Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati
2010-12-20
Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.
Fitting direct covariance structures by the MSTRUCT modeling language of the CALIS procedure.
Yung, Yiu-Fai; Browne, Michael W; Zhang, Wei
2015-02-01
This paper demonstrates the usefulness and flexibility of the general structural equation modelling (SEM) approach to fitting direct covariance patterns or structures (as opposed to fitting implied covariance structures from functional relationships among variables). In particular, the MSTRUCT modelling language (or syntax) of the CALIS procedure (SAS/STAT version 9.22 or later: SAS Institute, 2010) is used to illustrate the SEM approach. The MSTRUCT modelling language supports a direct covariance pattern specification of each covariance element. It also supports the input of additional independent and dependent parameters. Model tests, fit statistics, estimates, and their standard errors are then produced under the general SEM framework. By using numerical and computational examples, the following tests of basic covariance patterns are illustrated: sphericity, compound symmetry, and multiple-group covariance patterns. Specification and testing of two complex correlation structures, the circumplex pattern and the composite direct product models with or without composite errors and scales, are also illustrated by the MSTRUCT syntax. It is concluded that the SEM approach offers a general and flexible modelling of direct covariance and correlation patterns. In conjunction with the use of SAS macros, the MSTRUCT syntax provides an easy-to-use interface for specifying and fitting complex covariance and correlation structures, even when the number of variables or parameters becomes large. © 2014 The British Psychological Society.
Statistical Analysis of Big Data on Pharmacogenomics
Fan, Jianqing; Liu, Han
2013-01-01
This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905
Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J
2016-06-30
Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.
Cornette, Raphaël; Baylac, Michel; Souter, Thibaud; Herrel, Anthony
2013-01-01
Morpho-functional patterns are important drivers of phenotypic diversity given their importance in a fitness-related context. Although modularity of the mandible and skull has been studied extensively in mammals, few studies have explored shape co-variation between these two structures. Despite being developmentally independent, the skull and mandible form a functionally integrated unit. In the present paper we use 3D surface geometric morphometric methods allowing us to explore the form of both skull and mandible in its 3D complexity using the greater white-toothed shrew as a model. This approach allows an accurate 3D description of zones devoid of anatomical landmarks that are functionally important. Two-block partial least-squares approaches were used to describe the co-variation of form between skull and mandible. Moreover, a 3D biomechanical model was used to explore the functional consequences of the observed patterns of co-variation. Our results show the efficiency of the method in investigations of complex morpho-functional patterns. Indeed, the description of shape co-variation between the skull and the mandible highlighted the location and the intensity of their functional relationships through the jaw adductor muscles linking these two structures. Our results also demonstrated that shape co-variation in form between the skull and mandible has direct functional consequences on the recruitment of muscles during biting. PMID:23964811
Noncommutative complex structures on quantum homogeneous spaces
NASA Astrophysics Data System (ADS)
Ó Buachalla, Réamonn
2016-01-01
A new framework for noncommutative complex geometry on quantum homogeneous spaces is introduced. The main ingredients used are covariant differential calculi and Takeuchi's categorical equivalence for quantum homogeneous spaces. A number of basic results are established, producing a simple set of necessary and sufficient conditions for noncommutative complex structures to exist. Throughout, the framework is applied to the quantum projective spaces endowed with the Heckenberger-Kolb calculus.
Binder, Harald; Sauerbrei, Willi; Royston, Patrick
2013-06-15
In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2) = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.
Covariant symplectic structure of the complex Monge-Ampère equation
NASA Astrophysics Data System (ADS)
Nutku, Y.
2000-04-01
The complex Monge-Ampère equation is invariant under arbitrary holomorphic changes of the independent variables with unit Jacobian. We present its variational formulation where the action remains invariant under this infinite group. The new Lagrangian enables us to obtain the first symplectic 2-form for the complex Monge-Ampère equation in the framework of the covariant Witten-Zuckerman approach to symplectic structure. We base our considerations on a reformulation of the Witten-Zuckerman theory in terms of holomorphic differential forms. The first closed and conserved Witten-Zuckerman symplectic 2-form for the complex Monge-Ampère equation is obtained in arbitrary dimension and for all cases elliptic, hyperbolic and homogeneous. The connection of the complex Monge-Ampère equation with Ricci-flat Kähler geometry suggests the use of the Hilbert action principle as an alternative variational formulation. However, we point out that Hilbert's Lagrangian is a divergence for Kähler metrics and serves as a topological invariant rather than yielding the Euclideanized Einstein field equations. Nevertheless, since the Witten-Zuckerman theory employs only the boundary terms in the first variation of the action, Hilbert's Lagrangian can be used to obtain the second Witten-Zuckerman symplectic 2-form. This symplectic 2-form vanishes on shell, thus defining a Lagrangian submanifold. In its derivation the connection of the second symplectic 2-form with the complex Monge-Ampère equation is indirect but we show that it satisfies all the properties required of a symplectic 2-form for the complex elliptic, or hyperbolic Monge-Ampère equation when the dimension of the complex manifold is 3 or higher. The complex Monge-Ampère equation admits covariant bisymplectic structure for complex dimension 3, or higher. However, in the physically interesting case of n=2 we have only one symplectic 2-form. The extension of these results to the case of complex Monge-Ampère-Liouville equation is also presented.
Liao, Hstau Y.; Hashem, Yaser; Frank, Joachim
2015-01-01
Summary Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. 3D covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. PMID:25982529
Liao, Hstau Y; Hashem, Yaser; Frank, Joachim
2015-06-02
Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. Three-dimensional covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chang, Jinyuan; Zhou, Wen; Zhou, Wen-Xin; Wang, Lan
2017-03-01
Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence, the test is robust with respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented in an R-package HDtest and are available on CRAN. © 2016, The International Biometric Society.
Decreased centrality of cortical volume covariance networks in autism spectrum disorders.
Balardin, Joana Bisol; Comfort, William Edgar; Daly, Eileen; Murphy, Clodagh; Andrews, Derek; Murphy, Declan G M; Ecker, Christine; Sato, João Ricardo
2015-10-01
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by atypical structural and functional brain connectivity. Complex network analysis has been mainly used to describe altered network-level organization for functional systems and white matter tracts in ASD. However, atypical functional and structural connectivity are likely to be also linked to abnormal development of the correlated structure of cortical gray matter. Such covariations of gray matter are particularly well suited to the investigation of the complex cortical pathology of ASD, which is not confined to isolated brain regions but instead acts at the systems level. In this study, we examined network centrality properties of gray matter networks in adults with ASD (n = 84) and neurotypical controls (n = 84) using graph theoretical analysis. We derived a structural covariance network for each group using interregional correlation matrices of cortical volumes extracted from a surface-based parcellation scheme containing 68 cortical regions. Differences between groups in closeness network centrality measures were evaluated using permutation testing. We identified several brain regions in the medial frontal, parietal and temporo-occipital cortices with reductions in closeness centrality in ASD compared to controls. We also found an association between an increased number of autistic traits and reduced centrality of visual nodes in neurotypicals. Our study shows that ASD are accompanied by atypical organization of structural covariance networks by means of a decreased centrality of regions relevant for social and sensorimotor processing. These findings provide further evidence for the altered network-level connectivity model of ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.
COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM.
Andén, Joakim; Katsevich, Eugene; Singer, Amit
2015-04-01
Classifying structural variability in noisy projections of biological macromolecules is a central problem in Cryo-EM. In this work, we build on a previous method for estimating the covariance matrix of the three-dimensional structure present in the molecules being imaged. Our proposed method allows for incorporation of contrast transfer function and non-uniform distribution of viewing angles, making it more suitable for real-world data. We evaluate its performance on a synthetic dataset and an experimental dataset obtained by imaging a 70S ribosome complex.
Almécija, Sergio; Orr, Caley M; Tocheri, Matthew W; Patel, Biren A; Jungers, William L
2015-01-01
Three-dimensional geometric morphometrics (3DGM) is a powerful tool for capturing and visualizing the "pure" shape of complex structures. However, these shape differences are sometimes difficult to interpret from a functional viewpoint, unless specific approaches (mostly based on biomechanical modeling) are employed. Here, we use 3DGM to explore the complex shape variation of the hamate, the disto-ulnar wrist bone, in anthropoid primates. Major trends of shape variation are explored using principal components analysis along with analyses of shape and size covariation. We also evaluate the phylogenetic patterning of hamate shape by plotting an anthropoid phylogenetic tree onto the shape space (i.e., phylomorphospace) and test against complete absence of phylogenetic signal using posterior permutation. Finally, the covariation of hamate shape and locomotor categories is explored by means of 2-block partial least squares (PLS) using shape coordinates and a matrix of data on arboreal locomotor behavior. Our results show that 3DGM is a valuable and versatile tool for characterizing the shape of complex structures such as wrist bones in anthropoids. For the hamate, a significant phylogenetic pattern is found in both hamate shape and size, indicating that closely related taxa are typically the most similar in hamate form. Our allometric analyses show that major differences in hamate shape among taxa are not a direct consequence of differences in hamate size. Finally, our PLS indicates a significant covariation of hamate shape and different types of arboreal locomotion, highlighting the relevance of this approach in future 3DGM studies seeking to capture a functional signal from complex biological structures. © 2014 Wiley Periodicals, Inc.
Bruce, Iain P.; Karaman, M. Muge; Rowe, Daniel B.
2012-01-01
The acquisition of sub-sampled data from an array of receiver coils has become a common means of reducing data acquisition time in MRI. Of the various techniques used in parallel MRI, SENSitivity Encoding (SENSE) is one of the most common, making use of a complex-valued weighted least squares estimation to unfold the aliased images. It was recently shown in Bruce et al. [Magn. Reson. Imag. 29(2011):1267–1287] that when the SENSE model is represented in terms of a real-valued isomorphism, it assumes a skew-symmetric covariance between receiver coils, as well as an identity covariance structure between voxels. In this manuscript, we show that not only is the skew-symmetric coil covariance unlike that of real data, but the estimated covariance structure between voxels over a time series of experimental data is not an identity matrix. As such, a new model, entitled SENSE-ITIVE, is described with both revised coil and voxel covariance structures. Both the SENSE and SENSE-ITIVE models are represented in terms of real-valued isomorphisms, allowing for a statistical analysis of reconstructed voxel means, variances, and correlations resulting from the use of different coil and voxel covariance structures used in the reconstruction processes to be conducted. It is shown through both theoretical and experimental illustrations that the miss-specification of the coil and voxel covariance structures in the SENSE model results in a lower standard deviation in each voxel of the reconstructed images, and thus an artificial increase in SNR, compared to the standard deviation and SNR of the SENSE-ITIVE model where both the coil and voxel covariances are appropriately accounted for. It is also shown that there are differences in the correlations induced by the reconstruction operations of both models, and consequently there are differences in the correlations estimated throughout the course of reconstructed time series. These differences in correlations could result in meaningful differences in interpretation of results. PMID:22617147
Fast Component Pursuit for Large-Scale Inverse Covariance Estimation.
Han, Lei; Zhang, Yu; Zhang, Tong
2016-08-01
The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also known as the inverse covariance estimation problem, has gained increasing interest recently. Most existing works assume that inverse covariance estimators contain sparse structure and then construct models with the ℓ 1 regularization. In this paper, different from existing works, we study the inverse covariance estimation problem from another perspective by efficiently modeling the low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is common in many applications including the climate and financial analysis, and another one is that such assumption can reduce the computational complexity when computing its inverse. Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank part, where each component can be sparse. For optimization, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP algorithm enjoys several appealing properties including the existence of an efficient solution in each iteration and the theoretical guarantee on the convergence of this greedy approach. Experiments on large-scale synthetic and real-world datasets including thousands of millions variables show that the COP method is faster than the state-of-the-art techniques for the inverse covariance estimation problem when achieving comparable log-likelihood on test data.
Narayan, Manjari; Allen, Genevera I.
2016-01-01
Many complex brain disorders, such as autism spectrum disorders, exhibit a wide range of symptoms and disability. To understand how brain communication is impaired in such conditions, functional connectivity studies seek to understand individual differences in brain network structure in terms of covariates that measure symptom severity. In practice, however, functional connectivity is not observed but estimated from complex and noisy neural activity measurements. Imperfect subject network estimates can compromise subsequent efforts to detect covariate effects on network structure. We address this problem in the case of Gaussian graphical models of functional connectivity, by proposing novel two-level models that treat both subject level networks and population level covariate effects as unknown parameters. To account for imperfectly estimated subject level networks when fitting these models, we propose two related approaches—R2 based on resampling and random effects test statistics, and R3 that additionally employs random adaptive penalization. Simulation studies using realistic graph structures reveal that R2 and R3 have superior statistical power to detect covariate effects compared to existing approaches, particularly when the number of within subject observations is comparable to the size of subject networks. Using our novel models and methods to study parts of the ABIDE dataset, we find evidence of hypoconnectivity associated with symptom severity in autism spectrum disorders, in frontoparietal and limbic systems as well as in anterior and posterior cingulate cortices. PMID:27147940
NASA Astrophysics Data System (ADS)
Benioff, Paul
2015-05-01
The purpose of this paper is to put the description of number scaling and its effects on physics and geometry on a firmer foundation, and to make it more understandable. A main point is that two different concepts, number and number value are combined in the usual representations of number structures. This is valid as long as just one structure of each number type is being considered. It is not valid when different structures of each number type are being considered. Elements of base sets of number structures, considered by themselves, have no meaning. They acquire meaning or value as elements of a number structure. Fiber bundles over a space or space time manifold, M, are described. The fiber consists of a collection of many real or complex number structures and vector space structures. The structures are parameterized by a real or complex scaling factor, s. A vector space at a fiber level, s, has, as scalars, real or complex number structures at the same level. Connections are described that relate scalar and vector space structures at both neighbor M locations and at neighbor scaling levels. Scalar and vector structure valued fields are described and covariant derivatives of these fields are obtained. Two complex vector fields, each with one real and one imaginary field, appear, with one complex field associated with positions in M and the other with position dependent scaling factors. A derivation of the covariant derivative for scalar and vector valued fields gives the same vector fields. The derivation shows that the complex vector field associated with scaling fiber levels is the gradient of a complex scalar field. Use of these results in gauge theory shows that the imaginary part of the vector field associated with M positions acts like the electromagnetic field. The physical relevance of the other three fields, if any, is not known.
On the constrained classical capacity of infinite-dimensional covariant quantum channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holevo, A. S.
The additivity of the minimal output entropy and that of the χ-capacity are known to be equivalent for finite-dimensional irreducibly covariant quantum channels. In this paper, we formulate a list of conditions allowing to establish similar equivalence for infinite-dimensional covariant channels with constrained input. This is then applied to bosonic Gaussian channels with quadratic input constraint to extend the classical capacity results of the recent paper [Giovannetti et al., Commun. Math. Phys. 334(3), 1553-1571 (2015)] to the case where the complex structures associated with the channel and with the constraint operator need not commute. In particular, this implies a multimodemore » generalization of the “threshold condition,” obtained for single mode in Schäfer et al. [Phys. Rev. Lett. 111, 030503 (2013)], and the proof of the fact that under this condition the classical “Gaussian capacity” resulting from optimization over only Gaussian inputs is equal to the full classical capacity. Complex structures correspond to different squeezings, each with its own normal modes, vacuum and coherent states, and the gauge. Thus our results apply, e.g., to multimode channels with a squeezed Gaussian noise under the standard input energy constraint, provided the squeezing is not too large as to violate the generalized threshold condition. We also investigate the restrictiveness of the gauge-covariance condition for single- and multimode bosonic Gaussian channels.« less
Davies, Christopher E; Glonek, Gary Fv; Giles, Lynne C
2017-08-01
One purpose of a longitudinal study is to gain a better understanding of how an outcome of interest changes among a given population over time. In what follows, a trajectory will be taken to mean the series of measurements of the outcome variable for an individual. Group-based trajectory modelling methods seek to identify subgroups of trajectories within a population, such that trajectories that are grouped together are more similar to each other than to trajectories in distinct groups. Group-based trajectory models generally assume a certain structure in the covariances between measurements, for example conditional independence, homogeneous variance between groups or stationary variance over time. Violations of these assumptions could be expected to result in poor model performance. We used simulation to investigate the effect of covariance misspecification on misclassification of trajectories in commonly used models under a range of scenarios. To do this we defined a measure of performance relative to the ideal Bayesian correct classification rate. We found that the more complex models generally performed better over a range of scenarios. In particular, incorrectly specified covariance matrices could significantly bias the results but using models with a correct but more complicated than necessary covariance matrix incurred little cost.
