Off-axis full-field swept-source optical coherence tomography using holographic refocusing
NASA Astrophysics Data System (ADS)
Hillmann, Dierck; Franke, Gesa; Hinkel, Laura; Bonin, Tim; Koch, Peter; Hüttmann, Gereon
2013-03-01
We demonstrate a full-field swept-source OCT using an off-axis geometry of the reference illumination. By using holographic refocusing techniques, a uniform lateral resolution is achieved over the measurement depth of approximately 80 Rayleigh lengths. Compared to a standard on-axis setup, artifacts and autocorrelation signals are suppressed and the measurement depth is doubled by resolving the complex conjugate ambiguity. Holographic refocusing was done efficiently by Fourier-domain resampling as demonstrated before in inverse scattering and holoscopy. It allowed to reconstruct a complete volume with about 10μm resolution over the complete measurement depth of more than 10mm. Off-axis full-field swept-source OCT enables high measurement depths, spanning many Rayleigh lengths with reduced artifacts.
Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa
2013-01-01
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.
Rolfe, Daniel J.; Clarke, David T.; Martin-Fernandez, Marisa
2013-01-01
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion. PMID:24066121
NASA Astrophysics Data System (ADS)
Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung
2018-03-01
We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.
NASA Astrophysics Data System (ADS)
Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.
2015-05-01
The EU-funded project VIAMOS1 proposes an optical coherence tomography system (OCT) for skin cancer detection, which combines full-field and full-range swept-source OCT in a multi-channel sensor for parallel detection. One of the project objectives is the development of new fabrication technologies for micro-optics, which makes it compatible to Micro-Opto-Electromechanical System technology (MOEMS). The basic system concept is a wafer-based Mirau interferometer array with an actuated reference mirror, which enables phase shifted interferogram detection and therefore reconstruction of the complex phase information, resulting in a higher measurement range with reduced image artifacts. This paper presents an experimental one-channel on-bench OCT system with bulk optics, which serves as a proof-of-concept setup for the final VIAMOS micro-system. It is based on a Linnik interferometer with a wavelength tuning light source and a camera for parallel A-Scan detection. Phase shifting interferometry techniques (PSI) are used for the suppression of the complex conjugate artifact, whose suppression reaches 36 dB. The sensitivity of the system is constant over the full-field with a mean value of 97 dB. OCT images are presented of a thin membrane microlens and a biological tissue (onion) as a preliminary demonstration.
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F
2011-04-01
To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F.
2011-01-01
Purpose To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Materials and Methods Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in-vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Results Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. Conclusion The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast 3D MRI data acquisition. PMID:21448967
Sparse-View Ultrasound Diffraction Tomography Using Compressed Sensing with Nonuniform FFT
2014-01-01
Accurate reconstruction of the object from sparse-view sampling data is an appealing issue for ultrasound diffraction tomography (UDT). In this paper, we present a reconstruction method based on compressed sensing framework for sparse-view UDT. Due to the piecewise uniform characteristics of anatomy structures, the total variation is introduced into the cost function to find a more faithful sparse representation of the object. The inverse problem of UDT is iteratively resolved by conjugate gradient with nonuniform fast Fourier transform. Simulation results show the effectiveness of the proposed method that the main characteristics of the object can be properly presented with only 16 views. Compared to interpolation and multiband method, the proposed method can provide higher resolution and lower artifacts with the same view number. The robustness to noise and the computation complexity are also discussed. PMID:24868241
Artifacts as Authoritative Actors in Educational Reform
ERIC Educational Resources Information Center
März, Virginie; Kelchtermans, Geert; Vermeir, Karen
2017-01-01
Educational reforms are often translated in and implemented through artifacts. Although research has frequently treated artifacts as merely functional, more recent work acknowledges the complex relationship between material artifacts and human/organizational behavior. This article aims at disentangling this relationship in order to deepen our…
Electrocardiogram artifact caused by rigors mimicking narrow complex tachycardia: a case report.
Matthias, Anne Thushara; Indrakumar, Jegarajah
2014-02-04
The electrocardiogram (ECG) is useful in the diagnosis of cardiac and non-cardiac conditions. Rigors due to shivering can cause electrocardiogram artifacts mimicking various cardiac rhythm abnormalities. We describe an 80-year-old Sri Lankan man with an abnormal electrocardiogram mimicking narrow complex tachycardia during the immediate post-operative period. Electrocardiogram changes caused by muscle tremor during rigors could mimic a narrow complex tachycardia. Identification of muscle tremor as a cause of electrocardiogram artifact can avoid unnecessary pharmacological and non-pharmacological intervention to prevent arrhythmias.
Protein/oligonucleotide conjugates as a cell specific PNA carrier.
Obara, K; Ishihara, T; Akaike, T; Maruyama, A
2001-01-01
We have focused on proteineus ligand conjugate with oligonucleotides (ODNs) as a cell-specific delivery vector for peptide nucleic acids (PNAs). Asialofetuin (AF), a hepatocyte-specific proteineus ligand, was conjugated with ODNs that served as binding sites for PNAs. Succinimidyl-transe-4(N-maleimidylmethyl)-cyclohexane-1-carboxylate (SMCC) modified AF was coupled with 5'-thiolated oligodeoxynucleotide (HS-ODN). The resulting conjugate held PNAs with sequence-specific manner. The PNA/DNA conjugate complex has resistance against nucleases in serum. The efficient release of PNA from the complex was observed when the complex was made in contact with a target nucleotide. PNA uptake to hepatocytes was greatly enhanced when hepatocytes was incubated with PNA/conjugate complex. Free AF thoroughly inhibited PNA uptake with the conjugate, evidencing asialoglycoprotein receptor (ASGP-R) mediated endocytosis to be a major-route for the cellular uptake.
Goud, Thirumani Venkatshwar; Huang, Bor-Rong; Lin, Tzu-Chau; Biellmann, Jean-François; Chen, Chien-Sheng
2012-01-01
To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2′-dipyridine Ruthenium bis (hexafluorophosphate). The synthesized Ru(II) complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II)-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The emission peak wavelength of the Ru(II)-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II) complex, indicating that Ru(II)-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG) binding assay was conducted. The result showed that Ru(II)-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II)-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II)-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays. PMID:22563441
Performance analysis of a full-field and full-range swept-source OCT system
NASA Astrophysics Data System (ADS)
Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.
2015-09-01
In recent years, optical coherence tomography (OCT) became gained importance in medical disciplines like ophthalmology, due to its noninvasive optical imaging technique with micrometer resolution and short measurement time. It enables e. g. the measurement and visualization of the depth structure of the retina. In other medical disciplines like dermatology, histopathological analysis is still the gold standard for skin cancer diagnosis. The EU-funded project VIAMOS (Vertically Integrated Array-type Mirau-based OCT System) proposes a new type of OCT system combined with micro-technologies to provide a hand-held, low-cost and miniaturized OCT system. The concept is a combination of full-field and full-range swept-source OCT (SS-OCT) detection in a multi-channel sensor based on a micro-optical Mirau-interferometer array, which is fabricated by means of wafer fabrication. This paper presents the study of an experimental proof-of-concept OCT system as a one-channel sensor with bulk optics. This sensor is a Linnik-interferometer type with similar optical parameters as the Mirau-interferometer array. A commercial wavelength tunable light source with a center wavelength at 845nm and 50nm spectral bandwidth is used with a camera for parallel OCT A-Scan detection. In addition, the reference microscope objective lens of the Linnik-interferometer is mounted on a piezo-actuated phase-shifter. Phase-shifting interferometry (PSI) techniques are applied for resolving the conjugate complex artifact and consequently contribute to an increase of image quality and depth range. A suppression ratio of the complex conjugate term of 36 dB is shown and a system sensitivity greater than 96 dB could be measured.
Artifact-Based Transformation of IBM Global Financing
NASA Astrophysics Data System (ADS)
Chao, Tian; Cohn, David; Flatgard, Adrian; Hahn, Sandy; Linehan, Mark; Nandi, Prabir; Nigam, Anil; Pinel, Florian; Vergo, John; Wu, Frederick Y.
IBM Global Financing (IGF) is transforming its business using the Business Artifact Method, an innovative business process modeling technique that identifies key business artifacts and traces their life cycles as they are processed by the business. IGF is a complex, global business operation with many business design challenges. The Business Artifact Method is a fundamental shift in how to conceptualize, design and implement business operations. The Business Artifact Method was extended to solve the problem of designing a global standard for a complex, end-to-end process while supporting local geographic variations. Prior to employing the Business Artifact method, process decomposition, Lean and Six Sigma methods were each employed on different parts of the financing operation. Although they provided critical input to the final operational model, they proved insufficient for designing a complete, integrated, standard operation. The artifact method resulted in a business operations model that was at the right level of granularity for the problem at hand. A fully functional rapid prototype was created early in the engagement, which facilitated an improved understanding of the redesigned operations model. The resulting business operations model is being used as the basis for all aspects of business transformation in IBM Global Financing.
Kim, Sanggil; Ko, Wooseok; Sung, Bong Hyun; Kim, Sun Chang; Lee, Hyun Soo
2016-11-15
Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance. Copyright © 2016. Published by Elsevier Ltd.
Mi, Qian; Ma, Yuru; Gao, Xiangqian; Liu, Ran; Liu, Pengxing; Mi, Yi; Fu, Xuegang; Gao, Qingzhi
2016-11-01
Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. To target the Warburg effect, we designed a new series of 2-deoxyglucose (2-DG) conjugated platinum (II) complexes for glucose transporter 1 (GLUT1)-mediated anticancer drug delivery. The potential GLUT1 transportability of the complexes was investigated through a comparative molecular docking analysis utilizing the latest GLUT1 protein crystal structure. The key binding site for 2-DG as GLUT1's substrate was identified with molecular dynamics simulation, and the docking study demonstrated that the 2-DG conjugated platinum (II) complexes can be recognized by the same binding site as potential GLUT1 substrate. The conjugates were synthesized and evaluated for in vitro cytotoxicity study with seven human cancer cell lines. The results of this study revealed that 2-DG conjugated platinum (II) complexes are GLUT1 transportable substrates and exhibit improved cytotoxicities in cancer cell lines that over express GLUT1 when compared to the clinical drug, Oxaliplatin. The correlation between GLUT1 expression and antitumor effects are also confirmed. The study provides fundamental information supporting the potential of the 2-DG conjugated platinum (II) complexes as lead compounds for further pharmaceutical R&D.
Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello
2015-04-05
This work reports on the synthesis, characterization and photophysical studies of newly derived phthalocyanine complexes and the phthalocyanine-silica nanoparticles conjugates. The derived phthalocyanine complexes have one terminal alkyne group. The derived phthalocyanine complexes showed improved photophysical properties (ФF, ФT, ΦΔ and τT) compared to the respective phthalocyanine complexes from which they were derived. The derived phthalocyanine complexes were conjugated to the surface of an azide functionalized silica nanoparticles via copper (1) catalyzed cyclo-addition reaction. All the conjugates showed lower triplet quantum yields ranging from 0.37 to 0.44 compared to the free phthalocyanine complexes. The triplet lifetimes ranged from 352 to 484 μs for the conjugates and from 341 to 366 μs for the free phthalocyanine complexes. Copyright © 2014 Elsevier B.V. All rights reserved.
Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm.
Ricci, E; Di Domenico, S; Cianca, E; Rossi, T
2015-01-01
Microwave imaging (MWI) has been recently proved as a promising imaging modality for low-complexity, low-cost and fast brain imaging tools, which could play a fundamental role to efficiently manage emergencies related to stroke and hemorrhages. This paper focuses on the UWB radar imaging approach and in particular on the processing algorithms of the backscattered signals. Assuming the use of the multistatic version of the MIST (Microwave Imaging Space-Time) beamforming algorithm, developed by Hagness et al. for the early detection of breast cancer, the paper proposes and compares two artifact removal algorithms. Artifacts removal is an essential step of any UWB radar imaging system and currently considered artifact removal algorithms have been shown not to be effective in the specific scenario of brain imaging. First of all, the paper proposes modifications of a known artifact removal algorithm. These modifications are shown to be effective to achieve good localization accuracy and lower false positives. However, the main contribution is the proposal of an artifact removal algorithm based on statistical methods, which allows to achieve even better performance but with much lower computational complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ran; Li, Hong; Gao, Xiangqian
Despite numerous studies that report the glucose derived glycoconjugates as antitumor candidates, using mannose as sugar motif for specific tumor targeting remains less studied. In this research, two novel mannose-conjugated platinum complexes 4a and 4b that target the Warburg effect were designed, synthesized and evaluated for their antitumor activities in vitro and in vivo. Compared with oxaliplatin, both complexes exhibited substantial enhancement in water solubility as well as excellent or comparative cytotoxicity in six human cancer cell lines. Cytotoxicity assessments on Glucose transporter 1 (GLUT1) down-regulated or overexpressed cells and platinum accumulation study demonstrated that cellular uptake of compound 4a was regulatedmore » by GLUT1. In particular, 4a induced apoptosis in HT29 cells by suppressing expression of Bcl-2 and Bcl-XL, which preliminary explained the mechanism origin of antitumor effect. As indicated by its maximum tolerated dose-finding assay and in vivo anticancer activity, compound 4a exhibits better safety and efficacy profile than oxaliplatin. The findings of this study indicate the possibility of subjecting mannose-conjugated platinum complexes as lead compounds for further preclinical evaluation. - Highlights: • Mannose-conjugated platinum complexes were designed and synthesized to target glucose transporter 1(GLUT1). • Mannose-conjugated platinum complex 4a transport across cancer cells through GLUT1. • Mannose-conjugated platinum complex 4a induce apoptosis in HT29 cells. • Mannose-conjugated platinum complex 4a antitumor activities were more potent than those of oxaliplatin.« less
1995-03-20
corresponding excited-state complexes were only recently discovered. The results of our extensive studies of intermolecular excimers and exciplexes of many...the luminescence of conjugated polymers. The luminescence and charge photogeneration in exciplexes of conjugated polymers with donor triarylamines will also be presented. jg
NASA Astrophysics Data System (ADS)
Rotenberg, David J.
Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.
Pramanik, Anup K; Siddikuzzaman; Palanimuthu, Duraippandi; Somasundaram, Kumaravel; Samuelson, Ashoka G
2016-12-21
The synthesis and anticancer activity of a copper(II) diacetyl-bis(N4-methylthiosemicarbazone) complex and its nanoconjugates are reported. The copper(II) complex is connected to a carboxylic acid group through a cleavable disulfide link to enable smart delivery. The copper complex is tethered to highly water-soluble 20 nm gold nanoparticles (AuNPs), stabilized by amine terminated lipoic acid-polyethylene glycol (PEG). The gold nanoparticle carrier was further decorated with biotin to achieve targeted action. The copper complex and the conjugates with and without biotin, were tested against HeLa and HaCaT cells. They show very good anticancer activity against HeLa cells, a cell line derived from cervical cancer and are less active against HaCaT cells. Slow and sustained release of the complex from conjugates is demonstrated through cleavage of disulfide linker in the presence of glutathione (GSH), a reducing agent intrinsically present in high concentrations within cancer cells. Biotin appended conjugates do not show greater activity than conjugates without biotin against HeLa cells. This is consistent with drug uptake studies, which suggests similar uptake profiles for both conjugates in vitro. However, in vivo studies using a HeLa cell xenograft tumor model shows 3.8-fold reduction in tumor volume for the biotin conjugated nanoparticle compared to the control whereas the conjugate without biotin shows only 2.3-fold reduction in the tumor volume suggesting significant targeting.
Sun, P C; Fainman, Y
1990-09-01
An optical processor for real-time generation of the Wigner distribution of complex amplitude functions is introduced. The phase conjugation of the input signal is accomplished by a highly efficient self-pumped phase conjugator based on a 45 degrees -cut barium titanate photorefractive crystal. Experimental results on the real-time generation of Wigner distribution slices for complex amplitude two-dimensional optical functions are presented and discussed.
2013-01-01
baicalein, baicalin ) and PAMAM dendrimers (G5-NH2, G4-NH2, G3- NH2, G5-COOH, G5-OH) from commercial sources. To synthesize QSI-PAMAM complexes by...of QSI and PAMAM in the complex was listed in Table 1. 4 Conjugation of baicalin was carried according the proposed synthesis scheme. In this...performance period, we synthesized baicalin complex with G5-Ac50 by conjugation. To generate covalently conjugated QSI-PAMAM complexes, the PAMAM
Use of Multiscale Entropy to Facilitate Artifact Detection in Electroencephalographic Signals
Mariani, Sara; Borges, Ana F. T.; Henriques, Teresa; Goldberger, Ary L.; Costa, Madalena D.
2016-01-01
Electroencephalographic (EEG) signals present a myriad of challenges to analysis, beginning with the detection of artifacts. Prior approaches to noise detection have utilized multiple techniques, including visual methods, independent component analysis and wavelets. However, no single method is broadly accepted, inviting alternative ways to address this problem. Here, we introduce a novel approach based on a statistical physics method, multiscale entropy (MSE) analysis, which quantifies the complexity of a signal. We postulate that noise corrupted EEG signals have lower information content, and, therefore, reduced complexity compared with their noise free counterparts. We test the new method on an open-access database of EEG signals with and without added artifacts due to electrode motion. PMID:26738116
Noury, Nima; Hipp, Joerg F; Siegel, Markus
2016-10-15
Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods. Copyright © 2016 Elsevier Inc. All rights reserved.
Sharmin, Ayesha; Salassa, Luca; Rosenberg, Edward; Ross, J. B. Alexander; Abbott, Geoffrey; Black, Labe; Terwilliger, Michelle; Brooks, Robert
2013-01-01
Luminescent, mono-diimine, ruthenium complexes, [(H)Ru(CO)(PPh3)2(dcbpy)][PF6] (1, dcbpy = 4,4′-dicarboxy bipyridyl) and [(H)Ru(CO)(dppene)(5-amino-1,10-phen)][PF6] (2, dppene = bis diphenylphosphino-ethylene, phen = 9,10-phenanthroline), have been conjugated with 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE) and with cholesterol in the case of 2. Compound 1 gives the bis-lipid derivative [(H)Ru(CO)(PPh3)2(dcbpy-N-DPPE2)][PF6] (3), while 2 provides the mono-lipid conjugate [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(S)-N-DPPE)][ PF6] (4), and the cholesterol derivative [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(O)OChol)][PF6] (5, Chol = cholesteryl), using standard conjugation techniques. These compounds were characterized by spectroscopic methods, and their photophysical properties were measured in organic solvents. The luminescence of lipid conjugates 3 and is quenched in organic solvents while compound 4 a weak, short-lived, blue-shifted emission in solution. The cholesterol conjugate shows the long-lived, microsecond-timescale emission associated with triplet metal-to-ligand charge-transfer (3MLCT) excited states. Incorporation of conjugate 3 in lipid bilayer vesicles restores the luminescence, but with blue shifts (~80 nm) accompanied by nanosecond-timescale lifetimes. In the vesicles conjugate 4 shows a similar short-lived and blue-shifted emission to that observed in solution but with increased intensity. Conjugation of the complex [(H)Ru(CO)(PhP2C2H4C(O)O-N-succinimidyl)2(bpy)][PF6] (6”) with DPPE gives the phosphine-conjugated complex [(H)Ru(CO)(PhP2C2H4C(O)-N-DPPE)2(bpy)][PF6] (7). Complex 7 also exhibits a short-lived and blue-shifted emission in solution and in vesicles as observed for 3 and 4. We have also conjugated the complex [Ru(bpy)2(5-amino-1,10-phenanthroline)][PF6]2 (8) with both cholesterol (9) and DPPE (10). Neither 9 nor the previously reported 10 exhibited the blue shifts observed for 3 and 4 when incorporated into LUVs. The anisotropies of the emissions of 3, 4 and 7 were also measured in LUVs and of 5 in both glycerol and LUVs. High fundamental anisotropies were observed for 3 and 4 and 7. PMID:24063694
Biomedical Applications of Organometal-Peptide Conjugates
NASA Astrophysics Data System (ADS)
Metzler-Nolte, Nils
Peptides are well suited as targeting vectors for the directed delivery of metal-based drugs or probes for biomedical investigations. This chapter describes synthetic strategies for the preparation of conjugates of medically interesting peptides with covalently bound metal complexes. Peptides that were used include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake peptides (TAT and poly-Arg), and intracellular localization sequences. To these peptides, a whole variety of transition metal complexes has been attached in recent years by solid-phase peptide synthesis (SPPS) techniques. The metal complex can be attached to the peptide on the resin as part of the SPPS scheme. Alternatively, the metal complex may be attached to the peptide as a postsynthetic modification. Advantages as well as disadvantages for either strategy are discussed. Biomedical applications include radiopharmaceutical applications, anticancer and antibacterial activity, metal-peptide conjugates as targeted CO-releasing molecules, and metal-peptide conjugates in biosensor applications.
An image-based approach to understanding the physics of MR artifacts.
Morelli, John N; Runge, Val M; Ai, Fei; Attenberger, Ulrike; Vu, Lan; Schmeets, Stuart H; Nitz, Wolfgang R; Kirsch, John E
2011-01-01
As clinical magnetic resonance (MR) imaging becomes more versatile and more complex, it is increasingly difficult to develop and maintain a thorough understanding of the physical principles that govern the changing technology. This is particularly true for practicing radiologists, whose primary obligation is to interpret clinical images and not necessarily to understand complex equations describing the underlying physics. Nevertheless, the physics of MR imaging plays an important role in clinical practice because it determines image quality, and suboptimal image quality may hinder accurate diagnosis. This article provides an image-based explanation of the physics underlying common MR imaging artifacts, offering simple solutions for remedying each type of artifact. Solutions that have emerged from recent technologic advances with which radiologists may not yet be familiar are described in detail. Types of artifacts discussed include those resulting from voluntary and involuntary patient motion, magnetic susceptibility, magnetic field inhomogeneities, gradient nonlinearity, standing waves, aliasing, chemical shift, and signal truncation. With an improved awareness and understanding of these artifacts, radiologists will be better able to modify MR imaging protocols so as to optimize clinical image quality, allowing greater confidence in diagnosis. Copyright © RSNA, 2011.
A generic EEG artifact removal algorithm based on the multi-channel Wiener filter
NASA Astrophysics Data System (ADS)
Somers, Ben; Francart, Tom; Bertrand, Alexander
2018-06-01
Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.
Truong, Trong-Kha; Guidon, Arnaud
2014-01-01
Purpose To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multi-shot spiral diffusion tensor imaging (DTI) without requiring a variable-density spiral trajectory or a navigator echo. Theory and Methods The first method simply averages magnitude images reconstructed with sensitivity encoding (SENSE) from each shot, whereas the second and third methods rely on SENSE to estimate the motion-induced phase error for each shot, and subsequently use either a direct phase subtraction or an iterative conjugate gradient (CG) algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. Results The first two methods suffer from a low signal-to-noise ratio (SNR) or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution DTI results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. Conclusion The proposed SENSE+CG method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multi-shot spiral DTI, without increasing the scan time or reducing the SNR. PMID:23450457
Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands.
Kong, Yaqiong; Chen, Feng; Su, Zhi; Qian, Yong; Wang, Fang-Xin; Wang, Xiuxiu; Zhao, Jing; Mao, Zong-Wan; Liu, Hong-Ke
2018-05-01
Metal-arene complexes containing bioactive natural-product derived ligands can have new and unusual properties. We report the synthesis, characterization and antiproliferative activity of two new Ru(II) arene complexes with imidazole (dichlorido complex 1) or bipyridyl (chlorido complex 2) ligands conjugated to 18β-glycyrrhetinic acid, an active triterpenoid metabolite of Glycyrrhiza glabra. In general, the conjugated ligands and complexes showed only moderate activity against HeLa (cervical), MCF-7 (breast) and A2780 (ovarian) cancer cells, although the activity of complex 2 in the former two cell lines approached that of the drug cisplatin. Complex 2 (in contrast to complex 1) also exhibited significant activity towards both Gram-positive S. aureus and Gram-negative E. coil bacteria. Complex 2 can induce condensation of DNA and enhances the generation of intracellular reactive oxygen species (ROS). The conjugation of natural products to ligands in organometallic half-sandwich complexes provides a strategy to enhance their biological activities. Copyright © 2018 Elsevier Inc. All rights reserved.
Reference-Free Removal of EEG-fMRI Ballistocardiogram Artifacts with Harmonic Regression
Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine; Pierce, Eric T; Purdon, Patrick L.; Brown, Emery N.
2016-01-01
Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI. PMID:26151100
Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging.
Wang, Chung-Hsin; Huang, Yu-Fen; Yeh, Chih-Kuang
2011-06-07
Targeted ultrasound contrast agents can be prepared by some specific bioconjugation techniques. The biotin-avidin complex is an extremely useful noncovalent binding system, but the system might induce immunogenic side effects in human bodies. Previous proposed covalently conjugated systems suffered from low conjugation efficiency and complex procedures. In this study, we propose a covalently conjugated nanobubble coupling with nucleic acid ligands, aptamers, for providing a higher specific affinity for ultrasound targeting studies. The sgc8c aptamer was linked with nanobubbles through thiol-maleimide coupling chemistry for specific targeting to CCRF-CEM cells. Further improvements to reduce the required time and avoid the degradation of nanobubbles during conjugation procedures were also made. Several investigations were used to discuss the performance and consistency of the prepared nanobubbles, such as size distribution, conjugation efficiency analysis, and flow cytometry assay. Further, we applied our conjugated nanobubbles to ex vivo ultrasound targeted imaging and compared the resulting images with optical images. The results indicated the availability of aptamer-conjugated nanobubbles in targeted ultrasound imaging and the practicability of using a highly sensitive ultrasound system in noninvasive biological research.
Adaptive noise canceling of electrocardiogram artifacts in single channel electroencephalogram.
Cho, Sung Pil; Song, Mi Hye; Park, Young Cheol; Choi, Ho Seon; Lee, Kyoung Joung
2007-01-01
A new method for estimating and eliminating electrocardiogram (ECG) artifacts from single channel scalp electroencephalogram (EEG) is proposed. The proposed method consists of emphasis of QRS complex from EEG using least squares acceleration (LSA) filter, generation of synchronized pulse with R-peak and ECG artifacts estimation and elimination using adaptive filter. The performance of the proposed method was evaluated using simulated and real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, which are independent component analysis (ICA) and ensemble average (EA) method. From this we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifacts from single channel EEG and simple to use for ambulatory/portable EEG monitoring system.
Conlon, Kimberly A.; Berrios, Miguel
2007-01-01
The specific light-induced, non-enzymatic photolysis of mOGG1 by porphyrin-conjugated or rose bengal-conjugated streptavidin and porphyrin-conjugated or rose bengal-conjugated first specific or secondary anti-IgG antibodies is reported. The porphyrin chlorin e6 and rose bengal were conjugated to either streptavidin, rabbit anti-mOGG1 primary specific antibody fractions or goat anti-rabbit IgG secondary antibody fractions. Under our experimental conditions, visible light of wavelengths greater than 600 nm induced the non-enzymatic degradation of mOGG1 when this DNA repair enzyme either directly formed a complex with chlorin e6-conjugated anti-mOGG1 primary specific antibodies or indirectly formed complexes with either streptavidin-chlorin e6 conjugates and biotinylated first specific anti-mOGG1 antibodies or first specific anti-mOGG1antibodies and chlorin e6-conjugated anti-rabbit IgG secondary antibodies. Similar results were obtained when rose bengal was used as photosensitizer instead of chlorine e6. The rate of the photochemical reaction of mOGG1 site-directed by all three chlorine e6 antibody complexes was not affected by the presence of the singlet oxygen scavenger sodium azide. Site-directed photoactivatable probes having the capacity to generate reactive oxygen species (ROS) while destroying the DNA repair system in malignant cells and tumors may represent a powerful strategy to boost selectivity, penetration and efficacy of current photodynamic (PDT) therapy methodologies. PMID:17251034
NASA Astrophysics Data System (ADS)
Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Li, En; Miura, Masahiro; Yasuno, Yoshiaki
2016-03-01
A new optical coherence angiography (OCA) method, called correlation mapping OCA (cmOCA), is presented by using the SNR-corrected complex correlation. An SNR-correction theory for the complex correlation calculation is presented. The method also integrates a motion-artifact-removal method for the sample motion induced decorrelation artifact. The theory is further extended to compute more reliable correlation by using multi- channel OCT systems, such as Jones-matrix OCT. The high contrast vasculature imaging of in vivo human posterior eye has been obtained. Composite imaging of cmOCA and degree of polarization uniformity indicates abnormalities of vasculature and pigmented tissues simultaneously.
Application of Conjugate Gradient methods to tidal simulation
Barragy, E.; Carey, G.F.; Walters, R.A.
1993-01-01
A harmonic decomposition technique is applied to the shallow water equations to yield a complex, nonsymmetric, nonlinear, Helmholtz type problem for the sea surface and an accompanying complex, nonlinear diagonal problem for the velocities. The equation for the sea surface is linearized using successive approximation and then discretized with linear, triangular finite elements. The study focuses on applying iterative methods to solve the resulting complex linear systems. The comparative evaluation includes both standard iterative methods for the real subsystems and complex versions of the well known Bi-Conjugate Gradient and Bi-Conjugate Gradient Squared methods. Several Incomplete LU type preconditioners are discussed, and the effects of node ordering, rejection strategy, domain geometry and Coriolis parameter (affecting asymmetry) are investigated. Implementation details for the complex case are discussed. Performance studies are presented and comparisons made with a frontal solver. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Sik; Lee, Sanggyun
2013-06-15
Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequenciesmore » are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.« less
Yamane, Takehiro; Hanaoka, Kenjiro; Muramatsu, Yasuaki; Tamura, Keita; Adachi, Yusuke; Miyashita, Yasushi; Hirata, Yasunobu; Nagano, Tetsuo
2011-11-16
Gadolinium ion (Gd(3+)) complexes are commonly used as magnetic resonance imaging (MRI) contrast agents to enhance signals in T(1)-weighted MR images. Recently, several methods to achieve cell-permeation of Gd(3+) complexes have been reported, but more general and efficient methodology is needed. In this report, we describe a novel method to achieve cell permeation of Gd(3+) complexes by using hydrophobic fluorescent dyes as a cell-permeability-enhancing unit. We synthesized Gd(3+) complexes conjugated with boron dipyrromethene (BDP-Gd) and Cy7 dye (Cy7-Gd), and showed that these conjugates can be introduced efficiently into cells. To examine the relationship between cell permeability and dye structure, we further synthesized a series of Cy7-Gd derivatives. On the basis of MR imaging, flow cytometry, and ICP-MS analysis of cells loaded with Cy7-Gd derivatives, highly hydrophobic and nonanionic dyes were effective for enhancing cell permeation of Gd(3+) complexes. Furthermore, the behavior of these Cy7-Gd derivatives was examined in mice. Thus, conjugation of hydrophobic fluorescent dyes appears to be an effective approach to improve the cell permeability of Gd(3+) complexes, and should be applicable for further development of Gd(3+)-based MRI contrast agents.
Sammis, Glenn M; Danjo, Hiroshi; Jacobsen, Eric N
2004-08-18
Cooperative heterobimetallic catalysis was used as a design principle to achieve a highly reactive system for the enantioselective conjugate addition of cyanide to alpha,beta-unsaturated imides. A dual-catalyst pathway involving chiral (salen)Al complex 1b and chiral (pybox)Er complex 4b provides measurable improvements in rates and enantioselectivities relative to single-catalyst systems. Mechanistic studies point to a cooperative bimetallic mechanism involving activation of the imide by the Al complex and activation of cyanide by the Er complex.
Vehicles of Logics: The Role of Policy Documents and Instructional Materials in Reform
ERIC Educational Resources Information Center
Woulfin, Sarah L.
2016-01-01
To understand the complexities of education policy implementation, it is necessary to consider how artifacts associated with reform are imbued with ideas, meanings, and values. This empirical paper draws on neo-institutional theory to reveal how artifacts carried particular logics (D'Adderio in "J Inst Econ" 7(2):197-230, 2011; Feldman…
Analyzing Cultural Artifacts for the Introduction, Perpetuation, or Reinforcement of Moral Ideals
ERIC Educational Resources Information Center
Williams, Jennifer
2013-01-01
The development and socialization of morals is a complex concept for students studying ethics. To help students understand the role social learning theory plays in the development of morality, an activity was created focusing on cultural artifacts and their introduction, perpetuation, and/or reinforcement of morality. The aim of this assignment is…
Waite, Carolyn L.; Roth, Charles M.
2011-01-01
Generation 5 poly(amidoamine) (PAMAM) dendrimers were modified by the addition of cyclic RGD targeting peptides and were evaluated for their ability to associate with siRNA and mediate siRNA delivery to U87 malignant glioma cells. PAMAM-RGD conjugates were able to complex with siRNA to form complexes of approximately 200 nm in size. Modest siRNA delivery was observed in U87 cells using either PAMAM or PAMAM-RGD conjugates. PAMAM-RGD conjugates prevented the adhesion of U87 cells to fibrinogen coated plates, in a manner that depends on the number of RGD ligands per dendrimer. The delivery of siRNA through three-dimensional multicellular spheroids of U87 cells was enhanced using PAMAM-RGD conjugates compared to the native PAMAM dendrimers, presumably by interfering with integrin-ECM contacts present in a three-dimensional tumor model. PMID:19775120
York, Adam W.; Zhang, Yilin; Holley, Andrew C.; Guo, Yanlin; Huang, Faqing; McCormick, Charles L.
2009-01-01
Cell specific delivery of small interfering ribonucleic acid (siRNA) using well-defined multivalent folate-conjugated block copolymers is reported. Primary amine functional, biocompatible, hydrophilic-block-cationic copolymers were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. N-(2-hydroxypropyl)methacrylamide) (HPMA), a permanently hydrophilic monomer, was copolymerized with a primary amine containing monomer, N-(3-aminopropyl)methacrylamide (APMA). Poly(HPMA) confers biocompatibility while APMA provides amine functionality allowing conjugation of folate derivatives. (HPMA-stat-APMA) was chain extended with a cationic block, poly(N-[3-(dimethylamino)propyl]methacrylamide) in order to promote electrostatic complexation between the copolymer and the negatively charged phosphate backbone of siRNA. Notably, poly(HPMA) stabilizes the neutral complexes in aqueous solution while APMA allows the conjugation of a targeting moiety, thus, dually circumventing problems associated with the delivery of genes via cationically charged complexes (universal transfection). Fluorescence microscopy and gene down-regulation studies indicate that these neutral complexes can be specifically delivered to cancer cells that over-express folate receptors. PMID:19290625
Singh, Surya Prakash; Sharma, Mrinalini; Gupta, Pradeep Kumar
2015-03-01
We report results of our investigations on the cytotoxic efficacy of Organically modified silica nanoparticle (SiNp)-curcumin complex conjugated with hyaluronic acid (HA) (HA-SiNp-cur) and HA free SiNp-cur complex in human colon carcinoma (colo-205) cells. Curcumin was loaded in SiNp and resulting complexes were conjugated with HA, which has a strong affinity for cancer cells expressing CD44. After conjugation with HA, the average size of the SiNp-cur nanoparticles increased from 45 nm to 70 nm, and zeta potential changed to -33 mV from -26 mV. Compared to free curcumin and SiNp-cur, curcumin in HA-SiNp was more stable. The uptake and cytotoxicity of curcumin delivered through HA-SiNp-cur was significantly higher in monolayer and spheroids as compared to free curcumin and HA free SiNp-cur. Concomitantly, HA-SiNp-cur complex treatment resulted in higher inhibition of growth and migration of cells in spheroids. Further, incubation of colo-205 cancer cells with an excess of HA impaired the uptake of HA-SiNp-cur confirming the involvement of receptor mediated endocytosis in the uptake of HA conjugated nanocomplex. Time dependent increase in the fluorescence of curcumin observed in the release media when HA-SiNp-cur was incubated with hyaluronidase suggests involvement of enzyme in release of curcumin from nanoparticle. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vinodha, M.; Senthilkumar, K.
2018-05-01
The structure-activity relationship of fused π-conjugated imidazolium cation with three counter anion molecules, BF4-, CF3SO3- and (CF3SO2)2N-, was studied using electronic structure calculations. The structural, opto-electronic and charge transport properties of these complexes were studied. The charge transfer from π-conjugated imidazolium(I) to counter anion was confirmed in all the studied complexes. Interaction energy varies significantly depending on the counter anion and the stability was found higher for I-BF4 complex than both I-CF3SO3 and I-(CF3SO2)2N complexes. The strong (C-H)+...F- hydrogen bond of length 1.95 Å between fused π-conjugated imidazolium and BF-4 anion is the driving force for the strongest interaction energy in I-BF4 complex. The energy decomposition analysis confirms that the interaction between imidazolium and counter anion is mainly driven by electrostatic and orbital interaction. It has been observed that the absorption spectra of the complex are independent of anion nature but the influence of anion character is observed on frontier molecular orbital pattern. The charge transport property of I-BF4 complex was studied by using tight-binding Hamiltonian approach and found that the hole mobility in I-BF4 is 1.13 × 10-4 cm2 V-1 s-1.
Javidi, Soroush; Mandic, Danilo P.; Took, Clive Cheong; Cichocki, Andrzej
2011-01-01
A new class of complex domain blind source extraction algorithms suitable for the extraction of both circular and non-circular complex signals is proposed. This is achieved through sequential extraction based on the degree of kurtosis and in the presence of non-circular measurement noise. The existence and uniqueness analysis of the solution is followed by a study of fast converging variants of the algorithm. The performance is first assessed through simulations on well understood benchmark signals, followed by a case study on real-time artifact removal from EEG signals, verified using both qualitative and quantitative metrics. The results illustrate the power of the proposed approach in real-time blind extraction of general complex-valued sources. PMID:22319461
Controlled assembly of artificial protein-protein complexes via DNA duplex formation.
Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J
2015-03-18
DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.
Non-Cartesian Parallel Imaging Reconstruction
Wright, Katherine L.; Hamilton, Jesse I.; Griswold, Mark A.; Gulani, Vikas; Seiberlich, Nicole
2014-01-01
Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be employed to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the non-homogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian GRAPPA, and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered. PMID:24408499
Meng, Yuguang; Lei, Hao
2010-06-01
An efficient iterative gridding reconstruction method with correction of off-resonance artifacts was developed, which is especially tailored for multiple-shot non-Cartesian imaging. The novelty of the method lies in that the transformation matrix for gridding (T) was constructed as the convolution of two sparse matrices, among which the former is determined by the sampling interval and the spatial distribution of the off-resonance frequencies and the latter by the sampling trajectory and the target grid in the Cartesian space. The resulting T matrix is also sparse and can be solved efficiently with the iterative conjugate gradient algorithm. It was shown that, with the proposed method, the reconstruction speed in multiple-shot non-Cartesian imaging can be improved significantly while retaining high reconstruction fidelity. More important, the method proposed allows tradeoff between the accuracy and the computation time of reconstruction, making customization of the use of such a method in different applications possible. The performance of the proposed method was demonstrated by numerical simulation and multiple-shot spiral imaging on rat brain at 4.7 T. (c) 2010 Wiley-Liss, Inc.
Body MR Imaging: Artifacts, k-Space, and Solutions
Seethamraju, Ravi T.; Patel, Pritesh; Hahn, Peter F.; Kirsch, John E.; Guimaraes, Alexander R.
2015-01-01
Body magnetic resonance (MR) imaging is challenging because of the complex interaction of multiple factors, including motion arising from respiration and bowel peristalsis, susceptibility effects secondary to bowel gas, and the need to cover a large field of view. The combination of these factors makes body MR imaging more prone to artifacts, compared with imaging of other anatomic regions. Understanding the basic MR physics underlying artifacts is crucial to recognizing the trade-offs involved in mitigating artifacts and improving image quality. Artifacts can be classified into three main groups: (a) artifacts related to magnetic field imperfections, including the static magnetic field, the radiofrequency (RF) field, and gradient fields; (b) artifacts related to motion; and (c) artifacts arising from methods used to sample the MR signal. Static magnetic field homogeneity is essential for many MR techniques, such as fat saturation and balanced steady-state free precession. Susceptibility effects become more pronounced at higher field strengths and can be ameliorated by using spin-echo sequences when possible, increasing the receiver bandwidth, and aligning the phase-encoding gradient with the strongest susceptibility gradients, among other strategies. Nonuniformities in the RF transmit field, including dielectric effects, can be minimized by applying dielectric pads or imaging at lower field strength. Motion artifacts can be overcome through respiratory synchronization, alternative k-space sampling schemes, and parallel imaging. Aliasing and truncation artifacts derive from limitations in digital sampling of the MR signal and can be rectified by adjusting the sampling parameters. Understanding the causes of artifacts and their possible solutions will enable practitioners of body MR imaging to meet the challenges of novel pulse sequence design, parallel imaging, and increasing field strength. ©RSNA, 2015 PMID:26207581
Rhodium(I)-Complexes Catalyzed 1,4-Conjugate Addition of Arylzinc Chlorides to N-Boc-4-pyridone.
Guo, Fenghai; McGilvary, Matthew A; Jeffries, Malcolm C; Graves, Briana N; Graham, Shekinah A; Wu, Yuelin
2017-05-01
Rhodium(I)-complexes catalyzed the 1,4-conjugate addition of arylzinc chlorides to N -Boc-4-pyridone in the presence of chlorotrimethylsilane (TMSCl). A combination of [RhCl(C₂H₄)₂]₂ and BINAP was determined to be the most effective catalyst to promote the 1,4-conjugate addition reactions of arylzinc chlorides to N -Boc-4-pyridone. A broad scope of arylzinc reagents with both electron-withdrawing and electron-donating substituents on the aromatic ring successfully underwent 1,4-conjugate addition to N -Boc-4-pyridone to afford versatile 1,4-adducts 2-substituted-2,3-dihydropyridones in good to excellent yields (up to 91%) and excellent ee (up to 96%) when ( S )-BINAP was used as chiral ligand.
Vitha, Tomas; Kubícek, Vojtech; Hermann, Petr; Kolar, Zvonimir I; Wolterbeek, Hubert Th; Peters, Joop A; Lukes, Ivan
2008-03-04
The adsorption on hydroxyapatite of three conjugates of a bisphosphonate and a macrocycle having C1, C2, and C3 spacers and their terbium complexes was studied by the radiotracer method using 160Tb as the label. The radiotracer-containing complex of the conjugate with the C3 spacer was used as a probe for the determination of the adsorption parameters of other bisphosphonates that lack a DOTA unit. A physicochemical model describing the competitive adsorption was successfully applied in the fitting of the obtained data. The maximum adsorption capacity of bisphosphonates containing bulky substituents is determined mainly by their size. For bisphosphonates having no DOTA moiety, the maximum adsorption capacity is determined by the electrostatic repulsion between negatively charged bisphosphonate groups. Compounds with a hydroxy or amino group attached to the alpha-carbon atom show higher affinities. Macrocyclic compounds containing a short spacer between the different bisphosphonic acid groups and the macrocyclic unit exhibit high affinities, indicating a synergic effect of the bisphosphonic and the macrocyclic groups during adsorption. The competition method described uses a well-characterized complex and allows a simple evaluation of the adsorption behavior of bisphosphonates. The application of the macrocycle-bisphosphonate conjugates allows easy radiolabeling via complexation of a suitable metal isotope.
Antibody-drug conjugates: Intellectual property considerations
Storz, Ulrich
2015-01-01
Antibody-drug conjugates are highly complex entities that combine an antibody, a linker and a toxin. This complexity makes them demanding both technically and from a regulatory point of view, and difficult to deal with in their patent aspects. This article discusses different issues of patent protection and freedom to operate with regard to this promising new class of drugs. PMID:26292154
The HIP2~Ubiquitin Conjugate Forms a Non-Compact Monomeric Thioester during Di-Ubiquitin Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Benjamin W.; Barber, Kathryn R.; Shilton, Brian H.
2015-03-23
Polyubiquitination is a post-translational event used to control the degradation of damaged or unwanted proteins by modifying the target protein with a chain of ubiquitin molecules. One potential mechanism for the assembly of polyubiquitin chains involves the dimerization of an E2 conjugating enzyme allowing conjugated ubiquitin molecules to be put into close proximity to assist reactivity. HIP2 (UBE2K) and Ubc1 (yeast homolog of UBE2K) are unique E2 conjugating enzymes that each contain a C-terminal UBA domain attached to their catalytic domains, and they have basal E3-independent polyubiquitination activity. Although the isolated enzymes are monomeric, polyubiquitin formation activity assays show thatmore » both can act as ubiquitin donors or ubiquitin acceptors when in the activated thioester conjugate suggesting dimerization of the E2-ubiquitin conjugates. Stable disulfide complexes, analytical ultracentrifugation and small angle x-ray scattering were used to show that the HIP2-Ub and Ubc1-Ub thioester complexes remain predominantly monomeric in solution. Models of the HIP2-Ub complex derived from SAXS data show the complex is not compact but instead forms an open or backbent conformation similar to UbcH5b~Ub or Ubc13~Ub where the UBA domain and covalently attached ubiquitin reside on opposite ends of the catalytic domain. Activity assays showed that full length HIP2 exhibited a five-fold increase in the formation rate of di-ubiquitin compared to a HIP2 lacking the UBA domain. This difference was not observed for Ubc1 and may be attributed to the closer proximity of the UBA domain in HIP2 to the catalytic core than for Ubc1.« less
Kowalska, Dorota; Szalkowski, Marcin; Ashraf, Khuram; Grzelak, Justyna; Lokstein, Heiko; Niedziolka-Jonsson, Joanna; Cogdell, Richard; Mackowski, Sebastian
2018-03-01
A polyhistidine tag (His-tag) present on Chlorobaculum tepidum reaction centers (RCs) was used to immobilize photosynthetic complexes on a silver nanowire (AgNW) modified with nickel-chelating nitrilo-triacetic acid (Ni-NTA). The optical properties of conjugated nanostructures were studied using wide-field and confocal fluorescence microscopy. Plasmonic enhancement of RCs conjugated to AgNWs was observed as their fluorescence intensity dependence on the excitation wavelength does not follow the excitation spectrum of RC complexes in solution. The strongest effect of plasmonic interactions on the emission intensity of RCs coincides with the absorption spectrum of AgNWs and is observed for excitation into the carotenoid absorption. From the absence of fluorescence decay shortening, we attribute the emission enhancement to increase of absorption in RC complexes.
Lebdusková, Petra; Sour, Angélique; Helm, Lothar; Tóth, Eva; Kotek, Jan; Lukes, Ivan; Merbach, André E
2006-07-28
A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.
Rump, E T; de Vrueh, R L; Manoharan, M; Waarlo, I H; van Veghel, R; Biessen, E A; van Berkel, T J; Bijsterbosch, M K
2000-06-01
Low-density lipoprotein (LDL) has been proposed as carrier for the selective delivery of anticancer drugs to tumor cells. We reported earlier the association of several lipidic steroid-conjugated anticancer oligodeoxynucleotides (ODNs) with LDL. In the present study, we determined the stability of these complexes. When the complexes were incubated with a mixture of high-density lipoprotein and albumin, or with rat plasma, the oleoyl steroid-conjugated ODNs appeared to be more stably associated with LDL than the cholesteryl-conjugated ODN. Intravenously injected free lipid-ODNs were very rapidly cleared from the circulation of rats. The area under the curve (AUC) of the lipid-ODNs in plasma was <0.4 microg x min/mL. After complexation with LDL, plasma clearance of the lipid-ODNs was delayed. This was most evident for ODN-5, the ODN conjugated with the oleoyl ester of lithocholic acid (AUC = 6.82 +/- 1.34 microg x min/mL). The AUC of ODN-4, a cholesteryl-conjugated ODN, was 1.49 +/- 0.37 microg x min/mL. In addition, the liver uptake of the LDL-complexed lipid-ODNs was reduced. The lipid-ODNs were also administered as a complex with lactosylated LDL, a modified LDL particle that is selectively taken up by the liver. A high proportion of ODN-5 was transported to the liver along with lactosylated LDL (69.1 +/- 8.1% of the dose at 15 min after injection), whereas much less ODN-4 was transported (36.6 +/- 0.1% of the dose at 15 min after injection). We conclude that the oleoyl ester of lithocholic acid is a more potent lipid anchor than the other steroid lipid anchors. Because of the stable association, the oleoyl ester of lithocholic acid is an interesting candidate for tumor targeting of anticancer ODNs with lipoproteins.
Xie, Jinbing; Lu, Yang; Wang, Wei; Zhu, Hui; Wang, Zhigang; Cao, Zhiqiang
2017-06-01
Polymer-protein conjugation has been extensively explored toward a better protein drug with improved pharmacokinetics. However, a major problem with polymer-protein conjugation is that the polymers drastically reduce the bioactivity of the modified protein. There is no perfect solution to prevent the bioactivity loss, no matter the polymer is conjugated in a non-site specific way, or a more complex site-specific procedure. Here the authors report for the first time that when zwitterionic carboxybetaine polymer (PCB) is conjugated to insulin through simple conventional coupling chemistry. The resulting PCB-insulin does not show a significant reduction of in vitro bioactivity. The obtained PCB-insulin shows two significant advantages as a novel pharmaceutical agent. First, its therapeutic performance is remarkable. For PCB-insulin, there is a 24% increase of in vivo pharmacological activity of lowering blood glucose compared with native insulin. Such uncommonly seen increase has rarely been reported and is expected to be due to both the improved pharmacokinetics and retained bioactivity of PCB-insulin. Second, the production is simple from manufacturing standpoints. Conjugation procedure involves only one-step coupling reaction without complex site-specific linkage technique. The synthesized PCB-insulin conjugates do not require chromatographic separation to purify and obtain particular isoforms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.
2007-08-29
High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) theremore » is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.« less
Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.
Xu, Lai; Li, Youyong
2016-06-30
The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.
Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud
2017-10-01
Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.
Biosensors from conjugated polyelectrolyte complexes
Wang, Deli; Gong, Xiong; Heeger, Peter S.; Rininsland, Frauke; Bazan, Guillermo C.; Heeger, Alan J.
2002-01-01
A charge neutral complex (CNC) was formed in aqueous solution by combining an orange light emitting anionic conjugated polyelectrolyte and a saturated cationic polyelectrolyte at a 1:1 ratio (per repeat unit). Photoluminescence (PL) from the CNC can be quenched by both the negatively charged dinitrophenol (DNP) derivative, (DNP-BS−), and positively charged methyl viologen (MV2+). Use of the CNC minimizes nonspecific interactions (which modify the PL) between conjugated polyelectrolytes and biopolymers. Quenching of the PL from the CNC by the DNP derivative and specific unquenching on addition of anti-DNP antibody (anti-DNP IgG) were observed. Thus, biosensing of the anti-DNP IgG was demonstrated. PMID:11756675
Motion artifacts in MRI: A complex problem with many partial solutions.
Zaitsev, Maxim; Maclaren, Julian; Herbst, Michael
2015-10-01
Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artifacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artifacts, but no single method can be applied in all imaging situations. Instead, a "toolbox" of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artifacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artifacts, with the aim of aiding artifact detection and mitigation in particular clinical situations. © 2015 Wiley Periodicals, Inc.
Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham
2016-01-01
NASA's Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft-Sun velocity varies by +/-3 kms-1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne-Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels-a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.
Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate
NASA Astrophysics Data System (ADS)
Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo
2017-01-01
Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.
Detection of artifacts from high energy bursts in neonatal EEG.
Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar
2013-11-01
Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the feature subset producing highest classification accuracy. The suggested feature based classification method is executed using our recorded neonatal EEG dataset, consisting of burst and artifact segments. We obtain 78% sensitivity and 72% specificity as the accuracy measures. The accuracy obtained using the proposed method is found to be about 20% higher than that of the reference approaches. Joint use of the proposed method with our previous work on burst detection outperforms reference methods on simultaneous burst and artifact detection. As the proposed method supports detection of a wide range of artifact patterns, it can be improved to incorporate the detection of artifacts within other seizure patterns and background EEG information as well. © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Human breast milk is a complex mixture of organic and inorganic compounds. Some compounds, such as conjugated linoleic acid (CLA), come partly from the mother's diet and are produced by the mother's body and secreted into the milk. Although several studies have examined the effect of chronic CLA sup...
Cheah, Joleen S; Yamada, Soichiro
2017-12-02
Protein-protein interactions are the molecular basis of cell signaling. Recently, proximity based biotin identification (BioID) has emerged as an alternative approach to traditional co-immunoprecipitation. In this protocol, a mutant biotin ligase promiscuously labels proximal binding partners with biotin, and resulting biotinylated proteins are purified using streptavidin conjugated beads. This approach does not require preservation of protein complexes in vitro, making it an ideal approach to identify transient or weak protein complexes. However, due to the high affinity bond between streptavidin and biotin, elution of biotinylated proteins from streptavidin conjugated beads requires harsh denaturing conditions, which are often incompatible with downstream processing. To effectively release biotinylated proteins bound to streptavidin conjugated beads, we designed a series of experiments to determine optimal binding and elution conditions. Interestingly, the concentrations of SDS and IGEPAL-CA630 during the incubation with streptavidin conjugated beads were the key to effective elution of biotinylated proteins using excess biotin and heating. This protocol provides an alternative method to isolate biotinylated proteins from streptavidin conjugated beads that is suitable for further downstream analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho; Ito, Shigeru; Sano, Yoshitaka; Sato, Mayumi; Kanno, Toshihiko; Okada, Hiroyuki; Torizuka, Tatsuo; Nishizawa, Sadahiko
2014-06-01
While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV.
Dynamic Gate Product and Artifact Generation from System Models
NASA Technical Reports Server (NTRS)
Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris
2011-01-01
Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.
Larnaudie, Sophie C; Brendel, Johannes C; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Catrouillet, Sylvain; Sanchis, Joaquin; Coverdale, James P C; Song, Ji-Inn; Habtemariam, Abraha; Sadler, Peter J; Jolliffe, Katrina A; Perrier, Sébastien
2018-01-08
Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.
Soler, Marta; Feliu, Lidia; Planas, Marta; Ribas, Xavi; Costas, Miquel
2016-08-16
The rich chemical and structural versatility of transition metal complexes provides numerous novel paths to be pursued in the design of molecules that exert particular chemical or physicochemical effects that could operate over specific biological targets. However, the poor cell permeability of metallodrugs represents an important barrier for their therapeutic use. The conjugation between metal complexes and a functional peptide vector can be regarded as a versatile and potential strategy to improve their bioavailability and accumulation inside cells, and the site selectivity of their effect. This perspective lies in reviewing the recent advances in the design of metallopeptide conjugates for biomedical applications. Additionally, we highlight the studies where this approach has been directed towards the incorporation of redox active metal centers into living organisms for modulating the cellular redox balance, as a tool with application in anticancer therapy.
Wallois, F; Vecchierini, M-F; Héberlé, C; Walls-Esquivel, E
2007-01-01
EEG recording techniques in early premature babies are not very different from those used for full-term neonates. Here, we emphasise the most important points: asepsis precautions, full knowledge of the clinical data and drug therapies, the fundamental role of a well-trained technician in supervising the EEG recording and monitoring the baby. The best electrode positions, the most informative montages and their standardisation between neurophysiological laboratories, are suggested. Artifact detection constitutes an important aspect of EEG signal analysis in preterm babies of less than 30 weeks. It is obviously necessary to discriminate between meaningful information and artefacts. The complexity of the signal in neonates makes artifact detection difficult. We present some characteristic features and describe some methods for eliminating them. We underline the positive aspect of some artifacts and their clinical use. We emphasise the crucial role of the technicians.
Gorovits, Boris; Alley, Stephen C; Bilic, Sanela; Booth, Brian; Kaur, Surinder; Oldfield, Phillip; Purushothama, Shobha; Rao, Chetana; Shord, Stacy; Siguenza, Patricia
2013-05-01
Antibody-drug conjugates (ADCs) typically consist of a cytotoxic drug covalently bound to an antibody by a linker. These conjugates have the potential to substantially improve efficacy and reduce toxicity compared with cytotoxic small-molecule drugs. Since ADCs are generally complex heterogeneous mixtures of multiple species, these novel therapeutic products present unique bioanalytical challenges. The growing number of ADCs being developed across the industry suggests the need for alignment of the bioanalytical methods or approaches used to assess the multiple species and facilitate consistent interpretation of the bioanalytical data. With limited clinical data, the current strategies that can be used to provide insight into the relationship between the multiple species and the observed clinical safety and efficacy are still evolving. Considerations of the bioanalytical strategies for ADCs based on the current industry practices that take into account the complexity and heterogeneity of ADCs are discussed.
