-22
In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.
The iMeteo is a web-based weather visualization tool
NASA Astrophysics Data System (ADS)
Tuni San-Martín, Max; San-Martín, Daniel; Cofiño, Antonio S.
2010-05-01
iMeteo is a web-based weather visualization tool. Designed with an extensible J2EE architecture, it is capable of displaying information from heterogeneous data sources such as gridded data from numerical models (in NetCDF format) or databases of local predictions. All this information is presented in a user-friendly way, being able to choose the specific tool to display data (maps, graphs, information tables) and customize it to desired locations. *Modular Display System* Visualization of the data is achieved through a set of mini tools called widgets. A user can add them at will and arrange them around the screen easily with a drag and drop movement. They can be of various types and each can be configured separately, forming a really powerful and configurable system. The "Map" is the most complex widget, since it can show several variables simultaneously (either gridded or point-based) through a layered display. Other useful widgets are the the "Histogram", which generates a graph with the frequency characteristics of a variable and the "Timeline" which shows the time evolution of a variable at a given location in an interactive way. *Customization and security* Following the trends in web development, the user can easily customize the way data is displayed. Due to programming in client side with technologies like AJAX, the interaction with the application is similar to the desktop ones because there are rapid respone times. If a user is registered then he could also save his settings in the database, allowing access from any system with Internet access with his particular setup. There is particular emphasis on application security. The administrator can define a set of user profiles, which may have associated restrictions on access to certain data sources, geographic areas or time intervals.
Effects of configural processing on the perceptual spatial resolution for face features.
Namdar, Gal; Avidan, Galia; Ganel, Tzvi
2015-11-01
Configural processing governs human perception across various domains, including face perception. An established marker of configural face perception is the face inversion effect, in which performance is typically better for upright compared to inverted faces. In two experiments, we tested whether configural processing could influence basic visual abilities such as perceptual spatial resolution (i.e., the ability to detect spatial visual changes). Face-related perceptual spatial resolution was assessed by measuring the just noticeable difference (JND) to subtle positional changes between specific features in upright and inverted faces. The results revealed robust inversion effect for spatial sensitivity to configural-based changes, such as the distance between the mouth and the nose, or the distance between the eyes and the nose. Critically, spatial resolution for face features within the region of the eyes (e.g., the interocular distance between the eyes) was not affected by inversion, suggesting that the eye region operates as a separate 'gestalt' unit which is relatively immune to manipulations that would normally hamper configural processing. Together these findings suggest that face orientation modulates fundamental psychophysical abilities including spatial resolution. Furthermore, they indicate that classic psychophysical methods can be used as a valid measure of configural face processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maloney, Ryan T; Watson, Tamara L; Clifford, Colin W G
2014-10-15
Anisotropies in the cortical representation of various stimulus parameters can reveal the fundamental mechanisms by which sensory properties are analysed and coded by the brain. One example is the preference for motion radial to the point of fixation (i.e. centripetal or centrifugal) exhibited in mammalian visual cortex. In two experiments, this study used functional magnetic resonance imaging (fMRI) to explore the determinants of these radial biases for motion in functionally-defined areas of human early visual cortex, and in particular their dependence upon eccentricity which has been indicated in recent reports. In one experiment, the cortical response to wide-field random dot kinematograms forming 16 different complex motion patterns (including centrifugal, centripetal, rotational and spiral motion) was measured. The response was analysed according to preferred eccentricity within four different eccentricity ranges. Response anisotropies were characterised by enhanced activity for centripetal or centrifugal patterns that changed systematically with eccentricity in visual areas V1-V3 and hV4 (but not V3A/B or V5/MT+). Responses evolved from a preference for centrifugal over centripetal patterns close to the fovea, to a preference for centripetal over centrifugal at the most peripheral region stimulated, in agreement with previous work. These effects were strongest in V2 and V3. In a second experiment, the stimuli were restricted to within narrow annuli either close to the fovea (0.75-1.88°) or further in the periphery (4.82-6.28°), in a way that preserved the local motion information available in the first experiment. In this configuration a preference for radial motion (centripetal or centrifugal) persisted but the dependence upon eccentricity disappeared. Again this was clearest in V2 and V3. A novel interpretation of the dependence upon eccentricity of motion anisotropies in early visual cortex is offered that takes into account the spatiotemporal "predictability" of the moving pattern. Such stimulus predictability, and its relationship to models of predictive coding, has found considerable support in recent years in accounting for a number of other perceptual and neural phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.
Contextual Cueing Effect in Spatial Layout Defined by Binocular Disparity
Zhao, Guang; Zhuang, Qian; Ma, Jie; Tu, Shen; Liu, Qiang; Sun, Hong-jin
2017-01-01
Repeated visual context induces higher search efficiency, revealing a contextual cueing effect, which depends on the association between the target and its visual context. In this study, participants performed a visual search task where search items were presented with depth information defined by binocular disparity. When the 3-dimensional (3D) configurations were repeated over blocks, the contextual cueing effect was obtained (Experiment 1). When depth information was in chaos over repeated configurations, visual search was not facilitated and the contextual cueing effect largely crippled (Experiment 2). However, when we made the search items within a tiny random displacement in the 2-dimentional (2D) plane but maintained the depth information constant, the contextual cueing was preserved (Experiment 3). We concluded that the contextual cueing effect was robust in the context provided by 3D space with stereoscopic information, and more importantly, the visual system prioritized stereoscopic information in learning of spatial information when depth information was available. PMID:28912739
Contextual Cueing Effect in Spatial Layout Defined by Binocular Disparity.
Zhao, Guang; Zhuang, Qian; Ma, Jie; Tu, Shen; Liu, Qiang; Sun, Hong-Jin
2017-01-01
Repeated visual context induces higher search efficiency, revealing a contextual cueing effect, which depends on the association between the target and its visual context. In this study, participants performed a visual search task where search items were presented with depth information defined by binocular disparity. When the 3-dimensional (3D) configurations were repeated over blocks, the contextual cueing effect was obtained (Experiment 1). When depth information was in chaos over repeated configurations, visual search was not facilitated and the contextual cueing effect largely crippled (Experiment 2). However, when we made the search items within a tiny random displacement in the 2-dimentional (2D) plane but maintained the depth information constant, the contextual cueing was preserved (Experiment 3). We concluded that the contextual cueing effect was robust in the context provided by 3D space with stereoscopic information, and more importantly, the visual system prioritized stereoscopic information in learning of spatial information when depth information was available.
ERIC Educational Resources Information Center
Widder, Mirela; Gorsky, Paul
2013-01-01
In schools, learning spatial geometry is usually dependent upon a student's ability to visualize three dimensional geometric configurations from two dimensional drawings. Such a process, however, often creates visual obstacles which are unique to spatial geometry. Useful software programs which realistically depict three dimensional geometric…
Optical coherence tomography in anterior segment imaging
Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive
2008-01-01
Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288
Strut and wall interference on jet-induced ground effects of a STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Kristy, Michael H.
1995-01-01
A small scale ground effect test rig was used to study the ground plane flow field generated by a STOVL aircraft in hover. The objective of the research was to support NASA-Ames Research Center planning for the Large Scale Powered Model (LSPM) test for the ARPA-sponsored ASTOVL program. Specifically, small scale oil flow visualization studies were conducted to make a relative assessment of the aerodynamic interference of a proposed strut configuration and a wall configuration on the ground plane stagnation line. A simplified flat plate model representative of a generic jet-powered STOVL aircraft was used to simulate the LSPM. Cold air jets were used to simulate both the lift fan and the twin rear engines. Nozzle Pressure Ratios were used that closely represented those used on the LSPM tests. The flow visualization data clearly identified a shift in the stagnation line location for both the strut and the wall configuration. Considering the experimental uncertainty, it was concluded that either the strut configuration o r the wall configuration caused only a minor aerodynamic interference.
Visual Complexity and Affect: Ratings Reflect More Than Meets the Eye.
Madan, Christopher R; Bayer, Janine; Gamer, Matthias; Lonsdorf, Tina B; Sommer, Tobias
2017-01-01
Pictorial stimuli can vary on many dimensions, several aspects of which are captured by the term 'visual complexity.' Visual complexity can be described as, "a picture of a few objects, colors, or structures would be less complex than a very colorful picture of many objects that is composed of several components." Prior studies have reported a relationship between affect and visual complexity, where complex pictures are rated as more pleasant and arousing. However, a relationship in the opposite direction, an effect of affect on visual complexity, is also possible; emotional arousal and valence are known to influence selective attention and visual processing. In a series of experiments, we found that ratings of visual complexity correlated with affective ratings, and independently also with computational measures of visual complexity. These computational measures did not correlate with affect, suggesting that complexity ratings are separately related to distinct factors. We investigated the relationship between affect and ratings of visual complexity, finding an 'arousal-complexity bias' to be a robust phenomenon. Moreover, we found this bias could be attenuated when explicitly indicated but did not correlate with inter-individual difference measures of affective processing, and was largely unrelated to cognitive and eyetracking measures. Taken together, the arousal-complexity bias seems to be caused by a relationship between arousal and visual processing as it has been described for the greater vividness of arousing pictures. The described arousal-complexity bias is also of relevance from an experimental perspective because visual complexity is often considered a variable to control for when using pictorial stimuli.
Visual Complexity and Affect: Ratings Reflect More Than Meets the Eye
Madan, Christopher R.; Bayer, Janine; Gamer, Matthias; Lonsdorf, Tina B.; Sommer, Tobias
2018-01-01
Pictorial stimuli can vary on many dimensions, several aspects of which are captured by the term ‘visual complexity.’ Visual complexity can be described as, “a picture of a few objects, colors, or structures would be less complex than a very colorful picture of many objects that is composed of several components.” Prior studies have reported a relationship between affect and visual complexity, where complex pictures are rated as more pleasant and arousing. However, a relationship in the opposite direction, an effect of affect on visual complexity, is also possible; emotional arousal and valence are known to influence selective attention and visual processing. In a series of experiments, we found that ratings of visual complexity correlated with affective ratings, and independently also with computational measures of visual complexity. These computational measures did not correlate with affect, suggesting that complexity ratings are separately related to distinct factors. We investigated the relationship between affect and ratings of visual complexity, finding an ‘arousal-complexity bias’ to be a robust phenomenon. Moreover, we found this bias could be attenuated when explicitly indicated but did not correlate with inter-individual difference measures of affective processing, and was largely unrelated to cognitive and eyetracking measures. Taken together, the arousal-complexity bias seems to be caused by a relationship between arousal and visual processing as it has been described for the greater vividness of arousing pictures. The described arousal-complexity bias is also of relevance from an experimental perspective because visual complexity is often considered a variable to control for when using pictorial stimuli. PMID:29403412
Perceived orientation in free-fall dependson visual, postural, and architectural factors
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1983-01-01
In orbital flight and in the free-fall phase of parabolic flight, feelings of inversion of self and spacecraft, or aircraft, are often experienced. It is shown here that perceived orientation in free-fall is dependent on the position of one's body in relation to the aircraft, the architectural features of the aircraft, and one's visual appreciation of the relative configurations of his body and the aircraft. Compelling changes in the apparent orientation of one's body and of the aircraft can be reliably and systematically induced by manipulating this relationship. Moreover, while free-floating in the absence of visual, touch, and pressure stimulation, all sense of orientation to the surroundings may be lost with only an awareness of the relative configuration of the body preserved. The absences of falling sensations during weightlessness points to the importance of visual and cognitive factors in eliciting such sensations.
Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement
O'Rourke, Colleen T.; Hall, Margaret I.; Pitlik, Todd; Fernández-Juricic, Esteban
2010-01-01
Background Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. Conclusions We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching. PMID:20877645
Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.
O'Rourke, Colleen T; Hall, Margaret I; Pitlik, Todd; Fernández-Juricic, Esteban
2010-09-22
Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching.
Top-down contextual knowledge guides visual attention in infancy.
Tummeltshammer, Kristen; Amso, Dima
2017-10-26
The visual context in which an object or face resides can provide useful top-down information for guiding attention orienting, object recognition, and visual search. Although infants have demonstrated sensitivity to covariation in spatial arrays, it is presently unclear whether they can use rapidly acquired contextual knowledge to guide attention during visual search. In this eye-tracking experiment, 6- and 10-month-old infants searched for a target face hidden among colorful distracter shapes. Targets appeared in Old or New visual contexts, depending on whether the visual search arrays (defined by the spatial configuration, shape and color of component items in the search display) were repeated or newly generated throughout the experiment. Targets in Old contexts appeared in the same location within the same configuration, such that context covaried with target location. Both 6- and 10-month-olds successfully distinguished between Old and New contexts, exhibiting faster search times, fewer looks at distracters, and more anticipation of targets when contexts repeated. This initial demonstration of contextual cueing effects in infants indicates that they can use top-down information to facilitate orienting during memory-guided visual search. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Cooperstock, Jeremy R.; Wang, Guangyu
2009-02-01
We conducted a comparative study of different stereoscopic display modalities (head-mounted display, polarized projection, and multiview lenticular display) to evaluate their efficacy in supporting manipulation and understanding of 3D content, specifically, in the context of neurosurgical visualization. Our study was intended to quantify the differences in resulting task performance between these choices of display technology. The experimental configuration involved a segmented brain vasculature and a simulated tumor. Subjects were asked to manipulate the vasculature and a pen-like virtual probe in order to define a vessel-free path from cortical surface to the targeted tumor. Because of the anatomical complexity, defining such a path can be a challenging task. To evaluate the system, we quantified performance differences under three different stereoscopic viewing conditions. Our results indicate that, on average, participants achieved best performance using polarized projection, and worst with the multiview lenticular display. These quantitative measurements were further reinforced by the subjects' responses to our post-test questionnaire regarding personal preferences.
A real-time inverse quantised transform for multi-standard with dynamic resolution support
NASA Astrophysics Data System (ADS)
Sun, Chi-Chia; Lin, Chun-Ying; Zhang, Ce
2016-06-01
In this paper, a real-time configurable intelligent property (IP) core is presented for image/video decoding process in compatibility with the standard MPEG-4 Visual and the standard H.264/AVC. The inverse quantised discrete cosine and integer transform can be used to perform inverse quantised discrete cosine transform and inverse quantised inverse integer transforms which only required shift and add operations. Meanwhile, COordinate Rotation DIgital Computer iterations and compensation steps are adjustable in order to compensate for the video compression quality regarding various data throughput. The implementations are embedded in publicly available software XVID Codes 1.2.2 for the standard MPEG-4 Visual and the H.264/AVC reference software JM 16.1, where the experimental results show that the balance between the computational complexity and video compression quality is retained. At the end, FPGA synthesised results show that the proposed IP core can bring advantages to low hardware costs and also provide real-time performance for Full HD and 4K-2K video decoding.
NASA Technical Reports Server (NTRS)
Kaiser, Mary Kister; Remington, Roger
1988-01-01
Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.
Numerical image manipulation and display in solar astronomy
NASA Technical Reports Server (NTRS)
Levine, R. H.; Flagg, J. C.
1977-01-01
The paper describes the system configuration and data manipulation capabilities of a solar image display system which allows interactive analysis of visual images and on-line manipulation of digital data. Image processing features include smoothing or filtering of images stored in the display, contrast enhancement, and blinking or flickering images. A computer with a core memory of 28,672 words provides the capacity to perform complex calculations based on stored images, including computing histograms, selecting subsets of images for further analysis, combining portions of images to produce images with physical meaning, and constructing mathematical models of features in an image. Some of the processing modes are illustrated by some image sequences from solar observations.
[Development of a software for 3D virtual phantom design].
Zou, Lian; Xie, Zhao; Wu, Qi
2014-02-01
In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heilbron, Valerie J; Clem, Paul G; Cook, Adam Wade
An illuminated display device with a base member with a plurality of cavities therein. Illumination devices illuminate the cavities and emit light through an opening of the cavities in a pattern, and a speaker can emit sounds in synchronization with the pattern. A panel with translucent portions can overly the base member and the cavities. An animated talking character can have an animated mouth cavity complex with multiple predetermined mouth lighting configurations simulative of human utterances. The cavities can be open, or optical waveguide material or positive members can be disposed therein. Reflective material can enhance internal reflectance and lightmore » emission.« less
Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence
NASA Technical Reports Server (NTRS)
Morgan, Douglas C.
1996-01-01
A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.
Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.
Zhang, Liqun; Borthakur, Susmita; Buck, Matthias
2016-02-23
The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in that it initially involves transitions to surfaces with fewer, less favorable contacts compared with those seen in the fully formed complex. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ergonomics for Online Searching.
ERIC Educational Resources Information Center
Wright, Carol; Friend, Linda
1992-01-01
Describes factors to be considered in the design of ergonomically correct workstations for online searchers. Topics discussed include visual factors, including lighting; acoustical factors; radiation and visual display terminals (VDTs); screen image characteristics; static electricity; hardware and equipment; workstation configuration; chairs;…
Visualization of DNA molecules in time during electrophoresis
NASA Technical Reports Server (NTRS)
Lubega, Seth
1991-01-01
For several years individual DNA molecules have been observed and photographed during agarose gel electrophoresis. The DNA molecule is clearly the largest molecule known. Nevertheless, the largest molecule is still too small to be seen using a microscope. A technique developed by Morikawa and Yanagida has made it possible to visualize individual DNA molecules. When these long molecules are labeled with appropriate fluorescence dyes and observed under a fluorescence microscope, although it is not possible to directly visualize the local ultrastructure of the molecules, yet because they are long light emitting chains, their microscopic dynamical behavior can be observed. This visualization works in the same principle that enables one to observe a star through a telescope because it emits light against a dark background. The dynamics of individual DNA molecules migrating through agarose matrix during electrophoresis have been described by Smith et al. (1989), Schwartz and Koval (1989), and Bustamante et al. (1990). DNA molecules during agarose gel electrophoresis advance lengthwise thorough the gel in an extended configuration. They display an extension-contraction motion and tend to bunch up in their leading ends as the 'heads' find new pores through the gel. From time to time they get hooked on obstacles in the gel to form U-shaped configurations before they resume their linear configuration.
Visualisierungen im Lehr-Lern-Process (Visualizations in the Process of Teaching and Learning).
ERIC Educational Resources Information Center
Schnotz, Wolfgang; Zink, Thomas; Pfeiffer, Michael
1996-01-01
Discusses the role of visualization of information in learning. Theorizes that the comprehension of visualizations is a process of structure mapping between a visuo-spatial configuration and a mental model. Tests the model and finds differences in the use of text and picture information to answer different kinds of text questions. (DSK)
Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.
2013-01-01
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760
Altitude control in honeybees: joint vision-based learning and guidance.
Portelli, Geoffrey; Serres, Julien R; Ruffier, Franck
2017-08-23
Studies on insects' visual guidance systems have shed little light on how learning contributes to insects' altitude control system. In this study, honeybees were trained to fly along a double-roofed tunnel after entering it near either the ceiling or the floor of the tunnel. The honeybees trained to hug the ceiling therefore encountered a sudden change in the tunnel configuration midways: i.e. a "dorsal ditch". Thus, the trained honeybees met a sudden increase in the distance to the ceiling, corresponding to a sudden strong change in the visual cues available in their dorsal field of view. Honeybees reacted by rising quickly and hugging the new, higher ceiling, keeping a similar forward speed, distance to the ceiling and dorsal optic flow to those observed during the training step; whereas bees trained to follow the floor kept on following the floor regardless of the change in the ceiling height. When trained honeybees entered the tunnel via the other entry (the lower or upper entry) to that used during the training step, they quickly changed their altitude and hugged the surface they had previously learned to follow. These findings clearly show that trained honeybees control their altitude based on visual cues memorized during training. The memorized visual cues generated by the surfaces followed form a complex optic flow pattern: trained honeybees may attempt to match the visual cues they perceive with this memorized optic flow pattern by controlling their altitude.
Si, Liang; Baier, Horst
2015-07-08
For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with "orange peel" surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments.
Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors
Si, Liang; Baier, Horst
2015-01-01
For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with “orange peel” surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments. PMID:26184196
Optimal visual-haptic integration with articulated tools.
Takahashi, Chie; Watt, Simon J
2017-05-01
When we feel and see an object, the nervous system integrates visual and haptic information optimally, exploiting the redundancy in multiple signals to estimate properties more precisely than is possible from either signal alone. We examined whether optimal integration is similarly achieved when using articulated tools. Such tools (tongs, pliers, etc) are a defining characteristic of human hand function, but complicate the classical sensory 'correspondence problem' underlying multisensory integration. Optimal integration requires establishing the relationship between signals acquired by different sensors (hand and eye) and, therefore, in fundamentally unrelated units. The system must also determine when signals refer to the same property of the world-seeing and feeling the same thing-and only integrate those that do. This could be achieved by comparing the pattern of current visual and haptic input to known statistics of their normal relationship. Articulated tools disrupt this relationship, however, by altering the geometrical relationship between object properties and hand posture (the haptic signal). We examined whether different tool configurations are taken into account in visual-haptic integration. We indexed integration by measuring the precision of size estimates, and compared our results to optimal predictions from a maximum-likelihood integrator. Integration was near optimal, independent of tool configuration/hand posture, provided that visual and haptic signals referred to the same object in the world. Thus, sensory correspondence was determined correctly (trial-by-trial), taking tool configuration into account. This reveals highly flexible multisensory integration underlying tool use, consistent with the brain constructing internal models of tools' properties.
Facing the Limitations of Electronic Document Handling.
ERIC Educational Resources Information Center
Moralee, Dennis
1985-01-01
This essay addresses problems associated with technology used in the handling of high-resolution visual images in electronic document delivery. Highlights include visual fidelity, laser-driven optical disk storage, electronics versus micrographics for document storage, videomicrographics, and system configurations and peripherals. (EJS)
Computer program analyzes and designs supersonic wing-body combinations
NASA Technical Reports Server (NTRS)
Woodward, F. A.
1968-01-01
Computer program formulates geometric description of the wing body configuration, optimizes wing camber shape, determines wing shape for a given pressure distribution, and calculates pressures, forces, and moments on a given configuration. The program consists of geometry definition, transformation, and paneling, and aerodynamics, and flow visualization.
ERIC Educational Resources Information Center
Nika, G. Gerald; Parameswaran, R.
1997-01-01
Describes a visual approach for explaining the filling of electrons in the shells, subshells, and orbitals of the chemical elements. Enables students to apply the principles of atomic electron configuration while using manipulatives to model the building up of electron configurations as the atomic numbers of elements increase on the periodic…
1981-07-10
Pohlmann, L. D. Some models of observer behavior in two-channel auditory signal detection. Perception and Psychophy- sics, 1973, 14, 101-109. Spelke...spatial), and processing modalities ( auditory versus visual input, vocal versus manual response). If validated, this configuration has both theoretical...conclusion that auditory and visual processes will compete, as will spatial and verbal (albeit to a lesser extent than auditory - auditory , visual-visual
Configuration complexity assessment of convergent supply chain systems
NASA Astrophysics Data System (ADS)
Modrak, Vladimir; Marton, David
2014-07-01
System designers usually generate alternative configurations of supply chains (SCs) by varying especially fixed assets to satisfy a desired production scope and rate. Such alternatives often vary in associated costs and other facets including degrees of complexity. Hence, a measure of configuration complexity can be a tool for comparison and decision-making. This paper presents three approaches to assessment of configuration complexity and their applications to designing convergent SC systems. Presented approaches are conceptually distinct ways of measuring structural complexity parameters based on different preconditions and circumstances of assembly systems which are typical representatives of convergent SCs. There are applied two similar approaches based on different preconditions that are related to demand shares. Third approach does not consider any special condition relating to character of final product demand. Subsequently, we propose a framework for modeling of assembly SC models, which are dividing to classes.
Cognitive Virtualization: Combining Cognitive Models and Virtual Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuan Q. Tran; David I. Gertman; Donald D. Dudenhoeffer
2007-08-01
3D manikins are often used in visualizations to model human activity in complex settings. Manikins assist in developing understanding of human actions, movements and routines in a variety of different environments representing new conceptual designs. One such environment is a nuclear power plant control room, here they have the potential to be used to simulate more precise ergonomic assessments of human work stations. Next generation control rooms will pose numerous challenges for system designers. The manikin modeling approach by itself, however, may be insufficient for dealing with the desired technical advancements and challenges of next generation automated systems. Uncertainty regardingmore » effective staffing levels; and the potential for negative human performance consequences in the presence of advanced automated systems (e.g., reduced vigilance, poor situation awareness, mistrust or blind faith in automation, higher information load and increased complexity) call for further research. Baseline assessment of novel control room equipment(s) and configurations needs to be conducted. These design uncertainties can be reduced through complementary analysis that merges ergonomic manikin models with models of higher cognitive functions, such as attention, memory, decision-making, and problem-solving. This paper will discuss recent advancements in merging a theoretical-driven cognitive modeling framework within a 3D visualization modeling tool to evaluate of next generation control room human factors and ergonomic assessment. Though this discussion primary focuses on control room design, the application for such a merger between 3D visualization and cognitive modeling can be extended to various areas of focus such as training and scenario planning.« less
Lausberg, Hedda; Cruz, Robyn Flaum
2004-01-01
Several studies of patients with unilateral brain damage and a patient with spontaneous callosal disconnection [Journal of Neurology, Neurosurgery, and Psychiatry 61 (1996) 176; Neuropsychologia 37 (1999) 559; Neuropsychologia 39 (2001) 1432] suggest that the imitation of positions of the hand relative to the head is a strongly lateralised left hemispheric function. In contrast, the imitation of finger configurations draws on resources of both hemispheres with a predominance of the right hemisphere. While these findings suggest a specific pattern of imitation impairment in split-brain patients, thus far, no imitation deficits have been reported in split-brain patients. Three patients with complete callosotomy and two control groups, four patients with partial callosotomy and 10 healthy subjects, imitated hand-head positions and finger configurations with non-lateralised and tachistoscopic stimulus presentation. In addition, the influence of visual control on the imitation performance was examined. One split-brain patient showed the predicted dissociation as she had severe right hemispheric deficit in imitating hand-head positions, while finger configuration imitation was preserved. The other two split-brain patients had no impairment in hand-head position imitation. Withdrawal of visual control significantly deteriorated imitation of finger configurations in the split-brain group, but not in the controls, demonstrating that the split-brain patients relied heavily on visual control as a compensatory strategy indicating an imitation deficit in the separate hemispheres. The findings question the previously held belief that in split-brain patients both hemispheres are perfectly capable of imitating gestures and that imitation is not dependent on hemispherically specialised functions.
A Lack of Left Visual Field Bias when Individuals with Autism Process Faces
ERIC Educational Resources Information Center
Dundas, Eva M.; Best, Catherine A.; Minshew, Nancy J.; Strauss, Mark S.
2012-01-01
It has been established that typically developing individuals have a bias to attend to facial information in the left visual field (LVF) more than in the right visual field. This bias is thought to arise from the right hemisphere's advantage for processing facial information, with evidence suggesting it to be driven by the configural demands of…
Chirality in distorted square planar Pd(O,N)2 compounds.
Brunner, Henri; Bodensteiner, Michael; Tsuno, Takashi
2013-10-01
Salicylidenimine palladium(II) complexes trans-Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N-substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes with enantiomerically pure N-substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N-substituents in trans-arrangement are inherently chiral. For dimers different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes and atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex [(Diop)Rh(PPh3 )Cl)], a catalyst for enantioselective hydrogenation. In the lattice of two diastereomers with the same (RC ,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co-crystallize, a rare phenomenon in stereochemistry. © 2013 Wiley Periodicals, Inc.
A PBOM configuration and management method based on templates
NASA Astrophysics Data System (ADS)
Guo, Kai; Qiao, Lihong; Qie, Yifan
2018-03-01
The design of Process Bill of Materials (PBOM) holds a hinge position in the process of product development. The requirements of PBOM configuration design and management for complex products are analysed in this paper, which include the reuse technique of configuration procedure and urgent management need of huge quantity of product family PBOM data. Based on the analysis, the function framework of PBOM configuration and management has been established. Configuration templates and modules are defined in the framework to support the customization and the reuse of configuration process. The configuration process of a detection sensor PBOM is shown as an illustration case in the end. The rapid and agile PBOM configuration and management can be achieved utilizing template-based method, which has a vital significance to improve the development efficiency for complex products.
Visual grouping under isoluminant condition: impact of mental fatigue
NASA Astrophysics Data System (ADS)
Pladere, Tatjana; Bete, Diana; Skilters, Jurgis; Krumina, Gunta
2016-09-01
Instead of selecting arbitrary elements our visual perception prefers only certain grouping of information. There is ample evidence that the visual attention and perception is substantially impaired in the presence of mental fatigue. The question is how visual grouping, which can be considered a bottom-up controlled neuronal gain mechanism, is influenced. The main purpose of our study is to determine the influence of mental fatigue on visual grouping of definite information - color and configuration of stimuli in the psychophysical experiment. Individuals provided subjective data by filling in the questionnaire about their health and general feeling. The objective evidence was obtained in the specially designed visual search task were achromatic and chromatic isoluminant stimuli were used in order to avoid so called pop-out effect due to differences in light intensity. Each individual was instructed to define the symbols with aperture in the same direction in four tasks. The color component differed in the visual search tasks according to the goals of study. The results reveal that visual grouping is completed faster when visual stimuli have the same color and aperture direction. The shortest reaction time is in the evening. What is more, the results of reaction time suggest that the analysis of two grouping processes compete for selective attention in the visual system when similarity in color conflicts with similarity in configuration of stimuli. The described effect increases significantly in the presence of mental fatigue. But it does not have strong influence on the accuracy of task accomplishment.
A Simple Method for Specifying the R/S Configuration about a Chiral Center.
ERIC Educational Resources Information Center
Idoux, John P.
1982-01-01
Describes a method for specifying R/S (clockwise/counterclockwise) configuration about a chiral center which does not require the use of a three-dimensional physical model, the mental visualization of the molecule, or the memorization of a recently reported arbitrary number system. (Author/JN)
ERIC Educational Resources Information Center
Oancea, Alis; Florez Petour, Teresa; Atkinson, Jeanette
2017-01-01
This article introduces a methodological approach for articulating and communicating the impact and value of research: qualitative network analysis using collaborative configuration tracing and visualization. The approach was proposed initially in Oancea ("Interpretations and Practices of Research Impact across the Range of Disciplines…
3D Boolean operations in virtual surgical planning.
Charton, Jerome; Laurentjoye, Mathieu; Kim, Youngjun
2017-10-01
Boolean operations in computer-aided design or computer graphics are a set of operations (e.g. intersection, union, subtraction) between two objects (e.g. a patient model and an implant model) that are important in performing accurate and reproducible virtual surgical planning. This requires accurate and robust techniques that can handle various types of data, such as a surface extracted from volumetric data, synthetic models, and 3D scan data. This article compares the performance of the proposed method (Boolean operations by a robust, exact, and simple method between two colliding shells (BORES)) and an existing method based on the Visualization Toolkit (VTK). In all tests presented in this article, BORES could handle complex configurations as well as report impossible configurations of the input. In contrast, the VTK implementations were unstable, do not deal with singular edges and coplanar collisions, and have created several defects. The proposed method of Boolean operations, BORES, is efficient and appropriate for virtual surgical planning. Moreover, it is simple and easy to implement. In future work, we will extend the proposed method to handle non-colliding components.
Reifman, Jaques; Kumar, Kamal; Khitrov, Maxim Y; Liu, Jianbo; Ramakrishnan, Sridhar
2018-07-01
The psychomotor vigilance task (PVT) has been widely used to assess the effects of sleep deprivation on human neurobehavioral performance. To facilitate research in this field, we previously developed the PC-PVT, a freely available software system analogous to the "gold-standard" PVT-192 that, in addition to allowing for simple visual reaction time (RT) tests, also allows for near real-time PVT analysis, prediction, and visualization in a personal computer (PC). Here we present the PC-PVT 2.0 for Windows 10 operating system, which has the capability to couple PVT tests of a study protocol with the study's sleep/wake and caffeine schedules, and make real-time individualized predictions of PVT performance for such schedules. We characterized the accuracy and precision of the software in measuring RT, using 44 distinct combinations of PC hardware system configurations. We found that 15 system configurations measured RTs with an average delay of less than 10 ms, an error comparable to that of the PVT-192. To achieve such small delays, the system configuration should always use a gaming mouse as the means to respond to visual stimuli. We recommend using a discrete graphical processing unit for desktop PCs and an external monitor for laptop PCs. This update integrates a study's sleep/wake and caffeine schedules with the testing software, facilitating testing and outcome visualization, and provides near-real-time individualized PVT predictions for any sleep-loss condition considering caffeine effects. The software, with its enhanced PVT analysis, visualization, and prediction capabilities, can be freely downloaded from https://pcpvt.bhsai.org. Published by Elsevier B.V.