Yap, John Stephen; Fan, Jianqing; Wu, Rongling
2009-12-01
Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.
Lucas, Lauren K; Nice, Chris C; Gompert, Zachariah
2018-03-13
Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems. © 2018 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Cheung, Mike W. L.; Chan, Wai
2009-01-01
Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…
3D RNA and functional interactions from evolutionary couplings
Weinreb, Caleb; Riesselman, Adam; Ingraham, John B.; Gross, Torsten; Sander, Chris; Marks, Debora S.
2016-01-01
Summary Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces research on their structure and functional interactions. We mine the evolutionary sequence record to derive precise information about function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules, and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions, e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by accelerating sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444
The evolution of phenotypic integration: How directional selection reshapes covariation in mice
Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel
2017-01-01
Abstract Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. PMID:28685813
Dark matter statistics for large galaxy catalogs: power spectra and covariance matrices
NASA Astrophysics Data System (ADS)
Klypin, Anatoly; Prada, Francisco
2018-06-01
Large-scale surveys of galaxies require accurate theoretical predictions of the dark matter clustering for thousands of mock galaxy catalogs. We demonstrate that this goal can be achieve with the new Parallel Particle-Mesh (PM) N-body code GLAM at a very low computational cost. We run ˜22, 000 simulations with ˜2 billion particles that provide ˜1% accuracy of the dark matter power spectra P(k) for wave-numbers up to k ˜ 1hMpc-1. Using this large data-set we study the power spectrum covariance matrix. In contrast to many previous analytical and numerical results, we find that the covariance matrix normalised to the power spectrum C(k, k΄)/P(k)P(k΄) has a complex structure of non-diagonal components: an upturn at small k, followed by a minimum at k ≈ 0.1 - 0.2 hMpc-1, and a maximum at k ≈ 0.5 - 0.6 hMpc-1. The normalised covariance matrix strongly evolves with redshift: C(k, k΄)∝δα(t)P(k)P(k΄), where δ is the linear growth factor and α ≈ 1 - 1.25, which indicates that the covariance matrix depends on cosmological parameters. We also show that waves longer than 1h-1Gpc have very little impact on the power spectrum and covariance matrix. This significantly reduces the computational costs and complexity of theoretical predictions: relatively small volume ˜(1h-1Gpc)3 simulations capture the necessary properties of dark matter clustering statistics. As our results also indicate, achieving ˜1% errors in the covariance matrix for k < 0.50 hMpc-1 requires a resolution better than ɛ ˜ 0.5h-1Mpc.
Hoyle, R H
1991-02-01
Indirect measures of psychological constructs are vital to clinical research. On occasion, however, the meaning of indirect measures of psychological constructs is obfuscated by statistical procedures that do not account for the complex relations between items and latent variables and among latent variables. Covariance structure analysis (CSA) is a statistical procedure for testing hypotheses about the relations among items that indirectly measure a psychological construct and relations among psychological constructs. This article introduces clinical researchers to the strengths and limitations of CSA as a statistical procedure for conceiving and testing structural hypotheses that are not tested adequately with other statistical procedures. The article is organized around two empirical examples that illustrate the use of CSA for evaluating measurement models with correlated error terms, higher-order factors, and measured and latent variables.
Joel Shaw, Daniel; Mareček, Radek; Grosbras, Marie-Helene; Leonard, Gabriel; Bruce Pike, G.
2016-01-01
Our ability to process complex social cues presented by faces improves during adolescence. Using multivariate analyses of neuroimaging data collected longitudinally from a sample of 38 adolescents (17 males) when they were 10, 11.5, 13 and 15 years old, we tested the possibility that there exists parallel variations in the structural and functional development of neural systems supporting face processing. By combining measures of task-related functional connectivity and brain morphology, we reveal that both the structural covariance and functional connectivity among ‘distal’ nodes of the face-processing network engaged by ambiguous faces increase during this age range. Furthermore, we show that the trajectory of increasing functional connectivity between the distal nodes occurs in tandem with the development of their structural covariance. This demonstrates a tight coupling between functional and structural maturation within the face-processing network. Finally, we demonstrate that increased functional connectivity is associated with age-related improvements of face-processing performance, particularly in females. We suggest that our findings reflect greater integration among distal elements of the neural systems supporting the processing of facial expressions. This, in turn, might facilitate an enhanced extraction of social information from faces during a time when greater importance is placed on social interactions. PMID:26772669
The evolution of phenotypic integration: How directional selection reshapes covariation in mice.
Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel
2017-10-01
Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Treatment decisions based on scalar and functional baseline covariates.
Ciarleglio, Adam; Petkova, Eva; Ogden, R Todd; Tarpey, Thaddeus
2015-12-01
The amount and complexity of patient-level data being collected in randomized-controlled trials offer both opportunities and challenges for developing personalized rules for assigning treatment for a given disease or ailment. For example, trials examining treatments for major depressive disorder are not only collecting typical baseline data such as age, gender, or scores on various tests, but also data that measure the structure and function of the brain such as images from magnetic resonance imaging (MRI), functional MRI (fMRI), or electroencephalography (EEG). These latter types of data have an inherent structure and may be considered as functional data. We propose an approach that uses baseline covariates, both scalars and functions, to aid in the selection of an optimal treatment. In addition to providing information on which treatment should be selected for a new patient, the estimated regime has the potential to provide insight into the relationship between treatment response and the set of baseline covariates. Our approach can be viewed as an extension of "advantage learning" to include both scalar and functional covariates. We describe our method and how to implement it using existing software. Empirical performance of our method is evaluated with simulated data in a variety of settings and also applied to data arising from a study of patients with major depressive disorder from whom baseline scalar covariates as well as functional data from EEG are available. © 2015, The International Biometric Society.
Alterations in Anatomical Covariance in the Prematurely Born
Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R.; Schneider, Karen C.; Papademetris, Xenophon; Constable, R. Todd; Ment, Laura R.
2017-01-01
Abstract Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. PMID:26494796
Bromaghin, Jeffrey F.; McDonald, Trent L.; Amstrup, Steven C.
2013-01-01
Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonly modeled as functions of explanatory covariates, adding considerable flexibility to mark-recapture models, but also increasing the subjectivity and complexity of the modeling process. Consequently, model selection and the evaluation of covariate structure remain critical aspects of mark-recapture modeling. The difficulties involved in model selection are compounded in Cormack-Jolly- Seber models because they are composed of separate sub-models for survival and recapture probabilities, which are conceptualized independently even though their parameters are not statistically independent. The construction of models as combinations of sub-models, together with multiple potential covariates, can lead to a large model set. Although desirable, estimation of the parameters of all models may not be feasible. Strategies to search a model space and base inference on a subset of all models exist and enjoy widespread use. However, even though the methods used to search a model space can be expected to influence parameter estimation, the assessment of covariate importance, and therefore the ecological interpretation of the modeling results, the performance of these strategies has received limited investigation. We present a new strategy for searching the space of a candidate set of Cormack-Jolly-Seber models and explore its performance relative to existing strategies using computer simulation. The new strategy provides an improved assessment of the importance of covariates and covariate combinations used to model survival and recapture probabilities, while requiring only a modest increase in the number of models on which inference is based in comparison to existing techniques.
Interspecific analysis of covariance structure in the masticatory apparatus of galagos.
Vinyard, Christopher J
2007-01-01
The primate masticatory apparatus (MA) is a functionally integrated set of features, each of which performs important functions in biting, ingestive, and chewing behaviors. A comparison of morphological covariance structure among species for these MA features will help us to further understand the evolutionary history of this region. In this exploratory analysis, the covariance structure of the MA is compared across seven galago species to investigate 1) whether there are differences in covariance structure in this region, and 2) if so, how has this covariation changed with respect to size, MA form, diet, and/or phylogeny? Ten measurements of the MA functionally related to bite force production and load resistance were obtained from 218 adults of seven galago species. Correlation matrices were generated for these 10 dimensions and compared among species via matrix correlations and Mantel tests. Subsequently, pairwise covariance disparity in the MA was estimated as a measure of difference in covariance structure between species. Covariance disparity estimates were correlated with pairwise distances related to differences in body size, MA size and shape, genetic distance (based on cytochrome-b sequences) and percentage of dietary foods to determine whether one or more of these factors is linked to differences in covariance structure. Galagos differ in MA covariance structure. Body size appears to be a major factor correlated with differences in covariance structure among galagos. The largest galago species, Otolemur crassicaudatus, exhibits large differences in body mass and covariance structure relative to other galagos, and thus plays a primary role in creating this association. MA size and shape do not correlate with covariance structure when body mass is held constant. Diet also shows no association. Genetic distance is significantly negatively correlated with covariance disparity when body mass is held constant, but this correlation appears to be a function of the small body size and large genetic distance for Galagoides demidoff. These exploratory results indicate that changing body size may have been a key factor in the evolution of the galago MA.
Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P
2018-05-18
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.
Romero-Garcia, Rafael; Whitaker, Kirstie J; Váša, František; Seidlitz, Jakob; Shinn, Maxwell; Fonagy, Peter; Dolan, Raymond J; Jones, Peter B; Goodyer, Ian M; Bullmore, Edward T; Vértes, Petra E
2018-05-01
Complex network topology is characteristic of many biological systems, including anatomical and functional brain networks (connectomes). Here, we first constructed a structural covariance network from MRI measures of cortical thickness on 296 healthy volunteers, aged 14-24 years. Next, we designed a new algorithm for matching sample locations from the Allen Brain Atlas to the nodes of the SCN. Subsequently we used this to define, transcriptomic brain networks by estimating gene co-expression between pairs of cortical regions. Finally, we explored the hypothesis that transcriptional networks and structural MRI connectomes are coupled. A transcriptional brain network (TBN) and a structural covariance network (SCN) were correlated across connection weights and showed qualitatively similar complex topological properties: assortativity, small-worldness, modularity, and a rich-club. In both networks, the weight of an edge was inversely related to the anatomical (Euclidean) distance between regions. There were differences between networks in degree and distance distributions: the transcriptional network had a less fat-tailed degree distribution and a less positively skewed distance distribution than the SCN. However, cortical areas connected to each other within modules of the SCN had significantly higher levels of whole genome co-expression than expected by chance. Nodes connected in the SCN had especially high levels of expression and co-expression of a human supragranular enriched (HSE) gene set that has been specifically located to supragranular layers of human cerebral cortex and is known to be important for large-scale, long-distance cortico-cortical connectivity. This coupling of brain transcriptome and connectome topologies was largely but not entirely accounted for by the common constraint of physical distance on both networks. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Zhou, Hua; Li, Lexin
2014-01-01
Summary Modern technologies are producing a wealth of data with complex structures. For instance, in two-dimensional digital imaging, flow cytometry and electroencephalography, matrix-type covariates frequently arise when measurements are obtained for each combination of two underlying variables. To address scientific questions arising from those data, new regression methods that take matrices as covariates are needed, and sparsity or other forms of regularization are crucial owing to the ultrahigh dimensionality and complex structure of the matrix data. The popular lasso and related regularization methods hinge on the sparsity of the true signal in terms of the number of its non-zero coefficients. However, for the matrix data, the true signal is often of, or can be well approximated by, a low rank structure. As such, the sparsity is frequently in the form of low rank of the matrix parameters, which may seriously violate the assumption of the classical lasso. We propose a class of regularized matrix regression methods based on spectral regularization. A highly efficient and scalable estimation algorithm is developed, and a degrees-of-freedom formula is derived to facilitate model selection along the regularization path. Superior performance of the method proposed is demonstrated on both synthetic and real examples. PMID:24648830
Real longitudinal data analysis for real people: building a good enough mixed model.
Cheng, Jing; Edwards, Lloyd J; Maldonado-Molina, Mildred M; Komro, Kelli A; Muller, Keith E
2010-02-20
Mixed effects models have become very popular, especially for the analysis of longitudinal data. One challenge is how to build a good enough mixed effects model. In this paper, we suggest a systematic strategy for addressing this challenge and introduce easily implemented practical advice to build mixed effects models. A general discussion of the scientific strategies motivates the recommended five-step procedure for model fitting. The need to model both the mean structure (the fixed effects) and the covariance structure (the random effects and residual error) creates the fundamental flexibility and complexity. Some very practical recommendations help to conquer the complexity. Centering, scaling, and full-rank coding of all the predictor variables radically improve the chances of convergence, computing speed, and numerical accuracy. Applying computational and assumption diagnostics from univariate linear models to mixed model data greatly helps to detect and solve the related computational problems. Applying computational and assumption diagnostics from the univariate linear models to the mixed model data can radically improve the chances of convergence, computing speed, and numerical accuracy. The approach helps to fit more general covariance models, a crucial step in selecting a credible covariance model needed for defensible inference. A detailed demonstration of the recommended strategy is based on data from a published study of a randomized trial of a multicomponent intervention to prevent young adolescents' alcohol use. The discussion highlights a need for additional covariance and inference tools for mixed models. The discussion also highlights the need for improving how scientists and statisticians teach and review the process of finding a good enough mixed model. (c) 2009 John Wiley & Sons, Ltd.
Shaw, Daniel Joel; Mareček, Radek; Grosbras, Marie-Helene; Leonard, Gabriel; Pike, G Bruce; Paus, Tomáš
2016-04-01
Our ability to process complex social cues presented by faces improves during adolescence. Using multivariate analyses of neuroimaging data collected longitudinally from a sample of 38 adolescents (17 males) when they were 10, 11.5, 13 and 15 years old, we tested the possibility that there exists parallel variations in the structural and functional development of neural systems supporting face processing. By combining measures of task-related functional connectivity and brain morphology, we reveal that both the structural covariance and functional connectivity among 'distal' nodes of the face-processing network engaged by ambiguous faces increase during this age range. Furthermore, we show that the trajectory of increasing functional connectivity between the distal nodes occurs in tandem with the development of their structural covariance. This demonstrates a tight coupling between functional and structural maturation within the face-processing network. Finally, we demonstrate that increased functional connectivity is associated with age-related improvements of face-processing performance, particularly in females. We suggest that our findings reflect greater integration among distal elements of the neural systems supporting the processing of facial expressions. This, in turn, might facilitate an enhanced extraction of social information from faces during a time when greater importance is placed on social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Structural covariance networks across the life span, from 6 to 94 years of age.
DuPre, Elizabeth; Spreng, R Nathan
2017-10-01
Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective-bridging childhood with early, middle, and late adulthood-on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories.
Structural covariance networks across the life span, from 6 to 94 years of age
DuPre, Elizabeth; Spreng, R. Nathan
2017-01-01
Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective—bridging childhood with early, middle, and late adulthood—on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories. PMID:29855624
Alterations in Anatomical Covariance in the Prematurely Born.
Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R; Schneider, Karen C; Papademetris, Xenophon; Constable, R Todd; Ment, Laura R
2017-01-01
Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Structural Analysis of Covariance and Correlation Matrices.
ERIC Educational Resources Information Center
Joreskog, Karl G.
1978-01-01
A general approach to analysis of covariance structures is considered, in which the variances and covariances or correlations of the observed variables are directly expressed in terms of the parameters of interest. The statistical problems of identification, estimation and testing of such covariance or correlation structures are discussed.…
Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
The Stability of Post Hoc Model Modifications in Covariance Structure Models.
ERIC Educational Resources Information Center
Hutchinson, Susan R.