Shinkai, Yasuhiro; Kashihara, Shinichi; Minematsu, Go; Fujii, Hirofumi; Naemura, Madoka; Kotake, Yojiro; Morita, Yasutaka; Ohnuki, Koichiro; Fokina, Alesya A; Stetsenko, Dmitry A; Filichev, Vyacheslav V; Fujii, Masayuki
2017-06-01
Herein we described the synthesis of siRNA-NES (nuclear export signal) peptide conjugates by solid phase fragment coupling and the application of them to silencing of bcr/abl chimeric gene in human chronic myelogenous leukemia cell line K562. Two types of siRNA-NES conjugates were prepared, and both sense strands at 5' ends were covalently linked to a NES peptide derived from TFIIIA and HIV-1 REV, respectively. Significant enhancement of silencing efficiency was observed for both of them. siRNA-TFIIIA NES conjugate suppressed the expression of BCR/ABL gene to 8.3% at 200 nM and 11.6% at 50 nM, and siRNA-HIV-1REV NES conjugate suppressed to 4.0% at 200 nM and 6.3% at 50 nM, whereas native siRNA suppressed to 36.3% at 200 nM and 30.2% at 50 nM. We could also show complex of siRNA-NES conjugate and designed amphiphilic peptide peptideβ7 could be taken up into cells with no cytotoxicity and showed excellent silencing efficiency. We believe that the complex siRNA-NES conjugate and peptideβ7 is a promising candidate for in vivo use and therapeutic applications.
Optimizing Complexity Measures for fMRI Data: Algorithm, Artifact, and Sensitivity
Rubin, Denis; Fekete, Tomer; Mujica-Parodi, Lilianne R.
2013-01-01
Introduction Complexity in the brain has been well-documented at both neuronal and hemodynamic scales, with increasing evidence supporting its use in sensitively differentiating between mental states and disorders. However, application of complexity measures to fMRI time-series, which are short, sparse, and have low signal/noise, requires careful modality-specific optimization. Methods Here we use both simulated and real data to address two fundamental issues: choice of algorithm and degree/type of signal processing. Methods were evaluated with regard to resilience to acquisition artifacts common to fMRI as well as detection sensitivity. Detection sensitivity was quantified in terms of grey-white matter contrast and overlap with activation. We additionally investigated the variation of complexity with activation and emotional content, optimal task length, and the degree to which results scaled with scanner using the same paradigm with two 3T magnets made by different manufacturers. Methods for evaluating complexity were: power spectrum, structure function, wavelet decomposition, second derivative, rescaled range, Higuchi’s estimate of fractal dimension, aggregated variance, and detrended fluctuation analysis. To permit direct comparison across methods, all results were normalized to Hurst exponents. Results Power-spectrum, Higuchi’s fractal dimension, and generalized Hurst exponent based estimates were most successful by all criteria; the poorest-performing measures were wavelet, detrended fluctuation analysis, aggregated variance, and rescaled range. Conclusions Functional MRI data have artifacts that interact with complexity calculations in nontrivially distinct ways compared to other physiological data (such as EKG, EEG) for which these measures are typically used. Our results clearly demonstrate that decisions regarding choice of algorithm, signal processing, time-series length, and scanner have a significant impact on the reliability and sensitivity of complexity estimates. PMID:23700424
Jia, Jianhua; Cui, Mengchao; Dai, Jiapei; Liu, Boli
2015-04-14
Technetium-99m-labeled cyclopentadienyl tricarbonyl complexes conjugated with the 2-phenylbenzothiazole binding motif were synthesized. The rhenium surrogates , , and were demonstrated to have moderate to high affinities for Aβ1-42 aggregates with Ki values of 142, 76, 64 and 24 nM, respectively. During the fluorescence staining of brain sections of transgenic mice and patients with Alzheimer's disease, these rhenium complexes demonstrated perfect and intense labeling of Aβ plaques. Moreover, in in vitro autoradiography, (99m)Tc-labeled complexes clearly detected β-amyloid plaques on sections of brain tissue from transgenic mice, which confirmed the sufficient affinity of these tracers for Aβ plaques. However, these compounds did not show desirable properties in vivo, especially showing poor brain uptake (below 0.5% ID g(-1)), which will hinder the further development of these tracers as brain imaging agents. Nonetheless, it is encouraging that these (99m)Tc-labeled complexes designed by a conjugate approach displayed sufficient affinities for Aβ plaques.
Polymer therapeutics: concepts and applications.
Haag, Rainer; Kratz, Felix
2006-02-13
Polymer therapeutics encompass polymer-protein conjugates, drug-polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer-protein conjugates with improved stability and pharmacokinetic properties have been developed, for example, by anchoring enzymes or biologically relevant proteins to polyethylene glycol components (PEGylation). Several polymer-protein conjugates have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conjugates of doxorubicin, camptothecin, paclitaxel, and platinum(II) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. These include polyanionic polymers for the inhibition of virus attachment, polycationic complexes with DNA or RNA (polyplexes), and dendritic core-shell architectures for the encapsulation of drugs. In this Review an overview of polymer therapeutics is presented with a focus on concepts and examples that characterize the salient features of the drug-delivery systems.
Antipova, Anna S; Zelikina, Darya V; Shumilina, Elena A; Semenova, Maria G
2016-10-01
The present work is focused on the structural transformation of the complexes, formed between covalent conjugate (sodium caseinate + maltodextrin) and an equimass mixture of the polyunsaturated lipids (PULs): (soy phosphatidylcholine + triglycerides of flaxseed oil) stabilized by a plant antioxidant (an essential oil of clove buds), in the simulated conditions of the gastrointestinal tract. The conjugate was used here as a food-grade delivery vehicle for the PULs. The release of these PULs at each stage of the simulated digestion was estimated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ibraimi, Filiz; Kriz, Dario; Lu, Min; Hansson, Lars-Olof; Kriz, Kirstin
2006-02-01
A rapid (5.5 min) one-step whole blood C-reactive protein (CRP) magnetic permeability immunoassay utilizing monoclonal antibody conjugated dextran iron oxide nanoparticles (70 nm) as superparamagnetic labels and mixed fractions (1:1 ratio of 15-40 and 60 microm) of polyclonal anti-CRP conjugated silica microparticles for enhanced sedimentation is described. In this one-step assay procedure, a whole blood sample (4 microl) is applied to an assay glass vial, containing both antibody conjugates, and mixed for 30 s. The target analyte, CRP, forms a sandwich complex between the conjugated nanoparticles and microparticles, and, subsequently, the complex sediments under normal gravitation within 5 min to the bottom of the vial. The magnetic permeability increase of the sediment due to the presence of the complexed superparamagnetic nanoparticles is determined using an inductance-based transducer. Assayed patient whole blood samples were compared with the Abbott Diagnostics Architect reference method. A strong linear correlation was observed for the CRP concentration range 0-260 mg/l in whole blood (y=1.001x+0.42, R2=0.982, n=50). The CRP assay presented showed a limit of detection of 3 mg/l and a total imprecision (coefficient of variation) of 10.5%. On the basis of our observations, we propose a rapid, one-step, CRP assay for near-patient testing.
Kim, Hee-Kyung; Park, Ji-Ae; Kim, Kyeong Min; Nasiruzzaman, Sk Md; Kang, Duk-Sik; Lee, Jongmin; Chang, Yongmin; Kim, Tae-Jeong
2010-11-28
We report the synthesis of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes (1a-b) and their Gd-complexes [Gd(L)(H(2)O)] (2a-b, L = 1a-b) for use as new MRI blood-pool contrast agents. High R(1) relaxivity in HSA as well as high thermodynamic and kinetic stabilities is observed for 2a.
USDA-ARS?s Scientific Manuscript database
Ubiquitylation, which regulates most biological pathways, occurs through an enzymatic cascade involving a ubiquitin (ub) activating enzyme (E1), a ub conjugating enzyme (E2) and a ub ligase (E3). UbcH3 is the E2 that interacts with SCF (Skp1/Cul1/F-box protein) complex and ubiquitylates many protein...
Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.
Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong
2011-09-01
Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.
Enhanced photophysics of conjugated polymers
Chen, Liaohai [Argonne, IL; Xu, Su [Santa Clara, CA; McBranch, Duncan [Santa Fe, NM; Whitten, David [Santa Fe, NM
2003-05-27
The addition of oppositely charged surfactant to fluorescent ionic conjugated polymer forms a polymer-surfactant complex that exhibits at least one improved photophysical property. The conjugated polymer is a fluorescent ionic polymer that typically has at least one ionic side chain or moiety that interacts with the specific surfactant selected. The photophysical property improvements may include increased fluorescence quantum efficiency, wavelength-independent emission and absorption spectra, and more stable fluorescence decay kinetics. The complexation typically occurs in a solution of a polar solvent in which the polymer and surfactant are soluble, but it may also occur in a mixture of solvents. The solution is commonly prepared with a surfactant molecule:monomer repeat unit of polymer ratio ranging from about 1:100 to about 1:1. A polymer-surfactant complex precipitate is formed as the ratio approaches 1:1. This precipitate is recoverable and usable in many forms.
NASA Technical Reports Server (NTRS)
Freund, Roland
1988-01-01
Conjugate gradient type methods are considered for the solution of large linear systems Ax = b with complex coefficient matrices of the type A = T + i(sigma)I where T is Hermitian and sigma, a real scalar. Three different conjugate gradient type approaches with iterates defined by a minimal residual property, a Galerkin type condition, and an Euclidian error minimization, respectively, are investigated. In particular, numerically stable implementations based on the ideas behind Paige and Saunder's SYMMLQ and MINRES for real symmetric matrices are proposed. Error bounds for all three methods are derived. It is shown how the special shift structure of A can be preserved by using polynomial preconditioning. Results on the optimal choice of the polynomial preconditioner are given. Also, some numerical experiments for matrices arising from finite difference approximations to the complex Helmholtz equation are reported.
ACHIEVING CONSISTENT DOPPLER MEASUREMENTS FROM SDO /HMI VECTOR FIELD INVERSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.
NASA’s Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft–Sun velocity varies by ±3 km s{sup −1} over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne–Eddington inversions in the HMI pipeline. The procedure ultimately uses 32more » velocity-dependent coefficients to adjust 10 million pixels—a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.« less
Situ, Wenbei; Li, Xiaoxi; Liu, Jia; Chen, Ling
2015-04-29
For effective oral delivery of polypeptide or protein and enhancement their oral bioavailability, a new resistant starch-glycoprotein complex bioadhesive carrier and an oral colon-targeted bioadhesive delivery microparticle system were developed. A glycoprotein, concanavalin A (Con A), was successfully conjugated to the molecules of resistant starch acetate (RSA), leading to the formation of resistant starch-glycoprotein complex. This Con A-conjugated RSA film as a coating material showed an excellent controlled-release property. In streptozotocin (STZ)-induced type II diabetic rats, the insulin-loaded microparticles coated with this Con A-conjugated RSA film exhibited good hypoglycemic response for keeping the plasma glucose level within the normal range for totally 44-52 h after oral administration with different insulin dosages. Oral glucose tolerance tests indicated that successive oral administration of these colon-targeted bioadhesive microparticles with insulin at a level of 50 IU/kg could achieve a hypoglycemic effect similar to that by injection of insulin at 35 IU/kg. Therefore, the potential of this new Con A-conjugated RSA film-coated microparticle system has been demonstrated to be capable of improving the oral bioavailability of bioactive proteins and peptides.
E2~Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruneda, Jonathan N.; Smith, F. Donelson; Daurie, Angela
Pathogenic bacteria introduce effector proteins directly into the cytosol of eukaryotic cells to promote invasion and colonization. OspG, a Shigella spp. effector kinase, plays a role in this process by helping to suppress the host inflammatory response. OspG has been reported to bind host E2 ubiquitin-conjugating enzymes activated with ubiquitin (E2~Ub), a key enzyme complex in ubiquitin transfer pathways. A cocrystal structure of the OspG/UbcH5c~Ub complex reveals that complex formation has important ramifications for the activity of both OspG and the UbcH5c~Ub conjugate. OspG is a minimal kinase domain containing only essential elements required for catalysis. UbcH5c~Ub binding stabilizes anmore » active conformation of the kinase, greatly enhancing OspG kinase activity. In contrast, interaction with OspG stabilizes an extended, less reactive form of UbcH5c~Ub. Recognizing conserved E2 features, OspG can interact with at least ten distinct human E2s~Ub. Mouse oral infection studies indicate that E2~Ub conjugates act as novel regulators of OspG effector kinase function in eukaryotic host cells.« less
Methods for automatic detection of artifacts in microelectrode recordings.
Bakštein, Eduard; Sieger, Tomáš; Wild, Jiří; Novák, Daniel; Schneider, Jakub; Vostatek, Pavel; Urgošík, Dušan; Jech, Robert
2017-10-01
Extracellular microelectrode recording (MER) is a prominent technique for studies of extracellular single-unit neuronal activity. In order to achieve robust results in more complex analysis pipelines, it is necessary to have high quality input data with a low amount of artifacts. We show that noise (mainly electromagnetic interference and motion artifacts) may affect more than 25% of the recording length in a clinical MER database. We present several methods for automatic detection of noise in MER signals, based on (i) unsupervised detection of stationary segments, (ii) large peaks in the power spectral density, and (iii) a classifier based on multiple time- and frequency-domain features. We evaluate the proposed methods on a manually annotated database of 5735 ten-second MER signals from 58 Parkinson's disease patients. The existing methods for artifact detection in single-channel MER that have been rigorously tested, are based on unsupervised change-point detection. We show on an extensive real MER database that the presented techniques are better suited for the task of artifact identification and achieve much better results. The best-performing classifiers (bagging and decision tree) achieved artifact classification accuracy of up to 89% on an unseen test set and outperformed the unsupervised techniques by 5-10%. This was close to the level of agreement among raters using manual annotation (93.5%). We conclude that the proposed methods are suitable for automatic MER denoising and may help in the efficient elimination of undesirable signal artifacts. Copyright © 2017 Elsevier B.V. All rights reserved.
Quality Assurance in the Presence of Variability
NASA Astrophysics Data System (ADS)
Lauenroth, Kim; Metzger, Andreas; Pohl, Klaus
Software Product Line Engineering (SPLE) is a reuse-driven development paradigm that has been applied successfully in information system engineering and other domains. Quality assurance of the reusable artifacts of the product line (e.g. requirements, design, and code artifacts) is essential for successful product line engineering. As those artifacts are reused in several products, a defect in a reusable artifact can affect several products of the product line. A central challenge for quality assurance in product line engineering is how to consider product line variability. Since the reusable artifacts contain variability, quality assurance techniques from single-system engineering cannot directly be applied to those artifacts. Therefore, different strategies and techniques have been developed for quality assurance in the presence of variability. In this chapter, we describe those strategies and discuss in more detail one of those strategies, the so called comprehensive strategy. The comprehensive strategy aims at checking the quality of all possible products of the product line and thus offers the highest benefits, since it is able to uncover defects in all possible products of the product line. However, the central challenge for applying the comprehensive strategy is the complexity that results from the product line variability and the large number of potential products of a product line. In this chapter, we present one concrete technique that we have developed to implement the comprehensive strategy that addresses this challenge. The technique is based on model checking technology and allows for a comprehensive verification of domain artifacts against temporal logic properties.
Lee, Hyun-Soo; Choi, Seung Hong; Park, Sung-Hong
2017-07-01
To develop single and double acquisition methods to compensate for artifacts from eddy currents and transient oscillations in balanced steady-state free precession (bSSFP) with centric phase-encoding (PE) order for magnetization-prepared bSSFP imaging. A single and four different double acquisition methods were developed and evaluated with Bloch equation simulations, phantom/in vivo experiments, and quantitative analyses. For the single acquisition method, multiple PE groups, each of which was composed of N linearly changing PE lines, were ordered in a pseudocentric manner for optimal contrast and minimal signal fluctuations. Double acquisition methods used complex averaging of two images that had opposite artifact patterns from different acquisition orders or from different numbers of dummy scans. Simulation results showed high sensitivity of eddy-current and transient-oscillation artifacts to off-resonance frequency and PE schemes. The artifacts were reduced with the PE-grouping with N values from 3 to 8, similar to or better than the conventional pairing scheme of N = 2. The proposed double acquisition methods removed the remaining artifacts significantly. The proposed methods conserved detailed structures in magnetization transfer imaging well, compared with the conventional methods. The proposed single and double acquisition methods can be useful for artifact-free magnetization-prepared bSSFP imaging with desired contrast and minimized dummy scans. Magn Reson Med 78:254-263, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Cardiac motion correction based on partial angle reconstructed images in x-ray CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr
2015-05-15
Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogrammore » with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of two conjugate PAR images. To evaluate the proposed algorithm, digital XCAT and physical dynamic cardiac phantom datasets are used. The XCAT phantom datasets were generated with heart rates of 70 and 100 bpm, respectively, by assuming a system rotation time of 300 ms. A physical dynamic cardiac phantom was scanned using a slowly rotating XCT system so that the effective heart rate will be 70 bpm for a system rotation speed of 300 ms. Results: In the XCAT phantom experiment, motion-compensated 3D images obtained from the proposed algorithm show coronary arteries with fewer motion artifacts for all phases. Moreover, object boundaries contaminated by motion are well restored. Even though object positions and boundary shapes are still somewhat different from the ground truth in some cases, the authors see that visibilities of coronary arteries are improved noticeably and motion artifacts are reduced considerably. The physical phantom study also shows that the visual quality of motion-compensated images is greatly improved. Conclusions: The authors propose a novel PAR image-based cardiac motion estimation and compensation algorithm. The algorithm requires an angular scan range of less than 360°. The excellent performance of the proposed algorithm is illustrated by using digital XCAT and physical dynamic cardiac phantom datasets.« less
Neighbor effect in complexation of a conjugated polymer.
Sosorev, Andrey; Zapunidi, Sergey
2013-09-19
Charge-transfer complex (CTC) formation between a conjugated polymer and low-molecular-weight organic acceptor is proposed to be driven by the neighbor effect. Formation of a CTC on the polymer chain results in an increased probability of new CTC formation near the existing one. We present an analytical model for CTC distribution considering the neighbor effect, based on the principles of statistical mechanics. This model explains the experimentally observed threshold-like dependence of the CTC concentration on the acceptor content in a polymer:acceptor blend. It also allows us to evaluate binding energies of the complexes.
Enhanced photophysics of conjugated polymers
Chen, Liaohai [Darien, IL
2007-06-12
A particulate fluorescent conjugated polymer surfactant complex and method of making and using same. The particles are between about 15 and about 50 nm and when formed from a lipsome surfactant have a charge density similar to DNA and are strongly absorbed by cancer cells.
Defect-mediated spatial complexity and chaos in a phase-conjugate resonator
NASA Technical Reports Server (NTRS)
Indebetouw, Guy; Liu, Siuying R.
1992-01-01
We have studied the spatiotemporal dynamics of a phase-conjugate resonator. The cavity Fresnel number is used to vary the degree of transverse confinement of the system. The generation and subsequent motion of the phase defects in the wave front are seen to mediate the system's dynamics. The number of defects and the complexity of their motion increases as the confinement is relaxed, leading the system through a sequence of bifurcations and eventually to chaos.
DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes
Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.
2002-01-01
The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673
Organometallic Rhenium Complexes Divert Doxorubicin to the Mitochondria.
Imstepf, Sebastian; Pierroz, Vanessa; Rubbiani, Riccardo; Felber, Michael; Fox, Thomas; Gasser, Gilles; Alberto, Roger
2016-02-18
Doxorubicin, a well-established chemotherapeutic agent, is known to accumulate in the cell nucleus. By using ICP-MS, we show that the conjugation of two small organometallic rhenium complexes to this structural motif results in a significant redirection of the conjugates from the nucleus to the mitochondria. Despite this relocation, the two bioconjugates display excellent toxicity toward HeLa cells. In addition, we carried out a preliminarily investigation of aspects of cytotoxicity and present evidence that the conjugates disrupt the mitochondrial membrane potential, are strong inhibitors of human Topoisomerase II, and induce apoptosis. Such derivatives may enhance the therapeutic index of the aggressive parent drug and overcome drug resistance by influencing nuclear and mitochondrial homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays
Grosberg, Lauren E.; Madugula, Sasidhar; Litke, Alan; Cunningham, John; Chichilnisky, E. J.; Paninski, Liam
2017-01-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible. PMID:29131818
Mena, Gonzalo E; Grosberg, Lauren E; Madugula, Sasidhar; Hottowy, Paweł; Litke, Alan; Cunningham, John; Chichilnisky, E J; Paninski, Liam
2017-11-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible.
Miguel-Arribas, Andrés; Hao, Jian-An; Luque-Ortega, Juan R; Ramachandran, Gayetri; Val-Calvo, Jorge; Gago-Córdoba, César; González-Álvarez, Daniel; Abia, David; Alfonso, Carlos; Wu, Ling J; Meijer, Wilfried J J
2017-01-01
Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer ( oriT ), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis . We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1 LS20 and aux2 LS20 , and which we show are essential for conjugation. Both Aux1 LS20 and Aux2 LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1 LS20 and Aux2 LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriT LS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1 LS20 and/or Aux2 LS20 are located upstream of almost 400 relaxase genes of the Rel LS20 family (MOB L ) of relaxases. Thus, Aux1 LS20 and Aux2 LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.
Kakitani, Yoshinori; Fujii, Ritsuko; Hayakawa, Yoshihiro; Kurahashi, Masahiro; Koyama, Yasushi; Harada, Jiro; Shimada, Keizo
2007-06-19
Rubrivivax gelatinosus having both the spheroidene and spirilloxanthin biosynthetic pathways produces carotenoids (Cars) with a variety of conjugated chains, which consist of different numbers of conjugated double bonds (n), including the C=C (m) and C=O (o) bonds. When grown under anaerobic conditions, the wild type produces Cars for which n = m = 9-13, whereas under semiaerobic conditions, it additionally produces Cars for which n = m + o = 10 + 1, 13 + 1, and 13 + 2. On the other hand, a mutant, in which the latter pathway is genetically blocked, produces only Cars for which n = 9 and 10 under anaerobic conditions and n = 9, 10, and 10 + 1 under semianaerobic conditions. Those Cars that were extracted from the LH2 complex (LH2) and the reaction center (RC), isolated from the wild-type and the mutant Rvi. gelatinosus, were analyzed by HPLC, and their structures were determined by mass spectrometry and 1H NMR spectroscopy. The selective binding of Cars to those pigment-protein complexes has been characterized as follows. (1) Cars with a shorter conjugated chain are selectively bound to LH2 whereas Cars with a longer conjugated chain to the RC. (2) Shorter chain Cars with a hydroxyl group are bound to LH2 almost exclusively. This rule holds either in the absence or in the presence of the keto group. The natural selection of shorter chain Cars by LH2 and longer chain Cars by the RC is discussed, on the basis of the results now available, in relation to the light-harvesting and photoprotective functions of Cars.
Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas
2013-01-01
Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin. PMID:23267047
Lee, Sungwook; Park, Boyoun; Kang, Kwonyoon
2009-01-01
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled MHC class I molecules from the ER. We now show that protein disulfide isomerase (PDI) controls MHC class I disassembly by regulating dissociation of the tapasin-ERp57 disulfide conjugate. PDI acts as a peptide-dependent molecular switch; in the peptide-bound state, it binds to tapasin and ERp57 and induces dissociation of the tapasin-ERp57 conjugate. In the peptide-free state, PDI is incompetent to bind to tapasin or ERp57 and fails to dissociate the tapasin-ERp57 conjugates, resulting in ER retention of MHC class I molecules. Thus, our results indicate that even after optimal peptide loading, MHC class I disassembly does not occur by default but, rather, is a regulated process involving PDI-mediated interactions within the peptide-loading complex. PMID:19477919
Wu, Bolin; Liang, Xitian; Jing, Hui; Han, Xue; Sun, Yixin; Guo, Cunli; Liu, Ying; Cheng, Wen
2018-01-01
The present study evaluated the effect of NET-1 siRNA-conjugated sub-micron bubble (SMB) complexes combined with low-frequency ultrasound exposure in gene transfection. The NET-1 gene was highly expressed level in SMMC-7721 human hepatocellular carcinoma cell line. The cells were divided into seven groups and treated with different conditions. The groups with or without low-frequency ultrasound exposure, groups of adherent cells, and suspension cells were separated. The NET-1 siRNA-conjugated SMB complexes were made in the laboratory and tested by Zetasizer Nano ZS90 analyzer. Flow cytometry was used to estimate the transfection efficiency and cellular apoptosis. Western blot and quantitative real-time polymerase chain reaction (qPCR) were used for the estimation of the protein and mRNA expressions, respectively. Transwell analysis determined the migration and invasion capacities of the tumor cells. The results did not show any difference in the transfection efficiency between adherent and suspension cells. However, the NET-1 siRNA-SMB complexes combined with low-frequency ultrasound exposure could enhance the gene transfection effectively. In summary, the NET-1 siRNA-SMB complexes appeared to be promising gene vehicle. PMID:29423111
NASA Astrophysics Data System (ADS)
Ananth, Devanesan Arul; Rameshkumar, Angappan; Jeyadevi, Ramachandran; Jagadeeswari, Sivanadanam; Nagarajan, Natarajan; Renganathan, Rajalingam; Sivasudha, Thilagar
2015-03-01
Quantum dots not only act as nanocarrier but also act as stable and resistant natural fluorescent bio markers used in various in vitro and in vivo photolabelling and biological applications. In this study, the antimicrobial potential of TGA-CdTe QDs and commercial phenolics (rutin and caffeine) were investigated against Escherichiacoli. UV absorbance and fluorescence quenching study of TGA-CdTe QDs with rutin and caffeine complex was measured by spectroscopic technique. QDs-rutin conjugate exhibited excellent quenching property due to the -OH groups present in the rutin structure. But the same time caffeine has not conjugated with QDs because of lacking of -OH group in its structure. Photolabelling of E. coli with QDs-rutin and QDs-caffeine complex was analyzed by fluorescent microscopic method. Microbe E. coli cell membrane damage was assessed by atomic force (AFM) and confocal microscopy. Based on the results obtained, it is suggested that QDs-rutin conjugate enhance the antimicrobial activity more than the treatment with QDs, rutin and caffeine alone.
Sarkar, Swarbhanu; Bhatt, Nikunj; Ha, Yeong Su; Huynh, Phuong Tu; Soni, Nisarg; Lee, Woonghee; Lee, Yong Jin; Kim, Jung Young; Pandya, Darpan N; An, Gwang Il; Lee, Kyo Chul; Chang, Yongmin; Yoo, Jeongsoo
2018-01-11
Although the importance of bifunctional chelators (BFCs) is well recognized, the chemophysical parameters of chelators that govern the biological behavior of the corresponding bioconjugates have not been clearly elucidated. Here, five BFCs closely related in structure were conjugated with a cyclic RGD peptide and radiolabeled with Cu-64 ions. Various biophysical and chemical properties of the Cu(II) complexes were analyzed with the aim of identifying correlations between individual factors and the biological behavior of the conjugates. Tumor uptake and body clearance of the 64 Cu-labeled bioconjugates were directly compared by animal PET imaging in animal models, which was further supported by biodistribution studies. Conjugates containing propylene cross-bridged chelators showed higher tumor uptake, while a closely related ethylene cross-bridged analogue exhibited rapid body clearance. High in vivo stability of the copper-chelator complex was strongly correlated with high tumor uptake, while the overall lipophilicity of the bioconjugate affected both tumor uptake and body clearance.
Piras, Anna Maria; Zambito, Ylenia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Terreni, Eleonora; Fabiano, Angela; Balzano, Federica; Uccello-Barretta, Gloria; Chetoni, Patrizia
2018-03-30
The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.
A Software Architecture for Intelligent Synthesis Environments
NASA Technical Reports Server (NTRS)
Filman, Robert E.; Norvig, Peter (Technical Monitor)
2001-01-01
The NASA's Intelligent Synthesis Environment (ISE) program is a grand attempt to develop a system to transform the way complex artifacts are engineered. This paper discusses a "middleware" architecture for enabling the development of ISE. Desirable elements of such an Intelligent Synthesis Architecture (ISA) include remote invocation; plug-and-play applications; scripting of applications; management of design artifacts, tools, and artifact and tool attributes; common system services; system management; and systematic enforcement of policies. This paper argues that the ISA extend conventional distributed object technology (DOT) such as CORBA and Product Data Managers with flexible repositories of product and tool annotations and "plug-and-play" mechanisms for inserting "ility" or orthogonal concerns into the system. I describe the Object Infrastructure Framework, an Aspect Oriented Programming (AOP) environment for developing distributed systems that provides utility insertion and enables consistent annotation maintenance. This technology can be used to enforce policies such as maintaining the annotations of artifacts, particularly the provenance and access control rules of artifacts-, performing automatic datatype transformations between representations; supplying alternative servers of the same service; reporting on the status of jobs and the system; conveying privileges throughout an application; supporting long-lived transactions; maintaining version consistency; and providing software redundancy and mobility.
Dispersing artifacts in FT-STS: a comparison of set point effects across acquisition modes
NASA Astrophysics Data System (ADS)
Macdonald, A. J.; Tremblay-Johnston, Y.-S.; Grothe, S.; Chi, S.; Dosanjh, P.; Johnston, S.; Burke, S. A.
2016-10-01
Fourier-transform scanning tunnelling spectroscopy (FT-STS), or quasiparticle interference, has become an influential tool for the study of a wide range of important materials in condensed matter physics. However, FT-STS in complex materials is often challenging to interpret, requiring significant theoretical input in many cases, making it crucial to understand potential artifacts of the measurement. Here, we compare the most common modes of acquiring FT-STS data and show through both experiment and simulations that artifact features can arise that depend on how the tip height is stabilized throughout the course of the measurement. The most dramatic effect occurs when a series of dI/dV maps at different energies are acquired with simultaneous constant current feedback; here a feature that disperses in energy appears that is not observed in other measurement modes. Such artifact features are similar to those arising from real physical processes in the sample and are susceptible to misinterpretation.
Artifacts and noise removal in electrocardiograms using independent component analysis.
Chawla, M P S; Verma, H K; Kumar, Vinod
2008-09-26
Independent component analysis (ICA) is a novel technique capable of separating independent components from electrocardiogram (ECG) complex signals. The purpose of this analysis is to evaluate the effectiveness of ICA in removing artifacts and noise from ECG recordings. ICA is applied to remove artifacts and noise in ECG segments of either an individual ECG CSE data base file or all files. The reconstructed ECGs are compared with the original ECG signal. For the four special cases discussed, the R-Peak magnitudes of the CSE data base ECG waveforms before and after applying ICA are also found. In the results, it is shown that in most of the cases, the percentage error in reconstruction is very small. The results show that there is a significant improvement in signal quality, i.e. SNR. All the ECG recording cases dealt showed an improved ECG appearance after the use of ICA. This establishes the efficacy of ICA in elimination of noise and artifacts in electrocardiograms.
Burke, Christopher S; Byrne, Aisling; Keyes, Tia E
2018-06-06
Exploiting NF-κB transcription factor peptide conjugation, a Ru(II)-bis-tap complex (tap = 1,4,5,8-tetraazaphenanthrene) was targeted specifically to the nuclei of live HeLa and CHO cells for the first time. DNA binding of the complex within the nucleus of live cells was evident from gradual extinction of the metal complex luminescence after it had crossed the nuclear envelope, attributed to guanine quenching of the ruthenium emission via photoinduced electron transfer. Resonance Raman imaging confirmed that the complex remained in the nucleus after emission is extinguished. In the dark and under imaging conditions the cells remain viable, but efficient cellular destruction was induced with precise spatiotemporal control by applying higher irradiation intensities to selected cells. Solution studies indicate that the peptide conjugated complex associates strongly with calf thymus DNA ex-cellulo and gel electrophoresis confirmed that the peptide conjugate is capable of singlet oxygen independent photodamage to plasmid DNA. This indicates that the observed efficient cellular destruction likely operates via direct DNA oxidation by photoinduced electron transfer between guanine and the precision targeted Ru(II)-tap probe. The discrete targeting of polyazaaromatic complexes to the cell nucleus and confirmation that they are photocytotoxic after nuclear delivery is an important step toward their application in cellular phototherapy.
Coordinate Measuring Machine Pit Artifact Inspection Procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montano, Joshua D.
2012-07-31
The goal of this document is to outline a procedure for dimensional measurement of Los Alamos National Laboratory's CMM Pit Artifact. This procedure will be used by the Manufacturing Practice's Inspection Technology Subgroup of the Interagency Manufacturing Operations Group and Joint Operations Weapon Operations Group (IMOG/JOWOG 39) round robin participants. The intent is to assess the state of industry within the Nuclear Weapons Complex for measurements made on this type of part and find which current measurement strategies and techniques produce the best results.
USDA-ARS?s Scientific Manuscript database
The emulsifying properties of corn fiber gum (CFG), a naturally-occurring polysaccharide protein complex, were improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase. The formation of hetero-crosslinked CFG-BSA conjugate...
Ba-Salem, Abdullah O; Ullah, Nisar; Shaikh, M Nasiruzzaman; Faiz, Mohamed; Ul-Haq, Zaheer
2015-04-29
Two new DTPA-bis(amide) based ligands conjugated with the arylpiperazinyl moiety were synthesized and subsequently transformed into their corresponding Gd(III) complexes 1 and 2 of the type [Gd(L)H2O]·nH2O. The relaxivity (R1) of these complexes was measured, which turned out to be comparable with that of Omniscan®, a commercially available MRI contrast agent. The cytotoxicity studies of these complexes indicated that they are non-toxic, which reveals their potential and physiological suitability as MRI contrast agents. All the synthesized ligands and complexes were characterized with the aid of analytical and spectroscopic methods, including elemental analysis, 1H-NMR, FT-IR, XPS and fast atom bombardment (FAB) mass spectrometry.
NASA Astrophysics Data System (ADS)
Choi, Myoung-Hwan; Ahn, Jungryul; Park, Dae Jin; Lee, Sang Min; Kim, Kwangsoo; Cho, Dong-il Dan; Senok, Solomon S.; Koo, Kyo-in; Goo, Yong Sook
2017-02-01
Objective. Direct stimulation of retinal ganglion cells in degenerate retinas by implanting epi-retinal prostheses is a recognized strategy for restoration of visual perception in patients with retinitis pigmentosa or age-related macular degeneration. Elucidating the best stimulus-response paradigms in the laboratory using multielectrode arrays (MEA) is complicated by the fact that the short-latency spikes (within 10 ms) elicited by direct retinal ganglion cell (RGC) stimulation are obscured by the stimulus artifact which is generated by the electrical stimulator. Approach. We developed an artifact subtraction algorithm based on topographic prominence discrimination, wherein the duration of prominences within the stimulus artifact is used as a strategy for identifying the artifact for subtraction and clarifying the obfuscated spikes which are then quantified using standard thresholding. Main results. We found that the prominence discrimination based filters perform creditably in simulation conditions by successfully isolating randomly inserted spikes in the presence of simple and even complex residual artifacts. We also show that the algorithm successfully isolated short-latency spikes in an MEA-based recording from degenerate mouse retinas, where the amplitude and frequency characteristics of the stimulus artifact vary according to the distance of the recording electrode from the stimulating electrode. By ROC analysis of false positive and false negative first spike detection rates in a dataset of one hundred and eight RGCs from four retinal patches, we found that the performance of our algorithm is comparable to that of a generally-used artifact subtraction filter algorithm which uses a strategy of local polynomial approximation (SALPA). Significance. We conclude that the application of topographic prominence discrimination is a valid and useful method for subtraction of stimulation artifacts with variable amplitudes and shapes. We propose that our algorithm may be used as stand-alone or supplementary to other artifact subtraction algorithms like SALPA.
NASA Astrophysics Data System (ADS)
Morikawa, T.; Sato, S.; Arai, T.; Uemura, K.; Yamanaka, K. I.; Suzuki, T. M.; Kajino, T.; Motohiro, T.
2013-12-01
We developed a new hybrid photocatalyst for CO2 reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ΔG between the position of conduction band minimum (ECBM) of the semiconductor and the CO2 reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO2 to formate using water as an electron donor and a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO2 reduction with a TiO2 photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.
Synthesis and Characterization of SF-PPV-I
NASA Technical Reports Server (NTRS)
Wang, Y.; Fan, Z.; Taft, C.; Sun, S.
2001-01-01
Conjugated electro-active polymers find their potential applications in developing variety inexpensive and flexible shaped electronic and photonic devices, such as photovoltaic or photo/electro light emitting devices. In many of these opto-electronic polymeric materials, certain electron rich donors and electron deficient acceptors are needed in order to fine-tune the electronic or photonic properties of the desired materials and structures. While many donor type of conjugated polymers have been widely studied and developed in the past decades, there are relatively fewer acceptor type of conjugated polymers have been developed. Key acceptor type conjugated polymers developed so far include C60 and CN-PPV, and each has its limitations. Due to the complexity and diversity of variety future electronic materials and structural needs, alternative and synthetically amenable acceptor conjugated polymers need to be developed. In this paper, we present the synthesis and characterization of a new acceptor conjugated polymer, a sulfone derivatized polyphenylenevinylene "SF-PPV".
Complexation of amyloid fibrils with charged conjugated polymers.
Ghosh, Dhiman; Dutta, Paulami; Chakraborty, Chanchal; Singh, Pradeep K; Anoop, A; Jha, Narendra Nath; Jacob, Reeba S; Mondal, Mrityunjoy; Mankar, Shruti; Das, Subhadeep; Malik, Sudip; Maji, Samir K
2014-04-08
It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.
Medication-related cognitive artifacts used by older adults with heart failure
Mickelson, Robin S.; Willis, Matt; Holden, Richard J.
2015-01-01
Objective To use a human factors perspective to examine how older adult patients with heart failure use cognitive artifacts for medication management. Methods We performed a secondary analysis of data collected from 30 patients and 14 informal caregivers enrolled in a larger study of heart failure self-care. Data included photographs, observation notes, interviews, video recordings, medical record data, and surveys. These data were analyzed using an iterative content analysis. Results Findings revealed that medication management was complex, inseparable from other patient activities, distributed across people, time, and place, and complicated by knowledge gaps. We identified fifteen types of cognitive artifacts including medical devices, pillboxes, medication lists, and electronic personal health records used for: 1) measurement/evaluation; 2) tracking/communication; 3) organization/administration; and 4) information/sensemaking. These artifacts were characterized by fit and misfit with the patient’s sociotechnical system and demonstrated both advantages and disadvantages. We found that patients often modified or “finished the design” of existing artifacts and relied on “assemblages” of artifacts, routines, and actors to accomplish their self-care goals. Conclusions Cognitive artifacts are useful but sometimes are poorly designed or are not used optimally. If appropriately designed for usability and acceptance, paper-based and computer-based information technologies can improve medication management for individuals living with chronic illness. These technologies can be designed for use by patients, caregivers, and clinicians; should support collaboration and communication between these individuals; can be coupled with home-based and wearable sensor technology; and must fit their users’ needs, limitations, abilities, tasks, routines, and contexts of use. PMID:26855882
Carbohydrates in Supramolecular Chemistry.
Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H
2016-02-24
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Lai, Zengzu; Schreiber, John R
2011-05-01
Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.
Peptide-DNA conjugates as tailored bivalent binders of the oncoprotein c-Jun.
Pazos, Elena; Portela, Cecilia; Penas, Cristina; Vázquez, M Eugenio; Mascareñas, José L
2015-05-21
We describe a ds-oligonucleotide-peptide conjugate that is able to efficiently dismount preformed DNA complexes of the bZIP regions of oncoproteins c-Fos and c-Jun (AP-1), and therefore might be useful as disrupters of AP-1-mediated gene expression pathways.
Organometallic conjugates of the drug sulfadoxine for combatting antimicrobial resistance
USDA-ARS?s Scientific Manuscript database
Fourteen new RuII, RhIII and IrIII complexes conjugated to the antimalarial drug sulfadoxine functionalised with either a pyridylimino- or quinolylimino- group to allow N,N’-chelation ligands have been synthesized and characterized. The effect of the arene/Cpx, planarity of imino group on sulfadoxin...
NASA Astrophysics Data System (ADS)
Jermyn, Michael; Desroches, Joannie; Mercier, Jeanne; Tremblay, Marie-Andrée; St-Arnaud, Karl; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frederic
2016-09-01
Invasive brain cancer cells cannot be visualized during surgery and so they are often not removed. These residual cancer cells give rise to recurrences. In vivo Raman spectroscopy can detect these invasive cancer cells in patients with grade 2 to 4 gliomas. The robustness of this Raman signal can be dampened by spectral artifacts generated by lights in the operating room. We found that artificial neural networks (ANNs) can overcome these spectral artifacts using nonparametric and adaptive models to detect complex nonlinear spectral characteristics. Coupling ANN with Raman spectroscopy simplifies the intraoperative use of Raman spectroscopy by limiting changes required to the standard neurosurgical workflow. The ability to detect invasive brain cancer under these conditions may reduce residual cancer remaining after surgery and improve patient survival.
Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms
Fernandez, Jose-Jesus; Laugks, Ulrike; Schaffer, Miroslava; Bäuerlein, Felix J.B.; Khoshouei, Maryam; Baumeister, Wolfgang; Lucic, Vladan
2016-01-01
Imaging of fully hydrated, vitrified biological samples by electron tomography yields structural information about cellular protein complexes in situ. Here we present a computational procedure that removes artifacts of three-dimensional reconstruction caused by contamination present in samples during imaging by electron microscopy. Applying the procedure to phantom data and electron tomograms of cellular samples significantly improved the resolution and the interpretability of tomograms. Artifacts caused by surface contamination associated with thinning by focused ion beam, as well as those arising from gold fiducial markers and from common, lower contrast contamination, could be removed. Our procedure is widely applicable and is especially suited for applications that strive to reach a higher resolution and involve the use of recently developed, state-of-the-art instrumentation. PMID:26743046
Design, Synthesis of Novel Platinum(II) Glycoconjugates, and Evaluation of Their Antitumor Effects.
Han, Jianbin; Gao, Xiangqian; Liu, Ran; Yang, Jinna; Zhang, Menghua; Mi, Yi; Shi, Ying; Gao, Qingzhi
2016-06-01
A new series of sugar-conjugated (trans-R, R-cyclohexane-1, 2-diamine)-2-halo-malonato-platinum(II) complexes were designed and synthesized to target tumor-specific glucose transporters (GLUTs). The water solubility of the sugar-conjugated platinum (II) complexes was greatly improved by average of 570-fold, 33-fold, and 94-fold, respectively, compared to cisplatin (1.0 mg/mL), carboplatin (17.1 mg/mL), and the newest generation of clinical drug oxaliplatin (6.0 mg/mL). Despite the high water solubility, the platinum(II) glycoconjugates exhibited a notable increase in cytotoxicity by a margin of 1.5- to 6.0-fold in six different human cancer cell lines with respect to oxaliplatin. The potential GLUT1 transportability of the complexes was investigated through a molecular docking study and was confirmed with GLUT1 inhibitor-mediated cytotoxicity dependency evaluation. The results showed that the sugar-conjugated platinum(II) complexes can be recognized by the glucose recognition binding site of GLUT1 and their cell killing effect depends highly on the GLUT1 inhibitor, quercetin. The research presenting a prospective concept for targeted therapy anticancer drug design, and with the analysis of the synthesis, water solubility, antitumor activity, and the transportability of the platinum(II) glycoconjugates, this study provides fundamental data supporting the inherent potential of these designed conjugates as lead compounds for GLUT-mediated tumor targeting. © 2016 John Wiley & Sons A/S.
Sandra, Koen; Vanhoenacker, Gerd; Vandenheede, Isabel; Steenbeke, Mieke; Joseph, Maureen; Sandra, Pat
2016-10-01
Antibody-drug conjugates might be the magic bullets referred to by Paul Ehrlich over 100 years ago. Together with a huge therapeutic potential, these molecules come with a structural complexity that drives state-of-the-art chromatography and mass spectrometry to its limits. The use of multiple heart-cutting (mLC-LC) and comprehensive (LC×LC) multidimensional LC in combination with high resolution mass spectrometry for the characterization of the lysine conjugated antibody-drug conjugate ado-trastuzumab emtansine, commercialized as Kadcyla, is presented. By combining protein and peptide measurements, attributes such as drug loading, drug distribution and drug conjugation sites can be assessed in an elegant manner. Copyright © 2016 Elsevier B.V. All rights reserved.
Diffusion imaging quality control via entropy of principal direction distribution.
Farzinfar, Mahshid; Oguz, Ipek; Smith, Rachel G; Verde, Audrey R; Dietrich, Cheryl; Gupta, Aditya; Escolar, Maria L; Piven, Joseph; Pujol, Sonia; Vachet, Clement; Gouttard, Sylvain; Gerig, Guido; Dager, Stephen; McKinstry, Robert C; Paterson, Sarah; Evans, Alan C; Styner, Martin A
2013-11-15
Diffusion MR imaging has received increasing attention in the neuroimaging community, as it yields new insights into the microstructural organization of white matter that are not available with conventional MRI techniques. While the technology has enormous potential, diffusion MRI suffers from a unique and complex set of image quality problems, limiting the sensitivity of studies and reducing the accuracy of findings. Furthermore, the acquisition time for diffusion MRI is longer than conventional MRI due to the need for multiple acquisitions to obtain directionally encoded Diffusion Weighted Images (DWI). This leads to increased motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a wide variety of artifacts, including eddy-current and motion artifacts, "venetian blind" artifacts, as well as slice-wise and gradient-wise inconsistencies. Such artifacts mandate stringent Quality Control (QC) schemes in the processing of diffusion MRI data. Most existing QC procedures are conducted in the DWI domain and/or on a voxel level, but our own experiments show that these methods often do not fully detect and eliminate certain types of artifacts, often only visible when investigating groups of DWI's or a derived diffusion model, such as the most-employed diffusion tensor imaging (DTI). Here, we propose a novel regional QC measure in the DTI domain that employs the entropy of the regional distribution of the principal directions (PD). The PD entropy quantifies the scattering and spread of the principal diffusion directions and is invariant to the patient's position in the scanner. High entropy value indicates that the PDs are distributed relatively uniformly, while low entropy value indicates the presence of clusters in the PD distribution. The novel QC measure is intended to complement the existing set of QC procedures by detecting and correcting residual artifacts. Such residual artifacts cause directional bias in the measured PD and here called dominant direction artifacts. Experiments show that our automatic method can reliably detect and potentially correct such artifacts, especially the ones caused by the vibrations of the scanner table during the scan. The results further indicate the usefulness of this method for general quality assessment in DTI studies. Copyright © 2013 Elsevier Inc. All rights reserved.
Diffusion imaging quality control via entropy of principal direction distribution
Oguz, Ipek; Smith, Rachel G.; Verde, Audrey R.; Dietrich, Cheryl; Gupta, Aditya; Escolar, Maria L.; Piven, Joseph; Pujol, Sonia; Vachet, Clement; Gouttard, Sylvain; Gerig, Guido; Dager, Stephen; McKinstry, Robert C.; Paterson, Sarah; Evans, Alan C.; Styner, Martin A.
2013-01-01
Diffusion MR imaging has received increasing attention in the neuroimaging community, as it yields new insights into the microstructural organization of white matter that are not available with conventional MRI techniques. While the technology has enormous potential, diffusion MRI suffers from a unique and complex set of image quality problems, limiting the sensitivity of studies and reducing the accuracy of findings. Furthermore, the acquisition time for diffusion MRI is longer than conventional MRI due to the need for multiple acquisitions to obtain directionally encoded Diffusion Weighted Images (DWI). This leads to increased motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a wide variety of artifacts, including eddy-current and motion artifacts, “venetian blind” artifacts, as well as slice-wise and gradient-wise inconsistencies. Such artifacts mandate stringent Quality Control (QC) schemes in the processing of diffusion MRI data. Most existing QC procedures are conducted in the DWI domain and/or on a voxel level, but our own experiments show that these methods often do not fully detect and eliminate certain types of artifacts, often only visible when investigating groups of DWI's or a derived diffusion model, such as the most-employed diffusion tensor imaging (DTI). Here, we propose a novel regional QC measure in the DTI domain that employs the entropy of the regional distribution of the principal directions (PD). The PD entropy quantifies the scattering and spread of the principal diffusion directions and is invariant to the patient's position in the scanner. High entropy value indicates that the PDs are distributed relatively uniformly, while low entropy value indicates the presence of clusters in the PD distribution. The novel QC measure is intended to complement the existing set of QC procedures by detecting and correcting residual artifacts. Such residual artifacts cause directional bias in the measured PD and here called dominant direction artifacts. Experiments show that our automatic method can reliably detect and potentially correct such artifacts, especially the ones caused by the vibrations of the scanner table during the scan. The results further indicate the usefulness of this method for general quality assessment in DTI studies. PMID:23684874
NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells
NASA Astrophysics Data System (ADS)
Marcus, M.; Skaat, H.; Alon, N.; Margel, S.; Shefi, O.
2014-12-01
The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short biological half-life. In our study, we describe a new nano-based approach to enhance the NGF activity resulting in promoted neuronal differentiation. We covalently conjugated NGF to iron oxide nanoparticles (NGF-NPs) and studied the effect of the novel complex on the differentiation of PC12 cells. We found that the NGF-NP treatment, at the same concentration as free NGF, significantly promoted neurite outgrowth and increased the complexity of the neuronal branching trees. Examination of neuronal differentiation gene markers demonstrated higher levels of expression in PC12 cells treated with the conjugated factor. By manipulating the NGF specific receptor, TrkA, we have demonstrated that NGF-NPs induce cell differentiation via the regular pathway. Importantly, we have shown that NGF-NPs undergo slower degradation than free NGF, extending their half-life and increasing NGF availability. Even a low concentration of conjugated NGF treatment has led to an effective response. We propose the use of the NGF-NP complex which has magnetic characteristics, also as a useful method to enhance NGF efficiency and activity, thus, paving the way for substantial neuronal repair therapeutics.The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short biological half-life. In our study, we describe a new nano-based approach to enhance the NGF activity resulting in promoted neuronal differentiation. We covalently conjugated NGF to iron oxide nanoparticles (NGF-NPs) and studied the effect of the novel complex on the differentiation of PC12 cells. We found that the NGF-NP treatment, at the same concentration as free NGF, significantly promoted neurite outgrowth and increased the complexity of the neuronal branching trees. Examination of neuronal differentiation gene markers demonstrated higher levels of expression in PC12 cells treated with the conjugated factor. By manipulating the NGF specific receptor, TrkA, we have demonstrated that NGF-NPs induce cell differentiation via the regular pathway. Importantly, we have shown that NGF-NPs undergo slower degradation than free NGF, extending their half-life and increasing NGF availability. Even a low concentration of conjugated NGF treatment has led to an effective response. We propose the use of the NGF-NP complex which has magnetic characteristics, also as a useful method to enhance NGF efficiency and activity, thus, paving the way for substantial neuronal repair therapeutics. Electronic supplementary information (ESI) available: Conjugation ratio determination and supplementary figures. See DOI: 10.1039/c4nr05193a
Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel; Kalle, Wouter H J
2004-03-24
This study looks at the development of a novel combination vector consisting of adenovirus conjugated to liposomes (AL complexes) bound to cation-exchanging microspheres (MAL complexes). With adenovirus having a net negative charge and the liposomes a net positive charge it was possible to modify the net charge of the AL complexes by varying the concentrations of adenovirus to liposomes. The modification of the net charge resulted in altered binding and release characteristics. Of the complexes tested, the 5:1 and 2:1 ratio AL complexes were able to be efficiently bound by the microspheres and exhibited sustained release over 24 h. The 1:1 and 1:2 AL complexes, however, bound poorly to the microspheres and were rapidly released. In addition the MAL complexes also were able to reduce the toxicity of the AL complexes, which was seen with the 10:1 ratio. The AL complexes showed considerably more toxicity alone than in combination with microspheres, highlighting a potential benefit of this vector.
Yang, Liju; Li, Yanbin
2006-03-01
In this study, we explored the use of semiconductor quantum dots (QDs) as fluorescence labels in immunoassays for simultaneous detection of two species of foodborne pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium. QDs with different sizes can be excited with a single wavelength of light, resulting in different emission peaks that can be measured simultaneously. Highly fluorescent semiconductor quantum dots with different emission wavelengths (525 nm and 705 nm) were conjugated to anti-E. coli O157 and anti-Salmonella antibodies, respectively. Target bacteria were separated from samples by using specific antibody coated magnetic beads. The bead-cell complexes reacted with QD-antibody conjugates to form bead-cell-QD complexes. Fluorescent microscopic images of QD labeled E. coli and Salmonella cells demonstrated that QD-antibody conjugates could evenly and completely attach to the surface of bacterial cells, indicating that the conjugated QD molecules still retain their effective fluorescence, while the conjugated antibody molecules remain active and are able to recognize their specific target bacteria in a complex mixture. The intensities of fluorescence emission peaks at 525 nm and 705 nm of the final complexes were measured for quantitative detection of E. coli O157:H7 and S. Typhimurium simultaneously. The fluorescence intensity (FI) as a function of cell number (N) was found for Salmonella and E. coli, respectively. The regression models can be expressed as: FI = 60.6 log N- 250.9 with R(2) = 0.97 for S. Typhimurium, and FI = 77.8 log N- 245.2 with R(2) = 0.91 for E. coli O157:H7 in the range of cell numbers from 10(4) to 10(7) cfu ml(-1). The detection limit of this method was 10(4) cfu ml(-1). The detection could be completed within 2 hours. The principle of this method could be extended to detect multiple species of bacteria (3-4 species) simultaneously, depending on the availability of each type of QD-antibody conjugates with a unique emission peak and the antibody coated magnetic beads specific to each species of bacteria.
Complex coacervate core micelles with a lysozyme-modified corona.
Danial, Maarten; Klok, Harm-Anton; Norde, Willem; Stuart, Martien A Cohen
2007-07-17
This paper describes the preparation, characterization, and enzymatic activity of complex coacervate core micelles (C3Ms) composed of poly(acrylic acid) (PAA) and poly(N-methyl-2-vinyl pyridinium iodide)-b-poly(ethylene oxide) (PQ2VP-PEO) to which the antibacterial enzyme lysozyme is end-attached. C3Ms were prepared by polyelectrolyte complex formation between PAA and mixtures containing different ratios of aldehyde and hydroxyl end-functionalized PQ2VP-PEO. This resulted in the formation of C3Ms containing 0-40% (w/w) of the aldehyde end-functionalized PQ2VP-PEO block copolymer (PQ2VP-PEO-CHO). Chemical conjugation of lysozyme was achieved via reductive amination of the aldehyde groups, which are exposed at the surface of the C3M, with the amine groups present in the side chains of the lysine residues of the protein. Dynamic and static light scattering indicated that the conjugation of lysozyme to C3Ms prepared using 10 and 20% (w/w) PQ2VP-PEO-CHO resulted in the formation of unimicellar particles. Multimicellar aggregates, in contrast, were obtained when lysozyme was conjugated to C3Ms prepared using 30 or 40% (w/w) PQ2VP-PEO-CHO. The enzymatic activity of the unimicellar lysozyme-C3M conjugates toward the hydrolysis of the bacterial substrate Micrococcus lysodeikticus was comparable to that of free lysozyme. For the multimicellar particles, in contrast, significantly reduced enzymatic rates of hydrolysis, altered circular dichroism, and red-shifted tryptophan fluorescence spectra were measured. These results are attributed to the occlusion of lysozyme in the interior of the multimicellar conjugates.
Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations.