Statistical complexity without explicit reference to underlying probabilities
NASA Astrophysics Data System (ADS)
Pennini, F.; Plastino, A.
2018-06-01
We show that extremely simple systems of a not too large number of particles can be simultaneously thermally stable and complex. To such an end, we extend the statistical complexity's notion to simple configurations of non-interacting particles, without appeal to probabilities, and discuss configurational properties.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
Visual Complexity and Pictorial Memory: A Fifteen Year Research Perspective.
ERIC Educational Resources Information Center
Berry, Louis H.
For 15 years an ongoing research project at the University of Pittsburgh has focused on the effects of variations in visual complexity and color on the storage and retrieval of visual information by learners. Research has shown that visual materials facilitate instruction, but has not fully delineated the interactions of visual complexity and…
Central and peripheral vision loss differentially affects contextual cueing in visual search.
Geringswald, Franziska; Pollmann, Stefan
2015-09-01
Visual search for targets in repeated displays is more efficient than search for the same targets in random distractor layouts. Previous work has shown that this contextual cueing is severely impaired under central vision loss. Here, we investigated whether central vision loss, simulated with gaze-contingent displays, prevents the incidental learning of contextual cues or the expression of learning, that is, the guidance of search by learned target-distractor configurations. Visual search with a central scotoma reduced contextual cueing both with respect to search times and gaze parameters. However, when the scotoma was subsequently removed, contextual cueing was observed in a comparable magnitude as for controls who had searched without scotoma simulation throughout the experiment. This indicated that search with a central scotoma did not prevent incidental context learning, but interfered with search guidance by learned contexts. We discuss the role of visuospatial working memory load as source of this interference. In contrast to central vision loss, peripheral vision loss was expected to prevent spatial configuration learning itself, because the restricted search window did not allow the integration of invariant local configurations with the global display layout. This expectation was confirmed in that visual search with a simulated peripheral scotoma eliminated contextual cueing not only in the initial learning phase with scotoma, but also in the subsequent test phase without scotoma. (c) 2015 APA, all rights reserved).
Exploratory flow visualization investigation of mast-mounted sights in presence of a rotor
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Kelley, Henry L.
1995-01-01
A flow visualization investigation with a laser light sheet system was conducted on a 27-percent-scale AH-64 attack helicopter model fitted with two mast-mounted sights in the langley 14- by 22-foot subsonic tunnel. The investigation was conducted to identify aerodynamic phenomena that may have contributed to adverse vibration encountered during full-scale flight of the AH-64D apache/longbow helicopter with an asymmetric mast-mounted sight. Symmetric and asymmetric mast-mounted sights oriented at several skew angles were tested at simulated forward and rearward flight speeds of 30 and 45 knots. A laser light sheet system was used to visualize the flow in planes parallel to and perpendicular to the free-stream flow. Analysis of these flow visualization data identified frequencies of flow patterns in the wake shed from the sight, the streamline angle at the sight, and the location where the shed wake crossed the rotor plane. Differences in wake structure were observed between the sight configurations and various skew angles. Analysis of lateral light sheet plane data implied significant vortex structure in the wake of the asymmetric mast-mounted sight in the configuration that produced maximum in-flight vibration. The data showed no significant vortex structure in the wake of the asymmetric and symmetric configurations that produced no increase in in-flight adverse vibration.
Real-space identification of intermolecular bonding with atomic force microscopy.
Zhang, Jun; Chen, Pengcheng; Yuan, Bingkai; Ji, Wei; Cheng, Zhihai; Qiu, Xiaohui
2013-11-01
We report a real-space visualization of the formation of hydrogen bonding in 8-hydroxyquinoline (8-hq) molecular assemblies on a Cu(111) substrate, using noncontact atomic force microscopy (NC-AFM). The atomically resolved molecular structures enable a precise determination of the characteristics of hydrogen bonding networks, including the bonding sites, orientations, and lengths. The observation of bond contrast was interpreted by ab initio density functional calculations, which indicated the electron density contribution from the hybridized electronic state of the hydrogen bond. Intermolecular coordination between the dehydrogenated 8-hq and Cu adatoms was also revealed by the submolecular resolution AFM characterization. The direct identification of local bonding configurations by NC-AFM would facilitate detailed investigations of intermolecular interactions in complex molecules with multiple active sites.
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Ďuračkoá, Daniela
2014-01-01
The paper describes our experiment with using the Gaussian mixture models (GMM) for classification of speech uttered by a person wearing orthodontic appliances. For the GMM classification, the input feature vectors comprise the basic and the complementary spectral properties as well as the supra-segmental parameters. Dependence of classification correctness on the number of the parameters in the input feature vector and on the computation complexity is also evaluated. In addition, an influence of the initial setting of the parameters for GMM training process was analyzed. Obtained recognition results are compared visually in the form of graphs as well as numerically in the form of tables and confusion matrices for tested sentences uttered using three configurations of orthodontic appliances.
Embedding of Cortical Representations by the Superficial Patch System
Da Costa, Nuno M. A.; Girardin, Cyrille C.; Naaman, Shmuel; Omer, David B.; Ruesch, Elisha; Grinvald, Amiram; Douglas, Rodney J.
2011-01-01
Pyramidal cells in layers 2 and 3 of the neocortex of many species collectively form a clustered system of lateral axonal projections (the superficial patch system—Lund JS, Angelucci A, Bressloff PC. 2003. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex. 13:15–24. or daisy architecture—Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci. 27:419–451.), but the function performed by this general feature of the cortical architecture remains obscure. By comparing the spatial configuration of labeled patches with the configuration of responses to drifting grating stimuli, we found the spatial organizations both of the patch system and of the cortical response to be highly conserved between cat and monkey primary visual cortex. More importantly, the configuration of the superficial patch system is directly reflected in the arrangement of function across monkey primary visual cortex. Our results indicate a close relationship between the structure of the superficial patch system and cortical responses encoding a single value across the surface of visual cortex (self-consistent states). This relationship is consistent with the spontaneous emergence of orientation response–like activity patterns during ongoing cortical activity (Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature. 425:954–956.). We conclude that the superficial patch system is the physical encoding of self-consistent cortical states, and that a set of concurrently labeled patches participate in a network of mutually consistent representations of cortical input. PMID:21383233
An Automated System for Comprehensive Assessment of Visual Field Sensitivity.
1985-04-01
act to degrade this basic configuration; e.g., pathology, such as glaucoma and retinitis pigmentosa ; environmental extremes, such as hypoxia...and B. Appleton. 1971. Effects of hypoxia on visual performance and retinal vascular state. Journal of Applied Physiology. 31: 357蘺. Kobrick, J. L
STS-34 Cargo Configuration drawing with payload bay location of Galileo/IUS
NASA Technical Reports Server (NTRS)
1989-01-01
Visual aid entitled NATIONAL STS PROGRAM STS-34 CARGO CONFIGURATION is a line drawing of Atlantis, Orbiter Vehicle (OV) 104, orbiting the Earth with its payload bay doors (PLBDs) open. A label identifies the Galileo spacecraft on an inertial upper stage (IUS) and its location in the payload bay (PLB).
ERIC Educational Resources Information Center
Contreras, José
2015-01-01
In this paper I describe classroom experiences with pre-service secondary mathematics teachers (PSMTs) investigating and extending patterns embedded in the Pythagorean configuration. This geometric figure is a fruitful source of mathematical tasks to help students, including PSMTs, further develop habits of mind such as visualization,…
Secure videoconferencing equipment switching system and method
Dirks, David H; Gomes, Diane; Stewart, Corbin J; Fischer, Robert A
2013-04-30
Examples of systems described herein include videoconferencing systems having audio/visual components coupled to a codec. The codec may be configured by a control system. Communication networks having different security levels may be alternately coupled to the codec following appropriate configuration by the control system. The control system may also be coupled to the communication networks.
Tactical 3D Model Generation using Structure-From-Motion on Video from Unmanned Systems
2015-04-01
available SfM application known as VisualSFM .6,7 VisualSFM is an end-user, “off-the-shelf” implementation of SfM that is easy to configure and used for...most 3D model generation applications from imagery. While the usual interface with VisualSFM is through their graphical user interface (GUI), we will be...of our system.5 There are two types of 3D model generation available within VisualSFM ; sparse and dense reconstruction. Sparse reconstruction begins
Amino Acid Interaction (INTAA) web server.
Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí
2017-07-03
Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Predicting beauty: fractal dimension and visual complexity in art.
Forsythe, A; Nadal, M; Sheehy, N; Cela-Conde, C J; Sawey, M
2011-02-01
Visual complexity has been known to be a significant predictor of preference for artistic works for some time. The first study reported here examines the extent to which perceived visual complexity in art can be successfully predicted using automated measures of complexity. Contrary to previous findings the most successful predictor of visual complexity was Gif compression. The second study examined the extent to which fractal dimension could account for judgments of perceived beauty. The fractal dimension measure accounts for more of the variance in judgments of perceived beauty in visual art than measures of visual complexity alone, particularly for abstract and natural images. Results also suggest that when colour is removed from an artistic image observers are unable to make meaningful judgments as to its beauty. ©2010 The British Psychological Society.
Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter
2017-01-01
Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.
MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis.
Maes, Alexandre; Martinez, Xavier; Druart, Karen; Laurent, Benoist; Guégan, Sean; Marchand, Christophe H; Lemaire, Stéphane D; Baaden, Marc
2018-06-21
Proteomic and transcriptomic technologies resulted in massive biological datasets, their interpretation requiring sophisticated computational strategies. Efficient and intuitive real-time analysis remains challenging. We use proteomic data on 1417 proteins of the green microalga Chlamydomonas reinhardtii to investigate physicochemical parameters governing selectivity of three cysteine-based redox post translational modifications (PTM): glutathionylation (SSG), nitrosylation (SNO) and disulphide bonds (SS) reduced by thioredoxins. We aim to understand underlying molecular mechanisms and structural determinants through integration of redox proteome data from gene- to structural level. Our interactive visual analytics approach on an 8.3 m2 display wall of 25 MPixel resolution features stereoscopic three dimensions (3D) representation performed by UnityMol WebGL. Virtual reality headsets complement the range of usage configurations for fully immersive tasks. Our experiments confirm that fast access to a rich cross-linked database is necessary for immersive analysis of structural data. We emphasize the possibility to display complex data structures and relationships in 3D, intrinsic to molecular structure visualization, but less common for omics-network analysis. Our setup is powered by MinOmics, an integrated analysis pipeline and visualization framework dedicated to multi-omics analysis. MinOmics integrates data from various sources into a materialized physical repository. We evaluate its performance, a design criterion for the framework.
Water facilities in retrospect and prospect: An illuminating tool for vehicle design
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Peak, D. J.; Delfrate, J.; Skow, A. M.; Malcolm, G. N.
1986-01-01
Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady three-dimensional flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.
Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
Jamwal, Prashant K; Hussain, Shahid; Mir-Nasiri, Nazim; Ghayesh, Mergen H; Xie, Sheng Q
2018-01-01
This article explores wide-ranging potential of the wearable ankle robot for in-house rehabilitation. The presented robot has been conceptualized following a brief analysis of the existing technologies, systems, and solutions for in-house physical ankle rehabilitation. Configuration design analysis and component selection for ankle robot have been discussed as part of the conceptual design. The complexities of human robot interaction are closely encountered while maneuvering a rehabilitation robot. We present a fuzzy logic-based controller to perform the required robot-assisted ankle rehabilitation treatment. Designs of visual haptic interfaces have also been discussed, which will make the treatment interesting, and the subject will be motivated to exert more and regain lost functions rapidly. The complex nature of web-based communication between user and remotely sitting physiotherapy staff has also been discussed. A high-level software architecture appended with robot ensures user-friendly operations. This software is made up of three important components: patient-related database, graphical user interface (GUI), and a library of exercises creating virtual reality-specifically developed for ankle rehabilitation.
Verification of the CFD simulation system SAUNA for complex aircraft configurations
NASA Astrophysics Data System (ADS)
Shaw, Jonathon A.; Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.
1994-04-01
This paper is concerned with the verification for complex aircraft configurations of an advanced CFD simulation system known by the acronym SAUNA. A brief description of the complete system is given, including its unique use of differing grid generation strategies (structured, unstructured or both) depending on the geometric complexity of the addressed configuration. The majority of the paper focuses on the application of SAUNA to a variety of configurations from the military aircraft, civil aircraft and missile areas. Mesh generation issues are discussed for each geometry and experimental data are used to assess the accuracy of the inviscid (Euler) model used. It is shown that flexibility and accuracy are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.
ERIC Educational Resources Information Center
Baker, Marissa H.; Ng-He, Carol; Lopez-Bosch, Maria Acaso
2008-01-01
In 2005, Maria Acaso, professor in Art Education at the Universidad Complutense Madrid in Spain and a co-author of this article, conducted a comparative research project on visual configurations at different art schools in Europe and the United States. The study of hidden visual curriculum examines how knowledge and cultural/political/social…
NASA Astrophysics Data System (ADS)
Bichisao, Marta; Stallone, Angela
2017-04-01
Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.
Visualization of Global Disease Burden for the Optimization of Patient Management and Treatment.
Schlee, Winfried; Hall, Deborah A; Edvall, Niklas K; Langguth, Berthold; Canlon, Barbara; Cederroth, Christopher R
2017-01-01
The assessment and treatment of complex disorders is challenged by the multiple domains and instruments used to evaluate clinical outcome. With the large number of assessment tools typically used in complex disorders comes the challenge of obtaining an integrative view of disease status to further evaluate treatment outcome both at the individual level and at the group level. Radar plots appear as an attractive visual tool to display multivariate data on a two-dimensional graphical illustration. Here, we describe the use of radar plots for the visualization of disease characteristics applied in the context of tinnitus, a complex and heterogeneous condition, the treatment of which has shown mixed success. Data from two different cohorts, the Swedish Tinnitus Outreach Project (STOP) and the Tinnitus Research Initiative (TRI) database, were used. STOP is a population-based cohort where cross-sectional data from 1,223 non-tinnitus and 933 tinnitus subjects were analyzed. By contrast, the TRI contained data from 571 patients who underwent various treatments and whose Clinical Global Impression (CGI) score was accessible to infer treatment outcome. In the latter, 34,560 permutations were tested to evaluate whether a particular ordering of the instruments could reflect better the treatment outcome measured with the CGI. Radar plots confirmed that tinnitus subtypes such as occasional and chronic tinnitus from the STOP cohort could be strikingly different, and helped appreciate a gender bias in tinnitus severity. Radar plots with greater surface areas were consistent with greater burden, and enabled a rapid appreciation of the global distress associated with tinnitus in patients categorized according to tinnitus severity. Permutations in the arrangement of instruments allowed to identify a configuration with minimal variance and maximized surface difference between CGI groups from the TRI database, thus affording a means of optimally evaluating the outcomes in individual patients. We anticipate such a tool to become a starting point for more sophisticated measures in clinical outcomes, applicable not only in the context of tinnitus but also in other complex diseases where the integration of multiple variables is needed for a comprehensive evaluation of treatment response.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
2011-01-01
Perimetric complexity is a measure of the complexity of binary pictures. It is defined as the sum of inside and outside perimeters of the foreground, squared, divided by the foreground area, divided by 4p . Difficulties arise when this definition is applied to digital images composed of binary pixels. In this paper we identify these problems and propose solutions. Perimetric complexity is often used as a measure of visual complexity, in which case it should take into account the limited resolution of the visual system. We propose a measure of visual perimetric complexity that meets this requirement.
Memory under pressure: secondary-task effects on contextual cueing of visual search.
Annac, Efsun; Manginelli, Angela A; Pollmann, Stefan; Shi, Zhuanghua; Müller, Hermann J; Geyer, Thomas
2013-11-04
Repeated display configurations improve visual search. Recently, the question has arisen whether this contextual cueing effect (Chun & Jiang, 1998) is itself mediated by attention, both in terms of selectivity and processing resources deployed. While it is accepted that selective attention modulates contextual cueing (Jiang & Leung, 2005), there is an ongoing debate whether the cueing effect is affected by a secondary working memory (WM) task, specifically at which stage WM influences the cueing effect: the acquisition of configural associations (e.g., Travis, Mattingley, & Dux, 2013) versus the expression of learned associations (e.g., Manginelli, Langer, Klose, & Pollmann, 2013). The present study re-investigated this issue. Observers performed a visual search in combination with a spatial WM task. The latter was applied on either early or late search trials--so as to examine whether WM load hampers the acquisition of or retrieval from contextual memory. Additionally, the WM and search tasks were performed either temporally in parallel or in succession--so as to permit the effects of spatial WM load to be dissociated from those of executive load. The secondary WM task was found to affect cueing in late, but not early, experimental trials--though only when the search and WM tasks were performed in parallel. This pattern suggests that contextual cueing involves a spatial WM resource, with spatial WM providing a workspace linking the current search array with configural long-term memory; as a result, occupying this workspace by a secondary WM task hampers the expression of learned configural associations.
Cobra communications switch integration program
NASA Technical Reports Server (NTRS)
Shively, Robert J.; Haworth, Loran A.; Szoboszlay, Zoltan; Murray, F. Gerald
1989-01-01
The paper describes a design modification to reduce the visual and manual workload associated with the radio selection and communications tasks in the U.S. Army AH-1 Cobra helicopter. The modification involves the integration of the radio selection and microphone actuating tasks into a single operation controlled by the transmit-intercom switch. Ground-based and flight tests were conducted to evaluate the modified configuration during twelve flight tasks. The results show that the proposed configuration performs twice as fast as the original configuration.
Kane, Michael J; Poole, Bradley J; Tuholski, Stephen W; Engle, Randall W
2006-07-01
The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that required restraint of habitual responses or constraint of conscious focus. To further specify the executive attention construct, the present experiments sought boundary conditions of the WMC-attention relation. Three experiments correlated individual differences in WMC, as measured by complex span tasks, and executive control of visual search. In feature-absence search, conjunction search, and spatial configuration search, WMC was unrelated to search slopes, although they were large and reliably measured. Even in a search task designed to require the volitional movement of attention (J. M. Wolfe, G. A. Alvarez, & T. S. Horowitz, 2000), WMC was irrelevant to performance. Thus, WMC is not associated with all demanding or controlled attention processes, which poses problems for some general theories of WMC. Copyright 2006 APA, all rights reserved.
Buríková, Monika; Bilčík, Boris; Máčajová, Mariana; Výboh, Pavel; Bizik, Jozef; Mateašík, Anton; Miškovský, Pavol; Čavarga, Ivan
2016-10-01
There has been increasing interest in fluorescence-based imaging techniques in clinical practice, with the aim to detect and visualize the tumour configuration and the border with healthy tissue. Strong photodynamic activity of hypericin (Hyp) can be improved by various molecular transport systems (e.g. LDL). Our aim was to examine pharmacokinetics of Hyp in the presence of LDL particles on ex ovo chorioallantoic membrane (CAM) of Japanese quail with implanted TE1 tumour spheroids (human squamocellular carcinoma). Spheroids were implanted on CAM surface on embryonal day 7 and after 24 hours formulations of free Hyp and Hyp:LDL 100:1 and 200:1 were topically applied. All experimental formulations in the fluorescent image very well visualized the tumour spheroid position, with gradual increase of fluorescence intensity in 6-h observation period. LDL transportation system exhibited clear superiority in fluorescence pharmacokinetics than free Hyp formulation by increasing tumour-normal difference. Our experimental results confirm that Hyp and Hyp:LDL complex is potent fluorophore for photodynamic diagnosis of squamocellular carcinoma.
Conceptual design study for an advanced cab and visual system, volume 1
NASA Technical Reports Server (NTRS)
Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.
1980-01-01
A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.
A low-cost, portable, micro-controlled device for multi-channel LED visual stimulation.
Pinto, Marcos Antonio da Silva; de Souza, John Kennedy Schettino; Baron, Jerome; Tierra-Criollo, Carlos Julio
2011-04-15
Light emitting diodes (LEDs) are extensively used as light sources to investigate visual and visually related function and dysfunction. Here, we describe the design of a compact, low-cost, stand-alone LED-based system that enables the configuration, storage and presentation of elaborate visual stimulation paradigms. The core functionality of this system is provided by a microcontroller whose ultra-low power consumption makes it well suited for long lasting battery applications. The effective use of hardware resources is managed by multi-layered architecture software that provides an intuitive and user-friendly interface. In the configuration mode, different stimulation sequences can be created and memorized for ten channels, independently. LED-driving current output can be set either as continuous or pulse modulated, up to 500 Hz, by duty cycle adjustments. In run mode, multiple-channel stimulus sequences are automatically applied according to the pre-programmed protocol. Steady state visual evoked potentials were successfully recorded in five subjects with no visible electromagnetic interferences from the stimulator, demonstrating the efficacy of combining our prototyped equipment with electrophysiological techniques. Finally, we discuss a number of possible improvements for future development of our project. Copyright © 2011 Elsevier B.V. All rights reserved.
Combining local and global limitations of visual search.
Põder, Endel
2017-04-01
There are different opinions about the roles of local interactions and central processing capacity in visual search. This study attempts to clarify the problem using a new version of relevant set cueing. A central precue indicates two symmetrical segments (that may contain a target object) within a circular array of objects presented briefly around the fixation point. The number of objects in the relevant segments, and density of objects in the array were varied independently. Three types of search experiments were run: (a) search for a simple visual feature (color, size, and orientation); (b) conjunctions of simple features; and (c) spatial configuration of simple features (rotated Ts). For spatial configuration stimuli, the results were consistent with a fixed global processing capacity and standard crowding zones. For simple features and their conjunctions, the results were different, dependent on the features involved. While color search exhibits virtually no capacity limits or crowding, search for an orientation target was limited by both. Results for conjunctions of features can be partly explained by the results from the respective features. This study shows that visual search is limited by both local interference and global capacity, and the limitations are different for different visual features.
Effect of pattern complexity on the visual span for Chinese and alphabet characters
Wang, Hui; He, Xuanzi; Legge, Gordon E.
2014-01-01
The visual span for reading is the number of letters that can be recognized without moving the eyes and is hypothesized to impose a sensory limitation on reading speed. Factors affecting the size of the visual span have been studied using alphabet letters. There may be common constraints applying to recognition of other scripts. The aim of this study was to extend the concept of the visual span to Chinese characters and to examine the effect of the greater complexity of these characters. We measured visual spans for Chinese characters and alphabet letters in the central vision of bilingual subjects. Perimetric complexity was used as a metric to quantify the pattern complexity of binary character images. The visual span tests were conducted with four sets of stimuli differing in complexity—lowercase alphabet letters and three groups of Chinese characters. We found that the size of visual spans decreased with increasing complexity, ranging from 10.5 characters for alphabet letters to 4.5 characters for the most complex Chinese characters studied. A decomposition analysis revealed that crowding was the dominant factor limiting the size of the visual span, and the amount of crowding increased with complexity. Errors in the spatial arrangement of characters (mislocations) had a secondary effect. We conclude that pattern complexity has a major effect on the size of the visual span, mediated in large part by crowding. Measuring the visual span for Chinese characters is likely to have high relevance to understanding visual constraints on Chinese reading performance. PMID:24993020
High-Order Local Pooling and Encoding Gaussians Over a Dictionary of Gaussians.
Li, Peihua; Zeng, Hui; Wang, Qilong; Shiu, Simon C K; Zhang, Lei
2017-07-01
Local pooling (LP) in configuration (feature) space proposed by Boureau et al. explicitly restricts similar features to be aggregated, which can preserve as much discriminative information as possible. At the time it appeared, this method combined with sparse coding achieved competitive classification results with only a small dictionary. However, its performance lags far behind the state-of-the-art results as only the zero-order information is exploited. Inspired by the success of high-order statistical information in existing advanced feature coding or pooling methods, we make an attempt to address the limitation of LP. To this end, we present a novel method called high-order LP (HO-LP) to leverage the information higher than the zero-order one. Our idea is intuitively simple: we compute the first- and second-order statistics per configuration bin and model them as a Gaussian. Accordingly, we employ a collection of Gaussians as visual words to represent the universal probability distribution of features from all classes. Our problem is naturally formulated as encoding Gaussians over a dictionary of Gaussians as visual words. This problem, however, is challenging since the space of Gaussians is not a Euclidean space but forms a Riemannian manifold. We address this challenge by mapping Gaussians into the Euclidean space, which enables us to perform coding with common Euclidean operations rather than complex and often expensive Riemannian operations. Our HO-LP preserves the advantages of the original LP: pooling only similar features and using a small dictionary. Meanwhile, it achieves very promising performance on standard benchmarks, with either conventional, hand-engineered features or deep learning-based features.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2007-01-01
A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.
A Century of Gestalt Psychology in Visual Perception II. Conceptual and Theoretical Foundations
Wagemans, Johan; Feldman, Jacob; Gepshtein, Sergei; Kimchi, Ruth; Pomerantz, James R.; van der Helm, Peter A.; van Leeuwen, Cees
2012-01-01
Our first review paper on the occasion of the centennial anniversary of Gestalt psychology focused on perceptual grouping and figure-ground organization. It concluded that further progress requires a reconsideration of the conceptual and theoretical foundations of the Gestalt approach, which is provided here. In particular, we review contemporary formulations of holism within an information-processing framework, allowing for operational definitions (e.g., integral dimensions, emergent features, configural superiority, global precedence, primacy of holistic/configural properties) and a refined understanding of its psychological implications (e.g., at the level of attention, perception, and decision). We also review four lines of theoretical progress regarding the law of Prägnanz—the brain’s tendency of being attracted towards states corresponding to the simplest possible organization, given the available stimulation. The first considers the brain as a complex adaptive system and explains how self-organization solves the conundrum of trading between robustness and flexibility of perceptual states. The second specifies the economy principle in terms of optimization of neural resources, showing that elementary sensors working independently to minimize uncertainty can respond optimally at the system level. The third considers how Gestalt percepts (e.g., groups, objects) are optimal given the available stimulation, with optimality specified in Bayesian terms. Fourth, Structural Information Theory explains how a Gestaltist visual system that focuses on internal coding efficiency yields external veridicality as a side-effect. To answer the fundamental question of why things look as they do, a further synthesis of these complementary perspectives is required. PMID:22845750
A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations.
Wagemans, Johan; Feldman, Jacob; Gepshtein, Sergei; Kimchi, Ruth; Pomerantz, James R; van der Helm, Peter A; van Leeuwen, Cees
2012-11-01
Our first review article (Wagemans et al., 2012) on the occasion of the centennial anniversary of Gestalt psychology focused on perceptual grouping and figure-ground organization. It concluded that further progress requires a reconsideration of the conceptual and theoretical foundations of the Gestalt approach, which is provided here. In particular, we review contemporary formulations of holism within an information-processing framework, allowing for operational definitions (e.g., integral dimensions, emergent features, configural superiority, global precedence, primacy of holistic/configural properties) and a refined understanding of its psychological implications (e.g., at the level of attention, perception, and decision). We also review 4 lines of theoretical progress regarding the law of Prägnanz-the brain's tendency of being attracted towards states corresponding to the simplest possible organization, given the available stimulation. The first considers the brain as a complex adaptive system and explains how self-organization solves the conundrum of trading between robustness and flexibility of perceptual states. The second specifies the economy principle in terms of optimization of neural resources, showing that elementary sensors working independently to minimize uncertainty can respond optimally at the system level. The third considers how Gestalt percepts (e.g., groups, objects) are optimal given the available stimulation, with optimality specified in Bayesian terms. Fourth, structural information theory explains how a Gestaltist visual system that focuses on internal coding efficiency yields external veridicality as a side effect. To answer the fundamental question of why things look as they do, a further synthesis of these complementary perspectives is required.
Reavis, Eric A; Frank, Sebastian M; Tse, Peter U
2018-04-12
Visual search is often slow and difficult for complex stimuli such as feature conjunctions. Search efficiency, however, can improve with training. Search for stimuli that can be identified by the spatial configuration of two elements (e.g., the relative position of two colored shapes) improves dramatically within a few hundred trials of practice. Several recent imaging studies have identified neural correlates of this learning, but it remains unclear what stimulus properties participants learn to use to search efficiently. Influential models, such as reverse hierarchy theory, propose two major possibilities: learning to use information contained in low-level image statistics (e.g., single features at particular retinotopic locations) or in high-level characteristics (e.g., feature conjunctions) of the task-relevant stimuli. In a series of experiments, we tested these two hypotheses, which make different predictions about the effect of various stimulus manipulations after training. We find relatively small effects of manipulating low-level properties of the stimuli (e.g., changing their retinotopic location) and some conjunctive properties (e.g., color-position), whereas the effects of manipulating other conjunctive properties (e.g., color-shape) are larger. Overall, the findings suggest conjunction learning involving such stimuli might be an emergent phenomenon that reflects multiple different learning processes, each of which capitalizes on different types of information contained in the stimuli. We also show that both targets and distractors are learned, and that reversing learned target and distractor identities impairs performance. This suggests that participants do not merely learn to discriminate target and distractor stimuli, they also learn stimulus identity mappings that contribute to performance improvements.
A model for the pilot's use of motion cues in roll-axis tracking tasks
NASA Technical Reports Server (NTRS)
Levison, W. H.; Junker, A. M.
1977-01-01
Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.
Roberts, James W; Lyons, James; Garcia, Daniel B L; Burgess, Raquel; Elliott, Digby
2017-07-01
The multiple process model contends that there are two forms of online control for manual aiming: impulse regulation and limb-target control. This study examined the impact of visual information processing for limb-target control. We amalgamated the Gunslinger protocol (i.e., faster movements following a reaction to an external trigger compared with the spontaneous initiation of movement) and Müller-Lyer target configurations into the same aiming protocol. The results showed the Gunslinger effect was isolated at the early portions of the movement (peak acceleration and peak velocity). Reacted aims reached a longer displacement at peak deceleration, but no differences for movement termination. The target configurations manifested terminal biases consistent with the illusion. We suggest the visual information processing demands imposed by reacted aims can be adapted by integrating early feedforward information for limb-target control.
ERIC Educational Resources Information Center
Hladky, Paul W.
2007-01-01
Random-climb models enable undergraduate chemistry students to visualize polymer molecules, quantify their configurational properties, and relate molecular structure to a variety of physical properties. The model could serve as an introduction to more elaborate models of polymer molecules and could help in learning topics such as lattice models of…
ERIC Educational Resources Information Center
Dillen, Claudia; Steyaert, Jean; Op de Beeck, Hans P.; Boets, Bart
2015-01-01
The embedded figures test has often been used to reveal weak central coherence in individuals with autism spectrum disorder (ASD). Here, we administered a more standardized automated version of the embedded figures test in combination with the configural superiority task, to investigate the effect of contextual modulation on local feature…
Visual Mislocalization of Moving Objects in an Audiovisual Event.
Kawachi, Yousuke
2016-01-01
The present study investigated the influence of an auditory tone on the localization of visual objects in the stream/bounce display (SBD). In this display, two identical visual objects move toward each other, overlap, and then return to their original positions. These objects can be perceived as either streaming through or bouncing off each other. In this study, the closest distance between object centers on opposing trajectories and tone presentation timing (none, 0 ms, ± 90 ms, and ± 390 ms relative to the instant for the closest distance) were manipulated. Observers were asked to judge whether the two objects overlapped with each other and whether the objects appeared to stream through, bounce off each other, or reverse their direction of motion. A tone presented at or around the instant of the objects' closest distance biased judgments toward "non-overlapping," and observers overestimated the physical distance between objects. A similar bias toward direction change judgments (bounce and reverse, not stream judgments) was also observed, which was always stronger than the non-overlapping bias. Thus, these two types of judgments were not always identical. Moreover, another experiment showed that it was unlikely that this observed mislocalization could be explained by other previously known mislocalization phenomena (i.e., representational momentum, the Fröhlich effect, and a turn-point shift). These findings indicate a new example of crossmodal mislocalization, which can be obtained without temporal offsets between audiovisual stimuli. The mislocalization effect is also specific to a more complex stimulus configuration of objects on opposing trajectories, with a tone that is presented simultaneously. The present study promotes an understanding of relatively complex audiovisual interactions beyond simple one-to-one audiovisual stimuli used in previous studies.