The work of R. MacCallum et al. (1992) was extended by examining chance modifications through a Monte Carlo simulation. The stability of post hoc model modifications was examined under varying sample size, model complexity, and severity of misspecification using 2- and 4-factor oblique confirmatory factor analysis (CFA) models with four and eight…
Modeling Particle Exposure in US Trucking Terminals
Davis, ME; Smith, TJ; Laden, F; Hart, JE; Ryan, LM; Garshick, E
2007-01-01
Multi-tiered sampling approaches are common in environmental and occupational exposure assessment, where exposures for a given individual are often modeled based on simultaneous measurements taken at multiple indoor and outdoor sites. The monitoring data from such studies is hierarchical by design, imposing a complex covariance structure that must be accounted for in order to obtain unbiased estimates of exposure. Statistical methods such as structural equation modeling (SEM) represent a useful alternative to simple linear regression in these cases, providing simultaneous and unbiased predictions of each level of exposure based on a set of covariates specific to the exposure setting. We test the SEM approach using data from a large exposure assessment of diesel and combustion particles in the US trucking industry. The exposure assessment includes data from 36 different trucking terminals across the United States sampled between 2001 and 2005, measuring PM2.5 and its elemental carbon (EC), organic carbon (OC) components, by personal monitoring, and sampling at two indoor work locations and an outdoor “background” location. Using the SEM method, we predict: 1) personal exposures as a function of work related exposure and smoking status; 2) work related exposure as a function of terminal characteristics, indoor ventilation, job location, and background exposure conditions; and 3) background exposure conditions as a function of weather, nearby source pollution, and other regional differences across terminal sites. The primary advantage of SEMs in this setting is the ability to simultaneously predict exposures at each of the sampling locations, while accounting for the complex covariance structure among the measurements and descriptive variables. The statistically significant results and high R2 values observed from the trucking industry application supports the broader use of this approach in exposure assessment modeling. PMID:16856739
NASA Astrophysics Data System (ADS)
Mao, Deqing; Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu
2018-01-01
Doppler beam sharpening (DBS) is a critical technology for airborne radar ground mapping in forward-squint region. In conventional DBS technology, the narrow-band Doppler filter groups formed by fast Fourier transform (FFT) method suffer from low spectral resolution and high side lobe levels. The iterative adaptive approach (IAA), based on the weighted least squares (WLS), is applied to the DBS imaging applications, forming narrower Doppler filter groups than the FFT with lower side lobe levels. Regrettably, the IAA is iterative, and requires matrix multiplication and inverse operation when forming the covariance matrix, its inverse and traversing the WLS estimate for each sampling point, resulting in a notably high computational complexity for cubic time. We propose a fast IAA (FIAA)-based super-resolution DBS imaging method, taking advantage of the rich matrix structures of the classical narrow-band filtering. First, we formulate the covariance matrix via the FFT instead of the conventional matrix multiplication operation, based on the typical Fourier structure of the steering matrix. Then, by exploiting the Gohberg-Semencul representation, the inverse of the Toeplitz covariance matrix is computed by the celebrated Levinson-Durbin (LD) and Toeplitz-vector algorithm. Finally, the FFT and fast Toeplitz-vector algorithm are further used to traverse the WLS estimates based on the data-dependent trigonometric polynomials. The method uses the Hermitian feature of the echo autocorrelation matrix R to achieve its fast solution and uses the Toeplitz structure of R to realize its fast inversion. The proposed method enjoys a lower computational complexity without performance loss compared with the conventional IAA-based super-resolution DBS imaging method. The results based on simulations and measured data verify the imaging performance and the operational efficiency.
Pitchers, W. R.; Brooks, R.; Jennions, M. D.; Tregenza, T.; Dworkin, I.; Hunt, J.
2013-01-01
Phenotypic integration and plasticity are central to our understanding of how complex phenotypic traits evolve. Evolutionary change in complex quantitative traits can be predicted using the multivariate breeders’ equation, but such predictions are only accurate if the matrices involved are stable over evolutionary time. Recent work, however, suggests that these matrices are temporally plastic, spatially variable and themselves evolvable. The data available on phenotypic variance-covariance matrix (P) stability is sparse, and largely focused on morphological traits. Here we compared P for the structure of the complex sexual advertisement call of six divergent allopatric populations of the Australian black field cricket, Teleogryllus commodus. We measured a subset of calls from wild-caught crickets from each of the populations and then a second subset after rearing crickets under common-garden conditions for three generations. In a second experiment, crickets from each population were reared in the laboratory on high- and low-nutrient diets and their calls recorded. In both experiments, we estimated P for call traits and used multiple methods to compare them statistically (Flury hierarchy, geometric subspace comparisons and random skewers). Despite considerable variation in means and variances of individual call traits, the structure of P was largely conserved among populations, across generations and between our rearing diets. Our finding that P remains largely stable, among populations and between environmental conditions, suggests that selection has preserved the structure of call traits in order that they can function as an integrated unit. PMID:23530814
Gosho, Masahiko; Hirakawa, Akihiro; Noma, Hisashi; Maruo, Kazushi; Sato, Yasunori
2017-10-01
In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as a primary analysis for group comparisons in these trials. Furthermore, model-based covariance estimators have been routinely used for testing the group difference and estimating confidence intervals of the difference in the MMRM analysis using the UN covariance. However, using the MMRM analysis with the UN covariance could lead to convergence problems for numerical optimization, especially in trials with a small-sample size. Although the so-called sandwich covariance estimator is robust to misspecification of the covariance structure, its performance deteriorates in settings with small-sample size. We investigated the performance of the sandwich covariance estimator and covariance estimators adjusted for small-sample bias proposed by Kauermann and Carroll ( J Am Stat Assoc 2001; 96: 1387-1396) and Mancl and DeRouen ( Biometrics 2001; 57: 126-134) fitting simpler covariance structures through a simulation study. In terms of the type 1 error rate and coverage probability of confidence intervals, Mancl and DeRouen's covariance estimator with compound symmetry, first-order autoregressive (AR(1)), heterogeneous AR(1), and antedependence structures performed better than the original sandwich estimator and Kauermann and Carroll's estimator with these structures in the scenarios where the variance increased across visits. The performance based on Mancl and DeRouen's estimator with these structures was nearly equivalent to that based on the Kenward-Roger method for adjusting the standard errors and degrees of freedom with the UN structure. The model-based covariance estimator with the UN structure under unadjustment of the degrees of freedom, which is frequently used in applications, resulted in substantial inflation of the type 1 error rate. We recommend the use of Mancl and DeRouen's estimator in MMRM analysis if the number of subjects completing is ( n + 5) or less, where n is the number of planned visits. Otherwise, the use of Kenward and Roger's method with UN structure should be the best way.
Li, Dan; Wang, Xia; Dey, Dipak K
2016-09-01
Our present work proposes a new survival model in a Bayesian context to analyze right-censored survival data for populations with a surviving fraction, assuming that the log failure time follows a generalized extreme value distribution. Many applications require a more flexible modeling of covariate information than a simple linear or parametric form for all covariate effects. It is also necessary to include the spatial variation in the model, since it is sometimes unexplained by the covariates considered in the analysis. Therefore, the nonlinear covariate effects and the spatial effects are incorporated into the systematic component of our model. Gaussian processes (GPs) provide a natural framework for modeling potentially nonlinear relationship and have recently become extremely powerful in nonlinear regression. Our proposed model adopts a semiparametric Bayesian approach by imposing a GP prior on the nonlinear structure of continuous covariate. With the consideration of data availability and computational complexity, the conditionally autoregressive distribution is placed on the region-specific frailties to handle spatial correlation. The flexibility and gains of our proposed model are illustrated through analyses of simulated data examples as well as a dataset involving a colon cancer clinical trial from the state of Iowa. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Emsley, Richard; Dunn, Graham; White, Ian R
2010-06-01
Complex intervention trials should be able to answer both pragmatic and explanatory questions in order to test the theories motivating the intervention and help understand the underlying nature of the clinical problem being tested. Key to this is the estimation of direct effects of treatment and indirect effects acting through intermediate variables which are measured post-randomisation. Using psychological treatment trials as an example of complex interventions, we review statistical methods which crucially evaluate both direct and indirect effects in the presence of hidden confounding between mediator and outcome. We review the historical literature on mediation and moderation of treatment effects. We introduce two methods from within the existing causal inference literature, principal stratification and structural mean models, and demonstrate how these can be applied in a mediation context before discussing approaches and assumptions necessary for attaining identifiability of key parameters of the basic causal model. Assuming that there is modification by baseline covariates of the effect of treatment (i.e. randomisation) on the mediator (i.e. covariate by treatment interactions), but no direct effect on the outcome of these treatment by covariate interactions leads to the use of instrumental variable methods. We describe how moderation can occur through post-randomisation variables, and extend the principal stratification approach to multiple group methods with explanatory models nested within the principal strata. We illustrate the new methodology with motivating examples of randomised trials from the mental health literature.
Antivirion Effects of Streptovaricin Complex Against Friend Virus
Horoszewicz, Julius S.; Leong, Susan S.; Byrd, Daniel M.; Carter, William A.
1974-01-01
The in vitro antivirion activities of five different streptovaricin complex lots against the polycythemic strain of the Friend virus were evaluated. The assay system was based on the inhibition of the Friend virus-induced spleen foci. The virus inactivation process was shown to be susceptible to variation in temperature, pH, and time. The antivirion activity and the acute toxicity for mice, as well as the optical properties of these streptovaricin complexes, do not co-vary; this suggests that their biological activities are not associated with a single molecular structure. In addition, the antivirion activity of the five preparations of streptovaricin complex differs about 30-fold, indicating that this activity does not reside in a major component of the complex. PMID:15825311
Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution.
de Oliveira, Felipe Bandoni; Porto, Arthur; Marroig, Gabriel
2009-04-01
The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r2) for all Catarrhini genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull.
Chang, Chiung-Chih; Chang, Ya-Ting; Huang, Chi-Wei; Tsai, Shih-Jen; Hsu, Shih-Wei; Huang, Shu-Hua; Lee, Chen-Chang; Chang, Wen-Neng; Lui, Chun-Chung; Lien, Chia-Yi
2018-02-08
Alzheimer's disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores. Gray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs characteristic of AD were constructed from seeds in the default mode network, salience network, and executive control network, and cognitive test scores served as the major outcome factor. For the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast, genetic influences in the A homozygotes were found mainly in the executive control network, and both the dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores. Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers among all four SCNs. Our results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles.
Using iMCFA to Perform the CFA, Multilevel CFA, and Maximum Model for Analyzing Complex Survey Data.
Wu, Jiun-Yu; Lee, Yuan-Hsuan; Lin, John J H
2018-01-01
To construct CFA, MCFA, and maximum MCFA with LISREL v.8 and below, we provide iMCFA (integrated Multilevel Confirmatory Analysis) to examine the potential multilevel factorial structure in the complex survey data. Modeling multilevel structure for complex survey data is complicated because building a multilevel model is not an infallible statistical strategy unless the hypothesized model is close to the real data structure. Methodologists have suggested using different modeling techniques to investigate potential multilevel structure of survey data. Using iMCFA, researchers can visually set the between- and within-level factorial structure to fit MCFA, CFA and/or MAX MCFA models for complex survey data. iMCFA can then yield between- and within-level variance-covariance matrices, calculate intraclass correlations, perform the analyses and generate the outputs for respective models. The summary of the analytical outputs from LISREL is gathered and tabulated for further model comparison and interpretation. iMCFA also provides LISREL syntax of different models for researchers' future use. An empirical and a simulated multilevel dataset with complex and simple structures in the within or between level was used to illustrate the usability and the effectiveness of the iMCFA procedure on analyzing complex survey data. The analytic results of iMCFA using Muthen's limited information estimator were compared with those of Mplus using Full Information Maximum Likelihood regarding the effectiveness of different estimation methods.
Pourcain, Beate St.; Smith, George Davey; York, Timothy P.; Evans, David M.
2014-01-01
Genome wide complex trait analysis (GCTA) is extended to include environmental effects of the maternal genotype on offspring phenotype (“maternal effects”, M-GCTA). The model includes parameters for the direct effects of the offspring genotype, maternal effects and the covariance between direct and maternal effects. Analysis of simulated data, conducted in OpenMx, confirmed that model parameters could be recovered by full information maximum likelihood (FIML) and evaluated the biases that arise in conventional GCTA when indirect genetic effects are ignored. Estimates derived from FIML in OpenMx showed very close agreement to those obtained by restricted maximum likelihood using the published algorithm for GCTA. The method was also applied to illustrative perinatal phenotypes from ∼4,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children. The relative merits of extended GCTA in contrast to quantitative genetic approaches based on analyzing the phenotypic covariance structure of kinships are considered. PMID:25060210
Structural Covariance of the Default Network in Healthy and Pathological Aging
Turner, Gary R.
2013-01-01
Significant progress has been made uncovering functional brain networks, yet little is known about the corresponding structural covariance networks. The default network's functional architecture has been shown to change over the course of healthy and pathological aging. We examined cross-sectional and longitudinal datasets to reveal the structural covariance of the human default network across the adult lifespan and through the progression of Alzheimer's disease (AD). We used a novel approach to identify the structural covariance of the default network and derive individual participant scores that reflect the covariance pattern in each brain image. A seed-based multivariate analysis was conducted on structural images in the cross-sectional OASIS (N = 414) and longitudinal Alzheimer's Disease Neuroimaging Initiative (N = 434) datasets. We reproduced the distributed topology of the default network, based on a posterior cingulate cortex seed, consistent with prior reports of this intrinsic connectivity network. Structural covariance of the default network scores declined in healthy and pathological aging. Decline was greatest in the AD cohort and in those who progressed from mild cognitive impairment to AD. Structural covariance of the default network scores were positively associated with general cognitive status, reduced in APOEε4 carriers versus noncarriers, and associated with CSF biomarkers of AD. These findings identify the structural covariance of the default network and characterize changes to the network's gray matter integrity across the lifespan and through the progression of AD. The findings provide evidence for the large-scale network model of neurodegenerative disease, in which neurodegeneration spreads through intrinsically connected brain networks in a disease specific manner. PMID:24048852
Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel
2014-05-20
A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.
Spatio-Temporal EEG Models for Brain Interfaces
Gonzalez-Navarro, P.; Moghadamfalahi, M.; Akcakaya, M.; Erdogmus, D.
2016-01-01
Multichannel electroencephalography (EEG) is widely used in non-invasive brain computer interfaces (BCIs) for user intent inference. EEG can be assumed to be a Gaussian process with unknown mean and autocovariance, and the estimation of parameters is required for BCI inference. However, the relatively high dimensionality of the EEG feature vectors with respect to the number of labeled observations lead to rank deficient covariance matrix estimates. In this manuscript, to overcome ill-conditioned covariance estimation, we propose a structure for the covariance matrices of the multichannel EEG signals. Specifically, we assume that these covariances can be modeled as a Kronecker product of temporal and spatial covariances. Our results over the experimental data collected from the users of a letter-by-letter typing BCI show that with less number of parameter estimations, the system can achieve higher classification accuracies compared to a method that uses full unstructured covariance estimation. Moreover, in order to illustrate that the proposed Kronecker product structure could enable shortening the BCI calibration data collection sessions, using Cramer-Rao bound analysis on simulated data, we demonstrate that a model with structured covariance matrices will achieve the same estimation error as a model with no covariance structure using fewer labeled EEG observations. PMID:27713590
A Systematic Approach for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling
ERIC Educational Resources Information Center
Ding, Cherng G.; Jane, Ten-Der; Wu, Chiu-Hui; Lin, Hang-Rung; Shen, Chih-Kang
2017-01-01
It has been pointed out in the literature that misspecification of the level-1 error covariance structure in latent growth modeling (LGM) has detrimental impacts on the inferences about growth parameters. Since correct covariance structure is difficult to specify by theory, the identification needs to rely on a specification search, which,…
Li, Xinwei; Li, Qiongling; Wang, Xuetong; Li, Deyu; Li, Shuyu
2018-01-01
The hippocampus plays an important role in memory function relying on information interaction between distributed brain areas. The hippocampus can be divided into the anterior and posterior sections with different structure and function along its long axis. The aim of this study is to investigate the effects of normal aging on the structural covariance of the anterior hippocampus (aHPC) and the posterior hippocampus (pHPC). In this study, 240 healthy subjects aged 18-89 years were selected and subdivided into young (18-23 years), middle-aged (30-58 years), and older (61-89 years) groups. The aHPC and pHPC was divided based on the location of uncal apex in the MNI space. Then, the structural covariance networks were constructed by examining their covariance in gray matter volumes with other brain regions. Finally, the influence of age on the structural covariance of these hippocampal sections was explored. We found that the aHPC and pHPC had different structural covariance patterns, but both of them were associated with the medial temporal lobe and insula. Moreover, both increased and decreased covariances were found with the aHPC but only increased covariance was found with the pHPC with age ( p < 0.05, family-wise error corrected). These decreased connections occurred within the default mode network, while the increased connectivity mainly occurred in other memory systems that differ from the hippocampus. This study reveals different age-related influence on the structural networks of the aHPC and pHPC, providing an essential insight into the mechanisms of the hippocampus in normal aging.