Wilm, Bertram J; Barmet, Christoph; Pavan, Matteo; Pruessmann, Klaas P
2011-06-01
Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Copyright © 2011 Wiley-Liss, Inc.
Pati, Rashmirekha; Sahu, Rojalin; Panda, Jagannath; Sonawane, Avinash
2016-01-01
In order to improve the chemotherapy of tuberculosis, there is an urgent need to enhance the efficacy of existing agents and also to develop more efficient drug delivery systems. Here, we synthesized a novel anti-TB drug complex consisting of zinc and rifampicin (Zn-RIF), and encapsulated it into transferrin-conjugated silver quantum-dots (Zn-RIF-Tf-QD) to improve delivery in macrophages. Successful synthesis of Zn-RIF and Zn-RIF-Tf-QD was confirmed by UV/Vis-spectroscopy, TEM, FTIR, photoluminescence, XRD, XPS, and NMR. The sizes of silver QDs and transferrin-conjugated QDs were found to be in the range of 5–20 nm. Activity assays showed that Zn-RIF-Tf-QD exhibited 10-fold higher antibacterial activity against Mycobacterium smegmatis and Mycobacterium bovis-BCG as compared to Zn-RIF, RIF and Zn. Immunofluorescence studies showed that Zn-RIF-Tf-QD-conjugates were actively endocytosed by macrophages and dendritic cells, but not by lung epithelial cells. Treatment with Zn-RIF-Tf-QD efficiently killed mycobacteria residing inside macrophages without exhibiting cytotoxicity and genotoxicity. Moreover, the conjugates remained stable for upto 48 h, were taken up into the late endosomal compartment of macrophages, and released the drug in a sustainable manner. Our data demonstrate that Zn-RIF-Tf-QDs have a great potential as anti-TB drugs. In addition, transferrin-conjugated QDs may constitute an effective drug delivery system for tuberculosis therapy. PMID:27113139
Reainthippayasakul, W; Paosawatyanyong, B; Bhanthumnavin, W
2013-05-01
Conjugated meso-alkynyl 5,15-dimesitylporphyrin metal complexes have been synthesized by Sonogashira coupling reaction in good yields. Alkynyl groups were chosen as a link at the meso positions in order to extend the pi-conjugated length of porphyrin rings. These synthesized porphyrin derivatives were characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry. Moreover, UV-visible spectroscopy and fluorescence spectroscopy were also used to investigate their photophysical properties. It has been demonstrated that central metal ions as well as meso substituents on porphyrin rings affected the electronic absorption and emission spectra of the compounds. Spectroscopic results revealed that alkyne-linked porphyrin metal complexes showed higher pi-conjugation compared with porphyrin building blocks resulting in red shifts in both absorption and emission spectra. Coordination properties of synthesized porphyrins were preliminarily investigated by UV-visible absorption and fluorescence emission spectroscopic titration with pyridine as axial ligand. The formation of porphyrin-pyridine complexes resulted in significant red shifts in absorption spectra and decrease of fluorescence intensity in emission spectra. Moreover, the 1H NMR titration experiments suggested that central metal ions play an important role to coordinate with pyridine and the coordination of porphyrin zinc(II) complex with pyridine occur in a 1:1 ratio. From these spectroscopic results, alkyne-linked porphyrin metal complexes offer potential applications as materials for optical organic nanosensors.
Feng, Juan; Wang, Qian; Wu, Yi-Shi; Ai, Xi-Cheng; Zhang, Xu-Jia; Huang, You-Guo; Zhang, Xing-Kang; Zhang, Jian-Ping
2004-01-01
We have studied, by means of sub-microsecond time-resolved absorption spectroscopy, the triplet-excited state dynamics of carotenoids (Cars) in the intermediate-light adapted LH2 complex (ML-LH2) from Rhodopseudomonas palustris containing Cars with different numbers of conjugated double bonds. Following pulsed photo-excitation at 590 nm at room temperature, rapid spectral equilibration was observed either as a red shift of the isosbestic wavelength on a time scale of 0.6-1.0 mus, or as a fast decay in the shorter-wavelength side of the T(n)<--T(1) absorption of Cars with a time constant of 0.5-0.8 mus. Two major spectral components assignable to Cars with 11 and 12 conjugated double bonds were identified. The equilibration was not observed in the ML-LH2 at 77 K, or in the LH2 complex from Rhodobacter sphaeroides G1C containing a single type of Car. The unique spectral equilibration was ascribed to temperature-dependent triplet excitation transfer among different Car compositions. The results suggest that Cars of 11 and 12 conjugated bonds, both in close proximity of BChls, may coexist in an alpha,beta-subunit of the ML-LH2 complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi,K.; Brown, C.; Gu, Z.
2005-01-01
Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone bindingmore » destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.« less
Exact posterior computation in non-conjugate Gaussian location-scale parameters models
NASA Astrophysics Data System (ADS)
Andrade, J. A. A.; Rathie, P. N.
2017-12-01
In Bayesian analysis the class of conjugate models allows to obtain exact posterior distributions, however this class quite restrictive in the sense that it involves only a few distributions. In fact, most of the practical applications involves non-conjugate models, thus approximate methods, such as the MCMC algorithms, are required. Although these methods can deal with quite complex structures, some practical problems can make their applications quite time demanding, for example, when we use heavy-tailed distributions, convergence may be difficult, also the Metropolis-Hastings algorithm can become very slow, in addition to the extra work inevitably required on choosing efficient candidate generator distributions. In this work, we draw attention to the special functions as a tools for Bayesian computation, we propose an alternative method for obtaining the posterior distribution in Gaussian non-conjugate models in an exact form. We use complex integration methods based on the H-function in order to obtain the posterior distribution and some of its posterior quantities in an explicit computable form. Two examples are provided in order to illustrate the theory.
Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit
2015-11-01
Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew
2014-06-01
We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.
NASA Astrophysics Data System (ADS)
Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew
2014-06-01
We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.
NASA Astrophysics Data System (ADS)
Jermyn, Michael; Desroches, Joannie; Mercier, Jeanne; St-Arnaud, Karl; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frederic
2016-03-01
It is often difficult to identify cancer tissue during brain cancer (glioma) surgery. Gliomas invade into areas of normal brain, and this cancer invasion is frequently not detected using standard preoperative magnetic resonance imaging (MRI). This results in enduring invasive cancer following surgery and leads to recurrence. A hand-held Raman spectroscopy is able to rapidly detect cancer invasion in patients with grade 2-4 gliomas. However, ambient light sources can produce spectral artifacts which inhibit the ability to distinguish between cancer and normal tissue using the spectral information available. To address this issue, we have demonstrated that artificial neural networks (ANN) can accurately classify invasive cancer versus normal brain tissue, even when including measurements with significant spectral artifacts from external light sources. The non-parametric and adaptive model used by ANN makes it suitable for detecting complex non-linear spectral characteristics associated with different tissues and the confounding presence of light artifacts. The use of ANN for brain cancer detection with Raman spectroscopy, in the presence of light artifacts, improves the robustness and clinical translation potential for intraoperative use. Integration with the neurosurgical workflow is facilitated by accounting for the effect of light artifacts which may occur, due to operating room lights, neuronavigation systems, windows, or other light sources. The ability to rapidly detect invasive brain cancer under these conditions may reduce residual cancer remaining after surgery, and thereby improve patient survival.
Multilevel Investigation of Charge Transport in Conjugated Polymers.
Dong, Huanli; Hu, Wenping
2016-11-15
Conjugated polymers have attracted the world's attentions since their discovery due to their great promise for optoelectronic devices. However, the fundamental understanding of charge transport in conjugated polymers remains far from clear. The origin of this challenge is the natural disorder of polymers with complex molecular structures in the solid state. Moreover, an effective way to examine the intrinsic properties of conjugated polymers is absent. Optoelectronic devices are always based on spin-coated films. In films, polymers tend to form highly disordered structures at nanometer to micrometer length scales due to the high degree of conformational freedom of macromolecular chains and the irregular interchain entanglement, thus typically resulting in much lower charge transport properties than their intrinsic performance. Furthermore, a subtle change of processing conditions may dramatically affect the film formation-inducing large variations in the morphology, crystallinity, microstructure, molecular packing, and alignment, and finally varying the effective charge transport significantly and leading to great inconsistency over an order of magnitude even for devices based on the same polymer semiconductor. Meanwhile, the charge transport mechanism in conjugated polymers is still unclear and its investigation is challenging based on such complex microstructures of polymers in films. Therefore, how to objectively evaluate the charge transport and probe the charge transport mechanism of conjugated polymers has confronted the world for decades. In this Account, we present our recent progress on multilevel charge transport in conjugated polymers, from disordered films, uniaxially aligned thin films, and single crystalline micro- or nanowires to molecular scale, where a derivative of poly(para-phenylene ethynylene) with thioacetyl end groups (TA-PPE) is selected as the candidate for investigation, which could also be extended to other conjugated polymer systems. Our systematic investigations demonstrated that 3-4 orders higher charge transport properties could be achieved with the improvement of polymer chain order and confirmed efficient charge transport along the conjugated polymer backbones. Moreover, with downscaling to molecular scale, many novel phenomena were observed such as the largely quantized electronic structure for an 18 nm-long TA-PPE and the modulation of the redox center of tetrathiafulvalene (TTF) units on tunneling charge transport, which opens the door for conjugated polymers used in nanometer quantum devices. We hope the understanding of charge transport in PPE and its related conjugated polymer at multilevel scale in this Account will provide a new method to sketch the charge transport properties of conjugated polymers, and new insights into the combination of more conjugated polymer materials in the multilevel optoelectronic and other related functional devices, which will offer great promise for the next generation of electronic devices.
Educational Data Mining and Learning Analytics: Applications to Constructionist Research
ERIC Educational Resources Information Center
Berland, Matthew; Baker, Ryan S.; Blikstein, Paulo
2014-01-01
Constructionism can be a powerful framework for teaching complex content to novices. At the core of constructionism is the suggestion that by enabling learners to build creative artifacts that require complex content to function, those learners will have opportunities to learn this content in contextualized, personally meaningful ways. In this…
Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M
2016-03-14
Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.
Bromberg, Lev; Raduyk, Svetlana; Hatton, T Alan; Concheiro, Angel; Rodriguez-Valencia, Cosme; Silva, Maite; Alvarez-Lorenzo, Carmen
2009-05-20
Conjugates of linear and branched polyethyleneimine (PEI) and monoamine polyether Jeffamine M-2070 (PO/EO mol ratio 10/31, 2000 Da) were synthesized through polyether activation by cyanuric chloride followed by attachment to PEI and guanidinylation by 1H-pyrazole-carboxamidine hydrochloride. The resulting guanidinylated PEI-polyether conjugates (termed gPEI-Jeffamine) efficiently complexed plasmid DNA, and their polyplexes possessed enhanced colloidal stability in the presence of serum proteins. In vitro studies with mammalian CHO-1, 3T3, and Cos-7 cell lines demonstrated improved transfection efficiency of the pCMVbeta-gal plasmid/gPEI-Jeffamine polyplexes. The guanidinylation of the amino groups of PEI and the conjugation of PEI with the Jeffamine polyether enhanced the conjugates' interaction with genetic material and reduced the cytotoxicity of the polyplexes in experiments with the L929 cell line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morikawa, T., E-mail: morikawa@mosk.tytlabs.co.jp; Sato, S., E-mail: morikawa@mosk.tytlabs.co.jp; Arai, T., E-mail: morikawa@mosk.tytlabs.co.jp
2013-12-10
We developed a new hybrid photocatalyst for CO{sub 2} reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ΔG between the position of conduction band minimum (E{sub CBM}) of the semiconductor and the CO{sub 2} reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO{sub 2} to formate using water as an electron donor andmore » a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO{sub 2} reduction with a TiO{sub 2} photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.« less
Intelligent Agents for Design and Synthesis Environments: My Summary
NASA Technical Reports Server (NTRS)
Norvig, Peter
1999-01-01
This presentation gives a summary of intelligent agents for design synthesis environments. We'll start with the conclusions, and work backwards to justify them. First, an important assumption is that agents (whatever they are) are good for software engineering. This is especially true for software that operates in an uncertain, changing environment. The "real world" of physical artifacts is like that: uncertain in what we can measure, changing in that things are always breaking down, and we must interact with non-software entities. The second point is that software engineering techniques can contribute to good design. There may have been a time when we wanted to build simple artifacts containing little or no software. But modern aircraft and spacecraft are complex, and rely on a great deal of software. So better software engineering leads to better designed artifacts, especially when we are designing a series of related artifacts and can amortize the costs of software development. The third point is that agents are especially useful for design tasks, above and beyond their general usefulness for software engineering, and the usefulness of software engineering to design.
Reducing Interpolation Artifacts for Mutual Information Based Image Registration
Soleimani, H.; Khosravifard, M.A.
2011-01-01
Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673
Removal of BCG artifacts using a non-Kirchhoffian overcomplete representation.
Dyrholm, Mads; Goldman, Robin; Sajda, Paul; Brown, Truman R
2009-02-01
We present a nonlinear unmixing approach for extracting the ballistocardiogram (BCG) from EEG recorded in an MR scanner during simultaneous acquisition of functional MRI (fMRI). First, an overcomplete basis is identified in the EEG based on a custom multipath EEG electrode cap. Next, the overcomplete basis is used to infer non-Kirchhoffian latent variables that are not consistent with a conservative electric field. Neural activity is strictly Kirchhoffian while the BCG artifact is not, and the representation can hence be used to remove the artifacts from the data in a way that does not attenuate the neural signals needed for optimal single-trial classification performance. We compare our method to more standard methods for BCG removal, namely independent component analysis and optimal basis sets, by looking at single-trial classification performance for an auditory oddball experiment. We show that our overcomplete representation method for removing BCG artifacts results in better single-trial classification performance compared to the conventional approaches, indicating that the derived neural activity in this representation retains the complex information in the trial-to-trial variability.
Morrow, Nathan; Nkwake, Apollo M
2016-12-01
Like artisans in a professional guild, we evaluators create tools to suit our ever evolving practice. The tools we use as evaluators are the primary artifacts of our profession, reflect our practice and embody an amalgamation of paradigms and assumptions. With the increasing shifts in evaluation purposes from judging program worth to understanding how programs work, the evaluator's role is changing to that of facilitating stakeholders in a learning process. This involves clarifying purposes and choices, as well as unearthing critical assumptions. In such a role, evaluators become major tool-users and begin to innovate with small refinements or produce completely new tools to fit a specific challenge or context. We interrogate the form and function of 12 tools used by evaluators when working with complex evaluands and complex contexts. The form is described in terms of traditional qualitative techniques and particular characteristics of the elements, use and presentation of each tool. Then the function of each tool is analyzed with respect to articulating assumptions and affecting the agency of evaluators and stakeholders in complex contexts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guédon, Gérard; Libante, Virginie; Coluzzi, Charles; Payot, Sophie
2017-01-01
Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements. Recent findings indicated that the main actors of conjugative transfer are not the well-known conjugative or mobilizable plasmids but are the integrated elements. This paper reviews current knowledge on “integrative and mobilizable elements” (IMEs) that have recently been shown to be highly diverse and highly widespread but are still rarely described. IMEs encode their own excision and integration and use the conjugation machinery of unrelated co-resident conjugative element for their own transfer. Recent studies revealed a much more complex and much more diverse lifecycle than initially thought. Besides their main transmission as integrated elements, IMEs probably use plasmid-like strategies to ensure their maintenance after excision. Their interaction with conjugative elements reveals not only harmless hitchhikers but also hunters that use conjugative elements as target for their integration or harmful parasites that subvert the conjugative apparatus of incoming elements to invade cells that harbor them. IMEs carry genes conferring various functions, such as resistance to antibiotics, that can enhance the fitness of their hosts and that contribute to their maintenance in bacterial populations. Taken as a whole, IMEs are probably major contributors to bacterial evolution. PMID:29165361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, K; DiCostanzo, D; Gupta, N
Purpose: To test the efficacy of a retrospective metal artifact reduction (MAR) reconstruction algorithm for a commercial computed tomography (CT) scanner for radiation therapy purposes. Methods: High Z geometric integrity and artifact reduction analysis was performed with three phantoms using General Electric’s (GE) Discovery CT. The three phantoms included: a Computerized Imaging Reference Systems (CIRS) electron density phantom (Model 062) with a 6.5 mm diameter titanium rod insert, a custom spine phantom using Synthes Spine hardware submerged in water, and a dental phantom with various high Z fillings submerged in water. Each phantom was reconstructed using MAR and compared againstmore » the original scan. Furthermore, each scenario was tested using standard and extended Hounsfield Unit (HU) ranges. High Z geometric integrity was performed using the CIRS phantom, while the artifact reduction was performed using all three phantoms. Results: Geometric integrity of the 6.5 mm diameter rod was slightly overestimated for non-MAR scans for both standard and extended HU. With MAR reconstruction, the rod was underestimated for both standard and extended HU. For artifact reduction, the mean and standard deviation was compared in a volume of interest (VOI) in the surrounding material (water and water equivalent material, ∼0HU). Overall, the mean value of the VOI was closer to 0 HU for the MAR reconstruction compared to the non-MAR scan for most phantoms. Additionally, the standard deviations for all phantoms were greatly reduced using MAR reconstruction. Conclusion: GE’s MAR reconstruction algorithm improves image quality with the presence of high Z material with minimal degradation of its geometric integrity. High Z delineation can be carried out with proper contouring techniques. The effects of beam hardening artifacts are greatly reduced with MAR reconstruction. Tissue corrections due to these artifacts can be eliminated for simple high Z geometries and greatly reduced for more complex geometries.« less
NASA Astrophysics Data System (ADS)
Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad
2016-05-01
Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and 1H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol40 %) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.
Yu, Huifeng; An, Yanming; Battistel, Marcos D; Cipollo, John F; Freedberg, Darón I
2018-04-17
Conjugate vaccines are highly heterogeneous in terms of glycosylation sites and linked oligosaccharide length. Therefore, the characterization of conjugate vaccines' glycosylation state is challenging. However, improved product characterization can lead to enhancements in product control and product quality. Here, we present a synergistic combination of high-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) for the analysis of glycoconjugates. We use the power of this strategy to characterize model polysaccharide conjugates and to demonstrate a detailed level of glycoproteomic analysis. These are first steps on model compounds that will help untangle the details of complex product characterization in conjugate vaccines. Ultimately, this strategy can be applied to enhance the characterization of polysaccharide conjugate vaccines. In this study, we lay the groundwork for the analysis of conjugate vaccines. To begin this effort, oligosaccharide-peptide conjugates were synthesized by periodate oxidation of an oligosaccharide of a defined length, α,2-8 sialic acid trimer, followed by a reductive amination, and linking the trimer to an immunogenic peptide from tetanus toxoid. Combined mass spectrometry and nuclear magnetic resonance were used to monitor each reaction and conjugation products. Complete NMR peak assignment and detailed MS information on oxidized oligosialic acid and conjugates are reported. These studies provide a deeper understanding of the conjugation chemistry process and products, which can lead to a better controlled production process.
GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates
Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi
2017-01-01
Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design. PMID:28467806
GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates.
Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi
2017-06-13
Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design.
NASA Astrophysics Data System (ADS)
Safieddine, Doha; Kachenoura, Amar; Albera, Laurent; Birot, Gwénaël; Karfoul, Ahmad; Pasnicu, Anca; Biraben, Arnaud; Wendling, Fabrice; Senhadji, Lotfi; Merlet, Isabelle
2012-12-01
Electroencephalographic (EEG) recordings are often contaminated with muscle artifacts. This disturbing myogenic activity not only strongly affects the visual analysis of EEG, but also most surely impairs the results of EEG signal processing tools such as source localization. This article focuses on the particular context of the contamination epileptic signals (interictal spikes) by muscle artifact, as EEG is a key diagnosis tool for this pathology. In this context, our aim was to compare the ability of two stochastic approaches of blind source separation, namely independent component analysis (ICA) and canonical correlation analysis (CCA), and of two deterministic approaches namely empirical mode decomposition (EMD) and wavelet transform (WT) to remove muscle artifacts from EEG signals. To quantitatively compare the performance of these four algorithms, epileptic spike-like EEG signals were simulated from two different source configurations and artificially contaminated with different levels of real EEG-recorded myogenic activity. The efficiency of CCA, ICA, EMD, and WT to correct the muscular artifact was evaluated both by calculating the normalized mean-squared error between denoised and original signals and by comparing the results of source localization obtained from artifact-free as well as noisy signals, before and after artifact correction. Tests on real data recorded in an epileptic patient are also presented. The results obtained in the context of simulations and real data show that EMD outperformed the three other algorithms for the denoising of data highly contaminated by muscular activity. For less noisy data, and when spikes arose from a single cortical source, the myogenic artifact was best corrected with CCA and ICA. Otherwise when spikes originated from two distinct sources, either EMD or ICA offered the most reliable denoising result for highly noisy data, while WT offered the better denoising result for less noisy data. These results suggest that the performance of muscle artifact correction methods strongly depend on the level of data contamination, and of the source configuration underlying EEG signals. Eventually, some insights into the numerical complexity of these four algorithms are given.
Kim, Young-Pil; Shon, Hyun Kyong; Shin, Seung Koo; Lee, Tae Geol
2015-01-01
Bio-conjugated nanoparticles have emerged as novel molecular probes in nano-biotechnology and nanomedicine and chemical analyses of their surfaces have become challenges. The time-of-flight (TOF) secondary ion mass spectrometry (SIMS) has been one of the most powerful surface characterization techniques for both nanoparticles and biomolecules. When combined with various nanoparticle-based signal enhancing strategies, TOF-SIMS can probe the functionalization of nanoparticles as well as their locations and interactions in biological systems. Especially, nanoparticle-based SIMS is an attractive approach for label-free drug screening because signal-enhancing nanoparticles can be designed to directly measure the enzyme activity. The chemical-specific imaging analysis using SIMS is also well suited to screen nanoparticles and nanoparticle-biomolecule conjugates in complex environments. This review presents some recent applications of nanoparticle-based TOF-SIMS to the chemical analysis of complex biological systems. © 2014 Wiley Periodicals, Inc.
Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors
2018-01-01
O-GlcNAc transferase (OGT) is an essential glycosyltransferase that installs the O-GlcNAc post-translational modification on the nucleocytoplasmic proteome. We report the development of S-linked UDP–peptide conjugates as potent bisubstrate OGT inhibitors. These compounds were assembled in a modular fashion by photoinitiated thiol–ene conjugation of allyl-UDP and optimal acceptor peptides in which the acceptor serine was replaced with cysteine. The conjugate VTPVC(S-propyl-UDP)TA (Ki = 1.3 μM) inhibits the OGT activity in HeLa cell lysates. Linear fusions of this conjugate with cell penetrating peptides were explored as prototypes of cell-penetrant OGT inhibitors. A crystal structure of human OGT with the inhibitor revealed mimicry of the interactions seen in the pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative of the inhibitor works as a high affinity probe in a fluorescence polarimetry hOGT assay. PMID:29723473
NASA Astrophysics Data System (ADS)
Şenkuytu, Elif; Tanrıverdi Eçik, Esra
2018-06-01
In the study, the new hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) have been successfully synthesized and characterized by using general spectroscopic techniques such as 1H, 13C and 31P NMR spectroscopies. The photophysical and metal sensing properties in THF solutions of dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) were investigated by UV-Vis and fluorescence spectroscopies in dilute tetrahydrofuran solutions. These dendrimers showed strong absorption bands 501 and 641 nm at low concentration with high molar extinction coefficients. In addition, the stoichiometry of the complex between the conjugate (HBCP 2) and Co2+ ions were determined by a Job's plot obtained from fluorescence titrations. The metal sensing data showed that the hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugate (HBCP 2) is a candidate for fluorescent chemosensor for Co2+ ions due to showing high selectivity with a low limit of detection.
Gionfriddo, Emanuela; Souza-Silva, Érica A; Pawliszyn, Janusz
2015-08-18
This work aims to investigate the behavior of analytes in complex mixtures and matrixes with the use of solid-phase microextraction (SPME). Various factors that influence analyte uptake such as coating chemistry, extraction mode, the physicochemical properties of analytes, and matrix complexity were considered. At first, an aqueous system containing analytes bearing different hydrophobicities, molecular weights, and chemical functionalities was investigated by using commercially available liquid and solid porous coatings. The differences in the mass transfer mechanisms resulted in a more pronounced occurrence of coating saturation in headspace mode. Contrariwise, direct immersion extraction minimizes the occurrence of artifacts related to coating saturation and provides enhanced extraction of polar compounds. In addition, matrix-compatible PDMS-modified solid coatings, characterized by a new morphology that avoids coating fouling, were compared to their nonmodified analogues. The obtained results indicate that PDMS-modified coatings reduce artifacts associated with coating saturation, even in headspace mode. This factor, coupled to their matrix compatibility, make the use of direct SPME very practical as a quantification approach and the best choice for metabolomics studies where wide coverage is intended. To further understand the influence on analyte uptake on a system where additional interactions occur due to matrix components, ex vivo and in vivo sampling conditions were simulated using a starch matrix model, with the aim of mimicking plant-derived materials. Our results corroborate the fact that matrix handling can affect analyte/matrix equilibria, with consequent release of high concentrations of previously bound hydrophobic compounds, potentially leading to coating saturation. Direct immersion SPME limited the occurrence of the artifacts, which confirms the suitability of SPME for in vivo applications. These findings shed light into the implementation of in vivo SPME strategies in quantitative metabolomics studies of complex plant-based systems.
The Development and Study of Surface Bound Ruthenium Organometallic Complexes
NASA Astrophysics Data System (ADS)
Abbott, Geoffrey Reuben
The focus of this project has been on the use of mono-diimine ruthenium organometallic complexes, of the general structure [H(Ru)(CO)(L)2(L') 2][PF6] (L=PPh3, DPPENE and L'=Bpy, DcBpy, MBpyC, Phen, AminoPhen) bound to surfaces as luminescent probes. Both biological and inorganic/organic hybrid surfaces have been studied. The complexes were characterized both bound and unbound using standard analytical techniques such as NMR, IR and X-ray crystallography, as well as through several photophysical methods as well. Initially the study focused on how the photophyscial properties of the complexes were affected by incorporation into biological membranes. It was found that by conjugating the probes to a more rigid cholesterol moiety that luminescence was conserved, compared to conjugation with a far more flexible lipid moiety, where luminescence was either lost or reduced. Both the cholesterol and lipid conjugates were able to insert into a lipid membrane, and in the more rigid environment some of the lipid conjugates regained some of their luminescence, but often blue shifted and reduced, depending on the conjugation site. Silica Polyamine Composites (SPCs) were a hybrid material developed in the Rosenberg Lab as useful metal separation materials, that could be easily modified, and had several benefits over current commercially available polymers, or inorganic materials. These SPCs also provided an opportunity for the development of a heterogeneous platform for luminescent complexes as either catalysts or sensors. Upon binding of the luminescent Ru complexes to the surface no loss, or major change in luminescence was seen, however, when bound to the rigid surface a significant increase in excited state lifetime was measured. It is likely that through binding and interacting with the surface that the complexes lost non-radiative decay pathways, resulting in the increase in lifetime, however, these interactions do not seem to affect the energy level of the MLCT band in a large way. With a better understanding of the effects of surface binding on the complexes, the study turned to possible applications, as either sensors or catalysts. Recently the bound complexes have been found to be very useful as toxic metal sensors, as the free amines left on the surface could bind toxic metal ions in close proximity leading to either a quenching or enhancement of the luminescence of the complexes, depending on the metal ion. This process was determined to be a static process, requiring the toxic metal to remain bound to the surface in order to affect the luminescence of the Ru complex. The quenching is thought to be due to a metal-centered electron-transfer reaction, in which the excited-state electron is transferred from the Ru to the toxic metal, but relaxes back to the Ru center. The enhancement of luminescence is due to the external heavy-atom effect, in which heavier atoms mixes MLCT singlet state with the triplet state through spin-orbit coupling.
2.5D complex resistivity modeling and inversion using unstructured grids
NASA Astrophysics Data System (ADS)
Xu, Kaijun; Sun, Jie
2016-04-01
The characteristic of complex resistivity on rock and ore has been recognized by people for a long time. Generally we have used the Cole-Cole Model(CCM) to describe complex resistivity. It has been proved that the electrical anomaly of geologic body can be quantitative estimated by CCM parameters such as direct resistivity(ρ0), chargeability(m), time constant(τ) and frequency dependence(c). Thus it is very important to obtain the complex parameters of geologic body. It is difficult to approximate complex structures and terrain using traditional rectangular grid. In order to enhance the numerical accuracy and rationality of modeling and inversion, we use an adaptive finite-element algorithm for forward modeling of the frequency-domain 2.5D complex resistivity and implement the conjugate gradient algorithm in the inversion of 2.5D complex resistivity. An adaptive finite element method is applied for solving the 2.5D complex resistivity forward modeling of horizontal electric dipole source. First of all, the CCM is introduced into the Maxwell's equations to calculate the complex resistivity electromagnetic fields. Next, the pseudo delta function is used to distribute electric dipole source. Then the electromagnetic fields can be expressed in terms of the primary fields caused by layered structure and the secondary fields caused by inhomogeneities anomalous conductivity. At last, we calculated the electromagnetic fields response of complex geoelectric structures such as anticline, syncline, fault. The modeling results show that adaptive finite-element methods can automatically improve mesh generation and simulate complex geoelectric models using unstructured grids. The 2.5D complex resistivity invertion is implemented based the conjugate gradient algorithm.The conjugate gradient algorithm doesn't need to compute the sensitivity matrix but directly computes the sensitivity matrix or its transpose multiplying vector. In addition, the inversion target zones are segmented with fine grids and the background zones are segmented with big grid, the method can reduce the grid amounts of inversion, it is very helpful to improve the computational efficiency. The inversion results verify the validity and stability of conjugate gradient inversion algorithm. The results of theoretical calculation indicate that the modeling and inversion of 2.5D complex resistivity using unstructured grids are feasible. Using unstructured grids can improve the accuracy of modeling, but the large number of grids inversion is extremely time-consuming, so the parallel computation for the inversion is necessary. Acknowledgments: We thank to the support of the National Natural Science Foundation of China(41304094).
Bioengineering strategies to generate artificial protein complexes.
Kim, Heejae; Siu, Ka-Hei; Raeeszadeh-Sarmazdeh, Maryam; Sun, Qing; Chen, Qi; Chen, Wilfred
2015-08-01
For many applications, increasing synergy between distinct proteins through organization is important for the specificity, regulation, and overall reaction efficiency. Although there are many examples of protein complexes in nature, a generalized method to create these complexes remains elusive. Many conventional techniques such as random chemical conjugation, physical adsorption onto surfaces, and encapsulation within matrices are imprecise approaches and can lead to deactivation of protein native functionalities. More "bio-friendly" approaches such as genetically fused proteins and biological scaffolds often can result in low yields and low complex stability. Alternatively, site-specific protein conjugation or ligation can generate artificial protein complexes that preserve the native functionalities of protein domains and maintain stability through covalent bonds. In this review, we describe three distinct methods to synthesize artificial protein complexes (genetic incorPoration of unnatural amino acids to introduce bio-orthogonal azide and alkyne groups to proteins, split-intein based expressed protein ligation, and sortase mediated ligation) and highlight interesting applications for each technique. © 2015 Wiley Periodicals, Inc.
Gold nanoparticles as a factor of influence on doxorubicin-bovine serum albumin complex
NASA Astrophysics Data System (ADS)
Goncharenko, N. A.; Pavlenko, O. L.; Dmytrenko, O. P.; Kulish, M. P.; Lopatynskyi, A. M.; Chegel, V. I.
2018-04-01
The interaction between doxorubicin (Dox) and bovine serum albumin (BSA) complex with gold nanoparticles (AuNPs) was investigated by optical spectroscopy. The optical absorption of Dox and BSA solutions was studied. The formation of Dox-BSA complexes with a binding constant K = 7.56 × 106 M-2 and the number of binding sites n = 2 was found out. With pH 6.9, the concentration of complexes is an order of magnitude lower than the concentration of unbound antibiotic molecules. Optical absorption in solutions of Dox-BSA conjugates in the presence of AuNPs undergoes a significant rearrangement, which manifests the changes in the magnitude of the hydrophobic interaction of BSA with Dox, changes in the conformational state of antibiotic, and, as a consequence, a plasmon-induced change in the mechanism of complex formation. The aggregation of the Dox-AuNPs conjugate depends on the presence and concentration of BSA and in the case of formation of the Dox-BSA complex is minimal.
Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy.
Kyathanahally, Sreenath P; Döring, André; Kreis, Roland
2018-09-01
To make use of deep learning (DL) methods to detect and remove ghosting artifacts in clinical magnetic resonance spectra of human brain. Deep learning algorithms, including fully connected neural networks, deep-convolutional neural networks, and stacked what-where auto encoders, were implemented to detect and correct MR spectra containing spurious echo ghost signals. The DL methods were trained on a huge database of simulated spectra with and without ghosting artifacts that represent complex variations of ghost-ridden spectra, transformed to time-frequency spectrograms. The trained model was tested on simulated and in vivo spectra. The preliminary results for ghost detection are very promising, reaching almost 100% accuracy, and the DL ghost removal methods show potential in simulated and in vivo spectra, but need further refinement and quantitative testing. Ghosting artifacts in spectroscopy are problematic, as they superimpose with metabolites and lead to inaccurate quantification. Detection and removal of ghosting artifacts using traditional machine learning approaches with feature extraction/selection is difficult, as ghosts appear at different frequencies. Here, we show that DL methods perform extremely well for ghost detection if the spectra are treated as images in the form of time-frequency representations. Further optimization for in vivo spectra will hopefully confirm their "ghostbusting" capacity. Magn Reson Med 80:851-863, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Pobre, Karl; Tashani, Mohamed; Ridda, Iman; Rashid, Harunor; Wong, Melanie; Booy, Robert
2014-03-14
With the availability of newer conjugate vaccines, immunization schedules have become increasingly complex due to the potential for unpredictable immunologic interference such as 'carrier priming' and 'carrier induced epitopic suppression'. Carrier priming refers to an augmented antibody response to a carbohydrate portion of a glycoconjugate vaccine in an individual previously primed with the carrier protein. This review aims to provide a critical evaluation of the available data on carrier priming (and suppression) and conceptualize ways by which this phenomenon can be utilized to strengthen vaccination schedules. We conducted this literature review by searching well-known databases to date to identify relevant studies, then extracted and synthesized the data on carrier priming of widely used conjugate polysaccharide vaccines, such as, pneumococcal conjugate vaccine (PCV), meningococcal conjugate vaccine (MenCV) and Haemophilus influenzae type b conjugate vaccines (HibV). We found evidence of carrier priming with some conjugate vaccines, particularly HibV and PCV, in both animal and human models but controversy surrounds MenCV. This has implications for the immunogenicity of conjugate polysaccharide vaccines following the administration of tetanus-toxoid or diphtheria-toxoid containing vaccine (such as DTP). Available evidence supports a promising role for carrier priming in terms of maximizing the immunogenicity of conjugate vaccines and enhancing immunization schedule by making it more efficient and cost effective. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lonergan, Mark
Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been themore » polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.« less
Targeted CNx Nanowire-Drug Complexes for Enhanced Chemotherapeutic Efficacy
2009-09-01
Approved for public release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Recently the use of carbon nanotubes (CNT), Ag nanoshells, and other...studies (cell lines listed below). (Month 5) Task1a. Herceptin conjugated Nitrogen doped Multiwalled Carbon Nanotubes were created using standard...ablation of PC3 xenographs 19 Conclusions: During this experiment we discovered that herceptin conjugated N- doped MWNTs could
Gu, Zhuojun; Wang, Meng; Fang, Qiongyan; Zheng, Huaiyu; Wu, Feiyue; Lin, Dai; Xu, Ying; Jin, Yi
2015-05-01
Polyamidoamine (PAMAM) dendrimers have attracted lots of interest as drug carriers. And little study about whether pluronic-attached PAMAM dendrimers could be potential drug delivery systems has been carried on. Pluronic F127 (PF127) attached PAMAM dendrimers were designed as novel drug carriers. Two conjugation ratios of PF127-attached PAMAM dendrimers were synthesized. (1)H nuclear magnetic resonance ((1)H-NMR), Fourier transform infrared spectrum (FTIR), element analysis and ninhydrin assay were used to characterize the conjugates. Size, zeta potential and critical micelle concentrations (CMC) were also detected. And DOX was incorporated into the hydrophobic interior of the conjugates. Studies on their drug loading and drug release were carried on. Furthermore, hemolysis and cytotoxicity assay were used to evaluate the toxicity of the conjugates. PF127 was successfully conjugated to the fifth generation PAMAM dendrimer at two molar ratios of 19% and 57% (PF127 to surface amine per PAMAM dendrimer molecular). The conjugates showed an increased size and a reduced zeta potential. And higher CMC values were obtained than pure PF127. Compared with unconjugated PAMAM dendrimer, PF127 conjugation significantly reduced the hemolytic toxicity and cytotoxicity of PAMAM dendrimer in vitro. The encapsulation results showed that the ability to encapsulate DOX by the conjugate of 19% conjugation ratio was better than that of 57% conjugation ratio. And the maximum is ∼12.87 DOX molecules per conjugate molecule. Moreover, the complexes showed a sustained release behavior compared to pure DOX. Findings from the in vitro study show that the PF127-attached PAMAM dendrimers may be potential carriers for drug delivery.
A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide
Morizono, Kouki; Xie, Yiming; Helguera, Gustavo; Daniels, Tracy R.; Lane, Timothy F.; Penichet, Manuel L.; Chen, Irvin S. Y.
2010-01-01
Background Targeted gene transduction in vivo is the ultimate preferred method for gene delivery. We previously developed targeting lentiviral vectors that specifically recognize cell surface molecules with conjugated antibodies and mediate targeted gene transduction both in vitro and in vivo. Although effective in some experimental settings, the conjugation of virus with antibodies is mediated by the interaction between protein A and the Fc region of antibodies, which is not as stable as covalent conjugation. We have now developed a more stable conjugation strategy utilizing the interaction between avidin and biotin. Methods We inserted the biotin-adaptor-peptide, which was biotinylated by secretory biotin ligase at specific sites, into our targeting envelope proteins, enabling conjugation of the pseudotyped virus with avidin, streptavidin or neutravidin. Results When conjugated with avidin-antibody fusion proteins or the complex of avidin and biotinylated targeting molecules, the vectors could mediate specific transduction to targeted cells recognized by the targeting molecules. When conjugated with streptavidin-coated magnetic beads, transduction by the vectors was targeted to the locations of magnets. Conclusions This targeting vector system can be used for broad applications of targeted gene transduction using biotinylated targeting molecules or targeting molecules fused with avidin. PMID:19455593
Acacia gum as modifier of thermal stability, solubility and emulsifying properties of α-lactalbumin.
de Oliveira, Fabíola Cristina; Dos Reis Coimbra, Jane Sélia; de Oliveira, Eduardo Basílio; Rodrigues, Marina Quadrio Raposo Branco; Sabioni, Rachel Campos; de Souza, Bartolomeu Warlene Silva; Santos, Igor José Boggione
2015-03-30
Protein-polysaccharide conjugates often display improved techno-functional properties when compared to their individual involved biomolecules. α-Lactalbumin:acacia gum (α-la:AG) conjugates were prepared via Maillard reaction by the dry-heating method. Conjugate formation was confirmed using results of absorbance, o-phthalaldehyde test, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography. Techno-functional properties (emulsifying characteristics, solubility, and thermal stability) were evaluated for α-la, α-la/AG mixtures and α-la:AG conjugates. Conjugate thermal stability was improved compared to pure α-la treated at the same conditions of conjugate formation. Response surface methodology was used to establish models to predict solubility and emulsifying activity as functions of the salt concentration, pH and reaction time. α-la:AG conjugate solubility is affected in a complex manner by the three factors analyzed. Emulsifying activity index (EAI) of α-la is significantly affected by pH, while the α-la:AG EAI is affected by the three analyzed factors. Both solubility and EAI are maximized with pH 8.0, NaCl concentration of 0.3 mol L(-1) and two days of Maillard reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanderBerg, S.R.; Gonias, S.L.
1989-01-01
Covalent conjugates of bovine serum albumin (BSA) and 5-HT, ketanserin or d-lysergic acid were synthesized and characterized by polyacrylamide gel electrophoresis, whole blood clearance experiments in mice and aggregation studies with human platelets. Using the standard synthesis procedure, each mol of BSA bound 13.4 mol of (/sup 3/H)5-HT. Derivatization did not cause significant protein aggregation as determined by electrophoresis. All three conjugates antagonized the ability of 5-HT to amplify aggregation caused by low concentrations of ADP. The antagonist activity of each conjugate was concentration dependent; 2.6 ..mu..M 5-HT-BSA completely inhibited the aggregation caused by 13 ..mu..M 5-HT. None of themore » BSA drug conjugates, including 5-HT-BSA, amplified platelet aggregation caused by ADP in the absence of 5-HT. Aggregation by ristocetin, collagen, epinephrine or ADP alone was not significantly affected by the conjugates. Whole blood elimination experiments in mice demonstrated that the three conjugates and underivatized BSA are equally stable in the circulation. These prototypic 5-HT drug-protein conjugates may be useful for probing 5-HT/sub 2/ receptor-ligand interactions in human platelets.« less
Conjugate field approaches for active array compensation
NASA Technical Reports Server (NTRS)
Acosta, R. J.
1989-01-01
Two approaches for calculating the compensating feed array complex excitations are namely, the indirect conjugate field matching (ICFM) and the direct conjugate field matching (DCFM) approach. In the ICFM approach the compensating feed array excitations are determined by considering the transmitting mode and the reciprocity principle. The DCF, in contrast calculates the array excitations by integrating directly the induced surface currents on the reflector under a receiving mode. DCFM allows the reflector to be illuminated by an incident plane wave with a tapered amplitude. The level of taper can effectively control the sidelobe level of the compensated antenna pattern. Both approaches are examined briefly.
Hendler, Netta; Wildeman, Jurjen; Mentovich, Elad D; Schnitzler, Tobias; Belgorodsky, Bogdan; Prusty, Deepak K; Rimmerman, Dolev; Herrmann, Andreas; Richter, Shachar
2014-03-01
Optically active bio-composite blends of conjugated polymers or oligomers are fabricated by complexing them with bovine submaxilliary mucin (BSM) protein. The BSM matrix is exploited to host hydrophobic extended conjugated π-systems and to prevent undesirable aggregation and render such materials water soluble. This method allows tuning the emission color of solutions and films from the basic colors to the technologically challenging white emission. Furthermore, electrically driven light emitting biological devices are prepared and operated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kikuchi, Shunsuke; Kanoh, Daisuke; Sato, Shinichi; Sakurai, Yoshinori; Suzuki, Minoru; Nakamura, Hiroyuki
2016-09-10
Maleimide-conjugating closo-dodecaborate sodium form 5c (MID) synthesized by the nucleophilic ring-opening reaction of closo-dodecaborate-1,4-dioxane complex 2 with tetrabutylammonium (TBA) azide was found to conjugate to free SH of cysteine and lysine residues in BSA under physiological conditions, forming highly boronated BSA that showed high and selective accumulation in tumor and significant tumor growth inhibition in colon 26 tumor-bearing mice subjected to thermal neutron irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.
Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan
2015-12-28
Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. Copyright © 2015 Elsevier B.V. All rights reserved.
Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan
2015-01-01
Despite adenovirus (Ad) vector’s numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. PMID:26437261
Piras, Anna Maria; Fabiano, Angela; Chiellini, Federica; Zambito, Ylenia
2018-01-01
Purpose The present study aimed to compare a novel cyclodextrin–polymer–drug complex in solution with a dispersed supramolecular nanosize system, made of the same complex, for ability to carry dexamethasone (DEX) across excised rat intestine. Results Methyl-β-cyclodextrin-quaternary ammonium chitosan conjugate (QA-Ch-MCD) was obtained by covalent grafting through a 10-atom spacer. The conjugate was characterized by 1H-NMR, resulting in 24.4% w/w of MCD content. Phase solubility profile analysis of the QA-Ch-MCD/DEX complex yielded an association constant of 14037 M−1, vs 4428 M−1 for the plain MCD/DEX complex. Nanoparticle (NP) dispersions resulted from ionotropic gelation of the QA-Ch-MCD/DEX complex by sodium tripolyphosphate, leading to 9.9%±1.4% drug loading efficiency. The mean diameter and zeta potential for NP were 299±32 nm (polydispersity index [PI] 0.049) and 11.5±1.1 mV, respectively. Those for QA-Ch-MCD/DEX were 2.7±0.4 nm (PI 0.048) and 6.7±0.6 mV. QA-Ch-MCD/DEX solutions and corresponding NP dispersions were compared in vitro for water-assisted transport through mucus, DEX permeation through excised rat intestine, and ex vivo mucoadhesivity. The complex showed higher mucoadhesion and lower transport rate through mucus; also, it provided faster drug permeation across excised rat intestine. Conclusion Carrier adhesion to mucus surface has played a most important role in favoring transepithelial permeation. Then, within the concerns of the present study, the use of NP seems not to provide any determinant advantage over using the simpler macromolecular complex. PMID:29731628
Pavlov, A N; Pavlova, O N; Abdurashitov, A S; Sindeeva, O A; Semyachkina-Glushkovskaya, O V; Kurths, J
2018-01-01
The scaling properties of complex processes may be highly influenced by the presence of various artifacts in experimental recordings. Their removal produces changes in the singularity spectra and the Hölder exponents as compared with the original artifacts-free data, and these changes are significantly different for positively correlated and anti-correlated signals. While signals with power-law correlations are nearly insensitive to the loss of significant parts of data, the removal of fragments of anti-correlated signals is more crucial for further data analysis. In this work, we study the ability of characterizing scaling features of chaotic and stochastic processes with distinct correlation properties using a wavelet-based multifractal analysis, and discuss differences between the effect of missed data for synchronous and asynchronous oscillatory regimes. We show that even an extreme data loss allows characterizing physiological processes such as the cerebral blood flow dynamics.
Development of a High Angular Resolution Diffusion Imaging Human Brain Template
Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos
2014-01-01
Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528
NASA Astrophysics Data System (ADS)
Pavlov, A. N.; Pavlova, O. N.; Abdurashitov, A. S.; Sindeeva, O. A.; Semyachkina-Glushkovskaya, O. V.; Kurths, J.
2018-01-01
The scaling properties of complex processes may be highly influenced by the presence of various artifacts in experimental recordings. Their removal produces changes in the singularity spectra and the Hölder exponents as compared with the original artifacts-free data, and these changes are significantly different for positively correlated and anti-correlated signals. While signals with power-law correlations are nearly insensitive to the loss of significant parts of data, the removal of fragments of anti-correlated signals is more crucial for further data analysis. In this work, we study the ability of characterizing scaling features of chaotic and stochastic processes with distinct correlation properties using a wavelet-based multifractal analysis, and discuss differences between the effect of missed data for synchronous and asynchronous oscillatory regimes. We show that even an extreme data loss allows characterizing physiological processes such as the cerebral blood flow dynamics.
Davidov-Pardo, Gabriel; Joye, Iris J; Espinal-Ruiz, Mauricio; McClements, David Julian
2015-09-30
Protein nanoparticles are often not very stable in a complex food matrix because they are primarily stabilized by electrostatic repulsion. In this study, we envisaged the stabilization of zein nanoparticles through Maillard conjugation reactions with polysaccharides of different molecular mass. Zein nanoparticles (0.5% w/v) containing resveratrol (0.025% w/v grape skin extract) were produced by liquid antisolvent precipitation and coated with Maillard conjugates (MC) of sodium caseinate and different molecular mass carbohydrates during particle production. Zein nanoparticles coated with conjugated polysaccharides of 2.8, 37, and 150 kDa had diameters of 198 ± 5, 176 ± 6, and 180 ± 3 nm, respectively. The encapsulation efficiency (∼83%) was not affected by conjugation, but the conjugates significantly improved particle stability against changes in pH (2.0-9.0), CaCl2 addition (up to 100 mM), and heat treatment (30-90 °C, 30 min). Zein nanoparticles coated by MC may therefore be suitable delivery systems for hydrophobic bioactive molecules in a wide range of commercial products.
Microreactor and method for preparing a radiolabeled complex or a biomolecule conjugate
Reichert, David E; Kenis, Paul J. A.; Wheeler, Tobias D; Desai, Amit V; Zeng, Dexing; Onal, Birce C
2015-03-17
A microreactor for preparing a radiolabeled complex or a biomolecule conjugate comprises a microchannel for fluid flow, where the microchannel comprises a mixing portion comprising one or more passive mixing elements, and a reservoir for incubating a mixed fluid. The reservoir is in fluid communication with the microchannel and is disposed downstream of the mixing portion. A method of preparing a radiolabeled complex includes flowing a radiometal solution comprising a metallic radionuclide through a downstream mixing portion of a microchannel, where the downstream mixing portion includes one or more passive mixing elements, and flowing a ligand solution comprising a bifunctional chelator through the downstream mixing portion. The ligand solution and the radiometal solution are passively mixed while in the downstream mixing portion to initiate a chelation reaction between the metallic radionuclide and the bifunctional chelator. The chelation reaction is completed to form a radiolabeled complex.
Myocardial perfusion MRI with sliding-window conjugate-gradient HYPR.
Ge, Lan; Kino, Aya; Griswold, Mark; Mistretta, Charles; Carr, James C; Li, Debiao
2009-10-01
First-pass perfusion MRI is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. In this study we investigated the feasibility of using a method that combines sliding window and CG-HYPR methods (SW-CG-HYPR) to reduce the acquisition window for each slice while maintaining the temporal resolution of one frame per heartbeat in myocardial perfusion MRI. This method allows an increased number of slices, reduced motion artifacts, and preserves the relatively high SNR and spatial resolution of the "composite images." Results from eight volunteers demonstrate the feasibility of SW-CG-HYPR for accelerated myocardial perfusion imaging with accurate signal intensity changes of left ventricle blood pool and myocardium. Using this method the acquisition time per cardiac cycle was reduced by a factor of 4 and the number of slices was increased from 3 to 8 as compared to the conventional technique. The SNR of the myocardium at peak enhancement with SW-CG-HYPR (13.83 +/- 2.60) was significantly higher (P < 0.05) than the conventional turbo-FLASH protocol (8.40 +/- 1.62). Also, the spatial resolution of the myocardial perfection images was significantly improved. SW-CG-HYPR is a promising technique for myocardial perfusion MRI. (c) 2009 Wiley-Liss, Inc.
N-heterocyclic carbene gold(I) and silver(I) complexes bearing functional groups for bio-conjugation
Garner, Mary E.; Niu, Weijia; Chen, Xigao; Ghiviriga, Ion; Tan, Weihong; Veige, Adam S.
2015-01-01
This work describes several synthetic approaches to append organic functional groups to gold and silver N-heterocyclic carbene (NHC) complexes suitable for applications in biomolecule conjugation. Carboxylate appended NHC ligands (3) lead to unstable AuI complexes that convert into bis-NHC species (4). A benzyl protected carboxylate NHC-AuI complex 2 was synthesized but deprotection to produce the carboxylic acid functionality could not be achieved. A small library of new alkyne functionalized NHC proligands were synthesized and used for subsequent silver and gold metalation reactions. The alkyne appended NHC gold complex 13 readily react with benzyl azide in a copper catalyzed azide-alkyne cycloaddition reaction to form the triazole appended NHC gold complex 14. Cell cytotoxicity studies were performed on DLD-1 (colorectal adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MCF-7 (breast adenocarcinoma), CCRF-CEM (human T-Cell leukemia), and HEK (human embryonic kidney). Complete spectroscopic characterization of the ligands and complexes was achieved using 1H and 13C NMR, gHMBC, ESI-MS, and combustion analysis. PMID:25490699
Tabassum, Sartaj; Afzal, Mohd; Arjmand, Farukh
2014-03-03
New carbohydrate-conjugate heterobimetallic complexes [C₂₂H₅₀N₆O₁₃CuSnCl₂] (3) and [C₂₂H₅₈N₆O₁₇NiSnCl₂] (4) were synthesized from their monometallic analogs [C₂₂H₅₂N₆O₁₃Cu] (1) and [C₂₂H₆₀N₆O₁₇Ni] (2) containing N-glycoside ligand (L). In vitro DNA binding studies of L and complexes (1-4) with CT DNA were carried out by employing various biophysical and molecular docking techniques which revealed that heterobimetallic complex 3 strongly binds to DNA in comparison to 4, monometallic complexes (1 and 2) and the free ligand. Complex 3 cleaves pBR322 DNA via hydrolytic pathway (confirmed by T4 DNA ligase assay) and inhibited Topo-II activity in a dose-dependent manner. Furthermore, complex 3 was docked into the ATPase domain of human-Topo-II in order to probe the possible mechanism of inhibition. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Connell, Timothy U; Hayne, David J; Ackermann, Uwe; Tochon-Danguy, Henri J; White, Jonathan M; Donnelly, Paul S
2014-04-01
New 1,4-substituted pyridyl-1,2,3-triazole ligands with pendent phenyl isothiocyanate functional groups linked to the heterocycle through a short methylene or longer polyethylene glycol spacers were prepared and conjugated to a peptide containing the arginine-glycine-aspartic acid peptide motif. Rhenium and technetium carbonyl complexes, [M(CO)3 L(x) (py)](+) (where M = Re(I) or (99m) Tc(I) ; L(x) = 1,4-substituted pyridyl-1,2,3-triazole ligands and py = pyridine) were prepared. One rhenium complex has been characterized by X-ray crystallography, and the luminescent properties of [M(CO)3 L(x) (py)](+) are reported. Copyright © 2013 John Wiley & Sons, Ltd.
Use of a three-layer distributed RC network to produce two pairs of complex conjugate zeros
NASA Technical Reports Server (NTRS)
Huelsman, L. P.
1972-01-01
The properties of a three layer distributed RC network consisting of two layers of resistive material separated by a dielectric are described. When the three layer network is used as a three terminal element by connecting conducting terminal strips across the ends of one of the resistive layers and the center of the other resistive layer, the network may be used to produce pairs of complex conjugate transmission zeros. The location of these zeros are determined by the parameters of the network. Design charts for determining the zero positions are included as part of the report.
Hanagata, Nobutaka
2017-01-01
Unmethylated cytosine-guanine dinucleotide-containing oligodeoxynucleotides (CpG ODNs), which are synthetic agonists of Toll-like receptor 9 (TLR9), activate humoral and cellular immunity and are being developed as vaccine adjuvants to prevent or treat cancers, infectious diseases, and allergies. Free CpG ODNs have been used in many clinical trials implemented to verify their effects. However, recent research has reported that self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes demonstrate higher adjuvant effects than free CpG ODNs, owing to their improved uptake efficiency into cells expressing TLR9. Moreover, protein/peptide-CpG ODN conjugates and nanomaterial-CpG ODN complexes are able to deliver CpG ODNs and antigens (or allergens) to the same types of cells, which enables a higher degree of prophylaxis or therapeutic effect. In this review, the author describes recent trends in the research and development of CpG ODN nanomedicines containing self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes, focusing mainly on the results of preclinical and clinical studies.
Smith, Ryan J; Beck, Rachel W; Prevette, Lisa E
2015-01-01
Poly(ethylene glycol) (PEG) is often conjugated to polyethylenimine (PEI) to provide colloidal stability to PEI-DNA polyplexes and shield charge leading to toxicity. Here, a library of nine cationic copolymers was synthesized by grafting three molecular weights (750, 2000, 5000Da) of PEG to linear PEI at three conjugation ratios. Using isothermal titration calorimetry, we have quantified the thermodynamics of the associations between the copolymers and DNA and determined the extent to which binding is hindered as a function of PEG molecular weight and conjugation ratio. Low conjugation ratios of 750Da PEG to PEI resulted in little decrease in DNA affinity, but a significant decrease-up to two orders of magnitude-was found for the other copolymers. We identified limitations in determination of affinity using indirect assays (electrophoretic mobility shift and ethidium bromide exclusion) commonly used in the field. Dynamic light scattering of the DNA complexes at physiological ionic strength showed that PEI modifications that did not reduce DNA affinity also did not confer significant colloidal stability, a finding that was supported by calorimetric data on the aggregation process. These results quantify the DNA interaction thermodynamics of PEGylated polycations for the first time and indicate that there is an optimum PEG chain length and degree of substitution in the design of agents that have desirable properties for effective in vivo gene delivery. Copyright © 2015 Elsevier B.V. All rights reserved.