Visual Mislocalization of Moving Objects in an Audiovisual Event
Kawachi, Yousuke
2016-01-01
The present study investigated the influence of an auditory tone on the localization of visual objects in the stream/bounce display (SBD). In this display, two identical visual objects move toward each other, overlap, and then return to their original positions. These objects can be perceived as either streaming through or bouncing off each other. In this study, the closest distance between object centers on opposing trajectories and tone presentation timing (none, 0 ms, ± 90 ms, and ± 390 ms relative to the instant for the closest distance) were manipulated. Observers were asked to judge whether the two objects overlapped with each other and whether the objects appeared to stream through, bounce off each other, or reverse their direction of motion. A tone presented at or around the instant of the objects’ closest distance biased judgments toward “non-overlapping,” and observers overestimated the physical distance between objects. A similar bias toward direction change judgments (bounce and reverse, not stream judgments) was also observed, which was always stronger than the non-overlapping bias. Thus, these two types of judgments were not always identical. Moreover, another experiment showed that it was unlikely that this observed mislocalization could be explained by other previously known mislocalization phenomena (i.e., representational momentum, the Fröhlich effect, and a turn-point shift). These findings indicate a new example of crossmodal mislocalization, which can be obtained without temporal offsets between audiovisual stimuli. The mislocalization effect is also specific to a more complex stimulus configuration of objects on opposing trajectories, with a tone that is presented simultaneously. The present study promotes an understanding of relatively complex audiovisual interactions beyond simple one-to-one audiovisual stimuli used in previous studies. PMID:27111759
Serial vs. parallel models of attention in visual search: accounting for benchmark RT-distributions.
Moran, Rani; Zehetleitner, Michael; Liesefeld, Heinrich René; Müller, Hermann J; Usher, Marius
2016-10-01
Visual search is central to the investigation of selective visual attention. Classical theories propose that items are identified by serially deploying focal attention to their locations. While this accounts for set-size effects over a continuum of task difficulties, it has been suggested that parallel models can account for such effects equally well. We compared the serial Competitive Guided Search model with a parallel model in their ability to account for RT distributions and error rates from a large visual search data-set featuring three classical search tasks: 1) a spatial configuration search (2 vs. 5); 2) a feature-conjunction search; and 3) a unique feature search (Wolfe, Palmer & Horowitz Vision Research, 50(14), 1304-1311, 2010). In the parallel model, each item is represented by a diffusion to two boundaries (target-present/absent); the search corresponds to a parallel race between these diffusors. The parallel model was highly flexible in that it allowed both for a parametric range of capacity-limitation and for set-size adjustments of identification boundaries. Furthermore, a quit unit allowed for a continuum of search-quitting policies when the target is not found, with "single-item inspection" and exhaustive searches comprising its extremes. The serial model was found to be superior to the parallel model, even before penalizing the parallel model for its increased complexity. We discuss the implications of the results and the need for future studies to resolve the debate.
Visual Complexity in Orthographic Learning: Modeling Learning across Writing System Variations
ERIC Educational Resources Information Center
Chang, Li-Yun; Plaut, David C.; Perfetti, Charles A.
2016-01-01
The visual complexity of orthographies varies across writing systems. Prior research has shown that complexity strongly influences the initial stage of reading development: the perceptual learning of grapheme forms. This study presents a computational simulation that examines the degree to which visual complexity leads to grapheme learning…
Agarwal, Rahul; Thakor, Nitish V; Sarma, Sridevi V; Massaquoi, Steve G
2015-06-24
The premotor cortex (PM) is known to be a site of visuo-somatosensory integration for the production of movement. We sought to better understand the ventral PM (PMv) by modeling its signal encoding in greater detail. Neuronal firing data was obtained from 110 PMv neurons in two male rhesus macaques executing four reach-grasp-manipulate tasks. We found that in the large majority of neurons (∼90%) the firing patterns across the four tasks could be explained by assuming that a high-dimensional position/configuration trajectory-like signal evolving ∼250 ms before movement was encoded within a multidimensional Gaussian field (MGF). Our findings are consistent with the possibility that PMv neurons process a visually specified reference command for the intended arm/hand position trajectory with respect to a proprioceptively or visually sensed initial configuration. The estimated MGF were (hyper) disc-like, such that each neuron's firing modulated strongly only with commands that evolved along a single direction within position/configuration space. Thus, many neurons appeared to be tuned to slices of this input signal space that as a collection appeared to well cover the space. The MGF encoding models appear to be consistent with the arm-referent, bell-shaped, visual target tuning curves and target selectivity patterns observed in PMV visual-motor neurons. These findings suggest that PMv may implement a lookup table-like mechanism that helps translate intended movement trajectory into time-varying patterns of activation in motor cortex and spinal cord. MGFs provide an improved nonlinear framework for potentially decoding visually specified, intended multijoint arm/hand trajectories well in advance of movement. Copyright © 2015 the authors 0270-6474/15/359508-18$15.00/0.
A Computerized System for Measuring Detection Sensitivity over the Visual Field,
1986-06-01
variety of conditions can act to degrade this basic configuration of detection capability; e.g., pathology, such as glaucoma and retinitis pigmentosa ...the central line of sight involving the retinal fovea is clearly the locus of greatest visual resolution under photopic viewing conditions, the...Skills. 1974; 41:467-474. 6. Kobrick JL, Appleton S. Effects of hypoxia on visual performance and retinal vascular state. J. Appl. Physiol. 1971; 31:357
ERIC Educational Resources Information Center
Geyer, Thomas; Shi, Zhuanghua; Muller, Hermann J.
2010-01-01
Three experiments examined memory-based guidance of visual search using a modified version of the contextual-cueing paradigm (Jiang & Chun, 2001). The target, if present, was a conjunction of color and orientation, with target (and distractor) features randomly varying across trials (multiconjunction search). Under these conditions, reaction times…
Heuristics of Reasoning and Analogy in Children's Visual Perspective Taking.
ERIC Educational Resources Information Center
Yaniv, Ilan; Shatz, Marilyn
1990-01-01
In three experiments, children of three through six years of age were generally better able to reproduce a perceiver's perspective if a visual cue in the perceiver's line of sight was salient. Children had greater difficulty when the task hinged on attending to configural cues. Availability of distinctive cues affixed to objects facilitated…
Learning to recognize face shapes through serial exploration.
Wallraven, Christian; Whittingstall, Lisa; Bülthoff, Heinrich H
2013-05-01
Human observers are experts at visual face recognition due to specialized visual mechanisms for face processing that evolve with perceptual expertize. Such expertize has long been attributed to the use of configural processing, enabled by fast, parallel information encoding of the visual information in the face. Here we tested whether participants can learn to efficiently recognize faces that are serially encoded-that is, when only partial visual information about the face is available at any given time. For this, ten participants were trained in gaze-restricted face recognition in which face masks were viewed through a small aperture controlled by the participant. Tests comparing trained with untrained performance revealed (1) a marked improvement in terms of speed and accuracy, (2) a gradual development of configural processing strategies, and (3) participants' ability to rapidly learn and accurately recognize novel exemplars. This performance pattern demonstrates that participants were able to learn new strategies to compensate for the serial nature of information encoding. The results are discussed in terms of expertize acquisition and relevance for other sensory modalities relying on serial encoding.
Use of Linear Perspective Scene Cues in a Simulated Height Regulation Task
NASA Technical Reports Server (NTRS)
Levison, W. H.; Warren, R.
1984-01-01
As part of a long-term effort to quantify the effects of visual scene cuing and non-visual motion cuing in flight simulators, an experimental study of the pilot's use of linear perspective cues in a simulated height-regulation task was conducted. Six test subjects performed a fixed-base tracking task with a visual display consisting of a simulated horizon and a perspective view of a straight, infinitely-long roadway of constant width. Experimental parameters were (1) the central angle formed by the roadway perspective and (2) the display gain. The subject controlled only the pitch/height axis; airspeed, bank angle, and lateral track were fixed in the simulation. The average RMS height error score for the least effective display configuration was about 25% greater than the score for the most effective configuration. Overall, larger and more highly significant effects were observed for the pitch and control scores. Model analysis was performed with the optimal control pilot model to characterize the pilot's use of visual scene cues, with the goal of obtaining a consistent set of independent model parameters to account for display effects.
Abdelsalam, D G; Yasui, Takeshi
2017-05-01
We achieve practically a bright-field digital holographic microscopy (DHM) configuration free from coherent noise for three-dimensional (3D) visualization of an in-vitro sandwiched sarcomere sample. Visualization of such sandwiched samples by conventional atomic force microscope (AFM) is impossible, while visualization using DHM with long coherent lengths is challenging. The proposed configuration is comprised of an ultrashort pulse laser source and a Mach-Zehnder interferometer in transmission. Periodically poled lithium niobate (PPLN) crystal was used to convert the fundamental beam by second harmonic generation (SHG) to the generated beam fit to the CCD camera used. The experimental results show that the contrast of the reconstructed phase image is improved to a higher degree compared to a He-Ne laser based result. We attribute this improvement to two things: the feature of the femtosecond pulse light, which acts as a chopper for coherent noise suppression, and the fact that the variance of a coherent mode can be reduced by a factor of 9 due to low loss through a nonlinear medium.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Russell, L. M.; Stepka, F. S.
1981-01-01
Commercially available elements of a composite consisting of a plastic sheet coated with liquid crystal, another sheet with a thin layer of a conducting material (gold or carbon), and copper bus bar strips were evaluated and found to provide a simple, convenient, accurate, and low-cost measuring device for use in heat transfer research. The particular feature of the composite is its ability to obtain local heat transfer coefficients and isotherm patterns that provide visual evaluation of the thermal performances of turbine blade cooling configurations. Examples of the use of the composite are presented.
NASA Technical Reports Server (NTRS)
Daileda, J. J.
1975-01-01
An 0.010-scale model of the space shuttle (orbiter-tank mated and orbiter configurations) was tested in the AEDC VKF Tunnel B to investigate aerodynamic flow patterns. The tests utilized oil flow techniques to visualize the flow patterns. Tunnel free stream Mach number was 7.95 and nominal unit Reynolds number was 3.7 million per foot. Model angle of attack was varied from -5 deg through 10 deg and angle of sideslip was 0 deg and 2 deg. Photographs of resulting oil flow patterns are presented.
Acoustic Tactile Representation of Visual Information
NASA Astrophysics Data System (ADS)
Silva, Pubudu Madhawa
Our goal is to explore the use of hearing and touch to convey graphical and pictorial information to visually impaired people. Our focus is on dynamic, interactive display of visual information using existing, widely available devices, such as smart phones and tablets with touch sensitive screens. We propose a new approach for acoustic-tactile representation of visual signals that can be implemented on a touch screen and allows the user to actively explore a two-dimensional layout consisting of one or more objects with a finger or a stylus while listening to auditory feedback via stereo headphones. The proposed approach is acoustic-tactile because sound is used as the primary source of information for object localization and identification, while touch is used for pointing and kinesthetic feedback. A static overlay of raised-dot tactile patterns can also be added. A key distinguishing feature of the proposed approach is the use of spatial sound (directional and distance cues) to facilitate the active exploration of the layout. We consider a variety of configurations for acoustic-tactile rendering of object size, shape, identity, and location, as well as for the overall perception of simple layouts and scenes. While our primary goal is to explore the fundamental capabilities and limitations of representing visual information in acoustic-tactile form, we also consider a number of relatively simple configurations that can be tied to specific applications. In particular, we consider a simple scene layout consisting of objects in a linear arrangement, each with a distinct tapping sound, which we compare to a ''virtual cane.'' We will also present a configuration that can convey a ''Venn diagram.'' We present systematic subjective experiments to evaluate the effectiveness of the proposed display for shape perception, object identification and localization, and 2-D layout perception, as well as the applications. Our experiments were conducted with visually blocked subjects. The results are evaluated in terms of accuracy and speed, and they demonstrate the advantages of spatial sound for guiding the scanning finger or pointer in shape perception, object localization, and layout exploration. We show that these advantages increase with the amount of detail (smaller object size) in the display. Our experimental results show that the proposed system outperforms the state of the art in shape perception, including variable friction displays. We also demonstrate that, even though they are currently available only as static overlays, raised dot patterns provide the best shape rendition in terms of both the accuracy and speed. Our experiments with layout rendering and perception demonstrate that simultaneous representation of objects, using the most effective approaches for directionality and distance rendering, approaches the optimal performance level provided by visual layout perception. Finally, experiments with the virtual cane and Venn diagram configurations demonstrate that the proposed techniques can be used effectively in simple but nontrivial real-world applications. One of the most important conclusions of our experiments is that there is a clear performance gap between experienced and inexperienced subjects, which indicates that there is a lot of room for improvement with appropriate and extensive training. By exploring a wide variety of design alternatives and focusing on different aspects of the acoustic-tactile interfaces, our results offer many valuable insights and great promise for the design of future systematic tests visually impaired and visually blocked subjects, utilizing the most effective configurations.
Open discovery: An integrated live Linux platform of Bioinformatics tools.
Vetrivel, Umashankar; Pilla, Kalabharath
2008-01-01
Historically, live linux distributions for Bioinformatics have paved way for portability of Bioinformatics workbench in a platform independent manner. Moreover, most of the existing live Linux distributions limit their usage to sequence analysis and basic molecular visualization programs and are devoid of data persistence. Hence, open discovery - a live linux distribution has been developed with the capability to perform complex tasks like molecular modeling, docking and molecular dynamics in a swift manner. Furthermore, it is also equipped with complete sequence analysis environment and is capable of running windows executable programs in Linux environment. Open discovery portrays the advanced customizable configuration of fedora, with data persistency accessible via USB drive or DVD. The Open Discovery is distributed free under Academic Free License (AFL) and can be downloaded from http://www.OpenDiscovery.org.in.
Born, Jannis; Galeazzi, Juan M; Stringer, Simon M
2017-01-01
A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet.
Born, Jannis; Stringer, Simon M.
2017-01-01
A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet. PMID:28562618
NASA Technical Reports Server (NTRS)
Olsen, W. A.; Boldman, D.
1978-01-01
Fundamental theories for noise generated by flow over surfaces exist for only a few simple configurations. The role of turbulence in noise generation by complex surfaces should be essentially the same as for simple configurations. Examination of simple-surface theories indicates that the spatial distributions of the mean velocity and turbulence properties are sufficient to define the noise emission. Measurements of these flow properties were made for a number of simple and complex surfaces. The configurations were selected because of their acoustic characteristics are quite different. The spatial distribution of the turbulent flow properties around the complex surfaces and approximate theory are used to locate and describe the noise sources, and to qualitatively explain the varied acoustic characteristics.
Generating a heated fluid using an electromagnetic radiation-absorbing complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EMmore » radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.« less
Traffic Signs in Complex Visual Environments
DOT National Transportation Integrated Search
1982-11-01
The effects of sign luminance on detection and recognition of traffic control devices is mediated through contrast with the immediate surround. Additionally, complex visual scenes are known to degrade visual performance with targets well above visual...
ERIC Educational Resources Information Center
Manelis, Anna; Reder, Lynne M.
2012-01-01
Using a combination of eye tracking and fMRI in a contextual cueing task, we explored the mechanisms underlying the facilitation of visual search for repeated spatial configurations. When configurations of distractors were repeated, greater activation in the right hippocampus corresponded to greater reductions in the number of saccades to locate…
Visual processing during natural reading
Weiss, Béla; Knakker, Balázs; Vidnyánszky, Zoltán
2016-01-01
Reading is a unique human ability that plays a pivotal role in the development and functioning of our modern society. However, its neural basis remains poorly understood since previous research was focused on reading words with fixed gaze. Here we developed a methodological framework for single-trial analysis of fixation onset-related EEG activity (FOREA) that enabled us to investigate visual information processing during natural reading. To reveal the effect of reading skills on orthographic processing during natural reading, we measured how altering the configural properties of the written text by modifying inter-letter spacing affects FOREA. We found that orthographic processing is reflected in FOREA in three consecutive time windows (120–175 ms, 230–265 ms, 345–380 ms after fixation onset) and the magnitude of FOREA effects in the two later time intervals showed a close association with the participants’ reading speed: FOREA effects were larger in fast than in slow readers. Furthermore, these expertise-driven configural effects were clearly dissociable from the FOREA signatures of visual perceptual processes engaged to handle the increased crowding (155–220 ms) as a result of decreasing letter spacing. Our findings revealed that with increased reading skills orthographic processing becomes more sensitive to the configural properties of the written text. PMID:27231193
Water tunnel flow visualization study of a 4.4 percent scale X-31 forebody
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.; Delfrate, John
1994-01-01
A water-tunnel test of a 4.4 percent-scale, forebody-only model of the X-31 aircraft with different forebody strakes and nosebooms has been performed in the Flow Visualization Facility at the NASA Dryden Flight Research Center. The focus of the study was to determine the relative effects of the different configurations on the stability and symmetry of the high-angle-of-attack forebody vortex flow field. The clean, noseboom-off configuration resisted the development of asymmetries in the primary vortices through 70 deg angle of attack. The wake of the X-31 flight test noseboom configuration significantly degraded the steadiness of the primary vortex cores and promoted asymmetries. An alternate L-shaped noseboom mounted underneath the forebody had results similar to those seen with the configuration, enabling stable, symmetrical vortices up to 70 deg angle of attack. The addition of strakes near the radome tip along the waterline increased the primary vortex strength while it simultaneously caused the vortex breakdown location co move forward. Forebody strakes did not appear to significantly reduce the asymmetries in the forebody vortex field in the presence of the flight test noseboom.
Here Today, Gone Tomorrow – Adaptation to Change in Memory-Guided Visual Search
Zellin, Martina; Conci, Markus; von Mühlenen, Adrian; Müller, Hermann J.
2013-01-01
Visual search for a target object can be facilitated by the repeated presentation of an invariant configuration of nontargets (‘contextual cueing’). Here, we tested adaptation of learned contextual associations after a sudden, but permanent, relocation of the target. After an initial learning phase targets were relocated within their invariant contexts and repeatedly presented at new locations, before they returned to the initial locations. Contextual cueing for relocated targets was neither observed after numerous presentations nor after insertion of an overnight break. Further experiments investigated whether learning of additional, previously unseen context-target configurations is comparable to adaptation of existing contextual associations to change. In contrast to the lack of adaptation to changed target locations, contextual cueing developed for additional invariant configurations under identical training conditions. Moreover, across all experiments, presenting relocated targets or additional contexts did not interfere with contextual cueing of initially learned invariant configurations. Overall, the adaptation of contextual memory to changed target locations was severely constrained and unsuccessful in comparison to learning of an additional set of contexts, which suggests that contextual cueing facilitates search for only one repeated target location. PMID:23555038
Development of an Automatic Grid Generator for Multi-Element High-Lift Wings
NASA Technical Reports Server (NTRS)
Eberhardt, Scott; Wibowo, Pratomo; Tu, Eugene
1996-01-01
The procedure to generate the grid around a complex wing configuration is presented in this report. The automatic grid generation utilizes the Modified Advancing Front Method as a predictor and an elliptic scheme as a corrector. The scheme will advance the surface grid one cell outward and the newly obtained grid is corrected using the Laplace equation. The predictor-corrector step ensures that the grid produced will be smooth for every configuration. The predictor-corrector scheme is extended for a complex wing configuration. A new technique is developed to deal with the grid generation in the wing-gaps and on the flaps. It will create the grids that fill the gap on the wing surface and the gap created by the flaps. The scheme recognizes these configurations automatically so that minimal user input is required. By utilizing an appropriate sequence in advancing the grid points on a wing surface, the automatic grid generation for complex wing configurations is achieved.
Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji; Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Matsuda, Tsuyoshi; Kanazawa, Naoya; Onose, Yoshinori; Shindo, Daisuke; Tonomura, Akira; Tokura, Yoshinori
2014-05-01
Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.
Ernst, Udo A.; Schiffer, Alina; Persike, Malte; Meinhardt, Günter
2016-01-01
Processing natural scenes requires the visual system to integrate local features into global object descriptions. To achieve coherent representations, the human brain uses statistical dependencies to guide weighting of local feature conjunctions. Pairwise interactions among feature detectors in early visual areas may form the early substrate of these local feature bindings. To investigate local interaction structures in visual cortex, we combined psychophysical experiments with computational modeling and natural scene analysis. We first measured contrast thresholds for 2 × 2 grating patch arrangements (plaids), which differed in spatial frequency composition (low, high, or mixed), number of grating patch co-alignments (0, 1, or 2), and inter-patch distances (1° and 2° of visual angle). Contrast thresholds for the different configurations were compared to the prediction of probability summation (PS) among detector families tuned to the four retinal positions. For 1° distance the thresholds for all configurations were larger than predicted by PS, indicating inhibitory interactions. For 2° distance, thresholds were significantly lower compared to PS when the plaids were homogeneous in spatial frequency and orientation, but not when spatial frequencies were mixed or there was at least one misalignment. Next, we constructed a neural population model with horizontal laminar structure, which reproduced the detection thresholds after adaptation of connection weights. Consistent with prior work, contextual interactions were medium-range inhibition and long-range, orientation-specific excitation. However, inclusion of orientation-specific, inhibitory interactions between populations with different spatial frequency preferences were crucial for explaining detection thresholds. Finally, for all plaid configurations we computed their likelihood of occurrence in natural images. The likelihoods turned out to be inversely related to the detection thresholds obtained at larger inter-patch distances. However, likelihoods were almost independent of inter-patch distance, implying that natural image statistics could not explain the crowding-like results at short distances. This failure of natural image statistics to resolve the patch distance modulation of plaid visibility remains a challenge to the approach. PMID:27757076
Map LineUps: Effects of spatial structure on graphical inference.
Beecham, Roger; Dykes, Jason; Meulemans, Wouter; Slingsby, Aidan; Turkay, Cagatay; Wood, Jo
2017-01-01
Fundamental to the effective use of visualization as an analytic and descriptive tool is the assurance that presenting data visually provides the capability of making inferences from what we see. This paper explores two related approaches to quantifying the confidence we may have in making visual inferences from mapped geospatial data. We adapt Wickham et al.'s 'Visual Line-up' method as a direct analogy with Null Hypothesis Significance Testing (NHST) and propose a new approach for generating more credible spatial null hypotheses. Rather than using as a spatial null hypothesis the unrealistic assumption of complete spatial randomness, we propose spatially autocorrelated simulations as alternative nulls. We conduct a set of crowdsourced experiments (n=361) to determine the just noticeable difference (JND) between pairs of choropleth maps of geographic units controlling for spatial autocorrelation (Moran's I statistic) and geometric configuration (variance in spatial unit area). Results indicate that people's abilities to perceive differences in spatial autocorrelation vary with baseline autocorrelation structure and the geometric configuration of geographic units. These results allow us, for the first time, to construct a visual equivalent of statistical power for geospatial data. Our JND results add to those provided in recent years by Klippel et al. (2011), Harrison et al. (2014) and Kay & Heer (2015) for correlation visualization. Importantly, they provide an empirical basis for an improved construction of visual line-ups for maps and the development of theory to inform geospatial tests of graphical inference.
Does my step look big in this? A visual illusion leads to safer stepping behaviour.
Elliott, David B; Vale, Anna; Whitaker, David; Buckley, John G
2009-01-01
Tripping is a common factor in falls and a typical safety strategy to avoid tripping on steps or stairs is to increase foot clearance over the step edge. In the present study we asked whether the perceived height of a step could be increased using a visual illusion and whether this would lead to the adoption of a safer stepping strategy, in terms of greater foot clearance over the step edge. The study also addressed the controversial question of whether motor actions are dissociated from visual perception. 21 young, healthy subjects perceived the step to be higher in a configuration of the horizontal-vertical illusion compared to a reverse configuration (p = 0.01). During a simple stepping task, maximum toe elevation changed by an amount corresponding to the size of the visual illusion (p<0.001). Linear regression analyses showed highly significant associations between perceived step height and maximum toe elevation for all conditions. The perceived height of a step can be manipulated using a simple visual illusion, leading to the adoption of a safer stepping strategy in terms of greater foot clearance over a step edge. In addition, the strong link found between perception of a visual illusion and visuomotor action provides additional support to the view that the original, controversial proposal by Goodale and Milner (1992) of two separate and distinct visual streams for perception and visuomotor action should be re-evaluated.
Face imagery is based on featural representations.
Lobmaier, Janek S; Mast, Fred W
2008-01-01
The effect of imagery on featural and configural face processing was investigated using blurred and scrambled faces. By means of blurring, featural information is reduced; by scrambling a face into its constituent parts configural information is lost. Twenty-four participants learned ten faces together with the sound of a name. In following matching-to-sample tasks participants had to decide whether an auditory presented name belonged to a visually presented scrambled or blurred face in two experimental conditions. In the imagery condition, the name was presented prior to the visual stimulus and participants were required to imagine the corresponding face as clearly and vividly as possible. In the perception condition name and test face were presented simultaneously, thus no facilitation via mental imagery was possible. Analyses of the hit values showed that in the imagery condition scrambled faces were recognized significantly better than blurred faces whereas there was no such effect for the perception condition. The results suggest that mental imagery activates featural representations more than configural representations.
Shapes and sounds as self-objects in learning geography.
Baum, E A
1978-01-01
The pleasure which some children find in maps and map reading is manifold in origin. Children cathect patterns of configuration and color and derive joy from the visual mastery of these. This gratification is enhanced by the child's knowledge that the map represents something bigger than and external to itself. Likewise, some children take pleasure in the pronunciation of names themselves. The phonetic transcription of multisyllabic names is often a plearurable challenge. The vocalized name has its origin in the self, becomes barely external to self, and is self-monitored. Thus, in children both the configurations and the vocalizations associated with map reading have the properties of "self=objects" (Kohut, 1971). From the author's observation the delight which some children take in sounding out geographic names on a map may, in some instances, indicate pre-existing gratifying sound associations. Childish amusement in punning on cognomens may be an even greater stimulant for learning than visual configurations or artificial cognitive devices.
Manelis, Anna; Reder, Lynne M
2012-10-16
Using a combination of eye tracking and fMRI in a contextual cueing task, we explored the mechanisms underlying the facilitation of visual search for repeated spatial configurations. When configurations of distractors were repeated, greater activation in the right hippocampus corresponded to greater reductions in the number of saccades to locate the target. A psychophysiological interactions analysis for repeated configurations revealed that a strong functional connectivity between this area in the right hippocampus and the left superior parietal lobule early in learning was significantly reduced toward the end of the task. Practice related changes (which we call "procedural learning") in activation in temporo-occipital and parietal brain regions depended on whether or not spatial context was repeated. We conclude that context repetition facilitates visual search through chunk formation that reduces the number of effective distractors that have to be processed during the search. Context repetition influences procedural learning in a way that allows for continuous and effective chunk updating.
Manelis, Anna; Reder, Lynne M.
2012-01-01
Using a combination of eye tracking and fMRI in a contextual cueing task, we explored the mechanisms underlying the facilitation of visual search for repeated spatial configurations. When configurations of distractors were repeated, greater activation in the right hippocampus corresponded to greater reductions in the number of saccades to locate the target. A psychophysiological interactions analysis for repeated configurations revealed that a strong functional connectivity between this area in the right hippocampus and the left superior parietal lobule early in learning was significantly reduced toward the end of the task. Practice related changes (which we call “procedural learning”) in activation in temporo-occipital and parietal brain regions depended on whether or not spatial context was repeated. We conclude that context repetition facilitates visual search through chunk formation that reduces the number of effective distractors that have to be processed during the search. Context repetition influences procedural learning in a way that allows for continuous and effective chunk updating. PMID:23073642
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile
1996-01-01
A series of wind tunnel tests were conducted to assess the effects of leading edge ice contamination upon the performance of a short-haul transport. The wind tunnel test was conducted in the NASA Langley 14 by 22 foot facility. The test article was a 1/8 scale twin-engine short-haul jet transport model. Two separate leading edge ice contamination configurations were tested in addition to the uncontaminated baseline configuration. Several aircraft configurations were examined including various flap and slat deflections, with and without landing gear. Data gathered included force measurements via an internal six-component force balance, pressure measurements through 700 electronically scanned wing pressure ports, and wing surface flow visualization measurements. The artificial ice contamination caused significant performance degradation and caused visible changes demonstrated by the flow visualization. The data presented here is just a portion of the data gathered. A more complete data report is planned for publication as a NASA Technical Memorandum and data supplement.
NASA Technical Reports Server (NTRS)
Surinov, Y. A.; Fedyanin, V. E.
1975-01-01
The generalized zonal method is used to calculate the distribution of the temperature factor on the lateral surface of a conical cavity of complex configuration (a Laval nozzle) containing an absorptive medium. The highest values of the radiation density occur on the converging part of the lateral surface of the complex conical cavity (Laval nozzle).
NASA Astrophysics Data System (ADS)
Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.; Shaw, Jonathon A.
1994-04-01
This paper is concerned with the flow modelling capabilities of an advanced CFD simulation system known by the acronym SAUNA. This system is aimed primarily at complex aircraft configurations and possesses a unique grid generation strategy in its use of block-structured, unstructured or hybrid grids, depending on the geometric complexity of the addressed configuration. The main focus of the paper is in demonstrating the recently developed multi-grid, block-structured grid, viscous flow capability of SAUNA, through its evaluation on a number of configurations. Inviscid predictions are also presented, both as a means of interpreting the viscous results and with a view to showing more completely the capabilities of SAUNA. It is shown that accuracy and flexibility are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.
Comparing Methods for Dynamic Airspace Configuration
NASA Technical Reports Server (NTRS)
Zelinski, Shannon; Lai, Chok Fung
2011-01-01
This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
Systems and methods for rapid processing and storage of data
Stalzer, Mark A.
2017-01-24
Systems and methods of building massively parallel computing systems using low power computing complexes in accordance with embodiments of the invention are disclosed. A massively parallel computing system in accordance with one embodiment of the invention includes at least one Solid State Blade configured to communicate via a high performance network fabric. In addition, each Solid State Blade includes a processor configured to communicate with a plurality of low power computing complexes interconnected by a router, and each low power computing complex includes at least one general processing core, an accelerator, an I/O interface, and cache memory and is configured to communicate with non-volatile solid state memory.
Leder, Helmut
2017-01-01
Visual complexity is relevant for many areas ranging from improving usability of technical displays or websites up to understanding aesthetic experiences. Therefore, many attempts have been made to relate objective properties of images to perceived complexity in artworks and other images. It has been argued that visual complexity is a multidimensional construct mainly consisting of two dimensions: A quantitative dimension that increases complexity through number of elements, and a structural dimension representing order negatively related to complexity. The objective of this work is to study human perception of visual complexity utilizing two large independent sets of abstract patterns. A wide range of computational measures of complexity was calculated, further combined using linear models as well as machine learning (random forests), and compared with data from human evaluations. Our results confirm the adequacy of existing two-factor models of perceived visual complexity consisting of a quantitative and a structural factor (in our case mirror symmetry) for both of our stimulus sets. In addition, a non-linear transformation of mirror symmetry giving more influence to small deviations from symmetry greatly increased explained variance. Thus, we again demonstrate the multidimensional nature of human complexity perception and present comprehensive quantitative models of the visual complexity of abstract patterns, which might be useful for future experiments and applications. PMID:29099832
2017-01-01
The role of stereo disparity in the recognition of 3-dimensional (3D) object shape remains an unresolved issue for theoretical models of the human visual system. We examined this issue using high-density (128 channel) recordings of event-related potentials (ERPs). A recognition memory task was used in which observers were trained to recognize a subset of complex, multipart, 3D novel objects under conditions of either (bi-) monocular or stereo viewing. In a subsequent test phase they discriminated previously trained targets from untrained distractor objects that shared either local parts, 3D spatial configuration, or neither dimension, across both previously seen and novel viewpoints. The behavioral data showed a stereo advantage for target recognition at untrained viewpoints. ERPs showed early differential amplitude modulations to shape similarity defined by local part structure and global 3D spatial configuration. This occurred initially during an N1 component around 145–190 ms poststimulus onset, and then subsequently during an N2/P3 component around 260–385 ms poststimulus onset. For mono viewing, amplitude modulation during the N1 was greatest between targets and distracters with different local parts for trained views only. For stereo viewing, amplitude modulation during the N2/P3 was greatest between targets and distracters with different global 3D spatial configurations and generalized across trained and untrained views. The results show that image classification is modulated by stereo information about the local part, and global 3D spatial configuration of object shape. The findings challenge current theoretical models that do not attribute functional significance to stereo input during the computation of 3D object shape. PMID:29022728
Donderi, Don C
2006-01-01
The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from research on single forms, form and texture arrays and visual displays. Form complexity and form probability are shown to be linked through their reciprocal relationship in complexity theory, which is in turn shown to be consistent with recent developments in perceptual learning and neural circuit theory. Directions for further research are suggested.