Structural and Maturational Covariance in Early Childhood Brain Development.
Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H
2017-03-01
Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Nassar, Rula; Kaczkurkin, Antonia N; Xia, Cedric Huchuan; Sotiras, Aristeidis; Pehlivanova, Marieta; Moore, Tyler M; Garcia de La Garza, Angel; Roalf, David R; Rosen, Adon F G; Lorch, Scott A; Ruparel, Kosha; Shinohara, Russell T; Davatzikos, Christos; Gur, Ruben C; Gur, Raquel E; Satterthwaite, Theodore D
2018-04-21
Prematurity is associated with diverse developmental abnormalities, yet few studies relate cognitive and neurostructural deficits to a dimensional measure of prematurity. Leveraging a large sample of children, adolescents, and young adults (age 8-22 years) studied as part of the Philadelphia Neurodevelopmental Cohort, we examined how variation in gestational age impacted cognition and brain structure later in development. Participants included 72 preterm youth born before 37 weeks' gestation and 206 youth who were born at term (37 weeks or later). Using a previously-validated factor analysis, cognitive performance was assessed in three domains: (1) executive function and complex reasoning, (2) social cognition, and (3) episodic memory. All participants completed T1-weighted neuroimaging at 3 T to measure brain volume. Structural covariance networks were delineated using non-negative matrix factorization, an advanced multivariate analysis technique. Lower gestational age was associated with both deficits in executive function and reduced volume within 11 of 26 structural covariance networks, which included orbitofrontal, temporal, and parietal cortices as well as subcortical regions including the hippocampus. Notably, the relationship between lower gestational age and executive dysfunction was accounted for in part by structural network deficits. Together, these findings emphasize the durable impact of prematurity on cognition and brain structure, which persists across development.
Machine learning for predicting soil classes in three semi-arid landscapes
Brungard, Colby W.; Boettinger, Janis L.; Duniway, Michael C.; Wills, Skye A.; Edwards, Thomas C.
2015-01-01
Mapping the spatial distribution of soil taxonomic classes is important for informing soil use and management decisions. Digital soil mapping (DSM) can quantitatively predict the spatial distribution of soil taxonomic classes. Key components of DSM are the method and the set of environmental covariates used to predict soil classes. Machine learning is a general term for a broad set of statistical modeling techniques. Many different machine learning models have been applied in the literature and there are different approaches for selecting covariates for DSM. However, there is little guidance as to which, if any, machine learning model and covariate set might be optimal for predicting soil classes across different landscapes. Our objective was to compare multiple machine learning models and covariate sets for predicting soil taxonomic classes at three geographically distinct areas in the semi-arid western United States of America (southern New Mexico, southwestern Utah, and northeastern Wyoming). All three areas were the focus of digital soil mapping studies. Sampling sites at each study area were selected using conditioned Latin hypercube sampling (cLHS). We compared models that had been used in other DSM studies, including clustering algorithms, discriminant analysis, multinomial logistic regression, neural networks, tree based methods, and support vector machine classifiers. Tested machine learning models were divided into three groups based on model complexity: simple, moderate, and complex. We also compared environmental covariates derived from digital elevation models and Landsat imagery that were divided into three different sets: 1) covariates selected a priori by soil scientists familiar with each area and used as input into cLHS, 2) the covariates in set 1 plus 113 additional covariates, and 3) covariates selected using recursive feature elimination. Overall, complex models were consistently more accurate than simple or moderately complex models. Random forests (RF) using covariates selected via recursive feature elimination was consistently the most accurate, or was among the most accurate, classifiers between study areas and between covariate sets within each study area. We recommend that for soil taxonomic class prediction, complex models and covariates selected by recursive feature elimination be used. Overall classification accuracy in each study area was largely dependent upon the number of soil taxonomic classes and the frequency distribution of pedon observations between taxonomic classes. Individual subgroup class accuracy was generally dependent upon the number of soil pedon observations in each taxonomic class. The number of soil classes is related to the inherent variability of a given area. The imbalance of soil pedon observations between classes is likely related to cLHS. Imbalanced frequency distributions of soil pedon observations between classes must be addressed to improve model accuracy. Solutions include increasing the number of soil pedon observations in classes with few observations or decreasing the number of classes. Spatial predictions using the most accurate models generally agree with expected soil–landscape relationships. Spatial prediction uncertainty was lowest in areas of relatively low relief for each study area.
Directional selection can drive the evolution of modularity in complex traits
Melo, Diogo; Marroig, Gabriel
2015-01-01
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection. PMID:25548154
Directional selection can drive the evolution of modularity in complex traits.
Melo, Diogo; Marroig, Gabriel
2015-01-13
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.
Learning quadratic receptive fields from neural responses to natural stimuli.
Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper
2013-07-01
Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.
2011-01-01
Background The identification of genes or quantitative trait loci that are expressed in response to different environmental factors such as temperature and light, through functional mapping, critically relies on precise modeling of the covariance structure. Previous work used separable parametric covariance structures, such as a Kronecker product of autoregressive one [AR(1)] matrices, that do not account for interaction effects of different environmental factors. Results We implement a more robust nonparametric covariance estimator to model these interactions within the framework of functional mapping of reaction norms to two signals. Our results from Monte Carlo simulations show that this estimator can be useful in modeling interactions that exist between two environmental signals. The interactions are simulated using nonseparable covariance models with spatio-temporal structural forms that mimic interaction effects. Conclusions The nonparametric covariance estimator has an advantage over separable parametric covariance estimators in the detection of QTL location, thus extending the breadth of use of functional mapping in practical settings. PMID:21269481
Das, Kiranmoy; Daniels, Michael J.
2014-01-01
Summary Estimation of the covariance structure for irregular sparse longitudinal data has been studied by many authors in recent years but typically using fully parametric specifications. In addition, when data are collected from several groups over time, it is known that assuming the same or completely different covariance matrices over groups can lead to loss of efficiency and/or bias. Nonparametric approaches have been proposed for estimating the covariance matrix for regular univariate longitudinal data by sharing information across the groups under study. For the irregular case, with longitudinal measurements that are bivariate or multivariate, modeling becomes more difficult. In this article, to model bivariate sparse longitudinal data from several groups, we propose a flexible covariance structure via a novel matrix stick-breaking process for the residual covariance structure and a Dirichlet process mixture of normals for the random effects. Simulation studies are performed to investigate the effectiveness of the proposed approach over more traditional approaches. We also analyze a subset of Framingham Heart Study data to examine how the blood pressure trajectories and covariance structures differ for the patients from different BMI groups (high, medium and low) at baseline. PMID:24400941
Alternative Multiple Imputation Inference for Mean and Covariance Structure Modeling
ERIC Educational Resources Information Center
Lee, Taehun; Cai, Li
2012-01-01
Model-based multiple imputation has become an indispensable method in the educational and behavioral sciences. Mean and covariance structure models are often fitted to multiply imputed data sets. However, the presence of multiple random imputations complicates model fit testing, which is an important aspect of mean and covariance structure…
ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.
Lee, Keunbaik; Baek, Changryong; Daniels, Michael J
2017-11-01
In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.
Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles
2016-03-01
Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain alterations in patients with psychiatric disorders.
Martínez-Montes, Eduardo
2013-01-01
This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356
Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N.; Hudziak, James J; Ducharme, Simon
2015-01-01
Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6 to 22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. PMID:26431805
Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Ducharme, Simon
2016-01-01
Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here, we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6-22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nordin, Kristin; Persson, Jonas; Stening, Eva; Herlitz, Agneta; Larsson, Elna-Marie; Söderlund, Hedvig
2018-02-01
The hippocampus (HC) interacts with distributed brain regions to support memory and shows significant volume reductions in aging, but little is known about age effects on hippocampal whole-brain structural covariance. It is also unclear whether the anterior and posterior HC show similar or distinct patterns of whole-brain covariance and to what extent these are related to memory functions organized along the hippocampal longitudinal axis. Using the multivariate approach partial least squares, we assessed structural whole-brain covariance of the HC in addition to regional volume, in young, middle-aged and older adults (n = 221), and assessed associations with episodic and spatial memory. Based on findings of sex differences in both memory and brain aging, we further considered sex as a potential modulating factor of age effects. There were two main covariance patterns: one capturing common anterior and posterior covariance, and one differentiating the two regions by capturing anterior-specific covariance only. These patterns were differentially related to associative memory while unrelated to measures of single-item memory and spatial memory. Although patterns were qualitatively comparable across age groups, participants' expression of both patterns decreased with age, independently of sex. The results suggest that the organization of hippocampal structural whole-brain covariance remains stable across age, but that the integrity of these networks decreases as the brain undergoes age-related alterations. © 2017 Wiley Periodicals, Inc.
Stening, Eva; Persson, Jonas; Eriksson, Elias; Wahlund, Lars-Olof; Zetterberg, Henrik; Söderlund, Hedvig
2017-05-30
Apolipoprotein E (APOE) ε4 has been associated with smaller hippocampal volumes in healthy aging, while findings in young adults are inconclusive. Previous studies have mostly used univariate methods, and without considering potential anterior/posterior differences. Here, we used a multivariate method, partial least squares, and assessed whole-brain structural covariance of the anterior (aHC) and posterior (pHC) hippocampus in young adults (n=97) as a function of APOE ε4 status and sex. Two significant patterns emerged: (1) specific structural covariance of the aHC with frontal regions, temporal and occipital areas in APOE ε4 women, whereas the volume of both the aHC and pHC in all other groups co-varied with frontal, parietal and cerebellar areas; and (2) opposite structural covariance of the pHC in ε4 carriers compared to the aHC in non-carriers, with the pHC of ε4 carriers covarying with parietal and frontal areas, and the aHC of ε4 non-carriers covarying with motor areas and the middle frontal gyrus. APOE ε4 has in young adults been associated with better episodic and spatial memory, functions involving the aHC and pHC, respectively. We found no associations between structural covariance and performance, suggesting that other factors underlie the performance differences seen between carriers and non-carriers. Our findings indicate that APOE ε4 carriers and non-carriers differ in hippocampal organization and that there are differences as a function of sex and hippocampal segment. They stress the need to consider the hippocampus as a heterogeneous structure, and highlight the benefits of multivariate methods in assessing group differences in the brain. Copyright © 2017 Elsevier B.V. All rights reserved.
Using Fit Indexes to Select a Covariance Model for Longitudinal Data
ERIC Educational Resources Information Center
Liu, Siwei; Rovine, Michael J.; Molenaar, Peter C. M.
2012-01-01
This study investigated the performance of fit indexes in selecting a covariance structure for longitudinal data. Data were simulated to follow a compound symmetry, first-order autoregressive, first-order moving average, or random-coefficients covariance structure. We examined the ability of the likelihood ratio test (LRT), root mean square error…
Linguistic Feature Development Across Grades and Genre in Elementary Writing.
Hall-Mills, Shannon; Apel, Kenn
2015-07-01
As children develop skills in writing across academic contexts, clinicians and educators need to have a fundamental understanding of typical writing development as well as valid and reliable assessment methods. The purpose of this study was to examine the progression of linguistic elements in school-age children's narrative and expository writing development. Narrative and expository writing samples produced by 89 children in Grades 2 through 4 were analyzed at the microstructure and macrostructure levels. Measures of receptive vocabulary, word-level reading, and reading comprehension were obtained. Exploratory factor analyses revealed 4 microstructure factors (e.g., productivity, grammatical complexity, grammatical accuracy, and lexical density) and 1 macrostructure factor (e.g., a combination of organization, text structure, and cohesion). Multivariate analyses of covariance with reading comprehension as a covariate showed that productivity and macrostructure were sensitive to grade-level and genre differences and that expository grammatical complexity was sensitive to grade-level differences. Findings are discussed in light of grade-level standards for narrative and expository writing and current practices in writing assessment. Multiple suggestions are offered for clinical and educational implications, and specific directions are provided for future research.
Multilevel covariance regression with correlated random effects in the mean and variance structure.
Quintero, Adrian; Lesaffre, Emmanuel
2017-09-01
Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Qiongshi; Li, Boyang; Ou, Derek; Erlendsdottir, Margret; Powles, Ryan L; Jiang, Tony; Hu, Yiming; Chang, David; Jin, Chentian; Dai, Wei; He, Qidu; Liu, Zefeng; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu
2017-12-07
Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits' genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability. Here we introduce a principled framework to estimate annotation-stratified genetic covariance between traits using GWAS summary statistics. Through theoretical and numerical analyses, we demonstrate that our method provides accurate covariance estimates, thereby enabling researchers to dissect both the shared and distinct genetic architecture across traits to better understand their etiologies. Among 50 complex traits with publicly accessible GWAS summary statistics (N total ≈ 4.5 million), we identified more than 170 pairs with statistically significant genetic covariance. In particular, we found strong genetic covariance between late-onset Alzheimer disease (LOAD) and amyotrophic lateral sclerosis (ALS), two major neurodegenerative diseases, in single-nucleotide polymorphisms (SNPs) with high minor allele frequencies and in SNPs located in the predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights LOAD's correlation with cognitive traits and hints at an autoimmune component for ALS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; Bray, Signe; MacMaster, Frank P; Deighton, Stephanie; Addington, Jean
2017-11-01
People with psychosis show deficits recognizing facial emotions and disrupted activation in the underlying neural circuitry. We evaluated associations between facial emotion recognition and cortical thickness using a correlation-based approach to map structural covariance networks across the brain. Fifteen people with an early psychosis provided magnetic resonance scans and completed the Penn Emotion Recognition and Differentiation tasks. Fifteen historical controls provided magnetic resonance scans. Cortical thickness was computed using CIVET and analyzed with linear models. Seed-based structural covariance analysis was done using the mapping anatomical correlations across the cerebral cortex methodology. To map structural covariance networks involved in facial emotion recognition, the right somatosensory cortex and bilateral fusiform face areas were selected as seeds. Statistics were run in SurfStat. Findings showed increased cortical covariance between the right fusiform face region seed and right orbitofrontal cortex in controls than early psychosis subjects. Facial emotion recognition scores were not significantly associated with thickness in any region. A negative effect of Penn Differentiation scores on cortical covariance was seen between the left fusiform face area seed and right superior parietal lobule in early psychosis subjects. Results suggest that facial emotion recognition ability is related to covariance in a temporal-parietal network in early psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.
A Class of Population Covariance Matrices in the Bootstrap Approach to Covariance Structure Analysis
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Hayashi, Kentaro; Yanagihara, Hirokazu
2007-01-01
Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given…
Covariance hypotheses for LANDSAT data
NASA Technical Reports Server (NTRS)
Decell, H. P.; Peters, C.
1983-01-01
Two covariance hypotheses are considered for LANDSAT data acquired by sampling fields, one an autoregressive covariance structure and the other the hypothesis of exchangeability. A minimum entropy approximation of the first structure by the second is derived and shown to have desirable properties for incorporation into a mixture density estimation procedure. Results of a rough test of the exchangeability hypothesis are presented.
Bayes Factor Covariance Testing in Item Response Models.
Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip
2017-12-01
Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.
A unified view on weakly correlated recurrent networks
Grytskyy, Dmytro; Tetzlaff, Tom; Diesmann, Markus; Helias, Moritz
2013-01-01
The diversity of neuron models used in contemporary theoretical neuroscience to investigate specific properties of covariances in the spiking activity raises the question how these models relate to each other. In particular it is hard to distinguish between generic properties of covariances and peculiarities due to the abstracted model. Here we present a unified view on pairwise covariances in recurrent networks in the irregular regime. We consider the binary neuron model, the leaky integrate-and-fire (LIF) model, and the Hawkes process. We show that linear approximation maps each of these models to either of two classes of linear rate models (LRM), including the Ornstein–Uhlenbeck process (OUP) as a special case. The distinction between both classes is the location of additive noise in the rate dynamics, which is located on the output side for spiking models and on the input side for the binary model. Both classes allow closed form solutions for the covariance. For output noise it separates into an echo term and a term due to correlated input. The unified framework enables us to transfer results between models. For example, we generalize the binary model and the Hawkes process to the situation with synaptic conduction delays and simplify derivations for established results. Our approach is applicable to general network structures and suitable for the calculation of population averages. The derived averages are exact for fixed out-degree network architectures and approximate for fixed in-degree. We demonstrate how taking into account fluctuations in the linearization procedure increases the accuracy of the effective theory and we explain the class dependent differences between covariances in the time and the frequency domain. Finally we show that the oscillatory instability emerging in networks of LIF models with delayed inhibitory feedback is a model-invariant feature: the same structure of poles in the complex frequency plane determines the population power spectra. PMID:24151463
A Spatial Framework for Understanding Population Structure and Admixture.