Carmali, Sheiliza; Murata, Hironobu; Cummings, Chad; Matyjaszewski, Krzysztof; Russell, Alan J
2017-01-01
Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis. © 2017 Elsevier Inc. All rights reserved.
Recent progress in heteronuclear long-range NMR of complex carbohydrates: 3D H2BC and clean HMBC.
Meier, Sebastian; Petersen, Bent O; Duus, Jens Ø; Sørensen, Ole W
2009-11-02
The new NMR experiments 3D H2BC and clean HMBC are explored for challenging applications to a complex carbohydrate at natural abundance of (13)C. The 3D H2BC experiment is crucial for sequential assignment as it yields heteronuclear one- and two-bond together with COSY correlations for the (1)H spins, all in a single spectrum with good resolution and non-informative diagonal-type peaks suppressed. Clean HMBC is a remedy for the ubiquitous problem of strong coupling induced one-bond correlation artifacts in HMBC spectra of carbohydrates. Both experiments work well for one of the largest carbohydrates whose structure has been determined by NMR, not least due to the enhanced resolution offered by the third dimension in 3D H2BC and the improved spectral quality due to artifact suppression in clean HMBC. Hence these new experiments set the scene to take advantage of the sensitivity boost achieved by the latest generation of cold probes for NMR structure determination of even larger and more complex carbohydrates in solution.
Complexities of Focused Ion Beam Preparation of Electron-Transparent Sections for Meteorite Studies
NASA Astrophysics Data System (ADS)
Ishii, H. A.; Bradley, J. P.; Teslich, N.
2012-09-01
Focused Ion Beam is increasingly used to prepare site-specific, electron-transparent sections for meteorite micro-texture and -chemistry studies. We discuss technical challenges and frequently-overlooked FIB artifacts relevant to meteorite analyses.
Safenkova, Irina V; Slutskaya, Elvira S; Panferov, Vasily G; Zherdev, Anatoly V; Dzantiev, Boris B
2016-12-16
Conjugates of gold nanoparticles (GNPs) with antibodies are powerful analytical tools. It is crucial to know the conjugates' state in both the concentrated and mixed solutions used in analytical systems. Herein, we have applied asymmetrical flow field-flow fractionation (AF4) to identify the conjugates' state. The influence of a conjugate's composition and concentration on aggregation was studied in a true analytical solution (a concentrated mixture with stabilizing components). GNPs with an average diameter of 15.3±1.2nm were conjugated by adsorption with eight antibodies of different specificities. We found that, while the GNPs have a zeta potential of -31.6mV, the conjugates have zeta potentials ranging from -5.8 to -11.2mV. Increased concentrations (up to 184nM, OD 520 =80) of the mixed conjugate (mixture of eight conjugates) did not change the form of fractograms, and the peak areas' dependence on concentration was strongly linear (R 2 values of 0.99919 and 0.99845 for absorption signal and light scattering, respectively). Based on the gyration (R g ) and hydrodynamic (R h ) radii measured during fractionation, we found that the nanoparticles were divided into two populations: (1) those with constant radii (R g =9.9±0.9nm; R h =14.3±0.5nm); and (2) those with increased radii from 9.9 to 24.4nm for R g and from 14.3 to 28.1nm for R h . These results confirm that the aggregate state of the concentrated and mixed conjugates' preparations is the same as that of diluted preparations and that AF4 efficiently characterizes the conjugates' state in a true analytical solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Ubiquitin in Motion: Structural Studies of the Ubiquitin-Conjugating Enzyme~Ubiquitin Conjugate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruneda, Jonathan N.; Stoll, Kate E.; Bolton, Laura J.
2011-03-15
Ubiquitination of proteins provides a powerful and versatile post-translational signal in the eukaryotic cell. The formation of a thioester bond between ubiquitin (Ub) and the active site of a ubiquitin-conjugating enzyme (E2) is critical for the transfer of Ub to substrates. Assembly of a functional ubiquitin ligase (E3) complex poised for Ub transfer involves recognition and binding of an E2~Ub conjugate. Therefore, full characterization of the structure and dynamics of E2~Ub conjugates is required for further mechanistic understanding of Ub transfer reactions. Here we present characterization of the dynamic behavior of E2~Ub conjugates of two human enzymes, UbcH5c~Ub and Ubc13~Ub,more » in solution as determined by nuclear magnetic resonance and small-angle X-ray scattering. Within each conjugate, Ub retains great flexibility with respect to the E2, indicative of highly dynamic species that adopt manifold orientations. The population distribution of Ub conformations is dictated by the identity of the E2: the UbcH5c~Ub conjugate populates an array of extended conformations, and the population of Ubc13~Ub conjugates favors a closed conformation in which the hydrophobic surface of Ub faces helix 2 of Ubc13. Finally, we propose that the varied conformations adopted by Ub represent available binding modes of the E2~Ub species and thus provide insight into the diverse E2~Ub protein interactome, particularly with regard to interaction with Ub ligases.« less
Feinweber, Daniela; Verwanger, Thomas; Brüggemann, Oliver; Teasdale, Ian; Krammer, Barbara
2014-11-01
Two series of water soluble novel conjugates of the photosensitizer hypericin were prepared and evaluated for their use as agents for photodynamic therapy, with covalently and non-covalently loaded hypericin on functionalised, hydrolytically degradable inorganic-organic hybrid polyphosphazenes. The conjugates showed excellent aqueous solubility and similar fluorescence spectra to pristine hypericin. Detailed in vitro investigations revealed that the substances were non-toxic in the dark over a wide concentration range, but displayed phototoxicity upon irradiation. Cell uptake studies showed rapid uptake with localization of hypericin observed in endoplasmic reticulum, Golgi complex and particularly in the lysosomes. Furthermore, a DNA fragmentation assay revealed that the photosensitizer conjugates are efficient inducers of apoptosis with some tumor cell selectivity caused by faster and enhanced accumulation in A431 than in HaCaT cells, and thus a moderately higher phototoxicity of A431 compared to HaCaT cells. These novel photosensitizer conjugates hence represent viable hydrolytically degradable alternatives for the advanced delivery of hypericin.
Şenkuytu, Elif; Tanrıverdi Eçik, Esra
2018-06-05
In the study, the new hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) have been successfully synthesized and characterized by using general spectroscopic techniques such as 1 H, 13 C and 31 P NMR spectroscopies. The photophysical and metal sensing properties in THF solutions of dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) were investigated by UV-Vis and fluorescence spectroscopies in dilute tetrahydrofuran solutions. These dendrimers showed strong absorption bands 501 and 641nm at low concentration with high molar extinction coefficients. In addition, the stoichiometry of the complex between the conjugate (HBCP 2) and Co 2+ ions were determined by a Job's plot obtained from fluorescence titrations. The metal sensing data showed that the hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugate (HBCP 2) is a candidate for fluorescent chemosensor for Co 2+ ions due to showing high selectivity with a low limit of detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Deng, Li; Zhang, Yingying; Ma, Lulu; Jing, Xiaolong; Ke, Xingfa; Lian, Jianhao; Zhao, Qiang; Yan, Bo; Zhang, Jinfeng; Yao, Jianzhong; Chen, Jianming
2013-01-01
Background Targeted liposome-polycation-DNA complex (LPD), mainly conjugated with antibodies using functionalized PEG derivatives, is an effective nanovector for systemic delivery of small interference RNA (siRNA). However, there are few studies reporting the effect of different conjugation linkers on LPD for gene silencing. To clarify the influence of antibody conjugation linkers on LPD, we prepared two different immunoliposomes to deliver siRNA in which DSPE-PEG-COOH and DSPE-PEG-MAL, the commonly used PEG derivative linkers, were used to conjugate anti-EGFR Fab’ with the liposome. Methods First, 600 μg of anti-EGFR Fab’ was conjugated with 28.35 μL of a micelle solution containing DSPE-PEG-MAL or DSPE-PEG-COOH, and then post inserted into the prepared LPD. Various liposome parameters, including particle size, zeta potential, stability, and encapsulation efficiency were evaluated, and the targeting ability and gene silencing activity of TLPD-FPC (DSPE-PEG-COOH conjugated with Fab’) was compared with that of TLPD-FPM (DSPE-PEG-MAL conjugated with Fab’) in SMMC-7721 hepatocellular carcinoma cells. Results There was no significant difference in particle size between the two TLPDs, but the zeta potential was significantly different. Further, although there was no significant difference in siRNA encapsulation efficiency, cell viability, or serum stability between TLPD-FPM and TLPD-FPC, cellular uptake of TLPD-FPM was significantly greater than that of TLPD-FPC in EGFR-overexpressing SMMC-7721 cells. The luciferase gene silencing efficiency of TLPD-FPM was approximately three-fold high than that of TLPD-FPC. Conclusion Different conjugation linkers whereby antibodies are conjugated with LPD can affect the physicochemical properties of LPD and antibody conjugation efficiency, thus directly affecting the gene silencing effect of TLPD. Immunoliposomes prepared by DSPE-PEG-MAL conjugation with anti-EGFR Fab’ are more effective than TLPD containing DSPE-PEG-COOH in targeting hepatocellular carcinoma cells for siRNA delivery. PMID:24023515
New bifunctional chelator for 64Cu-immuno-positron emission tomography.
Pandya, Darpan N; Bhatt, Nikunj; Dale, Ajit V; Kim, Jung Young; Lee, Hochun; Ha, Yeong Su; Lee, Ji-Eun; An, Gwang Il; Yoo, Jeongsoo
2013-08-21
A new tetraazamacrocyclic bifunctional chelator, TE2A-Bn-NCS, was synthesized in high overall yield from cyclam. An extra functional group (NCS) was introduced to the N-atom of TE2A for specific conjugation with antibody. The Cu complex of TE2A-Bn-NCS showed high kinetic stability in acidic decomplexation and cyclic voltammetry studies. X-ray structure determination of the Cu-TE2A-Bn-NH2 complex confirmed octahedral geometry, in which copper atom is strongly coordinated by four macrocyclic nitrogens in equatorial positions and two carboxylate oxygen atoms occupy the elongated axial positions. Trastuzumab was conjugated with TE2A-Bn-NCS and then radiolabeled with 64Cu quantitatively at room temperature within 10 min. Biodistribution studies showed that the 64Cu-labeled TE2A-Bn-NCS-trastuzumab conjugates maintain high stability in physiological conditions, and NIH3T6.7 tumors were clearly visualized up to 3 days by 64Cu-immuno-positron emission tomography imaging in animal models.
Beyond Atg8 binding: The role of AIM/LIR motifs in autophagy.
Fracchiolla, Dorotea; Sawa-Makarska, Justyna; Martens, Sascha
2017-05-04
Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12-Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12-Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy.
Mai, Kaijin; Zhang, Shanshan; Liang, Bing; Gao, Cong; Du, Wenjun; Zhang, Li-Ming
2015-06-05
To develop new dextran derivatives for efficient gene delivery, the conjugation of poly(amidoamine) dendrons onto biocompatible dextran was carried out by a Cu(I)-catalyzed azide-alkyne cycloaddition, as confirmed by FTIR and (1)H NMR analyses. For resultant dextran conjugates with various generations of poly(amidoamine) dendrons, their buffering capacity and in vitro cytotoxicity were evaluated by acid-base titration and MTT tests, respectively. In particular, their physicochemical characteristics for the complexation with plasmid DNA were investigated by the combined analyses from agarose gel electrophoresis, zeta potential, particle size, transmission electron microscopy and fluorescence emission spectra. Moreover, their complexes with plasmid DNA were studied with respect to their transfection efficiency in human embryonic kidney (HEK293) cell lines. In the case of a higher generation of poly(amidoamine) dendrons, such a dextran conjugate was found to have much lower cytotoxicity and better gene delivery capability when compared to branched polyethylenimine (bPEI, 25kDa), a commonly used gene vector. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gulbakan, Basri; Yasun, Emir; Shukoor, M. Ibrahim; Zhu, Zhi; You, Mingxu; Tan, Xiaohong; Sanchez, Hernan; Powell, David H.; Dai, Hongjie; Tan, Weihong
2010-01-01
This study demonstrates the use of aptamer-conjugated graphene oxide as an affinity extraction and detection platform for analytes from complex biological media. We have shown that cocaine and adenosine can be selectively enriched from plasma samples and that direct mass spectrometric readout can be obtained without a matrix and with greatly improved signal-to-noise ratios. The aptamer conjugated graphene oxide has clear advantages in target enrichment and in generating highly efficient ionization of target molecules for mass spectrometry. These results demonstrate the utility of the approach for analysis of small molecules in real biological samples. PMID:21090719
Liquid scintillators with near infrared emission based on organoboron conjugated polymers.
Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki
2015-11-15
The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region. Copyright © 2015 Elsevier Ltd. All rights reserved.
Protein carriers of conjugate vaccines
Pichichero, Michael E
2013-01-01
The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057
Xu, Qing-Hua; Gaylord, Brent S; Wang, Shu; Bazan, Guillermo C; Moses, Daniel; Heeger, Alan J
2004-08-10
We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor-acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents.
Xu, Qing-Hua; Gaylord, Brent S.; Wang, Shu; Bazan, Guillermo C.; Moses, Daniel; Heeger, Alan J.
2004-01-01
We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor–acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents. PMID:15282375
[Non-viral gene therapy approach for regenerative recovery of skin wounds in mammals].
Efremov, A M; Dukhovlinov, I V; Dizhe, E B; Burov, S V; Leko, M V; Akif'ev, B N; Mogilenko, D A; Ivanov, I A; Perevozchikov, A P; Orlov, S V
2010-01-01
The rate and character of skin tissue regeneration after wounds, burns and other traumas depend on the cell proliferation within damaged area. Acceleration of healing by stimulation of cell proliferation and extracellular matrix synthesis is one of the most important tasks of modern medicine. There are gene therapy approaches to wound treatment consisting in the transfer of genes encoding mitogenic growth factors to wound area. The most important step in the development of gene therapy approaches is the design of gene delivery tools. In spite of high efficacy of viral vectors, the non-viral means have some preferences (low toxicity, low immunogenity, safety and the absence of backside effects). Among non-viral gene delivery tools, molecular conjugates are the most popular because of their efficacy, simplicity, and the capacity to the targeted gene transfer. In the present work we have developed two molecular conjugates--NLS-TSF7 and NLS-TSF12 consisting of the modified signal of nuclear localization of T-antigen of SV40 virus (cationic part) and the peptide ligands of mammalian transferrin receptor (ligand part). These conjugates bind to plasmid DNA with formation of polyelectrolytic complexes and are capable to deliver plasmid DNA into cells expressing transferrin receptors by receptor-mediated endocytosis. Transfer of the expression vector of luciferase gene in the complex with molecular conjugate NLS-TSF7 to murine surface tissues led to about 100 fold increasing of luciferase activity in comparison with the transfer of free expression vector. Treatment of slash wounds in mice with the complexes of expression vector of synthetic human gene encoding insulin-like growth factor 1 with molecular conjugates NLS-TSF7 led to acceleration of healing in comparison with mice treated with free expression vector. The results obtained confirm the high efficiency of the developed regenerative gene therapy approach for the treatment of damaged skin tissues in mammals.
Image denoising for real-time MRI.
Klosowski, Jakob; Frahm, Jens
2017-03-01
To develop an image noise filter suitable for MRI in real time (acquisition and display), which preserves small isolated details and efficiently removes background noise without introducing blur, smearing, or patch artifacts. The proposed method extends the nonlocal means algorithm to adapt the influence of the original pixel value according to a simple measure for patch regularity. Detail preservation is improved by a compactly supported weighting kernel that closely approximates the commonly used exponential weight, while an oracle step ensures efficient background noise removal. Denoising experiments were conducted on real-time images of healthy subjects reconstructed by regularized nonlinear inversion from radial acquisitions with pronounced undersampling. The filter leads to a signal-to-noise ratio (SNR) improvement of at least 60% without noticeable artifacts or loss of detail. The method visually compares to more complex state-of-the-art filters as the block-matching three-dimensional filter and in certain cases better matches the underlying noise model. Acceleration of the computation to more than 100 complex frames per second using graphics processing units is straightforward. The sensitivity of nonlocal means to small details can be significantly increased by the simple strategies presented here, which allows partial restoration of SNR in iteratively reconstructed images without introducing a noticeable time delay or image artifacts. Magn Reson Med 77:1340-1352, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Quality improving techniques for free-viewpoint DIBR
NASA Astrophysics Data System (ADS)
Do, Luat; Zinger, Sveta; de With, Peter H. N.
2010-02-01
Interactive free-viewpoint selection applied to a 3D multi-view signal is a possible attractive feature of the rapidly developing 3D TV media. This paper explores a new rendering algorithm that computes a free-viewpoint based on depth image warping between two reference views from existing cameras. We have developed three quality enhancing techniques that specifically aim at solving the major artifacts. First, resampling artifacts are filled in by a combination of median filtering and inverse warping. Second, contour artifacts are processed while omitting warping of edges at high discontinuities. Third, we employ a depth signal for more accurate disocclusion inpainting. We obtain an average PSNR gain of 3 dB and 4.5 dB for the 'Breakdancers' and 'Ballet' sequences, respectively, compared to recently published results. While experimenting with synthetic data, we observe that the rendering quality is highly dependent on the complexity of the scene. Moreover, experiments are performed using compressed video from surrounding cameras. The overall system quality is dominated by the rendering quality and not by coding.
A physico-chemical assessment of the thermal stability of pneumococcal conjugate vaccine components
Gao, Fang; Lockyer, Kay; Burkin, Karena; Crane, Dennis T; Bolgiano, Barbara
2014-01-01
Physico-chemical analysis of pneumococcal polysaccharide (PS)-protein conjugate vaccine components used for two commercially licensed vaccines was performed to compare the serotype- and carrier protein-specific stabilities of these vaccines. Nineteen different monovalent pneumococcal conjugates from commercial vaccines utilizing CRM197, diphtheria toxoid (DT), Protein D (PD) or tetanus toxoid (TT) as carrier proteins were incubated at temperatures up to 56°C for up to eight weeks or were subjected to freeze-thawing (F/T). Structural stability was evaluated by monitoring their size, integrity and carrier protein conformation. The molecular size of the vaccine components was well maintained for Protein D, TT and DT conjugates at -20°C, 4°C and F/T, and for CRM197 conjugates at 4°C and F/T. It was observed that four of the eight serotypes of Protein D conjugates tended to form high molecular weight complexes at 37°C or above. The other conjugated carrier proteins also appeared to form oligomers or ‘aggregates’ at elevated temperatures, but rarely when frozen and thawed. There was evidence of degradation in some of the conjugates as evidenced by the formation of lower molecular weight materials which correlated with measured free saccharide. In conclusion, pneumococcal-Protein D/TT/DT and most CRM197 bulk conjugate vaccines were stable when stored at 2–8°C, the recommended temperature. In common between the conjugates produced by the two manufacturers, serotypes 1, 5, and 19F were relatively less stable and 6B was the most stable, with types 7F and 23F also showing good stability. PMID:25483488
Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru
2013-11-01
Conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 is a member of the aldo-keto reductase (AKR) superfamily and reduces ketopantoyl lactone to d-pantoyl lactone in a NADPH-dependent and stereospecific manner. We determined the crystal structure of CPR-C1.NADPH complex at 2.20 Å resolution. CPR-C1 adopted a triose-phosphate isomerase (TIM) barrel fold at the core of the structure in which Thr25 and Lys26 of the GXGTX motif bind uniquely to the adenosine 2'-phosphate group of NADPH. This finding provides a novel structural basis for NADPH binding of the AKR superfamily. Copyright © 2013 Wiley Periodicals, Inc.
Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm Phoenix canariensis1[OPEN
Bartuce, Allison; Free, Heather C.A.; Smith, Bronwen G.
2017-01-01
The cell walls of leaf base tissues of the Canary Island date palm (Phoenix canariensis) contain lignins with the most complex compositions described to date. The lignin composition varies by tissue region and is derived from traditional monolignols (ML) along with an unprecedented range of ML conjugates: ML-acetate, ML-benzoate, ML-p-hydroxybenzoate, ML-vanillate, ML-p-coumarate, and ML-ferulate. The specific functions of such complex lignin compositions are unknown. However, the distribution of the ML conjugates varies depending on the tissue region, indicating that they may play specific roles in the cell walls of these tissues and/or in the plant’s defense system. PMID:28894022
enantio-Enriched CPL-active helicene-bipyridine-rhenium complexes.
Saleh, Nidal; Srebro, Monika; Reynaldo, Thibault; Vanthuyne, Nicolas; Toupet, Loïc; Chang, Victoria Y; Muller, Gilles; Williams, J A Gareth; Roussel, Christian; Autschbach, Jochen; Crassous, Jeanne
2015-03-04
The incorporation of a rhenium atom within an extended helical π-conjugated bi-pyridine system impacts the chiroptical and photophysical properties of the resulting neutral or cationic complexes, leading to the first examples of rhenium-based phosphors that exhibit circularly polarized luminescence.
Wang, Wei-Yuan; Zhao, Xiu-Fen; Ju, Xiao-Han; Liu, Ping; Li, Jing; Tang, Ya-Wen; Li, Shu-Ping; Li, Xiao-Dong; Song, Fu-Gui
2018-03-01
Au-methotrexate (Au-MTX) conjugates induced by sugar molecules were produced by a simple, one-pot, hydrothermal growth method. Herein, the Au(III)-MTX complexes were used as the precursors to form Au-MTX conjugates. Addition of different types of sugar molecules with abundant hydroxyl groups resulted in the formation of Au-MTX conjugates featuring distinct characteristics that could be explained by the diverse capping mechanisms of sugar molecules. That is, the instant-capping mechanism of glucose favored the generation of peanut-like Au-MTX conjugates with high colloidal stability while the post-capping mechanism of dextran and sucrose resulted in the production of Au-MTX conjugates featuring excellent near-infrared (NIR) optical properties with a long-wavelength plasmon resonance near 630-760 nm. Moreover, in vitro bioassays showed that cancer cell viabilities upon incubation with free MTX, Au-MTX conjugates doped with glucose, dextran and sucrose for 48 h were 74.6%, 55.0%, 62.0%, and 63.1%, respectively. Glucose-doped Au-MTX conjugates exhibited a higher anticancer activity than those doped with dextran and sucrose, therefore potentially presenting a promising treatment platform for anticancer therapy. Based on the present study, this work may provide the first example of using biocompatible sugars as regulating agents to effectively guide the shape and assembly behavior of Au-MTX conjugates. Potentially, the synergistic strategy of drug molecules and sugar molecules may offer the possibility to create more gold-based nanocarriers with new shapes and beneficial features for advanced anticancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Ye, Yalan; He, Wenwen; Cheng, Yunfei; Huang, Wenxia; Zhang, Zhilin
2017-02-16
The estimation of heart rate (HR) based on wearable devices is of interest in fitness. Photoplethysmography (PPG) is a promising approach to estimate HR due to low cost; however, it is easily corrupted by motion artifacts (MA). In this work, a robust approach based on random forest is proposed for accurately estimating HR from the photoplethysmography signal contaminated by intense motion artifacts, consisting of two stages. Stage 1 proposes a hybrid method to effectively remove MA with a low computation complexity, where two MA removal algorithms are combined by an accurate binary decision algorithm whose aim is to decide whether or not to adopt the second MA removal algorithm. Stage 2 proposes a random forest-based spectral peak-tracking algorithm, whose aim is to locate the spectral peak corresponding to HR, formulating the problem of spectral peak tracking into a pattern classification problem. Experiments on the PPG datasets including 22 subjects used in the 2015 IEEE Signal Processing Cup showed that the proposed approach achieved the average absolute error of 1.65 beats per minute (BPM) on the 22 PPG datasets. Compared to state-of-the-art approaches, the proposed approach has better accuracy and robustness to intense motion artifacts, indicating its potential use in wearable sensors for health monitoring and fitness tracking.
Accelerated Edge-Preserving Image Restoration Without Boundary Artifacts
Matakos, Antonios; Ramani, Sathish; Fessler, Jeffrey A.
2013-01-01
To reduce blur in noisy images, regularized image restoration methods have been proposed that use non-quadratic regularizers (like l1 regularization or total-variation) that suppress noise while preserving edges in the image. Most of these methods assume a circulant blur (periodic convolution with a blurring kernel) that can lead to wraparound artifacts along the boundaries of the image due to the implied periodicity of the circulant model. Using a non-circulant model could prevent these artifacts at the cost of increased computational complexity. In this work we propose to use a circulant blur model combined with a masking operator that prevents wraparound artifacts. The resulting model is non-circulant, so we propose an efficient algorithm using variable splitting and augmented Lagrangian (AL) strategies. Our variable splitting scheme, when combined with the AL framework and alternating minimization, leads to simple linear systems that can be solved non-iteratively using FFTs, eliminating the need for more expensive CG-type solvers. The proposed method can also efficiently tackle a variety of convex regularizers including edge-preserving (e.g., total-variation) and sparsity promoting (e.g., l1 norm) regularizers. Simulation results show fast convergence of the proposed method, along with improved image quality at the boundaries where the circulant model is inaccurate. PMID:23372080
Mume, Eskender; Asad, Ali; Di Bartolo, Nadine M; Kong, Linggen; Smith, Christopher; Sargeson, Alan M; Price, Roger; Smith, Suzanne V
2013-10-28
A novel hexa aza cage, N(1)-(4-isothiocyanatobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine (SarAr-NCS) was synthesized in good yield and characterized by (1)H NMR and electrospray mass spectrometry. A new method for the synthesis of the related N(1)-(4-carboxybenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine (AmBaSar) using the p-carboxybenzaldehyde is reported. The complexation of Cu(2+), Co(2+) and Zn(2+) by the two ligands over a range of pHs was found to be similar to the parent derivative SarAr. SarAr-NCS was conjugated to both silica particles (≈90 nm diam.) and the model B72.3 murine antibody. The SarAr-NCSN-silica particles were radiolabeled with Cu(2+) doped (64)Cu and the number of ligands conjugated was calculated to be an average of 7020 ligands per particle. Conjugation of SarAr-NCS to the B72.3 antibody was optimized over a range of conditions. The SarAr-NCSN-B72.3 conjugate was stored in buffer and as a lyophilized powder at 4 °C over 38 days. Its radiolabeling efficiency, stability and immunoreactivity were maintained. The development of a high yielding synthesis of SarAr-NCS should provide an entry point for a wide range of Cu and Zn radiometal PET imaging agents and potentially radiotherapeutic agents with (67)Cu.
Development of a Radiolabeled Amlodipine Analog for L-type Calcium Channel Imaging.
Firouzyar, Tahereh; Jalilian, Amir Reza; Aboudzadeh, Mohammad Reza; Sadeghpour, Hossein; Pooladi, Mehrban; Shafiee-Ardestani, Mahdi; Khalaj, Ali
2017-01-01
The non-invasive imaging and quantification of L-type calcium channels (also known as dihydropyridine channels) in living tissues is of great interest in diagnosis of congestive heart failure, myocardial hypertrophy, irritable bowel syndrome etc. Technetium-99m labeled amlodipine conjugate ([99mTc]-DTPA-AMLO) was prepared starting freshly eluted (<1 h) 99mTechnetium pertechnetate (86.5 MBq) and conjugated DTPAAMLO at pH 5 in 30 min at room temperature in high radiochemical purity (>99%, RTLC; specific activity: 55-60 GBq/mmol). The calcium channel blockade activity (CCBA) and apoptosis/necrosis assay of DTPA-amlodipine conjugate evaluations were performed for the conjugate. Log P, stability, bio-distribution and imaging studies were performed for the tracer followed by biodistribution studies as well as imaging. The conjugate demonstrated low toxicity on MCF-7 cells and CCBA (at µm level) compared to the amlodipine. The tracer was stable up to 4 h in final production and presence of human serum and log P (-0.49) was consistent with a water soluble complex. The tracer was excreted through kidneys and liver as expected for dihydropyridines; excluding excretory organs, calcium channel rich smooth muscle cells; including colon, intestine and lungs which demonstrated significant uptake. SPECT images supported the bio-distribution data up to 4 h. significant uptake of [99mTc]-DTPA-AMLO was obtained in calcium channel rich organs. The complex can be a candidate for further SPECT imaging for L-type calcium channels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.
Moghaddam, Minoo J; de Campo, Liliana; Kirby, Nigel; Drummond, Calum J
2012-10-05
A series of chelating amphiphiles and their gadolinium (Gd(III)) metal complexes have been synthesized and studied with respect to their neat and lyotropic liquid crystalline phase behavior. These amphiphiles have the ability to form ion-tunable self-assembly nanostructures and their associated Gd(III) complexes have potential as magnetic resonance imaging (MRI) contrast enhancement agents. The amphiphiles are composed of diethylenetriaminepentaacetic acid (DTPA) chelates conjugated to one or two oleyl chain(s) (DTPA-MO and DTPA-BO), or isoprenoid-type chain(s) of phytanyl (DTPA-MP and DTPA-BP). The thermal phase behavior of the neat amphiphiles was examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cross polarizing optical microscopy (POM). Self-assembly of neat amphiphiles and their associated Gd complexes, as well as their lyotropic phase behavior in water and sodium acetate solutions of different ionic strengths, were examined by POM and small and wide angle X-ray scattering (SWAXS). All neat amphiphiles exhibited lamellar structures. The non-complexed amphiphiles showed a variety of lyotropic phases depending on the number and nature of the hydrophobic chain in addition to the ionic state of the hydration. Upon hydration with increased Na-acetate concentration and the subtle changes in the effective headgroup size, the interfacial curvature of the amphiphile increased, altering the lyotropic liquid crystalline structures towards higher order mesophases such as the gyroid (Ia3d) bicontinuous cubic phase. The chelation of Gd with the DTPA amphiphiles resulted in lamellar crystalline structures for all the neat amphiphiles. Upon hydration with water, the Gd-complexed mono-conjugates formed micellar or vesicular self-assemblies, whilst the bis-conjugates transformed only partially into lyotropic liquid crystalline mesophases.
Lee, Su Hyeon; Kim, Shin Hye; Lee, Won-Yong; Chung, Bong Chul; Park, Mi Jung; Choi, Man Ho
2016-09-01
Free and conjugated steroids coexist in a dynamic equilibrium due to complex biosynthetic and metabolic processes. This may have clinical significance related to various physiological conditions, including sex development involving the reproductive system. Therefore, we performed quantitative profiling of 16 serum steroids conjugated with glucuronic and sulfuric acids using liquid chromatography-mass spectrometry (LC-MS). All steroid conjugates were purified by solid-phase extraction and then separated through a 3-μm particle size C18 column (150mm×2.1mm) at a flow rate of 0.3 mL/min in the negative ionization mode. The LC-MS-based analysis was found to be linear (r(2)>0.99), and all steroid conjugates had a limit-of-quantification (LOQ) of 10ng/mL, except for cholesterol sulfate and 17β-estradiol-3,17-disulfate (20ng/mL). The extraction recoveries of all steroid conjugates ranged from 97.9% to 110.7%, while the overall precision (% CV) and accuracy (% bias) ranged from 4.8% to 10.9% and from 94.4% to 112.9% at four different concentrations, respectively. Profiling of steroid conjugates corrected by adiposity revealed decreased levels of steroid sulfates (P<0.01) in overweight and obese girls compared to normal girls. The suggested technique can be used for evaluating metabolic changes in steroid conjugates and for understanding the pathophysiology and relative contributions of adiposity in childhood obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs.
Feng, Shini; Zhang, Huijie; Yan, Ting; Huang, Dandi; Zhi, Chunyi; Nakanishi, Hideki; Gao, Xiao-Dong
With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN) has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS) with receptor-mediated targeting. Folic acid (FA) was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 μg/mL. Then, doxorubicin hydrochloride (DOX), a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy.
Chakraborty, Sudipta; Goswami, Dibakar; Chakravarty, Rubel; Mohammed, Sahiralam Khan; Sarma, Haladhar Deb; Dash, Ashutosh
2018-05-05
This article reports the syntheses and evaluation of 68 Ga- and 153 Sm-complexes of a new DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-conjugated geminal bisphosphonate, DOTA-Bn-SCN-BP, for their potential uses in the early detection of skeletal metastases by imaging and palliation of pain arising from skeletal metastases, respectively. The conjugate was synthesized in high purity following an easily adaptable three-step reaction scheme. Gallium-68- and 153 Sm-complexes were prepared in high yield (>98%) and showed excellent in vitro stability in phosphate-buffered saline (PBS) and human serum. Both the complexes showed high affinity for hydroxyapatite particles in in vitro binding study. In biodistribution studies carried out in normal Wistar rats, both the complexes exhibited rapid skeletal accumulation with almost no retention in any other major organ. The newly synthesized molecule DOTA-Bn-SCN-BP would therefore be a promising targeting ligand for the development of radiopharmaceuticals for both imaging skeletal metastases and palliation of pain arising out of it in patients with cancer when radiolabeled with 68 Ga and 153 Sm, respectively. A systematic comparative evaluation, however, showed that there was no significant improvement of skeletal accumulation of the 153 Sm-DOTA-Bn-SCN-BP complex over 153 Sm-DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid) as the later itself demonstrated optimal properties required for an agent for bone pain palliation. © 2018 John Wiley & Sons A/S.
Landis, Wayne G.
1987-01-01
The factors maintaining the cytoplasmically inherited killer trait in populations of Paramecium tetraurelia and Paramecium biaurelia were examined using, in part, computer simulation. Frequency of the K and k alleles, infection and loss of the endosymbionts, recombination during conjugation and autogamy, cytoplasmic exchange and natural selection were incorporated in a model. Infection during cytoplasmic exchange at conjugation and natural selection were factors that would increase the proportion of killers in a population. Conversely, k alleles reduced the proportion of killers in a population, acting through conjugation and autogamy. Field studies indicate that the odd mating type is prevalent in P. tetraurelia isolated from nature. Conjugation and therefore transmission by cytoplasmic transfer would be rare. Competition studies indicate a strong selective disadvantage for sensitives at concentrations found in nature. Natural selection must therefore be the factor maintaining the killer trait in P. tetraurelia. PMID:3557112
Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles.
Darwish, Ghinwa H; Karam, Pierre
2015-10-07
We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (∼10(9), on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.
Dobbins, RL; O'Connor‐Semmes, RL; Young, MA
2016-01-01
A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. PMID:27537780
Ziaco, Marcello; Górska, Sabina; Traboni, Serena; Razim, Agnieszka; Casillo, Angela; Iadonisi, Alfonso; Gamian, Andrzej; Corsaro, Maria Michela; Bedini, Emiliano
2017-12-14
A semisynthetic strategy to obtain monophosphoryl lipid A derivatives equipped with clickable (azide, alkyne, double bond, or thiol precursor) moieties, starting from the native lipid A isolated from Escherichia coli, is presented. These lipid A derivatives can be conjugated with other interesting biomolecules, such as tumor-associated carbohydrate antigens (TACAs). In this way, the immunostimulant activity of monophosphoryl lipid A can significantly improve the immunogenicity of TACAs, thus opening access to potential self-adjuvant anticancer vaccine candidates. A monophosphoryl lipid A-Thomson-Friedenreich (TF) antigen conjugate was obtained to demonstrate the feasibility of this methodology, which stands as a valuable, rapid, and scalable alternative to the highly complex approaches of total synthesis recently reported to the same aim. A preliminary evaluation of the immunological activity of this conjugate as well as of other semisynthetic lipid A derivatives was also reported.
Modal Control of a Satellite in Orbit about L3.
1980-12-01
the right- half of the complex plane , are removed via the controller moving the unstable roots from the right- half to the left- half of the ...complex plane . Simultaneously, the other system roots remain in their original locations in the complex plane . Since the Poincare exponents of Hamiltonian... half - plane , the conjugate root in the left- half -
Rajagopalan, S. P.
2017-01-01
Certificateless-based signcryption overcomes inherent shortcomings in traditional Public Key Infrastructure (PKI) and Key Escrow problem. It imparts efficient methods to design PKIs with public verifiability and cipher text authenticity with minimum dependency. As a classic primitive in public key cryptography, signcryption performs validity of cipher text without decryption by combining authentication, confidentiality, public verifiability and cipher text authenticity much more efficiently than the traditional approach. In this paper, we first define a security model for certificateless-based signcryption called, Complex Conjugate Differential Integrated Factor (CC-DIF) scheme by introducing complex conjugates through introduction of the security parameter and improving secured message distribution rate. However, both partial private key and secret value changes with respect to time. To overcome this weakness, a new certificateless-based signcryption scheme is proposed by setting the private key through Differential (Diff) Equation using an Integration Factor (DiffEIF), minimizing computational cost and communication overhead. The scheme is therefore said to be proven secure (i.e. improving the secured message distributing rate) against certificateless access control and signcryption-based scheme. In addition, compared with the three other existing schemes, the CC-DIF scheme has the least computational cost and communication overhead for secured message communication in mobile network. PMID:29040290
Blagojević Zagorac, Gordana; Mahmutefendić, Hana; Maćešić, Senka; Karleuša, Ljerka; Lučin, Pero
2017-03-01
In this report, we present an analysis of several recycling protocols based on labeling of membrane proteins with specific monoclonal antibodies (mAbs). We analyzed recycling of membrane proteins that are internalized by clathrin-dependent endocytosis, represented by the transferrin receptor, and by clathrin-independent endocytosis, represented by the Major Histocompatibility Class I molecules. Cell surface membrane proteins were labeled with mAbs and recycling of mAb:protein complexes was determined by several approaches. Our study demonstrates that direct and indirect detection of recycled mAb:protein complexes at the cell surface underestimate the recycling pool, especially for clathrin-dependent membrane proteins that are rapidly reinternalized after recycling. Recycling protocols based on the capture of recycled mAb:protein complexes require the use of the Alexa Fluor 488 conjugated secondary antibodies or FITC-conjugated secondary antibodies in combination with inhibitors of endosomal acidification and degradation. Finally, protocols based on the capture of recycled proteins that are labeled with Alexa Fluor 488 conjugated primary antibodies and quenching of fluorescence by the anti-Alexa Fluor 488 displayed the same quantitative assessment of recycling as the antibody-capture protocols. J. Cell. Physiol. 232: 463-476, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Alagarsamy, Sumithra; Rajagopalan, S P
2017-01-01
Certificateless-based signcryption overcomes inherent shortcomings in traditional Public Key Infrastructure (PKI) and Key Escrow problem. It imparts efficient methods to design PKIs with public verifiability and cipher text authenticity with minimum dependency. As a classic primitive in public key cryptography, signcryption performs validity of cipher text without decryption by combining authentication, confidentiality, public verifiability and cipher text authenticity much more efficiently than the traditional approach. In this paper, we first define a security model for certificateless-based signcryption called, Complex Conjugate Differential Integrated Factor (CC-DIF) scheme by introducing complex conjugates through introduction of the security parameter and improving secured message distribution rate. However, both partial private key and secret value changes with respect to time. To overcome this weakness, a new certificateless-based signcryption scheme is proposed by setting the private key through Differential (Diff) Equation using an Integration Factor (DiffEIF), minimizing computational cost and communication overhead. The scheme is therefore said to be proven secure (i.e. improving the secured message distributing rate) against certificateless access control and signcryption-based scheme. In addition, compared with the three other existing schemes, the CC-DIF scheme has the least computational cost and communication overhead for secured message communication in mobile network.
A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.
Xu, Weichen; Xing, Hang; Lu, Yi
2013-11-07
Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal.
Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.
Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K
2016-06-01
Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nishiyama, Hiroki; Kino, Tomoko; Tomita, Ikuyoshi
2012-04-13
Regioregular organometallic polymers with titanacyclopentadiene units, obtained from terminal diynes and a low-valent titanium complex, were subjected to reactions with disulfur dichloride and selenium (I) chloride to give π-conjugated polymers with thiophene and selenophene units in the main chain in 63% and 86% yields. Their number-average molecular weights were estimated as 4300 and 5700, respectively. Both polymers were found to be fully π-conjugated and their HOMO energy levels were remarkably high (-5.3 eV and -5.0 eV for thiophene- and selenophene-containing polymers, respectively) as supported by their UV-vis absorption spectra and CV analyses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coherent perfect absorber and laser modes in purely imaginary metamaterials
NASA Astrophysics Data System (ADS)
Fu, Yangyang; Cao, Yanyan; Cummer, Steven A.; Xu, Yadong; Chen, Huanyang
2017-10-01
Conjugate metamaterials, in which the permittivity and the permeability are complex conjugates of each other, possess the elements of loss and gain simultaneously. By employing a conjugate metamaterial with a purely imaginary form, we propose a mechanism for realizing both coherent perfect absorber (CPA) and laser modes. Moreover, the general conditions for obtaining CPA and laser modes, including obtaining them simultaneously, are revealed by analyzing the wave scattering properties of a slab made of purely imaginary metamaterials (PIMs). Specifically, in a PIM slab with a subunity effective refractive index, the CPA mode can be simplified as a perfect absorption mode and the incident wave from one side could be perfectly absorbed.
Xiong, Wenjuan; Du, Lili; Lo, Kin Cheung; Shi, Haiting; Takaya, Tomohisa; Iwata, Koichi; Chan, Wai Kin; Phillips, David Lee
2018-06-25
Conjugated polymers incorporated with cycloplatinated complexes (P1-Pt and P2-Pt) were used as dispersants for single walled carbon nanotubes (SWCNTs). Significant changes in the UV-vis absorption spectra were observed after the formation of the polymer/SWCNT hybrids. Molecular dynamics (MD) simulations revealed the presence of a strong interaction between the cycloplatinated complex moieties and the SWCNT surface. The photoinduced electron transfer processes in these hybrids were strongly dependent on the type of the comonomer unit. Upon photoexcitation, the excited P1-Pt donates electrons to the SWCNT, while P2-Pt accepts electrons from the photoexcited SWCNT. These observations were supported by results from Raman and femtosecond time-resolved transient absorption spectroscopy experiments. The strong electronic interaction between the Pt complexes and the SWCNT gives rise to a new hybrid system that has a controllable photo-induced electron transfer flow, which are important in regulating the charge transport processes SWCNT-based optoelectronic devices.
Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-01-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557
Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.
Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei
2017-01-01
In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-03-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.
Simeček, Jakub; Zemek, Ondřej; Hermann, Petr; Notni, Johannes; Wester, Hans-Jürgen
2014-11-03
The bifunctional chelator NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) shows remarkably high Ga(III) complexation efficiency and comprises one carboxylic acid moiety which is not involved into metal ion coordination. An improved synthetic protocol affords NOPO with 45% overall yield. Stepwise protonation constants (log Ka), determined by potentiometry, are 11.96, 5.22, 3.77, and 1.54; the stability constant of the Ga(III) complex is log KGaL = 25.0. Within 5 min, (68)Ga(III) incorporation by NOPO is virtually quantitative at room temperature between pH 3 and 4, and at 95 °C at pH ranging from 0.5 to 7, at NOPO concentrations of 30 μM and 10 μM, respectively. During amide bond formation at the distant carboxylate using the HATU coupling reagent, an intramolecular phosphinic acid ester (phosphilactone) is formed, which is cleaved during (68)Ga complexation or in acidic media, such as trifluoroacetic acid (TFA). Phosphilactone formation can also be suppressed by complexation of Zn(2+) prior to conjugation, the resulting zinc-containing conjugates nevertheless being suitable for direct (68)Ga-labeling. In AR42J (rat pancreatic carcinoma) xenografted CD-1 nude mice, (68)Ga-labeled NOPO-NaI(3)-octreotide conjugate ((68)Ga-NOPO-NOC) showed high and fully blockable tumor uptake (13.9 ± 5% ID/g, 120 min p.i., compared to 0.9 ± 0.4% ID/g with 5 mg/kg of nonlabeled peptide). Uptake in other tissues was generally below 3% ID/g, except appearance of excretion-related activity accumulation in kidneys. NOPO-functionalized compounds tend to be more hydrophilic than the corresponding DOTA- and NODAGA-conjugates, thus promoting fast and extensive renal excretion of (68)Ga-NOPO-radiopharmaceuticals. NOPO-functionalized peptides provide suitable pharmacokinetics in vivo and meet all requirements for efficient (68)Ga-labeling even at room temperature in a kit-like manner.
Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation
Lechtenberg, Bernhard C.; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K.; Ware, Carl F.; Mace, Peter D.; Riedl, Stefan J.
2015-01-01
Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245
The Complex Point Cloud for the Knowledge of the Architectural Heritage. Some Experiences
NASA Astrophysics Data System (ADS)
Aveta, C.; Salvatori, M.; Vitelli, G. P.
2017-05-01
The present paper aims to present a series of experiences and experimentations that a group of PhD from the University of Naples Federico II conducted over the past decade. This work has concerned the survey and the graphic restitution of monuments and works of art, finalized to their conservation. The targeted query of complex point cloud acquired by 3D scanners, integrated with photo sensors and thermal imaging, has allowed to explore new possibilities of investigation. In particular, we will present the scientific results of the experiments carried out on some important historical artifacts with distinct morphological and typological characteristics. According to aims and needs that emerged during the connotative process, with the support of archival and iconographic historical research, the laser scanner technology has been used in many different ways. New forms of representation, obtained directly from the point cloud, have been tested for the elaboration of thematic studies for documenting the pathologies and the decay of materials, for correlating visible aspects with invisible aspects of the artifact.
Development of a high angular resolution diffusion imaging human brain template.
Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos
2014-05-01
Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. Copyright © 2014 Elsevier Inc. All rights reserved.
Radioisotope trithiol complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurisson, Silvia S.; Cutler, Cathy S.; Degraffenreid, Anthony J.
The present invention is directed to a series of stable radioisotope trithiol complexes that provide a simplified route for the direct complexation of radioisotopes present in low concentrations. In certain embodiments, the complex contains a linking domain configured to conjugate the radioisotope trithiol complex to a targeting vector. The invention is also directed to a novel method of linking the radioisotope to a trithiol compound to form the radioisotope trithiol complex. The inventive radioisotope trithiol complexes may be utilized for a variety of applications, including diagnostics and/or treatment in nuclear medicine.
Switches from pi- to sigma-bonding complexes controlled by gate voltages.
Matsui, Eriko; Harnack, Oliver; Matsuzawa, Nobuyuki N; Yasuda, Akio
2005-10-01
A conjugated polymer/metal ion/liquid-crystal molecular system was set between source and drain electrodes with a 100 nm gap. When gate voltage (Vg) increases, the current between source and drain electrodes increases. Infrared spectra show this system to be composed of pi and sigma complexes. At Vg = 0, the pi complex dominates the sigma complex, whereas the sigma complex becomes dominant when Vg is switched on. Calculations found that the pi complex has lower conductivity than the sigma complex.
Artifacts in time-resolved Kelvin probe force microscopy
Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.
2018-04-24
Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less
Artifacts in time-resolved Kelvin probe force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.
Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less
Liu, Quan; Chen, Yi-Feng; Fan, Shou-Zen; Abbod, Maysam F; Shieh, Jiann-Shing
2017-08-01
Electroencephalography (EEG) has been widely utilized to measure the depth of anaesthesia (DOA) during operation. However, the EEG signals are usually contaminated by artifacts which have a consequence on the measured DOA accuracy. In this study, an effective and useful filtering algorithm based on multivariate empirical mode decomposition and multiscale entropy (MSE) is proposed to measure DOA. Mean entropy of MSE is used as an index to find artifacts-free intrinsic mode functions. The effect of different levels of artifacts on the performances of the proposed filtering is analysed using simulated data. Furthermore, 21 patients' EEG signals are collected and analysed using sample entropy to calculate the complexity for monitoring DOA. The correlation coefficients of entropy and bispectral index (BIS) results show 0.14 ± 0.30 and 0.63 ± 0.09 before and after filtering, respectively. Artificial neural network (ANN) model is used for range mapping in order to correlate the measurements with BIS. The ANN method results show strong correlation coefficient (0.75 ± 0.08). The results in this paper verify that entropy values and BIS have a strong correlation for the purpose of DOA monitoring and the proposed filtering method can effectively filter artifacts from EEG signals. The proposed method performs better than the commonly used wavelet denoising method. This study provides a fully adaptive and automated filter for EEG to measure DOA more accuracy and thus reduce risk related to maintenance of anaesthetic agents.
Bariatric CT Imaging: Challenges and Solutions.
Fursevich, Dzmitry M; LiMarzi, Gary M; O'Dell, Matthew C; Hernandez, Manuel A; Sensakovic, William F
2016-01-01
The obesity epidemic in the adult and pediatric populations affects all aspects of health care, including diagnostic imaging. With the increasing prevalence of obese and morbidly obese patients, bariatric computed tomographic (CT) imaging is becoming common in day-to-day radiology practice, and a basic understanding of the unique problems that bariatric patients pose to the imaging community is crucial in any setting. Because larger patients may not fit into conventional scanners, having a CT scanner with an adequate table load limit, a large gantry aperture, a large scan field of view, and a high-power generator is a prerequisite for bariatric imaging. Iterative reconstruction methods, high tube current, and high tube voltage can reduce the image noise that is frequently seen in bariatric CT images. Truncation artifacts, cropping artifacts, and ring artifacts frequently complicate the interpretation of CT images of larger patients. If recognized, these artifacts can be easily reduced by using the proper CT equipment, scan acquisition parameters, and postprocessing options. Lastly, because of complex contrast material dynamics, contrast material-enhanced studies of bariatric patients require special attention. Understanding how the rate of injection, the scan timing, and the total mass of iodine affect vascular and parenchymal enhancement will help to optimize contrast-enhanced studies in the bariatric population. This article familiarizes the reader with the challenges that are frequently encountered at CT imaging of bariatric patients, beginning with equipment selection and ending with a review of the most commonly encountered obesity-related artifacts and the technical considerations in the acquisition of contrast-enhanced images. (©)RSNA, 2016.
Clark, J D; de Heinzelin, J; Schick, K D; Hart, W K; White, T D; WoldeGabriel, G; Walter, R C; Suwa, G; Asfaw, B; Vrba, E
1994-06-24
Fossils and artifacts recovered from the middle Awash Valley of Ethiopia's Afar depression sample the Middle Pleistocene transition from Homo erectus to Homo sapiens. Ar/Ar ages, biostratigraphy, and tephrachronology from this area indicate that the Pleistocene Bodo hominid cranium and newer specimens are approximately 0.6 million years old. Only Oldowan chopper and flake assemblages are present in the lower stratigraphic units, but Acheulean bifacial artifacts are consistently prevalent and widespread in directly overlying deposits. This technological transition is related to a shift in sedimentary regime, supporting the hypothesis that Middle Pleistocene Oldowan assemblages represent a behavioral facies of the Acheulean industrial complex.
Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.
Volkov, V V; Han, M G; Zhu, Y
2013-11-01
We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V.
Polyamine-iron chelator conjugate.
Bergeron, Raymond J; McManis, James S; Franklin, April M; Yao, Hua; Weimar, William R
2003-12-04
The current study demonstrates unequivocally that polyamines can serve as vectors for the intracellular delivery of the bidentate chelator 1,2-dimethyl-3-hydroxypyridin-4-one (L1). The polyamine-hydroxypyridinone conjugate 1-(12-amino-4,9-diazadodecyl)-2-methyl-3-hydroxy-4(1H)-pyridinone is assembled from spermine and 3-O-benzylmaltol. The conjugate is shown to form a 3:1 complex with Fe(III) and to be taken up by the polyamine transporter 1900-fold against a concentration gradient. The K(i) of the conjugate is 3.7 microM vs spermidine for the polyamine transporter. The conjugate is also at least 230 times more active in suppressing the growth of L1210 murine leukemia cells than is the parent ligand, decreases the activities of the polyamine biosynthetic enzymes ornithine decarboxylase and S-adenosylmethionine decarboxylase, and upregulates spermidine-spermine N (1)-acetyltransferase. However, the effect on native polyamine pools is a moderate one. These findings are in keeping with the idea that polyamines can also serve as efficient vectors for the intracellular delivery of other iron chelators.
Bae, Yun Mi; Kim, Myung Hee; Yu, Gwang Sig; Um, Bong Ho; Park, Hee Kyung; Lee, Hyun-il; Lee, Kang Taek; Suh, Yung Doug; Choi, Joon Sig
2014-02-10
Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp(n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu
2016-02-14
In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed.
Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery
Sawant, Rupa R.; Sriraman, Shravan Kumar; Navarro, Gemma; Biswas, Swati; Dalvi, Riddhi A.; Torchilin, Vladimir P.
2012-01-01
A low molecular weight polyethyleneimine (PEI 1.8 kDa) was modified with dioleoylphosphatidylethanolamine (PE) to form the PEI-PE conjugate investigated as a transfection vector. The optimized PEI-PE/pDNA complexes at an N/P ratio of 16 had a particle size of 225 nm, a surface charge of +31 mV, and protected the pDNA from the action of DNase I. The PEI-PE conjugate had a critical micelle concentration (CMC) of about 34 μg/ml and exhibited no toxicity compared to a high molecular weight PEI (PEI 25 kDa) as tested with B16-F10 melanoma cells. The B16-F10 cells transfected with PEI-PE/pEGFP complexes showed protein expression levels higher than with PEI-1.8 or PEI-25 vectors. Complexes prepared with YOYO 1-labeled pEGFP confirmed the enhanced delivery of the plasmid with PEI-PE compared to PEI-1.8 and PEI-25. The PEI-PE/pDNA complexes were also mixed with various amounts of micelle-forming material, polyethylene glycol (PEG)-PE to improve biocompatibility. The resulting particles exhibited a neutral surface charge, resistance to salt-induced aggregation, and good transfection activity in the presence of serum in complete media. The use of the low-pH-degradable PEG-hydrazone-PE produced particles with transfection activity sensitive to changes in pH consistent with the relatively acidic tumor environment. PMID:22365809
Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles
NASA Astrophysics Data System (ADS)
Darwish, Ghinwa H.; Karam, Pierre
2015-09-01
We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques. Electronic supplementary information (ESI) available: Dynamic light scattering, photostability of different nanohybrids, and emission and absorption spectra. See DOI: 10.1039/c5nr03299g
Varzatskii, Oleg A; Shul'ga, Sergey V; Belov, Alexander S; Novikov, Valentin V; Dolganov, Alexander V; Vologzhanina, Anna V; Voloshin, Yan Z
2014-12-28
Iron(II) dibromo- and diiodoclathrochelates undergo copper(I)-promoted reductive homocoupling in HMPA at 70-80 °C leading to C-C conjugated dibromo- and diiodo-bis-clathrochelates in high yields. Under the same conditions, their dichloroclathrochelate analog does not undergo the same homocoupling reaction, so the target dichloro-bis-cage product was obtained in high yield via dimerization of its heterodihalogenide iodochloromonomacrobicyclic precursor. The use of NMP as a solvent at 120-140 °C gave the mixture of bis-clathrochelates resulting from a tandem homocoupling-hydrodehalogenation reaction: the initial acetonitrile copper(I) solvato-complex at a high temperature underwent re-solvatation and disproportionation leading to Cu(II) ions and nano-copper, which promoted the hydrodehalogenation process even at room temperature. The most probable pathway of this reaction in situ includes hydrodehalogenation of the already formed dihalogeno-bis-clathrochelate via the formation of reduced anion radical intermediates. As a result, chemical transformations of the iron(II) dihalogenoclathrochelates in the presence of an acetonitrile copper(I) solvato-complex were found to depend both on the nature of halogen atoms in their ribbed chelate fragments and on reaction conditions (i.e. solvent and temperature). The C-C conjugated iron(II) dihalogeno-bis-clathrochelates easily undergo nucleophilic substitution with various N,S-nucleophiles giving ribbed-functionalized bis-cage species. These iron(II) complexes were characterized by elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (1)H and (13)C NMR spectroscopy, and by X-ray diffraction; their electrochemical properties were studied by cyclic voltammetry. The isomeric shift values in (57)Fe Mössbauer spectra of such cage compounds allowed identifying them as low-spin iron(II) complexes, while those of the quadrupole splitting are the evidence for a significant TP distortion of their FeN6-coordination polyhedra. As follows from CV data, the C-C conjugated iron(II) bis-clathrochelates undergo stepwise electrochemical reduction and oxidation giving mixed-valence Fe(II)Fe(I) and Fe(II)Fe(III) bis-cage intermediates.