Communication Variables Associated with Hearing-Impaired/Vision-Impaired Persons--A Pilot-Study.
ERIC Educational Resources Information Center
Hicks, Wanda M.
1979-01-01
A study involving eight youths and adults with retinitis pigmentosa (and only 20 degree visual field and hearing loss of at least 20 decibels) determined variance in the ability to perceive and comprehend visual stimuli presented by way of the manual modality when modifications were made in configuration, movement speed, movement size, and…
Tactile and Visual Identification of the XM106 Bursting Smoke Grenade: Limited User Evaluation
2010-12-01
situations representing the typical handwear and eyewear configurations of dismounted Warfighters. Thirty-six test Soldiers participated in the evaluation...all handwear and eyewear conditions. 15. SUBJECT TERMS XM106, smoke grenade, tactile/visual identification 16. SECURITY CLASSIFICATION OF: 17...1.3.2 Eyewear Compatibility ........................................................................................3 1.3.3 Physical Load
Individual Differences in (Non-Visual) Processing Style Predict the Face Inversion Effect
ERIC Educational Resources Information Center
Wyer, Natalie A.; Martin, Douglas; Pickup, Tracey; Macrae, C. Neil
2012-01-01
Recent research suggests that individuals with relatively weak global precedence (i.e., a smaller propensity to view visual stimuli in a configural manner) show a reduced face inversion effect (FIE). Coupled with such findings, a number of recent studies have demonstrated links between an advantage for feature-based processing and the presentation…
A Web-Based Visualization and Animation Platform for Digital Logic Design
ERIC Educational Resources Information Center
Shoufan, Abdulhadi; Lu, Zheng; Huss, Sorin A.
2015-01-01
This paper presents a web-based education platform for the visualization and animation of the digital logic design process. This includes the design of combinatorial circuits using logic gates, multiplexers, decoders, and look-up-tables as well as the design of finite state machines. Various configurations of finite state machines can be selected…
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2017-01-17
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2015-12-29
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Costello, James F; Davies, Stephen G; Gould, Elliott T F; Thomson, James E
2015-03-28
The extension of our simple model for predicting the propeller configuration of a triphenylphosphine ligand co-ordinated to achiral metal centres to include stereogenic metal systems is described. By considering nadir energy planes (NEP's) and a series of rigid-body calculations, a model has been developed to reliably predict the configuration of the triphenylphosphine rotor of stereogenic metal complexes. For complexes of the form [M(η(5)-C5H5)(PPh3)(L(1))(L(2))], where it is assumed that L(1) is larger than L(2), the configuration of the triphenylphosphine rotor may be predicted by viewing a Newman projection along the L(1)-M bond. In the orientation where the PPh3 unit is pointing vertically downwards and the orthogonal L(2) ligand is pointing to the right [i.e., an (RM)-configured complex, assuming that L(2) is ranked higher priority than L(1)], the conformation of L(1) can be expected to place the most sterically demanding substituent in the top-right quadrant. In cases where ligand L(1) still presents a steric incursion towards the PPh3 ligand (any part of L(1) other than H proximal to the PPh3 in the approximate zone -30° to +60° from the M-P bond) an (M)-configured rotor is expected, and when this interaction is not present a (P)-configured propeller is predicted. Without exception, these rules are consistent with all empirical data (>140 known crystal structures).
Block-structured grids for complex aerodynamic configurations: Current status
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Sanetrik, Mark D.; Parlette, Edward B.
1995-01-01
The status of CFD methods based on the use of block-structured grids for analyzing viscous flows over complex configurations is examined. The objective of the present study is to make a realistic assessment of the usability of such grids for routine computations typically encountered in the aerospace industry. It is recognized at the very outset that the total turnaround time, from the moment the configuration is identified until the computational results have been obtained and postprocessed, is more important than just the computational time. Pertinent examples will be cited to demonstrate the feasibility of solving flow over practical configurations of current interest on block-structured grids.
Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.
1998-01-01
This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.
GI-conf: A configuration tool for the GI-cat distributed catalog
NASA Astrophysics Data System (ADS)
Papeschi, F.; Boldrini, E.; Bigagli, L.; Mazzetti, P.
2009-04-01
In this work we present a configuration tool for the GI-cat. In an Service-Oriented Architecture (SOA) framework, GI-cat implements a distributed catalog service providing advanced capabilities, such as: caching, brokering and mediation functionalities. GI-cat applies a distributed approach, being able to distribute queries to the remote service providers of interest in an asynchronous style, and notifies the status of the queries to the caller implementing an incremental feedback mechanism. Today, GI-cat functionalities are made available through two standard catalog interfaces: the OGC CSW ISO and CSW Core Application Profiles. However, two other interfaces are under testing: the CIM and the EO Extension Packages of the CSW ebRIM Application Profile. GI-cat is able to interface a multiplicity of discovery and access services serving heterogeneous Earth and Space Sciences resources. They include international standards like the OGC Web Services -i.e. OGC CSW, WCS, WFS and WMS, as well as interoperability arrangements (i.e. community standards) such as: UNIDATA THREDDS/OPeNDAP, SeaDataNet CDI (Common Data Index), GBIF (Global Biodiversity Information Facility) services, and SibESS-C infrastructure services. GI-conf implements user-friendly configuration tool for GI-cat. This is a GUI application that employs a visual and very simple approach to configure both the GI-cat publishing and distribution capabilities, in a dynamic way. The tool allows to set one or more GI-cat configurations. Each configuration consists of: a) the catalog standards interfaces published by GI-cat; b) the resources (i.e. services/servers) to be accessed and mediated -i.e. federated. Simple icons are used for interfaces and resources, implementing a user-friendly visual approach. The main GI-conf functionalities are: • Interfaces and federated resources management: user can set which interfaces must be published; besides, she/he can add a new resource, update or remove an already federated resource. • Multiple configuration management: multiple GI-cat configurations can be defined; every configuration identifies a set of published interfaces and a set of federated resources. Configurations can be edited, added, removed, exported, and even imported. • HTML report creation: an HTML report can be created, showing the current active GI-cat configuration, including the resources that are being federated and the published interface endpoints. The configuration tool is shipped with GI-cat and can be used to configure the service after its installation is completed.
NASA Astrophysics Data System (ADS)
Papell, S. S.
1984-11-01
The thermal film-cooling footprints observed by infrared imagery for three coolant-passage configurations embedded in adiabatic-test plates are discussed. The configurations included a standard round-hole cross section and two orientations of a vortex-generating flow passage. Both orientations showed up to factors of four increases in both film-cooling effectiveness and surface coverage over that obtained with the round coolant passage. The crossflow data covered a range of tunnel velocities from 15.5 to 45 m/sec with blowing rates from 0.20 to 2.05. A photographic streakline flow visualization technique supported the concept of the counterrotating apability of the flow passage design and gave visual credence to its role in inhibiting flow separation.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The thermal film-cooling footprints observed by infrared imagery for three coolant-passage configurations embedded in adiabatic-test plates are discussed. The configurations included a standard round-hole cross section and two orientations of a vortex-generating flow passage. Both orientations showed up to factors of four increases in both film-cooling effectiveness and surface coverage over that obtained with the round coolant passage. The crossflow data covered a range of tunnel velocities from 15.5 to 45 m/sec with blowing rates from 0.20 to 2.05. A photographic streakline flow visualization technique supported the concept of the counterrotating apability of the flow passage design and gave visual credence to its role in inhibiting flow separation.
A System for the Measurement of the Subjective Visual Vertical using a Virtual Reality Device.
Negrillo-Cárdenas, José; Rueda-Ruiz, Antonio J; Ogayar-Anguita, Carlos J; Lomas-Vega, Rafael; Segura-Sánchez, Rafael J
2018-05-31
The Subjective Visual Vertical (SVV) is a common test for evaluating the perception of verticality. Altered verticality has been connected with disorders in the otolithic, visual or proprioceptive systems, caused by stroke, Parkinson's disease or multiple sclerosis, among others. Currently, this test is carried out using a variety of specific, mostly homemade apparatuses that include moving planes, buckets, hemispheric domes or a line projected in a screen. Our aim is to develop a flexible, inexpensive, user-friendly and easily extensible system based on virtual reality for the measurement of the SVV and several related visual diagnostic tests, and validate it through an experimental evaluation. Two different hardware configurations were tested with 50 healthy volunteers in a controlled environment; 28 of them were males and 22 females, with ages ranging from 18 to 49 years, being 23 the average age. The Intraclass Correlation Coefficient (ICC) was computed in each device. In addition, a usability survey was conducted. ICC = 0.85 in the first configuration (CI = 0.75-0.92), ICC = 0.76 in the second configuration (CI = 0.61-0.87), both with 95% of confidence, which means a substantial reliability. Moreover, 92.2% of subjects rated the usability of the system as "very good". Our evaluation showed that the proposed system is suitable for the measurement of SVV in healthy subjects. The next step is to perform a more elaborated experimentation on patients and compare the results with the measurements obtained from traditional methods.
Interactive Web-based Visualization of Atomic Position-time Series Data
NASA Astrophysics Data System (ADS)
Thapa, S.; Karki, B. B.
2017-12-01
Extracting and interpreting the information contained in large sets of time-varying three dimensional positional data for the constituent atoms of simulated material is a challenging task. We have recently implemented a web-based visualization system to analyze the position-time series data extracted from the local or remote hosts. It involves a pre-processing step for data reduction, which involves skipping uninteresting parts of the data uniformly (at full atomic configuration level) or non-uniformly (at atomic species level or individual atom level). Atomic configuration snapshot is rendered using the ball-stick representation and can be animated by rendering successive configurations. The entire atomic dynamics can be captured as the trajectories by rendering the atomic positions at all time steps together as points. The trajectories can be manipulated at both species and atomic levels so that we can focus on one or more trajectories of interest, and can be also superimposed with the instantaneous atomic structure. The implementation was done using WebGL and Three.js for graphical rendering, HTML5 and Javascript for GUI, and Elasticsearch and JSON for data storage and retrieval within the Grails Framework. We have applied our visualization system to the simulation datatsets for proton-bearing forsterite (Mg2SiO4) - an abundant mineral of Earths upper mantle. Visualization reveals that protons (hydrogen ions) incorporated as interstitials are much more mobile than protons substituting the host Mg and Si cation sites. The proton diffusion appears to be anisotropic with high mobility along the x-direction, showing limited discrete jumps in other two directions.
NASA Technical Reports Server (NTRS)
Chan, William M.
1995-01-01
Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.
Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter
2017-01-01
Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations. PMID:29326579
A Newtonian interpretation of configurational forces on dislocations and cracks
NASA Astrophysics Data System (ADS)
Ballarini, Roberto; Royer-Carfagni, Gianni
2016-10-01
Configurational forces are fundamental concepts in the description of the motion of dislocations, cracks and other defects that introduce singularities within the solid state. They are defined by considering variations in energies associated with the movement of such defects, and are therefore different from the classical forces that enter the balance laws of classical Newtonian mechanics. Here, it is demonstrated how a configurational force can be viewed as the resultant of the (Newtonian) contact forces acting on the perturbed shape of an object of substance equivalent to the defect, and evaluated in the limit of the shape being restored to the primitive configuration. The expressions for the configurational forces on the paradigmatic examples of cracks and dislocations are in agreement with those determined using classical variational arguments. This finding opens a new prospective in the use of configurational forces by permitting their physical and intuitive visualization.
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; Vicroy, Dan D.; Carter, Melissa B.
2012-01-01
A low-speed experimental investigation has been conducted on a 5.8-percent scale Hybrid Wing Body configuration in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This Hybrid Wing Body (HWB) configuration was designed with specific intention to support the NASA Environmentally Responsible Aviation (ERA) Project goals of reduced noise, emissions, and fuel burn. This HWB configuration incorporates twin, podded nacelles mounted on the vehicle upper surface between twin vertical tails. Low-speed aerodynamic characteristics were assessed through the acquisition of force and moment, surface pressure, and flow visualization data. Longitudinal and lateral-directional characteristics were investigated on this multi-component model. The effects of a drooped leading edge, longitudinal flow-through nacelle location, vertical tail shape and position, elevon deflection, and rudder deflection have been studied. The basic configuration aerodynamics, as well as the effects of these configuration variations, are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pachuilo, Andrew R; Ragan, Eric; Goodall, John R
Visualization tools can take advantage of multiple coordinated views to support analysis of large, multidimensional data sets. Effective design of such views and layouts can be challenging, but understanding users analysis strategies can inform design improvements. We outline an approach for intelligent design configuration of visualization tools with multiple coordinated views, and we discuss a proposed software framework to support the approach. The proposed software framework could capture and learn from user interaction data to automate new compositions of views and widgets. Such a framework could reduce the time needed for meta analysis of the visualization use and lead tomore » more effective visualization design.« less
ERIC Educational Resources Information Center
Donderi, Don C.
2006-01-01
The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from…
Visual search and contextual cueing: differential effects in 10-year-old children and adults.
Couperus, Jane W; Hunt, Ruskin H; Nelson, Charles A; Thomas, Kathleen M
2011-02-01
The development of contextual cueing specifically in relation to attention was examined in two experiments. Adult and 10-year-old participants completed a context cueing visual search task (Jiang & Chun, The Quarterly Journal of Experimental Psychology, 54A(4), 1105-1124, 2001) containing stimuli presented in an attended (e.g., red) and unattended (e.g., green) color. When the spatial configuration of stimuli in the attended and unattended color was invariant and consistently paired with the target location, adult reaction times improved, demonstrating learning. Learning also occurred if only the attended stimuli's configuration remained fixed. In contrast, while 10 year olds, like adults, showed incrementally slower reaction times as the number of attended stimuli increased, they did not show learning in the standard paradigm. However, they did show learning when the ratio of attended to unattended stimuli was high, irrespective of the total number of attended stimuli. Findings suggest children show efficient attentional guidance by color in visual search but differences in contextual cueing.
Ringer, Ashley L.; Senenko, Anastasia; Sherrill, C. David
2007-01-01
S/π interactions are prevalent in biochemistry and play an important role in protein folding and stabilization. Geometries of cysteine/aromatic interactions found in crystal structures from the Brookhaven Protein Data Bank (PDB) are analyzed and compared with the equilibrium configurations predicted by high-level quantum mechanical results for the H2S–benzene complex. A correlation is observed between the energetically favorable configurations on the quantum mechanical potential energy surface of the H2S–benzene model and the cysteine/aromatic configurations most frequently found in crystal structures of the PDB. In contrast to some previous PDB analyses, configurations with the sulfur over the aromatic ring are found to be the most important. Our results suggest that accurate quantum computations on models of noncovalent interactions may be helpful in understanding the structures of proteins and other complex systems. PMID:17766371
NASA Technical Reports Server (NTRS)
Kathong, Monchai; Tiwari, Surendra N.
1988-01-01
In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.
Lux, C J; Rübel, J; Starke, J; Conradt, C; Stellzig, P A; Komposch, P G
2001-04-01
The aim of the present longitudinal cephalometric study was to evaluate the dentofacial shape changes induced by activator treatment between 9.5 and 11.5 years in male Class II patients. For a rigorous morphometric analysis, a thin-plate spline analysis was performed to assess and visualize dental and skeletal craniofacial changes. Twenty male patients with a skeletal Class II malrelationship and increased overjet who had been treated at the University of Heidelberg with a modified Andresen-Häupl-type activator were compared with a control group of 15 untreated male subjects of the Belfast Growth Study. The shape changes for each group were visualized on thin-plate splines with one spline comprising all 13 landmarks to show all the craniofacial shape changes, including skeletal and dento-alveolar reactions, and a second spline based on 7 landmarks to visualize only the skeletal changes. In the activator group, the grid deformation of the total spline pointed to a strong activator-induced reduction of the overjet that was caused both by a tipping of the incisors and by a moderation of sagittal discrepancies, particularly a slight advancement of the mandible. In contrast with this, in the control group, only slight localized shape changes could be detected. Both in the 7- and 13-landmark configurations, the shape changes between the groups differed significantly at P < .001. In the present study, the morphometric approach of thin-plate spline analysis turned out to be a useful morphometric supplement to conventional cephalometrics because the complex patterns of shape change could be suggestively visualized.
Large calculation of the flow over a hypersonic vehicle using a GPU
NASA Astrophysics Data System (ADS)
Elsen, Erich; LeGresley, Patrick; Darve, Eric
2008-12-01
Graphics processing units are capable of impressive computing performance up to 518 Gflops peak performance. Various groups have been using these processors for general purpose computing; most efforts have focussed on demonstrating relatively basic calculations, e.g. numerical linear algebra, or physical simulations for visualization purposes with limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration with detailed geometry and accurate boundary conditions using the compressible Euler equations. To the authors' knowledge, this is the most sophisticated calculation of this kind in terms of complexity of the geometry, the physical model, the numerical methods employed, and the accuracy of the solution. The Navier-Stokes Stanford University Solver (NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably stable and accurate numerical discretization which uses a vertex-based finite-difference method. A multi-grid scheme is used to accelerate the solution of the system. Based on a comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40× were demonstrated for simple test geometries and 20× for complex geometries.
Signal detection evidence for limited capacity in visual search
Fencsik, David E.; Flusberg, Stephen J.; Horowitz, Todd S.; Wolfe, Jeremy M.
2014-01-01
The nature of capacity limits (if any) in visual search has been a topic of controversy for decades. In 30 years of work, researchers have attempted to distinguish between two broad classes of visual search models. Attention-limited models have proposed two stages of perceptual processing: an unlimited-capacity preattentive stage, and a limited-capacity selective attention stage. Conversely, noise-limited models have proposed a single, unlimited-capacity perceptual processing stage, with decision processes influenced only by stochastic noise. Here, we use signal detection methods to test a strong prediction of attention-limited models. In standard attention-limited models, performance of some searches (feature searches) should only be limited by a preattentive stage. Other search tasks (e.g., spatial configuration search for a “2” among “5”s) should be additionally limited by an attentional bottleneck. We equated average accuracies for a feature and a spatial configuration search over set sizes of 1–8 for briefly presented stimuli. The strong prediction of attention-limited models is that, given overall equivalence in performance, accuracy should be better on the spatial configuration search than on the feature search for set size 1, and worse for set size 8. We confirm this crossover interaction and show that it is problematic for at least one class of one-stage decision models. PMID:21901574
Visual cueing aids for rotorcraft landings
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Andre, Anthony D.
1993-01-01
The present study used a rotorcraft simulator to examine descents-to-hover at landing pads with one of three approach lighting configurations. The impact of simulator platform motion upon descents to hover was also examined. The results showed that the configuration with the most useful optical information led to the slowest final approach speeds, and that pilots found this configuration, together with the presence of simulator platform motion, most desirable. The results also showed that platform motion led to higher rates of approach to the landing pad in some cases. Implications of the results for the design of vertiport approach paths are discussed.
Low-speed Aerodynamic Investigations of a Hybrid Wing Body Configuration
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.; Gatlin, Gregory M.; Jenkins, Luther N.; Murphy, Patrick C.; Carter, Melissa B.
2014-01-01
Two low-speed static wind tunnel tests and a water tunnel static and dynamic forced-motion test have been conducted on a hybrid wing-body (HWB) twinjet configuration. These tests, in addition to computational fluid dynamics (CFD) analysis, have provided a comprehensive dataset of the low-speed aerodynamic characteristics of this nonproprietary configuration. In addition to force and moment measurements, the tests included surface pressures, flow visualization, and off-body particle image velocimetry measurements. This paper will summarize the results of these tests and highlight the data that is available for code comparison or additional analysis.
Open discovery: An integrated live Linux platform of Bioinformatics tools
Vetrivel, Umashankar; Pilla, Kalabharath
2008-01-01
Historically, live linux distributions for Bioinformatics have paved way for portability of Bioinformatics workbench in a platform independent manner. Moreover, most of the existing live Linux distributions limit their usage to sequence analysis and basic molecular visualization programs and are devoid of data persistence. Hence, open discovery ‐ a live linux distribution has been developed with the capability to perform complex tasks like molecular modeling, docking and molecular dynamics in a swift manner. Furthermore, it is also equipped with complete sequence analysis environment and is capable of running windows executable programs in Linux environment. Open discovery portrays the advanced customizable configuration of fedora, with data persistency accessible via USB drive or DVD. Availability The Open Discovery is distributed free under Academic Free License (AFL) and can be downloaded from http://www.OpenDiscovery.org.in PMID:19238235
Pressure loadings in a rectangular cavity with and without a captive store
Barone, Matthew; Arunajatesan, Srinivasan
2016-05-31
Simulations of the flow past a rectangular cavity containing a model captive store are performed using a hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation model. Calculated pressure fluctuation spectra are validated using measurements made on the same configuration in a trisonic wind tunnel at Mach numbers of 0.60, 0.80, and 1.47. The simulation results are used to calculate unsteady integrated forces and moments acting on the store. Spectra of the forces and moments, along with correlations calculated for force/moment pairs, reveal that a complex relationship exists between the unsteady integrated forces and the measured resonant cavity modes, as indicated in the cavity wallmore » pressure measurements. As a result, the structure of identified cavity resonant tones is examined by visualization of filtered surface pressure fields.« less
VORTAB - A data-tablet method of developing input data for the VORLAX program
NASA Technical Reports Server (NTRS)
Denn, F. M.
1979-01-01
A method of developing an input data file for use in the aerodynamic analysis of a complete airplane with the VORLAX computer program is described. The hardware consists of an interactive graphics terminal equipped with a graphics tablet. Software includes graphics routines from the Tektronix PLOT 10 package as well as the VORTAB program described. The user determines the size and location of each of the major panels for the aircraft before using the program. Data is entered both from the terminal keyboard and the graphics tablet. The size of the resulting data file is dependent on the complexity of the model and can vary from ten to several hundred card images. After the data are entered, two programs READB and PLOTB, are executed which plot the configuration allowing visual inspection of the model.
Advanced Wireless Integrated Navy Network - AWINN
2005-09-30
progress report No. 3 on AWINN hardware and software configurations of smart , wideband, multi-function antennas, secure configurable platform, close-in...results to the host PC via a UART soft core. The UART core used is a proprietary Xilinx core which incorporates features described in National...current software uses wheel odometry and visual landmarks to create a map and estimate position on an internal x, y grid . The wheel odometry provides a
Cowan, Nelson; Saults, J Scott; Clark, Katherine M
2015-07-01
Recent research has shown marked developmental increases in the apparent capacity of working memory. This recent research is based largely on performance on tasks in which a visual array is to be retained briefly for comparison with a subsequent probe display. Here we examined a possible theoretical alternative (or supplement) to a developmental increase in working memory in which children could improve in the ability to combine items in an array to form a coherent configuration. Elementary school children and adults received, on each trial, an array of colored spots to be remembered. On some trials, we provided structure in the probe display to facilitate the formation of a mental representation in which a coherent configuration is encoded. This stimulus structure in the probe display helped younger children, and thus reduced the developmental trend, but only on trials in which the participants were held responsible for the locations of items in the array. We conclude that, in addition to the development of the ability to form precise spatial configurations from items, the evidence is consistent with the existence of an actual developmental increase in working memory capacity for objects in an array. Copyright © 2015 Elsevier Inc. All rights reserved.
Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
Kim, Yeongmi; Harders, Matthias; Gassert, Roger
2015-01-01
Delivering distance information of nearby obstacles from sensors embedded in a white cane-in addition to the intrinsic mechanical feedback from the cane-can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.
Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow
NASA Technical Reports Server (NTRS)
Simon, Frederick F.; Ciancone, Michael L.
1987-01-01
A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configurations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.
Nonlinear dynamics behavior analysis of the spatial configuration of a tendril-bearing plant
NASA Astrophysics Data System (ADS)
Feng, Jingjing; Zhang, Qichang; Wang, Wei; Hao, Shuying
2017-03-01
Tendril-bearing plants appear to have a spiraling shape when tendrils climb along a support during growth. The growth characteristics of a tendril-bearer can be simplified to a model of a thin elastic rod with a cylindrical constraint. In this paper, the connection between some typical configuration characteristics of tendrils and complex nonlinear dynamic behavior are qualitatively analyzed. The space configuration problem of tendrils can be explained through the study of the nonlinear dynamic behavior of the thin elastic rod system equation. In this study, the complex non-Z2 symmetric critical orbits in the system equation under critical parameters were presented. A new function transformation method that can effectively maintain the critical orbit properties was proposed, and a new nonlinear differential equations system containing complex nonlinear terms can been obtained to describe the cross section position and direction of a rod during climbing. Numerical simulation revealed that the new system can describe the configuration of a rod with reasonable accuracy. To adequately explain the growing regulation of the rod shape, the critical orbit and configuration of rod are connected in a direct way. The high precision analytical expressions of these complex non-Z2 symmetric critical orbits are obtained by introducing a suitable analytical method, and then these expressions are used to draw the corresponding three-dimensional configuration figures of an elastic thin rod. Combined with actual tendrils on a live plant, the space configuration of the winding knots of tendril is explained by the concept of heteroclinic orbit from the perspective of nonlinear dynamics, and correctness of the theoretical analysis was verified. This theoretical analysis method could also be effectively applied to other similar slender structures.
Vector-Based Data Services for NASA Earth Science
NASA Astrophysics Data System (ADS)
Rodriguez, J.; Roberts, J. T.; Ruvane, K.; Cechini, M. F.; Thompson, C. K.; Boller, R. A.; Baynes, K.
2016-12-01
Vector data sources offer opportunities for mapping and visualizing science data in a way that allows for more customizable rendering and deeper data analysis than traditional raster images, and popular formats like GeoJSON and Mapbox Vector Tiles allow diverse types of geospatial data to be served in a high-performance and easily consumed-package. Vector data is especially suited to highly dynamic mapping applications and visualization of complex datasets, while growing levels of support for vector formats and features in open-source mapping clients has made utilizing them easier and more powerful than ever. NASA's Global Imagery Browse Services (GIBS) is working to make NASA data more easily and conveniently accessible than ever by serving vector datasets via GeoJSON, Mapbox Vector Tiles, and raster images. This presentation will review these output formats, the services, including WFS, WMS, and WMTS, that can be used to access the data, and some ways in which vector sources can be utilized in popular open-source mapping clients like OpenLayers. Lessons learned from GIBS' recent move towards serving vector will be discussed, as well as how to use GIBS open source software to create, configure, and serve vector data sources using Mapserver and the GIBS OnEarth Apache module.
NASA Technical Reports Server (NTRS)
Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel
2010-01-01
The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.
Wind-tunnel investigation of a full-scale canard-configured general aviation aircraft
NASA Technical Reports Server (NTRS)
Yip, L. P.; Coy, P. F.
1982-01-01
As part of a broad research program to provide a data base on advanced airplane configurations, a wind-tunnel investigation was conducted in the Langley 30-by 60-Foot Wind Tunnel to determine the aerodynamic characteristics of an advanced canard-configured general aviation airplane. The investigation included measurements of forces and moments of the complete configuration, isolated canard loads, and pressure distributions on the wing, winglet, and canard. Flow visualization was obtained by using surface tufts to determine regions of flow separation and by using a chemical sublimation technique to determine boundary-layer transition locations. Additionally, other tests were conducted to determine simulated rain effects on boundary layer transition. Investigation of configuration effects included variations of canard locations, canard airfoil section, winglet size, and use of a leading-edge droop on the out-board section of the wing.
Vakli, Pál; Németh, Kornél; Zimmer, Márta; Kovács, Gyula
2014-12-01
Previous studies demonstrated that the steady-state visual-evoked potential (SSVEP) is reduced to the repetition of the same identity face when compared with the presentation of different identities, suggesting high-level neural adaptation to face identity. Here we investigated whether the SSVEP is sensitive to the orientation, viewpoint, expression and configuration of faces (Experiment 1), and whether adaptation to identity at the level of the SSVEP is robust enough to generalize across these properties (Experiment 2). In Experiment 1, repeating the same identity face with continuously changing orientation, viewpoint or expression evoked a larger SSVEP than the repetition of an unchanged face, presumably reflecting a release of adaptation. A less robust effect was observed in the case of changes affecting face configuration. In Experiment 2, we found a similar release of adaptation for faces with changing orientation, viewpoint and configuration, as there was no difference between the SSVEP for the same and different identity faces. However, we found an adaptation effect for faces with changing expressions, suggesting that face identity coding, as reflected in the SSVEP, is largely independent of the emotion displayed by faces. Taken together, these results imply that the SSVEP taps high-level face representations which abstract away from the changeable aspects of the face and likely incorporate information about face configuration, but which are specific to the orientation and viewpoint of the face. Copyright © 2014 Elsevier B.V. All rights reserved.
The guidance of visual search by shape features and shape configurations.
McCants, Cody W; Berggren, Nick; Eimer, Martin
2018-03-01
Representations of target features (attentional templates) guide attentional object selection during visual search. In many search tasks, targets objects are defined not by a single feature but by the spatial configuration of their component shapes. We used electrophysiological markers of attentional selection processes to determine whether the guidance of shape configuration search is entirely part-based or sensitive to the spatial relationship between shape features. Participants searched for targets defined by the spatial arrangement of two shape components (e.g., hourglass above circle). N2pc components were triggered not only by targets but also by partially matching distractors with one target shape (e.g., hourglass above hexagon) and by distractors that contained both target shapes in the reverse arrangement (e.g., circle above hourglass), in line with part-based attentional control. Target N2pc components were delayed when a reverse distractor was present on the opposite side of the same display, suggesting that early shape-specific attentional guidance processes could not distinguish between targets and reverse distractors. The control of attention then became sensitive to spatial configuration, which resulted in a stronger attentional bias for target objects relative to reverse and partially matching distractors. Results demonstrate that search for target objects defined by the spatial arrangement of their component shapes is initially controlled in a feature-based fashion but can later be guided by templates for spatial configurations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Effect of Ice Shape Fidelity on Swept-Wing Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Camello, Stephanie C.; Bragg, Michael B.; Broeren, Andy P.; Lum, Christopher W.; Woodard, Brian S.; Lee, Sam
2017-01-01
Low-Reynolds number testing was conducted at the 7 ft. x 10 ft. Walter H. Beech Memorial Wind Tunnel at Wichita State University to study the aerodynamic effects of ice shapes on a swept wing. A total of 17 ice shape configurations of varying geometric detail were tested. Simplified versions of an ice shape may help improve current ice accretion simulation methods and therefore aircraft design, certification, and testing. For each configuration, surface pressure, force balance, and fluorescent mini-tuft data were collected and for a selected subset of configurations oil-flow visualization and wake survey data were collected. A comparison of two ice shape geometries and two configurations with simplified geometric detail for each ice shape geometry is presented in this paper.
Response of Seismometer with Symmetric Triaxial Sensor Configuration to Complex Ground Motion
NASA Astrophysics Data System (ADS)
Graizer, V.