Bradburd, Gideon S; Ralph, Peter L; Coop, Graham M
2016-01-01
Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build "geogenetic maps," which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix.
A Spatial Framework for Understanding Population Structure and Admixture
Bradburd, Gideon S.; Ralph, Peter L.; Coop, Graham M.
2016-01-01
Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build “geogenetic maps,” which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. PMID:26771578
Taylor, J M; Law, N
1998-10-30
We investigate the importance of the assumed covariance structure for longitudinal modelling of CD4 counts. We examine how individual predictions of future CD4 counts are affected by the covariance structure. We consider four covariance structures: one based on an integrated Ornstein-Uhlenbeck stochastic process; one based on Brownian motion, and two derived from standard linear and quadratic random-effects models. Using data from the Multicenter AIDS Cohort Study and from a simulation study, we show that there is a noticeable deterioration in the coverage rate of confidence intervals if we assume the wrong covariance. There is also a loss in efficiency. The quadratic random-effects model is found to be the best in terms of correctly calibrated prediction intervals, but is substantially less efficient than the others. Incorrectly specifying the covariance structure as linear random effects gives too narrow prediction intervals with poor coverage rates. Fitting using the model based on the integrated Ornstein-Uhlenbeck stochastic process is the preferred one of the four considered because of its efficiency and robustness properties. We also use the difference between the future predicted and observed CD4 counts to assess an appropriate transformation of CD4 counts; a fourth root, cube root and square root all appear reasonable choices.
Cross-population myelination covariance of human cerebral cortex.
Ma, Zhiwei; Zhang, Nanyin
2017-09-01
Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Structural Equation Modeling of Multivariate Time Series
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Browne, Michael W.
2007-01-01
The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…
Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.
Ding, Cherng G; Jane, Ten-Der
2012-09-01
In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.
Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.
Wei, Luqing; Chen, Hong; Wu, Guo-Rong
2018-01-01
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.
Ng, Edmond S-W; Diaz-Ordaz, Karla; Grieve, Richard; Nixon, Richard M; Thompson, Simon G; Carpenter, James R
2016-10-01
Multilevel models provide a flexible modelling framework for cost-effectiveness analyses that use cluster randomised trial data. However, there is a lack of guidance on how to choose the most appropriate multilevel models. This paper illustrates an approach for deciding what level of model complexity is warranted; in particular how best to accommodate complex variance-covariance structures, right-skewed costs and missing data. Our proposed models differ according to whether or not they allow individual-level variances and correlations to differ across treatment arms or clusters and by the assumed cost distribution (Normal, Gamma, Inverse Gaussian). The models are fitted by Markov chain Monte Carlo methods. Our approach to model choice is based on four main criteria: the characteristics of the data, model pre-specification informed by the previous literature, diagnostic plots and assessment of model appropriateness. This is illustrated by re-analysing a previous cost-effectiveness analysis that uses data from a cluster randomised trial. We find that the most useful criterion for model choice was the deviance information criterion, which distinguishes amongst models with alternative variance-covariance structures, as well as between those with different cost distributions. This strategy for model choice can help cost-effectiveness analyses provide reliable inferences for policy-making when using cluster trials, including those with missing data. © The Author(s) 2013.
Lang, Xu; Li, Huabing; Qin, Wen; Yu, Chunshui
2014-01-01
Investigations on hippocampal and amygdalar volume have revealed inconsistent results in patients with posttraumatic stress disorder (PTSD). Little is known about the structural covariance alterations between the hippocampus and amygdala in PTSD. In this study, we evaluated the alteration in the hippocampal and amygdalar volume and their structural covariance in the coal mine gas explosion related PTSD. High resolution T1-weighted magnetic resonance imaging (MRI) was performed on coal mine gas explosion related PTSD male patients (n = 14) and non-traumatized coalminers without PTSD (n = 25). The voxel-based morphometry (VBM) method was used to test the inter-group differences in hippocampal and amygdalar volume as well as the inter-group differences in structural covariance between the ipsilateral hippocampus and amygdala. PTSD patients exhibited decreased gray matter volume (GMV) in the bilateral hippocampi compared to controls (p<0.05, FDR corrected). GMV covariances between the ipsilateral hippocampus and amygdala were significantly reduced in PTSD patients compared with controls (p<0.05, FDR corrected). The coalminers with gas explosion related PTSD had decreased hippocampal volume and structural covariance with the ipsilateral amygdala, suggesting that the structural impairment of the hippocampus may implicate in the pathophysiology of PTSD. PMID:25000505
ERIC Educational Resources Information Center
Dolan, Conor V.; Molenaar, Peter C. M.
1994-01-01
In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)
The structural, connectomic and network covariance of the human brain.
Irimia, Andrei; Van Horn, John D
2013-02-01
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Muthen, Bengt
This paper investigates methods that avoid using multiple groups to represent the missing data patterns in covariance structure modeling, attempting instead to do a single-group analysis where the only action the analyst has to take is to indicate that data is missing. A new covariance structure approach developed by B. Muthen and G. Arminger is…
Krams, Indrikis A; Niemelä, Petri T; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M; Krama, Tatjana; Kuusik, Aare; Mänd, Marika; Rantala, Markus J; Mänd, Raivo; Kekäläinen, Jukka; Sirkka, Ilkka; Luoto, Severi; Kortet, Raine
2017-03-29
The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, Gryllus integer , selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading. © 2017 The Author(s).
Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M.; Krama, Tatjana; Kuusik, Aare; Mänd, Marika; Rantala, Markus J.; Mänd, Raivo; Sirkka, Ilkka; Luoto, Severi; Kortet, Raine
2017-01-01
The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, Gryllus integer, selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading. PMID:28330918
Covariance, correlation matrix, and the multiscale community structure of networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing
2010-07-01
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.
The Performance Analysis Based on SAR Sample Covariance Matrix
Erten, Esra
2012-01-01
Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976
ERIC Educational Resources Information Center
Cheung, Mike W.-L.; Cheung, Shu Fai
2016-01-01
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
Altered structural covariance of the striatum in functional dyspepsia patients.
Liu, P; Zeng, F; Yang, F; Wang, J; Liu, X; Wang, Q; Zhou, G; Zhang, D; Zhu, M; Zhao, R; Wang, A; Gong, Q; Liang, F
2014-08-01
Functional dyspepsia (FD) is thought to be involved in dysregulation within the brain-gut axis. Recently, altered striatum activation has been reported in patients with FD. However, the gray matter (GM) volumes in the striatum and structural covariance patterns of this area are rarely explored. The purpose of this study was to examine the GM volumes and structural covariance patterns of the striatum between FD patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 FD patients and 39 HCs. Voxel-based morphometry (VBM) analysis was adopted to examine the GM volumes in the two groups. The caudate- or putamen-related regions identified from VBM analysis were then used as seeds to map the whole brain voxel-wise structural covariance patterns. Finally, a correlation analysis was used to investigate the effects of FD symptoms on the striatum. The results showed increased GM volumes in the bilateral putamen and right caudate. Compared with the structural covariance patterns of the HCs, the FD-related differences were mainly located in the amygdala, hippocampus/parahippocampus (HIPP/paraHIPP), thalamus, lingual gyrus, and cerebellum. And significant positive correlations were found between the volumes in the striatum and the FD duration in the patients. These findings provided preliminary evidence for GM changes in the striatum and different structural covariance patterns in patients with FD. The current results might expand our understanding of the pathophysiology of FD. © 2014 John Wiley & Sons Ltd.
Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability
Wei, Luqing; Chen, Hong; Wu, Guo-Rong
2018-01-01
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability. PMID:29545744
Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder.
Sharda, Megha; Foster, Nicholas E V; Tryfon, Ana; Doyle-Thomas, Krissy A R; Ouimet, Tia; Anagnostou, Evdokia; Evans, Alan C; Zwaigenbaum, Lonnie; Lerch, Jason P; Lewis, John D; Hyde, Krista L
2017-03-01
There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A class of covariate-dependent spatiotemporal covariance functions
Reich, Brian J; Eidsvik, Jo; Guindani, Michele; Nail, Amy J; Schmidt, Alexandra M.
2014-01-01
In geostatistics, it is common to model spatially distributed phenomena through an underlying stationary and isotropic spatial process. However, these assumptions are often untenable in practice because of the influence of local effects in the correlation structure. Therefore, it has been of prolonged interest in the literature to provide flexible and effective ways to model non-stationarity in the spatial effects. Arguably, due to the local nature of the problem, we might envision that the correlation structure would be highly dependent on local characteristics of the domain of study, namely the latitude, longitude and altitude of the observation sites, as well as other locally defined covariate information. In this work, we provide a flexible and computationally feasible way for allowing the correlation structure of the underlying processes to depend on local covariate information. We discuss the properties of the induced covariance functions and discuss methods to assess its dependence on local covariate information by means of a simulation study and the analysis of data observed at ozone-monitoring stations in the Southeast United States. PMID:24772199
On analyzing ordinal data when responses and covariates are both missing at random.
Rana, Subrata; Roy, Surupa; Das, Kalyan
2016-08-01
In many occasions, particularly in biomedical studies, data are unavailable for some responses and covariates. This leads to biased inference in the analysis when a substantial proportion of responses or a covariate or both are missing. Except a few situations, methods for missing data have earlier been considered either for missing response or for missing covariates, but comparatively little attention has been directed to account for both missing responses and missing covariates, which is partly attributable to complexity in modeling and computation. This seems to be important as the precise impact of substantial missing data depends on the association between two missing data processes as well. The real difficulty arises when the responses are ordinal by nature. We develop a joint model to take into account simultaneously the association between the ordinal response variable and covariates and also that between the missing data indicators. Such a complex model has been analyzed here by using the Markov chain Monte Carlo approach and also by the Monte Carlo relative likelihood approach. Their performance on estimating the model parameters in finite samples have been looked into. We illustrate the application of these two methods using data from an orthodontic study. Analysis of such data provides some interesting information on human habit. © The Author(s) 2013.
Robust Mean and Covariance Structure Analysis through Iteratively Reweighted Least Squares.
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Bentler, Peter M.
2000-01-01
Adapts robust schemes to mean and covariance structures, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is weighted according to its distance, based on first and second order moments. Test statistics and standard error estimators are given. (SLD)
Tommasini, Steven M; Hu, Bin; Nadeau, Joseph H; Jepsen, Karl J
2009-04-01
Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also determined in part by the adaptive response to variation in traits describing the cortical shell. The covariation among corticocancellous traits has important implications for genetic analyses and for interpreting the response of bone to genetic and environmental perturbations.
New insights into the phenotypic covariance structure of the anthropoid cranium
Makedonska, Jana
2014-01-01
In complex organisms, suites of non-random, highly intercorrelated phenotypic traits, organized according to their developmental history and forming semi-autonomous units (i.e. modules), have the potential to impose constraints on morphological diversification or to improve evolvability. Because of its structural, developmental and functional complexity, the cranium is arguably one of the best models for studying the interplay between developmental history and the need for various parts of a structure to specialize in different functions. This study evaluated the significance of two specific types of developmental imprints in the adult anthropoid cranium, those imposed by ossification pattern (i.e. ossification with and without a pre-existing cartilaginous phase) and those imposed by tissue origin (i.e. tissues derived principally from neural-crest vs. those derived from paraxial mesoderm). Specifically, this study tests the hypothesis that the face and the basicranium form two distinct modules with higher within-unit trait integration magnitudes compared with the cranium as a whole. Data on 12 anthropoid primate species were collected in the form of 23-dimensional landmarks digitized on cranial surface models that sample the basicranium as well as regions of functional importance during feeding. The presence of a significant modularity imprint in the adult cranium was assessed using a between-region within-species comparison of multivariate correlations (RV coefficients) obtained with partial least-squares, using within-module within-species eigenvalue variance (EV), and using cluster analyses and non-metric multidimensional scaling. In addition to addressing the validity of the cranial modularity hypothesis in anthropoids, this study addressed methodological aspects of the interspecific comparison of morphological integration, namely the effect of sample size and the effect of landmark number on integration magnitudes. Two methodological findings that are of significance to research in morphological integration are that: (i) a smaller sample size increases integration magnitude, but preserves the pattern of variation of integration magnitudes from block to block within species; and that (ii) the number of landmarks per cranial block does not significantly impact block integration magnitude measured as EV. Results from the analyses testing for cranial modularity imprints in the adult anthropoid cranium show that some facial landmarks covary more strongly with basicranial landmarks than with other facial landmarks. Cluster methods, non-metric multidimensional scaling and, to an extent, RV results show that the rostral and the zygomatic landmarks covary more strongly with the basicranial landmarks than they do with the molar landmarks. However, the rostral–zygomatic–basicranial block, the molar block, the facial block, the basicranial block and the other analyzed cranial and facial blocks are not more integrated than the cranium. Thus, the morphological variation in the adult anthropoid cranium is not significantly constrained by at least two of the potential developmental sources of its covariance structure. PMID:25406861
Sensitivity of Fit Indices to Misspecification in Growth Curve Models
ERIC Educational Resources Information Center
Wu, Wei; West, Stephen G.
2010-01-01
This study investigated the sensitivity of fit indices to model misspecification in within-individual covariance structure, between-individual covariance structure, and marginal mean structure in growth curve models. Five commonly used fit indices were examined, including the likelihood ratio test statistic, root mean square error of…
An estimating equation approach to dimension reduction for longitudinal data
Xu, Kelin; Guo, Wensheng; Xiong, Momiao; Zhu, Liping; Jin, Li
2016-01-01
Sufficient dimension reduction has been extensively explored in the context of independent and identically distributed data. In this article we generalize sufficient dimension reduction to longitudinal data and propose an estimating equation approach to estimating the central mean subspace. The proposed method accounts for the covariance structure within each subject and improves estimation efficiency when the covariance structure is correctly specified. Even if the covariance structure is misspecified, our estimator remains consistent. In addition, our method relaxes distributional assumptions on the covariates and is doubly robust. To determine the structural dimension of the central mean subspace, we propose a Bayesian-type information criterion. We show that the estimated structural dimension is consistent and that the estimated basis directions are root-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$n$\\end{document} consistent, asymptotically normal and locally efficient. Simulations and an analysis of the Framingham Heart Study data confirm the effectiveness of our approach. PMID:27017956
Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol
2016-01-01
Study Objectives: Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). Methods: The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Results: Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Conclusion: Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. Citation: Suh S, Kim H, Dang-Vu TT, Joo E, Shin C. Cortical thinning and altered cortico-cortical structural covariance of the default mode network in patients with persistent insomnia symptoms. SLEEP 2016;39(1):161–171. PMID:26414892
A pilot study of cognitive insight and structural covariance in first-episode psychosis.
Kuang, Corin; Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; MacMaster, Frank P; Bray, Signe; Deighton, Stephanie; Addington, Jean
2017-01-01
Cognitive insight is described as a balance between one's self-reflectiveness (recognition and correction of dysfunctional reasoning), and self-certainty (overconfidence). Neuroimaging studies have linked the ventrolateral prefrontal cortex (VLPFC) to cognitive insight in people with psychosis. However, the relationship between cognitive insight and structural connectivity between the VLPFC and other brain areas is unknown. Here, we investigated the modulation of cognitive insight on structural covariance networks involving the VLPFC in a first-episode psychosis sample. Fifteen patients with a first-episode psychosis provided magnetic resonance (MR) scans and completed the Beck Cognitive Insight Scale (BCIS). MR scans were also available for 15 historical controls. Seed-based analysis of structural covariance was conducted using the Mapping Anatomical Correlations Across the Cerebral Cortex (MACACC) methodology, whereby Pearson correlation coefficients were extracted between seed regions in left and right VLPFC and cortical thickness across the brain. Structural covariance maps between groups were compared at each vertex. In first-episode subjects, we evaluated the modulation of BCIS scores on cortical covariance between VLPFC and every other vertex. Findings showed no significant group difference between first-episode psychosis subjects and controls in thickness covariance seeded from left or right VLPFC. However, in first-episode psychosis subjects, a positive association with self-certainty was found in networks seeded from both left and right VLPFC with thickness in medial frontal cortex and right pars triangularis. No significant associations were found for self-reflectiveness. These results suggest that self-certainty, but not self-reflectiveness, positively modulated cortical covariance in a frontal network in patients with a first-episode psychosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Tseng, Z. Jack; Flynn, John J.