Tool Use Within NASA Software Quality Assurance
NASA Technical Reports Server (NTRS)
Shigeta, Denise; Port, Dan; Nikora, Allen P.; Wilf, Joel
2013-01-01
As space mission software systems become larger and more complex, it is increasingly important for the software assurance effort to have the ability to effectively assess both the artifacts produced during software system development and the development process itself. Conceptually, assurance is a straightforward idea - it is the result of activities carried out by an organization independent of the software developers to better inform project management of potential technical and programmatic risks, and thus increase management's confidence in the decisions they ultimately make. In practice, effective assurance for large, complex systems often entails assessing large, complex software artifacts (e.g., requirements specifications, architectural descriptions) as well as substantial amounts of unstructured information (e.g., anomaly reports resulting from testing activities during development). In such an environment, assurance engineers can benefit greatly from appropriate tool support. In order to do so, an assurance organization will need accurate and timely information on the tool support available for various types of assurance activities. In this paper, we investigate the current use of tool support for assurance organizations within NASA, and describe on-going work at JPL for providing assurance organizations with the information about tools they need to use them effectively.
Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms
Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan
2017-01-01
Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909
Ferrocene-oligonucleotide conjugates for electrochemical probing of DNA.
Ihara, T; Maruo, Y; Takenaka, S; Takagi, M
1996-01-01
Toward the development of a universal, sensitive and convenient method of DNA (or RNA) detection, electrochemically active oligonucleotides were prepared by covalent linkage of a ferrocenyl group to the 5'-aminohexyl-terminated synthetic oligonucleotides. Using these electrochemically active probes, we have been able to demonstrate the detection of DNA and RNA at femtomole levels by HPLC equipped with an ordinary electrochemical detector (ECD) [Takenaka,S., Uto,Y., Kondo,H., Ihara,T. and Takagi,M. (1994) Anal. Biochem., 218, 436-443]. Thermodynamic and electrochemical studies of the interaction between the probes and the targets are presented here. The thermodynamics obtained revealed that the conjugation stabilizes the triple-helix complexes by 2-3 kcal mol-1 (1-2 orders increment in binding constant) at 298 K, which corresponds to the effect of elongation of additional several base triplets. The main cause of this thermodynamic stabilization by the conjugation is likely to be the overall conformational change of whole structure of the conjugate rather than the additional local interaction. The redox potential of the probe was independent of the target structure, which is either single- or double stranded. However, the potential is slightly dependent (with a 10-30 mV negative shift on complexation) on the extra sequence in the target, probably because the individual sequence is capable of contacting or interacting with the ferrocenyl group in a slightly different way from each other. This small potential shift itself, however, does not cause any inconvenience on practical applications in detecting the probes by using ECD. These results lead to the conclusion that the redox-active probes are very useful for the microanalysis of nucleic acids due to the stability of the complexes, high detection sensitivity and wide applicability to the target structures (DNA and RNA; single- and double strands) and the sequences. PMID:8932383
Primal-dual and forward gradient implementation for quantitative susceptibility mapping.
Kee, Youngwook; Deh, Kofi; Dimov, Alexey; Spincemaille, Pascal; Wang, Yi
2017-12-01
To investigate the computational aspects of the prior term in quantitative susceptibility mapping (QSM) by (i) comparing the Gauss-Newton conjugate gradient (GNCG) algorithm that uses numerical conditioning (ie, modifies the prior term) with a primal-dual (PD) formulation that avoids this, and (ii) carrying out a comparison between a central and forward difference scheme for the discretization of the prior term. A spatially continuous formulation of the regularized QSM inversion problem and its PD formulation were derived. The Chambolle-Pock algorithm for PD was implemented and its convergence behavior was compared with that of GNCG for the original QSM. Forward and central difference schemes were compared in terms of the presence of checkerboard artifacts. All methods were tested and validated on a gadolinium phantom, ex vivo brain blocks, and in vivo brain MRI data with respect to COSMOS. The PD approach provided a faster convergence rate than GNCG. The GNCG convergence rate slowed considerably with smaller (more accurate) values of the conditioning parameter. Using a forward difference suppressed the checkerboard artifacts in QSM, as compared with the central difference. The accuracy of PD and GNCG were validated based on excellent correlation with COSMOS. The PD approach with forward difference for the gradient showed improved convergence and accuracy over the GNCG method using central difference. Magn Reson Med 78:2416-2427, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Identification of Substances for Ubiquitin-Dependent Proteolysis During Breast Tumor Progression
2008-10-01
incubated in media containing 10 μM of proteasome inhibitor MG132 for 4-6 hrs to stabilize ubiquitylated intermediates. The cells were then lysed in 1... inhibitor p27Kip1 (6, 8). This reaction is molecularly complex and requires: 1) substrate phosphorylation; 2) association of the substrate with cyclin...effect on PTM conjugation activity. Furthermore, the addition of inhibitors of de-conjugating enzymes (e.g. ubiquitin-aldehyde) was found to increase
Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer.
Rajabnejad, Seyed Hossein; Mokhtarzadeh, Ahad; Abnous, Khalil; Taghdisi, Seyed Mohammad; Ramezani, Mohammad; Razavi, Bibi Marjan
2018-06-01
Melittin, a small water-soluble cationic amphipathic α-helical linear peptide, consisted of 26 amino acids, is the honeybee venom major constituent. Several reports have proved the lytic and apoptotic effects of melittin in several cancerous cell lines. In this study, we aimed to fabricate an AS1411 aptamer-melittin to specifically deliver melittin to nucleolin positive cells (A549). Melittin was covalently attached to antinucleolin aptamer (AS1411) and its toxicity in A549 (nucleolin positive) and L929 (nucleolin negative) was studied using MTT and Annexin V flow cytometry methods. Aptamer-melittin conjugate formation was confirmed by gel electrophoresis. Hemolytic effect of aptamer-melittin conjugate was compared to melittin alone. The aptamer-melittin conjugate showed efficient cell uptake and was more cytotoxic in A549 cells than melittin (p < .001). This complex was less toxic in control cells. Competitive inhibition assay confirmed that aptamer-melittin complex delivery occurred through receptor-ligand interaction on the cell surface. Moreover, aptamer-melittin showed a significantly less hemolytic activity as compared with free melittin. This study showed that melittin could be specifically delivered to A549 cells when it was covalently conjugated to antinucleolin aptamer (AS1411) in vitro. This system can reduce the cytotoxic effects of melittin on cells with no nucleolin receptor overexpression which comprise most of normal cells such as L929 cells.
Matsumoto, Sanae; Bandyopadhyay, Amitabha; Kwiatkowski, David J; Maitra, Umadas; Matsumoto, Tomohiro
2002-01-01
Heterozygous inactivation of either human TSC1 or TSC2 causes tuberous sclerosis (TSC), in which development of benign tumors, hamartomas, occurs via a two-hit mechanism. In this study, fission yeast genes homologous to TSC1 and TSC2 were identified, and their protein products were shown to physically interact like the human gene products. Strains lacking tsc1(+) or tsc2(+) were defective in uptake of nutrients from the environment. An amino acid permease, which is normally positioned on the plasma membrane, aggregated in the cytoplasm or was confined in vacuole-like structures in Deltatsc1 and Deltatsc2 strains. Deletion of tsc1(+) or tsc2(+) also caused a defect in conjugation. When a limited number of the cells were mixed, they conjugated poorly. The conjugation efficiency was improved by increased cell density. Deltatsc1 cells were not responsive to a mating pheromone, P-factor, suggesting that Tsc1 has an important role in the signal cascade for conjugation. These results indicate that the fission yeast Tsc1-Tsc2 complex plays a role in the regulation of protein trafficking and suggest a similar function for the human proteins. We also show that fission yeast Int6 is involved in a similar process, but functions in an independent genetic pathway. PMID:12136010
Preparation of arginine modified PEI-conjugated chitosan copolymer for DNA delivery.
Zhang, Xi; Duan, Yajing; Wang, Dongfang; Bian, Fengling
2015-05-20
Polyethylenimine-conjugated chitosan (CS-PEI) and arginine modified polyethylenimine-conjugated chitosan (CS-PEI-Arg) were prepared, and the copolymers were characterized by FTIR, (1)H NMR, and XRD. The properties of these copolymers like plasmid DNA (pDNA) binding capacity, complexes' size and zeta potential, cytotoxicity and transfection efficiency were also evaluated. The results show that CS-PEI-Arg derivatives can bind pDNA thoroughly, and form complexes with sizes about 170 nm. Cytotoxicity assay in HepG2 and 293T cells show that CS-PEI-Arg has lower cytotoxicity compared with CS-PEI, which is similar to CS and far below that of PEI. In vitro luciferase assay show that CS-PEI-Arg has better transfection efficiency than CS-PEI, which is superior to that of PEI. The best transfection efficiency of CS-PEI-Arg (N/P = 50) is 2.3-fold, 4.2-fold of those of CS-PEI (N/P = 20) and PEI's (N/P = 10) efficiency respectively. These results display that CS-PEI-Arg is a promising candidate as an efficient gene vector. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikodinovic-Runic, Jasmina; Mojic, Marija; Kang, Yijin
2014-01-01
Bacterial pigment undecylprodigiosin (UP) was produced using Streptomyces sp. JS520 and conjugated to monodisperse gold nanoparticles (UP-Au). Both UP and UP-Au showed cytocidal activity towards melanoma (A375), lung carcinoma (A549), breast cancer (MCF-7) and colon cancer (HCT-116) cells, inducing apoptosis with IC50 values ranging from 0.4 to 4 mu g ml(-1). Unconjugated UP had a tendency to lose its activity over time and to change biophysical characteristics over pH. The loss of the pigment potency was overcome by conjugation with gold nanoparticles. UP-Au exhibited high stability over pH 3.8 to 7.4 and its activity remained unaffected in time. Nano-packing changedmore » the mechanism of UP toxicity by converting the intracellular signals from a mitochondrial dependent to a mitochondrial independent apoptotic process. The availability of nonpyrogenic UP in high amounts, together with specific anticancer activity and improved stability in the complex with gold nanoparticles, presents a novel platform for further development of UP-Au complexes as an anticancer drug suitable for clinical applications.« less
NASA Technical Reports Server (NTRS)
Wing, S. S.; Haas, A. L.; Goldberg, A. L.
1995-01-01
The rapid loss of skeletal-muscle protein during starvation and after denervation occurs primarily through increased rates of protein breakdown and activation of a non-lysosomal ATP-dependent proteolytic process. To investigate whether protein flux through the ubiquitin (Ub)-proteasome pathway is enhanced, as was suggested by related studies, we measured, using specific polyclonal antibodies, the levels of Ub-conjugated proteins in normal and atrophying muscles. The content of these critical intermediates had increased 50-250% after food deprivation in the extensor digitorum longus and soleus muscles 2 days after denervation. Like rates of proteolysis, the amount of Ub-protein conjugates and the fraction of Ub conjugated to proteins increased progressively during food deprivation and returned to normal within 1 day of refeeding. During starvation, muscles of adrenalectomized rats failed to increase protein breakdown, and they showed 50% lower levels of Ub-protein conjugates than those of starved control animals. The changes in the pools of Ub-conjugated proteins (the substrates for the 26S proteasome) thus coincided with and can account for the alterations in overall proteolysis. In this pathway, large multiubiquitinated proteins are preferentially degraded, and the Ub-protein conjugates that accumulated in atrophying muscles were of high molecular mass (> 100 kDa). When innervated and denervated gastrocnemius muscles were fractionated, a significant increase in ubiquitinated proteins was found in the myofibrillar fraction, the proteins of which are preferentially degraded on denervation, but not in the soluble fraction. Thus activation of this proteolytic pathway in atrophying muscles probably occurs initially by increasing Ub conjugation to cell proteins. The resulting accumulation of Ub-protein conjugates suggests that their degradation by the 26S proteasome complex subsequently becomes rate-limiting in these catabolic states.
Social Studies: Selected Cultures. Grade 6.
ERIC Educational Resources Information Center
Taylor, Marshall R.
This revised teachers guide attempts to facilitate the study of selected cultures through a conceptual approach and multimedia instruction in a spiral curriculum. There are six units: 1) Cultures and Archaeology --cultural factors, cultural study, artifacts, fossils, archaeological sites and evidence; 2) Food Gathering Complex --life styles,…
Developing as Teacher Educator-Researchers
ERIC Educational Resources Information Center
Patrizio, Kami M.; Ballock, Ellen; McNary, Scot W.
2011-01-01
This self-study explores the role of collaboration in the development of three new faculty members as teacher educator-researchers. The research finds that protocol-structured dialogue about artifacts of classroom practice promotes understanding of the complex relationships among teachers, student, content, and context. We also report on the…
Miksys, N; Xu, C; Beaulieu, L; Thomson, R M
2015-08-07
This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose calculation studies for various permanent implant brachytherapy treatments.
Jiang, Lina; Wu, Jing; Wang, Guilan; Ye, Zhiqiang; Zhang, Wenzhu; Jin, Dayong; Yuan, Jingli; Piper, James
2010-03-15
The time-resolved luminescence bioassay technique using luminescent lanthanide complexes as labels is a highly sensitive and widely used bioassay method for clinical diagnostics and biotechnology. A major drawback of the current technique is that the luminescent lanthanide labels require UV excitation (typically less than 360 nm), which can damage living biological systems and is holding back further development of time-resolved luminescence instruments. Herein we describe two approaches for preparing a visible-light-sensitized Eu(3+) complex in aqueous media for time-resolved fluorometric applications: a dissociation enhancement aqueous solution that can be excited by visible light for ethylenediaminetetraacetate (EDTA)-Eu(3+) detection and a visible-light-sensitized water-soluble Eu(3+) complex conjugated bovine serum albumin (BSA) for biolabeling and time-resolved luminescence bioimaging. In the first approach, a weakly acidic aqueous solution consisting of 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-o-terphenyl (BHHT), 2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (DPBT), and Triton X-100 was prepared. This solution shows a strong luminescence enhancement effect for EDTA-Eu(3+) with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm) and a long luminescence lifetime (520 micros), to provide a novel dissociation enhancement solution for time-resolved luminescence detection of EDTA-Eu(3+). In the second approach, a ternary Eu(3+) complex, 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-chlorosulfo-o-terphenyl (BHHCT)-Eu(3+)-DPBT, was covalently bound to BSA to form a water-soluble BSA-BHHCT-Eu(3+)-DPBT conjugate. This biocompatible conjugate is of the visible-light excitable feature in aqueous media with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm), a long luminescence lifetime (460 micros), and a higher quantum yield (27%). The conjugate was successfully used for streptavidin (SA) labeling and time-resolved luminescence imaging detection of three environmental pathogens, Giardia lamblia , Cryptosporidium muris , and Cryptosporidium parvum , in water samples. Our strategy gives a general idea for designing a visible-light-sensitized Eu(3+) complex for time-resolved luminescence bioassay applications.
Growing Up of Autonomous Agents: an Emergent Phenomenon
NASA Astrophysics Data System (ADS)
Morgavi, Giovanna; Marconi, Lucia
2008-10-01
A fundamental research challenge is the design of robust artifacts that are capable of operating under changing environments and noisy input, and yet exhibit the desired behavior and response time. These systems should be able to adapt and learn how to react to unforeseen scenarios as well as to display properties comparable to biological entities. The turn to nature has brought us many unforeseen great concepts. Biological systems are able to handle many of these challenges with an elegance and efficiency still far beyond current human artifacts. A living artifact grows up when its capabilities, abilities/knowledge, shift to a further level of complexity, i.e. the complexity rank of its internal capabilities performs a step forward. In the attempt to define an architecture for autonomous growing up agents [1]. We conducted an experiment on the abstraction process in children as natural parts of a cognitive system. We found that linguistic growing up involve a number of different trial processes. We identified a fixed number of distinct paths that were crossed by children. Once a given interpretation paths was discovered useless, they tried to follow another path, until the new meaning was emerging. This study generates suggestion about the evolutionary conditions conducive to the emergence of growing up in robots and provides guidelines for designing artificial evolutionary systems displaying spontaneous adaptation abilities. The importance of multi-sensor perception, motivation and emotional drives are underlined and, above all, the growing up insights shows similarities to emergent self-organized behaviors.
Matrix differentiation formulas
NASA Technical Reports Server (NTRS)
Usikov, D. A.; Tkhabisimov, D. K.
1983-01-01
A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.
Tsoneva, Yana; Jonker, Hendrik R A; Wagner, Manfred; Tadjer, Alia; Lelle, Marco; Peneva, Kalina; Ivanova, Anela
2015-02-19
The search for targeted drug delivery systems requires the design of drug-carrier complexes, which could both reach the malignant cells and preserve the therapeutic substance activity. A promising strategy aimed at enhancing the uptake and reducing the systemic toxicity is to bind covalently the drug to a cell-penetrating peptide. To understand the structure-activity relationship in such preparations, the chemotherapeutic drug doxorubicin was investigated by unrestrained molecular dynamics simulations, supported by NMR, which yielded its molecular geometry in aqueous environment. Furthermore, the structure and dynamics of a conjugate of the drug with a cell-penetrating peptide was obtained from molecular dynamics simulations in aqueous solution. The geometries of the unbound compounds were characterized at different temperatures, as well as the extent to which they change after covalent binding and whether/how they influence each other in the drug-peptide conjugate. The main structural fragments that affect the conformational ensemble of every molecule were found. The results show that the transitions between different substructures of the three compounds require a modest amount of energy. At increased temperature, either more conformations become populated as a result of the thermal fluctuations or the relative shares of the various conformers equalize at the nanosecond scale. These frequent structural interconversions suggest expressed conformational freedom of the molecules. Conjugation into the drug-peptide compound partially immobilizes the molecules of the parent compounds. Nevertheless, flexibility still exists, as well as an effective intra- and intermolecular hydrogen bonding that stabilizes the structures. We observe compact packing of the drug within the peptide that is also based on stacking interactions. All this outlines the drug-peptide conjugate as a prospective building block of a more complex drug-carrier system.
Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions.
Beaujuge, Pierre M; Amb, Chad M; Reynolds, John R
2010-11-16
With the development of light-harvesting organic materials for solar cell applications and molecular systems with fine-tuned colors for nonemissive electrochromic devices (e.g., smart windows, e-papers), a number of technical challenges remain to be overcome. Over the years, the concept of "spectral engineering" (tailoring the complex interplay between molecular physics and the various optical phenomena occurring across the electromagnetic spectrum) has become increasingly relevant in the field of π-conjugated organic polymers. Within the spectral engineering toolbox, the "donor-acceptor" approach uses alternating electron-rich and electron-deficient moieties along a π-conjugated backbone. This approach has proved especially valuable in the synthesis of dual-band and broadly absorbing chromophores with useful photovoltaic and electrochromic properties. In this Account, we highlight and provide insight into a present controversy surrounding the origin of the dual band of absorption sometimes encountered in semiconducting polymers structured using the "donor-acceptor" approach. Based on empirical evidence, we provide some schematic representations to describe the possible mechanisms governing the evolution of the two-band spectral absorption observed on varying the relative composition of electron-rich and electron-deficient substituents along the π-conjugated backbone. In parallel, we draw attention to the choice of the method employed to estimate and compare the absorption coefficients of polymer chromophores exhibiting distinct repeat unit lengths, and containing various extents of solubilizing side-chains along their backbone. Finally, we discuss the common assumption that "donor-acceptor" systems should have systematically lower absorption coefficients than their "all-donor" counterparts. The proposed models point toward important theoretical parameters which could be further explored at the macromolecular level to help researchers take full advantage of the complex interactions taking place in π-conjugated polymers with intramolecular "donor-acceptor" characteristics.
Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA
Kim, NaJung; Jiang, Dahai; Jacobi, Ashley; Lennox, Kim A.; Rose, Scott; Behlke, Mark A.; Salem, Aliasger K.
2011-01-01
Regulation of gene expression using small interfering RNA (siRNA) is a promising strategy for research and treatment of numerous diseases. In this study, we develop and characterize a delivery system for siRNA composed of polyethylenimine (PEI), polyethylene glycol (PEG), and mannose (Man). Cationic PEI complexes and compacts siRNA, PEG forms a hydrophilic layer outside of the polyplex for steric stabilization, and mannose serves as a cell binding ligand for macrophages. The PEI-PEG-mannose delivery system was constructed in two different ways. In the first approach, mannose and PEG chains are directly conjugated to the PEI backbone. In the second approach, mannose is conjugated to one end of the PEG chain and the other end of the PEG chain is conjugated to the PEI backbone. The PEI-PEG-mannose delivery systems were synthesized with 3.45 – 13.3 PEG chains and 4.7 – 3.0 mannose molecules per PEI. The PEI-PEG-Man-siRNA polyplexes displayed a coarse surface in Scanning Electron Microscopy (SEM) images. Polyplex sizes were found to range from 169nm to 357nm. Gel retardation assays showed that the PEI-PEG-mannose polymers are able to efficiently complex with siRNA at low N/P ratios. Confocal microscope images showed that the PEI-PEG-Man-siRNA polyplexes could enter cells and localized in the lysosomes at 2 hours post-incubation. Pegylation of the PEI reduced toxicity without any adverse reduction in knockdown efficiency relative to PEI alone. Mannosylation of the PEI-PEG could be carried out without any significant reduction in knockdown efficiency relative to PEI alone. Conjugating mannose to PEI via the PEG spacer generated superior toxicity and gene knockdown activity relative to conjugating mannose and PEG directly onto the PEI backbone. PMID:21864664
Caugant, Dominique A.; Kristiansen, Paul A.; Wang, Xin; Mayer, Leonard W.; Taha, Muhamed-Kheir; Ouédraogo, Rasmata; Kandolo, Denis; Bougoudogo, Flabou; Sow, Samba; Bonte, Laurence
2012-01-01
Background The serogroup A conjugate meningococcal vaccine, MenAfriVac, was introduced in mass vaccination campaigns in December 2010 in Burkina Faso, Mali and Niger. In the coming years, vaccination will be extended to other African countries at risk of epidemics. To document the molecular characteristics of disease-causing meningococcal strains circulating in the meningitis belt of Africa before vaccine introduction, the World Health Organization Collaborating Centers on Meningococci in Europe and United States established a common strain collection of 773 isolates from cases of invasive meningococcal disease collected between 2004 and 2010 from 13 sub-Saharan countries. Methodology All isolates were characterized by multilocus sequence typing, and 487 (62%) were also analyzed for genetic variation in the surface antigens PorA and FetA. Antibiotic susceptibility was tested for part of the collection. Principal Findings Only 19 sequence types (STs) belonging to 6 clonal complexes were revealed. ST-5 clonal complex dominated with 578 (74.8%) isolates. All ST-5 complex isolates were remarkably homogeneous in their PorA (P1.20,9) and FetA (F3-1) and characterized the serogroup A strains which have been responsible for most epidemics during this time period. Sixty-eight (8.8%) of the 773 isolates belonged to the ST-11 clonal complex which was mainly represented by serogroup W135, while an additional 38 (4.9%) W135 isolates belonged to the ST-175 complex. Forty-eight (6.2%) serogroup X isolates from West Africa belonged to the ST-181 complex, while serogroup X cases in Kenya and Uganda were caused by an unrelated clone, ST-5403. Serogroup X, ST-181, emerged in Burkina Faso before vaccine introduction. Conclusions In the seven years preceding introduction of a new serogroup A conjugate vaccine, serogroup A of the ST-5 clonal complex was identified as the predominant disease-causing strain. PMID:23029368
Controllable g5p-Protein-Directed Aggregation of ssDNA-Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Maye, M; Zhang, Y
We assembled single-stranded DNA (ssDNA) conjugated nanoparticles using the phage M13 gene 5 protein (g5p) as the molecular glue to bind two antiparallel noncomplementary ssDNA strands. The entire process was controlled tightly by the concentration of the g5p protein and the presence of double-stranded DNA. The g5p-ssDNA aggregate was disintegrated by hybridization with complementary ssDNA (C-ssDNA) that triggers the dissociation of the complex. Polyhistidine-tagged g5p was bound to nickel nitrilotriacetic acid (Ni2+-NTA) conjugated nanoparticles and subsequently used to coassemble the ssDNA-conjugated nanoparticles into multiparticle-type aggregates. Our approach offers great promise for designing biologically functional, controllable protein/nanoparticle composites.
Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine
Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza
2015-01-01
Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth assays. In contrast, chlorhexidine alone, at a similar concentration, showed limited effects. Notably, neomycin alone or conjugated with nanoparticles did not show amoebicidal or amoebistatic effects. Pretreatment of A. castellanii with gold-conjugated chlorhexidine nanoparticles reduced amoeba-mediated host cell cytotoxicity from 90% to 40% at 5 μM. In contrast, chlorhexidine alone, at similar concentrations, had no protective effects for the host cells. Similarly, amoebae treated with neomycin alone or neomycin-conjugated nanoparticles showed no protective effects. Overall, these findings suggest that gold-conjugated chlorhexidine nanoparticles hold promise in the improved treatment of A. castellanii keratitis. PMID:26666949
School Technology Leadership: Artifacts in Systems of Practice
ERIC Educational Resources Information Center
Dexter, Sara
2011-01-01
A cross-case analysis of five case studies of team-based technology leadership in middle schools with laptop programs identifies systems of practice that organize teams' distributed leadership. These cases suggest that successfully implementing a complex improvement effort warrants a team-based leadership approach, especially for an improvement…
Learning in the Making: A Comparative Case Study of Three Makerspaces
ERIC Educational Resources Information Center
Sheridan, Kimberly M.; Halverson, Erica Rosenfeld; Litts, Breanne K.; Brahms, Lisa; Jacobs-Priebe, Lynette; Owens, Trevor
2014-01-01
Through a comparative case study, Sheridan and colleagues explore how makerspaces may function as learning environments. Drawing on field observations, interviews, and analysis of artifacts, videos, and other documents, the authors describe features of three makerspaces and how participants learn and develop through complex design and making…
Threshold Hypothesis: Fact or Artifact?
ERIC Educational Resources Information Center
Karwowski, Maciej; Gralewski, Jacek
2013-01-01
The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this…
2017-10-01
heart of C57BL/6 mice resulted in aggressive bone metastasis with an overall penetrance of 50%–60% 1(Fig. 7J). The bone metastases invaded into...metastases, while all control-treated mice died with metastatic disease (p = 0.0196) 1(Fig. 7L). Indeed, the VAR2CSA drug conjugate-treatment 6...CS- conjugated and 15 have been directly associated with human malignant disease (Table S5). To investigate the inter-tumor diversity in expression
Xu, Weichen; Lu, Yi
2011-05-07
We report a general strategy for developing a smart MRI contrast agent for the sensing of small molecules such as adenosine based on a DNA aptamer that is conjugated to a Gd compound and a protein streptavidin. The binding of adenosine to its aptamer results in the dissociation of the Gd compound from the large protein, leading to decreases in the rotational correlation time and thus change of MRI contrast. © The Royal Society of Chemistry 2011
Structure and degree of magmatism of North and South Atlantic rifted margins
NASA Astrophysics Data System (ADS)
Faleide, Jan Inge; Breivik, Asbjørn J.; Blaich, Olav A.; Tsikalas, Filippos; Planke, Sverre; Mansour Abdelmalak, Mohamed; Mjelde, Rolf; Myklebust, Reidun
2014-05-01
The structure and evolution of conjugate rifted margins in the South and North Atlantic have been studied mainly based on seismic reflection and refraction profiles, complemented by potential field data and plate reconstructions. All margins exhibit distinct along-margin structural and magmatic changes reflecting both structural inheritance extending back to a complex pre-breakup geological history and the final breakup processes. The sedimentary basins at the conjugate margins developed as a result of multiple phases of rifting, associated with complex time-dependent thermal structure of the lithosphere. A series of conjugate crustal transects reveal tectonomagmatic asymmetry, both along-strike and across the conjugate margin systems. The continent-ocean transitional domain along the magma-dominated margin segments is characterized by a large volume of flood basalts and high-velocity/high-density lower crust emplaced during and after continental breakup. Both the volume and duration of excess magmatism varies. The extrusive and intrusive complexes make it difficult to pin down a COB to be used in plate reconstructions. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower crustal levels. The transition is further constrained by comparing the mean P-wave velocity to the thickness of the crystalline crust. By this comparison we can also address the magmatic processes associated with breakup, whether they are convection dominated or temperature dominated. In the NE Atlantic there is a strong correlation between magma productivity and early plate spreading rate, suggesting a common cause. A model for the breakup-related magmatism should be able to explain this correlation, but also the magma production peak at breakup, the along-margin magmatic segmentation, and the active mantle upwelling. It is likely that mantle plumes (Iceland in the NE Atlantic, Tristan da Cunha in the South Atlantic) may have influenced the volume of magmatism but they did not necessarily alter the process of rifted margin formation, implying that parts of the margins may have much in common with more magma-poor margins. Conjugate margin segments from the North and South Atlantic will be compared and discussed with particular focus on the tectonomagmatic processes associated with continental breakup.
Salvarese, Nicola; Spolaore, Barbara; Marangoni, Selena; Pasin, Anna; Galenda, Alessandro; Tamburini, Sergio; Cicoria, Gianfranco; Refosco, Fiorenzo; Bolzati, Cristina
2018-06-01
An assessment study involving the use of the transglutaminase (TGase) conjugation method and the nitride-technetium-99m labelling on a bis(thiosemicarbazone) (BTS) bifunctional chelating agent is presented. The previously described chelator diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-(N 4 -amino-3-thiosemicarbazone), H 2 ATSM/A, has been functionalized with 6-aminohexanoic acid (ε-Ahx) to generate the bifunctional chelating agent diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-[N 4 -(amino)-(6-aminohexanoic acid)-3-thiosemicarbazone], H 2 ATSM/A-ε-Ahx (1), suitable for conjugation to glutamine (Gln) residues of bioactive molecules via TGase. The feasibility of the TGase reaction in the synthesis of a bioconjugate derivative was investigated using Substance P (SP) as model peptide. Compounds 1 and H 2 ATSM/A-ε-Ahx-SP (2) were labelled with nitride-technetium-99m, obtaining the complexes [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx)] ( 99m Tc1) and [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx-SP)] ( 99m Tc2). The chemical identity of 99m Tc1 and 99m Tc2 was confirmed by radio/UV-RP-HPLC combined with ESI-MS analysis on the respective carrier-added products 99g/99m Tc1 and 99g/99m Tc2. The stability of the radiolabelled complexes after incubation in various environments was investigated. All the results were compared with those obtained for the corresponding 64 Cu-analogues, 64 Cu1 and 64 Cu2. The TGase reaction allows the conjugation of 1 with the peptide, but it is not highly efficient due to instability of the chelator in the required conditions. The SP-conjugated complexes are unstable in mouse and human sera. However, indeed the BTS system can be exploited as nitride-technetium-99m chelator for highly efficient technetium labelling, thus making compound 1 worthy of further investigations for new targeted technetium and copper radiopharmaceuticals encompassing Single Photon Emission Computed Tomography and Positron Emission Tomography imaging. Copyright © 2018 Elsevier Inc. All rights reserved.
Engineering filamentous phage carriers to improve focusing of antibody responses against peptides.
van Houten, Nienke E; Henry, Kevin A; Smith, George P; Scott, Jamie K
2010-03-02
The filamentous bacteriophage are highly immunogenic particles that can be used as carrier proteins for peptides and presumably other haptens and antigens. Our previous work demonstrated that the antibody response was better focused against a synthetic peptide if it was conjugated to phage as compared to the classical carrier, ovalbumin. We speculated that this was due, in part, to the relatively low surface complexity of the phage. Here, we further investigate the phage as an immunogenic carrier, and the effect reducing its surface complexity has on the antibody response against peptides that are either displayed as recombinant fusions to the phage coat or are chemically conjugated to it. Immunodominant regions of the minor coat protein, pIII, were removed from the phage surface by excising its N1 and N2 domains (Delta3 phage variant), whereas immunodominant epitopes of the major coat protein, pVIII, were altered by reducing the charge of its surface-exposed N-terminal residues (Delta8 phage variant). Immunization of mice revealed that the Delta3 variant was less immunogenic than wild-type (WT) phage, whereas the Delta8 variant was more immunogenic. The immunogenicity of two different peptides was tested in the context of the WT and Delta3 phage in two different forms: (i) as recombinant peptides fused to pVIII, and (ii) as synthetic peptides conjugated to the phage surface. One peptide (MD10) in its recombinant form produced a stronger anti-peptide antibody response fused to the WT carrier compared to the Delta3 phage carrier, and did not elicit a detectable anti-peptide response in its synthetic form conjugated to either phage carrier. This trend was reversed for a different peptide (4E10(L)), which did not produce a detectable anti-peptide antibody response as a recombinant fusion; yet, as a chemical conjugate to Delta3 phage, but not WT phage, it elicited a highly focused anti-peptide antibody response that exceeded the anti-carrier response by approximately 65-fold. The results suggest that focusing of the antibody response against synthetic peptides can be improved by decreasing the antigenic complexity of the phage surface. Copyright 2010 Elsevier Ltd. All rights reserved.
Huang, Ke; Huang, Lingyi; van Breemen, Richard B
2015-04-07
Metabolic activation of drugs to electrophilic species is responsible for over 60% of black box warnings and drug withdrawals from the market place in the United States. Reactive metabolite trapping using glutathione (GSH) and analysis using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) or HPLC with high resolution mass spectrometry (mass defect filtering) have enabled screening for metabolic activation to become routine during drug development. However, current MS-based approaches cannot detect all GSH conjugates present in complex mixtures, especially those present in extracts of botanical dietary supplements. To overcome these limitations, a fast triple quadrupole mass spectrometer-based approach was developed that can detect positively and negatively charged GSH conjugates in a single analysis without the need for advanced knowledge of the elemental compositions of potential conjugates and while avoiding false positives. This approach utilized UHPLC instead of HPLC to shorten separation time and enhance sensitivity, incorporated stable-isotope labeled GSH to avoid false positives, and used fast polarity switching electrospray MS/MS to detect GSH conjugates that form positive and/or negative ions. The general new method was then used to test the licorice dietary supplement Glycyrrhiza glabra, which was found to form multiple GSH conjugates upon metabolic activation. Among the GSH conjugates found in the licorice assay were conjugates with isoliquiritigenin and glabridin, which is an irreversible inhibitor of cytochrome P450 enzymes.
Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs
Feng, Shini; Zhang, Huijie; Yan, Ting; Huang, Dandi; Zhi, Chunyi; Nakanishi, Hideki; Gao, Xiao-Dong
2016-01-01
With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN) has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS) with receptor-mediated targeting. Folic acid (FA) was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 μg/mL. Then, doxorubicin hydrochloride (DOX), a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. PMID:27695318
Terahertz Absorption by Cellulose: Application to Ancient Paper Artifacts
NASA Astrophysics Data System (ADS)
Peccianti, M.; Fastampa, R.; Mosca Conte, A.; Pulci, O.; Violante, C.; Łojewska, J.; Clerici, M.; Morandotti, R.; Missori, M.
2017-06-01
Artifacts made of cellulose, such as ancient documents, pose a significant experimental challenge in the terahertz transmission spectra interpretation due to their small optical thickness. In this paper, we describe a method to recover the complex refractive index of cellulose fibers from the terahertz transmission data obtained on single freely standing paper sheets in the (0.2-3.5)-THz range. By using our technique, we eliminate Fabry-Perot effects and recover the absorption coefficient of the cellulose fibers. The obtained terahertz absorption spectra are explained in terms of absorption peaks of the cellulose crystalline phase superimposed to a background contribution due to a disordered hydrogen-bond network. The comparison between the experimental spectra with terahertz vibrational properties simulated by density-functional-theory calculations confirms this interpretation. In addition, evident changes in the terahertz absorption spectra are produced by natural and artificial aging on paper samples, whose final stage is characterized by a spectral profile with only two peaks at about 2.1 and 3.1 THz. These results can be used to provide a quantitative assessment of the state of preservation of cellulose artifacts.
Model-assisted development of a laminography inspection system
NASA Astrophysics Data System (ADS)
Grandin, R.; Gray, J.
2012-05-01
Traditional computed tomography (CT) is an effective method of determining the internal structure of an object through non-destructive means; however, inspection of certain objects, such as those with planar geometrics or with limited access, requires an alternate approach. An alternative is laminography and has been the focus of a number of researchers in the past decade for both medical and industrial inspections. Many research efforts rely on geometrically-simple analytical models, such as the Shepp-Logan phantom, for the development of their algorithms. Recent work at the Center for Non-Destructive Evaluation makes extensive use of a forward model, XRSIM, to study artifacts arising from the reconstruction method, the effects of complex geometries and known issues such as high density features on the laminography reconstruction process. The use of a model provides full knowledge of all aspects of the geometry and provides a means to quantitatively evaluate the impact of methods designed to reduce artifacts generated by the reconstruction methods or that are result of the part geometry. We will illustrate the use of forward simulations to quantitatively assess reconstruction algorithm development and artifact reduction.
Sánchez-Martín, Pablo; Romá-Mateo, Carlos; Viana, Rosa; Sanz, Pascual
2015-12-01
Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin-laforin mediated ubiquitination of its substrates. In this work we present evidence indicating that the malin-laforin complex interacts physically and functionally with the ubiquitin conjugating enzyme E2-N (UBE2N). This binding determines the topology of the chains that the complex is able to promote in the corresponding substrates (mainly K63-linked polyubiquitin chains). In addition, we demonstrate that the malin-laforin complex interacts with the selective autophagy adaptor sequestosome-1 (p62). Binding of p62 to the malin-laforin complex allows its recognition by LC3, a component of the autophagosomal membrane. In addition, p62 enhances the ubiquitinating activity of the malin-laforin E3-ubiquitin ligase complex. These data enrich our knowledge on the mechanism of action of the malin-laforin complex as an E3-ubiquitin ligase and reinforces the role of this complex in targeting substrates toward the autophagy pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Medication Management: The Macrocognitive Workflow of Older Adults With Heart Failure
2016-01-01
Background Older adults with chronic disease struggle to manage complex medication regimens. Health information technology has the potential to improve medication management, but only if it is based on a thorough understanding of the complexity of medication management workflow as it occurs in natural settings. Prior research reveals that patient work related to medication management is complex, cognitive, and collaborative. Macrocognitive processes are theorized as how people individually and collaboratively think in complex, adaptive, and messy nonlaboratory settings supported by artifacts. Objective The objective of this research was to describe and analyze the work of medication management by older adults with heart failure, using a macrocognitive workflow framework. Methods We interviewed and observed 61 older patients along with 30 informal caregivers about self-care practices including medication management. Descriptive qualitative content analysis methods were used to develop categories, subcategories, and themes about macrocognitive processes used in medication management workflow. Results We identified 5 high-level macrocognitive processes affecting medication management—sensemaking, planning, coordination, monitoring, and decision making—and 15 subprocesses. Data revealed workflow as occurring in a highly collaborative, fragile system of interacting people, artifacts, time, and space. Process breakdowns were common and patients had little support for macrocognitive workflow from current tools. Conclusions Macrocognitive processes affected medication management performance. Describing and analyzing this performance produced recommendations for technology supporting collaboration and sensemaking, decision making and problem detection, and planning and implementation. PMID:27733331
Medication Management: The Macrocognitive Workflow of Older Adults With Heart Failure.
Mickelson, Robin S; Unertl, Kim M; Holden, Richard J
2016-10-12
Older adults with chronic disease struggle to manage complex medication regimens. Health information technology has the potential to improve medication management, but only if it is based on a thorough understanding of the complexity of medication management workflow as it occurs in natural settings. Prior research reveals that patient work related to medication management is complex, cognitive, and collaborative. Macrocognitive processes are theorized as how people individually and collaboratively think in complex, adaptive, and messy nonlaboratory settings supported by artifacts. The objective of this research was to describe and analyze the work of medication management by older adults with heart failure, using a macrocognitive workflow framework. We interviewed and observed 61 older patients along with 30 informal caregivers about self-care practices including medication management. Descriptive qualitative content analysis methods were used to develop categories, subcategories, and themes about macrocognitive processes used in medication management workflow. We identified 5 high-level macrocognitive processes affecting medication management-sensemaking, planning, coordination, monitoring, and decision making-and 15 subprocesses. Data revealed workflow as occurring in a highly collaborative, fragile system of interacting people, artifacts, time, and space. Process breakdowns were common and patients had little support for macrocognitive workflow from current tools. Macrocognitive processes affected medication management performance. Describing and analyzing this performance produced recommendations for technology supporting collaboration and sensemaking, decision making and problem detection, and planning and implementation.
Azadbakht, Bakhtiar; Afarideh, Hossein; Ghannadi-Maragheh, Mohammad; Bahrami-Samani, Ali; Asgari, Mehdi
2017-05-01
Radioimmuno-conjugated (Rhenium-188 labeled Rituximab), 3-aminopropyltriethoxysilane (APTES)-polyethylene glycol (PEG) coated iron oxide nanoparticles were synthesized and then characterized. Therapeutic effect and targeting efficacy of complex were evaluated in CD20 express B cell lines and tumor bearing Balb/c mice respectively. To reach these purposes, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized using coprecipitation method and then their surface was treated with APTES for increasing retention time of SPIONs in blood circulation and amine group creation. In the next step, N-hydroxysuccinimide (NHS) ester of polyethylene glycol maleimide (NHS-PEG-Mal) was conjugated to the APTES-treated SPIONs. After radiolabeling of Rituximab antibody with Rhenium-188 (T 1/2 =16.9h) using synthesized N 2 S 4 chelator, it was attached to the APTES-PEG-MAL-SPIONs surface through thiol-maleimide coupling reaction. In vitro evaluation of the 188 ReN 2 S 4 -Rituximab-SPION-complex thus obtained revealed that at 24 and 48h post-treatment effective cancer cell killing had been achieved. Bio-distribution study in tumor bearing mice showed capability of this complex for targeted cancer therapy. Active and passive tumor targeting strategies were applied through incorporated anti-CD20 (Rituximab) antibody and also enhanced permeability and retention (EPR) effect of solid tumors for nanoparticles respectively. Copyright © 2016 Elsevier Inc. All rights reserved.
Changes in the electric dipole vector of human serum albumin due to complexing with fatty acids.
Scheider, W; Dintzis, H M; Oncley, J L
1976-01-01
The magnitude of the electric dipole vector of human serum albumin, as measured by the dielectric increment of the isoionic solution, is found to be a sensitive, monotonic indicator of the number of moles (up to at least 5) of long chain fatty acid complexed. The sensitivity is about three times as great as it is in bovine albumin. New methods of analysis of the frequency dispersion of the dielectric constant were developed to ascertain if molecular shape changes also accompany the complexing with fatty acid. Direct two-component rotary diffusion constant analysis is found to be too strongly affected by cross modulation between small systematic errors and physically significant data components to be a reliable measure of structural modification. Multicomponent relaxation profiles are more useful as recognition patterns for structural comparisons, but the equations involved are ill-conditioned and solutions based on standard least-squares regression contain mathematical artifacts which mask the physically significant spectrum. By constraining the solution to non-negative coefficients, the magnitude of the artifacts is reduced to well below the magnitudes of the spectral components. Profiles calculated in this way show no evidence of significant dipole direction or molecular shape change as the albumin is complexed with 1 mol of fatty acid. In these experiments albumin was defatted by incubation with adipose tissue at physiological pH, which avoids passing the protein through the pH of the N-F transition usually required in defatting. Addition of fatty acid from soluion in small amounts of ethanol appears to form a complex indistinguishable from the "native" complex. PMID:6087
Complex Engineered Systems: A New Paradigm
NASA Astrophysics Data System (ADS)
Mina, Ali A.; Braha, Dan; Bar-Yam, Yaneer
Human history is often seen as an inexorable march towards greater complexity — in ideas, artifacts, social, political and economic systems, technology, and in the structure of life itself. While we do not have detailed knowledge of ancient times, it is reasonable to conclude that the average resident of New York City today faces a world of much greater complexity than the average denizen of Carthage or Tikal. A careful consideration of this change, however, suggests that most of it has occurred recently, and has been driven primarily by the emergence of technology as a force in human life. In the 4000 years separating the Indus Valley Civilization from 18th century Europe, human transportation evolved from the bullock cart to the hansom, and the methods of communication used by George Washington did not differ significantly from those used by Alexander or Rameses. The world has moved radically towards greater complexity in the last two centuries. We have moved from buggies and letter couriers to airplanes and the Internet — an increase in capacity, and through its diversity also in complexity, orders of magnitude greater than that accumulated through the rest of human history. In addition to creating iconic artifacts — the airplane, the car, the computer, the television, etc. — this change has had a profound effect on the scope of experience by creating massive, connected and multiultra- level systems — traffic networks, power grids, markets, multinational corporations — that defy analytical understanding and seem to have a life of their own. This is where complexity truly enters our lives.
Lewandowski, Eric M.; Skiba, Joanna; Torelli, Nicholas J.; ...
2015-03-02
We have determined a 1.18 Å resolution X-ray crystal structure of a novel ruthenocenyle-6-aminopenicillinic acid in complex with CTX-M β-lactamase, showing unprecedented details of interactions between ruthenocene and protein. As the first product complex with an intact catalytic serine, the structure also offers insights into β-lactamase catalysis and inhibitor design.
Triamine chelants, their derivatives, complexes and conjugates
Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.
1995-01-01
A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula: ##STR1## wherein n, m, R, R.sup.1, R.sup.2 and L are defined in the specification.
Poddar, Raju; Cortés, Dennis E.; Werner, John S.; Mannis, Mark J.
2013-01-01
Abstract. A high-speed (100 kHz A-scans/s) complex conjugate resolved 1 μm swept source optical coherence tomography (SS-OCT) system using coherence revival of the light source is suitable for dense three-dimensional (3-D) imaging of the anterior segment. The short acquisition time helps to minimize the influence of motion artifacts. The extended depth range of the SS-OCT system allows topographic analysis of clinically relevant images of the entire depth of the anterior segment of the eye. Patients with the type 1 Boston Keratoprosthesis (KPro) require evaluation of the full anterior segment depth. Current commercially available OCT systems are not suitable for this application due to limited acquisition speed, resolution, and axial imaging range. Moreover, most commonly used research grade and some clinical OCT systems implement a commercially available SS (Axsun) that offers only 3.7 mm imaging range (in air) in its standard configuration. We describe implementation of a common swept laser with built-in k-clock to allow phase stable imaging in both low range and high range, 3.7 and 11.5 mm in air, respectively, without the need to build an external MZI k-clock. As a result, 3-D morphology of the KPro position with respect to the surrounding tissue could be investigated in vivo both at high resolution and with large depth range to achieve noninvasive and precise evaluation of success of the surgical procedure. PMID:23912759
Hahn, Paul; Migacz, Justin; O'Connell, Rachelle; Izatt, Joseph A; Toth, Cynthia A
2013-01-01
We have recently developed a microscope-integrated spectral-domain optical coherence tomography (MIOCT) device towards intrasurgical cross-sectional imaging of surgical maneuvers. In this report, we explore the capability of MIOCT to acquire real-time video imaging of vitreoretinal surgical maneuvers without post-processing modifications. Standard 3-port vitrectomy was performed in human during scheduled surgery as well as in cadaveric porcine eyes. MIOCT imaging of human subjects was performed in healthy normal volunteers and intraoperatively at a normal pause immediately following surgical manipulations, under an Institutional Review Board-approved protocol, with informed consent from all subjects. Video MIOCT imaging of live surgical manipulations was performed in cadaveric porcine eyes by carefully aligning B-scans with instrument orientation and movement. Inverted imaging was performed by lengthening of the reference arm to a position beyond the choroid. Unprocessed MIOCT imaging was successfully obtained in healthy human volunteers and in human patients undergoing surgery, with visualization of post-surgical changes in unprocessed single B-scans. Real-time, unprocessed MIOCT video imaging was successfully obtained in cadaveric porcine eyes during brushing of the retina with the Tano scraper, peeling of superficial retinal tissue with intraocular forceps, and separation of the posterior hyaloid face. Real-time inverted imaging enabled imaging without complex conjugate artifacts. MIOCT is capable of unprocessed imaging of the macula in human patients undergoing surgery and of unprocessed, real-time, video imaging of surgical maneuvers in model eyes. These capabilities represent an important step towards development of MIOCT for efficient, real-time imaging of manipulations during human surgery.
Tatlybaeva, Elena B; Nikiyan, Hike N; Vasilchenko, Alexey S; Deryabin, Dmitri G
2013-01-01
The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A-IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG-Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.
Improved Procedure for Direct Coupling of Carbohydrates to Proteins via Reductive Amination
Gildersleeve, Jeffrey C.; Oyelaran, Oyindasola; Simpson, John T.; Allred, Benjamin
2009-01-01
Carbohydrate-protein conjugates are utilized extensively in basic research and as immunogens in a variety of bacterial vaccines and cancer vaccines. As a result, there have been significant efforts to develop simple and reliable methods for the construction of these conjugates. While direct coupling via reductive amination is an appealing approach, the reaction is typically very inefficient. In this paper, we report improved reaction conditions providing an approximately 500% increase in yield. In addition to optimizing a series of standard reaction parameters, we found that addition of 500 mM sodium sulfate improves the coupling efficiency. To illustrate the utility of these conditions, a series of high mannose BSA conjugates were produced and incorporated into a carbohydrate microarray. Ligand binding to ConA could be observed and apparent affinity constants (Kds) measured using the array were in good agreement with values reported by surface plasmon resonance. The results show that the conditions are suitable for microgram scale reactions, are compatible with complex carbohydrates, and produce biologically active conjugates. PMID:18597509
Pozzi, Berta; Mammi, Pablo; Bragado, Laureano; Giono, Luciana E; Srebrow, Anabella
2018-05-09
Spliceosomal proteins have been revealed as SUMO conjugation targets. Moreover, we have reported that many of these are in a SUMO-conjugated form when bound to a pre-mRNA substrate during a splicing reaction. We demonstrated that SUMOylation of Prp3 (PRPF3), a component of the U4/U6 di-snRNP, is required for U4/U6•U5 tri-snRNP formation and/or recruitment to active spliceosomes. Expanding upon our previous results, we have shown that the splicing factor SRSF1 stimulates SUMO conjugation to several spliceosomal proteins. Given the relevance of the splicing process, as well as the complex and dynamic nature of its governing machinery, the spliceosome, the molecular mechanisms that modulate its function represent an attractive topic of research. We posit that SUMO conjugation could represent a way of modulating spliceosome assembly and thus, splicing efficiency. How cycles of SUMOylation/de-SUMOylation of spliceosomal proteins become integrated throughout the highly choreographed spliceosomal cycle awaits further investigation.
Preclinical studies of dendrimer prodrugs.
Kojima, Chie
2015-01-01
Dendrimers are synthetic macromolecules with well-defined structures bearing a wide variety of functional groups on their periphery. These groups can be used to conjugate bioactive molecules such as drugs, ligands and imaging agents. Dendrimer prodrugs can be used to improve the water solubility and pharmacokinetic properties of the corresponding free drugs. This article summarizes preclinical studies pertaining to the use of drug-dendrimer conjugates as dendrimer prodrugs for the treatments of various diseases, including cancer and inflammatory diseases. A wide range of anticancer drugs have been conjugated to dendrimers via biodegradable linkers. The side effects of the parent drugs can be markedly reduced using dendrimer prodrugs, with some drugs showing improved efficacy. Anti-inflammatory agents have also been conjugated to dendrimers and used to treat a number of inflammatory diseases. Drug-dendrimer conjugates are preferable to drug-dendrimer complexes, where the use of degradable linkers is critical to the release of the drug. Polyethylene glycol and/or ligands can be added to a dendrimer prodrug, which is useful for the targeting of affected tissues. Imaging probes can also be incorporated into dendrimer prodrugs for the simultaneous delivery of therapeutic and diagnostic agents as 'theranostics.'
Activation of the Slx5–Slx8 Ubiquitin Ligase by Poly-small Ubiquitin-like Modifier Conjugates*S⃞
Mullen, Janet R.; Brill, Steven J.
2008-01-01
Protein sumoylation is a regulated process that is important for the health of human and yeast cells. In budding yeast, a subset of sumoylated proteins is targeted for ubiquitination by a conserved heterodimeric ubiquitin (Ub) ligase, Slx5–Slx8, which is needed to suppress the accumulation of high molecular weight small ubiquitin-like modifier (SUMO) conjugates. Structure-function analysis indicates that the Slx5–Slx8 complex contains multiple SUMO-binding domains that are collectively required for in vivo function. To determine the specificity of Slx5–Slx8, we assayed its Ub ligase activity using sumoylated Siz2 as an in vitro substrate. In contrast to unsumoylated or multisumoylated Siz2, substrates containing poly-SUMO conjugates were efficiently ubiquitinated by Slx5–Slx8. Although Siz2 itself was ubiquitinated, the bulk of the Ub was conjugated to SUMO residues. Slx5–Slx8 primarily mono-ubiquitinated the N-terminal SUMO moiety of the chain. These data indicate that the Slx5–Slx8 Ub ligase is stimulated by poly-SUMO conjugates and that it can ubiquitinate a poly-SUMO chain. PMID:18499666
Convergence, recurrence and diversification of complex sperm traits in diving beetles (Dytiscidae)
Higginson, Dawn M.; Miller, Kelly B.; Segraves, Kari A.; Pitnick, Scott
2013-01-01
Sperm display remarkable morphological diversity among even closely related species, a pattern that is widely attributed to postcopulatory sexual selection. Surprisingly few studies have used phylogenetic analyses to discern the details of evolutionary diversification in ornaments and armaments subject to sexual selection, and the origins of novel sperm traits and their subsequent modification are particularly poorly understood. Here we investigate sperm evolution in diving beetles (Dytiscidae), revealing dramatic diversification in flagellum length, head shape, presence of sperm heteromorphism, and the presence/type of sperm conjugation, an unusual trait where two or more sperm unite for motility or transport. Sperm conjugation was found to be the ancestral condition in diving beetles, with subsequent diversification into three forms, each exhibiting varying degrees of evolutionary loss, convergence and recurrence. Sperm head shape, but not length or heteromorphism, was found to evolve in a significantly correlated manner with conjugation, consistent with the different mechanisms of head alignment and binding required for the different forms of conjugation. Our study reveals that sperm morphological evolution is channeled along particular evolutionary pathways (i.e., conjugate form), yet subject to considerable diversification within those pathways through modification in sperm length, head shape and heteromorphism. PMID:22519797
RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.
Paul, Atanu; Wang, Bin
2017-05-18
Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.
Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo
2015-08-14
Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release.
NASA Astrophysics Data System (ADS)
Akahane, Junji; Rondonuwu, Ferdy S.; Fiedor, Leszek; Watanabe, Yasutaka; Koyama, Yasushi
2004-07-01
A set of carotenoids, i.e., neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin, having the number of conjugated double bonds n=9, 10, 11, 12 and 13, were incorporated into the LH1 antenna complex from Rhodospirillum rubrum G9, and the carotenoid-bacteriochlorophyll (Cars-BChl) singlet energy-transfer efficiencies were determined by subpicosecond time-resolved absorption spectroscopy to be 78%, 75%, 46%, 40% and 36%, respectively. In carotenoids with n=9 and 10, all the 1B u+, 1B u- and 2A g- channels were open, whereas in carotenoids with n=11-13 the 1B u- and 2A g- channels were closed, causing a sudden drop in the efficiency on going from n=10 to 11.