2007-12-01
Most instruments used in seismological practice to record ground motion in all directions use three sensors oriented toward North, East and upward. In this standard configuration horizontal and vertical sensors differ in their construction because of gravity acceleration always applied to a vertical sensor. An alternative way of symmetric sensor configuration was first introduced by Galperin (1955) for petroleum exploration. In this arrangement three identical sensors are also positioned orthogonally to each other but are tilted at the same angle of 54.7 degrees to the vertical axis (triaxial system of coordinate balanced on its corner). Records obtained using symmetric configuration must be rotated into an earth referenced X, Y, Z coordinate system. A number of recent seismological instruments (e.g., broadband seismometers Streckeisen STS-2, Trillium of Nanometrics and Cronos of Kinemetrics) are using symmetric sensor configuration. In most of seismological studies it is assumed that rotational (rocking and torsion) components of earthquake ground motion are small enough to be neglected. However, recently examples were shown when rotational components are significant relative to translational components of motions. Response of pendulums installed in standard configuration (vertical and two horizontals) to complex input motion that includes rotations has been studied in a number of publications. We consider the response of pendulums in a symmetric sensor configuration to complex input motions including rotations, and the resultant triaxial system response. Possible implications of using symmetric sensor configuration in strong motion studies are discussed. Considering benefits of equal design of all three sensors in symmetric configuration, and as a result potentially lower cost of the three-component accelerograph, it may be useful for strong motion measurements not requiring high resolution post signal processing. The disadvantage of this configuration is that if one of the sensors is not working properly or there is a misalignment of sensors, it results in degradation of all three components. Symmetric sensor configuration requires identical processing of each channel putting a number of limitations on further processing of strong motion records.
1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)
NASA Technical Reports Server (NTRS)
1985-01-01
This image shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.
1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)
NASA Technical Reports Server (NTRS)
1980-01-01
This short movie clip shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.
NASA Astrophysics Data System (ADS)
Hsu, Bailey; van Huele, Jean-Francois
2009-10-01
The Stern-Gerlach effect (SGE) is iconic for visualizing spin. We analyze the evolution of atomic wavepackets by constructing exact solutions using propagators in SGE field configurations in different approximations. We contrast our results with the standard presentation of the SGE in textbooks and literature and illustrate with visual animations in 2D and 3D.
Using Open Source Software in Visual Simulation Development
2005-09-01
increased the use of the technology in training activities. Using open source/free software tools in the process can expand these possibilities...resulting in even greater cost reduction and allowing the flexibility needed in a training environment. This thesis presents a configuration and architecture...to be used when developing training visual simulations using both personal computers and open source tools. Aspects of the requirements needed in a
Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry
2014-01-01
We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.
Experimental Investigation of the DLR-F6 Transport Configuration in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; Rivers, Melissa B.; Goodliff, Scott L.; Rudnik, Ralf; Sitzmann, Martin
2008-01-01
An experimental aerodynamic investigation of the DLR (German Aerospace Center) F6 generic transport configuration has been conducted in the NASA NTF (National Transonic Facility) for CFD validation within the framework of the AIAA Drag Prediction Workshop. Force and moment, surface pressure, model deformation, and surface flow visualization data have been obtained at Reynolds numbers of both 3 million and 5 million. Flow-through nacelles and a side-of-body fairing were also investigated on this wing-body configuration. Reynolds number effects on trailing edge separation have been assessed, and the effectiveness of the side-of-body fairing in eliminating a known region of separated flow has been determined. Data obtained at a Reynolds number of 3 million are presented together for comparison with data from a previous wind tunnel investigation in the ONERA S2MA facility. New surface flow visualization capabilities have also been successfully explored and demonstrated in the NTF for the high pressure and moderately low temperature conditions required in this investigation. Images detailing wing surface flow characteristics are presented.
Visual/motion cue mismatch in a coordinated roll maneuver
NASA Technical Reports Server (NTRS)
Shirachi, D. K.; Shirley, R. S.
1981-01-01
The effects of bandwidth differences between visual and motion cueing systems on pilot performance for a coordinated roll task were investigated. Visual and motion cue configurations which were acceptable and the effects of reduced motion cue scaling on pilot performance were studied to determine the scale reduction threshold for which pilot performance was significantly different from full scale pilot performance. It is concluded that: (1) the presence or absence of high frequency error information in the visual and/or motion display systems significantly affects pilot performance; and (2) the attenuation of motion scaling while maintaining other display dynamic characteristics constant, affects pilot performance.
Optical elements formed by compressed gases: Analysis and potential applications
NASA Technical Reports Server (NTRS)
Howes, W. L.
1986-01-01
Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.
Visualization of reservoir simulation data with an immersive virtual reality system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, B.K.
1996-10-01
This paper discusses an investigation into the use of an immersive virtual reality (VR) system to visualize reservoir simulation output data. The hardware and software configurations of the test-immersive VR system are described and compared to a nonimmersive VR system and to an existing workstation screen-based visualization system. The structure of 3D reservoir simulation data and the actions to be performed on the data within the VR system are discussed. The subjective results of the investigation are then presented, followed by a discussion of possible future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Daniel, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de; Thiel, Walter, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons withmore » results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.« less
Complex Functions with GeoGebra
ERIC Educational Resources Information Center
Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos
2016-01-01
Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…
ERIC Educational Resources Information Center
Wang, Lan-Ting; Lee, Kun-Chou
2014-01-01
The vision plays an important role in educational technologies because it can produce and communicate quite important functions in teaching and learning. In this paper, learners' preference for the visual complexity on small screens of mobile computers is studied by neural networks. The visual complexity in this study is divided into five…
An ontology-based semantic configuration approach to constructing Data as a Service for enterprises
NASA Astrophysics Data System (ADS)
Cai, Hongming; Xie, Cheng; Jiang, Lihong; Fang, Lu; Huang, Chenxi
2016-03-01
To align business strategies with IT systems, enterprises should rapidly implement new applications based on existing information with complex associations to adapt to the continually changing external business environment. Thus, Data as a Service (DaaS) has become an enabling technology for enterprise through information integration and the configuration of existing distributed enterprise systems and heterogonous data sources. However, business modelling, system configuration and model alignment face challenges at the design and execution stages. To provide a comprehensive solution to facilitate data-centric application design in a highly complex and large-scale situation, a configurable ontology-based service integrated platform (COSIP) is proposed to support business modelling, system configuration and execution management. First, a meta-resource model is constructed and used to describe and encapsulate information resources by way of multi-view business modelling. Then, based on ontologies, three semantic configuration patterns, namely composite resource configuration, business scene configuration and runtime environment configuration, are designed to systematically connect business goals with executable applications. Finally, a software architecture based on model-view-controller (MVC) is provided and used to assemble components for software implementation. The result of the case study demonstrates that the proposed approach provides a flexible method of implementing data-centric applications.
Software control and system configuration management - A process that works
NASA Technical Reports Server (NTRS)
Petersen, K. L.; Flores, C., Jr.
1983-01-01
A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.
Software control and system configuration management: A systems-wide approach
NASA Technical Reports Server (NTRS)
Petersen, K. L.; Flores, C., Jr.
1984-01-01
A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.
Visual analysis and exploration of complex corporate shareholder networks
NASA Astrophysics Data System (ADS)
Tekušová, Tatiana; Kohlhammer, Jörn
2008-01-01
The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.
Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation
Iida, Shinji; Nakamura, Haruki; Higo, Junichi
2016-01-01
We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein–protein or protein–ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. PMID:27288028
NASA Astrophysics Data System (ADS)
Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team
2014-11-01
We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.
Flow visualization and modeling for education and outreach in low-income countries
NASA Astrophysics Data System (ADS)
Motanated, K.
2016-12-01
Being able to visualize the dynamic interaction between the movement of water and sediment flux is undeniably a profound tool for students and novices to understand complicated earth surface processes. In a laser-sheet flow visualization technique, a light source that is thin and monochromatic is required to illuminate sediments or tracers in the flow. However, an ideal laser sheet generator is rather expensive, especially for schools and universities residing in low-income countries. This project is proposing less-expensive options for a laser-sheet source and flow visualization experiment configuration for qualitative observation and quantitative analysis of the interaction between fluid media and sediments. Here, Fresnel lens is used to convert from point laser into sheet laser. Multiple combinations of laser diodes of various wavelength (nanometer) and power (milliwatt) and Fresnel lenses of various dimensions are analyzed. The pair that is able to produce the thinnest and brightest light sheet is not only effective but also affordable. The motion of sediments in a flow can be observed by illuminating the laser-sheet in an interested flow region. The particle motion is recorded by a video camera that is capable of taking multiple frames per second and having a narrow depth of view. The recorded video file can be played in a slow-motion mode so students can visually observe and qualitatively analyze the particle motion. An open source software package for Particle Imaging Velocimetry (PIV) can calculate the local velocity of particles from still images extracted from the video and create a vector map depicting particle motion. This flow visualization experiment is inexpensive and the configuration is simple to setup. Most importantly, this flow visualization technique serves as a fundamental tool for earth surface process education and can further be applied to sedimentary process modeling.
Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E
2012-12-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.
Collins, Heather R.; Zhu, Xun; Bhatt, Ramesh S.; Clark, Jonathan D.; Joseph, Jane E.
2015-01-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. The present study parametrically varied demands on featural, first-order configural or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing) or reflected generalized perceptual differentiation (i.e. differentiation that crosses category and processing type boundaries). Regions of interest were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process-specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex, and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain-specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories. PMID:22849402
The Effects of Visual Complexity for Japanese Kanji Processing with High and Low Frequencies
ERIC Educational Resources Information Center
Tamaoka, Katsuo; Kiyama, Sachiko
2013-01-01
The present study investigated the effects of visual complexity for kanji processing by selecting target kanji from different stroke ranges of visually simple (2-6 strokes), medium (8-12 strokes), and complex (14-20 strokes) kanji with high and low frequencies. A kanji lexical decision task in Experiment 1 and a kanji naming task in Experiment 2…
Golarai, Golijeh; Ghahremani, Dara G.; Eberhardt, Jennifer L.; Gabrieli, John D. E.
2015-01-01
Several regions of the human brain respond more strongly to faces than to other visual stimuli, such as regions in the amygdala (AMG), superior temporal sulcus (STS), and the fusiform face area (FFA). It is unclear if these brain regions are similar in representing the configuration or natural appearance of face parts. We used functional magnetic resonance imaging of healthy adults who viewed natural or schematic faces with internal parts that were either normally configured or randomly rearranged. Response amplitudes were reduced in the AMG and STS when subjects viewed stimuli whose configuration of parts were digitally rearranged, suggesting that these regions represent the 1st order configuration of face parts. In contrast, response amplitudes in the FFA showed little modulation whether face parts were rearranged or if the natural face parts were replaced with lines. Instead, FFA responses were reduced only when both configural and part information were reduced, revealing an interaction between these factors, suggesting distinct representation of 1st order face configuration and parts in the AMG and STS vs. the FFA. PMID:26594191
Seals Flow Code Development 1993
NASA Technical Reports Server (NTRS)
Liang, Anita D. (Compiler); Hendricks, Robert C. (Compiler)
1994-01-01
Seals Workshop of 1993 code releases include SPIRALI for spiral grooved cylindrical and face seal configurations; IFACE for face seals with pockets, steps, tapers, turbulence, and cavitation; GFACE for gas face seals with 'lift pad' configurations; and SCISEAL, a CFD code for research and design of seals of cylindrical configuration. GUI (graphical user interface) and code usage was discussed with hands on usage of the codes, discussions, comparisons, and industry feedback. Other highlights for the Seals Workshop-93 include environmental and customer driven seal requirements; 'what's coming'; and brush seal developments including flow visualization, numerical analysis, bench testing, T-700 engine testing, tribological pairing and ceramic configurations, and cryogenic and hot gas facility brush seal results. Also discussed are seals for hypersonic engines and dynamic results for spiral groove and smooth annular seals.
Chen, Fu-Chen; Chu, Chia-Hua; Pan, Chien-Yu; Tsai, Chia-Liang
2018-05-01
Prior studies demonstrated that, compared to no fingertip touch (NT), a reduction in body sway resulting from the effects of light fingertip touch (LT) facilitates the performance of visual search, buttressing the concept of functional integration. However, previous findings may be confounded by different arm postures required between the NT and LT conditions. Furthermore, in older adults, how LT influences the interactions between body sway and visual search has not been established. (1) Are LT effects valid after excluding the influences of different upper limb configurations? (2) Is functional integration is feasible for older adults? Twenty-two young (age = 21.3 ± 2.0) and 22 older adults (age = 71.8 ± 4.1) were recruited. Participants performed visual inspection and visual searches under NT and LT conditions. The older group significantly reduced AP sway (p < 0.05) in LT compared to NT conditions, of which the LT effects on postural adaptation were more remarkable in older than young adults (p < 0.05). In addition, the older group significantly improved search accuracy (p < 0.05) from the LT to the NT condition, and these effects were equivalent between groups. After controlling for postural configurations, the results demonstrate that light fingertip touch reduces body sway and concurrently enhances visual search performance in older adults. These findings confirmed the effects of LT on postural adaptation as well as supported functional integration in older adults. Copyright © 2018 Elsevier B.V. All rights reserved.
Energy Landscape of All-Atom Protein-Protein Interactions Revealed by Multiscale Enhanced Sampling
Moritsugu, Kei; Terada, Tohru; Kidera, Akinori
2014-01-01
Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape. PMID:25340714
Bio-Docklets: virtualization containers for single-step execution of NGS pipelines.
Kim, Baekdoo; Ali, Thahmina; Lijeron, Carlos; Afgan, Enis; Krampis, Konstantinos
2017-08-01
Processing of next-generation sequencing (NGS) data requires significant technical skills, involving installation, configuration, and execution of bioinformatics data pipelines, in addition to specialized postanalysis visualization and data mining software. In order to address some of these challenges, developers have leveraged virtualization containers toward seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform. We present an approach for abstracting the complex data operations of multistep, bioinformatics pipelines for NGS data analysis. As examples, we have deployed 2 pipelines for RNA sequencing and chromatin immunoprecipitation sequencing, preconfigured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input and output endpoint and from a user perspective, running the pipelines as simply as running a single bioinformatics tool. This is achieved using a "meta-script" that automatically starts the Bio-Docklets and controls the pipeline execution through the BioBlend software library and the Galaxy Application Programming Interface. The pipeline output is postprocessed by integration with the Visual Omics Explorer framework, providing interactive data visualizations that users can access through a web browser. Our goal is to enable easy access to NGS data analysis pipelines for nonbioinformatics experts on any computing environment, whether a laboratory workstation, university computer cluster, or a cloud service provider. Beyond end users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of pipeline instances for concurrent analysis of multiple datasets. © The Authors 2017. Published by Oxford University Press.
Bio-Docklets: virtualization containers for single-step execution of NGS pipelines
Kim, Baekdoo; Ali, Thahmina; Lijeron, Carlos; Afgan, Enis
2017-01-01
Abstract Processing of next-generation sequencing (NGS) data requires significant technical skills, involving installation, configuration, and execution of bioinformatics data pipelines, in addition to specialized postanalysis visualization and data mining software. In order to address some of these challenges, developers have leveraged virtualization containers toward seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform. We present an approach for abstracting the complex data operations of multistep, bioinformatics pipelines for NGS data analysis. As examples, we have deployed 2 pipelines for RNA sequencing and chromatin immunoprecipitation sequencing, preconfigured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input and output endpoint and from a user perspective, running the pipelines as simply as running a single bioinformatics tool. This is achieved using a “meta-script” that automatically starts the Bio-Docklets and controls the pipeline execution through the BioBlend software library and the Galaxy Application Programming Interface. The pipeline output is postprocessed by integration with the Visual Omics Explorer framework, providing interactive data visualizations that users can access through a web browser. Our goal is to enable easy access to NGS data analysis pipelines for nonbioinformatics experts on any computing environment, whether a laboratory workstation, university computer cluster, or a cloud service provider. Beyond end users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of pipeline instances for concurrent analysis of multiple datasets. PMID:28854616
Flow visualization studies of VTOL aircraft models during Hover in ground effect
NASA Technical Reports Server (NTRS)
Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.
1995-01-01
A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.
Scalable large format 3D displays
NASA Astrophysics Data System (ADS)
Chang, Nelson L.; Damera-Venkata, Niranjan
2010-02-01
We present a general framework for the modeling and optimization of scalable large format 3-D displays using multiple projectors. Based on this framework, we derive algorithms that can robustly optimize the visual quality of an arbitrary combination of projectors (e.g. tiled, superimposed, combinations of the two) without manual adjustment. The framework creates for the first time a new unified paradigm that is agnostic to a particular configuration of projectors yet robustly optimizes for the brightness, contrast, and resolution of that configuration. In addition, we demonstrate that our algorithms support high resolution stereoscopic video at real-time interactive frame rates achieved on commodity graphics hardware. Through complementary polarization, the framework creates high quality multi-projector 3-D displays at low hardware and operational cost for a variety of applications including digital cinema, visualization, and command-and-control walls.
Cultural differences in visual object recognition in 3-year-old children
Kuwabara, Megumi; Smith, Linda B.
2016-01-01
Recent research indicates that culture penetrates fundamental processes of perception and cognition (e.g. Nisbett & Miyamoto, 2005). Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (n=128) examined the degree to which nonface object recognition by 3 year olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects in which only 3 diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children and likelihood of recognition increased for U.S., but not Japanese children when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children’s recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. PMID:26985576
Cultural differences in visual object recognition in 3-year-old children.
Kuwabara, Megumi; Smith, Linda B
2016-07-01
Recent research indicates that culture penetrates fundamental processes of perception and cognition. Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (N=128) examined the degree to which nonface object recognition by 3-year-olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects where only three diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children, and the likelihood of recognition increased for U.S. children, but not Japanese children, when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children's recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. Copyright © 2016 Elsevier Inc. All rights reserved.
Berggren, Nick; Eimer, Martin
2016-09-01
Representations of target-defining features (attentional templates) guide the selection of target objects in visual search. We used behavioral and electrophysiological measures to investigate how such search templates control the allocation of attention in search tasks where targets are defined by the combination of 2 colors or by a specific spatial configuration of these colors. Target displays were preceded by spatially uninformative cue displays that contained items in 1 or both target-defining colors. Experiments 1 and 2 demonstrated that, during search for color combinations, attention is initially allocated independently and in parallel to all objects with target-matching colors, but is then rapidly withdrawn from objects that only have 1 of the 2 target colors. In Experiment 3, targets were defined by a particular spatial configuration of 2 colors, and could be accompanied by nontarget objects with a different configuration of the same colors. Attentional guidance processes were unable to distinguish between these 2 types of objects. Both attracted attention equally when they appeared in a cue display, and both received parallel focal-attentional processing and were encoded into working memory when they were presented in the same target display. Results demonstrate that attention can be guided simultaneously by multiple features from the same dimension, but that these guidance processes have no access to the spatial-configural properties of target objects. They suggest that attentional templates do not represent target objects in an integrated pictorial fashion, but contain separate representations of target-defining features. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Letter-case information and the identification of brand names.
Perea, Manuel; Jiménez, María; Talero, Fernanda; López-Cañada, Soraya
2015-02-01
A central tenet of most current models of visual-word recognition is that lexical units are activated on the basis of case-invariant abstract letter representations. Here, we examined this assumption by using a unique type of words: brand names. The rationale of the experiments is that brand names are archetypically printed either in lowercase (e.g., adidas) or uppercase (e.g., IKEA). This allows us to present the brand names in their standard or non-standard case configuration (e.g., adidas, IKEA vs. ADIDAS, ikea, respectively). We conducted two experiments with a brand-decision task ('is it a brand name?'): a single-presentation experiment and a masked priming experiment. Results in the single-presentation experiment revealed faster identification times of brand names in their standard case configuration than in their non-standard case configuration (i.e., adidas faster than ADIDAS; IKEA faster than ikea). In the masked priming experiment, we found faster identification times of brand names when they were preceded by an identity prime that matched its standard case configuration than when it did not (i.e., faster response times to adidas-adidas than to ADIDAS-adidas). Taken together, the present findings strongly suggest that letter-case information forms part of a brand name's graphemic information, thus posing some limits to current models of visual-word recognition. © 2014 The British Psychological Society.
Thoma, Volker; Henson, Richard N.
2011-01-01
The effects of attention and object configuration on the neural responses to short-lag visual image repetition were investigated with fMRI. Attention to one of two object images in a prime display was cued spatially. The images were either intact or split vertically; a manipulation that negates the influence of view-based representations. A subsequent single intact probe image was named covertly. Behavioural priming observed as faster button presses was found for attended primes in both intact and split configurations, but only for uncued primes in the intact configuration. In a voxel-wise analysis, fMRI repetition suppression (RS) was observed in a left mid-fusiform region for attended primes, both intact and split, whilst a right intraparietal region showed repetition enhancement (RE) for intact primes, regardless of attention. In a factorial analysis across regions of interest (ROIs) defined from independent localiser contrasts, RS for attended objects in the ventral stream was significantly left-lateralised, whilst repetition effects in ventral and dorsal ROIs correlated with the amount of priming in specific conditions. These fMRI results extend hybrid theories of object recognition, implicating left ventral stream regions in analytic processing (requiring attention), consistent with prior hypotheses about hemispheric specialisation, and implicating dorsal stream regions in holistic processing (independent of attention). PMID:21554967
Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.
Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris
2016-05-04
Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Clothing Matching for Visually Impaired Persons
Yuan, Shuai; Tian, YingLi; Arditi, Aries
2012-01-01
Matching clothes is a challenging task for many blind people. In this paper, we present a proof of concept system to solve this problem. The system consists of 1) a camera connected to a computer to perform pattern and color matching process; 2) speech commands for system control and configuration; and 3) audio feedback to provide matching results for both color and patterns of clothes. This system can handle clothes in deficient color without any pattern, as well as clothing with multiple colors and complex patterns to aid both blind and color deficient people. Furthermore, our method is robust to variations of illumination, clothing rotation and wrinkling. To evaluate the proposed prototype, we collect two challenging databases including clothes without any pattern, or with multiple colors and different patterns under different conditions of lighting and rotation. Results reported here demonstrate the robustness and effectiveness of the proposed clothing matching system. PMID:22523465
Blasting, graphical interfaces and Unix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, S.; Preece, D.S.
1993-11-01
A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters tomore » be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.« less
Blasting, graphical interfaces and Unix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, S.; Preece, D.S.
1994-12-31
A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters tomore » be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.« less
Experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor flow field
NASA Technical Reports Server (NTRS)
Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.
1992-01-01
An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational analysis, and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the rotor as well as surface flow visualization along the impeller blade surfaces provide independent confirmation of the laser measurement technique.
Clothing Matching for Visually Impaired Persons.
Yuan, Shuai; Tian, Yingli; Arditi, Aries
2011-01-01
Matching clothes is a challenging task for many blind people. In this paper, we present a proof of concept system to solve this problem. The system consists of 1) a camera connected to a computer to perform pattern and color matching process; 2) speech commands for system control and configuration; and 3) audio feedback to provide matching results for both color and patterns of clothes. This system can handle clothes in deficient color without any pattern, as well as clothing with multiple colors and complex patterns to aid both blind and color deficient people. Furthermore, our method is robust to variations of illumination, clothing rotation and wrinkling. To evaluate the proposed prototype, we collect two challenging databases including clothes without any pattern, or with multiple colors and different patterns under different conditions of lighting and rotation. Results reported here demonstrate the robustness and effectiveness of the proposed clothing matching system.
The Modern Design of Experiments for Configuration Aerodynamics: A Case Study
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2006-01-01
The effects of slowly varying and persisting covariate effects on the accuracy and precision of experimental result is reviewed, as is the rationale for run-order randomization as a quality assurance tactic employed in the Modern Design of Experiments (MDOE) to defend against such effects. Considerable analytical complexity is introduced by restrictions on randomization in configuration aerodynamics tests because they involve hard-to-change configuration variables that cannot be randomized conveniently. Tradeoffs are examined between quality and productivity associated with varying degrees of rigor in accounting for such randomization restrictions. Certain characteristics of a configuration aerodynamics test are considered that may justify a relaxed accounting for randomization restrictions to achieve a significant reduction in analytical complexity with a comparably negligible adverse impact on the validity of the experimental results.
van Weert, Julia C M; van Noort, Guda; Bol, Nadine; van Dijk, Liset; Tates, Kiek; Jansen, Jesse
2011-09-01
This study was designed to investigate the effects of visual cues and language complexity on satisfaction and information recall using a personalised website for lung cancer patients. In addition, age effects were investigated. An experiment using a 2 (complex vs. non-complex language)×3 (text only vs. photograph vs. drawing) factorial design was conducted. In total, 200 respondents without cancer were exposed to one of the six conditions. Respondents were more satisfied with the comprehensibility of both websites when they were presented with a visual cue. A significant interaction effect was found between language complexity and photograph use such that satisfaction with comprehensibility improved when a photograph was added to the complex language condition. Next, an interaction effect was found between age and satisfaction, which indicates that adding a visual cue is more important for older adults than younger adults. Finally, respondents who were exposed to a website with less complex language showed higher recall scores. The use of visual cues enhances satisfaction with the information presented on the website, and the use of non-complex language improves recall. The results of the current study can be used to improve computer-based information systems for patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Using complex auditory-visual samples to produce emergent relations in children with autism.
Groskreutz, Nicole C; Karsina, Allen; Miguel, Caio F; Groskreutz, Mark P
2010-03-01
Six participants with autism learned conditional relations between complex auditory-visual sample stimuli (dictated words and pictures) and simple visual comparisons (printed words) using matching-to-sample training procedures. Pre- and posttests examined potential stimulus control by each element of the complex sample when presented individually and emergence of additional conditional relations and oral labeling. Tests revealed class-consistent performance for all participants following training.
Age, gesture span, and dissociations among component subsystems of working memory.
Dolman, R; Roy, E A; Dimeck, P T; Hall, C R
2000-01-01
Working memory was examined in old and young adults using a series of span tasks, including the forward versions of the visual-spatial and digit span tasks from the Wechsler Memory Scale-Revised, and comparable hand gesture and visual design span tasks. The observation that the young participants performed significantly better on all the tasks except digit span suggested that aging has an impact on some component subsystems of working memory but not others. Analyses of intercorrelations in span performance supports the dissociation among three component subsystems, one for auditory verbal information (the articulatory loop), one for visual-spatial information (visual-spatial scratch-pad), and one for hand/body postural configuration.
Schlagbauer, Bernhard; Müller, Hermann J; Zehetleitner, Michael; Geyer, Thomas
2012-10-25
In visual search, context information can serve as a cue to guide attention to the target location. When observers repeatedly encounter displays with identical target-distractor arrangements, reaction times (RTs) are faster for repeated relative to nonrepeated displays, the latter containing novel configurations. This effect has been termed "contextual cueing." The present study asked whether information about the target location in repeated displays is "explicit" (or "conscious") in nature. To examine this issue, observers performed a test session (after an initial training phase in which RTs to repeated and nonrepeated displays were measured) in which the search stimuli were presented briefly and terminated by visual masks; following this, observers had to make a target localization response (with accuracy as the dependent measure) and indicate their visual experience and confidence associated with the localization response. The data were examined at the level of individual displays, i.e., in terms of whether or not a repeated display actually produced contextual cueing. The results were that (a) contextual cueing was driven by only a very small number of about four actually learned configurations; (b) localization accuracy was increased for learned relative to nonrepeated displays; and (c) both consciousness measures were enhanced for learned compared to nonrepeated displays. It is concluded that contextual cueing is driven by only a few repeated displays and the ability to locate the target in these displays is associated with increased visual experience.
Enhancement and suppression in the visual field under perceptual load.
Parks, Nathan A; Beck, Diane M; Kramer, Arthur F
2013-01-01
The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task-greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs) in conjunction with time-domain event-related potentials (ERPs) to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG) was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2, 6, or 11°) during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3 Hz) was attenuated under high perceptual load (relative to low load) at the most proximal (2°) eccentricity but not at more eccentric locations (6 or 11°). Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.
Experimental Measurement of RCS Jet Interaction Effects on a Capsule Entry Vehicle
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Watkins, A. Neal; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Dyakonov, Artem A.
2008-01-01
An investigation was made in NASA Langley Research Center s 31-Inch Mach 10 Tunnel to determine the effects of reaction-control system (RCS) jet interactions on the aft-body of a capsule entry vehicle. The test focused on demonstrating and improving advanced measurement techniques that would aid in the rapid measurement and visualization of jet interaction effects for the Orion Crew Exploration Vehicle while providing data useful for developing engineering models or validation of computational tools used to assess actual flight environments. Measurements included global surface imaging with pressure and temperature sensitive paints and three-dimensional flow visualization with a scanning planar laser induced fluorescence technique. The wind tunnel model was fabricated with interchangeable parts for two different aft-body configurations. The first, an Apollo-like configuration, was used to focus primarily on the forward facing roll and yaw jet interactions which are known to have significant aft-body heating augmentation. The second, an early Orion Crew Module configuration (4-cluster jets), was tested blowing only out of the most windward yaw jet, which was expected to have the maximum heating augmentation for that configuration. Jet chamber pressures and tunnel flow conditions were chosen to approximate early Apollo wind tunnel test conditions. Maximum heating augmentation values measured for the Apollo-like configuration (>10 for forward facing roll jet and 4 for yaw jet) using temperature sensitive paint were shown to be similar to earlier experimental results (Jones and Hunt, 1965) using a phase change paint technique, but were acquired with much higher surface resolution. Heating results for the windward yaw jet on the Orion configuration had similar augmentation levels, but affected much less surface area. Numerical modeling for the Apollo-like yaw jet configuration with laminar flow and uniform jet outflow conditions showed similar heating patterns, qualitatively, but also showed significant variation with jet exit divergence angle, with as much as 25 percent variation in heat flux intensity for a 10 degree divergence angle versus parallel outflow. These results along with the fabrication methods and advanced measurement techniques developed will be used in the next phase of testing and evaluation for the updated Orion RCS configuration.
Detection of timescales in evolving complex systems
Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo
2016-01-01
Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system. PMID:28004820
Complex Digital Visual Systems
ERIC Educational Resources Information Center
Sweeny, Robert W.
2013-01-01
This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…
The social computing room: a multi-purpose collaborative visualization environment
NASA Astrophysics Data System (ADS)
Borland, David; Conway, Michael; Coposky, Jason; Ginn, Warren; Idaszak, Ray
2010-01-01
The Social Computing Room (SCR) is a novel collaborative visualization environment for viewing and interacting with large amounts of visual data. The SCR consists of a square room with 12 projectors (3 per wall) used to display a single 360-degree desktop environment that provides a large physical real estate for arranging visual information. The SCR was designed to be cost-effective, collaborative, configurable, widely applicable, and approachable for naive users. Because the SCR displays a single desktop, a wide range of applications is easily supported, making it possible for a variety of disciplines to take advantage of the room. We provide a technical overview of the room and highlight its application to scientific visualization, arts and humanities projects, research group meetings, and virtual worlds, among other uses.
The perception of depth from binocular disparity.
DOT National Transportation Integrated Search
1963-05-01
This study was concerned with the factors involved in the perception of depth from a binocular disparity. A binocularly observed configuration of constant convergences, constant visual size, and having constant binocular disparities was made to appea...
NASA Technical Reports Server (NTRS)
Muirhead, V. U.
1975-01-01
Optimization of L/D through minimizing induced drag through a detailed flow study together with force, pressure and vorticity measurements is considered. Flow visualization with neutral helium bubbles provides an excellent means of observing the effects of configuration changes.
Generalized information fusion and visualization using spatial voting and data modeling
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.
2013-05-01
We present a novel and innovative information fusion and visualization framework for multi-source intelligence (multiINT) data using Spatial Voting (SV) and Data Modeling. We describe how different sources of information can be converted into numerical form for further processing downstream, followed by a short description of how this information can be fused using the SV grid. As an illustrative example, we show the modeling of cyberspace as cyber layers for the purpose of tracking cyber personas. Finally we describe a path ahead for creating interactive agile networks through defender customized Cyber-cubes for network configuration and attack visualization.
A bio-inspired kinematic controller for obstacle avoidance during reaching tasks with real robots.