2018-01-01
Skull shape convergence is pervasive among vertebrates. Although this is frequently inferred to indicate similar functional underpinnings, neither the specific structure-function linkages nor the selective environments in which the supposed functional adaptations arose are commonly identified and tested. We demonstrate that nonfeeding factors relating to sexual maturity and precipitation-related arboreality also can generate structure-function relationships in the skulls of carnivorans (dogs, cats, seals, and relatives) through covariation with masticatory performance. We estimated measures of masticatory performance related to ecological variables that covary with cranial shape in the mammalian order Carnivora, integrating geometric morphometrics and finite element analyses. Even after accounting for phylogenetic autocorrelation, cranial shapes are significantly correlated to both feeding and nonfeeding ecological variables, and covariation with both variable types generated significant masticatory performance gradients. This suggests that mechanisms of obligate shape covariation with nonfeeding variables can produce performance changes resembling those arising from feeding adaptations in Carnivora. PMID:29441363
Gui, Jiang; Andrew, Angeline S.; Andrews, Peter; Nelson, Heather M.; Kelsey, Karl T.; Karagas, Margaret R.; Moore, Jason H.
2010-01-01
Epistasis or gene-gene interaction is a fundamental component of the genetic architecture of complex traits such as disease susceptibility. Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free method to detect epistasis when there are no significant marginal genetic effects. However, in many studies of complex disease, other covariates like age of onset and smoking status could have a strong main effect and may potentially interfere with MDR's ability to achieve its goal. In this paper, we present a simple and computationally efficient sampling method to adjust for covariate effects in MDR. We use simulation to show that after adjustment, MDR has sufficient power to detect true gene-gene interactions. We also compare our method with the state-of-art technique in covariate adjustment. The results suggest that our proposed method performs similarly, but is more computationally efficient. We then apply this new method to an analysis of a population-based bladder cancer study in New Hampshire. PMID:20924193
ERIC Educational Resources Information Center
Lee, S. Y.; Jennrich, R. I.
1979-01-01
A variety of algorithms for analyzing covariance structures are considered. Additionally, two methods of estimation, maximum likelihood, and weighted least squares are considered. Comparisons are made between these algorithms and factor analysis. (Author/JKS)
ERIC Educational Resources Information Center
Levy, Roy
2010-01-01
SEMModComp, a software package for conducting likelihood ratio tests for mean and covariance structure modeling is described. The package is written in R and freely available for download or on request.
ERIC Educational Resources Information Center
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim
2016-01-01
The impact of misspecifying covariance matrices at the second and third levels of the three-level model is evaluated. Results indicate that ignoring existing covariance has no effect on the treatment effect estimate. In addition, the between-case variance estimates are unbiased when covariance is either modeled or ignored. If the research interest…
Disruption of structural covariance networks for language in autism is modulated by verbal ability.
Sharda, Megha; Khundrakpam, Budhachandra S; Evans, Alan C; Singh, Nandini C
2016-03-01
The presence of widespread speech and language deficits is a core feature of autism spectrum disorders (ASD). These impairments have often been attributed to altered connections between brain regions. Recent developments in anatomical correlation-based approaches to map structural covariance offer an effective way of studying such connections in vivo. In this study, we employed such a structural covariance network (SCN)-based approach to investigate the integrity of anatomical networks in fronto-temporal brain regions of twenty children with ASD compared to an age and gender-matched control group of twenty-two children. Our findings reflected large-scale disruption of inter and intrahemispheric covariance in left frontal SCNs in the ASD group compared to controls, but no differences in right fronto-temporal SCNs. Interhemispheric covariance in left-seeded networks was further found to be modulated by verbal ability of the participants irrespective of autism diagnosis, suggesting that language function might be related to the strength of interhemispheric structural covariance between frontal regions. Additionally, regional cortical thickening was observed in right frontal and left posterior regions, which was predicted by decreasing symptom severity and increasing verbal ability in ASD. These findings unify reports of regional differences in cortical morphology in ASD. They also suggest that reduced left hemisphere asymmetry and increased frontal growth may not only reflect neurodevelopmental aberrations but also compensatory mechanisms.
Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol
2016-01-01
Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.
Model Comparison of Nonlinear Structural Equation Models with Fixed Covariates.
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan
2003-01-01
Proposed a new nonlinear structural equation model with fixed covariates to deal with some complicated substantive theory and developed a Bayesian path sampling procedure for model comparison. Illustrated the approach with an illustrative example using data from an international study. (SLD)
An Extensible Processing Framework for Eddy-covariance Data
NASA Astrophysics Data System (ADS)
Durden, D.; Fox, A. M.; Metzger, S.; Sturtevant, C.; Durden, N. P.; Luo, H.
2016-12-01
The evolution of large data collecting networks has not only led to an increase of available information, but also in the complexity of analyzing the observations. Timely dissemination of readily usable data products necessitates a streaming processing framework that is both automatable and flexible. Tower networks, such as ICOS, Ameriflux, and NEON, exemplify this issue by requiring large amounts of data to be processed from dispersed measurement sites. Eddy-covariance data from across the NEON network are expected to amount to 100 Gigabytes per day. The complexity of the algorithmic processing necessary to produce high-quality data products together with the continued development of new analysis techniques led to the development of a modular R-package, eddy4R. This allows algorithms provided by NEON and the larger community to be deployed in streaming processing, and to be used by community members alike. In order to control the processing environment, provide a proficient parallel processing structure, and certify dependencies are available during processing, we chose Docker as our "Development and Operations" (DevOps) platform. The Docker framework allows our processing algorithms to be developed, maintained and deployed at scale. Additionally, the eddy4R-Docker framework fosters community use and extensibility via pre-built Docker images and the Github distributed version control system. The capability to process large data sets is reliant upon efficient input and output of data, data compressibility to reduce compute resource loads, and the ability to easily package metadata. The Hierarchical Data Format (HDF5) is a file format that can meet these needs. A NEON standard HDF5 file structure and metadata attributes allow users to explore larger data sets in an intuitive "directory-like" structure adopting the NEON data product naming conventions.
Pamukçu, Esra; Bozdogan, Hamparsum; Çalık, Sinan
2015-01-01
Gene expression data typically are large, complex, and highly noisy. Their dimension is high with several thousand genes (i.e., features) but with only a limited number of observations (i.e., samples). Although the classical principal component analysis (PCA) method is widely used as a first standard step in dimension reduction and in supervised and unsupervised classification, it suffers from several shortcomings in the case of data sets involving undersized samples, since the sample covariance matrix degenerates and becomes singular. In this paper we address these limitations within the context of probabilistic PCA (PPCA) by introducing and developing a new and novel approach using maximum entropy covariance matrix and its hybridized smoothed covariance estimators. To reduce the dimensionality of the data and to choose the number of probabilistic PCs (PPCs) to be retained, we further introduce and develop celebrated Akaike's information criterion (AIC), consistent Akaike's information criterion (CAIC), and the information theoretic measure of complexity (ICOMP) criterion of Bozdogan. Six publicly available undersized benchmark data sets were analyzed to show the utility, flexibility, and versatility of our approach with hybridized smoothed covariance matrix estimators, which do not degenerate to perform the PPCA to reduce the dimension and to carry out supervised classification of cancer groups in high dimensions. PMID:25838836
Lebigre, Christophe; Arcese, Peter; Reid, Jane M
2013-07-01
Age-specific variances and covariances in reproductive success shape the total variance in lifetime reproductive success (LRS), age-specific opportunities for selection, and population demographic variance and effective size. Age-specific (co)variances in reproductive success achieved through different reproductive routes must therefore be quantified to predict population, phenotypic and evolutionary dynamics in age-structured populations. While numerous studies have quantified age-specific variation in mean reproductive success, age-specific variances and covariances in reproductive success, and the contributions of different reproductive routes to these (co)variances, have not been comprehensively quantified in natural populations. We applied 'additive' and 'independent' methods of variance decomposition to complete data describing apparent (social) and realised (genetic) age-specific reproductive success across 11 cohorts of socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia). We thereby quantified age-specific (co)variances in male within-pair and extra-pair reproductive success (WPRS and EPRS) and the contributions of these (co)variances to the total variances in age-specific reproductive success and LRS. 'Additive' decomposition showed that within-age and among-age (co)variances in WPRS across males aged 2-4 years contributed most to the total variance in LRS. Age-specific (co)variances in EPRS contributed relatively little. However, extra-pair reproduction altered age-specific variances in reproductive success relative to the social mating system, and hence altered the relative contributions of age-specific reproductive success to the total variance in LRS. 'Independent' decomposition showed that the (co)variances in age-specific WPRS, EPRS and total reproductive success, and the resulting opportunities for selection, varied substantially across males that survived to each age. Furthermore, extra-pair reproduction increased the variance in age-specific reproductive success relative to the social mating system to a degree that increased across successive age classes. This comprehensive decomposition of the total variances in age-specific reproductive success and LRS into age-specific (co)variances attributable to two reproductive routes showed that within-age and among-age covariances contributed substantially to the total variance and that extra-pair reproduction can alter the (co)variance structure of age-specific reproductive success. Such covariances and impacts should consequently be integrated into theoretical assessments of demographic and evolutionary processes in age-structured populations. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
ERIC Educational Resources Information Center
Fouladi, Rachel T.
2000-01-01
Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…
Analyzing average and conditional effects with multigroup multilevel structural equation models
Mayer, Axel; Nagengast, Benjamin; Fletcher, John; Steyer, Rolf
2014-01-01
Conventionally, multilevel analysis of covariance (ML-ANCOVA) has been the recommended approach for analyzing treatment effects in quasi-experimental multilevel designs with treatment application at the cluster-level. In this paper, we introduce the generalized ML-ANCOVA with linear effect functions that identifies average and conditional treatment effects in the presence of treatment-covariate interactions. We show how the generalized ML-ANCOVA model can be estimated with multigroup multilevel structural equation models that offer considerable advantages compared to traditional ML-ANCOVA. The proposed model takes into account measurement error in the covariates, sampling error in contextual covariates, treatment-covariate interactions, and stochastic predictors. We illustrate the implementation of ML-ANCOVA with an example from educational effectiveness research where we estimate average and conditional effects of early transition to secondary schooling on reading comprehension. PMID:24795668
Gaskins, J T; Daniels, M J
2016-01-02
The estimation of the covariance matrix is a key concern in the analysis of longitudinal data. When data consists of multiple groups, it is often assumed the covariance matrices are either equal across groups or are completely distinct. We seek methodology to allow borrowing of strength across potentially similar groups to improve estimation. To that end, we introduce a covariance partition prior which proposes a partition of the groups at each measurement time. Groups in the same set of the partition share dependence parameters for the distribution of the current measurement given the preceding ones, and the sequence of partitions is modeled as a Markov chain to encourage similar structure at nearby measurement times. This approach additionally encourages a lower-dimensional structure of the covariance matrices by shrinking the parameters of the Cholesky decomposition toward zero. We demonstrate the performance of our model through two simulation studies and the analysis of data from a depression study. This article includes Supplementary Material available online.
The convergence of maturational change and structural covariance in human cortical networks.
Alexander-Bloch, Aaron; Raznahan, Armin; Bullmore, Ed; Giedd, Jay
2013-02-13
Large-scale covariance of cortical thickness or volume in distributed brain regions has been consistently reported by human neuroimaging studies. The mechanism of this population covariance of regional cortical anatomy has been hypothetically related to synchronized maturational changes in anatomically connected neuronal populations. Brain regions that grow together, i.e., increase or decrease in volume at the same rate over the course of years in the same individual, are thus expected to demonstrate strong structural covariance or anatomical connectivity across individuals. To test this prediction, we used a structural MRI dataset on healthy young people (N = 108; aged 9-22 years at enrollment), comprising 3-6 longitudinal scans on each participant over 6-12 years of follow-up. At each of 360 regional nodes, and for each participant, we estimated the following: (1) the cortical thickness in the median scan and (2) the linear rate of change in cortical thickness over years of serial scanning. We constructed structural and maturational association matrices and networks from these measurements. Both structural and maturational networks shared similar global and nodal topological properties, as well as mesoscopic features including a modular community structure, a relatively small number of highly connected hub regions, and a bias toward short distance connections. Using resting-state functional magnetic resonance imaging data on a subset of the sample (N = 32), we also demonstrated that functional connectivity and network organization was somewhat predictable by structural/maturational networks but demonstrated a stronger bias toward short distance connections and greater topological segregation. Brain structural covariance networks are likely to reflect synchronized developmental change in distributed cortical regions.
A generalized spatiotemporal covariance model for stationary background in analysis of MEG data.
Plis, S M; Schmidt, D M; Jun, S C; Ranken, D M
2006-01-01
Using a noise covariance model based on a single Kronecker product of spatial and temporal covariance in the spatiotemporal analysis of MEG data was demonstrated to provide improvement in the results over that of the commonly used diagonal noise covariance model. In this paper we present a model that is a generalization of all of the above models. It describes models based on a single Kronecker product of spatial and temporal covariance as well as more complicated multi-pair models together with any intermediate form expressed as a sum of Kronecker products of spatial component matrices of reduced rank and their corresponding temporal covariance matrices. The model provides a framework for controlling the tradeoff between the described complexity of the background and computational demand for the analysis using this model. Ways to estimate the value of the parameter controlling this tradeoff are also discussed.
A Statistical Test for Comparing Nonnested Covariance Structure Models.
ERIC Educational Resources Information Center
Levy, Roy; Hancock, Gregory R.
While statistical procedures are well known for comparing hierarchically related (nested) covariance structure models, statistical tests for comparing nonhierarchically related (nonnested) models have proven more elusive. While isolated attempts have been made, none exists within the commonly used maximum likelihood estimation framework, thereby…
Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory
NASA Astrophysics Data System (ADS)
Mikosch, Jochen; Patchkovskii, Serguei
2013-10-01
We derive a formal theory of noisy Poisson processes with multiple outcomes. We obtain simple, compact expressions for the probability distribution function of arbitrarily complex composite events and its moments. We illustrate the utility of the theory by analyzing properties of coincidence and covariance photoelectron-photoion detection involving single-ionization events. The results and techniques introduced in this work are directly applicable to more general coincidence and covariance experiments, including multiple ionization and multiple-ion fragmentation pathways.
NASA Astrophysics Data System (ADS)
Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining
2018-06-01
General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.
Brier, Matthew R; Mitra, Anish; McCarthy, John E; Ances, Beau M; Snyder, Abraham Z
2015-11-01
Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.
Brier, Matthew R.; Mitra, Anish; McCarthy, John E.; Ances, Beau M.; Snyder, Abraham Z.