21 CFR 314.70 - Supplements and other changes to an approved application.
Code of Federal Regulations, 2014 CFR
2014-04-01
... derived from such studies; (vi) For a natural product, a recombinant DNA-derived protein/polypeptide, or a...) Changes solely affecting a natural protein, a recombinant DNA-derived protein/polypeptide or a complex or..., recombinant DNA-derived protein/polypeptide, complex or conjugate of a drug substance with a monoclonal...
Kumari, Amrita; Koyama, Tetsuo; Hatano, Ken; Matsuoka, Koji
2016-10-01
A tetravalent GlcNAc pendant glycocluster was constructed with terminal biotin through C6 linker. To acquire the multivalent carbohydrate-protein interactions, we synthesized a glycopolymer of tetrameric structure using N-acetyl-d-glucosamine (GlcNAc) as the target carbohydrate by the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as coupling reagent, followed by biotin-avidin complexation leading to the formation of glycocluster of avidin-biotin-GlcNAc conjugate (ABG complex). The dynamic light scattering (DLS) system was implied for size detection and to check the binding affinity of GlcNAc conjugate with a WGA lectin we use fluorometric assay by means of specific excitation of tryptophan at λex 295nm and it was found to be very high Ka∼1.39×10(7) M(-1) in case of ABG complex as compared to GlcNAc only Ka∼1.01×10(4) M(-1) with the phenomenon proven to be due to glycocluster effect. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Lei; Zhang, Ruifen; Deng, Yuanyuan; Zhang, Yan; Xiao, Juan; Huang, Fei; Wen, Wei; Zhang, Mingwei
2017-04-15
In this study, rice bran was successively steamed with α-amylase, fermented with lactic acid bacteria, and hydrolyzed with complex enzymes. The changes in phenolic profiles and antioxidant activities of the corresponding aqueous solutions from three stages were investigated. Compared to the first stage, fermentation and complex enzyme hydrolysis significantly increased the total phenolics, total flavonoids, total FRAP and ORAC values by 59.2%, 56.6%, 73.6% and 45.4%, respectively. Twelve individual phenolics present in free or soluble conjugate forms were also analyzed during the processing. Ferulic acid was released in the highest amount among different phenolics followed by protocatechuic acid. Moreover, a major proportion of phenolics existed as soluble conjugates. The results showed that fermentation and complex enzyme hydrolysis enhanced total phenolics and antioxidant activities of aqueous solution from rice bran pretreated by steaming with α-amylase. This research could provide basis for the processing of rice bran beverage rich in phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Manikwar, Prakash; Zimmerman, Tahl; Blanco, Francisco J; Williams, Todd D; Siahaan, Teruna J
2011-07-20
Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the modified peptide. The results show that one to seven fluorescein molecules or one to four rhodamine molecules were attached to the lysine residue(s) of the I-domain protein. No modifications were found in the metal ion-dependent adhesion site (MIDAS), which is an important binding region of the I-domain.
A common anchor facilitated GO-DNA nano-system for multiplex microRNA analysis in live cells.
Yu, Jiantao; He, Sihui; Shao, Chen; Zhao, Haoran; Li, Jing; Tian, Leilei
2018-04-19
The design of a nano-system for the detection of intracellular microRNAs is challenging as it must fulfill complex requirements, i.e., it must have a high sensitivity to determine the dynamic expression level, a good reliability for multiplex and simultaneous detection, and a satisfactory biostability to work in biological environments. Instead of employing a commonly used physisorption or a full-conjugation strategy, here, a GO-DNA nano-system was developed under graft/base-pairing construction. The common anchor sequence was chemically grafted to GO to base-pair with various microRNA probes; and the hybridization with miRNAs drives the dyes on the probes to leave away from GO, resulting in "turned-on" fluorescence. This strategy not only simplifies the synthesis but also efficiently balances the loading yields of different probes. Moreover, the conjugation yield of GO with a base-paired hybrid has been improved by more than two-fold compared to that of the conjugation with a single strand. We demonstrated that base-paired DNA probes could be efficiently delivered into cells along with GO and are properly stabilized by the conjugated anchor sequence. The resultant GO-DNA nano-system exhibited high stability in a complex biological environment and good resistance to nucleases, and was able to accurately discriminate various miRNAs without cross-reaction. With all of these positive features, the GO-DNA nano-system can simultaneously detect three miRNAs and monitor their dynamic expression levels.
NASA Astrophysics Data System (ADS)
Kawamura, Wataru; Miura, Yutaka; Kokuryo, Daisuke; Toh, Kazuko; Yamada, Naoki; Nomoto, Takahiro; Matsumoto, Yu; Sueyoshi, Daiki; Liu, Xueying; Aoki, Ichio; Kano, Mitsunobu R.; Nishiyama, Nobuhiro; Saga, Tsuneo; Kishimura, Akihiro; Kataoka, Kazunori
2015-06-01
Introduction of ligands into 100 nm scaled hollow capsules has great potential for diagnostic and therapeutic applications in drug delivery systems. Polyethylene glycol-conjugated (PEGylated) polyion complex vesicles (PICsomes) are promising hollow nano-capsules that can survive for long periods in the blood circulation and can be used to deliver water-soluble macromolecules to target tissues. In this study, cyclic RGD (cRGD) peptide, which is specifically recognized by αVβ3 and αvβ5 integrins that are expressed at high levels in the neovascular system, was conjugated onto the distal end of PEG strands on PICsomes for active neovascular targeting. Density-tunable cRGD-conjugation was achieved using PICsomes with definite fraction of end-functionalized PEG, to substitute 20, 40, and 100% of PEG distal end of the PICsomes to cRGD moieties. Compared with control-PICsomes without cRGD, cRGD-PICsomes exhibited increased uptake into human umbilical vein endothelial cells. Intravital confocal laser scanning microscopy revealed that the 40%-cRGD-PICsomes accumulated mainly in the tumor neovasculature and remained in the perivascular region even after 24 h. Furthermore, we prepared superparamagnetic iron oxide (SPIO)-loaded cRGD-PICsomes for magnetic resonance imaging (MRI) and successfully visualized the neovasculature in an orthotopic glioblastoma model, which suggests that SPIO-loaded cRGD-PICsomes might be useful as a MRI contrast reagent for imaging of the tumor microenvironment, including neovascular regions that overexpress αVβ3 integrins.
Shi, Chuan; Goldberg, Shalom; Lin, Tricia; Dudkin, Vadim; Widdison, Wayne; Harris, Luke; Wilhelm, Sharon; Jmeian, Yazen; Davis, Darryl; O'Neil, Karyn; Weng, Naidong; Jian, Wenying
2018-04-17
Bioanalysis of antibody-drug conjugates (ADCs) is challenging due to the complex, heterogeneous nature of their structures and their complicated catabolism. To fully describe the pharmacokinetics (PK) of an ADC, several analytes are commonly quantified, including total antibody, conjugate, and payload. Among them, conjugate is the most challenging to measure, because it requires detection of both small and large molecules as one entity. Existing approaches to quantify the conjugated species of ADCs involve a ligand binding assay (LBA) for conjugated antibody or hybrid LBA/liquid chromatography/tandem mass spectrometry (LC/MS/MS) for quantitation of conjugated drug. In our current work for a protein-drug conjugate (PDC) using the Centyrin scaffold, a similar concept to ADCs but with smaller protein size, an alternative method to quantify the conjugate by using a surrogate peptide approach, was utilized. The His-tagged proteins were isolated from biological samples using immobilized metal affinity chromatography (IMAC), followed by trypsin digestion. The tryptic peptide containing the linker attached to the payload was used as a surrogate of the conjugate and monitored by LC/MS/MS analysis. During method development and its application, we found that hydrolysis of the succinimide ring of the linker was ubiquitous, taking place at many stages during the lifetime of the PDC including in the initial drug product, in vivo in circulation in the animals, and ex vivo during the trypsin digestion step of the sample preparation. We have shown that hydrolysis during trypsin digestion is concentration-independent and consistent during the work flow-therefore, having no impact on assay performance. However, for samples that have undergone extensive hydrolysis prior to trypsin digestion, significant bias could be introduced if only the non-hydrolyzed form is considered in the quantitation. Therefore, it is important to incorporate succinimide hydrolysis products in the quantitation method in order to provide an accurate estimation of the total conjugate level. More importantly, the LC/MS/MS-based method described here provides a useful tool to quantitatively evaluate succinimide hydrolysis of ADCs in vivo, which has been previously reported to have significant impact on their stability, exposure, and efficacy.
Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information.
Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Yan, Bin; Li, Jianxin
2015-01-01
Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition.
Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information
Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Li, Jianxin
2015-01-01
Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition. PMID:26380294
Ohyama, Ayumu; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi
2017-06-01
We previously developed a tumor-selective siRNA carrier by preparing polyamidoamine dendrimer (generation 4, G4) conjugates with α-cyclodextrin and folate-polyethylene glycol (Fol-PαC (G4)). In the present study, we developed ternary complexes of Fol-PαC (G4)/siRNA with low-molecular-weight-sacrans to achieve more effective siRNA transfer activity. Among the different molecular-weight sacrans, i.e. sacran 100, 1000 and 10,000 (MW 44,889Da, 943,692Da and 1,488,281Da, respectively), sacran 100 significantly increased the cellular uptake and the RNAi effects of Fol-PαC (G4)/siRNA binary complex with negligible cytotoxicity in KB cells (folate receptor-α positive cells). In addition, the ζ-potential and particle size of Fol-PαC (G4)/siRNA complex were decreased by the ternary complexation with sacran 100. Importantly, the in vivo RNAi effect of the ternary complex after the intravenous administration to tumor-bearing BALB/c mice was significantly higher than that of the binary complex. In conclusion, Fol-PαC (G4)/siRNA/sacran 100 ternary complex has a potential as a novel tumor-selective siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.
A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery.
Zhong, Jiaju; Li, Lian; Zhu, Xi; Guan, Shan; Yang, Qingqing; Zhou, Zhou; Zhang, Zhirong; Huang, Yuan
2015-10-01
Tumor cell nucleus-targeted delivery of antitumor agents is of great interest in cancer therapy, since the nucleus is one of the most frequent targets of drug action. Here we report a smart polymeric conjugate platform, which utilizes stimulus-responsive strategies to achieve multistage nuclear drug delivery upon systemic administration. The conjugates composed of a backbone based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer and detachable nucleus transport sub-units that sensitive to lysosomal enzyme. The sub-units possess a biforked structure with one end conjugated with the model drug, H1 peptide, and the other end conjugated with a novel pH-responsive targeting peptide (R8NLS) that combining the strength of cell penetrating peptide and nuclear localization sequence. The conjugates exhibited prolonged circulation time and excellent tumor homing ability. And the activation of R8NLS in acidic tumor microenvironment facilitated tissue penetration and cellular internalization. Once internalized into the cell, the sub-units were unleashed for nuclear transport through nuclear pore complex. The unique features resulted in 50-fold increase of nuclear drug accumulation relative to the original polymer-drug conjugates in vitro, and excellent in vivo nuclear drug delivery efficiency. Our report provides a strategy in systemic nuclear drug delivery by combining the microenvironment-responsive structure and detachable sub-units. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fernandes, Julio C; Qiu, Xingping; Winnik, Francoise M; Benderdour, Mohamed; Zhang, Xiaoling; Dai, Kerong; Shi, Qin
2012-01-01
The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery. PMID:23209368
ERIC Educational Resources Information Center
Martinez, Jose Felipe; Borko, Hilda; Stecher, Brian M.
2012-01-01
With growing interest in the role of teachers as the key mediators between educational policies and outcomes, the importance of developing good measures of classroom processes has become increasingly apparent. Yet, collecting reliable and valid information about a construct as complex as instruction poses important conceptual and technical…
Looking at the Complexity of Two Young Children's Understanding of Number
ERIC Educational Resources Information Center
Thom, Jennifer S.; Pirie, Susan E. B.
2006-01-01
This paper presents a qualitative study that investigated two third-grade students' understanding of number. The children were videotaped while they worked to record everything they knew about the number, 72. Their artifacts and conversations were then analyzed using the Pirie-Kieren dynamical theory for the growth of mathematical understanding as…
"Economists Who Think like Ecologists": Reframing Systems Thinking in Games for Learning
ERIC Educational Resources Information Center
DeVane, Ben; Durga, Shree; Squire, Kurt
2010-01-01
Over the past several years, educators have been exploring the potential of immersive interactive simulations, or video games for education, finding that games can support the development of disciplinary knowledge, systemic thinking, the production of complex multimodal digital artifacts, and participation in affinity spaces or sites of collective…
ERIC Educational Resources Information Center
Blikstein, Paulo; Worsley, Marcelo; Piech, Chris; Sahami, Mehran; Cooper, Steven; Koller, Daphne
2014-01-01
New high-frequency, automated data collection and analysis algorithms could offer new insights into complex learning processes, especially for tasks in which students have opportunities to generate unique open-ended artifacts such as computer programs. These approaches should be particularly useful because the need for scalable project-based and…
ERIC Educational Resources Information Center
Simpson, Amber; Bannister, Nicole; Matthews, Gretchen
2017-01-01
There is a positive relationship between student participation in computer-supported collaborative learning (CSCL) environments and improved complex problem-solving strategies, increased learning gains, higher engagement in the thinking of their peers, and an enthusiastic disposition toward groupwork. However, student participation varies from…
The Gift of Time: Today's Academic Acceleration Case Study Voices of Experience
ERIC Educational Resources Information Center
Scheibel, Susan Riley
2010-01-01
The purpose of this qualitative case study was to examine today's academic acceleration from the lived experience and perspectives of two young adults whose education was shortened, thereby allowing them the gift of time. Through personal interviews, parent interviews, and physical artifacts, the researcher gained a complex, holistic understanding…
Media Misrepresentations of a Mascot Controversy: Contested Constructions of Race and Gender
ERIC Educational Resources Information Center
Gerstl-Pepin, Cynthia; Liang, Guodong
2010-01-01
This article examines media coverage of a high school Native American mascot controversy. Discourse analysis of media documents and artifacts was utilized to explore how the issue was socially constructed for public consumption. Critical race feminism was used as a framework to examine how media discourses can oversimplify the complex interaction…
ERIC Educational Resources Information Center
Zheng, Yongjie
2012-01-01
Software architecture plays an increasingly important role in complex software development. Its further application, however, is challenged by the fact that software architecture, over time, is often found not conformant to its implementation. This is usually caused by frequent development changes made to both artifacts. Against this background,…
Learning to Put out the Red Stuff: Becoming Information Literate through Discursive Practice
ERIC Educational Resources Information Center
Lloyd, Annemaree
2007-01-01
From recent doctoral research into information literacy and workplace learning, an understanding of information literacy as a complex constellation of experiences and relationships with a range of information modalities is emerging. It is constituted through the connections among people, artifacts, texts, and bodily experiences that draw a person…
ERIC Educational Resources Information Center
Blikstein, Paulo; Worsley, Marcelo
2016-01-01
New high-frequency multimodal data collection technologies and machine learning analysis techniques could offer new insights into learning, especially when students have the opportunity to generate unique, personalized artifacts, such as computer programs, robots, and solutions engineering challenges. To date most of the work on learning analytics…
Triamine chelants, their derivatives, complexes and conjugates
Troutner, D.E.; John, C.S.; Pillai, M.R.A.
1995-03-07
A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula, as shown in the accompanying diagrams, wherein n, m, R, R{sup 1}, R{sup 2} and L are defined in the specification.
Continuities in stone flaking technology at Liang Bua, Flores, Indonesia.
Moore, M W; Sutikna, T; Jatmiko; Morwood, M J; Brumm, A
2009-11-01
This study examines trends in stone tool reduction technology at Liang Bua, Flores, Indonesia, where excavations have revealed a stratified artifact sequence spanning 95k.yr. The reduction sequence practiced throughout the Pleistocene was straightforward and unchanging. Large flakes were produced off-site and carried into the cave where they were reduced centripetally and bifacially by four techniques: freehand, burination, truncation, and bipolar. The locus of technological complexity at Liang Bua was not in knapping products, but in the way techniques were integrated. This reduction sequence persisted across the Pleistocene/Holocene boundary with a minor shift favoring unifacial flaking after 11ka. Other stone-related changes occurred at the same time, including the first appearance of edge-glossed flakes, a change in raw material selection, and more frequent fire-induced damage to stone artifacts. Later in the Holocene, technological complexity was generated by "adding-on" rectangular-sectioned stone adzes to the reduction sequence. The Pleistocene pattern is directly associated with Homo floresiensis skeletal remains and the Holocene changes correlate with the appearance of Homo sapiens. The one reduction sequence continues across this hominin replacement.
Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging
NASA Astrophysics Data System (ADS)
Biju, Vasudevanpillai; Hamada, Morihiko; Ono, Kenji; Sugino, Sakiko; Ohnishi, Takashi; Shibu, Edakkattuparambil Sidharth; Yamamura, Shohei; Sawada, Makoto; Nakanishi, Shunsuke; Shigeri, Yasushi; Wakida, Shin-Ichi
2015-09-01
Multimodal and multifunctional contrast agents receive enormous attention in the biomedical imaging field. Such contrast agents are routinely prepared by the incorporation of organic molecules and inorganic nanoparticles (NPs) into host materials such as gold NPs, silica NPs, polymer NPs, and liposomes. Despite their non-cytotoxic nature, the large size of these NPs limits the in vivo distribution and clearance and inflames complex pharmacokinetics, which hinder the regulatory approval for clinical applications. Herein, we report a unique method that combines magnetic resonance imaging (MRI) and fluorescence imaging modalities together in nanoscale entities by the simple, direct and stable conjugation of novel biotinylated coordination complexes of gadolinium(iii) to CdSe/ZnS quantum dots (QD) and terbium(iii) to super paramagnetic iron oxide NPs (SPION) but without any host material. Subsequently, we evaluate the potentials of such lanthanide-speckled fluorescent-magnetic NPs for bioimaging at single-molecule, cell and in vivo levels. The simple preparation and small size make such fluorescent-magnetic NPs promising contrast agents for biomedical imaging.
Siderophore-drug complexes: potential medicinal applications of the 'Trojan horse' strategy.
Górska, Agnieszka; Sloderbach, Anna; Marszałł, Michał Piotr
2014-09-01
The ability of bacteria to develop resistance to antimicrobial agents poses problems in the treatment of numerous bacterial infections. One method to circumvent permeability-mediated drug resistance involves the employment of the 'Trojan horse' strategy. The Trojan horse concept involves the use of bacterial iron uptake systems to enter and kill bacteria. The siderophore-drug complex is recognized by specific siderophore receptors and is then actively transported across the outer membrane. The recently identified benefits of this strategy have led to the synthesis of a series of siderophore-based antibiotics. Several studies have shown that siderophore-drug conjugates make it possible to design antibiotics with improved cell transport and reduce the frequency of resistance mutants. Growing interest in siderophore-drug conjugates for the treatment of human diseases including iron overload, cancer, and malaria has driven the search for new siderophore-drug complexes. This strategy may have special importance for the development of iron oxide nanoparticle-based therapeutics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Glyco-functionalized dinuclear rhenium(i) complexes for cell imaging.
Palmioli, Alessandro; Aliprandi, Alessandro; Septiadi, Dedy; Mauro, Matteo; Bernardi, Anna; De Cola, Luisa; Panigati, Monica
2017-02-21
The design, synthesis and photophysical characterization of four new luminescent glycosylated luminophores based on dinuclear rhenium complexes, namely Glyco-Re, are described. The derivatives have the general formula [Re 2 (μ-Cl) 2 (CO) 6 (μ-pydz-R)] (R-pydz = functionalized 1,2-pyridazine), where a sugar residue (R) is covalently bound to the pyridazine ligand in the β position. Different synthetic pathways have been investigated including the so-called neo-glycorandomization procedure, affording stereoselectively glyco-conjugates containing glucose and maltose in a β anomeric configuration. A multivalent dinuclear rhenium glycodendron bearing three glucose units is also synthesized. All the Glyco-Re conjugates are comprehensively characterized and their photophysical properties and cellular internalization experiments on human cervical adenocarcinoma (HeLa) cells are reported. The results show that such Glyco-Re complexes display interesting bio-imaging properties, i.e. high cell permeability, organelle selectivity, low cytotoxicity and fast internalization. These findings make the presented Glyco-Re derivatives efficient phosphorescent probes suitable for cell imaging application.
NASA Astrophysics Data System (ADS)
Wurzer, Alexander; Vágner, Adrienn; Horváth, Dávid; Fellegi, Flóra; Wester, Hans-Jürgen; Kálmán, Ferenc K.; Notni, Johannes
2018-04-01
Due to its 4 carbonic acid groups being available for bioconjugation, the cyclen tetraphosphinate chelator DOTPI, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis[methylene(2-carboxyethylphosphinic acid)], represents an ideal scaffold for synthesis of tetrameric bioconjugates for labeling with radiolanthanides, to be applied as endoradiotherapeuticals. We optimized a protocol for bio-orthogonal DOTPI conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), based on the building block DOTPI(azide)4. A detailed investigation of kinetic properties of Cu(II)-DOTPI complexes aimed at optimization of removal of DOTPI-bound copper by transchelation. Protonation and equilibrium properties of Ca(II)-, Zn(II) and Cu(II)-complexes of DOTPI and its tetra-cyclohexylamide DOTPI(Chx)4 (a model for DOTPI conjugates) as well as kinetic inertness (transchelation challenge in the presence of 20 to 40-fold excess of EDTA) were investigated by pH-potentiometry and spectrophotometry. Similar stability constants of CaII-, ZnII and CuII-complexes of DOTPI (logK(CaL)=8.65, logK(ZnL=15.40, logK(CuL)=20.30) and DOTPI(Chx)4 (logK(CaL)=8.99, logK(ZnL)=15.13, logK(CuL)=20.42) were found. Transchelation of CuII-complexes occurs via proton-assisted dissociation, whereafter released Cu(II) is scavenged by EDTA. The corresponding dissociation rates (kd=25×10‑7 and 5×10‑7 s‑1 for Cu(DOTPI) and Cu(DOTPI(Chx)4), respectively, at pH 4 and 298 K) indicate that conjugation increases the kinetic inertness by a factor of 5. However demetallation is completed within 4.5 and 7.2 hours at pH 2 and 25 °C, respectively, indicating that CuII removal after formation of CuAAC can be achieved in an uncomplicated manner by addition of excess H4EDTA. For proof-of-principle, tetrameric DOTPI conjugates of the prostate-specific membrane antigen (PSMA) targeting motif Lys-urea-Glu (KuE) were synthesized via CuAAC as well as dibenzo-cyclooctine (DBCO) based, strain-promoted click chemistry (SPAAC), which were labeled with Lu-177 and subsequently evaluated in vitro and in SCID mice bearing subcutaneous LNCaP tumor (PSMA+ human prostate carcinoma) xenografts. High affinities (3.4 and 1.4 nM, respectively) and persistent tumor uptakes (approx. 3.5% 24 h after injection) confirm suitability of DOTPI-based tetramers for application in targeted radionuclide therapy.
Wurzer, Alexander; Vágner, Adrienn; Horváth, Dávid; Fellegi, Flóra; Wester, Hans-Jürgen; Kálmán, Ferenc K.; Notni, Johannes
2018-01-01
Due to its 4 carbonic acid groups being available for bioconjugation, the cyclen tetraphosphinate chelator DOTPI, 1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetrakis[methylene(2-carboxyethylphosphinic acid)], represents an ideal scaffold for synthesis of tetrameric bioconjugates for labeling with radiolanthanides, to be applied as endoradiotherapeuticals. We optimized a protocol for bio-orthogonal DOTPI conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), based on the building block DOTPI(azide)4. A detailed investigation of kinetic properties of Cu(II)-DOTPI complexes aimed at optimization of removal of DOTPI-bound copper by transchelation. Protonation and equilibrium properties of Ca(II)-, Zn(II), and Cu(II)-complexes of DOTPI and its tetra-cyclohexylamide DOTPI(Chx)4 (a model for DOTPI conjugates) as well as kinetic inertness (transchelation challenge in the presence of 20 to 40-fold excess of EDTA) were investigated by pH-potentiometry and spectrophotometry. Similar stability constants of CaII-, ZnII, and CuII-complexes of DOTPI (logK(CaL) = 8.65, logK(ZnL = 15.40, logK(CuL) = 20.30) and DOTPI(Chx)4 (logK(CaL) = 8.99, logK(ZnL) = 15.13, logK(CuL) = 20.42) were found. Transchelation of Cu(II)-complexes occurs via proton-assisted dissociation, whereafter released Cu(II) is scavenged by EDTA. The corresponding dissociation rates [kd = 25 × 10−7 and 5 × 10−7 s−1 for Cu(DOTPI) and Cu(DOTPI(Chx)4), respectively, at pH 4 and 298 K] indicate that conjugation increases the kinetic inertness by a factor of 5. However, demetallation is completed within 4.5 and 7.2 h at pH 2 and 25°C, respectively, indicating that Cu(II) removal after formation of CuAAC can be achieved in an uncomplicated manner by addition of excess H4EDTA. For proof-of-principle, tetrameric DOTPI conjugates of the prostate-specific membrane antigen (PSMA) targeting motif Lys-urea-Glu (KuE) were synthesized via CuAAC as well as dibenzo-azacyclooctine (DBCO) based, strain-promoted click chemistry (SPAAC), which were labeled with Lu-177 and subsequently evaluated in vitro and in SCID mice bearing subcutaneous LNCaP tumor (PSMA+ human prostate carcinoma) xenografts. High affinities (3.4 and 1.4 nM, respectively) and persistent tumor uptakes (approx. 3.5% 24 h after injection) confirm suitability of DOTPI-based tetramers for application in targeted radionuclide therapy. PMID:29692987
Correction of Bowtie-Filter Normalization and Crescent Artifacts for a Clinical CBCT System.
Zhang, Hong; Kong, Vic; Huang, Ke; Jin, Jian-Yue
2017-02-01
To present our experiences in understanding and minimizing bowtie-filter crescent artifacts and bowtie-filter normalization artifacts in a clinical cone beam computed tomography system. Bowtie-filter position and profile variations during gantry rotation were studied. Two previously proposed strategies (A and B) were applied to the clinical cone beam computed tomography system to correct bowtie-filter crescent artifacts. Physical calibration and analytical approaches were used to minimize the norm phantom misalignment and to correct for bowtie-filter normalization artifacts. A combined procedure to reduce bowtie-filter crescent artifacts and bowtie-filter normalization artifacts was proposed and tested on a norm phantom, CatPhan, and a patient and evaluated using standard deviation of Hounsfield unit along a sampling line. The bowtie-filter exhibited not only a translational shift but also an amplitude variation in its projection profile during gantry rotation. Strategy B was better than strategy A slightly in minimizing bowtie-filter crescent artifacts, possibly because it corrected the amplitude variation, suggesting that the amplitude variation plays a role in bowtie-filter crescent artifacts. The physical calibration largely reduced the misalignment-induced bowtie-filter normalization artifacts, and the analytical approach further reduced bowtie-filter normalization artifacts. The combined procedure minimized both bowtie-filter crescent artifacts and bowtie-filter normalization artifacts, with Hounsfield unit standard deviation being 63.2, 45.0, 35.0, and 18.8 Hounsfield unit for the best correction approaches of none, bowtie-filter crescent artifacts, bowtie-filter normalization artifacts, and bowtie-filter normalization artifacts + bowtie-filter crescent artifacts, respectively. The combined procedure also demonstrated reduction of bowtie-filter crescent artifacts and bowtie-filter normalization artifacts in a CatPhan and a patient. We have developed a step-by-step procedure that can be directly used in clinical cone beam computed tomography systems to minimize both bowtie-filter crescent artifacts and bowtie-filter normalization artifacts.
Choi, Alex Wing-Tat; Tso, Karson Ka-Shun; Yim, Vicki Man-Wai; Liu, Hua-Wei; Lo, Kenneth Kam-Wing
2015-02-25
New phosphorogenic bioorthogonal probes derived from mononuclear and binuclear rhenium(I) polypyridine complexes containing a 1,2,4,5-tetrazine moiety were designed; these complexes displayed substantial dienophile-induced emission enhancement, and accelerated reaction kinetics and could target a protein conjugate in living cells.
NASA Astrophysics Data System (ADS)
Xiao, Yuling; Jaskula-Sztul, Renata; Javadi, Alireza; Xu, Wenjin; Eide, Jacob; Dammalapati, Ajitha; Kunnimalaiyaan, Muthusamy; Chen, Herbert; Gong, Shaoqin
2012-10-01
A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers.A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers. Electronic supplementary information (ESI) available: Additional flow cytometry histogram profiles of DOX fluorescence and ASCL1 knockdown results. See DOI: 10.1039/c2nr31853a
Fiore, Stephen M.; Wiltshire, Travis J.
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences. PMID:27774074
Fiore, Stephen M; Wiltshire, Travis J
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences.
Length and Dimensional Measurements at NIST
Swyt, Dennis A.
2001-01-01
This paper discusses the past, present, and future of length and dimensional measurements at NIST. It covers the evolution of the SI unit of length through its three definitions and the evolution of NBS-NIST dimensional measurement from early linescales and gage blocks to a future of atom-based dimensional standards. Current capabilities include dimensional measurements over a range of fourteen orders of magnitude. Uncertainties of measurements on different types of material artifacts range down to 7×10−8 m at 1 m and 8 picometers (pm) at 300 pm. Current work deals with a broad range of areas of dimensional metrology. These include: large-scale coordinate systems; complex form; microform; surface finish; two-dimensional grids; optical, scanning-electron, atomic-force, and scanning-tunneling microscopies; atomic-scale displacement; and atom-based artifacts. PMID:27500015
Artifacts in Sonography - Part 3.
Bönhof, Jörg A; McLaughlin, Glen
2018-06-01
As a continuation of parts 1 1 and 2 2, this article discusses artifacts as caused by insufficient temporal resolution, artifacts in color and spectral Doppler sonography, and information regarding artifacts in sonography with contrast agents. There are artifacts that occur in B-mode sonography as well as in Doppler imaging methods and sonography with contrast agents, such as slice thickness artifacts and bow artifacts, shadows, mirroring, and artifacts due to refraction that appear, for example, as double images, because they are based on the same formation mechanisms. In addition, there are artifacts specific to Doppler sonography, such as the twinkling artifact, and method-based motion artifacts, such as aliasing, the ureteric jet, and due to tissue vibration. The artifacts specific to contrast mode include echoes from usually highly reflective structures that are not contrast bubbles ("leakage"). Contrast agent can also change the transmitting signal so that even structures not containing contrast agent are echogenic ("pseudoenhancement"). While artifacts can cause problems regarding differential diagnosis, they can also be useful for determining the diagnosis. Therefore, effective use of sonography requires both profound knowledge and skilled interpretation of artifacts. © Georg Thieme Verlag KG Stuttgart · New York.
Journo, Chloé; Bonnet, Amandine; Favre-Bonvin, Arnaud; Turpin, Jocelyn; Vinera, Jennifer; Côté, Emilie; Chevalier, Sébastien Alain; Kfoury, Youmna; Bazarbachi, Ali
2013-01-01
Permanent activation of the NF-κB pathway by the human T cell leukemia virus type 1 (HTLV-1) Tax (Tax1) viral transactivator is a key event in the process of HTLV-1-induced T lymphocyte immortalization and leukemogenesis. Although encoding a Tax transactivator (Tax2) that activates the canonical NF-κB pathway, HTLV-2 does not cause leukemia. These distinct pathological outcomes might be related, at least in part, to distinct NF-κB activation mechanisms. Tax1 has been shown to be both ubiquitinated and SUMOylated, and these two modifications were originally proposed to be required for Tax1-mediated NF-κB activation. Tax1 ubiquitination allows recruitment of the IKK-γ/NEMO regulatory subunit of the IKK complex together with Tax1 into centrosome/Golgi-associated cytoplasmic structures, followed by activation of the IKK complex and RelA/p65 nuclear translocation. Herein, we compared the ubiquitination, SUMOylation, and acetylation patterns of Tax2 and Tax1. We show that, in contrast to Tax1, Tax2 conjugation to endogenous ubiquitin and SUMO is barely detectable while both proteins are acetylated. Importantly, Tax2 is neither polyubiquitinated on lysine residues nor ubiquitinated on its N-terminal residue. Consistent with these observations, Tax2 conjugation to ubiquitin and Tax2-mediated NF-κB activation is not affected by overexpression of the E2 conjugating enzyme Ubc13. We further demonstrate that a nonubiquitinable, non-SUMOylable, and nonacetylable Tax2 mutant retains a significant ability to activate transcription from a NF-κB-dependent promoter after partial activation of the IKK complex and induction of RelA/p65 nuclear translocation. Finally, we also show that Tax2 does not interact with TRAF6, a protein that was shown to positively regulate Tax1-mediated activation of the NF-κB pathway. PMID:23135727
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Modesto, Leonardo; Wang, Yixu
2017-01-01
We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M >Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M =Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.
Yang, Li; Ren, Ai-Min; Feng, Ji-Kang; Liu, Xiao-Dong; Ma, Yu-Guang; Zhang, Hong-Xing
2004-09-20
The photophysical properties, which vary as X is varied, of Re(I)-halide complexes (X2-bpy)ReICl(CO)3 (where X=ph, DAE, DNE, and DPE; ph = phenyl (1); DAE = di(amineoethynylbenzene) (2); DPE = di(phenylethynylbenzene) (3); DNE = di(nitroethynylbenzene) (4); bpy=2,2'bipyridine), are investigated using density functional theory (DFT). The electronic properties of the neutral molecules, in addition to the positive and negative ions, are studied using B3LYP functional. Excited singlet and triplet states are examined using time-dependent density functional theory (TDDFT). The low-lying excited-state geometries are optimized at the ab initio configuration interaction singlets level. As shown, the diarylethynyl-based structure is an integral component of the bpy pi-conjugated network, which results in a good planar structure. The occupied orbitals involved in the transitions have a significant mixture of metal Re and group Cl, and the lowest unoccupied orbital is a pi orbital, which extends from ligand bpy to diarylethynyl-based substituents. The luminescence for each complex originates from the lowest triplet excited states and is assigned to the mixing of MLCT and LLCT characters. Significant insights on the effects of these diarylethynyl conjugated structure and ending substituents (NH2, ph, and NO2) on absorption and emission spectra are observed by analysis of the results of the TDDFT method. The diarylethynyl-based pi-conjugated network makes both the absorption and emission spectra red-shifted compared with simple complex (bpy)ReICl(CO)3. Furthermore, an electron-releasing group (NH2) makes absorption and emission spectra blue-shift and an electron-withdrawing group (NO2) makes them red-shift. Copyright 2004 American Chemical Society
Anno, Takayuki; Higashi, Taishi; Motoyama, Keiichi; Hirayama, Fumitoshi; Uekama, Kaneto; Arima, Hidetoshi
2012-04-01
In this study, we evaluated the polyamidoamine starburst dendrimer (dendrimer, generation 2: G2) conjugate with 6-O-α-(4-O-α-D-glucuronyl)-D-glucosyl-β-cyclodextrin (GUG-β-CDE (G2)) as a gene transfer carrier. The in vitro gene transfer activity of GUG-β-CDE (G2, degree of substitution (DS) of cyclodextrin (CyD) 1.8) was remarkably higher than that of dendrimer (G2) conjugate with α-CyD (α-CDE (G2, DS 1.2)) and that with β-CyD(β-CDE (G2, DS 1.3)) in A549 and RAW264.7 cells. The particle size, ζ-potential, DNase I-catalyzed degradation, and cellular association of plasmid DNA (pDNA) complex with GUG-β-CDE (G2, DS 1.8) were almost the same as those of the other CDEs. Fluorescent-labeled GUG-β-CDE (G2, DS 1.8) localized in the nucleus 6 h after transfection of its pDNA complex in A549 cells, suggesting that nuclear localization of pDNA complex with GUG-β-CDE (G2, DS 1.8), at least in part, contributes to its high gene transfer activity. GUG-β-CDE (G2, DS 1.8) provided higher gene transfer activity than α-CDE (G2, DS 1.2) and β-CDE (G2, DS 1.3) in kidney with negligible changes in blood chemistry values 12 h after intravenous injection of pDNA complexes with GUG-β-CDE (G2, DS 1.8) in mice. In conclusion, the present findings suggest that GUG-β-CDE (G2, DS 1.8) has the potential for a novel polymeric pDNA carrier in vitro and in vivo.
NASA Astrophysics Data System (ADS)
Sauermilch, Isabel; Weigelt, Estella; Jokat, Wilfried
2018-07-01
The Arctic Ocean region plays, and has played in the geological past, a key role for Earth's climate and oceanic circulation and their evolution. Studying the Lomonosov Ridge, a narrow submarine continental ridge in the central Arctic Ocean, is essential to answer fundamental questions related to the complex tectonic evolution of the Arctic basins, the glacial history, and the details of known paleoceanographic changes in the Cenozoic. In this study, we present a new seismic dataset that provides insights into the sedimentary structures along the ridge, their possible origin, age and formation. We compare the structure and stratigraphy of the deeper parts of the ridge between 83°N and 84°30‧N to its conjugate, the Severnaya Zemlya Archipelago at the Eurasia margin. We propose that some sediment sequences directly underlying the prominent HARS (High Amplitude Reflector Sequence) formed well before the ridge separated from the Barents and Kara shelves and represent a prolongation of the North Kara Terrane, most likely part of the Neoproterozoic Timanide orogen. Towards Siberia along the Lomonosov Ridge, we interpret the HARS to be underlain by Upper Proterozoic-Lower Paleozoic metasedimentary material that is correlated to metamorphic complexes exposed on Bol'shevik Island. Northward, this unit descends and gives way to a foreland sedimentary basin complex of presumed Ordovician/Devonian age, which underwent strong deformation during the Triassic/Jurassic Novaya Zemlya orogeny. The transition zone between these units might mark a conjugate continuation of the Eurasian margin's Bol'shevik-Thrust Zone. A prominent erosional unconformity is observed over these strongly deformed foreland basins of the Eurasian and Lomonosov Ridge margins, and is conceivably related to vertical tectonics during breakup or a later basin-wide erosional event.
Wavelet approach to artifact noise removal from Capacitive coupled Electrocardiograph.
Lee, Seung Min; Kim, Ko Keun; Park, Kwang Suk
2008-01-01
Capacitive coupled Electrocardiography (ECG) is introduced as non-invasive measurement technology for ubiquitous health care and appliance are spread out widely. Although it has many merits, however, capacitive coupled ECG is very weak for motion artifacts for its non-skin-contact property. There are many studies for artifact problems which treats all artifact signals below 0.8Hz. In our capacitive coupled ECG measurement system, artifacts exist not only below 0.8Hz but also over than 10Hz. Therefore, artifact noise removal algorithm using wavelet method is tested to reject artifact-wandered signal from measured signals. It is observed that using power calculation each decimation step, artifact-wandered signal is removed as low frequency artifacts as high frequency artifacts. Although some original ECG signal is removed with artifact signal, we could level the signal quality for long term measure which shows the best quality ECG signals as we can get.
Chabot, Donald J; Ribot, Wilson J; Joyce, Joseph; Cook, James; Hepler, Robert; Nahas, Debbie; Chua, Jennifer; Friedlander, Arthur M
2016-07-25
The efficacy of currently licensed anthrax vaccines is largely attributable to a single Bacillus anthracis immunogen, protective antigen. To broaden protection against possible strains resistant to protective antigen-based vaccines, we previously developed a vaccine in which the anthrax polyglutamic acid capsule was covalently conjugated to the outer membrane protein complex of Neisseria meningitidis serotype B and demonstrated that two doses of 2.5μg of this vaccine conferred partial protection of rhesus macaques against inhalational anthrax . Here, we demonstrate complete protection of rhesus macaques against inhalational anthrax with a higher 50μg dose of the same capsule conjugate vaccine. These results indicate that B. anthracis capsule is a highly effective vaccine component that should be considered for incorporation in future generation anthrax vaccines. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Yang, Lei; Wang, Zheran; Wang, Ju; Jiang, Weihua; Jiang, Xuewei; Bai, Zhaoshi; He, Yunpeng; Jiang, Jianqi; Wang, Dongkai; Yang, Li
2016-03-01
Carbon dots (CDs) have shown great potential in imaging and drug/gene delivery applications. In this work, CDs functionalized with a nuclear localization signal peptide (NLS-CDs) were employed to transport doxorubicin (DOX) into cancer cells for enhanced antitumor activity. DOX was coupled to NLS-CDs (DOX-CDs) through an acid-labile hydrazone bond, which was cleavable in the weakly acidic intracellular compartments. The cytotoxicity of DOX-CD complexes was evaluated by the MTT assay and the cellular uptake was monitored using flow cytometry and confocal laser scanning microscopy. Cell imaging confirmed that DOX-CDs were mainly located in the nucleus. Furthermore, the complexes could efficiently induce apoptosis in human lung adenocarcinoma A549 cells. The in vivo therapeutic efficacy of DOX-CDs was investigated in an A549 xenograft nude mice model and the complexes exhibited an enhanced ability to inhibit tumor growth compared with free DOX. Thus, the DOX-CD conjugates may be exploited as promising drug delivery vehicles in cancer therapy.Carbon dots (CDs) have shown great potential in imaging and drug/gene delivery applications. In this work, CDs functionalized with a nuclear localization signal peptide (NLS-CDs) were employed to transport doxorubicin (DOX) into cancer cells for enhanced antitumor activity. DOX was coupled to NLS-CDs (DOX-CDs) through an acid-labile hydrazone bond, which was cleavable in the weakly acidic intracellular compartments. The cytotoxicity of DOX-CD complexes was evaluated by the MTT assay and the cellular uptake was monitored using flow cytometry and confocal laser scanning microscopy. Cell imaging confirmed that DOX-CDs were mainly located in the nucleus. Furthermore, the complexes could efficiently induce apoptosis in human lung adenocarcinoma A549 cells. The in vivo therapeutic efficacy of DOX-CDs was investigated in an A549 xenograft nude mice model and the complexes exhibited an enhanced ability to inhibit tumor growth compared with free DOX. Thus, the DOX-CD conjugates may be exploited as promising drug delivery vehicles in cancer therapy. Electronic supplementary information (ESI) available: FT-IR and 1H NMR spectra of DOX-CD complexes. See DOI: 10.1039/c6nr00247a
Automatic motion correction of clinical shoulder MR images
NASA Astrophysics Data System (ADS)
Manduca, Armando; McGee, Kiaran P.; Welch, Edward B.; Felmlee, Joel P.; Ehman, Richard L.
1999-05-01
A technique for the automatic correction of motion artifacts in MR images was developed. The algorithm uses only the raw (complex) data from the MR scanner, and requires no knowledge of the patient motion during the acquisition. It operates by searching over the space of possible patient motions and determining the motion which, when used to correct the image, optimizes the image quality. The performance of this algorithm was tested in coronal images of the rotator cuff in a series of 144 patients. A four observer comparison of the autocorrelated images with the uncorrected images demonstrated that motion artifacts were significantly reduced in 48% of the cases. The improvements in image quality were similar to those achieved with a previously reported navigator echo-based adaptive motion correction. The results demonstrate that autocorrelation is a practical technique for retrospectively reducing motion artifacts in a demanding clinical MRI application. It achieves performance comparable to a navigator based correction technique, which is significant because autocorrection does not require an imaging sequence that has been modified to explicitly track motion during acquisition. The approach is flexible and should be readily extensible to other types of MR acquisitions that are corrupted by global motion.
Economic and social activities on ancient Cypriot terraced landscapes.
Ridder, Elizabeth; Galletti, Christopher S; Fall, Patricia L; Falconer, Steven E
2017-11-01
We investigate ancient agricultural terraces and their associated social and economic activities across the site complex consisting of the village at Politiko-Troullia and its more extensive associated taskscape. Surface artifact distributions mapped over 12 ha are integrated with evidence excavated from this Bronze Age settlement in central Cyprus. Contrary to expectations, artifact densities do not diminish with distance from the village architecture. In particular, concentrations of Prehistoric Bronze Age ceramics and ground stone artifacts are most pronounced on nearby terraced hillsides. These terraces were not utilized for domestic structures, but for extensive processing of agricultural crops and copper ore. Bronze Age excavated plant remains indicate cultivation of olives, grapes and figs, with wood resources dominated by olive and pine. Larger, non-portable ground stones and gaming stones are associated with communal social and economic activities in open courtyard settings in Politiko-Troullia. This category of ground stone also is particularly common on the terraced hillsides around Troullia, suggesting that similar behaviors occurred beyond village structures. The terraced landscape of Politiko-Troullia exemplifies a multi-faceted taskscape with a range of agricultural, metallurgical and social activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Beyond the Glockenspiel: Teaching Race and Gender in Mozart's "Zauberflöte"
ERIC Educational Resources Information Center
Howards, Alyssa
2014-01-01
"Die Zauberflöte" is simultaneously one of Mozart's most accessible and most complex operas. Yet while this duality makes it a potentially valuable cultural artifact for the language classroom, students' unfamiliarity with both its operatic genre and Enlightenment context can pose a challenge to teachers. This article functions…
ERIC Educational Resources Information Center
Vale, G. L.; Flynn, E. G.; Kendal, R. L.
2012-01-01
Cumulative culture denotes the, arguably, human capacity to build on the cultural behaviors of one's predecessors, allowing increases in cultural complexity to occur such that many of our cultural artifacts, products and technologies have progressed beyond what a single individual could invent alone. This process of cumulative cultural evolution…
NASA Astrophysics Data System (ADS)
Yang, Min; Zhou, Zhe; Yao, Shuai; Li, Shangrong; Yang, Wenzhi; Jiang, Baohong; Liu, Xuan; Wu, Wanying; Qv, Hua; Guo, De-an
2016-01-01
Malonates are one type of the acylation conjugates and found abundantly in ginseng and soybean. Malonyl conjugates of ginsenosides and isoflavone glycosides were often considered as the characteristic components to evaluate various species and different forms of ginseng and soybean products because of their thermal instability. Another famous isoflavonoid-rich leguminous traditional Chinese medicine (TCM), named Puerarin lobata (Gegen), has also been reported to contain malonyl daidzin and malonyl genistin. However, the conjugates were found to present in very low amount and particularly unstable in the negative ion mode scan using LTQ Orbitrap mass spectrometry with electrospray ionization (ESI). In order to screen and characterize the malonyl conjugates in Gegen, a specific method was designed and developed combining neutral loss ion mapping (NLIM) experiment and precursor mass list (PL) triggered data dependent acquisition (DDA). Along with the activation of dynamic exclusion (DE), the method was proven to be specific and efficient for searching the malonate derivatives from Gegen. Two samples were examined by the established method. A total of 66 compounds were found, and 43 of them were malonates of isoflavone glycoside. Very few compounds were reported previously in Gegen. The results are helpful to understand the constituents of Gegen with more insight. The study not only provided a method for analyzing the malonyl conjugates from complex matrices but also explored a way to trace other low amount components in TCMs.
Cilliers, Cornelius; Guo, Hans; Liao, Jianshan; Christodolu, Nikolas; Thurber, Greg M
2016-09-01
Antibody-drug conjugates exhibit complex pharmacokinetics due to their combination of macromolecular and small molecule properties. These issues range from systemic concerns, such as deconjugation of the small molecule drug during the long antibody circulation time or rapid clearance from nonspecific interactions, to local tumor tissue heterogeneity, cell bystander effects, and endosomal escape. Mathematical models can be used to study the impact of these processes on overall distribution in an efficient manner, and several types of models have been used to analyze varying aspects of antibody distribution including physiologically based pharmacokinetic (PBPK) models and tissue-level simulations. However, these processes are quantitative in nature and cannot be handled qualitatively in isolation. For example, free antibody from deconjugation of the small molecule will impact the distribution of conjugated antibodies within the tumor. To incorporate these effects into a unified framework, we have coupled the systemic and organ-level distribution of a PBPK model with the tissue-level detail of a distributed parameter tumor model. We used this mathematical model to analyze new experimental results on the distribution of the clinical antibody-drug conjugate Kadcyla in HER2-positive mouse xenografts. This model is able to capture the impact of the drug-antibody ratio (DAR) on tumor penetration, the net result of drug deconjugation, and the effect of using unconjugated antibody to drive ADC penetration deeper into the tumor tissue. This modeling approach will provide quantitative and mechanistic support to experimental studies trying to parse the impact of multiple mechanisms of action for these complex drugs.
Cilliers, Cornelius; Guo, Hans; Liao, Jianshan; Christodolu, Nikolas; Thurber, Greg M.
2016-01-01
Antibody drug conjugates exhibit complex pharmacokinetics due to their combination of macromolecular and small molecule properties. These issues range from systemic concerns, such as deconjugation of the small molecule drug during the long antibody circulation time or rapid clearance from non-specific interactions, to local tumor tissue heterogeneity, cell bystander effects, and endosomal escape. Mathematical models can be used to study the impact of these processes on overall distribution in an efficient manner, and several types of models have been used to analyze varying aspects of antibody distribution including physiologically based pharmacokinetic (PBPK) models and tissue-level simulations. However, these processes are quantitative in nature and cannot be handled qualitatively in isolation. For example, free antibody from deconjugation of the small molecule will impact the distribution of conjugated antibodies within the tumor. To incorporate these effects into a unified framework, we have coupled the systemic and organ-level distribution of a PBPK model with the tissue-level detail of a distributed parameter tumor model. We used this mathematical model to analyze new experimental results on the distribution of the clinical antibody drug conjugate Kadcyla in HER2 positive mouse xenografts. This model is able to capture the impact of the drug antibody ratio (DAR) on tumor penetration, the net result of drug deconjugation, and the effect of using unconjugated antibody to drive ADC penetration deeper into the tumor tissue. This modeling approach will provide quantitative and mechanistic support to experimental studies trying to parse the impact of multiple mechanisms of action for these complex drugs. PMID:27287046
Nwe, Kido; Xu, Heng; Regino, Celeste Aida S.; Bernardo, Marcelino; Ileva, Lilia; Riffle, Lisa; Wong, Karen J.; Brechbiel, Martin W.
2009-01-01
In this paper we report a new method to prepare and characterize a contrast agent based on a fourth-generation (G4) polyamidoamine (PAMAM) dendrimer conjugated to the gadolinium complex of the bifunctional diethylenetriamine pentaacetic acid derivative (1B4M-DTPA). The method involves pre-forming the metal-ligand chelate in alcohol prior to conjugation to the dendrimer. The dendrimer-based agent was purified by a Sephadex® G-25 column and characterized by elemental analysis. The analysis and SEHPLC data gave a chelate to dendrimer ratio of 30:1 suggesting conjugation at approximately every other amine terminal on the dendrimer. Molar relaxivity of the agent measured at pH 7.4 displayed a higher value than that of the analogous G4 dendrimer based agent prepared by the post-metal incorporation method (r1 = 26.9 vs. 13.9 mM-1s-1 at 3T and 22°C). This is hypothesized to be due to the higher hydrophobicity of this conjugate, and the lack of available charged carboxylate groups from non-complexed free ligands that might coordinate to the metal and thus also reduce water exchange sites. Additionally, the distribution populations of compounds that result from the post-metal incorporation route are eliminated from the current product simplifying characterization as quality control issues pertaining to the production of such agents for clinical use as MR contrast agents. In vivo imaging in mice showed a reasonably fast clearance (t1/2 = 24 min) suggesting a viable agent for use in clinical application. PMID:19555072
2012-01-01
Background Bisphosphonates possess strong affinity to bone. 99mTc bisphosphonate complexes are widely used for bone scintigraphy. For positron emission tomography (PET) bone imaging, Ga-68-based PET tracers based on bisphosphonates are highly desirable. Findings Two trimeric bisphosphonate conjugates of the triazacyclononane-phosphinate (TRAP) chelator were synthesized, labeled with Ga-68, and used for microPET imaging of bone in male Lewis rats. Both Ga-68 tracers show bone uptake and, thus, are suitable for PET bone imaging. Surprisingly, Ga-71 nuclear magnetic resonance data prove that Ga(III) is not located in the chelating cavity of TRAP and must therefore be bound by the conjugated bisphosphonate units. Conclusion The intrinsic Ga-68 chelating properties of TRAP are not needed for Ga-68 PET bone imaging with TRAP-bisphosphonate conjugates. Here, TRAP serves only as a trimeric scaffold. For preparation of Ga-68-based bone seekers for PET, it appears sufficient to equip branched scaffolds with multiple bisphosphonate units, which serve both Ga-68-binding and bone-targeting purposes. PMID:22464278
Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells
Mauzeroll, Janine; Bard, Allen J.
2004-01-01
The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV–visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution, the export of the conjugate from the cells with time could be measured. Similar experiments were performed on immobilized yeast cell aggregates stressed by a menadione solution. From the export of the menadione-glutathione conjugate detected at a 1-μm-diameter electrode situated 10 μm from the cells, a flux of about 30,000 thiodione molecules per second per cell was extracted. Numerical simulations based on an explicit finite difference method further revealed that the observation of a constant efflux of thiodione from the cells suggested the rate was limited by the uptake of menadione and that the efflux through the glutathione-conjugate pump was at least an order of magnitude faster. PMID:15148374
Zhou, Xianfeng; Zhang, Xizhen; Yu, Xianghui; Zha, Xiao; Fu, Qiuan; Liu, Bin; Wang, Xueyun; Chen, Yan; Chen, Yue; Shan, Yaming; Jin, Yinghua; Wu, Yongge; Liu, Junqiu; Kong, Wei; Shen, Jiacong
2008-01-01
Nonviral gene delivery systems based on conventional high molecular weight chitosans are efficient as DNA vaccine delivery system, but have poor physical properties such as aggregated shapes, low solubility at neutral pH, high viscosity at concentrations used for in vivo delivery and a slow onset of action. Furthermore, Chitosan oligomers shorter than 14 monomers units were recently found to form only weak complexes with DNA, resulting in physically unstable polyplexes in vitro and in vivo. Here, low molecular weight chitosans with an average molecular mass of 6kDa (Chito6) have been covalently attached to gold nanoparticles (GNPs), and the potency of the resulting Chito6-GNPs conjugates as vectors for the delivery of plasmid DNA has been investigated in vitro and in vivo. After delivery by intramuscular immunization in BALB/c mice, the Chito6-GNPs conjugates induced an enhanced serum antibody response 10 times more potent than naked DNA vaccine. Additionally, in contrast to naked DNA, the Chito6-GNPs conjugates induced potent cytotoxic T lymphocyte responses at a low dose.
Tatlybaeva, Elena B; Vasilchenko, Alexey S; Deryabin, Dmitri G
2013-01-01
Summary The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A–IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG–Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations. PMID:24367742
An Integrated Solution for Performing Thermo-fluid Conjugate Analysis
NASA Technical Reports Server (NTRS)
Kornberg, Oren
2009-01-01
A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
Noise reduction in digital holography based on a filtering algorithm
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Zhang, Hua; Jin, Guofan; Brady, David
2018-02-01
Holography is a tool to record the object wavefront by interference. Complex amplitude of the object wave is coded into a two dimensional hologram. Unfortunately, the conjugate wave and background wave would also appear at the object plane during reconstruction, as noise, which blurs the reconstructed object. From the perspective of wave, we propose a filtering algorithm to get a noise-reduced reconstruction. Due to the fact that the hologram is a kind of amplitude grating, three waves would appear when reconstruction, which are object wave, conjugate wave and background wave. The background is easy to eliminate by frequency domain filtering. The object wave and conjugate wave are signals to be dealt with. These two waves, as a whole, propagate in the space. However, when detected at the original object plane, the object wave would diffract into a sparse pattern while the conjugate wave would diffract into a diffused pattern forming the noise. Hence, the noise can be reduced based on these difference with a filtering algorithm. Both amplitude and phase distributions are truthfully retrieved in our simulation and experimental demonstration.
Assembly and Function of Heterotypic Ubiquitin Chains in Cell-Cycle and Protein Quality Control.