Srinivasa, Narayan; Bhattacharyya, Rajan; Sundareswara, Rashmi; Lee, Craig; Grossberg, Stephen
2012-11-01
This paper describes a redundant robot arm that is capable of learning to reach for targets in space in a self-organized fashion while avoiding obstacles. Self-generated movement commands that activate correlated visual, spatial and motor information are used to learn forward and inverse kinematic control models while moving in obstacle-free space using the Direction-to-Rotation Transform (DIRECT). Unlike prior DIRECT models, the learning process in this work was realized using an online Fuzzy ARTMAP learning algorithm. The DIRECT-based kinematic controller is fault tolerant and can handle a wide range of perturbations such as joint locking and the use of tools despite not having experienced them during learning. The DIRECT model was extended based on a novel reactive obstacle avoidance direction (DIRECT-ROAD) model to enable redundant robots to avoid obstacles in environments with simple obstacle configurations. However, certain configurations of obstacles in the environment prevented the robot from reaching the target with purely reactive obstacle avoidance. To address this complexity, a self-organized process of mental rehearsals of movements was modeled, inspired by human and animal experiments on reaching, to generate plans for movement execution using DIRECT-ROAD in complex environments. These mental rehearsals or plans are self-generated by using the Fuzzy ARTMAP algorithm to retrieve multiple solutions for reaching each target while accounting for all the obstacles in its environment. The key aspects of the proposed novel controller were illustrated first using simple examples. Experiments were then performed on real robot platforms to demonstrate successful obstacle avoidance during reaching tasks in real-world environments. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jonas, Jacques; Frismand, Solène; Vignal, Jean-Pierre; Colnat-Coulbois, Sophie; Koessler, Laurent; Vespignani, Hervé; Rossion, Bruno; Maillard, Louis
2014-07-01
Electrical brain stimulation can provide important information about the functional organization of the human visual cortex. Here, we report the visual phenomena evoked by a large number (562) of intracerebral electrical stimulations performed at low-intensity with depth electrodes implanted in the occipito-parieto-temporal cortex of 22 epileptic patients. Focal electrical stimulation evoked primarily visual hallucinations with various complexities: simple (spot or blob), intermediary (geometric forms), or complex meaningful shapes (faces); visual illusions and impairments of visual recognition were more rarely observed. With the exception of the most posterior cortical sites, the probability of evoking a visual phenomenon was significantly higher in the right than the left hemisphere. Intermediary and complex hallucinations, illusions, and visual recognition impairments were almost exclusively evoked by stimulation in the right hemisphere. The probability of evoking a visual phenomenon decreased substantially from the occipital pole to the most anterior sites of the temporal lobe, and this decrease was more pronounced in the left hemisphere. The greater sensitivity of the right occipito-parieto-temporal regions to intracerebral electrical stimulation to evoke visual phenomena supports a predominant role of right hemispheric visual areas from perception to recognition of visual forms, regardless of visuospatial and attentional factors. Copyright © 2013 Wiley Periodicals, Inc.
Dimensionality of visual complexity in computer graphics scenes
NASA Astrophysics Data System (ADS)
Ramanarayanan, Ganesh; Bala, Kavita; Ferwerda, James A.; Walter, Bruce
2008-02-01
How do human observers perceive visual complexity in images? This problem is especially relevant for computer graphics, where a better understanding of visual complexity can aid in the development of more advanced rendering algorithms. In this paper, we describe a study of the dimensionality of visual complexity in computer graphics scenes. We conducted an experiment where subjects judged the relative complexity of 21 high-resolution scenes, rendered with photorealistic methods. Scenes were gathered from web archives and varied in theme, number and layout of objects, material properties, and lighting. We analyzed the subject responses using multidimensional scaling of pooled subject responses. This analysis embedded the stimulus images in a two-dimensional space, with axes that roughly corresponded to "numerosity" and "material / lighting complexity". In a follow-up analysis, we derived a one-dimensional complexity ordering of the stimulus images. We compared this ordering with several computable complexity metrics, such as scene polygon count and JPEG compression size, and did not find them to be very correlated. Understanding the differences between these measures can lead to the design of more efficient rendering algorithms in computer graphics.
NASA Astrophysics Data System (ADS)
Xu, Xue-song
2014-12-01
Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simple currents. To obtain the numerical results, the usual Newton-Raphson iteration is often adopted, but its stability depends on the initial guessed solution to the governing equations. To improve the stability of numerical calculation, this paper proposed separated the particle swarm optimization, in which the variables are separated into several groups, and the dimension of search space is reduced to facilitate the particle swarm optimization. Via the separated particle swarm optimization, these governing nonlinear equations can be solved successfully with any initial solution, and the process of numerical calculation is very stable. For the calculations of cable configuration and tension of marine cables under complex currents, the proposed separated swarm particle optimization is more effective than the other particle swarm optimizations.
Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H
2018-04-10
Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.
NASA Technical Reports Server (NTRS)
Armstrong, Wilbur C.
1992-01-01
The piping in a liquid rocket can assume complex configurations due to multiple tanks, multiple engines, and structures that must be piped around. The capability to handle some of these complex configurations have been incorporated into the ADMIT code. The capability to modify the input on line has been implemented. The configurations allowed include multiple tanks, multiple engines, the splitting of a pipe into unequal segments going to different (or the same) engines. This program will handle the following type elements: straight pipes, bends, inline accumulators, tuned stub accumulators, Helmholtz resonators, parallel resonators, pumps, split pipes, multiple tanks, and multiple engines.
NASA Technical Reports Server (NTRS)
Armstrong, Wilbur C.
1992-01-01
The piping in a liquid rocket can assume complex configurations due to multiple tanks, multiple engines, and structures that must be piped around. The capability to handle some of these complex configurations have been incorporated into the SSFREQ code. The capability to modify the input on line has been implemented. The configurations allowed include multiple tanks, multiple engines, the splitting of a pipe into equal segments going to different (or the same) engines. This program will handle the following type elements: straight pipes, bends, inline accumulators, tuned stub accumulators, Helmholtz resonators, parallel resonators, pumps, split pipes, multiple tanks, and multiple engines.
ERIC Educational Resources Information Center
Rodriguez, Walter; Opdenbosh, Augusto; Santamaria, Juan Carlos
2006-01-01
Visual information is vital in planning and managing construction operations, particularly, where there is complex terrain topography and salvage operations with limited accessibility and visibility. From visually-assessing site operations and preventing equipment collisions to simulating material handling activities to supervising remotes sites…
Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry
2014-01-01
We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets’ locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research. PMID:25339978
A deflectable guiding catheter for real-time MRI-guided interventions.
Bell, Jamie A; Saikus, Christina E; Ratnayaka, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z; Colyer, Jessica H; Lederman, Robert J; Kocaturk, Ozgur
2012-04-01
To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. The catheter shaft incorporated Kevlar braiding. A 180° deflection was attained with a 5-cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057" lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. Copyright © 2011 Wiley Periodicals, Inc.
Apparatus and Method for Assessing Vestibulo-Ocular Function
NASA Technical Reports Server (NTRS)
Shelhamer, Mark J. (Inventor)
2015-01-01
A system for assessing vestibulo-ocular function includes a motion sensor system adapted to be coupled to a user's head; a data processing system configured to communicate with the motion sensor system to receive the head-motion signals; a visual display system configured to communicate with the data processing system to receive image signals from the data processing system; and a gain control device arranged to be operated by the user and to communicate gain adjustment signals to the data processing system.
Phase change paint tests on Rockwell orbiter/tank and orbiter alone configurations (OH3A/OH3B)
NASA Technical Reports Server (NTRS)
Quan, M.; Craig, C.
1974-01-01
Wind tunnel tests were conducted on scale models of the space shuttle orbiter and external tank. The tests were designed to determine the basic heating rate and interference effects on the orbiter-tank configuration and to analyze the effectiveness of the thermal protective system on the reentry vehicle. The phase change paint techniques were used to determine areodynamic heating rates. Oil flow and schlieren photographs were used for flow visualization.
ERIC Educational Resources Information Center
Natoli, Sean N.; McMillin, David R.
2018-01-01
Students collect magnetic susceptibility data to verify that Hund's rule correctly predicts electronic configurations. Systems examined include three commercially available lanthanide(III)-containing complexes of the form M(acac)[subscript 3](H[subscript 2]O)[subscript 2] (where M = La(III), Nd(III), and Gd(III), and acac denotes the [CH[subscript…
Generation of Parametric Equivalent-Area Targets for Design of Low-Boom Supersonic Concepts
NASA Technical Reports Server (NTRS)
Li, Wu; Shields, Elwood
2011-01-01
A tool with an Excel visual interface is developed to generate equivalent-area (A(sub e)) targets that satisfy the volume constraints for a low-boom supersonic configuration. The new parametric Ae target explorer allows users to interactively study the tradeoffs between the aircraft volume constraints and the low-boom characteristics (e.g., loudness) of the ground signature. Moreover, numerical optimization can be used to generate the optimal A(sub e) target for given A(sub e) volume constraints. A case study is used to demonstrate how a generated low-boom Ae target can be matched by a supersonic configuration that includes a fuselage, wing, nacelle, pylon, aft pod, horizontal tail, and vertical tail. The low-boom configuration is verified by sonic-boom analysis with an off-body pressure distribution at three body lengths below the configuration
3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands
Mateo, Carlos M.; Gil, Pablo; Torres, Fernando
2016-01-01
Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments. PMID:27164102
3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
Mateo, Carlos M; Gil, Pablo; Torres, Fernando
2016-05-05
Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object's surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand's fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.
A Fractional Cartesian Composition Model for Semi-Spatial Comparative Visualization Design.
Kolesar, Ivan; Bruckner, Stefan; Viola, Ivan; Hauser, Helwig
2017-01-01
The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the data as much as possible-even when many ensemble members should be jointly studied using comparative visualization. In our model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify our approach in the context of several application examples from different domains in order to demonstrate its generality within the class of comparative visualization problems for spatial data ensembles.
Perceived Average Orientation Reflects Effective Gist of the Surface.
Cha, Oakyoon; Chong, Sang Chul
2018-03-01
The human ability to represent ensemble visual information, such as average orientation and size, has been suggested as the foundation of gist perception. To effectively summarize different groups of objects into the gist of a scene, observers should form ensembles separately for different groups, even when objects have similar visual features across groups. We hypothesized that the visual system utilizes perceptual groups characterized by spatial configuration and represents separate ensembles for different groups. Therefore, participants could not integrate ensembles of different perceptual groups on a task basis. We asked participants to determine the average orientation of visual elements comprising a surface with a contour situated inside. Although participants were asked to estimate the average orientation of all the elements, they ignored orientation signals embedded in the contour. This constraint may help the visual system to keep the visual features of occluding objects separate from those of the occluded objects.
Efficient in-situ visualization of unsteady flows in climate simulation
NASA Astrophysics Data System (ADS)
Vetter, Michael; Olbrich, Stephan
2017-04-01
The simulation of climate data tends to produce very large data sets, which hardly can be processed in classical post-processing visualization applications. Typically, the visualization pipeline consisting of the processes data generation, visualization mapping and rendering is distributed into two parts over the network or separated via file transfer. Within most traditional post-processing scenarios the simulation is done on a supercomputer whereas the data analysis and visualization is done on a graphics workstation. That way temporary data sets with huge volume have to be transferred over the network, which leads to bandwidth bottlenecks and volume limitations. The solution to this issue is the avoidance of temporary storage, or at least significant reduction of data complexity. Within the Climate Visualization Lab - as part of the Cluster of Excellence "Integrated Climate System Analysis and Prediction" (CliSAP) at the University of Hamburg, in cooperation with the German Climate Computing Center (DKRZ) - we develop and integrate an in-situ approach. Our software framework DSVR is based on the separation of the process chain between the mapping and the rendering processes. It couples the mapping process directly to the simulation by calling methods of a parallelized data extraction library, which create a time-based sequence of geometric 3D scenes. This sequence is stored on a special streaming server with an interactive post-filtering option and then played-out asynchronously in a separate 3D viewer application. Since the rendering is part of this viewer application, the scenes can be navigated interactively. In contrast to other in-situ approaches where 2D images are created as part of the simulation or synchronous co-visualization takes place, our method supports interaction in 3D space and in time, as well as fixed frame rates. To integrate in-situ processing based on our DSVR framework and methods in the ICON climate model, we are continuously evolving the data structures and mapping algorithms of the framework to support the ICON model's native grid structures, since DSVR originally was designed for rectilinear grids only. We now have implemented a new output module to ICON to take advantage of the DSVR visualization. The visualization can be configured as most output modules by using a specific namelist and is exemplarily integrated within the non-hydrostatic atmospheric model time loop. With the integration of a DSVR based in-situ pathline extraction within ICON, a further milestone is reached. The pathline algorithm as well as the grid data structures have been optimized for the domain decomposition used for the parallelization of ICON based on MPI and OpenMP. The software implementation and evaluation is done on the supercomputers at DKRZ. In principle, the data complexity is reduced from O(n3) to O(m), where n is the grid resolution and m the number of supporting point of all pathlines. The stability and scalability evaluation is done using Atmospheric Model Intercomparison Project (AMIP) runs. We will give a short introduction in our software framework, as well as a short overview on the implementation and usage of DSVR within ICON. Furthermore, we will present visualization and evaluation results of sample applications.
40 CFR 63.172 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Enclosed combustion devices shall be designed and operated to reduce the organic hazardous air pollutant... non-diverting position with a car-seal or a lock-and-key type configuration. A visual inspection of...
40 CFR 63.172 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Enclosed combustion devices shall be designed and operated to reduce the organic hazardous air pollutant... non-diverting position with a car-seal or a lock-and-key type configuration. A visual inspection of...
Superconductive neuristor R-junction
NASA Technical Reports Server (NTRS)
Reible, S. A.
1976-01-01
Device incorporating specially-configured pure metal transition region can be developed to simulate a nerve cell. Combination of such cells may be formed to simulate an eye or brain and can be used in recognizing characters and other visual images.
The Role of Search Speed in the Contextual Cueing of Children's Attention.
Darby, Kevin; Burling, Joseph; Yoshida, Hanako
2014-01-01
The contextual cueing effect is a robust phenomenon in which repeated exposure to the same arrangement of random elements guides attention to relevant information by constraining search. The effect is measured using an object search task in which a target (e.g., the letter T) is located within repeated or nonrepeated visual contexts (e.g., configurations of the letter L). Decreasing response times for the repeated configurations indicates that contextual information has facilitated search. Although the effect is robust among adult participants, recent attempts to document the effect in children have yielded mixed results. We examined the effect of search speed on contextual cueing with school-aged children, comparing three types of stimuli that promote different search times in order to observe how speed modulates this effect. Reliable effects of search time were found, suggesting that visual search speed uniquely constrains the role of attention toward contextually cued information.
Image and information management system
NASA Technical Reports Server (NTRS)
Robertson, Tina L. (Inventor); Raney, Michael C. (Inventor); Dougherty, Dennis M. (Inventor); Kent, Peter C. (Inventor); Brucker, Russell X. (Inventor); Lampert, Daryl A. (Inventor)
2009-01-01
A system and methods through which pictorial views of an object's configuration, arranged in a hierarchical fashion, are navigated by a person to establish a visual context within the configuration. The visual context is automatically translated by the system into a set of search parameters driving retrieval of structured data and content (images, documents, multimedia, etc.) associated with the specific context. The system places ''hot spots'', or actionable regions, on various portions of the pictorials representing the object. When a user interacts with an actionable region, a more detailed pictorial from the hierarchy is presented representing that portion of the object, along with real-time feedback in the form of a popup pane containing information about that region, and counts-by-type reflecting the number of items that are available within the system associated with the specific context and search filters established at that point in time.
Image and information management system
NASA Technical Reports Server (NTRS)
Robertson, Tina L. (Inventor); Kent, Peter C. (Inventor); Raney, Michael C. (Inventor); Dougherty, Dennis M. (Inventor); Brucker, Russell X. (Inventor); Lampert, Daryl A. (Inventor)
2007-01-01
A system and methods through which pictorial views of an object's configuration, arranged in a hierarchical fashion, are navigated by a person to establish a visual context within the configuration. The visual context is automatically translated by the system into a set of search parameters driving retrieval of structured data and content (images, documents, multimedia, etc.) associated with the specific context. The system places hot spots, or actionable regions, on various portions of the pictorials representing the object. When a user interacts with an actionable region, a more detailed pictorial from the hierarchy is presented representing that portion of the object, along with real-time feedback in the form of a popup pane containing information about that region, and counts-by-type reflecting the number of items that are available within the system associated with the specific context and search filters established at that point in time.
The Role of Search Speed in the Contextual Cueing of Children’s Attention
Darby, Kevin; Burling, Joseph; Yoshida, Hanako
2013-01-01
The contextual cueing effect is a robust phenomenon in which repeated exposure to the same arrangement of random elements guides attention to relevant information by constraining search. The effect is measured using an object search task in which a target (e.g., the letter T) is located within repeated or nonrepeated visual contexts (e.g., configurations of the letter L). Decreasing response times for the repeated configurations indicates that contextual information has facilitated search. Although the effect is robust among adult participants, recent attempts to document the effect in children have yielded mixed results. We examined the effect of search speed on contextual cueing with school-aged children, comparing three types of stimuli that promote different search times in order to observe how speed modulates this effect. Reliable effects of search time were found, suggesting that visual search speed uniquely constrains the role of attention toward contextually cued information. PMID:24505167
NASA Astrophysics Data System (ADS)
Léger, Laure; Chevalier, Aline
2017-07-01
Searching for information on the internet has become a daily activity. It is considered to be a complex cognitive activity that involves visual attention. Many studies have demonstrated that users' information search are affected both by the spatial configuration of words and the elements displayed on the screen: elements that are used to structure web pages. One of these elements, the web panel, contains information. Web panel is a rectangular area with a colored background that was used to highlighting content presented in this specific rectangular area. Our general hypothesis was that the presence of a panel on a web page would affect the structure of a word display, as a result, information search accuracy. We carried out an experiment in which we manipulated the presence vs. the absence of a panel, as well as its orientation on the screen (vertical vs. horizontal). Twenty participants were asked to answer questions while their eye movements were recorded. Results showed that the presence of a panel resulted in reduced accuracy and shorter response times. Panel orientation affected scanpaths, especially when they were orientated vertically. We discuss these findings and suggest ways in which this research could be developed further in future.
NASA Technical Reports Server (NTRS)
Dickson, J.; Drury, H.; Van Essen, D. C.
2001-01-01
Surface reconstructions of the cerebral cortex are increasingly widely used in the analysis and visualization of cortical structure, function and connectivity. From a neuroinformatics perspective, dealing with surface-related data poses a number of challenges. These include the multiplicity of configurations in which surfaces are routinely viewed (e.g. inflated maps, spheres and flat maps), plus the diversity of experimental data that can be represented on any given surface. To address these challenges, we have developed a surface management system (SuMS) that allows automated storage and retrieval of complex surface-related datasets. SuMS provides a systematic framework for the classification, storage and retrieval of many types of surface-related data and associated volume data. Within this classification framework, it serves as a version-control system capable of handling large numbers of surface and volume datasets. With built-in database management system support, SuMS provides rapid search and retrieval capabilities across all the datasets, while also incorporating multiple security levels to regulate access. SuMS is implemented in Java and can be accessed via a Web interface (WebSuMS) or using downloaded client software. Thus, SuMS is well positioned to act as a multiplatform, multi-user 'surface request broker' for the neuroscience community.
A pervasive visual-haptic framework for virtual delivery training.
Abate, Andrea F; Acampora, Giovanni; Loia, Vincenzo; Ricciardi, Stefano; Vasilakos, Athanasios V
2010-03-01
Thanks to the advances of voltage regulator (VR) technologies and haptic systems, virtual simulators are increasingly becoming a viable alternative to physical simulators in medicine and surgery, though many challenges still remain. In this study, a pervasive visual-haptic framework aimed to the training of obstetricians and midwives to vaginal delivery is described. The haptic feedback is provided by means of two hand-based haptic devices able to reproduce force-feedbacks on fingers and arms, thus enabling a much more realistic manipulation respect to stylus-based solutions. The interactive simulation is not solely driven by an approximated model of complex forces and physical constraints but, instead, is approached by a formal modeling of the whole labor and of the assistance/intervention procedures performed by means of a timed automata network and applied to a parametrical 3-D model of the anatomy, able to mimic a wide range of configurations. This novel methodology is able to represent not only the sequence of the main events associated to either a spontaneous or to an operative childbirth process, but also to help in validating the manual intervention as the actions performed by the user during the simulation are evaluated according to established medical guidelines. A discussion on the first results as well as on the challenges still unaddressed is included.
Visual Short-Term Memory Capacity for Simple and Complex Objects
ERIC Educational Resources Information Center
Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto
2010-01-01
Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not…
A Geometry Based Infra-structure for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
1997-01-01
The computational steps traditionally taken for most engineering analysis (CFD, structural analysis, and etc.) are: Surface Generation - usually by employing a CAD system; Grid Generation - preparing the volume for the simulation; Flow Solver - producing the results at the specified operational point; and Post-processing Visualization - interactively attempting to understand the results For structural analysis, integrated systems can be obtained from a number of commercial vendors. For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. Specifically the problems with this procedure are: (1) File based. Information flows from one step to the next via data files with formats specified for that procedure. (2) 'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in tens of minutes (even with a complex configuration) using unstructured techniques. (3) One-Way communication. All information travels on from one phase to the next. Until this process can be automated, more complex problems such as multi-disciplinary analysis or using the above procedure for design becomes prohibitive.
Temporal and peripheral extraction of contextual cues from scenes during visual search.
Koehler, Kathryn; Eckstein, Miguel P
2017-02-01
Scene context is known to facilitate object recognition and guide visual search, but little work has focused on isolating image-based cues and evaluating their contributions to eye movement guidance and search performance. Here, we explore three types of contextual cues (a co-occurring object, the configuration of other objects, and the superordinate category of background elements) and assess their joint contributions to search performance in the framework of cue-combination and the temporal unfolding of their extraction. We also assess whether observers' ability to extract each contextual cue in the visual periphery is a bottleneck that determines the utilization and contribution of each cue to search guidance and decision accuracy. We find that during the first four fixations of a visual search task observers first utilize the configuration of objects for coarse eye movement guidance and later use co-occurring object information for finer guidance. In the absence of contextual cues, observers were suboptimally biased to report the target object as being absent. The presence of the co-occurring object was the only contextual cue that had a significant effect in reducing decision bias. The early influence of object-based cues on eye movements is corroborated by a clear demonstration of observers' ability to extract object cues up to 16° into the visual periphery. The joint contributions of the cues to decision search accuracy approximates that expected from the combination of statistically independent cues and optimal cue combination. Finally, the lack of utilization and contribution of the background-based contextual cue to search guidance cannot be explained by the availability of the contextual cue in the visual periphery; instead it is related to background cues providing the least inherent information about the precise location of the target in the scene.
Effects of combining vertical and horizontal information into a primary flight display
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Nataupsky, Mark; Steinmetz, George G.
1987-01-01
A ground-based aircraft simulation study was conducted to determine the effects of combining vertical and horizontal flight information into a single display. Two display configurations were used in this study. The first configuration consisted of a Primary Flight Display (PFD) format and a Horizontal Situation Display (HSD) with the PFD displayed conventionally above the HSD. For the second display configuration, the HSD format was combined with the PFD format. Four subjects participated in this study. Data were collected on performance parameters, pilot-control inputs, auditory evoked response parameters (AEP), oculometer measurements (eye-scan), and heart rate. Subjective pilot opinion was gathered through questionnaire data and scorings for both the Subjective Workload Assessment Technique (SWAT) and the NASA Task Load Index (NASA-TLX). The results of this study showed that, from a performance and subjective standpoint, the combined configuration was better than the separate configuration. Additionally, both the eye-transition and eye-dwell times for the separate HSD were notably higher than expected, with a 46% increase in available visual time when going from double to single display configuration.
Wilde, M C; Boake, C; Sherer, M
2000-01-01
Final broken configuration errors on the Wechsler Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 1981) Block Design subtest were examined in 50 moderate and severe nonpenetrating traumatically brain injured adults. Patients were divided into left (n = 15) and right hemisphere (n = 19) groups based on a history of unilateral craniotomy for treatment of an intracranial lesion and were compared to a group with diffuse or negative brain CT scan findings and no history of neurosurgery (n = 16). The percentage of final broken configuration errors was related to injury severity, Benton Visual Form Discrimination Test (VFD; Benton, Hamsher, Varney, & Spreen, 1983) total score and the number of VFD rotation and peripheral errors. The percentage of final broken configuration errors was higher in the patients with right craniotomies than in the left or no craniotomy groups, which did not differ. Broken configuration errors did not occur more frequently on designs without an embedded grid pattern. Right craniotomy patients did not show a greater percentage of broken configuration errors on nongrid designs as compared to grid designs.
Examining Practice in Secondary Visual Arts Education
ERIC Educational Resources Information Center
Mitchell, Donna Mathewson
2015-01-01
Teaching in secondary visual arts classrooms is complex and challenging work. While it is implicated in much research, the complexity of the lived experience of secondary visual arts teaching has rarely been the subject of sustained and synthesized research. In this paper, the potential of practice as a concept to examine and represent secondary…
Metabolic Mapping of the Brain's Response to Visual Stimulation: Studies in Humans.
ERIC Educational Resources Information Center
Phelps, Michael E.; Kuhl, David E.
1981-01-01
Studies demonstrate increasing glucose metabolic rates in human primary (PVC) and association (AVC) visual cortex as complexity of visual scenes increase. AVC increased more rapidly with scene complexity than PVC and increased local metabolic activities above control subject with eyes closed; indicates wide range and metabolic reserve of visual…
The Effects of Pictorial Complexity and Cognitive Style on Visual Recall Memory.
ERIC Educational Resources Information Center
Jesky, Romaine R.; Berry, Louis H.
The effect of the interaction between cognitive style differences (field dependence/field independence) and various degrees of visual complexity on pictorial recall memory was explored using three sets of visuals in three different formats--line drawing, black and white, and color. The subjects were 86 undergraduate students enrolled in two core…
Camouflage and visual perception
Troscianko, Tom; Benton, Christopher P.; Lovell, P. George; Tolhurst, David J.; Pizlo, Zygmunt
2008-01-01
How does an animal conceal itself from visual detection by other animals? This review paper seeks to identify general principles that may apply in this broad area. It considers mechanisms of visual encoding, of grouping and object encoding, and of search. In most cases, the evidence base comes from studies of humans or species whose vision approximates to that of humans. The effort is hampered by a relatively sparse literature on visual function in natural environments and with complex foraging tasks. However, some general constraints emerge as being potentially powerful principles in understanding concealment—a ‘constraint’ here means a set of simplifying assumptions. Strategies that disrupt the unambiguous encoding of discontinuities of intensity (edges), and of other key visual attributes, such as motion, are key here. Similar strategies may also defeat grouping and object-encoding mechanisms. Finally, the paper considers how we may understand the processes of search for complex targets in complex scenes. The aim is to provide a number of pointers towards issues, which may be of assistance in understanding camouflage and concealment, particularly with reference to how visual systems can detect the shape of complex, concealed objects. PMID:18990671
Reduction of Complexity: An Aspect of Network Visualization
2006-12-01
research is to identify strategies for the visualization of network information. Distinction can be made between visual communication and visual...exploration (MacEachern 1994). Visual communication deals with how to visualize results of different kinds of analysis, i.e., visualization in the case
Hierarchical acquisition of visual specificity in spatial contextual cueing.
Lie, Kin-Pou
2015-01-01
Spatial contextual cueing refers to visual search performance's being improved when invariant associations between target locations and distractor spatial configurations are learned incidentally. Using the instance theory of automatization and the reverse hierarchy theory of visual perceptual learning, this study explores the acquisition of visual specificity in spatial contextual cueing. Two experiments in which detailed visual features were irrelevant for distinguishing between spatial contexts found that spatial contextual cueing was visually generic in difficult trials when the trials were not preceded by easy trials (Experiment 1) but that spatial contextual cueing progressed to visual specificity when difficult trials were preceded by easy trials (Experiment 2). These findings support reverse hierarchy theory, which predicts that even when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing can progress to visual specificity if the stimuli remain constant, the task is difficult, and difficult trials are preceded by easy trials. However, these findings are inconsistent with instance theory, which predicts that when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing will not progress to visual specificity. This study concludes that the acquisition of visual specificity in spatial contextual cueing is more plausibly hierarchical, rather than instance-based.
Visual Detection Under Uncertainty Operates Via an Early Static, Not Late Dynamic, Non-Linearity
Neri, Peter
2010-01-01
Signals in the environment are rarely specified exactly: our visual system may know what to look for (e.g., a specific face), but not its exact configuration (e.g., where in the room, or in what orientation). Uncertainty, and the ability to deal with it, is a fundamental aspect of visual processing. The MAX model is the current gold standard for describing how human vision handles uncertainty: of all possible configurations for the signal, the observer chooses the one corresponding to the template associated with the largest response. We propose an alternative model in which the MAX operation, which is a dynamic non-linearity (depends on multiple inputs from several stimulus locations) and happens after the input stimulus has been matched to the possible templates, is replaced by an early static non-linearity (depends only on one input corresponding to one stimulus location) which is applied before template matching. By exploiting an integrated set of analytical and experimental tools, we show that this model is able to account for a number of empirical observations otherwise unaccounted for by the MAX model, and is more robust with respect to the realistic limitations imposed by the available neural hardware. We then discuss how these results, currently restricted to a simple visual detection task, may extend to a wider range of problems in sensory processing. PMID:21212835
Okita, Manabu; Yukihiro, Takashi; Miyamoto, Kenzo; Morioka, Shu; Kaba, Hideto
2017-04-01
To explore the mechanism underlying the imitation of finger gestures, we devised a simple imitation task in which the patients were instructed to replicate finger configurations in two conditions: one in which they could see their hand (visual feedback: VF) and one in which they could not see their hand (non-visual feedback: NVF). Patients with left brain damage (LBD) or right brain damage (RBD), respectively, were categorized into two groups based on their scores on the imitation task in the NVF condition: the impaired imitation groups (I-LBD and I-RBD) who failed two or more of the five patterns and the control groups (C-LBD and C-RBD) who made one or no errors. We also measured the movement-production times for imitation. The I-RBD group performed significantly worse than the C-RBD group even in the VF condition. In contrast, the I-LBD group was selectively impaired in the NVF condition. The I-LBD group performed the imitations at a significantly slower rate than the C-LBD group in both the VF and NVF conditions. These results suggest that impaired imitation in patients with LBD is partly due to an abnormal integration of visual and somatosensory information based on the task specificity of the NVF condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2007-01-01
The case of a 23‐year‐old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug‐induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non‐verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced. PMID:17369595
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2009-01-01
The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced PMID:21734915
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.
High-Performance 3D Articulated Robot Display
NASA Technical Reports Server (NTRS)
Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Kurien, James A.; Abramyan, Lucy
2011-01-01
In the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configuration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as wheeled, tracked, or legged mobility over surfaces. Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions. The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control surfaces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation. The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle over or on the terrain correctly. For long traverses over terrain, the visualization can stream in terrain piecewise in order to maintain the current area of interest for the operator without incurring unreasonable resource constraints on the computing platform. The visualization software is designed to run on laptops that can operate in field-testing environments without Internet access, which is a frequently encountered situation when testing in remote locations that simulate planetary environments such as Mars and other planetary bodies.
Norris, Rebecca L; Bailey, Rachel L; Bolls, Paul D; Wise, Kevin R
2012-01-01
This experiment explored how the emotional tone and visual complexity of direct-to-consumer (DTC) drug advertisements affect the encoding and storage of specific risk and benefit statements about each of the drugs in question. Results are interpreted under the limited capacity model of motivated mediated message processing framework. Findings suggest that DTC drug ads should be pleasantly toned and high in visual complexity in order to maximize encoding and storage of risk and benefit information.
Psycho acoustical Measures in Individuals with Congenital Visual Impairment.
Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh
2017-12-01
In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.
Water Tunnel Flow Visualization Study Through Poststall of 12 Novel Planform Shapes
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; Neuhart, Dan H.
1996-01-01
To determine the flow field characteristics of 12 planform geometries, a flow visualization investigation was conducted in the Langley 16- by 24-Inch Water Tunnel. Concepts studied included flat plate representations of diamond wings, twin bodies, double wings, cutout wing configurations, and serrated forebodies. The off-surface flow patterns were identified by injecting colored dyes from the model surface into the free-stream flow. These dyes generally were injected so that the localized vortical flow patterns were visualized. Photographs were obtained for angles of attack ranging from 10' to 50', and all investigations were conducted at a test section speed of 0.25 ft per sec. Results from the investigation indicate that the formation of strong vortices on highly swept forebodies can improve poststall lift characteristics; however, the asymmetric bursting of these vortices could produce substantial control problems. A wing cutout was found to significantly alter the position of the forebody vortex on the wing by shifting the vortex inboard. Serrated forebodies were found to effectively generate multiple vortices over the configuration. Vortices from 65' swept forebody serrations tended to roll together, while vortices from 40' swept serrations were more effective in generating additional lift caused by their more independent nature.