2015-01-01
Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. PMID:26208872
NASA Astrophysics Data System (ADS)
Schünemann, Adriano Luis; Inácio Fernandes Filho, Elpídio; Rocha Francelino, Marcio; Rodrigues Santos, Gérson; Thomazini, Andre; Batista Pereira, Antônio; Gonçalves Reynaud Schaefer, Carlos Ernesto
2017-04-01
The knowledge of environmental variables values, in non-sampled sites from a minimum data set can be accessed through interpolation technique. Kriging and the classifier Random Forest algorithm are examples of predictors with this aim. The objective of this work was to compare methods of soil attributes spatialization in a recent deglaciated environment with complex landforms. Prediction of the selected soil attributes (potassium, calcium and magnesium) from ice-free areas were tested by using morphometric covariables, and geostatistical models without these covariables. For this, 106 soil samples were collected at 0-10 cm depth in Keller Peninsula, King George Island, Maritime Antarctica. Soil chemical analysis was performed by the gravimetric method, determining values of potassium, calcium and magnesium for each sampled point. Digital terrain models (DTMs) were obtained by using Terrestrial Laser Scanner. DTMs were generated from a cloud of points with spatial resolutions of 1, 5, 10, 20 and 30 m. Hence, 40 morphometric covariates were generated. Simple Kriging was performed using the R package software. The same data set coupled with morphometric covariates, was used to predict values of the studied attributes in non-sampled sites through Random Forest interpolator. Little differences were observed on the DTMs generated by Simple kriging and Random Forest interpolators. Also, DTMs with better spatial resolution did not improved the quality of soil attributes prediction. Results revealed that Simple Kriging can be used as interpolator when morphometric covariates are not available, with little impact regarding quality. It is necessary to go further in soil chemical attributes prediction techniques, especially in periglacial areas with complex landforms.
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1999-01-01
Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).
Bias-Corrected Estimation of Noncentrality Parameters of Covariance Structure Models
ERIC Educational Resources Information Center
Raykov, Tenko
2005-01-01
A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The…
Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello
2018-04-22
A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.
Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study.
Palaniyappan, Lena; Hodgson, Olha; Balain, Vijender; Iwabuchi, Sarina; Gowland, Penny; Liddle, Peter
2018-05-06
In patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation. Structural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework. Patients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls. Regional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional 'hub' regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.
Cracks in Complex Bodies: Covariance of Tip Balances
NASA Astrophysics Data System (ADS)
Mariano, Paolo Maria
2008-04-01
In complex bodies, actions due to substructural changes alter (in some cases drastically) the force driving the tip of macroscopic cracks in quasi-static and dynamic growth, and must be represented directly. Here it is proven that tip balances of standard and substructural interactions are covariant. In fact, the former balance follows from the Lagrangian density’s requirement of invariance with respect to the action of the group of diffeomorphisms of the ambient space to itself, the latter balance accrues from an analogous invariance with respect to the action of a Lie group over the manifold of substructural shapes. The evolution equation of the crack tip can be obtained by exploiting invariance with respect to relabeling the material elements in the reference place. The analysis is developed by first focusing on general complex bodies that admit metastable states with substructural dissipation of viscous-like type inside each material element. Then we account for gradient dissipative effects that induce nonconservative stresses; the covariance of tip balances in simple bodies follows as a corollary. When body actions and boundary data of Dirichlet type are absent, the standard variational description of quasi-static crack growth is simply extended to the case of complex materials.
Handling Correlations between Covariates and Random Slopes in Multilevel Models
ERIC Educational Resources Information Center
Bates, Michael David; Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders
2014-01-01
This article discusses estimation of multilevel/hierarchical linear models that include cluster-level random intercepts and random slopes. Viewing the models as structural, the random intercepts and slopes represent the effects of omitted cluster-level covariates that may be correlated with included covariates. The resulting correlations between…
Large Covariance Estimation by Thresholding Principal Orthogonal Complements
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088
Large Covariance Estimation by Thresholding Principal Orthogonal Complements.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2013-09-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.
Atrophy and structural covariance of the cholinergic basal forebrain in primary progressive aphasia.
Teipel, Stefan; Raiser, Theresa; Riedl, Lina; Riederer, Isabelle; Schroeter, Matthias L; Bisenius, Sandrine; Schneider, Anja; Kornhuber, Johannes; Fliessbach, Klaus; Spottke, Annika; Grothe, Michel J; Prudlo, Johannes; Kassubek, Jan; Ludolph, Albert; Landwehrmeyer, Bernhard; Straub, Sarah; Otto, Markus; Danek, Adrian
2016-10-01
Primary progressive aphasia (PPA) is characterized by profound destruction of cortical language areas. Anatomical studies suggest an involvement of cholinergic basal forebrain (BF) in PPA syndromes, particularly in the area of the nucleus subputaminalis (NSP). Here we aimed to determine the pattern of atrophy and structural covariance as a proxy of structural connectivity of BF nuclei in PPA variants. We studied 62 prospectively recruited cases with the clinical diagnosis of PPA and 31 healthy older control participants from the cohort study of the German consortium for frontotemporal lobar degeneration (FTLD). We determined cortical and BF atrophy based on high-resolution magnetic resonance imaging (MRI) scans. Patterns of structural covariance of BF with cortical regions were determined using voxel-based partial least square analysis. We found significant atrophy of total BF and BF subregions in PPA patients compared with controls [F(1, 82) = 20.2, p < .001]. Atrophy was most pronounced in the NSP and the posterior BF, and most severe in the semantic variant and the nonfluent variant of PPA. Structural covariance analysis in healthy controls revealed associations of the BF nuclei, particularly the NSP, with left hemispheric predominant prefrontal, lateral temporal, and parietal cortical areas, including Broca's speech area (p < .001, permutation test). In contrast, the PPA patients showed preserved structural covariance of the BF nuclei mostly with right but not with left hemispheric cortical areas (p < .001, permutation test). Our findings agree with the neuroanatomically proposed involvement of the cholinergic BF, particularly the NSP, in PPA syndromes. We found a shift from a structural covariance of the BF with left hemispheric cortical areas in healthy aging towards right hemispheric cortical areas in PPA, possibly reflecting a consequence of the profound and early destruction of cortical language areas in PPA. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
On Muthen's Maximum Likelihood for Two-Level Covariance Structure Models
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Hayashi, Kentaro
2005-01-01
Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthen's maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When…
In recent years, a new class of enclosed, closed-path gas analyzers suitable for eddy covariance applications has come to market, designed to combine the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path syst...
Chang, Yu-Tzu; Hsu, Shih-Wei; Tsai, Shih-Jen; Chang, Ya-Ting; Huang, Chi-Wei; Liu, Mu-En; Chen, Nai-Ching; Chang, Wen-Neng; Hsu, Jung-Lung; Lee, Chen-Chang; Chang, Chiung-Chih
2017-06-01
The 677 C to T transition in the MTHFR gene is a genetic determinant for hyperhomocysteinemia. We investigated whether this polymorphism modulates gray matter (GM) structural covariance networks independently of white-matter integrity in patients with Alzheimer's disease (AD). GM structural covariance networks were constructed by 3D T1-magnetic resonance imaging and seed-based analysis. The patients were divided into two genotype groups: C homozygotes (n = 73) and T carriers (n = 62). Using diffusion tensor imaging and white-matter parcellation, 11 fiber bundle integrities were compared between the two genotype groups. Cognitive test scores were the major outcome factors. The T carriers had higher homocysteine levels, lower posterior cingulate cortex GM volume, and more clusters in the dorsal medial lobe subsystem showing stronger covariance strength. Both posterior cingulate cortex seed and interconnected peak cluster volumes predicted cognitive test scores, especially in the T carriers. There were no between-group differences in fiber tract diffusion parameters. The MTHFR 677T polymorphism modulates posterior cingulate cortex-anchored structural covariance strength independently of white matter integrities. Hum Brain Mapp 38:3039-3051, 2017. © 2017 The Authors Human Brain Mapping Published Wiley by Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published Wiley by Periodicals, Inc.
Ortiz, Andrés; Munilla, Jorge; Álvarez-Illán, Ignacio; Górriz, Juan M; Ramírez, Javier
2015-01-01
Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people. Its development has been shown to be closely related to changes in the brain connectivity network and in the brain activation patterns along with structural changes caused by the neurodegenerative process. Methods to infer dependence between brain regions are usually derived from the analysis of covariance between activation levels in the different areas. However, these covariance-based methods are not able to estimate conditional independence between variables to factor out the influence of other regions. Conversely, models based on the inverse covariance, or precision matrix, such as Sparse Gaussian Graphical Models allow revealing conditional independence between regions by estimating the covariance between two variables given the rest as constant. This paper uses Sparse Inverse Covariance Estimation (SICE) methods to learn undirected graphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose (18F-FDG) Position Emission Tomography (PET) data and segmented Magnetic Resonance images (MRI), drawn from the ADNI database, for Control, MCI (Mild Cognitive Impairment Subjects), and AD subjects. Sparse computation fits perfectly here as brain regions usually only interact with a few other areas. The models clearly show different metabolic covariation patters between subject groups, revealing the loss of strong connections in AD and MCI subjects when compared to Controls. Similarly, the variance between GM (Gray Matter) densities of different regions reveals different structural covariation patterns between the different groups. Thus, the different connectivity patterns for controls and AD are used in this paper to select regions of interest in PET and GM images with discriminative power for early AD diagnosis. Finally, functional an structural models are combined to leverage the classification accuracy. The results obtained in this work show the usefulness of the Sparse Gaussian Graphical models to reveal functional and structural connectivity patterns. This information provided by the sparse inverse covariance matrices is not only used in an exploratory way but we also propose a method to use it in a discriminative way. Regression coefficients are used to compute reconstruction errors for the different classes that are then introduced in a SVM for classification. Classification experiments performed using 68 Controls, 70 AD, and 111 MCI images and assessed by cross-validation show the effectiveness of the proposed method.
Covariance and the hierarchy of frame bundles
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.
1987-01-01
This is an essay on the general concept of covariance, and its connection with the structure of the nested set of higher frame bundles over a differentiable manifold. Examples of covariant geometric objects include not only linear tensor fields, densities and forms, but affinity fields, sectors and sector forms, higher order frame fields, etc., often having nonlinear transformation rules and Lie derivatives. The intrinsic, or invariant, sets of forms that arise on frame bundles satisfy the graded Cartan-Maurer structure equations of an infinite Lie algebra. Reduction of these gives invariant structure equations for Lie pseudogroups, and for G-structures of various orders. Some new results are introduced for prolongation of structure equations, and for treatment of Riemannian geometry with higher-order moving frames. The use of invariant form equations for nonlinear field physics is implicitly advocated.
Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent
2016-01-01
Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures
Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.; ...
2016-09-20
There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less
COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.
There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less
Charvet, Christine J.; Finlay, Barbara L.
2012-01-01
Brain size, body size, developmental length, life span, costs of raising offspring, behavioral complexity, and social structures are correlated in mammals due to intrinsic life-history requirements. Dissecting variation and direction of causation in this web of relationships often draw attention away from the factors that correlate with basic life parameters. We consider the “social brain hypothesis,” which postulates that overall brain and the isocortex are selectively enlarged to confer social abilities in primates, as an example of this enterprise and pitfalls. We consider patterns of brain scaling, modularity, flexibility of brain organization, the “leverage,” and direction of selection on proposed dimensions. We conclude that the evidence supporting selective changes in isocortex or brain size for the isolated ability to manage social relationships is poor. Strong covariation in size and developmental duration coupled with flexible brains allow organisms to adapt in variable social and ecological environments across the life span and in evolution. PMID:22230623
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM.
Mair, Patrick; Satorra, Albert; Bentler, Peter M
2012-07-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo evaluation of structural equation models within the context of nonnormal data. The new procedure for nonnormal data simulation is theoretically described and also implemented in the widely used R environment. The quality of the method is assessed by Monte Carlo simulations. A 1-sample test on the observed covariance matrix based on the copula methodology is proposed. This new test for evaluating the quality of a simulation is defined through a particular structural model specification and is robust against normality violations.
Anderson, Jeffrey S; Zielinski, Brandon A; Nielsen, Jared A; Ferguson, Michael A
2014-04-01
Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Copyright © 2013 Wiley Periodicals, Inc.
Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data
George, Brandon; Aban, Inmaculada
2014-01-01
Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361
Multisensor Parallel Largest Ellipsoid Distributed Data Fusion with Unknown Cross-Covariances
Liu, Baoyu; Zhan, Xingqun; Zhu, Zheng H.
2017-01-01
As the largest ellipsoid (LE) data fusion algorithm can only be applied to two-sensor system, in this contribution, parallel fusion structure is proposed to introduce the LE algorithm into a multisensor system with unknown cross-covariances, and three parallel fusion structures based on different estimate pairing methods are presented and analyzed. In order to assess the influence of fusion structure on fusion performance, two fusion performance assessment parameters are defined as Fusion Distance and Fusion Index. Moreover, the formula for calculating the upper bounds of actual fused error covariances of the presented multisensor LE fusers is also provided. Demonstrated with simulation examples, the Fusion Index indicates fuser’s actual fused accuracy and its sensitivity to the sensor orders, as well as its robustness to the accuracy of newly added sensors. Compared to the LE fuser with sequential structure, the LE fusers with proposed parallel structures not only significantly improve their properties in these aspects, but also embrace better performances in consistency and computation efficiency. The presented multisensor LE fusers generally have better accuracies than covariance intersection (CI) fusion algorithm and are consistent when the local estimates are weakly correlated. PMID:28661442
Real-time probabilistic covariance tracking with efficient model update.
Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li
2012-05-01
The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.
ERIC Educational Resources Information Center
Beretvas, S. Natasha; Furlow, Carolyn F.
2006-01-01
Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM
ERIC Educational Resources Information Center
Mair, Patrick; Satorra, Albert; Bentler, Peter M.
2012-01-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
ERIC Educational Resources Information Center
Hu, Li-tze; Bentler, Peter M.
1999-01-01
The adequacy of "rule of thumb" conventional cutoff criteria and several alternatives for fit indices in covariance structure analysis was evaluated through simulation. Analyses suggest that, for all recommended fit indexes except one, a cutoff criterion greater than (or sometimes smaller than) the conventional rule of thumb is required…
ERIC Educational Resources Information Center
Bashkov, Bozhidar M.; Finney, Sara J.
2013-01-01
Traditional methods of assessing construct stability are reviewed and longitudinal mean and covariance structures (LMACS) analysis, a modern approach, is didactically illustrated using psychological entitlement data. Measurement invariance and latent variable stability results are interpreted, emphasizing substantive implications for educators and…
Retrospective Binary-Trait Association Test Elucidates Genetic Architecture of Crohn Disease
Jiang, Duo; Zhong, Sheng; McPeek, Mary Sara
2016-01-01
In genetic association testing, failure to properly control for population structure can lead to severely inflated type 1 error and power loss. Meanwhile, adjustment for relevant covariates is often desirable and sometimes necessary to protect against spurious association and to improve power. Many recent methods to account for population structure and covariates are based on linear mixed models (LMMs), which are primarily designed for quantitative traits. For binary traits, however, LMM is a misspecified model and can lead to deteriorated performance. We propose CARAT, a binary-trait association testing approach based on a mixed-effects quasi-likelihood framework, which exploits the dichotomous nature of the trait and achieves computational efficiency through estimating equations. We show in simulation studies that CARAT consistently outperforms existing methods and maintains high power in a wide range of population structure settings and trait models. Furthermore, CARAT is based on a retrospective approach, which is robust to misspecification of the phenotype model. We apply our approach to a genome-wide analysis of Crohn disease, in which we replicate association with 17 previously identified regions. Moreover, our analysis on 5p13.1, an extensively reported region of association, shows evidence for the presence of multiple independent association signals in the region. This example shows how CARAT can leverage known disease risk factors to shed light on the genetic architecture of complex traits. PMID:26833331
Evolutions of fluctuation modes and inner structures of global stock markets
NASA Astrophysics Data System (ADS)
Yan, Yan; Wang, Lei; Liu, Maoxin; Chen, Xiaosong
2016-09-01
The paper uses empirical data, including 42 globally main stock indices in the period 1996-2014, to systematically study the evolution of fluctuation modes and inner structures of global stock markets. The data are large in scale considering both time and space. A covariance matrix-based principle fluctuation mode analysis (PFMA) is used to explore the properties of the global stock markets. It has been ignored by previous studies that covariance matrix is more suitable than the correlation matrix to be the basis of PFMA. It is found that the principle fluctuation modes of global stock markets are in the same directions, and global stock markets are divided into three clusters, which are found to be closely related to the countries’ locations with exceptions of China, Russia and Czech Republic. A time-stable correlation network constructing method is proposed to solve the problem of high-level statistical uncertainty when the estimated periods are very short, and the complex dynamic network (CDN) is constructed to investigate the evolution of inner structures. The results show when the clusters emerge and how long the clusters exist. When the 2008 financial crisis broke out, the indices form one cluster. After these crises, only the European cluster still exists. These findings complement the previous studies, and can help investors and regulators to understand the global stock markets.