Yau, Richard G; Doerner, Kerstin; Castellanos, Erick R; Haakonsen, Diane L; Werner, Achim; Wang, Nan; Yang, X William; Martinez-Martin, Nadia; Matsumoto, Marissa L; Dixit, Vishva M; Rape, Michael
2017-11-02
Posttranslational modification with ubiquitin chains controls cell fate in all eukaryotes. Depending on the connectivity between subunits, different ubiquitin chain types trigger distinct outputs, as seen with K48- and K63-linked conjugates that drive protein degradation or complex assembly, respectively. Recent biochemical analyses also suggested roles for mixed or branched ubiquitin chains, yet without a method to monitor endogenous conjugates, the physiological significance of heterotypic polymers remained poorly understood. Here, we engineered a bispecific antibody to detect K11/K48-linked chains and identified mitotic regulators, misfolded nascent polypeptides, and pathological Huntingtin variants as their endogenous substrates. We show that K11/K48-linked chains are synthesized and processed by essential ubiquitin ligases and effectors that are mutated across neurodegenerative diseases; accordingly, these conjugates promote rapid proteasomal clearance of aggregation-prone proteins. By revealing key roles of K11/K48-linked chains in cell-cycle and quality control, we establish heterotypic ubiquitin conjugates as important carriers of biological information. Copyright © 2017 Elsevier Inc. All rights reserved.
Zuo, P; Dobbins, R L; O'Connor-Semmes, R L; Young, M A
2016-08-01
A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Bisubstrate inhibitors of protein kinases: from principle to practical applications.
Lavogina, Darja; Enkvist, Erki; Uri, Asko
2010-01-01
Bisubstrate inhibitors consist of two conjugated fragments, each targeted to a different binding site of a bisubstrate enzyme. The design of bisubstrate inhibitors presupposes the formation of the ternary complex in the course of the catalyzed reaction. The principle advantage of bisubstrate inhibitors is their ability to generate more interactions with the target enzyme that could result in improved affinity and selectivity of the conjugates, when compared with single-site inhibitors. Among phosphotransferases, the approach was first successfully used for adenylate kinase in 1973. Since then, several types of bisubstrate inhibitors have been developed for protein kinases, including conjugates of peptides with nucleotides, adenosine derivatives and potent ATP-competitive inhibitors. Earlier bisubstrate inhibitors had pharmacokinetic qualities that were unsuitable for cellular experiments and hence were mostly used for in vitro studies. The recently constructed conjugates of adenosine derivatives and D-arginine-rich peptides (ARCs) possess high kinase affinity, high biological and chemical stability and good cell plasma membrane penetrative properties that enable their application in the regulation of cellular protein phosphorylation balances in cell and tissue experiments.
Tumor necrosis factor interaction with gold nanoparticles
NASA Astrophysics Data System (ADS)
Tsai, De-Hao; Elzey, Sherrie; Delrio, Frank W.; Keene, Athena M.; Tyner, Katherine M.; Clogston, Jeffrey D.; Maccuspie, Robert I.; Guha, Suvajyoti; Zachariah, Michael R.; Hackley, Vincent A.
2012-05-01
We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity.We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity. Electronic supplementary information (ESI) available: Experimental procedures, instrumentation, materials and calculations. See DOI: 10.1039/c2nr30415e
NASA Astrophysics Data System (ADS)
Lolage, S. R.; Pawal, S. B.; Chavan, S. S.
2017-05-01
A new series of azobenzene based heterobinuclear coordination-organometallic hybrid complexes of the type [Zn(phen)(Rsbnd C6H4HCdbnd N(O)C6H3Ndbnd NC6H4Ctbnd CRu(dppe)2Cl)]X (1a-6a) and [Zn(bipy)(Rsbnd C6H4HCdbnd N(O)C6H3Ndbnd NC6H4Ctbnd CRu(dppe)2Cl)]X (1b-6b) have been prepared and characterized (where R= Ctbnd CC6H4OCH3, Ctbnd CC6H4NO2; Xdbnd ClO4, BF4, PF6; phen= 1,10-phenanth-roline, bipy= 2,2‧-bipyridine). TGA was carried out to study the thermal behaviour of the complexes. X-ray powder diffraction and SEM studies of the representative complexes 2a and 5b are used to clarify the crystal structure and morphology of the complexes. Cyclic voltammetry study indicate a quasireversible redox behaviour corresponding to Ru(II)/Ru(III) couple susceptible to variation of electron donating/accepting properties of substituent group in the complexes. Room temperature luminescence is observed for all complexes corresponding to π→π*ILCT transition indicating that the emission wavelength is finely tuned by increasing π-conjugation and variation of substituent groups with different electronic effects in the complexes. The second harmonic generation (SHG) efficiency of the complexes was measured by Kurtz-powder technique indicating that all complexes display the second harmonic generation (SHG) property.
Effects of an electric field on interaction of aromatic systems.
Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S
2016-04-30
The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.
Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi
2012-11-01
Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Pazos, Elena; Goličnik, Marko; Mascareñas, José L; Vázquez, M Eugenio
2012-10-04
The luminescence of a designed peptide equipped with a coordinatively-unsaturated lanthanide complex is modulated by the phosphorylation state of a serine residue in the sequence. While the phosphorylated state is weakly emissive, even in the presence of an external antenna, removal of the phosphate allows coordination of the sensitizer to the metal, yielding a highly emissive supramolecular complex.
Half-sandwich ruthenium(II) biotin conjugates as biological vectors to cancer cells.
Babak, Maria V; Plażuk, Damian; Meier, Samuel M; Arabshahi, Homayon John; Reynisson, Jóhannes; Rychlik, Błażej; Błauż, Andrzej; Szulc, Katarzyna; Hanif, Muhammad; Strobl, Sebastian; Roller, Alexander; Keppler, Bernhard K; Hartinger, Christian G
2015-03-23
Ruthenium(II)-arene complexes with biotin-containing ligands were prepared so that a novel drug delivery system based on tumor-specific vitamin-receptor mediated endocytosis could be developed. The complexes were characterized by spectroscopic methods and their in vitro anticancer activity in cancer cell lines with various levels of major biotin receptor (COLO205, HCT116 and SW620 cells) was tested in comparison with the ligands. In all cases, coordination of ruthenium resulted in significantly enhanced cytotoxicity. The affinity of Ru(II) -biotin complexes to avidin was investigated and was lower than that of unmodified biotin. Hill coefficients in the range 2.012-2.851 suggest strong positive cooperation between the complexes and avidin. To estimate the likelihood of binding to the biotin receptor/transporter, docking studies with avidin and streptavidin were conducted. These explain, to some extent, the in vitro anticancer activity results and support the conclusion that these novel half-sandwich ruthenium(II)-biotin conjugates may act as biological vectors to cancer cells, although no clear relationship between the cellular Ru content, the cytotoxicity, and the presence of the biotin moiety was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki
2011-09-01
We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.
NASA Astrophysics Data System (ADS)
Keten, Sinan
Hybrid peptide-polymer conjugates have the potential to combine the advantages of natural proteins and synthetic polymers, resulting in biomaterials with improved stability, controlled assembly, and tailored functionalities. However, the effect of polymer conjugation on peptide structural organization and functionality, along with the behavior of polymers at the interface with biomolecules remain to be fully understood. This talk will summarize our recent efforts towards establishing a modeling framework to design entropic forces in helix-polymer conjugates and polymer-conjugated peptide nanotubes to achieve hierarchical self-assembling systems with predictable order. The first part of the talk will discuss how self-assembly principles found in biology, combined with polymer physics concepts can be used to create artificial membranes that mimic certain features of ion channels. Thermodynamics and kinetics aspects of self-assembly and how it governs the growth and stacking sequences of peptide nanotubes will be discussed, along with its implications for nanoscale transport. The second part of the talk will review advances related to modeling polymer conjugated coiled coils at relevant length and time scales. Atomistic simulations combined with sampling techniques will be presented to discuss the energy landscapes governing coiled-coil stability, revealing cascades of events governing disassembly. This will be followed by a discussion of mechanisms through which polymers can stabilize small proteins, such as shielding of solvents, and how specific peptide sequences can reciprocate by altering polymer conformations. Correlations between mechanical and thermal stability of peptides will be discussed. Finally, coarse-grained simulations will provide insight into how the location of polymer attachment changes entropic forces and higher-level organization in helix bundle assemblies. Our findings set the stage for a materials-by-design capability towards dictating complex topologies of polymer-peptide conjugate systems.
Soria, Irene; Alvarez, Javier; Manzano, Ana I; López-Relaño, Juan; Cases, Bárbara; Mas-Fontao, Ana; Cañada, F Javier; Fernández-Caldas, Enrique; Casanovas, Miguel; Jiménez-Barbero, Jesús; Palomares, Oscar; Viñals-Flórez, Luis M; Subiza, José L
2017-08-01
We have recently reported that grass pollen allergoids conjugated with nonoxidized mannan of Saccharomyces cerevisae using glutaraldehyde results in a novel hypoallergenic mannan-allergen complex with improved properties for allergen vaccination. Using this approach, human dendritic cells show a better allergen uptake and cytokine profile production (higher IL-10/IL-4 ratio) for therapeutic purposes. Here we aim to address whether a similar approach can be extended to dogs using canine dendritic cells. Six healthy Spanish Greyhound dogs were used as blood donors to obtain canine dendritic cells (DC) derived from peripheral blood monocytes. Allergens from Dermatophagoides farinae mite were polymerized and conjugated with nonoxidized mannan. Nuclear magnetic resonance (NMR), gel electrophoresis (SDS-PAGE), immunoblotting and IgE-ELISA inhibition studies were conducted to evaluate the main characteristics of the allergoid obtained. Mannan-allergen conjugate and controls were assayed in vitro for canine DC uptake and production of IL-4 and IL-10. The results indicate that the conjugation of D. farinae allergens with nonoxidized mannan was feasible using glutaraldehyde. The resulting product was a polymerized structure showing a high molecular weight as detected by NMR and SDS-PAGE analysis. The mannan-allergen conjugate was hypoallergenic with a reduced reactivity with specific dog IgE. An increase in both allergen uptake and IL-10/IL-4 ratio was obtained when canine DCs were incubated with the mannan-allergen conjugate, as compared with the control allergen preparations (unmodified D. farinae allergens and oxidized mannan-allergen conjugate). We conclude that hypoallergenic D. farinae allergens coupled to nonoxidized mannan is a novel allergen preparation suitable for canine allergy immunotherapy targeting dendritic cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Haiyan; Feng, Guoqiang; Guo, Yuan; Zhou, Dejian
2013-10-01
We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate.We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate. Electronic supplementary information (ESI) available: Details on the synthesis, purification and characterisation of the DHLA-PEG600-N3, cyclooctyne-DNA, and QD-TBA20 conjugates as well as all supporting figures and tables. See DOI: 10.1039/c3nr02897f
Mercer, Natalia; Ramakrishnan, Boopathy; Boeggeman, Elizabeth; Qasba, Pradman K
2011-01-01
Alpha-lactalbumin (α-LA) is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA) acquires tumoricidal activity. Such a complex made from human α-LA (hLA) is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells), and its tumoricidal activity has been well established. In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA) alone is also included in the present study. We have engineered these proteins with a 17-amino acid C-terminal extension (hLA-ext and αD-hLA-ext). A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose) using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules. We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity.
NASA Astrophysics Data System (ADS)
Zhang, Wentao; Shi, Shuo; Wang, Yanru; Yu, Shaoxuan; Zhu, Wenxin; Zhang, Xu; Zhang, Daohong; Yang, Baowei; Wang, Xin; Wang, Jianlong
2016-06-01
Biologically, MoS2-based nanostructures have been intensely applied for the photothermal therapy of cancer, but rarely for antibacterial uses. In this contribution, a multifunctional chitosan (CS) functionalized magnetic MoS2 (abbreviated to CFM) was constructed to nonspecifically combat bacterial infection by integrating bacterial conjugation and enrichment, and NIR-triggered photothermal sterilization. Owing to the abundant introduced amino groups, the CFM complex offers a significantly enhanced conjugation efficiency without obvious specificity towards both Gram-positive and -negative bacteria compared to amino-free magnetic MoS2. The magnetic properties of CFM obtained from iron oxide facilitate the enrichment of a CFM-bacteria conjugate, improving the photothermal efficiency of CFM as a photothermal antibacterial agent. Specifically, after being trapped together with bacteria cells, CFM shows an enhanced in vitro photothermal sterilization ability. In vivo S. aureus-induced abscess treatment studies show faster healing when CFM is used as subcutaneous nano-localized heating sources with the assistance of an external magnet to concentrate the CFM-bacteria conjugate. This work establishes an innovative solution and a novel antimicrobial agent for combating bacterial infections without the use of antibiotics, which may open a new area of application and research for MoS2-based nanostructures.Biologically, MoS2-based nanostructures have been intensely applied for the photothermal therapy of cancer, but rarely for antibacterial uses. In this contribution, a multifunctional chitosan (CS) functionalized magnetic MoS2 (abbreviated to CFM) was constructed to nonspecifically combat bacterial infection by integrating bacterial conjugation and enrichment, and NIR-triggered photothermal sterilization. Owing to the abundant introduced amino groups, the CFM complex offers a significantly enhanced conjugation efficiency without obvious specificity towards both Gram-positive and -negative bacteria compared to amino-free magnetic MoS2. The magnetic properties of CFM obtained from iron oxide facilitate the enrichment of a CFM-bacteria conjugate, improving the photothermal efficiency of CFM as a photothermal antibacterial agent. Specifically, after being trapped together with bacteria cells, CFM shows an enhanced in vitro photothermal sterilization ability. In vivo S. aureus-induced abscess treatment studies show faster healing when CFM is used as subcutaneous nano-localized heating sources with the assistance of an external magnet to concentrate the CFM-bacteria conjugate. This work establishes an innovative solution and a novel antimicrobial agent for combating bacterial infections without the use of antibiotics, which may open a new area of application and research for MoS2-based nanostructures. Electronic supplementary information (ESI) available: Experimental details, characterization and supporting figures. See DOI: 10.1039/c6nr01243d
NASA Astrophysics Data System (ADS)
Cobet, Christoph; Gasiorowski, Jacek; Menon, Reghu; Hingerl, Kurt; Schlager, Stefanie; White, Matthew S.; Neugebauer, Helmut; Sariciftci, N. Serdar; Stadler, Philipp
2016-10-01
Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich model in quasi-confined chains. However, recent developments in conjugated polymers have diversified the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by the push-pull concept in the doped state - an important view in light of the main purpose of push-pull polymers for photovoltaic devices.
A water-soluble conjugated polymer for protein identification and denaturation detection.
Xu, Qingling; Wu, Chunxian; Zhu, Chunlei; Duan, Xinrui; Liu, Libing; Han, Yuchun; Wang, Yilin; Wang, Shu
2010-12-03
Rapid and sensitive methods to detect proteins and protein denaturation have become increasingly needful in the field of proteomics, medical diagnostics, and biology. In this paper, we have reported the synthesis of a new cationic water-soluble conjugated polymer that contains fluorene and diene moieties in the backbone (PFDE) for protein identification by sensing an array of PFDE solutions in different ionic strengths using the linear discriminant analysis technique (LDA). The PFDE can form complexes with proteins by electrostatic and/or hydrophobic interactions and exhibits different fluorescence response. Three main factors contribute to the fluorescence response of PFDE, namely, the net charge density on the protein surface, the hydrophobic nature of the protein, and the metalloprotein characteristics. The denaturation of proteins can also be detected using PFDE as a fluorescent probe. The interactions between PFDE and proteins were also studied by dynamic light scattering (DLS) and isothermal titration microcalorimetry (ITC) techniques. In contrast to other methods based on conjugated polymers, the synthesis of a series of quencher or dye-labeled acceptors or protein substrates has been avoided in our method, which significantly reduces the cost and the synthetic complexity. Our method provides promising applications on protein identification and denaturation detection in a simple, fast, and label-free manner based on non-specific interaction-induced perturbation of PFDE fluorescence response.
Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W
2017-11-10
Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.
Cuellar, Trinna L.; Barnes, Dwight; Nelson, Christopher; Tanguay, Joshua; Yu, Shang-Fan; Wen, Xiaohui; Scales, Suzie J.; Gesch, Julie; Davis, David; van Brabant Smith, Anja; Leake, Devin; Vandlen, Richard; Siebel, Christian W.
2015-01-01
Delivery of siRNA is a key hurdle to realizing the therapeutic promise of RNAi. By targeting internalizing cell surface antigens, antibody–siRNA complexes provide a possible solution. However, initial reports of antibody–siRNA complexes relied on non-specific charged interactions and have not been broadly applicable. To assess and improve this delivery method, we built on an industrial platform of therapeutic antibodies called THIOMABs, engineered to enable precise covalent coupling of siRNAs. We report that such coupling generates monomeric antibody–siRNA conjugates (ARCs) that retain antibody and siRNA activities. To broadly assess this technology, we generated a battery of THIOMABs against seven targets that use multiple internalization routes, enabling systematic manipulation of multiple parameters that impact delivery. We identify ARCs that induce targeted silencing in vitro and extend tests to target prostate carcinoma cells following systemic administration in mouse models. However, optimal silencing was restricted to specific conditions and only observed using a subset of ARCs. Trafficking studies point to ARC entrapment in endocytic compartments as a limiting factor, independent of the route of antigen internalization. Our broad characterization of multiple parameters using therapeutic-grade conjugate technology provides a thorough assessment of this delivery technology, highlighting both examples of success as well as remaining challenges. PMID:25550431
Zou, Yuan; Nathan, Viswam; Jafari, Roozbeh
2016-01-01
Electroencephalography (EEG) is the recording of electrical activity produced by the firing of neurons within the brain. These activities can be decoded by signal processing techniques. However, EEG recordings are always contaminated with artifacts which hinder the decoding process. Therefore, identifying and removing artifacts is an important step. Researchers often clean EEG recordings with assistance from independent component analysis (ICA), since it can decompose EEG recordings into a number of artifact-related and event-related potential (ERP)-related independent components. However, existing ICA-based artifact identification strategies mostly restrict themselves to a subset of artifacts, e.g., identifying eye movement artifacts only, and have not been shown to reliably identify artifacts caused by nonbiological origins like high-impedance electrodes. In this paper, we propose an automatic algorithm for the identification of general artifacts. The proposed algorithm consists of two parts: 1) an event-related feature-based clustering algorithm used to identify artifacts which have physiological origins; and 2) the electrode-scalp impedance information employed for identifying nonbiological artifacts. The results on EEG data collected from ten subjects show that our algorithm can effectively detect, separate, and remove both physiological and nonbiological artifacts. Qualitative evaluation of the reconstructed EEG signals demonstrates that our proposed method can effectively enhance the signal quality, especially the quality of ERPs, even for those that barely display ERPs in the raw EEG. The performance results also show that our proposed method can effectively identify artifacts and subsequently enhance the classification accuracies compared to four commonly used automatic artifact removal methods.
Zou, Yuan; Nathan, Viswam; Jafari, Roozbeh
2017-01-01
Electroencephalography (EEG) is the recording of electrical activity produced by the firing of neurons within the brain. These activities can be decoded by signal processing techniques. However, EEG recordings are always contaminated with artifacts which hinder the decoding process. Therefore, identifying and removing artifacts is an important step. Researchers often clean EEG recordings with assistance from Independent Component Analysis (ICA), since it can decompose EEG recordings into a number of artifact-related and event related potential (ERP)-related independent components (ICs). However, existing ICA-based artifact identification strategies mostly restrict themselves to a subset of artifacts, e.g. identifying eye movement artifacts only, and have not been shown to reliably identify artifacts caused by non-biological origins like high-impedance electrodes. In this paper, we propose an automatic algorithm for the identification of general artifacts. The proposed algorithm consists of two parts: 1) an event-related feature based clustering algorithm used to identify artifacts which have physiological origins and 2) the electrode-scalp impedance information employed for identifying non-biological artifacts. The results on EEG data collected from 10 subjects show that our algorithm can effectively detect, separate, and remove both physiological and non-biological artifacts. Qualitative evaluation of the reconstructed EEG signals demonstrates that our proposed method can effectively enhance the signal quality, especially the quality of ERPs, even for those that barely display ERPs in the raw EEG. The performance results also show that our proposed method can effectively identify artifacts and subsequently enhance the classification accuracies compared to four commonly used automatic artifact removal methods. PMID:25415992
Kiser, Patti K; Löhr, Christiane V; Meritet, Danielle; Spagnoli, Sean T; Milovancev, Milan; Russell, Duncan S
2018-05-01
Although quantitative assessment of margins is recommended for describing excision of cutaneous malignancies, there is poor understanding of limitations associated with this technique. We described and quantified histologic artifacts in inked margins and determined the association between artifacts and variance in histologic tumor-free margin (HTFM) measurements based on a novel grading scheme applied to 50 sections of normal canine skin and 56 radial margins taken from 15 different canine mast cell tumors (MCTs). Three broad categories of artifact were 1) tissue deformation at inked edges, 2) ink-associated artifacts, and 3) sectioning-associated artifacts. The most common artifacts in MCT margins were ink-associated artifacts, specifically ink absent from an edge (mean prevalence: 50%) and inappropriate ink coloring (mean: 45%). The prevalence of other artifacts in MCT skin was 4-50%. In MCT margins, frequency-adjusted kappa statistics found fair or better inter-rater reliability for 9 of 10 artifacts; intra-rater reliability was moderate or better in 9 of 10 artifacts. Digital HTFM measurements by 5 blinded pathologists had a median standard deviation (SD) of 1.9 mm (interquartile range: 0.8-3.6 mm; range: 0-6.2 mm). Intraclass correlation coefficients demonstrated good inter-pathologist reliability in HTFM measurement (κ = 0.81). Spearman rank correlation coefficients found negligible correlation between artifacts and HTFM SDs ( r ≤ 0.3). These data confirm that although histologic artifacts commonly occur in inked margin specimens, artifacts are not meaningfully associated with variation in HTFM measurements. Investigators can use the grading scheme presented herein to identify artifacts associated with tissue processing.
Rosier, Bas J. H. M.; Cremers, Glenn A. O.; Engelen, Wouter; Merkx, Maarten; Brunsveld, Luc
2017-01-01
A photocrosslinkable protein G variant was used as an adapter protein to covalently and site-specifically conjugate an antibody and an Fc-fusion protein to an oligonucleotide. This modular approach enables straightforward decoration of DNA nanostructures with complex native proteins while retaining their innate binding affinity, allowing precise control over the nanoscale spatial organization of such proteins for in vitro and in vivo biomedical applications. PMID:28617516
Synthesis and study of conjugated polymers containing Di- or Triphenylamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukwattanasinitt, M.
1996-06-21
This thesis consists of two separate parts. The first part addresses the synthesis and study of conjugated polymers containing di- or triphenylamine. Two types of polymers: linear polymers and dendrimers, were synthesized. The polymers were characterized by NMR, IR, UV, GPC, TGA and DSC. Electronic and optical properties of the polymers were studied through the conductivity measurements and excitation- emission spectra. the second part of this thesis deals with a reaction of electron-rich acetylenes with TCNE. The discovery of the reaction from charge transfer complex studies and the investigation of this reaction on various electron-rich acetylenes are presented.
How Chemical Synthesis of Ubiquitin Conjugates Helps To Understand Ubiquitin Signal Transduction.
Hameed, Dharjath S; Sapmaz, Aysegul; Ovaa, Huib
2017-03-15
Ubiquitin (Ub) is a small post-translational modifier protein involved in a myriad of biochemical processes including DNA damage repair, proteasomal proteolysis, and cell cycle control. Ubiquitin signaling pathways have not been completely deciphered due to the complex nature of the enzymes involved in ubiquitin conjugation and deconjugation. Hence, probes and assay reagents are important to get a better understanding of this pathway. Recently, improvements have been made in synthesis procedures of Ub derivatives. In this perspective, we explain various research reagents available and how chemical synthesis has made an important contribution to Ub research.
Inception of self-interacting dark matter with dark charge conjugation symmetry
Ma, Ernest
2017-07-04
A new understanding of the stability of self-interacting dark matter is pointed out, based on the simplest spontaneously broken Abelian gauge model with one complex scalar and one Dirac fermion. The key is the imposition of dark charge conjugation symmetry. It allows the possible existence of two stable particles: the Dirac fermion and the vector gauge boson which acts as a light mediator for the former's self-interaction. Since this light mediator does not decay, it avoids the strong cosmological constraints recently obtained for all such models where the light mediator decays into standard-model particles.
Facile rhenium-peptide conjugate synthesis using a one-pot derived Re(CO)3 reagent.
Chanawanno, Kullapa; Kondeti, Vinay; Caporoso, Joel; Paruchuri, Sailaja; Leeper, Thomas C; Herrick, Richard S; Ziegler, Christopher J
2016-03-21
We have synthesized two Re(CO)3-modified lysine complexes (1 and 2), where the metal is attached to the amino acid at the Nε position, via a one-pot Schiff base formation reaction. These compounds can be used in the solid phase synthesis of peptides, and to date we have produced four conjugate systems incorporating neurotensin, bombesin, leutenizing hormone releasing hormone, and a nuclear localization sequence. We observed uptake into human umbilical vascular endothelial cells as well as differential uptake depending on peptide sequence identity, as characterized by fluorescence and rhenium elemental analysis.
Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C; Wong, Willy; Daskalakis, Zafiris J; Farzan, Faranak
2016-01-01
Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research.
Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C.; Wong, Willy; Daskalakis, Zafiris J.; Farzan, Faranak
2016-01-01
Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research. PMID:27774054
Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances
Xu, Shi; Olenyuk, Bogdan Z.; Okamoto, Curtis T.; Hamm-Alvarez, Sarah F.
2012-01-01
Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization. PMID:23026636
Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.
Sahle, Yonatan; Hutchings, W Karl; Braun, David R; Sealy, Judith C; Morgan, Leah E; Negash, Agazi; Atnafu, Balemwal
2013-01-01
Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.
NASA Astrophysics Data System (ADS)
Arulraj, M.; Barros, A. P.
2017-12-01
GPM-DPR reflectivity profiles in mountainous regions are severely handicapped by low level ground-clutter artifacts which have different error characteristics depending on landform (upwind slopes of high mountains versus complex topography in middle-mountains) and precipitation regime. These artifacts result in high detection and estimation errors especially in mid-latitude and tropical mountain regions where low-level light precipitation and complex multi-layer clouds interact with incoming storms. Here, we present results assessment studies in the Southern Appalachian Mountains (SAM) and preliminary results over the eastern slopes of the Andes using ground-based observations from the long-term hydrometeorological networks and model studies toward developing a physically-based framework to systematically identify and attribute measurement errors. Specifically, the focus is on events when GPM-DPR Ka- and Ku- Band precipitation radar misses low-level precipitation with vertical altitude less than 2 km AGL (above ground level). For this purpose, ground-based MRR and Parsivel disdrometer observations near the surface are compared with the reflectivity profiles observed by the GPM-DPR overpasses, the raindrop-size spectra are used to classify the precipitation regime associated with different classes of detection and estimation errors. This information will be used along with a coupled rainfall dynamics and radar simulator model to 1) merge the low-level GPM-DPR measured reflectivity with the MRR reflectivities optimally under strict physically-based constraints and 2) build a library of reflectivity profile corrections. Finally, preliminary 4D analysis of the organization of reflectivity correction modes, microphysical regimes, topography and storm environment will be presented toward developing a general physically-based error model.
NASA Astrophysics Data System (ADS)
Shoop, Glenda Hostetter
Attention in medical education is turning toward instruction that not only focuses on knowledge acquisition, but on developing the medical students' clinical problem-solving skills, and their ability to critically think through complex diseases. Metacognition is regarded as an important consideration in how we teach medical students these higher-order, critical thinking skills. This study used a mixed-methods research design to investigate if concept mapping as an artifact may engender metacognitive thinking in the medical student population. Specifically the purpose of the study is twofold: (1) to determine if concept mapping, functioning as an artifact during problem-based learning, improves learning as measured by scores on test questions; and (2) to explore if the process of concept mapping alters the problem-based learning intragroup discussion in ways that show medical students are engaged in metacognitive thinking. The results showed that students in the problem-based learning concept-mapping groups used more metacognitive thinking patterns than those in the problem-based learning discussion-only group, particularly in the monitoring component. These groups also engaged in a higher level of cognitive thinking associated with reasoning through mechanisms-of-action and breaking down complex biochemical and physiologic principals. The students disclosed in focus-group interviews that concept mapping was beneficial to help them understand how discrete pieces of information fit together in a bigger structure of knowledge. They also stated that concept mapping gave them some time to think through these concepts in a larger conceptual framework. There was no significant difference in the exam-question scores between the problem-based learning concept-mapping groups and the problem-based learning discussion-only group.
Protection of Metal Artifacts with the Formation of Metal–Oxalates Complexes by Beauveria bassiana
Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel
2012-01-01
Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L−1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal–oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal–oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals. PMID:22291684
Time reversal and charge conjugation in an embedding quantum simulator.
Zhang, Xiang; Shen, Yangchao; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jing-Ning; Kim, Kihwan
2015-08-04
A quantum simulator is an important device that may soon outperform current classical computations. A basic arithmetic operation, the complex conjugate, however, is considered to be impossible to be implemented in such a quantum system due to the linear character of quantum mechanics. Here, we present the experimental quantum simulation of such an unphysical operation beyond the regime of unitary and dissipative evolutions through the embedding of a quantum dynamics in the electronic multilevels of a (171)Yb(+) ion. We perform time reversal and charge conjugation, which are paradigmatic examples of antiunitary symmetry operators, in the evolution of a Majorana equation without the tomographic knowledge of the evolving state. Thus, these operations can be applied regardless of the system size. Our approach offers the possibility to add unphysical operations to the toolbox of quantum simulation, and provides a route to efficiently compute otherwise intractable quantities, such as entanglement monotones.
Yao, Dongbao; Wang, Bei; Xiao, Shiyan; Song, Tingjie; Huang, Fujian; Liang, Haojun
2015-06-30
In DNA dynamic nanotechnology, a toehold-mediated DNA strand-displacement reaction has demonstrated its capability in building complex autonomous system. In most cases, the reaction is performed in pure DNA solution that is essentially a one-phase system. In the present work, we systematically investigated the reaction in a heterogeneous media, in which the strand that implements a displacing action is conjugated on gold nanoparticles. By monitoring the kinetics of spherical nucleic acid (SNA) assembly driven by toehold-mediated strand displacement reaction, we observed significant differences, i.e., the abrupt jump in behavior of an "off/on switch", in the reaction rate when the invading toehold was extended to eight bases from seven bases. These phenomena are attributed to the effect of steric hindrance arising from the high density of invading strand conjugated to AuNPs. Based on these studies, an INHIBIT logic gate presenting good selectivity was developed.
Time reversal and charge conjugation in an embedding quantum simulator
Zhang, Xiang; Shen, Yangchao; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jing-Ning; Kim, Kihwan
2015-01-01
A quantum simulator is an important device that may soon outperform current classical computations. A basic arithmetic operation, the complex conjugate, however, is considered to be impossible to be implemented in such a quantum system due to the linear character of quantum mechanics. Here, we present the experimental quantum simulation of such an unphysical operation beyond the regime of unitary and dissipative evolutions through the embedding of a quantum dynamics in the electronic multilevels of a 171Yb+ ion. We perform time reversal and charge conjugation, which are paradigmatic examples of antiunitary symmetry operators, in the evolution of a Majorana equation without the tomographic knowledge of the evolving state. Thus, these operations can be applied regardless of the system size. Our approach offers the possibility to add unphysical operations to the toolbox of quantum simulation, and provides a route to efficiently compute otherwise intractable quantities, such as entanglement monotones. PMID:26239028
SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Elder, E; Roper, J
2015-06-15
Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less
Takayanagi, Tomoya; Arai, Takehiro; Amanuma, Makoto; Sano, Tomonari; Ichiba, Masato; Ishizaka, Kazumasa; Sekine, Takako; Matsutani, Hideyuki; Morita, Hitomi; Takase, Shinichi
2017-01-01
Coronary computed tomography angiography (CCTA) in patients with pacemaker suffers from metallic lead-induced artifacts, which often interfere with accurate assessment of coronary luminal stenosis. The purpose of this study was to assess a frequency of the lead-induced artifacts and artifact-suppression effect by the single energy metal artifact reduction (SEMAR) technique. Forty-one patients with a dual-chamber pacemaker were evaluated using a 320 multi-detector row CT (MDCT). Among them, 22 patients with motion-free full data reconstruction images were the final candidates. Images with and without the SMEAR technique were subjectively compared, and the degree of metallic artifacts was compared. On images without SEMAR, severe metallic artifacts were often observed in the right coronary artery (#1, #2, #3) and distal anterior descending branch (#8). These artifacts were effectively suppressed by SEMAR, and the luminal accessibility was significantly improved in #3 and #8. While pacemaker leads often cause metallic-induced artifacts, SEMAR technique reduced the artifacts and significantly improved the accessibility of coronary lumen in #3 and #8.
Conjugated polyelectrolyte based real-time fluorescence assay for phospholipase C.
Liu, Yan; Ogawa, Katsu; Schanze, Kirk S
2008-01-01
A fluorescence turnoff assay for phospholipase C (PLC) from Clostridium perfringens is developed based on the reversible interaction between the natural substrate, phosphatidylcholine, and a fluorescent, water-soluble conjugated polyelectrolyte (CPE). The fluorescence intensity of the CPE in water is increased substantially by the addition of the phospholipid due to the formation of a CPE-lipid complex. Incubation of the CPE-lipid complex with the enzyme PLC causes the fluorescence intensity to decrease (turnoff sensor); the response arises due to PLC-catalyzed hydrolysis of the phosphatidylcholine, which effectively disrupts the CPE-lipid complex. The PLC assay operates with phospholipid substrate concentrations in the micromolar range, and the analytical detection limit for PLC is <1 nM. The optimized assay provides a convenient, rapid, and real-time sensor for PLC activity. The real-time fluorescence intensity from the CPE can be converted to substrate concentration by using an ex situ calibration curve, allowing PLC-catalyzed reaction rates and kinetic parameters to be determined. PLC activation by Ca2+ and inhibition by EDTA and fluoride ion are demonstrated using the optimized sensor.
Organometallic Palladium Reagents for Cysteine Bioconjugation
Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.
2015-01-01
Transition-metal based reactions have found wide use in organic synthesis and are used frequently to functionalize small molecules.1,2 However, there are very few reports of using transition-metal based reactions to modify complex biomolecules3,4, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature, and mild pH) and the existence of multiple, reactive functional groups found in biopolymers. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation reactions. The bioconjugation reaction is rapid and robust under a range of biocompatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants, and external thiol nucleophiles. The broad utility of the new bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as a new set of benchtop reagents for diverse bioconjugation applications. PMID:26511579
Fluorescent rhenium-naphthalimide conjugates as cellular imaging agents.
Langdon-Jones, Emily E; Symonds, Nadine O; Yates, Sara E; Hayes, Anthony J; Lloyd, David; Williams, Rebecca; Coles, Simon J; Horton, Peter N; Pope, Simon J A
2014-04-07
A range of biologically compatible, fluorescent rhenium-naphthalimide conjugates, based upon the rhenium fac-tricarbonyl core, has been synthesized. The fluorescent ligands are based upon a N-functionalized, 4-amino-derived 1,8-naphthalimide core and incorporate a dipicolyl amine binding unit to chelate Re(I); the structural variations accord to the nature of the alkylated imide with ethyl ester glycine (L(1)), 3-propanol (L(2)), diethylene glycol (L(3)), and benzyl alcohol (L(4)) variants. The species are fluorescent in the visible region between 505 and 537 nm through a naphthalimide-localized intramolecular charge transfer, with corresponding fluorescent lifetimes of up to 9.8 ns. The ligands and complexes were investigated for their potential as imaging agents for human osteoarthritic cells and protistan fish parasite Spironucleus vortens using confocal fluorescence microscopy. The results show that the specific nature of the naphthalimide structure serves to control the uptake and intracellular localization of these imaging agents. Significant differences were noted between the free ligands and complexes, with the Re(I) complex of L(2) showing hydrogenosomal localization in S. vortens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, Sean Gregory; Berryman, Judy; Shackley, M. Steven
Eden projectile points associated with the Cody complex are underrepresented in the late Paleoindian record of the American Southwest. EDXRF analysis of an obsidian Eden point from a site in Sierra County, New Mexico demonstrates this artifact is from the Cerro del Medio (Valles Rhyolite) source in the Jemez Mountains. Lastly, we contextualize our results by examining variability in obsidian procurement practices beyond the Cody heartland in southcentral New Mexico.
The Process of Creation: A Novel Methodology for Analyzing Multimodal Data
ERIC Educational Resources Information Center
Halverson, Erica Rosenfeld; Bass, Michelle; Woods, David
2012-01-01
In the 21st century, meaning making is a multimodal act; we communicate what we know and how we know it using much more than printed text on a blank page. As a result, qualitative researchers need new methodologies, methods, and tools for working with the complex artifacts that our research subjects produce. In this article we describe the…
ERIC Educational Resources Information Center
Smagorinsky, Peter; Zoss, Michelle; Reed, Patty M.
2006-01-01
This research analyzed the composing processes of one high school student as she designed the interiors of homes for a course in interior design. Data included field notes, an interview with the teacher, artifacts from the class, and the focal student's concurrent and retrospective protocols in relation to her design of home interiors. The…
Non-rigid Motion Correction in 3D Using Autofocusing with Localized Linear Translations
Cheng, Joseph Y.; Alley, Marcus T.; Cunningham, Charles H.; Vasanawala, Shreyas S.; Pauly, John M.; Lustig, Michael
2012-01-01
MR scans are sensitive to motion effects due to the scan duration. To properly suppress artifacts from non-rigid body motion, complex models with elements such as translation, rotation, shear, and scaling have been incorporated into the reconstruction pipeline. However, these techniques are computationally intensive and difficult to implement for online reconstruction. On a sufficiently small spatial scale, the different types of motion can be well-approximated as simple linear translations. This formulation allows for a practical autofocusing algorithm that locally minimizes a given motion metric – more specifically, the proposed localized gradient-entropy metric. To reduce the vast search space for an optimal solution, possible motion paths are limited to the motion measured from multi-channel navigator data. The novel navigation strategy is based on the so-called “Butterfly” navigators which are modifications to the spin-warp sequence that provide intrinsic translational motion information with negligible overhead. With a 32-channel abdominal coil, sufficient number of motion measurements were found to approximate possible linear motion paths for every image voxel. The correction scheme was applied to free-breathing abdominal patient studies. In these scans, a reduction in artifacts from complex, non-rigid motion was observed. PMID:22307933
Effect of fringe-artifact correction on sub-tomogram averaging from Zernike phase-plate cryo-TEM
Kishchenko, Gregory P.; Danev, Radostin; Fisher, Rebecca; He, Jie; Hsieh, Chyongere; Marko, Michael; Sui, Haixin
2015-01-01
Zernike phase-plate (ZPP) imaging greatly increases contrast in cryo-electron microscopy, however fringe artifacts appear in the images. A computational de-fringing method has been proposed, but it has not been widely employed, perhaps because the importance of de-fringing has not been clearly demonstrated. For testing purposes, we employed Zernike phase-plate imaging in a cryo-electron tomographic study of radial-spoke complexes attached to microtubule doublets. We found that the contrast enhancement by ZPP imaging made nonlinear denoising insensitive to the filtering parameters, such that simple low-frequency band-pass filtering made the same improvement in map quality. We employed sub-tomogram averaging, which compensates for the effect of the “missing wedge” and considerably improves map quality. We found that fringes (caused by the abrupt cut-on of the central hole in the phase plate) can lead to incorrect representation of a structure that is well-known from the literature. The expected structure was restored by amplitude scaling, as proposed in the literature. Our results show that de-fringing is an important part of image-processing for cryo-electron tomography of macromolecular complexes with ZPP imaging. PMID:26210582
Isolating gait-related movement artifacts in electroencephalography during human walking
Kline, Julia E.; Huang, Helen J.; Snyder, Kristine L.; Ferris, Daniel P.
2016-01-01
Objective High-density electroencephelography (EEG) can provide insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. Approach We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4–1.6 m/s. We then tested artifact removal methods including moving average and wavelet-based techniques. Main Results Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Significance Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removing of EEG movement artifact to advance the field. PMID:26083595
Isolating gait-related movement artifacts in electroencephalography during human walking.
Kline, Julia E; Huang, Helen J; Snyder, Kristine L; Ferris, Daniel P
2015-08-01
High-density electroencephelography (EEG) can provide an insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4 to 1.6 m s(-1). We then tested artifact removal methods including moving average and wavelet-based techniques. Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removal of EEG movement artifact to advance the field.
Kroll, K.; Cochran, Elizabeth S.; Richards-Dinger, K.; Sumy, Danielle
2013-01-01
We detect and precisely locate over 9500 aftershocks that occurred in the Yuha Desert region during a 2 month period following the 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake. Events are relocated using a series of absolute and relative relocation procedures that include Hypoinverse, Velest, and hypoDD. Location errors are reduced to ~40 m horizontally and ~120 m vertically.Aftershock locations reveal a complex pattern of faulting with en echelon fault segments trending toward the northwest, approximately parallel to the North American-Pacific plate boundary and en echelon, conjugate features trending to the northeast. The relocated seismicity is highly correlated with published surface mapping of faults that experienced triggered surface slip in response to the EMC main shock. Aftershocks occurred between 2 km and 11 km depths, consistent with previous studies of seismogenic thickness in the region. Three-dimensional analysis reveals individual and intersecting fault planes that are limited in their along-strike length. These fault planes remain distinct structures at depth, indicative of conjugate faulting, and do not appear to coalesce onto a throughgoing fault segment. We observe a complex spatiotemporal migration of aftershocks, with seismicity that jumps between individual fault segments that are active for only a few days to weeks. Aftershock rates are roughly consistent with the expected earthquake production rates of Dieterich (1994). The conjugate pattern of faulting and nonuniform aftershock migration patterns suggest that strain in the Yuha Desert is being accommodated in a complex manner.
Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide
NASA Astrophysics Data System (ADS)
Wang, Feng; Liu, Juewen
2014-05-01
Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials. Electronic supplementary information (ESI) available: Methods, additional gels, kinetics, mass spectrum. See DOI: 10.1039/c4nr00867g
Vacher, Antoine; Auffray, Morgan; Barrière, Frédéric; Roisnel, Thierry; Lorcy, Dominique
2017-11-17
A bis(TTF-butadiynyl) ruthenium D-D'-D complex, with intramolecular electronic interplay between the three electron-donating electrophores, was easily converted through a cycloaddition-retroelectrocyclization with TCNQ into a D-A-D'-A-D pentad complex, which exhibits an intense intramolecular charge transfer together with an electronic interplay between the two acceptors along the conjugated organometallic bridge.
Visualising the Complex Roots of Quadratic Equations with Real Coefficients
ERIC Educational Resources Information Center
Bardell, Nicholas S.
2012-01-01
The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…
3D artifact for calibrating kinematic parameters of articulated arm coordinate measuring machines
NASA Astrophysics Data System (ADS)
Zhao, Huining; Yu, Liandong; Xia, Haojie; Li, Weishi; Jiang, Yizhou; Jia, Huakun
2018-06-01
In this paper, a 3D artifact is proposed to calibrate the kinematic parameters of articulated arm coordinate measuring machines (AACMMs). The artifact is composed of 14 reference points with three different heights, which provides 91 different reference lengths, and a method is proposed to calibrate the artifact with laser tracker multi-stations. Therefore, the kinematic parameters of an AACMM can be calibrated in one setup of the proposed artifact, instead of having to adjust the 1D or 2D artifacts to different positions and orientations in the existing methods. As a result, it saves time to calibrate the AACMM with the proposed artifact in comparison with the traditional 1D or 2D artifacts. The performance of the AACMM calibrated with the proposed artifact is verified with a 600.003 mm gauge block. The result shows that the measurement accuracy of the AACMM is improved effectively through calibration with the proposed artifact.
An EEG Data Investigation Using Only Artifacts
2017-02-22
approach, called artifact separation, was developed to enable the consumer of the EEG data to decide how to handle artifacts. The current...mediation approach, called artifact separation, was developed to enable the consumer of the EEG data to decide how to handle artifacts. The current...contaminated. Having the spectral results flagged as containing an artifact, means that the consumer of the data has the freedom to decide how to
Mesoscale hybrid calibration artifact
Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.
2010-09-07
A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.
Ripple artifact reduction using slice overlap in slice encoding for metal artifact correction.
den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens
2015-01-01
Multispectral imaging (MSI) significantly reduces metal artifacts. Yet, especially in techniques that use gradient selection, such as slice encoding for metal artifact correction (SEMAC), a residual ripple artifact may be prominent. Here, an analysis is presented of the ripple artifact and of slice overlap as an approach to reduce the artifact. The ripple artifact was analyzed theoretically to clarify its cause. Slice overlap, conceptually similar to spectral bin overlap in multi-acquisition with variable resonances image combination (MAVRIC), was achieved by reducing the selection gradient and, thus, increasing the slice profile width. Time domain simulations and phantom experiments were performed to validate the analyses and proposed solution. Discontinuities between slices are aggravated by signal displacement in the frequency encoding direction in areas with deviating B0. Specifically, it was demonstrated that ripple artifacts appear only where B0 varies both in-plane and through-plane. Simulations and phantom studies of metal implants confirmed the efficacy of slice overlap to reduce the artifact. The ripple artifact is an important limitation of gradient selection based MSI techniques, and can be understood using the presented simulations. At a scan-time penalty, slice overlap effectively addressed the artifact, thereby improving image quality near metal implants. © 2014 Wiley Periodicals, Inc.
On complex matrices with simple spectrum that are unitarily similar to real matrices
NASA Astrophysics Data System (ADS)
Ikramov, Khakim D.
2011-04-01
Suppose that one should verify whether a given complex n × n matrix can be converted into a real matrix by a unitary similarity transformation. Sufficient conditions for this property to hold were found in an earlier publication of this author. These conditions are relaxed in the following way: as before, the spectrum is required to be simple, but pairs of complex conjugate eigenvalues λ ,bar λ are now allowed. However, the eigenvectors corresponding to such eigenvalues must not be orthogonal.
Marcoux, Julien; Champion, Thierry; Colas, Olivier; Wagner-Rousset, Elsa; Corvaïa, Nathalie; Van Dorsselaer, Alain; Beck, Alain; Cianférani, Sarah
2015-08-01
Antibody-drug conjugates (ADCs) are biochemotherapeutics consisting of a cytotoxic chemical drug linked covalently to a monoclonal antibody. Two main classes of ADCs, namely cysteine and lysine conjugates, are currently available on the market or involved in clinical trials. The complex structure and heterogeneity of ADCs makes their biophysical characterization challenging. For cysteine conjugates, hydrophobic interaction chromatography is the gold standard technique for studying drug distribution, the naked antibody content, and the average drug to antibody ratio (DAR). For lysine ADC conjugates on the other hand, which are not amenable to hydrophobic interaction chromatography because of their higher heterogeneity, denaturing mass spectrometry (MS) and UV/Vis spectroscopy are the most powerful approaches. We report here the use of native MS and ion mobility (IM-MS) for the characterization of trastuzumab emtansine (T-DM1, Kadcyla(®)). This lysine conjugate is currently being considered for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and combines the anti-HER2 antibody trastuzumab (Herceptin(®)), with the cytotoxic microtubule-inhibiting maytansine derivative, DM1. We show that native MS combined with high-resolution measurements and/or charge reduction is beneficial in terms of the accurate values it provides of the average DAR and the drug load profiles. The use of spectral deconvolution is discussed in detail. We report furthermore the use of native IM-MS to directly determine DAR distribution profiles and average DAR values, as well as a molecular modeling investigation of positional isomers in T-DM1. © 2015 The Protein Society.
Fang, Jun; Tsukigawa, Kenji; Liao, Long; Yin, Hongzhuan; Eguchi, Kanami; Maeda, Hiroshi
2016-01-01
Previous studies indicated the potential of zinc protoporphyrin (ZnPP) as an antitumor agent targeting to the tumor survival factor heme oxygenase-1, and/or for photodynamic therapy (PDT). In this study, to achieve tumor-targeted delivery, styrene-maleic acid-copolymer conjugated ZnPP (SMA-ZnPP) was synthesized via amide bond, which showed good water solubility, having ZnPP loading of 15%. More importantly, it forms micelles in aqueous solution with a mean particle size of 111.6 nm, whereas it has an apparent Mw of 65 kDa. This micelle formation was not detracted by serum albumin, suggesting it is stable in circulation. Further SMA-ZnPP conjugate will behave as an albumin complex in blood with much larger size (235 kDa) by virtue of the albumin binding property of SMA. Consequently, SMA-ZnPP conjugate exhibited prolonged circulating retention and preferential tumor accumulation by taking advantage of enhanced permeability and retention (EPR) effect. Clear tumor imaging was thus achieved by detecting the fluorescence of ZnPP. In addition, the cytotoxicity and PDT effect of SMA-ZnPP conjugate was confirmed in human cervical cancer HeLa cells. Light irradiation remarkably increased the cytotoxicity (IC50, from 33 to 5 μM). These findings may provide new options and knowledge for developing ZnPP based anticancer theranostic drugs.
Shoji, Mamoru; Sun, Aiming; Kisiel, Walter; Lu, Yang J; Shim, Hyunsuk; McCarey, Bernard E; Nichols, Christopher; Parker, Ernest T; Pohl, Jan; Mosley, Cara A; Alizadeh, Aaron R; Liotta, Dennis C; Snyder, James P
2008-04-01
Tissue factor (TF) is aberrantly expressed on tumor vascular endothelial cells (VECs) and on cancer cells in many malignant tumors, but not on normal VECs, making it a promising target for cancer therapy. As a transmembrane receptor for coagulation factor VIIa (fVIIa), TF forms a high-affinity complex with its cognate ligand, which is subsequently internalized through receptor-mediated endocytosis. Accordingly, we developed a method for selectively delivering EF24, a potent synthetic curcumin analog, to TF-expressing tumor vasculature and tumors using fVIIa as a drug carrier. EF24 was chemically conjugated to fVIIa through a tripeptide-chloromethyl ketone. After binding to TF-expressing targets by fVIIa, EF24 will be endocytosed along with the drug carrier and will exert its cytotoxicity. Our results showed that the conjugate inhibits vascular endothelial growth factor-induced angiogenesis in a rabbit cornea model and in a Matrigel model in athymic nude mice. The conjugate-induced apoptosis in tumor cells and significantly reduced tumor size in human breast cancer xenografts in athymic nude mice as compared with the unconjugated EF24. By conjugating potent drugs to fVIIa, this targeted drug delivery system has the potential to enhance therapeutic efficacy, while reducing toxic side effects. It may also prove to be useful for treating drug-resistant tumors and micro-metastases in addition to primary tumors.
2015-01-01
Within the last years 89Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with 89Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [89Zr]FSC-RGD conjugates or [89Zr]triacetylfusarinine C (TAFC). Quantitative 89Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [89Zr]DFO, [89Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [89Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of 89Zr-based PET imaging agents. PMID:25941834
Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine
NASA Astrophysics Data System (ADS)
Shu, Jessica Yo
The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly, biological evaluations were performed to investigate the potential of micelles as drug delivery vehicles. In vitro cell studies demonstrated that the micelles can be used as a delivery vehicle to tailor the cellular uptake, time release, and intracellular trafficking of drugs. In vivo biodistribution and pharmacokinetic experiments showed long blood circulation. This work demonstrates that peptide-polymer conjugates can be used as building blocks to generate hierarchical functional nanostructures with a wide range of applications, only one of which is drug delivery.
Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M
2018-03-28
Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.
Self-recognition of high-mannose type glycans mediating adhesion of embryonal fibroblasts.
Yoon, Seon-Joo; Utkina, Natalia; Sadilek, Martin; Yagi, Hirokazu; Kato, Koichi; Hakomori, Sen-itiroh
2013-07-01
High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.
The uniqueness and complexity of kampung city Bustaman Semarang Indonesia
NASA Astrophysics Data System (ADS)
Sudarwanto, Budi; Hardiman, Gagoek; Suprapti, Atiek; Sarjono, Agung B.
2017-12-01
The purpose of this study is to describe the uniqueness and complexity of one village town Bustaman Semarang Indonesia. This research is in the domain of qualitative research paradigm with ethnography research strategy. The critical ethnography technique is chosen with the consideration of the purpose of this research, that is besides describing also the analysing urban spatial condition over its complexity. Bustaman town village has artifacts outdated and local economic activities namely culinary processed goat meat. Kampung Bustaman shows the common character as a city hometown, which is chaotic and shabby. Some artifacts and historical value of Bustaman village as well as community culture become potential to be developed and conserved. But for that the quality of Bustaman village hometown should be improved. Bustaman's urban halls are under distress by changes in urban modernization, including the pattern of life of Bustaman villagers. However, the existing phenomenon that the potential of local and cultural communities are still able to survive and exist, within the limitations of space and resources available. The process of culinary production of goat meat, the limitation of the kampong space, the social awareness of the villagers, the role of community leaders, and the necessities of daily life are the drivers of the complexity of Bustaman village space. The village road corridor and the house terrace become the victim room for all the activities of the town. Clutter seems clear can be found in every corner of Bustaman village space. Kampung Bustaman can be categorized as a spontaneous and compact informal village, but still survive on the urban spatial locality.
An Additive Manufacturing Test Artifact
Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan
2014-01-01
A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039
Classification and simulation of stereoscopic artifacts in mobile 3DTV content
NASA Astrophysics Data System (ADS)
Boev, Atanas; Hollosi, Danilo; Gotchev, Atanas; Egiazarian, Karen
2009-02-01
We identify, categorize and simulate artifacts which might occur during delivery stereoscopic video to mobile devices. We consider the stages of 3D video delivery dataflow: content creation, conversion to the desired format (multiview or source-plus-depth), coding/decoding, transmission, and visualization on 3D display. Human 3D vision works by assessing various depth cues - accommodation, binocular depth cues, pictorial cues and motion parallax. As a consequence any artifact which modifies these cues impairs the quality of a 3D scene. The perceptibility of each artifact can be estimated through subjective tests. The material for such tests needs to contain various artifacts with different amounts of impairment. We present a system for simulation of these artifacts. The artifacts are organized in groups with similar origins, and each group is simulated by a block in a simulation channel. The channel introduces the following groups of artifacts: sensor limitations, geometric distortions caused by camera optics, spatial and temporal misalignments between video channels, spatial and temporal artifacts caused by coding, transmission losses, and visualization artifacts. For the case of source-plus-depth representation, artifacts caused by format conversion are added as well.
Gurney-Champion, Oliver J; Bruins Slot, Thijs; Lens, Eelco; van der Horst, Astrid; Klaassen, Remy; van Laarhoven, Hanneke W M; van Tienhoven, Geertjan; van Hooft, Jeanin E; Nederveen, Aart J; Bel, Arjan
2016-10-01
Biliary stents may cause susceptibility artifacts, gradient-induced artifacts, and radio frequency (RF) induced artifacts on magnetic resonance images, which can hinder accurate target volume delineation in radiotherapy. In this study, the authors investigated and quantified the magnitude of these artifacts for stents of different materials. Eight biliary stents made of nitinol, platinum-cored nitinol, stainless steel, or polyethylene from seven vendors, with different lengths (57-98 mm) and diameters (3.0-11.7 mm), were placed in a phantom. To quantify the susceptibility artifacts sequence-independently, ΔB0-maps and T2 ∗ -maps were acquired at 1.5 and 3 T. To study the effect of the gradient-induced artifacts at 3 T, signal decay in images obtained with maximum readout gradient-induced artifacts was compared to signal decay in reference scans. To quantify the RF induced artifacts at 3 T, B1-maps were acquired. Finally, ΔB0-maps and T2 ∗ -maps were acquired at 3 T of two pancreatic cancer patients who had received platinum-cored nitinol biliary stents. Outside the stent, susceptibility artifacts dominated the other artifacts. The stainless steel stent produced the largest susceptibility artifacts. The other stents caused decreased T2 ∗ up to 5.1 mm (1.5 T) and 8.5 mm (3 T) from the edge of the stent. For sequences with a higher bandwidth per voxel (1.5 T: BW vox > 275 Hz/voxel; 3 T: BW vox > 500 Hz/voxel), the B0-related susceptibility artifacts were negligible (<0.2 voxels). The polyethylene stent showed no artifacts. In vivo, the changes in B0 and T2 ∗ induced by the stent were larger than typical variations in B0 and T2 ∗ induced by anatomy when the stent was at an angle of 30° with the main magnetic field. Susceptibility artifacts were dominating over the other artifacts. The magnitudes of the susceptibility artifacts were determined sequence-independently. This method allows to include additional safety margins that ensure target irradiation.