NASA Astrophysics Data System (ADS)
Dong, Jing; Gora, Michalina J.; Reddy, Rohith; Trasischker, Wolfgang; Poupart, Oriane; Lu, Weina; Carruth, Robert W.; Grant, Catriona N.; Soomro, Amna R.; Tiernan, Aubrey R.; Rosenberg, Mireille; Nishioka, Norman S.; Tearney, Guillermo J.
2016-03-01
While endoscopy is the most commonly used modality for diagnosing upper GI tract disease, this procedure usually requires patient sedation that increases cost and mandates its operation in specialized settings. In addition, endoscopy only visualizes tissue superfically at the macroscopic scale, which is problematic for many diseases that manifest below the surface at a microscopic scale. Our lab has previously developed technology termed tethered capsule OCT endomicroscopy (TCE) to overcome these diagnostic limitations of endoscopy. The TCE device is a swallowable capsule that contains optomechanical components that circumferentially scan the OCT beam inside the body as the pill traverses the organ via peristalsis. While we have successfully imaged ~100 patients with the TCE device, the optics of our current device have many elements and are complex, comprising a glass ferrule, optical fiber, glass spacer, GRIN lens and prism. As we scale up manufacturing of this device for clinical translation, we must decrease the cost and improve the manufacturability of the capsule's optical configuration. In this abstract, we report on the design and development of simplificed TCE optics that replace the GRIN lens-based configuration with an angle-polished ball lens design. The new optics include a single mode optical fiber, a glass spacer and an angle polished ball lens, that are all fusion spliced together. The ball lens capsule has resolutions that are comparable with those of our previous GRIN lens configuration (30µm (lateral) × 7 µm (axial)). Results in human subjects show that OCT-based TCE using the ball lens not only provides rapid, high quality microstructural images of upper GI tract, but also makes it possible to implement this technology inexpensively and on a larger scale.
Lee, Ki-Wook; Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Lim, Sang-Min; Chang, Seok Woo; Ha, Byung-Hyun; Zhu, Qiang; Kum, Kee-Yeon
2014-03-01
Micro-computed tomography (MCT) shows detailed root canal morphology that is not seen with traditional tooth clearing. However, alternative image reformatting techniques in MCT involving 2-dimensional (2D) minimum intensity projection (MinIP) and 3-dimensional (3D) volume-rendering reconstruction have not been directly compared with clearing. The aim was to compare alternative image reformatting techniques in MCT with tooth clearing on the mesiobuccal (MB) root of maxillary first molars. Eighteen maxillary first molar MB roots were scanned, and 2D MinIP and 3D volume-rendered images were reconstructed. Subsequently, the same MB roots were processed by traditional tooth clearing. Images from 2D, 3D, 2D + 3D, and clearing techniques were assessed by 4 endodontists to classify canal configuration and to identify fine anatomic structures such as accessory canals, intercanal communications, and loops. All image reformatting techniques in MCT showed detailed configurations and numerous fine structures, such that none were classified as simple type I or II canals; several were classified as types III and IV according to Weine classification or types IV, V, and VI according to Vertucci; and most were nonclassifiable because of their complexity. The clearing images showed less detail, few fine structures, and numerous type I canals. Classification of canal configuration was in 100% intraobserver agreement for all 18 roots visualized by any of the image reformatting techniques in MCT but for only 4 roots (22.2%) classified according to Weine and 6 (33.3%) classified according to Vertucci, when using the clearing technique. The combination of 2D MinIP and 3D volume-rendered images showed the most detailed canal morphology and fine anatomic structures. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes
NASA Technical Reports Server (NTRS)
Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.
2014-01-01
In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.
Memory for Complex Visual Objects but Not for Allocentric Locations during the First Year of Life
ERIC Educational Resources Information Center
Dupierrix, Eve; Hillairet de Boisferon, Anne; Barbeau, Emmanuel; Pascalis, Olivier
2015-01-01
Although human infants demonstrate early competence to retain visual information, memory capacities during infancy remain largely undocumented. In three experiments, we used a Visual Paired Comparison (VPC) task to examine abilities to encode identity (Experiment 1) and spatial properties (Experiments 2a and 2b) of unfamiliar complex visual…
Visualization of Vgi Data Through the New NASA Web World Wind Virtual Globe
NASA Astrophysics Data System (ADS)
Brovelli, M. A.; Kilsedar, C. E.; Zamboni, G.
2016-06-01
GeoWeb 2.0, laying the foundations of Volunteered Geographic Information (VGI) systems, has led to platforms where users can contribute to the geographic knowledge that is open to access. Moreover, as a result of the advancements in 3D visualization, virtual globes able to visualize geographic data even on browsers emerged. However the integration of VGI systems and virtual globes has not been fully realized. The study presented aims to visualize volunteered data in 3D, considering also the ease of use aspects for general public, using Free and Open Source Software (FOSS). The new Application Programming Interface (API) of NASA, Web World Wind, written in JavaScript and based on Web Graphics Library (WebGL) is cross-platform and cross-browser, so that the virtual globe created using this API can be accessible through any WebGL supported browser on different operating systems and devices, as a result not requiring any installation or configuration on the client-side, making the collected data more usable to users, which is not the case with the World Wind for Java as installation and configuration of the Java Virtual Machine (JVM) is required. Furthermore, the data collected through various VGI platforms might be in different formats, stored in a traditional relational database or in a NoSQL database. The project developed aims to visualize and query data collected through Open Data Kit (ODK) platform and a cross-platform application, where data is stored in a relational PostgreSQL and NoSQL CouchDB databases respectively.
Galeazzi, Juan M.; Navajas, Joaquín; Mender, Bedeho M. W.; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M.
2016-01-01
ABSTRACT Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant’s gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views. PMID:27253452
Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M
2016-01-01
Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.
BioVEC: a program for biomolecule visualization with ellipsoidal coarse-graining.
Abrahamsson, Erik; Plotkin, Steven S
2009-09-01
Biomolecule Visualization with Ellipsoidal Coarse-graining (BioVEC) is a tool for visualizing molecular dynamics simulation data while allowing coarse-grained residues to be rendered as ellipsoids. BioVEC reads in configuration files, which may be output from molecular dynamics simulations that include orientation output in either quaternion or ANISOU format, and can render frames of the trajectory in several common image formats for subsequent concatenation into a movie file. The BioVEC program is written in C++, uses the OpenGL API for rendering, and is open source. It is lightweight, allows for user-defined settings for and texture, and runs on either Windows or Linux platforms.
Modeling global scene factors in attention
NASA Astrophysics Data System (ADS)
Torralba, Antonio
2003-07-01
Models of visual attention have focused predominantly on bottom-up approaches that ignored structured contextual and scene information. I propose a model of contextual cueing for attention guidance based on the global scene configuration. It is shown that the statistics of low-level features across the whole image can be used to prime the presence or absence of objects in the scene and to predict their location, scale, and appearance before exploring the image. In this scheme, visual context information can become available early in the visual processing chain, which allows modulation of the saliency of image regions and provides an efficient shortcut for object detection and recognition. 2003 Optical Society of America
The Orbital Maneuvering Vehicle Training Facility visual system concept
NASA Technical Reports Server (NTRS)
Williams, Keith
1989-01-01
The purpose of the Orbital Maneuvering Vehicle (OMV) Training Facility (OTF) is to provide effective training for OMV pilots. A critical part of the training environment is the Visual System, which will simulate the video scenes produced by the OMV Closed-Circuit Television (CCTV) system. The simulation will include camera models, dynamic target models, moving appendages, and scene degradation due to the compression/decompression of video signal. Video system malfunctions will also be provided to ensure that the pilot is ready to meet all challenges the real-world might provide. One possible visual system configuration for the training facility that will meet existing requirements is described.
Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.
Iida, Shinji; Nakamura, Haruki; Higo, Junichi
2016-06-15
We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Radhakrishnan, A.; Balaji, V.; Schweitzer, R.; Nikonov, S.; O'Brien, K.; Vahlenkamp, H.; Burger, E. F.
2016-12-01
There are distinct phases in the development cycle of an Earth system model. During the model development phase, scientists make changes to code and parameters and require rapid access to results for evaluation. During the production phase, scientists may make an ensemble of runs with different settings, and produce large quantities of output, that must be further analyzed and quality controlled for scientific papers and submission to international projects such as the Climate Model Intercomparison Project (CMIP). During this phase, provenance is a key concern:being able to track back from outputs to inputs. We will discuss one of the paths taken at GFDL in delivering tools across this lifecycle, offering on-demand analysis of data by integrating the use of GFDL's in-house FRE-Curator, Unidata's THREDDS and NOAA PMEL's Live Access Servers (LAS).Experience over this lifecycle suggests that a major difficulty in developing analysis capabilities is only partially the scientific content, but often devoted to answering the questions "where is the data?" and "how do I get to it?". "FRE-Curator" is the name of a database-centric paradigm used at NOAA GFDL to ingest information about the model runs into an RDBMS (Curator database). The components of FRE-Curator are integrated into Flexible Runtime Environment workflow and can be invoked during climate model simulation. The front end to FRE-Curator, known as the Model Development Database Interface (MDBI) provides an in-house web-based access to GFDL experiments: metadata, analysis output and more. In order to provide on-demand visualization, MDBI uses Live Access Servers which is a highly configurable web server designed to provide flexible access to geo-referenced scientific data, that makes use of OPeNDAP. Model output saved in GFDL's tape archive, the size of the database and experiments, continuous model development initiatives with more dynamic configurations add complexity and challenges in providing an on-demand visualization experience to our GFDL users.
[Effect of object consistency in a spatial contextual cueing paradigm].
Takeda, Yuji
2008-04-01
Previous studies demonstrated that attention can be quickly guided to a target location in a visual search task when the spatial configurations of search items and/or the object identities were repeated in the previous trials. This phenomenon is termed contextual cueing. Recently, it was reported that spatial configuration learning and object identity learning occurred independently, when novel contours were used as search items. The present study examined whether this learning occurred independently even when the search items were meaningful. The results showed that the contextual cueing effect was observed even if the relationships between the spatial locations and object identities were jumbled (Experiment 1). However, it disappeared when the search items were changed into geometric patterns (Experiment 2). These results suggest that the spatial configuration can be learned independent of the object identities; however, the use of the learned configuration is restricted by the learning situations.
Neural correlates of contextual cueing are modulated by explicit learning.
Westerberg, Carmen E; Miller, Brennan B; Reber, Paul J; Cohen, Neal J; Paller, Ken A
2011-10-01
Contextual cueing refers to the facilitated ability to locate a particular visual element in a scene due to prior exposure to the same scene. This facilitation is thought to reflect implicit learning, as it typically occurs without the observer's knowledge that scenes repeat. Unlike most other implicit learning effects, contextual cueing can be impaired following damage to the medial temporal lobe. Here we investigated neural correlates of contextual cueing and explicit scene memory in two participant groups. Only one group was explicitly instructed about scene repetition. Participants viewed a sequence of complex scenes that depicted a landscape with five abstract geometric objects. Superimposed on each object was a letter T or L rotated left or right by 90°. Participants responded according to the target letter (T) orientation. Responses were highly accurate for all scenes. Response speeds were faster for repeated versus novel scenes. The magnitude of this contextual cueing did not differ between the two groups. Also, in both groups repeated scenes yielded reduced hemodynamic activation compared with novel scenes in several regions involved in visual perception and attention, and reductions in some of these areas were correlated with response-time facilitation. In the group given instructions about scene repetition, recognition memory for scenes was superior and was accompanied by medial temporal and more anterior activation. Thus, strategic factors can promote explicit memorization of visual scene information, which appears to engage additional neural processing beyond what is required for implicit learning of object configurations and target locations in a scene. Copyright © 2011 Elsevier Ltd. All rights reserved.
MBARI CANON Experiment Visualization and Analysis
NASA Astrophysics Data System (ADS)
Fatland, R.; Oscar, N.; Ryan, J. P.; Bellingham, J. G.
2013-12-01
We describe the task of understanding a marine drift experiment conducted by MBARI in Fall 2012 ('CANON'). Datasets were aggregated from a drifting ADCP, from the MBARI Environmental Sample Processor, from Long Range Autonomous Underwater Vehicles (LRAUVs), from other in situ sensors, from NASA and NOAA remote sensing platforms, from moorings, from shipboard CTD casts and from post-experiment metagenomic analysis. We seek to combine existing approaches to data synthesis -- visual inspection, cross correlation and co.-- with three new ideas. This approach has the purpose of differentiating biological signals into three causal categories: Microcurrent advection, physical factors and microbe metabolism. Respective examples are aberrance from Lagrangian frame drift due to windage, changes in solar flux over several days, and microbial population responses to shifts in nitrate concentration. The three ideas we implemented are as follows: First, we advect LRAUV data to look for patterns in time series data for conserved quanitities such as salinity. We investigate whether such patterns can be used to support or undermine the premise of Lagrangian motion of the experiment ensemble. Second we built a set of configurable filters that enable us to visually isolate segments of data: By type, value, time, anomaly and location. Third we associated data hypotheses with a Bayesian inferrence engine for the purpose of model validation, again across sections taken from within the complete data complex. The end result is towards a free-form exploration of experimental data with low latency: from question to view, from hypothesis to test (albeit with considerable preparatory effort.) Preliminary results show the three causal categories shifting in relative influence.
Neural correlates of contextual cueing are modulated by explicit learning
Westerberg, Carmen E.; Miller, Brennan B.; Reber, Paul J.; Cohen, Neal J.; Paller, Ken A.
2011-01-01
Contextual cueing refers to the facilitated ability to locate a particular visual element in a scene due to prior exposure to the same scene. This facilitation is thought to reflect implicit learning, as it typically occurs without the observer’s knowledge that scenes repeat. Unlike most other implicit learning effects, contextual cueing can be impaired following damage to the medial temporal lobe. Here we investigated neural correlates of contextual cueing and explicit scene memory in two participant groups. Only one group was explicitly instructed about scene repetition. Participants viewed a sequence of complex scenes that depicted a landscape with five abstract geometric objects. Superimposed on each object was a letter T or L rotated left or right by 90°. Participants responded according to the target letter (T) orientation. Responses were highly accurate for all scenes. Response speeds were faster for repeated versus novel scenes. The magnitude of this contextual cueing did not differ between the two groups. Also, in both groups repeated scenes yielded reduced hemodynamic activation compared with novel scenes in several regions involved in visual perception and attention, and reductions in some of these areas were correlated with response-time facilitation. In the group given instructions about scene repetition, recognition memory for scenes was superior and was accompanied by medial temporal and more anterior activation. Thus, strategic factors can promote explicit memorization of visual scene information, which appears to engage additional neural processing beyond what is required for implicit learning of object configurations and target locations in a scene. PMID:21889947
Nowke, Christian; Diaz-Pier, Sandra; Weyers, Benjamin; Hentschel, Bernd; Morrison, Abigail; Kuhlen, Torsten W.; Peyser, Alexander
2018-01-01
Simulation models in many scientific fields can have non-unique solutions or unique solutions which can be difficult to find. Moreover, in evolving systems, unique final state solutions can be reached by multiple different trajectories. Neuroscience is no exception. Often, neural network models are subject to parameter fitting to obtain desirable output comparable to experimental data. Parameter fitting without sufficient constraints and a systematic exploration of the possible solution space can lead to conclusions valid only around local minima or around non-minima. To address this issue, we have developed an interactive tool for visualizing and steering parameters in neural network simulation models. In this work, we focus particularly on connectivity generation, since finding suitable connectivity configurations for neural network models constitutes a complex parameter search scenario. The development of the tool has been guided by several use cases—the tool allows researchers to steer the parameters of the connectivity generation during the simulation, thus quickly growing networks composed of multiple populations with a targeted mean activity. The flexibility of the software allows scientists to explore other connectivity and neuron variables apart from the ones presented as use cases. With this tool, we enable an interactive exploration of parameter spaces and a better understanding of neural network models and grapple with the crucial problem of non-unique network solutions and trajectories. In addition, we observe a reduction in turn around times for the assessment of these models, due to interactive visualization while the simulation is computed. PMID:29937723
Virtual environment display for a 3D audio room simulation
NASA Astrophysics Data System (ADS)
Chapin, William L.; Foster, Scott
1992-06-01
Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.
NASA Technical Reports Server (NTRS)
Perrone, J. A.; Stone, L. S.
1998-01-01
We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to those of neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. These detectors, arranged within cortical-like maps, were designed to extract self-translation (heading) and self-rotation, as well as the scene layout (relative distances) ahead of a moving observer. We then postulated that heading from optic flow is directly encoded by individual neurons acting as heading detectors within the medial superior temporal (MST) area. Others have questioned whether individual MST neurons can perform this function because some of their receptive-field properties seem inconsistent with this role. To resolve this issue, we systematically compared MST responses with those of detectors from two different configurations of the model under matched stimulus conditions. We found that the characteristic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support self-motion estimation via a direct encoding of heading and that the template model provides an explicit set of testable hypotheses that can guide future exploration of MST and adjacent areas within the superior temporal sulcus.
NASA Astrophysics Data System (ADS)
Evangelisti, Luca; Caminati, Walther; Patterson, David; Thomas, Javix; Xu, Yunjie; West, Channing; Pate, Brooks
2017-06-01
The introduction of three wave mixing rotational spectroscopy by Patterson, Schnell, and Doyle [1,2] has expanded applications of molecular rotational spectroscopy into the field of chiral analysis. Chiral analysis of a molecule is the quantitative measurement of the relative abundances of all stereoisomers of the molecule and these include both diastereomers (with distinct molecular rotational spectra) and enantiomers (with equivalent molecular rotational spectra). This work adapts a common strategy in chiral analysis of enantiomers to molecular rotational spectroscopy. A "chiral tag" is attached to the molecule of interest by making a weakly bound complex in a pulsed jet expansion. When this tag molecule is enantiopure, it will create diastereomeric complexes with the two enantiomers of the molecule being analyzed and these can be differentiated by molecule rotational spectroscopy. Identifying the structure of this complex, with knowledge of the absolute configuration of the tag, establishes the absolute configuration of the molecule of interest. Furthermore, the diastereomer complex spectra can be used to determine the enantiomeric excess of the sample. The ability to perform chiral analysis will be illustrated by a study of solketal using propylene oxide as the tag. The possibility of using current methods of quantum chemistry to assign a specific structure to the chiral tag complex will be discussed. Finally, chiral tag rotational spectroscopy offers a "gold standard" method for determining the absolute configuration of the molecule through determination of the substitution structure of the complex. When this measurement is possible, rotational spectroscopy can deliver a quantitative three dimensional structure of the molecule with correct stereochemistry as the analysis output. [1] David Patterson, Melanie Schnell, John M. Doyle, Nature 497, 475 (2013). [2] David Patterson, John M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055
Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan
2015-01-01
Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: 'element motion' (EM) or 'group motion' (GM). In "EM," the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in "GM," both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms) in the long glide was perceived to be shorter than that within both the short glide and the 'gap-transfer' auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.
Roberts, Christopher C; Chang, Chia-En A
2016-08-25
We present the second-generation GeomBD Brownian dynamics software for determining interenzyme intermediate transfer rates and substrate association rates in biomolecular complexes. Substrate and intermediate association rates for a series of enzymes or biomolecules can be compared between the freely diffusing disorganized configuration and various colocalized or complexed arrangements for kinetic investigation of enhanced intermediate transfer. In addition, enzyme engineering techniques, such as synthetic protein conjugation, can be computationally modeled and analyzed to better understand changes in substrate association relative to native enzymes. Tools are provided to determine nonspecific ligand-receptor association residence times, and to visualize common sites of nonspecific association of substrates on receptor surfaces. To demonstrate features of the software, interenzyme intermediate substrate transfer rate constants are calculated and compared for all-atom models of DNA origami scaffold-bound bienzyme systems of glucose oxidase and horseradish peroxidase. Also, a DNA conjugated horseradish peroxidase enzyme was analyzed for its propensity to increase substrate association rates and substrate local residence times relative to the unmodified enzyme. We also demonstrate the rapid determination and visualization of common sites of nonspecific ligand-receptor association by using HIV-1 protease and an inhibitor, XK263. GeomBD2 accelerates simulations by precomputing van der Waals potential energy grids and electrostatic potential grid maps, and has a flexible and extensible support for all-atom and coarse-grained force fields. Simulation software is written in C++ and utilizes modern parallelization techniques for potential grid preparation and Brownian dynamics simulation processes. Analysis scripts, written in the Python scripting language, are provided for quantitative simulation analysis. GeomBD2 is applicable to the fields of biophysics, bioengineering, and enzymology in both predictive and explanatory roles.
NASA Astrophysics Data System (ADS)
Castagnetti, C.; Giannini, M.; Rivola, R.
2017-05-01
The research project VisualVersilia 3D aims at offering a new way to promote the territory and its heritage by matching the traditional reading of the document and the potential use of modern communication technologies for the cultural tourism. Recently, the research on the use of new technologies applied to cultural heritage have turned their attention mainly to technologies to reconstruct and narrate the complexity of the territory and its heritage, including 3D scanning, 3D printing and augmented reality. Some museums and archaeological sites already exploit the potential of digital tools to preserve and spread their heritage but interactive services involving tourists in an immersive and more modern experience are still rare. The innovation of the project consists in the development of a methodology for documenting current and past historical ages and integrating their 3D visualizations with rendering capable of returning an immersive virtual reality for a successful enhancement of the heritage. The project implements the methodology in the archaeological complex of Massaciuccoli, one of the best preserved roman site of the Versilia Area (Tuscany, Italy). The activities of the project briefly consist in developing: 1. the virtual tour of the site in its current configuration on the basis of spherical images then enhanced by texts, graphics and audio guides in order to enable both an immersive and remote tourist experience; 2. 3D reconstruction of the evidences and buildings in their current condition for documentation and conservation purposes on the basis of a complete metric survey carried out through laser scanning; 3. 3D virtual reconstructions through the main historical periods on the basis of historical investigation and the analysis of data acquired.
Coalescent: an open-source and scalable framework for exact calculations in coalescent theory
2012-01-01
Background Currently, there is no open-source, cross-platform and scalable framework for coalescent analysis in population genetics. There is no scalable GUI based user application either. Such a framework and application would not only drive the creation of more complex and realistic models but also make them truly accessible. Results As a first attempt, we built a framework and user application for the domain of exact calculations in coalescent analysis. The framework provides an API with the concepts of model, data, statistic, phylogeny, gene tree and recursion. Infinite-alleles and infinite-sites models are considered. It defines pluggable computations such as counting and listing all the ancestral configurations and genealogies and computing the exact probability of data. It can visualize a gene tree, trace and visualize the internals of the recursion algorithm for further improvement and attach dynamically a number of output processors. The user application defines jobs in a plug-in like manner so that they can be activated, deactivated, installed or uninstalled on demand. Multiple jobs can be run and their inputs edited. Job inputs are persisted across restarts and running jobs can be cancelled where applicable. Conclusions Coalescent theory plays an increasingly important role in analysing molecular population genetic data. Models involved are mathematically difficult and computationally challenging. An open-source, scalable framework that lets users immediately take advantage of the progress made by others will enable exploration of yet more difficult and realistic models. As models become more complex and mathematically less tractable, the need for an integrated computational approach is obvious. Object oriented designs, though has upfront costs, are practical now and can provide such an integrated approach. PMID:23033878
Human-machine interface issues in the use of helmet-mounted displays in short conjugate simulators
NASA Astrophysics Data System (ADS)
Melzer, James E.
2011-06-01
With the introduction of helmet-mounted displays (HMD) into modern aircraft, there is a desire on the part of pilot trainees to achieve a "look and feel" for the simulation environment similar to the real flight hardware. Given this requirement for high fidelity, it may be necessary to configure - or to perhaps re-configure - the HMD for a short conjugate viewing distance and to do so without causing eye strain or other adverse physiological effects. This paper will survey the human factors literature and provide an analysis on the visual construct issues of focus and vergence which - if not properly configured for the short conjugate simulator - could cause adverse effects, which can negatively affect training.
Probing how initial retinal configuration controls photochemical dynamics in retinal proteins
NASA Astrophysics Data System (ADS)
Wand, A.; Rozin, R.; Eliash, T.; Friedman, N.; Jung, K. H.; Sheves, M.; Ruhman, S.
2013-03-01
The effects of the initial retinal configuration and the active isomerization coordinate on the photochemistry of retinal proteins (RPs) are assessed by comparing photochemical dynamics of two stable retinal ground state configurations (all-trans,15-anti vs. 13-cis,15-syn), within two RPs: Bacteriorhodopsin (BR) and Anabaena Sensory Rhodopsin (ASR). Hyperspectral pump-probe spectroscopy shows that photochemistry starting from 13-cis retinal in both proteins is 3-10 times faster than when started in the all-trans state, suggesting that the hastening is ubiquitous to microbial RPs, regardless of their different biological functions and origin. This may also relate to the known disparity of photochemical rates between microbial RPs and visual pigments. Importance and possible underlying mechanisms are discussed as well.
An Investigation of Laser Lighting Systems to Assist Aircraft
DOT National Transportation Integrated Search
1979-01-01
A model for the visual detectability of narrow light beams was developed and used to evaluate the system performance of two laser lighting system configurations: (1) a laser VASI and (2) a crossed beam glide path indicator. Laboratory experiments con...
Wave Propagation Through Inhomogeneities With Applications to Novel Sensing Techniques
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Tokars, R.; Varga, D.; Floyd B.
2008-01-01
The paper describes phenomena observed as a result of laser pencil beam interactions with abrupt interfaces including aerodynamic shocks. Based on these phenomena, a novel flow visualization technique based on a laser scanning pencil beam is introduced. The technique reveals properties of light interaction with interfaces including aerodynamic shocks that are not seen using conventional visualization. Various configurations of scanning beam devices including those with no moving parts, as well as results of "proof-of-concept" tests, are included.
Human visual performance model for crewstation design
NASA Technical Reports Server (NTRS)
Larimer, James; Prevost, Michael; Arditi, Aries; Azueta, Steven; Bergen, James; Lubin, Jeffrey
1991-01-01
An account is given of a Visibility Modeling Tool (VMT) which furnishes a crew-station designer with the means to assess configurational tradeoffs, with a view to the impact of various options on the unambiguous access of information to the pilot. The interactive interface of the VMT allows the manipulation of cockpit geometry, ambient lighting, pilot ergonomics, and the displayed symbology. Performance data can be displayed in the form of 3D contours into the crewstation graphic model, thereby yielding an indication of the operator's visual capabilities.
Automated a complex computer aided design concept generated using macros programming
NASA Astrophysics Data System (ADS)
Rizal Ramly, Mohammad; Asrokin, Azharrudin; Abd Rahman, Safura; Zulkifly, Nurul Ain Md
2013-12-01
Changing a complex Computer Aided design profile such as car and aircraft surfaces has always been difficult and challenging. The capability of CAD software such as AutoCAD and CATIA show that a simple configuration of a CAD design can be easily modified without hassle, but it is not the case with complex design configuration. Design changes help users to test and explore various configurations of the design concept before the production of a model. The purpose of this study is to look into macros programming as parametric method of the commercial aircraft design. Macros programming is a method where the configurations of the design are done by recording a script of commands, editing the data value and adding a certain new command line to create an element of parametric design. The steps and the procedure to create a macro programming are discussed, besides looking into some difficulties during the process of creation and advantage of its usage. Generally, the advantages of macros programming as a method of parametric design are; allowing flexibility for design exploration, increasing the usability of the design solution, allowing proper contained by the model while restricting others and real time feedback changes.
Optimizing Cognitive Load for Learning from Computer-Based Science Simulations
ERIC Educational Resources Information Center
Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.
2006-01-01
How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…
Similarity, Not Complexity, Determines Visual Working Memory Performance
ERIC Educational Resources Information Center
Jackson, Margaret C.; Linden, David E. J.; Roberts, Mark V.; Kriegeskorte, Nikolaus; Haenschel, Corinna
2015-01-01
A number of studies have shown that visual working memory (WM) is poorer for complex versus simple items, traditionally accounted for by higher information load placing greater demands on encoding and storage capacity limits. Other research suggests that it may not be complexity that determines WM performance per se, but rather increased…
The functional significance of EEG microstates--Associations with modalities of thinking.
Milz, P; Faber, P L; Lehmann, D; Koenig, T; Kochi, K; Pascual-Marqui, R D
2016-01-15
The momentary, global functional state of the brain is reflected by its electric field configuration. Cluster analytical approaches consistently extracted four head-surface brain electric field configurations that optimally explain the variance of their changes across time in spontaneous EEG recordings. These four configurations are referred to as EEG microstate classes A, B, C, and D and have been associated with verbal/phonological, visual, subjective interoceptive-autonomic processing, and attention reorientation, respectively. The present study tested these associations via an intra-individual and inter-individual analysis approach. The intra-individual approach tested the effect of task-induced increased modality-specific processing on EEG microstate parameters. The inter-individual approach tested the effect of personal modality-specific parameters on EEG microstate parameters. We obtained multichannel EEG from 61 healthy, right-handed, male students during four eyes-closed conditions: object-visualization, spatial-visualization, verbalization (6 runs each), and resting (7 runs). After each run, we assessed participants' degrees of object-visual, spatial-visual, and verbal thinking using subjective reports. Before and after the recording, we assessed modality-specific cognitive abilities and styles using nine cognitive tests and two questionnaires. The EEG of all participants, conditions, and runs was clustered into four classes of EEG microstates (A, B, C, and D). RMANOVAs, ANOVAs and post-hoc paired t-tests compared microstate parameters between conditions. TANOVAs compared microstate class topographies between conditions. Differences were localized using eLORETA. Pearson correlations assessed interrelationships between personal modality-specific parameters and EEG microstate parameters during no-task resting. As hypothesized, verbal as opposed to visual conditions consistently affected the duration, occurrence, and coverage of microstate classes A and B. Contrary to associations suggested by previous reports, parameters were increased for class A during visualization, and class B during verbalization. In line with previous reports, microstate D parameters were increased during no-task resting compared to the three internal, goal-directed tasks. Topographic differences between conditions included particular sub-regions of components of the metabolic default mode network. Modality-specific personal parameters did not consistently correlate with microstate parameters except verbal cognitive style which correlated negatively with microstate class A duration and positively with class C occurrence. This is the first study that aimed to induce EEG microstate class parameter changes based on their hypothesized functional significance. Beyond the associations of microstate classes A and B with visual and verbal processing, respectively, our results suggest that a finely-tuned interplay between all four EEG microstate classes is necessary for the continuous formation of visual and verbal thoughts. Our results point to the possibility that the EEG microstate classes may represent the head-surface measured activity of intra-cortical sources primarily exhibiting inhibitory functions. However, additional studies are needed to verify and elaborate on this hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Advanced Techniques for Ultrasonic Imaging in the Presence of Material and Geometrical Complexity
NASA Astrophysics Data System (ADS)
Brath, Alexander Joseph
The complexity of modern engineering systems is increasing in several ways: advances in materials science are leading to the design of materials which are optimized for material strength, conductivity, temperature resistance etc., leading to complex material microstructure; the combination of additive manufacturing and shape optimization algorithms are leading to components with incredibly intricate geometrical complexity; and engineering systems are being designed to operate at larger scales in ever harsher environments. As a result, at the same time that there is an increasing need for reliable and accurate defect detection and monitoring capabilities, many of the currently available non-destructive evaluation techniques are rendered ineffective by this increasing material and geometrical complexity. This thesis addresses the challenges posed by inspection and monitoring problems in complex engineering systems with a three-part approach. In order to address material complexities, a model of wavefront propagation in anisotropic materials is developed, along with efficient numerical techniques to solve for the wavefront propagation in inhomogeneous, anisotropic material. Since material and geometrical complexities significantly affect the ability of ultrasonic energy to penetrate into the specimen, measurement configurations are tailored to specific applications which utilize arrays of either piezoelectric (PZT) or electromagnetic acoustic transducers (EMAT). These measurement configurations include novel array architectures as well as the exploration of ice as an acoustic coupling medium. Imaging algorithms which were previously developed for isotropic materials with simple geometry are adapted to utilize the more powerful wavefront propagation model and novel measurement configurations.
Software complex for geophysical data visualization
NASA Astrophysics Data System (ADS)
Kryukov, Ilya A.; Tyugin, Dmitry Y.; Kurkin, Andrey A.; Kurkina, Oxana E.
2013-04-01
The effectiveness of current research in geophysics is largely determined by the degree of implementation of the procedure of data processing and visualization with the use of modern information technology. Realistic and informative visualization of the results of three-dimensional modeling of geophysical processes contributes significantly into the naturalness of physical modeling and detailed view of the phenomena. The main difficulty in this case is to interpret the results of the calculations: it is necessary to be able to observe the various parameters of the three-dimensional models, build sections on different planes to evaluate certain characteristics and make a rapid assessment. Programs for interpretation and visualization of simulations are spread all over the world, for example, software systems such as ParaView, Golden Software Surfer, Voxler, Flow Vision and others. However, it is not always possible to solve the problem of visualization with the help of a single software package. Preprocessing, data transfer between the packages and setting up a uniform visualization style can turn into a long and routine work. In addition to this, sometimes special display modes for specific data are required and existing products tend to have more common features and are not always fully applicable to certain special cases. Rendering of dynamic data may require scripting languages that does not relieve the user from writing code. Therefore, the task was to develop a new and original software complex for the visualization of simulation results. Let us briefly list of the primary features that are developed. Software complex is a graphical application with a convenient and simple user interface that displays the results of the simulation. Complex is also able to interactively manage the image, resize the image without loss of quality, apply a two-dimensional and three-dimensional regular grid, set the coordinate axes with data labels and perform slice of data. The feature of geophysical data is their size. Detailed maps used in the simulations are large, thus rendering in real time can be difficult task even for powerful modern computers. Therefore, the performance of the software complex is an important aspect of this work. Complex is based on the latest version of graphic API: Microsoft - DirectX 11, which reduces overhead and harness the power of modern hardware. Each geophysical calculation is the adjustment of the mathematical model for a particular case, so the architecture of the complex visualization is created with the scalability and the ability to customize visualization objects, for better visibility and comfort. In the present study, software complex 'GeoVisual' was developed. One of the main features of this research is the use of bleeding-edge techniques of computer graphics in scientific visualization. The research was supported by The Ministry of education and science of Russian Federation, project 14.B37.21.0642.
Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.
2015-01-01
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760
Cheung, Chui Ming Gemmy; Yang, Elizabeth; Lee, Won Ki; Lee, Gary K Y; Mathur, Ranjana; Cheng, Jacob; Wong, Doric; Wong, Tien Yin; Lai, Timothy Y Y
2015-12-01
We aimed to evaluate the long-term natural history of polypoidal choroidal vasculopathy (PCV) in untreated patients. This is a retrospective observational case series. Patients with symptomatic PCV who did not receive any treatment for at least 12 months were included from the records of three ophthalmic clinics in Asia. The medical records and imaging data were reviewed. Visual outcomes at month 12 and at last follow-up were analyzed. The influence of demographics and presenting features on visual outcome was analyzed. A total of 32 eyes (32 patients) were included in this analysis. The mean follow-up was 59.9 months (range, 18-119 months), the mean age was 65.7 years and 21 (65.6 %) patients were male. The mean presenting logMAR visual acuity was 0.79 (Standard deviation [SD] 0.49). The center of the fovea was involved by the PCV complex in 25 eyes (78.1 %). The mean greatest linear dimension (GLD) of the PCV complex was 2584 μm (SD 880). Twenty-three eyes (71.9 %) had a cluster-of-grapes configuration on indocyanine green angiography. Leakage of fluorescein angiography was present in 29 eyes (90.6 %). The mean logMAR vision deteriorated from 0.79 at baseline to 0.88 at month 12 (p = 0.11), and further to 1.14 (p = 0.003) at the last follow-up. The proportion of eyes that improved, remained unchanged and worsened was 21.9 %, 31.3 % and 46.9 %, respectively, at month 12; and 28.1 %, 9.4 % and 62.5 %, respectively, at last follow-up. The proportion of eyes with logMAR vision worse than 1.0 was 28.1 % at presentation, and increased to 31.3 % at month 12 and further to 53.1 % at last follow-up. Reasons for poor vision were due to retinal, subretinal or vitreous hemorrhage, and retinal pigment epithelium (RPE) atrophy and scarring. None of the presenting features were found to significantly influence visual outcome. Half of eyes presenting with symptomatic PCV had a relatively benign course without treatment and some even had vision improvement. However, in the remaining eyes, vision deteriorated significantly, mainly due to hemorrhage and scarring. There may be subtypes of PCV with divergent natural history.
Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C
2015-11-15
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.
The complex dynamics of products and its asymptotic properties
Cristelli, Matthieu; Zaccaria, Andrea; Pietronero, Luciano
2017-01-01
We analyse global export data within the Economic Complexity framework. We couple the new economic dimension Complexity, which captures how sophisticated products are, with an index called logPRODY, a measure of the income of the respective exporters. Products’ aggregate motion is treated as a 2-dimensional dynamical system in the Complexity-logPRODY plane. We find that this motion can be explained by a quantitative model involving the competition on the markets, that can be mapped as a scalar field on the Complexity-logPRODY plane and acts in a way akin to a potential. This explains the movement of products towards areas of the plane in which the competition is higher. We analyse market composition in more detail, finding that for most products it tends, over time, to a characteristic configuration, which depends on the Complexity of the products. This market configuration, which we called asymptotic, is characterized by higher levels of competition. PMID:28520794
Visualizing vascular structures in virtual environments
NASA Astrophysics Data System (ADS)
Wischgoll, Thomas
2013-01-01
In order to learn more about the cause of coronary heart diseases and develop diagnostic tools, the extraction and visualization of vascular structures from volumetric scans for further analysis is an important step. By determining a geometric representation of the vasculature, the geometry can be inspected and additional quantitative data calculated and incorporated into the visualization of the vasculature. To provide a more user-friendly visualization tool, virtual environment paradigms can be utilized. This paper describes techniques for interactive rendering of large-scale vascular structures within virtual environments. This can be applied to almost any virtual environment configuration, such as CAVE-type displays. Specifically, the tools presented in this paper were tested on a Barco I-Space and a large 62x108 inch passive projection screen with a Kinect sensor for user tracking.
Constructing Flexible, Configurable, ETL Pipelines for the Analysis of "Big Data" with Apache OODT
NASA Astrophysics Data System (ADS)
Hart, A. F.; Mattmann, C. A.; Ramirez, P.; Verma, R.; Zimdars, P. A.; Park, S.; Estrada, A.; Sumarlidason, A.; Gil, Y.; Ratnakar, V.; Krum, D.; Phan, T.; Meena, A.
2013-12-01
A plethora of open source technologies for manipulating, transforming, querying, and visualizing 'big data' have blossomed and matured in the last few years, driven in large part by recognition of the tremendous value that can be derived by leveraging data mining and visualization techniques on large data sets. One facet of many of these tools is that input data must often be prepared into a particular format (e.g.: JSON, CSV), or loaded into a particular storage technology (e.g.: HDFS) before analysis can take place. This process, commonly known as Extract-Transform-Load, or ETL, often involves multiple well-defined steps that must be executed in a particular order, and the approach taken for a particular data set is generally sensitive to the quantity and quality of the input data, as well as the structure and complexity of the desired output. When working with very large, heterogeneous, unstructured or semi-structured data sets, automating the ETL process and monitoring its progress becomes increasingly important. Apache Object Oriented Data Technology (OODT) provides a suite of complementary data management components called the Process Control System (PCS) that can be connected together to form flexible ETL pipelines as well as browser-based user interfaces for monitoring and control of ongoing operations. The lightweight, metadata driven middleware layer can be wrapped around custom ETL workflow steps, which themselves can be implemented in any language. Once configured, it facilitates communication between workflow steps and supports execution of ETL pipelines across a distributed cluster of compute resources. As participants in a DARPA-funded effort to develop open source tools for large-scale data analysis, we utilized Apache OODT to rapidly construct custom ETL pipelines for a variety of very large data sets to prepare them for analysis and visualization applications. We feel that OODT, which is free and open source software available through the Apache Software Foundation, is particularly well suited to developing and managing arbitrary large-scale ETL processes both for the simplicity and flexibility of its wrapper framework, as well as the detailed provenance information it exposes throughout the process. Our experience using OODT to manage processing of large-scale data sets in domains as diverse as radio astronomy, life sciences, and social network analysis demonstrates the flexibility of the framework, and the range of potential applications to a broad array of big data ETL challenges.
Looking above the prairie: localized and upward acute vision in a native grassland bird.
Tyrrell, Luke P; Moore, Bret A; Loftis, Christopher; Fernández-Juricic, Esteban
2013-12-02
Visual systems of open habitat vertebrates are predicted to have a band of acute vision across the retina (visual streak) and wide visual coverage to gather information along the horizon. We tested whether the eastern meadowlark (Sturnella magna) had this visual configuration given that it inhabits open grasslands. Contrary to our expectations, the meadowlark retina has a localized spot of acute vision (fovea) and relatively narrow visual coverage. The fovea projects above rather than towards the horizon with the head at rest, and individuals modify their body posture in tall grass to maintain a similar foveal projection. Meadowlarks have relatively large binocular fields and can see their bill tips, which may help with their probe-foraging technique. Overall, meadowlark vision does not fit the profile of vertebrates living in open habitats. The binocular field may control foraging while the fovea may be used for detecting and tracking aerial stimuli (predators, conspecifics).
Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow
NASA Technical Reports Server (NTRS)
Simon, F. F.; Ciancone, M. L.
1985-01-01
A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configutations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.
No evidence for surface organization in Kanizsa configurations during continuous flash suppression.
Moors, Pieter; Wagemans, Johan; van Ee, Raymond; de-Wit, Lee
2016-04-01
Does one need to be aware of a visual stimulus for it to be perceptually organized into a coherent whole? The answer to this question regarding the interplay between Gestalts and visual awareness remains unclear. Using interocular suppression as the paradigm for rendering stimuli invisible, conflicting evidence has been obtained as to whether the traditional Kanizsa surface is constructed during interocular suppression. While Sobel and Blake (2003) and Harris, Schwarzkopf, Song, Bahrami, and Rees (2011) failed to find evidence for this, Wang, Weng, and He (2012) showed that standard configurations of Kanizsa pacmen would break interocular suppression faster than their rotated counterparts. In the current study, we replicated the findings by Wang et al. (2012) but show that neither an account based on the construction of a surface nor one based on the long-range collinearities in the standard Kanizsa configuration stimulus could fully explain the difference in breakthrough times. We discuss these findings in the context of differences in the amplitudes of the Fourier orientation spectra for all stimulus types. Thus, we find no evidence that the integration of separate elements takes place during interocular suppression of Kanizsa stimuli, suggesting that this Gestalt involving figure-ground assignment is not constructed when rendered nonconscious using interocular suppression.
A deflectable guiding catheter for real-time MRI-guided interventions
Bell, Jamie A.; Saikus, Christina E.; Ratnakaya, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z.; Colyer, Jessica H.; Lederman, Robert J.; Kocaturk, Ozgur
2011-01-01
Purpose To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. Materials and Methods The catheter shaft incorporated Kevlar braiding. 180° deflection was attained with a 5 cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively-coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Results Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Conclusion Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057” lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. PMID:22128071
iview: an interactive WebGL visualizer for protein-ligand complex.
Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon
2014-02-25
Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.
Analysis, Mining and Visualization Service at NCSA
NASA Astrophysics Data System (ADS)
Wilhelmson, R.; Cox, D.; Welge, M.
2004-12-01
NCSA's goal is to create a balanced system that fully supports high-end computing as well as: 1) high-end data management and analysis; 2) visualization of massive, highly complex data collections; 3) large databases; 4) geographically distributed Grid computing; and 5) collaboratories, all based on a secure computational environment and driven with workflow-based services. To this end NCSA has defined a new technology path that includes the integration and provision of cyberservices in support of data analysis, mining, and visualization. NCSA has begun to develop and apply a data mining system-NCSA Data-to-Knowledge (D2K)-in conjunction with both the application and research communities. NCSA D2K will enable the formation of model-based application workflows and visual programming interfaces for rapid data analysis. The Java-based D2K framework, which integrates analytical data mining methods with data management, data transformation, and information visualization tools, will be configurable from the cyberservices (web and grid services, tools, ..) viewpoint to solve a wide range of important data mining problems. This effort will use modules, such as a new classification methods for the detection of high-risk geoscience events, and existing D2K data management, machine learning, and information visualization modules. A D2K cyberservices interface will be developed to seamlessly connect client applications with remote back-end D2K servers, providing computational resources for data mining and integration with local or remote data stores. This work is being coordinated with SDSC's data and services efforts. The new NCSA Visualization embedded workflow environment (NVIEW) will be integrated with D2K functionality to tightly couple informatics and scientific visualization with the data analysis and management services. Visualization services will access and filter disparate data sources, simplifying tasks such as fusing related data from distinct sources into a coherent visual representation. This approach enables collaboration among geographically dispersed researchers via portals and front-end clients, and the coupling with data management services enables recording associations among datasets and building annotation systems into visualization tools and portals, giving scientists a persistent, shareable, virtual lab notebook. To facilitate provision of these cyberservices to the national community, NCSA will be providing a computational environment for large-scale data assimilation, analysis, mining, and visualization. This will be initially implemented on the new 512 processor shared memory SGI's recently purchased by NCSA. In addition to standard batch capabilities, NCSA will provide on-demand capabilities for those projects requiring rapid response (e.g., development of severe weather, earthquake events) for decision makers. It will also be used for non-sequential interactive analysis of data sets where it is important have access to large data volumes over space and time.
NASA Astrophysics Data System (ADS)
Thurmond, John B.; Drzewiecki, Peter A.; Xu, Xueming
2005-08-01
Geological data collected from outcrop are inherently three-dimensional (3D) and span a variety of scales, from the megascopic to the microscopic. This presents challenges in both interpreting and communicating observations. The Virtual Reality Modeling Language provides an easy way for geoscientists to construct complex visualizations that can be viewed with free software. Field data in tabular form can be used to generate hierarchical multi-scale visualizations of outcrops, which can convey the complex relationships between a variety of data types simultaneously. An example from carbonate mud-mounds in southeastern New Mexico illustrates the embedding of three orders of magnitude of observation into a single visualization, for the purpose of interpreting depositional facies relationships in three dimensions. This type of raw data visualization can be built without software tools, yet is incredibly useful for interpreting and communicating data. Even simple visualizations can aid in the interpretation of complex 3D relationships that are frequently encountered in the geosciences.
Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection
Denison, Rachel N.; Driver, Jon; Ruff, Christian C.
2013-01-01
Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067
Enhanced visual performance in obsessive compulsive personality disorder.
Ansari, Zohreh; Fadardi, Javad Salehi
2016-12-01
Visual performance is considered as commanding modality in human perception. We tested whether Obsessive-compulsive personality disorder (OCPD) people do differently in visual performance tasks than people without OCPD. One hundred ten students of Ferdowsi University of Mashhad and non-student participants were tested by Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II), among whom 18 (mean age = 29.55; SD = 5.26; 84% female) met the criteria for OCPD classification; controls were 20 persons (mean age = 27.85; SD = 5.26; female = 84%), who did not met the OCPD criteria. Both groups were tested on a modified Flicker task for two dimensions of visual performance (i.e., visual acuity: detecting the location of change, complexity, and size; and visual contrast sensitivity). The OCPD group had responded more accurately on pairs related to size, complexity, and contrast, but spent more time to detect a change on pairs related to complexity and contrast. The OCPD individuals seem to have more accurate visual performance than non-OCPD controls. The findings support the relationship between personality characteristics and visual performance within the framework of top-down processing model. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks
Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip
2013-01-01
Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855
Integrated Modeling Environment
NASA Technical Reports Server (NTRS)
Mosier, Gary; Stone, Paul; Holtery, Christopher
2006-01-01
The Integrated Modeling Environment (IME) is a software system that establishes a centralized Web-based interface for integrating people (who may be geographically dispersed), processes, and data involved in a common engineering project. The IME includes software tools for life-cycle management, configuration management, visualization, and collaboration.
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
[Sound improves distinction of low intensities of light in the visual cortex of a rabbit].
Polianskiĭ, V B; Alymkulov, D E; Evtikhin, D V; Chernyshev, B V
2011-01-01
Electrodes were implanted into cranium above the primary visual cortex of four rabbits (Orictolagus cuniculus). At the first stage, visual evoked potentials (VEPs) were recorded in response to substitution of threshold visual stimuli (0.28 and 0.31 cd/m2). Then the sound (2000 Hz, 84 dB, duration 40 ms) was added simultaneously to every visual stimulus. Single sounds (without visual stimuli) did not produce a VEP-response. It was found that the amplitude ofVEP component N1 (85-110 ms) in response to complex stimuli (visual and sound) increased 1.6 times as compared to "simple" visual stimulation. At the second stage, paired substitutions of 8 different visual stimuli (range 0.38-20.2 cd/m2) by each other were performed. Sensory spaces of intensity were reconstructed on the basis of factor analysis. Sensory spaces of complexes were reconstructed in a similar way for simultaneous visual and sound stimulation. Comparison of vectors representing the stimuli in the spaces showed that the addition of a sound led to a 1.4-fold expansion of the space occupied by smaller intensities (0.28; 1.02; 3.05; 6.35 cd/m2). Also, the addition of the sound led to an arrangement of intensities in an ascending order. At the same time, the sound 1.33-times narrowed the space of larger intensities (8.48; 13.7; 16.8; 20.2 cd/m2). It is suggested that the addition of a sound improves a distinction of smaller intensities and impairs a dis- tinction of larger intensities. Sensory spaces revealed by complex stimuli were two-dimensional. This fact can be a consequence of integration of sound and light in a unified complex at simultaneous stimulation.
On State Complexes and Special Cube Complexes
ERIC Educational Resources Information Center
Peterson, Valerie J.
2009-01-01
This thesis presents the first steps toward a classification of non-positively curved cube complexes called state complexes. A "state complex" is a configuration space for a "reconfigurable system," i.e., an abstract system in which local movements occur in some discrete manner. Reconfigurable systems can be used to describe, for example,…
ERIC Educational Resources Information Center
Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken
2010-01-01
As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…
Sibling Curves 3: Imaginary Siblings and Tracing Complex Roots
ERIC Educational Resources Information Center
Harding, Ansie; Engelbrecht, Johann
2009-01-01
Visualizing complex roots of a quadratic equation has been a quest since the inception of the Argand plane in the 1800s. Many algebraic and numerical methods exist for calculating complex roots of an equation, but few visual methods exist. Following on from papers by Harding and Engelbrecht (A. Harding and J. Engelbrecht, "Sibling curves and…
Measuring Search Efficiency in Complex Visual Search Tasks: Global and Local Clutter
ERIC Educational Resources Information Center
Beck, Melissa R.; Lohrenz, Maura C.; Trafton, J. Gregory
2010-01-01
Set size and crowding affect search efficiency by limiting attention for recognition and attention against competition; however, these factors can be difficult to quantify in complex search tasks. The current experiments use a quantitative measure of the amount and variability of visual information (i.e., clutter) in highly complex stimuli (i.e.,…
Prism adaptation does not alter configural processing of faces
Bultitude, Janet H.; Downing, Paul E.; Rafal, Robert D.
2013-01-01
Patients with hemispatial neglect (‘neglect’) following a brain lesion show difficulty responding or orienting to objects and events on the left side of space. Substantial evidence supports the use of a sensorimotor training technique called prism adaptation as a treatment for neglect. Reaching for visual targets viewed through prismatic lenses that induce a rightward shift in the visual image results in a leftward recalibration of reaching movements that is accompanied by a reduction of symptoms in patients with neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Interestingly, prism adaptation can also alter aspects of non-lateralised spatial attention. We previously demonstrated that prism adaptation alters the extent to which neglect patients and healthy participants process local features versus global configurations of visual stimuli. Since deficits in non-lateralised spatial attention are thought to contribute to the severity of neglect symptoms, it is possible that the effect of prism adaptation on these deficits contributes to its efficacy. This study examines the pervasiveness of the effects of prism adaptation on perception by examining the effect of prism adaptation on configural face processing using a composite face task. The composite face task is a persuasive demonstration of the automatic global-level processing of faces: the top and bottom halves of two familiar faces form a seemingly new, unknown face when viewed together. Participants identified the top or bottom halves of composite faces before and after prism adaptation. Sensorimotor adaptation was confirmed by significant pointing aftereffect, however there was no significant change in the extent to which the irrelevant face half interfered with processing. The results support the proposal that the therapeutic effects of prism adaptation are limited to dorsal stream processing. PMID:25110574
Prism adaptation does not alter configural processing of faces.
Bultitude, Janet H; Downing, Paul E; Rafal, Robert D
2013-01-01
Patients with hemispatial neglect ('neglect') following a brain lesion show difficulty responding or orienting to objects and events on the left side of space. Substantial evidence supports the use of a sensorimotor training technique called prism adaptation as a treatment for neglect. Reaching for visual targets viewed through prismatic lenses that induce a rightward shift in the visual image results in a leftward recalibration of reaching movements that is accompanied by a reduction of symptoms in patients with neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Interestingly, prism adaptation can also alter aspects of non-lateralised spatial attention. We previously demonstrated that prism adaptation alters the extent to which neglect patients and healthy participants process local features versus global configurations of visual stimuli. Since deficits in non-lateralised spatial attention are thought to contribute to the severity of neglect symptoms, it is possible that the effect of prism adaptation on these deficits contributes to its efficacy. This study examines the pervasiveness of the effects of prism adaptation on perception by examining the effect of prism adaptation on configural face processing using a composite face task. The composite face task is a persuasive demonstration of the automatic global-level processing of faces: the top and bottom halves of two familiar faces form a seemingly new, unknown face when viewed together. Participants identified the top or bottom halves of composite faces before and after prism adaptation. Sensorimotor adaptation was confirmed by significant pointing aftereffect, however there was no significant change in the extent to which the irrelevant face half interfered with processing. The results support the proposal that the therapeutic effects of prism adaptation are limited to dorsal stream processing.
Kocaturk, Ozgur; Saikus, Christina E; Guttman, Michael A; Faranesh, Anthony Z; Ratnayaka, Kanishka; Ozturk, Cengizhan; McVeigh, Elliot R; Lederman, Robert J
2009-08-12
Catheter visualization and tracking remains a challenge in interventional MR.Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2 degrees C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.
Kocaturk, Ozgur; Saikus, Christina E; Guttman, Michael A; Faranesh, Anthony Z; Ratnayaka, Kanishka; Ozturk, Cengizhan; McVeigh, Elliot R; Lederman, Robert J
2009-01-01
Background Catheter visualization and tracking remains a challenge in interventional MR. Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. Results The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2°C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. Conclusion We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures. PMID:19674464
NASA Technical Reports Server (NTRS)
Luo, Victor; Khanampornpan, Teerapat; Boehmer, Rudy A.; Kim, Rachel Y.
2011-01-01
This software graphically displays all pertinent information from a Predicted Events File (PEF) using the Java Swing framework, which allows for multi-platform support. The PEF is hard to weed through when looking for specific information and it is a desire for the MRO (Mars Reconn aissance Orbiter) Mission Planning & Sequencing Team (MPST) to have a different way to visualize the data. This tool will provide the team with a visual way of reviewing and error-checking the sequence product. The front end of the tool contains much of the aesthetically appealing material for viewing. The time stamp is displayed in the top left corner, and highlighted details are displayed in the bottom left corner. The time bar stretches along the top of the window, and the rest of the space is allotted for blocks and step functions. A preferences window is used to control the layout of the sections along with the ability to choose color and size of the blocks. Double-clicking on a block will show information contained within the block. Zooming into a certain level will graphically display that information as an overlay on the block itself. Other functions include using hotkeys to navigate, an option to jump to a specific time, enabling a vertical line, and double-clicking to zoom in/out. The back end involves a configuration file that allows a more experienced user to pre-define the structure of a block, a single event, or a step function. The individual will have to determine what information is important within each block and what actually defines the beginning and end of a block. This gives the user much more flexibility in terms of what the tool is searching for. In addition to the configurability, all the settings in the preferences window are saved in the configuration file as well
Kumral, Emre; Uluakay, Arzu; Dönmez, İlknur
2015-07-01
Charles Bonnet syndrome (CBS) is an uncommon disorder characterized by complex and recurrent visual hallucinations in patients with visual pathway pathologic defects. To describe a patient who experienced complex visual hallucinations following infarction in the right occipital lobe and epileptic seizure who was diagnosed as having CBS. A 65-year-old man presented acute ischemic stroke caused by artery to artery embolism involving the right occipital lobe. Following ischemic stroke, complex visual hallucinations in the left visual field not associated with loss of consciousness or delusion developed in the patient. Hallucinations persisted for >1 month and during hallucination, no electrographic seizures were recorded through 24 hours of videoelectroencephalographic monitoring. CBS may develop in a patient with occipital lobe infarction following an embolic event. CBS associated with medial occipital lobe infarction and epilepsy may coexist and reflects the abnormal functioning of an integrated neuronal network.
Cell-assembly coding in several memory processes.
Sakurai, Y
1998-01-01
The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.
A case for spiking neural network simulation based on configurable multiple-FPGA systems.
Yang, Shufan; Wu, Qiang; Li, Renfa
2011-09-01
Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.
Heuristics of reasoning and analogy in children's visual perspective taking.
Yaniv, I; Shatz, M
1990-10-01
We propose that children's reasoning about others' visual perspectives is guided by simple heuristics based on a perceiver's line of sight and salient features of the object met by that line. In 3 experiments employing a 2-perceiver analogy task, children aged 3-6 were generally better able to reproduce a perceiver's perspective if a visual cue in the perceiver's line of sight sufficed to distinguish it from alternatives. Children had greater difficulty when the task hinged on attending to configural cues. Availability of distinctive cues affixed on the objects' sides facilitated solution of the symmetrical orientations. These and several other related findings reported in the literature are traced to children's reliance on heuristics of reasoning.
Laser Pencil Beam Based Techniques for Visualization and Analysis of Interfaces Between Media
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Giles, Sammie, Jr.
1998-01-01
Traditional optical methods that include interferometry, Schlieren, and shadowgraphy have been used successfully for visualization and evaluation of various media. Aerodynamics and hydrodynamics are major fields where these methods have been applied. However, these methods have such major drawbacks as a relatively low power density and suppression of the secondary order phenomena. A novel method introduced at NASA Lewis Research Center minimizes disadvantages of the 'classical' methods. The method involves a narrow pencil-like beam that penetrates a medium of interest. The paper describes the laser pencil beam flow visualization methods in detail. Various system configurations are presented. The paper also discusses interfaces between media in general terms and provides examples of interfaces.
[Effects of the verbal loading on laterality difference in visual field (author's transl)].
Kawai, M
1980-02-01
In connection with the Kinsbourne's attention-model, the relation between the level of hemisphere sharing of loading task and the visual-laterality difference was examined under verbal loading conditions. The subjects were 13 (8 male and 5 female) right-handed college students. The loading tasks in Exp. I were the "same-different" judgment of Japanese hiragana alphabets and of triliteral hiragana words, and "true-false" judgment of short statements. In Exp. II, a procedure to eliminate configurational matching of the letters was followed. The results of the two experiments suggest that the visual-laterality effect occurs only when the level of hemisphere sharing of the loading task exceeds a certain lower bound.
Dynamic Stall of Finite Span Blades and its Control
NASA Astrophysics Data System (ADS)
Taylor, Keith; Leong, Chia; Amitay, Michael
2013-11-01
An experimental investigational study into a dynamically pitching s809 airfoil at a Reynolds number of 220,000 was conducted. Particle Image Velocimetry was employed to visualize and quantify the flow field around the airfoil. This investigation compares a 2-D configuration with 3-D configuration (i.e., a finite span blade). The difference in the flow field between these two configurations is explored, as the vibrations present in the 3-D configuration (due to the dynamic stall) may contribute to a different apparent flow field than classical results would suggest. In addition, a comparison between lift and drag coefficients, measured on the 2-D and 3-D configurations, is explored, demonstrating how time varying lift and drag forces oscillate at characteristic frequencies associated with the primary vibrational modes of the model. In addition, flow control is applied through the actuation of an array of synthetic jets located near the leading edge of the model, in order to effect changes in the flow field around the model, demonstrating how dynamic stall can be delayed or eliminated during dynamic conditions.
The Langley 14- by 22-Foot Subsonic Tunnel: Description, Flow Characteristics, and Guide for Users
NASA Technical Reports Server (NTRS)
Gentry, Garl L., Jr.; Quinto, P. Frank; Gatlin, Gregory M.; Applin, Zachary T.
1990-01-01
The Langley 14- by 22-foot Subsonic Tunnel is a closed circuit, single-return atmospheric wind tunnel with a test section that can be operated in a variety of configurations (closed, slotted, partially open, and open). The closed test section configuration is 14.5 ft high by 21.75 ft wide and 50 ft long with a maximum speed of about 338 ft/sec. The open test section configuration has a maximum speed of about 270 ft/sec, and is formed by raising the ceiling and walls, to form a floor-only configuration. The tunnel may be configured with a moving-belt ground plane and a floor boundary-layer removal system at the entrance to the test section for ground effect testing. In addition, the tunnel had a two-component laser velocimeter, a frequency modulated (FM) tape system for dynamic data acquisition, flow visualization equipment, and acoustic testing capabilities. Users of the 14- by 22-foot Subsonic Tunnel are provided with information required for planning of experimental investigations including test hardware and model support systems.
Sleep-Effects on Implicit and Explicit Memory in Repeated Visual Search
Assumpcao, Leonardo; Gais, Steffen
2013-01-01
In repeated visual search tasks, facilitation of reaction times (RTs) due to repetition of the spatial arrangement of items occurs independently of RT facilitation due to improvements in general task performance. Whereas the latter represents typical procedural learning, the former is a kind of implicit memory that depends on the medial temporal lobe (MTL) memory system and is impaired in patients with amnesia. A third type of memory that develops during visual search is the observers’ explicit knowledge of repeated displays. Here, we used a visual search task to investigate whether procedural memory, implicit contextual cueing, and explicit knowledge of repeated configurations, which all arise independently from the same set of stimuli, are influenced by sleep. Observers participated in two experimental sessions, separated by either a nap or a controlled rest period. In each of the two sessions, they performed a visual search task in combination with an explicit recognition task. We found that (1) across sessions, MTL-independent procedural learning was more pronounced for the nap than rest group. This confirms earlier findings, albeit from different motor and perceptual tasks, showing that procedural memory can benefit from sleep. (2) Likewise, the sleep group compared with the rest group showed enhanced context-dependent configural learning in the second session. This is a novel finding, indicating that the MTL-dependent, implicit memory underlying contextual cueing is also sleep-dependent. (3) By contrast, sleep and wake groups displayed equivalent improvements in explicit recognition memory in the second session. Overall, the current study shows that sleep affects MTL-dependent as well as MTL-independent memory, but it affects different, albeit simultaneously acquired, forms of MTL-dependent memory differentially. PMID:23936363
Winning or Losing the West: The Photographic Act
ERIC Educational Resources Information Center
Paakspuu, Kalli
2007-01-01
The visual public record of the early West represents a site of national, continental, hemispheric, and global configurations of territory, power, and imagination. The early photograph reproduces the contradictory encounters between industry, settlers, and Indigenous communities as a particular future is envisioned and contested. The…
Rainbows, graticules, and logos…oh my!
NASA Astrophysics Data System (ADS)
Pisut, D.; MacIntosh, E.; McDougall, C.
2016-12-01
Data visualizations are meant to simplify the complex. However, visualizations in geosciences are often made more complex than need be. Color palettes that hide Earth system dynamics or even cannot be seen; annotations that clutter the display more than provide context; logos that only add meaningless acronyms and other visual distraction. We will share lessons learned on how tweaking these and other components of visualizations improve the usability and comprehension for multiple audiences - especially since the best practices for one audience (e.g., television) do not necessarily translate to other audiences (e.g., print, education, web, etc).
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2010-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2008-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology
Biró, István; Giugliano, Michele
2015-01-01
Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385
Experimental research on crossing shock wave boundary layer interactions
NASA Astrophysics Data System (ADS)
Settles, G. S.; Garrison, T. J.
1994-10-01
An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.
Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.
Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki
2005-11-08
By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.