High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI
Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.
2012-01-01
Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395
A workflow learning model to improve geovisual analytics utility
Roth, Robert E; MacEachren, Alan M; McCabe, Craig A
2011-01-01
Introduction This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. Objectives The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. Methodology The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. Results/Conclusions In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009. PMID:21983545
A workflow learning model to improve geovisual analytics utility.
Roth, Robert E; Maceachren, Alan M; McCabe, Craig A
2009-01-01
INTRODUCTION: This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. OBJECTIVES: The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. METHODOLOGY: The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. RESULTS/CONCLUSIONS: In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009.
Use of cognitive artifacts in chemistry learning
NASA Astrophysics Data System (ADS)
Yengin, Ilker
In everyday life, we interact with cognitive artifacts to receive and/or manipulate information so as to alter our thinking processes. CHEM/TEAC 869Q is a distance course that includes extensive explicit instruction in the use of a cognitive artifact. This study investigates issues related to the design of that online artifact. In order to understand design implications and how cognitive artifacts contribute to students' thinking and learning, a qualitative research methodology was engaged that utilized think aloud sessions. Participants' described constrained and structured cognitive models while using the artifact. The study also was informed by interviews and researcher's field notes. A purposeful sampling method led to the selection of participants, four males and two females, who had no prior history of using a course from the 869 series but who had experienced the scientific content covered by the CHEM869Q course. Analysis of the results showed both that a cognitive artifact may lead users' minds in decision making, and that problem solving processes were affected by cognitive artifact's design. When there is no design flaw, users generally thought that the cognitive artifact was helpful by simplifying steps, overcoming other limitations, and reducing errors in a reliable, effective, and easy to use way. Moreover, results showed that successful implementation of cognitive artifacts into teaching --learning practices depended on user willingness to transfer a task to the artifact. While users may like the idea of benefiting from a cognitive artifact, nevertheless, they may tend to limit their usage. They sometimes think that delegating a task to a cognitive artifact makes them dependent, and that they may not learn how to perform the tasks by themselves. They appear more willing to use a cognitive artifact after they have done the task by themselves.
Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact.
Wuest, W; May, M S; Brand, M; Bayerl, N; Krauss, A; Uder, M; Lell, M
2015-10-01
Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx. Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value. A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality. Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area. © 2015 by American Journal of Neuroradiology.
Iterative image-domain ring artifact removal in cone-beam CT
NASA Astrophysics Data System (ADS)
Liang, Xiaokun; Zhang, Zhicheng; Niu, Tianye; Yu, Shaode; Wu, Shibin; Li, Zhicheng; Zhang, Huailing; Xie, Yaoqin
2017-07-01
Ring artifacts in cone beam computed tomography (CBCT) images are caused by pixel gain variations using flat-panel detectors, and may lead to structured non-uniformities and deterioration of image quality. The purpose of this study is to propose a method of general ring artifact removal in CBCT images. This method is based on the polar coordinate system, where the ring artifacts manifest as stripe artifacts. Using relative total variation, the CBCT images are first smoothed to generate template images with fewer image details and ring artifacts. By subtracting the template images from the CBCT images, residual images with image details and ring artifacts are generated. As the ring artifact manifests as a stripe artifact in a polar coordinate system, the artifact image can be extracted by mean value from the residual image; the image details are generated by subtracting the artifact image from the residual image. Finally, the image details are compensated to the template image to generate the corrected images. The proposed framework is iterated until the differences in the extracted ring artifacts are minimized. We use a 3D Shepp-Logan phantom, Catphan©504 phantom, uniform acrylic cylinder, and images from a head patient to evaluate the proposed method. In the experiments using simulated data, the spatial uniformity is increased by 1.68 times and the structural similarity index is increased from 87.12% to 95.50% using the proposed method. In the experiment using clinical data, our method shows high efficiency in ring artifact removal while preserving the image structure and detail. The iterative approach we propose for ring artifact removal in cone-beam CT is practical and attractive for CBCT guided radiation therapy.
Stidd, D A; Theessen, H; Deng, Y; Li, Y; Scholz, B; Rohkohl, C; Jhaveri, M D; Moftakhar, R; Chen, M; Lopes, D K
2014-01-01
Flat panel detector CT images are degraded by streak artifacts caused by radiodense implanted materials such as coils or clips. A new metal artifacts reduction prototype algorithm has been used to minimize these artifacts. The application of this new metal artifacts reduction algorithm was evaluated for flat panel detector CT imaging performed in a routine clinical setting. Flat panel detector CT images were obtained from 59 patients immediately following cerebral endovascular procedures or as surveillance imaging for cerebral endovascular or surgical procedures previously performed. The images were independently evaluated by 7 physicians for metal artifacts reduction on a 3-point scale at 2 locations: immediately adjacent to the metallic implant and 3 cm away from it. The number of visible vessels before and after metal artifacts reduction correction was also evaluated within a 3-cm radius around the metallic implant. The metal artifacts reduction algorithm was applied to the 59 flat panel detector CT datasets without complications. The metal artifacts in the reduction-corrected flat panel detector CT images were significantly reduced in the area immediately adjacent to the implanted metal object (P = .05) and in the area 3 cm away from the metal object (P = .03). The average number of visible vessel segments increased from 4.07 to 5.29 (P = .1235) after application of the metal artifacts reduction algorithm to the flat panel detector CT images. Metal artifacts reduction is an effective method to improve flat panel detector CT images degraded by metal artifacts. Metal artifacts are significantly decreased by the metal artifacts reduction algorithm, and there was a trend toward increased vessel-segment visualization. © 2014 by American Journal of Neuroradiology.
Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.
Peng, Chengtao; Qiu, Bensheng; Li, Ming; Guan, Yihui; Zhang, Cheng; Wu, Zhongyi; Zheng, Jian
2017-01-05
Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands. In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets. By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality. No matter for the simulated datasets or the clinical datasets, the proposed algorithm has reduced the metal artifacts apparently.
Shi, Xiangyang; Bi, Xiangdong; Ganser, T Rose; Hong, Seungpyo; Myc, Lukasz A; Desai, Ankur; Holl, Mark M Banaszak; Baker, James R
2006-07-01
Poly(amidoamine) (PAMAM) dendrimers of different generations with carboxyl, acetyl, and hydroxyl terminal groups and a folic acid (FA)-dendrimer conjugate were separated and analyzed using reverse-phase high performance liquid chromatography (HPLC). Analysis of both the individual PAMAM derivatives and the separation of mixed generations can be achieved using a linear gradient 0-50% acetonitrile (ACN) (balance water) within 40 min. We also show that PAMAMs with defined acetylation and carboxylation degrees can be analyzed using HPLC. Furthermore, a generation 5 dendrimer-FA conjugate (G5.75Ac-FA4; Ac denotes acetyl) was analyzed and its specific binding with a bovine folic acid binding protein (FBP) was monitored. The HPLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results indicate the formation of three complexes after the binding of G5.75Ac-FA4 with FBP. Dendrimers with FA moieties show much higher specific binding capability with FBP than those without FA moieties. Findings from this study indicate that HPLC is an effective technique not only for characterization and separation of functionalized PAMAM dendrimers and conjugates but also for investigation of the interaction between dendrimers and biomolecules.
Conformational Order in Aggregates of Conjugated Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Kohlstedt, Kevin L.; Savoie, Brett M.
With the abundant variety and increasing chemical complexity of conjugated poly-friers proliferating the field of organic semiconductors, it has become increasingly important to correlate the polymer molecular structure with its mesoscale conformational and morphological attributes. For instance, it is unknown which combinations of chemical moieties and periodicities predictably produce mesoscale ordering. Interestingly) not all ordered morphologies result in efficient devices. In this work we have parametrized accurate classical force-fields and used these to compute the conformational and aggregation characteristics of single strands of common conjugated polymers. Molecular dynamics trajectories are shown to reproduce experimentally observed polymeric ordering, concluding that efficientmore » organic photovoltaic devices span a range of polymer conformational classes, and suggesting that the solution-phase morphologies have far-reaching effects. Encouragingly, these simulations indicate that despite the wide-range of conformational classes present in successful devices, local molecular ordering, and not long-range crystallinity, appears to be the necessary requirement for efficient devices. Finally, we examine what makes a "good" solvent for conjugated polymers, concluding that dispersive pi-electron solvent-polymer interactions, and not the electrostatic potential of the backbone interacting with the solvent, are what primarily determine a polymer's solubility in a particular solvent, and consequently its morphological characteristics.« less
Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates.
Nwe, K; Bernardo, M; Regino, C A S; Williams, M; Brechbiel, M W
2010-08-15
In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N',N',N'',N''-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex(R) G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1, respectively. Molar relaxivity measured at pH 7.4, 22 degrees C, and 3T are comparable (29.5 vs 26.9 mM(-1)s(-1)), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t(1/2)=16 vs 29 min). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. Published by Elsevier Ltd.
Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates
Nwe, K.; Bernardo, M; Regino, C. A. S.; Williams, M; Brechbiel, M. W.
2010-01-01
In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N’,N’,N’’, N’’-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex® G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1 respectively. Molar relaxivity measured at pH 7.4, 22°C, and 3T are comparable (29.5 vs. 26.9 mM−1s−1), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t1/2 = 16 vs. 29 min.). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. PMID:20663676
The ubiquitin conjugating enzyme UbcH7, controls cell migration
USDA-ARS?s Scientific Manuscript database
Post translational modification by ubiquitination can target proteins for degradation, allow the interaction of proteins to form complexes or direct relocalization of proteins to different subcellular compartments. As such, ubiquitin controls a variety of essential cellular processes. Previously we ...
Automated Generation of Fault Management Artifacts from a Simple System Model
NASA Technical Reports Server (NTRS)
Kennedy, Andrew K.; Day, John C.
2013-01-01
Our understanding of off-nominal behavior - failure modes and fault propagation - in complex systems is often based purely on engineering intuition; specific cases are assessed in an ad hoc fashion as a (fallible) fault management engineer sees fit. This work is an attempt to provide a more rigorous approach to this understanding and assessment by automating the creation of a fault management artifact, the Failure Modes and Effects Analysis (FMEA) through querying a representation of the system in a SysML model. This work builds off the previous development of an off-nominal behavior model for the upcoming Soil Moisture Active-Passive (SMAP) mission at the Jet Propulsion Laboratory. We further developed the previous system model to more fully incorporate the ideas of State Analysis, and it was restructured in an organizational hierarchy that models the system as layers of control systems while also incorporating the concept of "design authority". We present software that was developed to traverse the elements and relationships in this model to automatically construct an FMEA spreadsheet. We further discuss extending this model to automatically generate other typical fault management artifacts, such as Fault Trees, to efficiently portray system behavior, and depend less on the intuition of fault management engineers to ensure complete examination of off-nominal behavior.
Toward efficient Zn(II)-based artificial nucleases.
Boseggia, Elisa; Gatos, Maddalena; Lucatello, Lorena; Mancin, Fabrizio; Moro, Stefano; Palumbo, Manlio; Sissi, Claudia; Tecilla, Paolo; Tonellato, Umberto; Zagotto, Giuseppe
2004-04-14
A series of cis-cis-triaminocyclohexane Zn(II) complex-anthraquinone intercalator conjugates, designed in such a way to allow their easy synthesis and modification, have been investigated as hydrolytic cleaving agents for plasmid DNA. The ligand structure comprises a triaminocyclohexane platform linked by means of alkyl spacers of different length (from C(4) to C(8)) to the anthraquinone group which may intercalate the DNA. At a concentration of 5 microM, the complex of the derivative with a C(8) alkyl spacer induces the hydrolytic stand scission of supercoiled DNA with a rate of 4.6 x 10(-6) s(-1) at pH 7 and 37 degrees C. The conjugation of the metal complex with the anthraquinone group leads to a 15-fold increase of the cleavage efficiency when compared with the anthraquinone lacking Zn-triaminocyclohexane complex. The straightforward synthetic procedure employed, allowing a systematic change of the spacer length, made possible to gain more insight on the role of the intercalating group in determining the reactivity of the systems. Comparison of the reactivity of the different complexes shows a remarkable increase of the DNA cleaving efficiency with the length of the spacer. In the case of too-short spacers, the advantages due to the increased DNA affinity are canceled due to the incorrect positioning of the reactive group, thus leading to cleavage inhibition.
Clinical Assessment of Mirror Artifacts in Spectral-Domain Optical Coherence Tomography
Ho, Joseph; Castro, Dinorah P. E.; Castro, Leonardo C.; Chen, Yueli; Liu, Jonathan; Mattox, Cynthia; Krishnan, Chandrasekharan; Fujimoto, James G.; Schuman, Joel S.
2010-01-01
Purpose. To investigate the characteristics of a spectral-domain optical coherence tomography (SD-OCT) image phenomenon known as the mirror artifact, calculate its prevalence, analyze potential risk factors, measure severity, and correlate it to spherical equivalent and central visual acuity (VA). Methods. OCT macular cube 512 × 128 scans taken between January 2008 and February 2009 at the New England Eye Center were analyzed for the presence of mirror artifacts. Artifact severity was determined by the degree of segmentation breakdown that it caused on the macular map. A retrospective review was conducted of the medical records of patients with artifacts and of a random control group without artifacts. Results. Of 1592 patients, 9.3% (148 patients, 200 eyes) had scans that contained mirror artifacts. A significantly more myopic spherical equivalent (P < 0.001), worse VA (P < 0.001), longer axial lengths (P = 0.004), and higher proportions of moderate to high myopia (P < 0.001) were found in patients with mirror artifacts than in patients without artifacts. Worse VA was associated with increased artifact severity (P = 0.04). Conclusions. In all scans analyzed, a high prevalence of mirror artifacts was found. This image artifact was often associated with patients with moderate to high myopia. Improvements in instrumentation may be necessary to resolve this problem in moderately and highly myopic eyes. Operators should be advised to properly position the retina when scanning eyes. In cases in which peripheral abnormalities in topographic measurements of retinal thickness are found, corresponding OCT scans should be examined for the presence of mirror artifacts. PMID:20181840
NASA Astrophysics Data System (ADS)
Covarrubias, Ernesto E.; Eshraghi, Mohsen
2018-03-01
Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.
Earliest Stone-Tipped Projectiles from the Ethiopian Rift Date to >279,000 Years Ago
Sahle, Yonatan; Hutchings, W. Karl; Braun, David R.; Sealy, Judith C.; Morgan, Leah E.; Negash, Agazi; Atnafu, Balemwal
2013-01-01
Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology. PMID:24236011
Detection of MRI artifacts produced by intrinsic heart motion using a saliency model
NASA Astrophysics Data System (ADS)
Salguero, Jennifer; Velasco, Nelson; Romero, Eduardo
2017-11-01
Cardiac Magnetic Resonance (CMR) requires synchronization with the ECG to correct many types of noise. However, the complex heart motion frequently produces displaced slices that have to be either ignored or manually corrected since the ECG correction is useless in this case. This work presents a novel methodology that detects the motion artifacts in CMR using a saliency method that highlights the region where the heart chambers are located. Once the Region of Interest (RoI) is set, its center of gravity is determined for the set of slices composing the volume. The deviation of the gravity center is an estimation of the coherence between the slices and is used to find out slices with certain displacement. Validation was performed with distorted real images where a slice is artificially misaligned with respect to set of slices. The displaced slice is found with a Recall of 84% and F Score of 68%.
COMPLEMENT FIXATION IN DISEASED TISSUES
Burkholder, Peter M.
1961-01-01
An immunohistologic complement fixation test has been used in an effort to detect immune complexes in sections of kidney from rats injected with rabbit anti-rat kidney serum and in sections of biopsied kidneys from four humans with membranous glomerulonephritis. Sections of the rat and human kidneys were treated with fluorescein-conjugated anti-rabbit globulin or antihuman globulin respectively. Adjacent sections in each case were incubated first with fresh guinea pig serum and then in a second step were treated with fluorescein-conjugated antibodies against fixed guinea pig complement to detect sites of fixation of the complement. It was demonstrated that the sites of rabbit globulin in glomerular capillary walls of the rat kidneys and the sites of localized human globulin in thickened glomerular capillary walls and swollen glomerular endothelial cells of the human kidneys were the same sites in which guinea pig complement was fixed in vitro. It was concluded from these studies that rabbit nephrotoxic antibodies localize in rat glomeruli in complement-fixing antigen-antibody complexes. Furthermore, it was concluded that the deposits of human globulin in the glomeruli of the human kidneys behaved like antibody globulin in complement-fixing antigen-antibody complexes. The significance of demonstrating complement-fixing immune complexes in certain diseased tissues is discussed in regard to determination of the causative role of allergic reactions in disease. PMID:19867205
Tsuchiya, Youichi; Noguchi, Takao; Yoshihara, Daisuke; Roy, Bappaditya; Yamamoto, Tatsuhiro; Shinkai, Seiji
2016-11-29
Control of higher-order polymer structures attracts a great deal of interest for many researchers when they lead to the development of materials having various advanced functions. Among them, conjugated polymers that are useful as starting materials in the design of molecular wires are particularly attractive. However, an equilibrium existing between isolated chains and bundled aggregates is inevitable and has made their physical properties very complicated. As an attempt to simplify this situation, we previously reported that a polymer chain of a water-soluble polythiophene could be isolated through complexation with a helix-forming polysaccharide. More recently, a covalently self-threading polythiophene was reported, the main chain of which was physically protected from self-folding and chain-chain π-stacking. In this report, we wish to report a new strategy to isolate a water-soluble polythiophene and to control its higher-order structure by a supramolecular approach: that is, among a few bile acids, lithocholate can form stoichiometric complexes with cationic polythiophene to isolate the polymer chain, and the higher-order structure is changeable by the molar ratio. The optical and morphological studies have been thoroughly performed, and the resultant complex has been applied to the selective recognition of two AMP structural isomers.
How Do Young Children Deal with Hybrids of Living and Non-Living Things: The Case of Humanoid Robots
ERIC Educational Resources Information Center
Saylor, Megan M.; Somanader, Mark; Levin, Daniel T.; Kawamura, Kazuhiko
2010-01-01
In this experiment, we tested children's intuitions about entities that bridge the contrast between living and non-living things. Three- and four-year-olds were asked to attribute a range of properties associated with living things and machines to novel category-defying complex artifacts (humanoid robots), a familiar living thing (a girl), and a…
Daniels, Blake E.; Ni, Jane; Reisman, Sarah E.
2016-01-01
A conjugate addition/asymmetric protonation/aza-Prins cascade reaction has been developed for the enantioselective synthesis of fused polycyclic indolines. A catalyst system generated from ZrCl4 and 3,3’-dibromo-BINOL enables the synthesis of a range of polycyclic indolines in good yields and high enantioselectivity. A key finding is the use of TMSCl and 2,6-dibromophenol as a stoichiometric source of HCl to facilitate catalyst turnover. This transformation is the first in which a ZrCl4•BINOL complex serves as a chiral Lewis acid-assisted Brønsted acid. PMID:26844668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).
Ruiz, Beatriz Maciá; Geurts, Koen; Fernández-Ibáñez, M Angeles; ter Horst, Bjorn; Minnaard, Adriaan J; Feringa, Ben L
2007-11-22
Herein, we report efficient catalysts for the asymmetric copper-catalyzed conjugate addition of Grignard reagents to alpha,beta-unsaturated thioesters. MeMgBr adds to aromatic alpha,beta-unsaturated thioesters with excellent enantioselectivities and moderate to good yields using Josiphos/CuBr and Tol-BINAP/CuI complexes. The use of bulky Grignard reagents leads to unprecedented enantioselectivities in the 1,4-addition to a broad range of aromatic and aliphatic alpha,beta-unsaturated thioesters using Tol-BINAP/CuI. The highest enantioselectivities reported so far for the addition of Grignard reagents to crowded beta-substituted aliphatic substrates are achieved with Tol-BINAP/CuI.
Matsumoto, Yasumasa; Yamada, Ken-ichi; Tomioka, Kiyoshi
2008-06-20
The asymmetric construction of quaternary carbon centers by conjugate addition of Grignard reagents to 3-methyl- and 3-ethylcyclohexenones was realized in a maximum enantioselectivity of 80% by using a C 2 symmetric chiral N-heterocyclic carbene (NHC)-copper catalyst, generated from (4 S,5 S)-1,3-bis(2-methoxyphenyl)-4,5-diphenyl-4,5-dihydro-1 H-imidazol-3-ium tetrafluoroborate and copper(II) triflate. The stereostructures of the NHC-Au complexes were analyzed by X-ray crystallography, which rationalized the good stereocontrolling ability of N-aryl NHCs.
Chlubnova, Ilona; Legentil, Laurent; Dureau, Rémy; Pennec, Alizé; Almendros, Mélanie; Daniellou, Richard; Nugier-Chauvin, Caroline; Ferrières, Vincent
2012-07-15
There is no doubt now that the synthesis of compounds of varying complexity such as saccharides and derivatives thereof continuously grows with enzymatic methods. This review focuses on recent basic knowledge on enzymes specifically involved in the biosynthesis and degradation of furanosyl-containing polysaccharides and conjugates. Moreover, and when possible, biocatalyzed approaches, alternative to standard synthesis, will be detailed in order to strengthen the high potential of these biocatalysts to go further with the preparation of rare furanosides. Interesting results will be also proposed with chemo-enzymatic processes based on nonfuranosyl-specific enzymes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Automatic removal of eye-movement and blink artifacts from EEG signals.
Gao, Jun Feng; Yang, Yong; Lin, Pan; Wang, Pei; Zheng, Chong Xun
2010-03-01
Frequent occurrence of electrooculography (EOG) artifacts leads to serious problems in interpreting and analyzing the electroencephalogram (EEG). In this paper, a robust method is presented to automatically eliminate eye-movement and eye-blink artifacts from EEG signals. Independent Component Analysis (ICA) is used to decompose EEG signals into independent components. Moreover, the features of topographies and power spectral densities of those components are extracted to identify eye-movement artifact components, and a support vector machine (SVM) classifier is adopted because it has higher performance than several other classifiers. The classification results show that feature-extraction methods are unsuitable for identifying eye-blink artifact components, and then a novel peak detection algorithm of independent component (PDAIC) is proposed to identify eye-blink artifact components. Finally, the artifact removal method proposed here is evaluated by the comparisons of EEG data before and after artifact removal. The results indicate that the method proposed could remove EOG artifacts effectively from EEG signals with little distortion of the underlying brain signals.
Chen, Yang; Budde, Adam; Li, Ke; Li, Yinsheng; Hsieh, Jiang; Chen, Guang-Hong
2017-01-01
When the scan field of view (SFOV) of a CT system is not large enough to enclose the entire cross-section of the patient, or the patient needs to be positioned partially outside the SFOV for certain clinical applications, truncation artifacts often appear in the reconstructed CT images. Many truncation artifact correction methods perform extrapolations of the truncated projection data based on certain a priori assumptions. The purpose of this work was to develop a novel CT truncation artifact reduction method that directly operates on DICOM images. The blooming of pixel values associated with truncation was modeled using exponential decay functions, and based on this model, a discriminative dictionary was constructed to represent truncation artifacts and nonartifact image information in a mutually exclusive way. The discriminative dictionary consists of a truncation artifact subdictionary and a nonartifact subdictionary. The truncation artifact subdictionary contains 1000 atoms with different decay parameters, while the nonartifact subdictionary contains 1000 independent realizations of Gaussian white noise that are exclusive with the artifact features. By sparsely representing an artifact-contaminated CT image with this discriminative dictionary, the image was separated into a truncation artifact-dominated image and a complementary image with reduced truncation artifacts. The artifact-dominated image was then subtracted from the original image with an appropriate weighting coefficient to generate the final image with reduced artifacts. This proposed method was validated via physical phantom studies and retrospective human subject studies. Quantitative image evaluation metrics including the relative root-mean-square error (rRMSE) and the universal image quality index (UQI) were used to quantify the performance of the algorithm. For both phantom and human subject studies, truncation artifacts at the peripheral region of the SFOV were effectively reduced, revealing soft tissue and bony structure once buried in the truncation artifacts. For the phantom study, the proposed method reduced the relative RMSE from 15% (original images) to 11%, and improved the UQI from 0.34 to 0.80. A discriminative dictionary representation method was developed to mitigate CT truncation artifacts directly in the DICOM image domain. Both phantom and human subject studies demonstrated that the proposed method can effectively reduce truncation artifacts without access to projection data. © 2016 American Association of Physicists in Medicine.
Voting strategy for artifact reduction in digital breast tomosynthesis.
Wu, Tao; Moore, Richard H; Kopans, Daniel B
2006-07-01
Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.
Zhao, Hongwei; Nan, Tiegui; Tan, Guiyu; Gao, Wei; Cao, Zhen; Sun, Shuo; Li, Zhaohu; Li, Qing X; Wang, Baomin
2011-09-19
Availability of highly sensitive assays for metal ions can help monitor and manage the environmental and food contamination. In the present study, a monoclonal antibody against Copper(II)-ethylenediaminetetraacetic acid was used to develop two sensitive ELISAs for Cu(II) analysis. Cobalt(II)-EDTA-BSA was the coating antigen in a heterologous indirect competitive ELISA (hicELISA), whereas Co(II)-EDTA-BSA-horseradish peroxidase (HRP) was the enzyme tracer in a heterologous direct competitive ELISA (hdcELISA). Both ELISAs were validated for detecting the content of Cu(II) in environmental waters. The ELISA data agreed well with those from graphite furnace atomic absorption spectroscopy. The methods of developing the Cu(II) hicELISA and hdcELISA are potentially applicable for developing ELISAs for other metals. The chelator-protein complexes such as EDTA-BSA and EDTA-BSA-HRP can form a suite of metal complexes having the consistent hapten density, location and orientation on the conjugates except the difference of the metal core, which can be used as ideal reagents to investigate the relationship between assay sensitivity and antibody affinities for the haptens and the analytes. The strategy of conjugating a haptenated protein directly with HRP can reduce the loss of HRP activity during the conjugation reaction and thus can be applicable for the development of ELISAs for small molecules. Copyright © 2011. Published by Elsevier B.V.
Mapping interactions between the RNA chaperone FinO and its RNA targets
Arthur, David C.; Tsutakawa, Susan; Tainer, John A.; Frost, Laura S.; Glover, J. N. Mark
2011-01-01
Bacterial conjugation is regulated by two-component repression comprising the antisense RNA FinP, and its protein co-factor FinO. FinO mediates base-pairing of FinP to the 5′-untranslated region (UTR) of traJ mRNA, which leads to translational inhibition of the transcriptional activator TraJ and subsequent down regulation of conjugation genes. Yet, little is known about how FinO binds to its RNA targets or how this interaction facilitates FinP and traJ mRNA pairing. Here, we use solution methods to determine how FinO binds specifically to its minimal high affinity target, FinP stem–loop II (SLII), and its complement SLIIc from traJ mRNA. Ribonuclease footprinting reveals that FinO contacts the base of the stem and the 3′ single-stranded tails of these RNAs. The phosphorylation or oxidation of the 3′-nucleotide blocks FinO binding, suggesting FinO binds the 3′-hydroxyl of its RNA targets. The collective results allow the generation of an energy-minimized model of the FinO–SLII complex, consistent with small-angle X-ray scattering data. The repression complex model was constrained using previously reported cross-linking data and newly developed footprinting results. Together, these data lead us to propose a model of how FinO mediates FinP/traJ mRNA pairing to down regulate bacterial conjugation. PMID:21278162
Burnham-Marusich, Amanda R; Plechaty, Anna M; Berninsone, Patricia M
2014-09-01
Currently, there are few methods to detect differences in posttranslational modifications (PTMs) in a specific manner from complex mixtures. Thus, we developed an approach that combines the sensitivity and specificity of click chemistry with the resolution capabilities of 2D-DIGE. In "Click-DIGE", posttranslationally modified proteins are metabolically labeled with azido-substrate analogs, then size- and charge-matched alkyne-Cy3 or alkyne-Cy5 dyes are covalently attached to the azide of the PTM by click chemistry. The fluorescently-tagged protein samples are then multiplexed for 2DE analysis. Whereas standard DIGE labels all proteins, Click-DIGE focuses the analysis of protein differences to a targeted subset of posttranslationally modified proteins within a complex sample (i.e. specific labeling and analysis of azido glycoproteins within a cell lysate). Our data indicate that (i) Click-DIGE specifically labels azido proteins, (ii) the resulting Cy-protein conjugates are spectrally distinct, and (iii) the conjugates are size- and charge-matched at the level of 2DE. We demonstrate the utility of this approach by detecting multiple differentially expressed glycoproteins between a mutant cell line defective in UDP-galactose transport and the parental cell line. We anticipate that the diversity of azido substrates already available will enable Click-DIGE to be compatible with analysis of a wide range of PTMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramanathan, K; Jönsson, B R; Danielsson, B
2000-08-01
The stability of horseradish peroxidase (HRP) in aqueous and organic solvents is applied to develop a simple thermometric procedure to detect the binding of retinoic acid-HRP conjugate to retinol binding protein (RBP). Butanone peroxide (BP) in organic phase and hydrogen peroxide in aqueous phase is detected thermometrically on a HRP column, immobilized by cross-linking with glutaraldehyde on controlled pore glass (CPG). Acetone, acetonitrile, methanol, and 2-butanol are used for detection of BP, in the flow injection analysis (FIA) mode. A linear range between 1 and 50 mM BP is obtained in all the organic solvents with a precision of 5-7% (CV%). The magnitude and nature of the thermometric response is significantly different in each organic solvent. The stability of HRP in the organic phase is used to study the stability of a retinoic acid-HRP conjugate bound to immobilized RBP. The response of HRP (to 20 mM BP) in the retinoic acid-HRP conjugate is used as an indicator of the stability of the RBP-retinoic acid-HRP complex, after challenges with various organic/aqueous solvents. Both immobilized HRP and RBP are stable at least for 6 months. The effect of o-phenylene diamine on the thermometric response of HRP is also investigated. A scheme for the design of a thermometric retinol (vitamin A) biosensor is proposed.
Zhang, Zhen; Xiang, Xia; Shi, Jianbin; Huang, Fenghong; Xia, Xiaoyang; Zheng, Mingming; Han, Ling; Tang, Hu
2018-10-05
An amplified fluorescence strategy is described for the detection of sinapine (SP) by using a cationic conjugated polymer (PFP) and graphene oxide (GO). It is observed that the fluorescein (FAM)-labeled single-stranded DNA (FAM-DNA) is absorbed on the surface of GO if SP is absent. This causes that fluorescence resonance energy transfer (FRET) from PFP to FAM is inefficient when adding PFP into FAM-DNA/GO complex. If SP is added to FAM-DNA/GO complex, FAM-DNA is desorbed from GO surface due to the competitive binding of SP and FAM-DNA toward GO. In this case, FAM-DNA is close to PFP in the presence of PFP through strong electrostatic interaction, leading to the occurrence of efficient FRET. Based on the above phenomenon, we demonstrate a method to amplify fluorescence signal of traditional GO-based SP assay by introducing PFP. In comparison to the use of single GO, the combination of PFP with GO-based strategy displays high turn-on ratio and enhanced sensitivity with a limit of detection as low as 7.3 ng mL -1 for SP detection. Satisfactory results in practical samples are also obtained by the recovery experiments, demonstrating the potential application of cationic conjugated polymer in plant-derived small molecule. Copyright © 2018 Elsevier B.V. All rights reserved.
Synthesis of (±)-Tetrapetalone A-Me Aglycon**
Carlsen, Peter N.; Mann, Tyler J.; Hoveyda, Amir H.
2014-01-01
The first synthesis of (±)-tetrapetalone A-Me aglycon is described. Key bond-forming reactions include Nazarov cyclization, a ring-closing metathesis (RCM) promoted with complete diastereoselectivity by a chiral Mo-based complex, tandem conjugate reduction-intramolecular aldol cyclization, and oxidative dearomatization. PMID:25045072
Yuki, I; Kambayashi, Y; Ikemura, A; Abe, Y; Kan, I; Mohamed, A; Dahmani, C; Suzuki, T; Ishibashi, T; Takao, H; Urashima, M; Murayama, Y
2016-02-01
Combination of high-resolution C-arm CT and novel metal artifact reduction software may contribute to the assessment of aneurysms treated with stent-assisted coil embolization. This study aimed to evaluate the efficacy of a novel Metal Artifact Reduction prototype software combined with the currently available high spatial-resolution C-arm CT prototype implementation by using an experimental aneurysm model treated with stent-assisted coil embolization. Eight experimental aneurysms were created in 6 swine. Coil embolization of each aneurysm was performed by using a stent-assisted technique. High-resolution C-arm CT with intra-arterial contrast injection was performed immediately after the treatment. The obtained images were processed with Metal Artifact Reduction. Five neurointerventional specialists reviewed the image quality before and after Metal Artifact Reduction. Observational and quantitative analyses (via image analysis software) were performed. Every aneurysm was successfully created and treated with stent-assisted coil embolization. Before Metal Artifact Reduction, coil loops protruding through the stent lumen were not visualized due to the prominent metal artifacts produced by the coils. These became visible after Metal Artifact Reduction processing. Contrast filling in the residual aneurysm was also visualized after Metal Artifact Reduction in every aneurysm. Both the observational (P < .0001) and quantitative (P < .001) analyses showed significant reduction of the metal artifacts after application of the Metal Artifact Reduction prototype software. The combination of high-resolution C-arm CT and Metal Artifact Reduction enables differentiation of the coil mass, stent, and contrast material on the same image by significantly reducing the metal artifacts produced by the platinum coils. This novel image technique may improve the assessment of aneurysms treated with stent-assisted coil embolization. © 2016 by American Journal of Neuroradiology.
Chang, Hing-Chiu; Chen, Nan-kuei
2016-01-01
Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI. PMID:27114342
Zhang, Jian; Lakowicz, Joseph R
2018-01-01
Near-field fluorescence (NFF) effects were employed to develop a novel near-infrared (NIR) luminescent nanoparticle (LNP) with superior brightness. The LNP is used as imaging contrast agent for cellular and small animal imaging and furthermore suggested to use for detecting voltage-sensitive calcium in living cells and animals with high sensitivity. NIR Indocyanine green (ICG) dye was conjugated with human serum albumin (HSA) followed by covalently binding to gold nanorod (AuNR). The AuNR displayed dual plasmons from transverse and longitudinal axis, and the longitudinal plasmon was localized at the NIR region which could efficiently couple with the excitation and emission of ICG dye leading to a largely enhanced NFF. The enhancement factor was measured to be about 16-fold using both ensemble and single nanoparticle spectral methods. As an imaging contrast agent, the ICG-HSA-Au complex (abbreviate as ICG-Au) was conjugated on HeLa cells and fluorescence cell images were recorded on a time-resolved confocal microscope. The emission signals of ICG-Au complexes were distinctly resolved as the individual spots that were observed over the cellular backgrounds due to their strong brightness as well as shortened lifetime. The LNPs were also tested to have a low cytotoxicity. The ICG-Au complexes were injected below the skin surface of mouse showing emission spots 5-fold brighter than those from the same amount of free ICG-HSA conjugates. Based on the observations in this research, the excitation and emission of NIR ICG dyes were found to be able to sufficiently couple with the longitudinal plasmon of AuNRs leading to a largely enhanced NFF. Using the LNP with super-brightness as a contrast agent, the ICG-Au complex could be resolved from the background in the cell and small animal imaging. The novel NIR LNP has also a great potential for detection of voltage-gated calcium concentration in the cell and living animal with a high sensitivity.
Spectral Imaging for Intracranial Stents and Stent Lumen.
Weng, Chi-Lun; Tseng, Ying-Chi; Chen, David Yen-Ting; Chen, Chi-Jen; Hsu, Hui-Ling
2016-01-01
Application of computed tomography for monitoring intracranial stents is limited because of stent-related artifacts. Our purpose was to evaluate the effect of gemstone spectral imaging on the intracranial stent and stent lumen. In vitro, we scanned Enterprise stent phantom and a stent-cheese complex using the gemstone spectral imaging protocol. Follow-up gemstone spectral images of 15 consecutive patients with placement of Enterprise from January 2013 to September 2014 were also retrospectively reviewed. We used 70-keV, 140-keV, iodine (water), iodine (calcium), and iodine (hydroxyapatite) images to evaluate their effect on the intracranial stent and stent lumen. Two regions of interest were individually placed in stent lumen and adjacent brain tissue. Contrast-to-noise ratio was measured to determine image quality. The maximal diameter of stent markers was also measured to evaluate stent-related artifact. Two radiologists independently graded the visibility of the lumen at the maker location by using a 4-point scale. The mean of grading score, contrast/noise ratio and maximal diameter of stent markers were compared among all modes. All results were analyzed by SPSS version 20. In vitro, iodine (water) images decreased metallic artifact of stent makers to the greatest degree. The most areas of cheese were observed on iodine (water) images. In vivo, iodine (water) images had the smallest average diameter of stent markers (0.33 ± 0.17mm; P < .05) and showed the highest mean grading score (2.94 ± 0.94; P < .05) and contrast/noise ratio of in-stent lumen (160.03 ±37.79; P < .05) among all the modes. Iodine (water) images can help reduce stent-related artifacts of Enterprise and enhance contrast of in-stent lumen. Spectral imaging may be considered a noninvasive modality for following-up patients with in-stent stenosis.
Limited view angle iterative CT reconstruction
NASA Astrophysics Data System (ADS)
Kisner, Sherman J.; Haneda, Eri; Bouman, Charles A.; Skatter, Sondre; Kourinny, Mikhail; Bedford, Simon
2012-03-01
Computed Tomography (CT) is widely used for transportation security to screen baggage for potential threats. For example, many airports use X-ray CT to scan the checked baggage of airline passengers. The resulting reconstructions are then used for both automated and human detection of threats. Recently, there has been growing interest in the use of model-based reconstruction techniques for application in CT security systems. Model-based reconstruction offers a number of potential advantages over more traditional direct reconstruction such as filtered backprojection (FBP). Perhaps one of the greatest advantages is the potential to reduce reconstruction artifacts when non-traditional scan geometries are used. For example, FBP tends to produce very severe streaking artifacts when applied to limited view data, which can adversely affect subsequent processing such as segmentation and detection. In this paper, we investigate the use of model-based reconstruction in conjunction with limited-view scanning architectures, and we illustrate the value of these methods using transportation security examples. The advantage of limited view architectures is that it has the potential to reduce the cost and complexity of a scanning system, but its disadvantage is that limited-view data can result in structured artifacts in reconstructed images. Our method of reconstruction depends on the formulation of both a forward projection model for the system, and a prior model that accounts for the contents and densities of typical baggage. In order to evaluate our new method, we use realistic models of baggage with randomly inserted simple simulated objects. Using this approach, we show that model-based reconstruction can substantially reduce artifacts and improve important metrics of image quality such as the accuracy of the estimated CT numbers.
NASA Astrophysics Data System (ADS)
Dang, Hao; Webster Stayman, J.; Sisniega, Alejandro; Zbijewski, Wojciech; Xu, Jennifer; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.
2017-01-01
A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.
NASA Astrophysics Data System (ADS)
Dhalla, Al-Hafeez Zahir
Optical coherence tomography (OCT) is a non-invasive optical imaging modality that provides micron-scale resolution of tissue micro-structure over depth ranges of several millimeters. This imaging technique has had a profound effect on the field of ophthalmology, wherein it has become the standard of care for the diagnosis of many retinal pathologies. Applications of OCT in the anterior eye, as well as for imaging of coronary arteries and the gastro-intestinal tract, have also shown promise, but have not yet achieved widespread clinical use. The usable imaging depth of OCT systems is most often limited by one of three factors: optical attenuation, inherent imaging range, or depth-of-focus. The first of these, optical attenuation, stems from the limitation that OCT only detects singly-scattered light. Thus, beyond a certain penetration depth into turbid media, essentially all of the incident light will have been multiply scattered, and can no longer be used for OCT imaging. For many applications (especially retinal imaging), optical attenuation is the most restrictive of the three imaging depth limitations. However, for some applications, especially anterior segment, cardiovascular (catheter-based) and GI (endoscopic) imaging, the usable imaging depth is often not limited by optical attenuation, but rather by the inherent imaging depth of the OCT systems. This inherent imaging depth, which is specific to only Fourier Domain OCT, arises due to two factors: sensitivity fall-off and the complex conjugate ambiguity. Finally, due to the trade-off between lateral resolution and axial depth-of-focus inherent in diffractive optical systems, additional depth limitations sometimes arises in either high lateral resolution or extended depth OCT imaging systems. The depth-of-focus limitation is most apparent in applications such as adaptive optics (AO-) OCT imaging of the retina, and extended depth imaging of the ocular anterior segment. In this dissertation, techniques for extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.
Full Seismic Waveform Tomography of the Japan region using Adjoint Methods
NASA Astrophysics Data System (ADS)
Steptoe, Hamish; Fichtner, Andreas; Rickers, Florian; Trampert, Jeannot
2013-04-01
We present a full-waveform tomographic model of the Japan region based on spectral-element wave propagation, adjoint techniques and seismic data from dense station networks. This model is intended to further our understanding of both the complex regional tectonics and the finite rupture processes of large earthquakes. The shallow Earth structure of the Japan region has been the subject of considerable tomographic investigation. The islands of Japan exist in an area of significant plate complexity: subduction related to the Pacific and Philippine Sea plates is responsible for the majority of seismicity and volcanism of Japan, whilst smaller micro-plates in the region, including the Okhotsk, and Okinawa and Amur, part of the larger North America and Eurasia plates respectively, contribute significant local intricacy. In response to the need to monitor and understand the motion of these plates and their associated faults, numerous seismograph networks have been established, including the 768 station high-sensitivity Hi-net network, 84 station broadband F-net and the strong-motion seismograph networks K-net and KiK-net in Japan. We also include the 55 station BATS network of Taiwan. We use this exceptional coverage to construct a high-resolution model of the Japan region from the full-waveform inversion of over 15,000 individual component seismograms from 53 events that occurred between 1997 and 2012. We model these data using spectral-element simulations of seismic wave propagation at a regional scale over an area from 120°-150°E and 20°-50°N to a depth of around 500 km. We quantify differences between observed and synthetic waveforms using time-frequency misfits allowing us to separate both phase and amplitude measurements whilst exploiting the complete waveform at periods of 15-60 seconds. Fréchet kernels for these misfits are calculated via the adjoint method and subsequently used in an iterative non-linear conjugate-gradient optimization. Finally, we employ custom smoothing algorithms to remove the singularities of the Fréchet kernels and artifacts introduced by the heterogeneous coverage in oceanic regions of the model.
NASA Astrophysics Data System (ADS)
Dutta, Rishabh; Wang, Teng; Feng, Guangcai; Harrington, Jonathan; Vasyura-Bathke, Hannes; Jónsson, Sigurjón
2017-04-01
Strain localizations in compliant fault zones (with elastic moduli lower than the surrounding rocks) induced by nearby earthquakes have been detected using geodetic observations in a few cases in the past. Here we observe small-scale changes in interferometric Synthetic Aperture Radar (InSAR) measurements along multiple conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake. After removing the main coseismic deformation signal in the interferograms and correcting them for topography-related phase, we observe 2-3 cm signal along several conjugate faults that are 15-30 km from the mainshock fault rupture. These conjugate compliant faults have strikes of N30°E and N45°W. The sense of motion indicates left-lateral deformation across the N30°E faults and right-lateral deformation across the N45°W faults, which suggests the conjugate faults were subjected to extensional coseismic stresses along the WSW-ENE direction. The spacing between the different sets of faults is around 5 to 8 km. We explain the observed strain localizations as an elastic response of the compliant conjugate faults induced by the Baluchistan earthquake. Using 3D Finite Element models (FEM), we impose coseismic static displacements due to the earthquake along the boundaries of the FEM domain to reproduce the coseismic stress changes acting across the compliant faults. The InSAR measurements are used to constrain the geometry and rigidity variations of the compliant faults with respect to the surrounding rocks. The best fitting models show the compliant fault zones to have a width of 0.5 km to 2 km and a reduction of the shear modulus by a factor of 3 to 4. Our study yields similar values as were found for compliant fault zones near the 1992 Landers and the 1999 Hector Mine earthquakes in California, although here the strain localization is occurring on more complex conjugate sets of faults.
NASA Astrophysics Data System (ADS)
Nabiev, Igor
2017-01-01
An ideal single-photon (1P) or multiphoton fluorescent nanoprobe should combine a nanocrystal with the largest possible 1P or two-photon (2P) absorption cross section and the smallest possible highly specific recognition molecules conjugated with the nanoparticle in an oriented manner. However, the conditions used for conjugation of typical recognition molecules (conventional antibodies, Abs) with nanoparticles often provoke their unfolding and/or yield nanoprobes with irregular orientation of Abs on the nanoparticle surface. Conjugation of smaller Ab fragments, such as single-domain antibodies (sdAbs), with quantum dots (QDs) in an oriented manner can be considered as an attractive approach to engineering of ultrasmall diagnostic nanoprobes. QDs conjugated to 13-kDa sdAbs derived from camelid IgG or streptavidin have been used as efficient 1P or 2P excitation probes for imaging of cancer markers. The 2P absorption cross sections (TPACSs) for some conjugates are higher than 49,000 GM (Goeppert-Mayer units), which is close to the theoretical value calculated for CdSe QDs and considerably exceeds that of organic dyes. A further step in advanced QD-based cancer diagnostics has been made through implementation of efficient FRET-based imaging with 2P excitation, which has been demonstrated for double immunostaining complexes formed on the surface of cancer cells from sdAb-QD conjugates (donor) and a combination of monoclonal Abs and secondary antibodies labeled with the AlexaFluor dye (acceptor). The proposed approach permits obtaining an exceptional contrast of 2P imaging of cancer biomarkers without any contribution of cell and tissue autofluorescence in the recorded images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, P; Schreibmann, E; Fox, T
2014-06-15
Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. Themore » CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.« less
Fang, Jieming; Zhang, Da; Wilcox, Carol; Heidinger, Benedikt; Raptopoulos, Vassilios; Brook, Alexander; Brook, Olga R
2017-03-01
To assess single energy metal artifact reduction (SEMAR) and spectral energy metal artifact reduction (MARS) algorithms in reducing artifacts generated by different metal implants. Phantom was scanned with and without SEMAR (Aquilion One, Toshiba) and MARS (Discovery CT750 HD, GE), with various metal implants. Images were evaluated objectively by measuring standard deviation in regions of interests and subjectively by two independent reviewers grading on a scale of 0 (no artifact) to 4 (severe artifact). Reviewers also graded new artifacts introduced by metal artifact reduction algorithms. SEMAR and MARS significantly decreased variability of the density measurement adjacent to the metal implant, with median SD (standard deviation of density measurement) of 52.1 HU without SEMAR, vs. 12.3 HU with SEMAR, p < 0.001. Median SD without MARS of 63.1 HU decreased to 25.9 HU with MARS, p < 0.001. Median SD with SEMAR is significantly lower than median SD with MARS (p = 0.0011). SEMAR improved subjective image quality with reduction in overall artifacts grading from 3.2 ± 0.7 to 1.4 ± 0.9, p < 0.001. Improvement of overall image quality by MARS has not reached statistical significance (3.2 ± 0.6 to 2.6 ± 0.8, p = 0.088). There was a significant introduction of artifacts introduced by metal artifact reduction algorithm for MARS with 2.4 ± 1.0, but minimal with SEMAR 0.4 ± 0.7, p < 0.001. CT iterative reconstruction algorithms with single and spectral energy are both effective in reduction of metal artifacts. Single energy-based algorithm provides better overall image quality than spectral CT-based algorithm. Spectral metal artifact reduction algorithm introduces mild to moderate artifacts in the far field.
NASA Astrophysics Data System (ADS)
Gilles, Antonin; Gioia, Patrick; Cozot, Rémi; Morin, Luce
2015-09-01
The hybrid point-source/wave-field method is a newly proposed approach for Computer-Generated Hologram (CGH) calculation, based on the slicing of the scene into several depth layers parallel to the hologram plane. The complex wave scattered by each depth layer is then computed using either a wave-field or a point-source approach according to a threshold criterion on the number of points within the layer. Finally, the complex waves scattered by all the depth layers are summed up in order to obtain the final CGH. Although outperforming both point-source and wave-field methods without producing any visible artifact, this approach has not yet been used for animated holograms, and the possible exploitation of temporal redundancies has not been studied. In this paper, we propose a fast computation of video holograms by taking into account those redundancies. Our algorithm consists of three steps. First, intensity and depth data of the current 3D video frame are extracted and compared with those of the previous frame in order to remove temporally redundant data. Then the CGH pattern for this compressed frame is generated using the hybrid point-source/wave-field approach. The resulting CGH pattern is finally transmitted to the video output and stored in the previous frame buffer. Experimental results reveal that our proposed method is able to produce video holograms at interactive rates without producing any visible artifact.
Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.
2016-01-01
Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276
NASA Astrophysics Data System (ADS)
Kuniyil Ajith Singh, Mithun; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt
2016-03-01
Reflection artifacts caused by acoustic inhomogeneities are a main challenge to deep-tissue photoacoustic imaging. Photoacoustic transients generated by the skin surface and superficial vasculature will propagate into the tissue and reflect back from echogenic structures to generate reflection artifacts. These artifacts can cause problems in image interpretation and limit imaging depth. In its basic version, PAFUSion mimics the inward travelling wave-field from blood vessel-like PA sources by applying focused ultrasound pulses, and thus provides a way to identify reflection artifacts. In this work, we demonstrate reflection artifact correction in addition to identification, towards obtaining an artifact-free photoacoustic image. In view of clinical applications, we implemented an improved version of PAFUSion in which photoacoustic data is backpropagated to imitate the inward travelling wave-field and thus the reflection artifacts of a more arbitrary distribution of PA sources that also includes the skin melanin layer. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. We present a phantom experiment and initial in vivo measurements on human volunteers where we demonstrate significant reflection artifact reduction using our technique. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can reduce these artifacts significantly to improve the deep-tissue photoacoustic imaging.
Removal of ring artifacts in microtomography by characterization of scintillator variations.
Vågberg, William; Larsson, Jakob C; Hertz, Hans M
2017-09-18
Ring artifacts reduce image quality in tomography, and arise from faulty detector calibration. In microtomography, we have identified that ring artifacts can arise due to high-spatial frequency variations in the scintillator thickness. Such variations are normally removed by a flat-field correction. However, as the spectrum changes, e.g. due to beam hardening, the detector response varies non-uniformly introducing ring artifacts that persist after flat-field correction. In this paper, we present a method to correct for ring artifacts from variations in scintillator thickness by using a simple method to characterize the local scintillator response. The method addresses the actual physical cause of the ring artifacts, in contrary to many other ring artifact removal methods which rely only on image post-processing. By applying the technique to an experimental phantom tomography, we show that ring artifacts are strongly reduced compared to only making a flat-field correction.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.
Lawhern, Vernon; Hairston, W David; McDowell, Kaleb; Westerfield, Marissa; Robbins, Kay
2012-07-15
We examine the problem of accurate detection and classification of artifacts in continuous EEG recordings. Manual identification of artifacts, by means of an expert or panel of experts, can be tedious, time-consuming and infeasible for large datasets. We use autoregressive (AR) models for feature extraction and characterization of EEG signals containing several kinds of subject-generated artifacts. AR model parameters are scale-invariant features that can be used to develop models of artifacts across a population. We use a support vector machine (SVM) classifier to discriminate among artifact conditions using the AR model parameters as features. Results indicate reliable classification among several different artifact conditions across subjects (approximately 94%). These results suggest that AR modeling can be a useful tool for discriminating among artifact signals both within and across individuals. Copyright © 2012 Elsevier B.V. All rights reserved.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Background: Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. Methods: In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Results: Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Conclusions: Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images. PMID:29535920
NASA Astrophysics Data System (ADS)
He, Wenhan
Current state-of-the-art organic solar cells (OSCs) adopt the strategy of using conjugated polymers or small molecules as donors and fullerene derivatives as acceptors in their active layers. Regarding to the donors of interest, the conjugated polymers and small molecules coupled with heavy metals have been less explored compared to their counterparts. Among various transition metal complexes applied, Pt(II) complexes are unique because of their intrinsic square planar geometries and ability to serve as building blocks for conjugated systems. Furthermore, the heavy metal Pt facilitates the formation of triplet excitons with longer life times through spin-orbital coupling which are of benefit for the OSCs application. However, in order to obtain low bandgap polymers, people are intended to use chromophores with long conjugated length, nevertheless such design will inevitably dilute the spin-orbital coupling effect and finally influence the formation of triplet excitons. Furthermore, the majority of Pt-containing conjugated systems reported so far shared a common feature-- they all possessed "dumbbell" shaped structures and were amorphous, leading to poor device performance. In addition, there were few examples reporting the capture of the triplet excitons by the fullerene acceptors in the OSCs since there is a mismatch between the triplet energy state (T1) of the Pt-containing compounds and the LUMO level of fullerene acceptors. As a result, these three intrinsic problems will impede the further development of such a field. In order to solve these problems, I originally designed and synthesized three novel compounds with unique proprieties named as Bodipy-Pt, Pt-SM and C60+SDS-. Specifically, Bodipy has the advantages of compact size, easy to synthesis and high fluorescence quantum yield which can effectively solve the problem of long conjugated length. While in terms of second problem, the new Pt-SM possessed a "roller-wheel" structural design with increased crystallinity through slip-stack packing; the solar cell efficiency of this compound out-performed all existing Pt-containing materials in organic solar cells. I have further studied the photophysical behavior of the molecule through time-resolved transient absorption spectroscopy as well as DFT calculation. Finally, because of its ionic nature, the LUMO level of C60+SDS- is lower than that of PCBM which serves as a common fullerene acceptor applied in the organic solar cell. Above all, through the measurement of time-resolved transient absorption, I have confirmed the C60+SDS - can capture the triplet exciton of Pt-SM through dynamic quenching since the life-time of triplet exciton has decreased after adding C60 +SDS- solution.
Effect of pressure and padding on motion artifact of textile electrodes.
Cömert, Alper; Honkala, Markku; Hyttinen, Jari
2013-04-08
With the aging population and rising healthcare costs, wearable monitoring is gaining importance. The motion artifact affecting dry electrodes is one of the main challenges preventing the widespread use of wearable monitoring systems. In this paper we investigate the motion artifact and ways of making a textile electrode more resilient against motion artifact. Our aim is to study the effects of the pressure exerted onto the electrode, and the effects of inserting padding between the applied pressure and the electrode. We measure real time electrode-skin interface impedance, ECG from two channels, the motion artifact related surface potential, and exerted pressure during controlled motion by a measurement setup designed to estimate the relation of motion artifact to the signals. We use different foam padding materials with various mechanical properties and apply electrode pressures between 5 and 25 mmHg to understand their effect. A QRS and noise detection algorithm based on a modified Pan-Tompkins QRS detection algorithm estimates the electrode behaviour in respect to the motion artifact from two channels; one dominated by the motion artifact and one containing both the motion artifact and the ECG. This procedure enables us to quantify a given setup's susceptibility to the motion artifact. Pressure is found to strongly affect signal quality as is the use of padding. In general, the paddings reduce the motion artifact. However the shape and frequency components of the motion artifact vary for different paddings, and their material and physical properties. Electrode impedance at 100 kHz correlates in some cases with the motion artifact but it is not a good predictor of the motion artifact. From the results of this study, guidelines for improving electrode design regarding padding and pressure can be formulated as paddings are a necessary part of the system for reducing the motion artifact, and further, their effect maximises between 15 mmHg and 20 mmHg of exerted pressure. In addition, we present new methods for evaluating electrode sensitivity to motion, utilizing the detection of noise peaks that fall into the same frequency band as R-peaks.