Sun, Jin; Kelbert, Anna; Egbert, G.D.
2015-01-01
Long-period global-scale electromagnetic induction studies of deep Earth conductivity are based almost exclusively on magnetovariational methods and require accurate models of external source spatial structure. We describe approaches to inverting for both the external sources and three-dimensional (3-D) conductivity variations and apply these methods to long-period (T≥1.2 days) geomagnetic observatory data. Our scheme involves three steps: (1) Observatory data from 60 years (only partly overlapping and with many large gaps) are reduced and merged into dominant spatial modes using a scheme based on frequency domain principal components. (2) Resulting modes are inverted for corresponding external source spatial structure, using a simplified conductivity model with radial variations overlain by a two-dimensional thin sheet. The source inversion is regularized using a physically based source covariance, generated through superposition of correlated tilted zonal (quasi-dipole) current loops, representing ionospheric source complexity smoothed by Earth rotation. Free parameters in the source covariance model are tuned by a leave-one-out cross-validation scheme. (3) The estimated data modes are inverted for 3-D Earth conductivity, assuming the source excitation estimated in step 2. Together, these developments constitute key components in a practical scheme for simultaneous inversion of the catalogue of historical and modern observatory data for external source spatial structure and 3-D Earth conductivity.
Covariance and correlation estimation in electron-density maps.
Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna
2012-03-01
Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.
Wu, Huawang; Sun, Hui; Wang, Chao; Yu, Lin; Li, Yilan; Peng, Hongjun; Lu, Xiaobing; Hu, Qingmao; Ning, Yuping; Jiang, Tianzi; Xu, Jinping; Wang, Jiaojian
2017-01-01
Major depressive disorder (MDD) is a common psychiatric disorder that is characterized by cognitive deficits and affective symptoms. To date, an increasing number of neuroimaging studies have focused on emotion regulation and have consistently shown that emotion dysregulation is one of the central features and underlying mechanisms of MDD. Although gray matter morphological abnormalities in regions within emotion regulation networks have been identified in MDD, the interactions and relationships between these gray matter structures remain largely unknown. Thus, in this study, we adopted a structural covariance method based on gray matter volume to investigate the brain morphological abnormalities within the emotion regulation networks in a large cohort of 65 MDD patients and 65 age- and gender-matched healthy controls. A permutation test with p < 0.05 was used to identify the significant changes in covariance connectivity strengths between MDD patients and healthy controls. The structural covariance analysis revealed an increased correlation strength of gray matter volume between the left angular gyrus and the left amygdala and between the right angular gyrus and the right amygdala, as well as a decreased correlation strength of the gray matter volume between the right angular gyrus and the posterior cingulate cortex in MDD. Our findings support the notion that emotion dysregulation is an underlying mechanism of MDD by revealing disrupted structural covariance patterns in the emotion regulation network. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paquola, Casey; Bennett, Maxwell; Lagopoulos, Jim
2018-05-15
Structural covariance networks (SCNs) may offer unique insights into the developmental impact of childhood maltreatment because they are thought to reflect coordinated maturation of distinct grey matter regions. T1-weighted magnetic resonance images were acquired from 121 young people with emerging mental illness. Diffusion weighted and resting state functional imaging was also acquired from a random subset of the participants (n=62). Ten study-specific SCNs were identified using a whole brain grey matter independent component analysis. The effects of childhood maltreatment and age on average grey matter density and the expression of each SCN were calculated. Childhood maltreatment was linked to age-related decreases in grey matter density across a SCN that overlapped with the default mode and fronto-parietal networks. Resting state functional connectivity and structural connectivity were calculated in the study-specific SCN and across the whole brain. Grey matter covariance was significantly correlated with rsFC across the SCN, and rsFC fully mediated the relationship between grey matter covariance and structural connectivity in the non-maltreated group. A unique association of grey matter covariance with structural connectivity was detected amongst individuals with a history of childhood maltreatment. Perturbation of grey matter development across the default mode and fronto-parietal networks following childhood maltreatment may have significant implications for mental well-being, given the networks' roles in self-referential activity. Cross-modal comparisons suggest reduced grey matter following childhood maltreatment could arise from deficient functional activity earlier in life.
Space-time models based on random fields with local interactions
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios T.; Tsantili, Ivi C.
2016-08-01
The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. In this paper, we propose deriving space-time covariance functions by solving “effective equations of motion”, which can be used as statistical representations of systems with diffusive behavior. In particular, we propose to formulate space-time covariance functions based on an equilibrium effective Hamiltonian using the linear response theory. The effective space-time dynamics is then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.
Jaman, Ajmery; Latif, Mahbub A H M; Bari, Wasimul; Wahed, Abdus S
2016-05-20
In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. Copyright © 2015 John Wiley & Sons, Ltd.
Geerligs, Linda; Cam-Can; Henson, Richard N
2016-07-15
Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Design of microarray experiments for genetical genomics studies.
Bueno Filho, Júlio S S; Gilmour, Steven G; Rosa, Guilherme J M
2006-10-01
Microarray experiments have been used recently in genetical genomics studies, as an additional tool to understand the genetic mechanisms governing variation in complex traits, such as for estimating heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for inferring regulatory networks controlling gene expression. Several articles on the design of microarray experiments discuss situations in which treatment effects are assumed fixed and without any structure. In the case of two-color microarray platforms, several authors have studied reference and circular designs. Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within family structures or complex pedigrees) are presented. In these cases treatments are more appropriately considered to be random effects, with specific covariance structures, in which the genetic goals relate to the estimation of genetic variances and the heritability of transcriptional abundances.
Structural covariance in the hallucinating brain: a voxel-based morphometry study
Modinos, Gemma; Vercammen, Ans; Mechelli, Andrea; Knegtering, Henderikus; McGuire, Philip K.; Aleman, André
2009-01-01
Background Neuroimaging studies have indicated that a number of cortical regions express altered patterns of structural covariance in schizophrenia. The relation between these alterations and specific psychotic symptoms is yet to be investigated. We used voxel-based morphometry to examine regional grey matter volumes and structural covariance associated with severity of auditory verbal hallucinations. Methods We applied optimized voxel-based morphometry to volumetric magnetic resonance imaging data from 26 patients with medication-resistant auditory verbal hallucinations (AVHs); statistical inferences were made at p < 0.05 after correction for multiple comparisons. Results Grey matter volume in the left inferior frontal gyrus was positively correlated with severity of AVHs. Hallucination severity influenced the pattern of structural covariance between this region and the left superior/middle temporal gyri, the right inferior frontal gyrus and hippocampus, and the insula bilaterally. Limitations The results are based on self-reported severity of auditory hallucinations. Complementing with a clinician-based instrument could have made the findings more compelling. Future studies would benefit from including a measure to control for other symptoms that may covary with AVHs and for the effects of antipsychotic medication. Conclusion The results revealed that overall severity of AVHs modulated cortical intercorrelations between frontotemporal regions involved in language production and verbal monitoring, supporting the critical role of this network in the pathophysiology of hallucinations. PMID:19949723
Power law tails in phylogenetic systems.
Qin, Chongli; Colwell, Lucy J
2018-01-23
Covariance analysis of protein sequence alignments uses coevolving pairs of sequence positions to predict features of protein structure and function. However, current methods ignore the phylogenetic relationships between sequences, potentially corrupting the identification of covarying positions. Here, we use random matrix theory to demonstrate the existence of a power law tail that distinguishes the spectrum of covariance caused by phylogeny from that caused by structural interactions. The power law is essentially independent of the phylogenetic tree topology, depending on just two parameters-the sequence length and the average branch length. We demonstrate that these power law tails are ubiquitous in the large protein sequence alignments used to predict contacts in 3D structure, as predicted by our theory. This suggests that to decouple phylogenetic effects from the interactions between sequence distal sites that control biological function, it is necessary to remove or down-weight the eigenvectors of the covariance matrix with largest eigenvalues. We confirm that truncating these eigenvectors improves contact prediction.
NASA Astrophysics Data System (ADS)
Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.
2016-08-01
Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons pertaining to the topic 'blood and circulatory system'. Two fundamental characteristics used to analyze tasks include: (1) required cognitive level of processing (e.g. low level information processing: repetiition, summary, define, classify and high level information processing: interpret-analyze data, formulate hypothesis, etc.) and (2) complexity of task content (e.g. if tasks require use of factual, linking or concept level content). Additionally, students' cognitive knowledge structure about the topic 'blood and circulatory system' was measured using student-drawn concept maps (N = 970 students). Finally, linear multilevel models were created with high-level cognitive processing tasks and higher content complexity tasks as class-level predictors and students' prior knowledge, students' interest in biology, and students' interest in biology activities as control covariates. Results showed a positive influence of high-level cognitive processing tasks (β = 0.07; p < .01) on students' cognitive knowledge structure. However, there was no observed effect of higher content complexity tasks on students' cognitive knowledge structure. Presented findings encourage the use of high-level cognitive processing tasks in biology instruction.
NASA Technical Reports Server (NTRS)
Morgera, S. D.; Cooper, D. B.
1976-01-01
The experimental observation that a surprisingly small sample size vis-a-vis dimension is needed to achieve good signal-to-interference ratio (SIR) performance with an adaptive predetection filter is explained. The adaptive filter requires estimates as obtained by a recursive stochastic algorithm of the inverse of the filter input data covariance matrix. The SIR performance with sample size is compared for the situations where the covariance matrix estimates are of unstructured (generalized) form and of structured (finite Toeplitz) form; the latter case is consistent with weak stationarity of the input data stochastic process.
Nonparametric Combinatorial Sequence Models
NASA Astrophysics Data System (ADS)
Wauthier, Fabian L.; Jordan, Michael I.; Jojic, Nebojsa
This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This paper presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three sequence datasets which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution induced by the prior. By integrating out the posterior our method compares favorably to leading binding predictors.
ERIC Educational Resources Information Center
Cai, Li; Lee, Taehun
2009-01-01
We apply the Supplemented EM algorithm (Meng & Rubin, 1991) to address a chronic problem with the "two-stage" fitting of covariance structure models in the presence of ignorable missing data: the lack of an asymptotically chi-square distributed goodness-of-fit statistic. We show that the Supplemented EM algorithm provides a…
ERIC Educational Resources Information Center
Donoghue, John R.
Monte Carlo studies investigated effects of within-group covariance structure on subgroup recovery by several widely used hierarchical clustering methods. In Study 1, subgroup size, within-group correlation, within-group variance, and distance between subgroup centroids were manipulated. All clustering methods were strongly affected by…
ERIC Educational Resources Information Center
Honjo, Shuji; And Others
1998-01-01
Evaluated statistically the effect of intranatal and early postnatal period factors on mental development of very low-birth-weight infants. Covariance structure analysis revealed direct influence of birth weight and gestational age in weeks on mental development at age 1, and of opthalmological aberrations and respirator disorder on mental…
ERIC Educational Resources Information Center
Liu, Junhui
2012-01-01
The current study investigated how between-subject and within-subject variance-covariance structures affected the detection of a finite mixture of unobserved subpopulations and parameter recovery of growth mixture models in the context of linear mixed-effects models. A simulation study was conducted to evaluate the impact of variance-covariance…
Interval Estimation of Revision Effect on Scale Reliability via Covariance Structure Modeling
ERIC Educational Resources Information Center
Raykov, Tenko
2009-01-01
A didactic discussion of a procedure for interval estimation of change in scale reliability due to revision is provided, which is developed within the framework of covariance structure modeling. The method yields ranges of plausible values for the population gain or loss in reliability of unidimensional composites, which results from deletion or…
External Aiding Methods for IMU-Based Navigation
2016-11-26
Carlo simulation and particle filtering . This approach allows for the utilization of highly complex systems in a black box configuration with minimal...alternative method, which has the advantage of being less computationally demanding, is to use a Kalman filtering -based approach. The particular...Kalman filtering -based approach used here is known as linear covariance analysis. In linear covariance analysis, the nonlinear systems describing the
Marroig, G; Cheverud, J M
2001-12-01
Similarity of genetic and phenotypic variation patterns among populations is important for making quantitative inferences about past evolutionary forces acting to differentiate populations and for evaluating the evolution of relationships among traits in response to new functional and developmental relationships. Here, phenotypic co variance and correlation structure is compared among Platyrrhine Neotropical primates. Comparisons range from among species within a genus to the superfamily level. Matrix correlation followed by Mantel's test and vector correlation among responses to random natural selection vectors (random skewers) were used to compare correlation and variance/covariance matrices of 39 skull traits. Sampling errors involved in matrix estimates were taken into account in comparisons using matrix repeatability to set upper limits for each pairwise comparison. Results indicate that covariance structure is not strictly constant but that the amount of variance pattern divergence observed among taxa is generally low and not associated with taxonomic distance. Specific instances of divergence are identified. There is no correlation between the amount of divergence in covariance patterns among the 16 genera and their phylogenetic distance derived from a conjoint analysis of four already published nuclear gene datasets. In contrast, there is a significant correlation between phylogenetic distance and morphological distance (Mahalanobis distance among genus centroids). This result indicates that while the phenotypic means were evolving during the last 30 millions years of New World monkey evolution, phenotypic covariance structures of Neotropical primate skulls have remained relatively consistent. Neotropical primates can be divided into four major groups based on their feeding habits (fruit-leaves, seed-fruits, insect-fruits, and gum-insect-fruits). Differences in phenotypic covariance structure are correlated with differences in feeding habits, indicating that to some extent changes in interrelationships among skull traits are associated with changes in feeding habits. Finally, common patterns and levels of morphological integration are found among Platyrrhine primates, suggesting that functional/developmental integration could be one major factor keeping covariance structure relatively stable during evolutionary diversification of South American monkeys.
Wallace, Chris; Xue, Ming-Zhan; Newhouse, Stephen J.; Marçano, Ana Carolina B.; Onipinla, Abiodun K.; Burke, Beverley; Gungadoo, Johannie; Dobson, Richard J.; Brown, Morris; Connell, John M.; Dominiczak, Anna; Lathrop, G. Mark; Webster, John; Farrall, Martin; Mein, Charles; Samani, Nilesh J.; Caulfield, Mark J.; Clayton, David G.; Munroe, Patricia B.
2006-01-01
Identification of the genetic influences on human essential hypertension and other complex diseases has proved difficult, partly because of genetic heterogeneity. In many complex-trait resources, additional phenotypic data have been collected, allowing comorbid intermediary phenotypes to be used to characterize more genetically homogeneous subsets. The traditional approach to analyzing covariate-defined subsets has typically depended on researchers’ previous expectations for definition of a comorbid subset and leads to smaller data sets, with a concomitant attrition in power. An alternative is to test for dependence between genetic sharing and covariates across the entire data set. This approach offers the advantage of exploiting the full data set and could be widely applied to complex-trait genome scans. However, existing maximum-likelihood methods can be prohibitively computationally expensive, especially since permutation is often required to determine significance. We developed a less computationally intensive score test and applied it to biometric and biochemical covariate data, from 2,044 sibling pairs with severe hypertension, collected by the British Genetics of Hypertension (BRIGHT) study. We found genomewide-significant evidence for linkage with hypertension and several related covariates. The strongest signals were with leaner-body-mass measures on chromosome 20q (maximum LOD=4.24) and with parameters of renal function on chromosome 5p (maximum LOD=3.71). After correction for the multiple traits and genetic locations studied, our global genomewide P value was .046. This is the first identity-by-descent regression analysis of hypertension to our knowledge, and it demonstrates the value of this approach for the incorporation of additional phenotypic information in genetic studies of complex traits. PMID:16826522
Xia, Huijun; Yang, Kunde; Ma, Yuanliang; Wang, Yong; Liu, Yaxiong
2017-01-01
Generally, many beamforming methods are derived under the assumption of white noise. In practice, the actual underwater ambient noise is complex. As a result, the noise removal capacity of the beamforming method may be deteriorated considerably. Furthermore, in underwater environment with extremely low signal-to-noise ratio (SNR), the performances of the beamforming method may be deteriorated. To tackle these problems, a noise removal method for uniform circular array (UCA) is proposed to remove the received noise and improve the SNR in complex noise environments with low SNR. First, the symmetrical noise sources are defined and the spatial correlation of the symmetrical noise sources is calculated. Then, based on the preceding results, the noise covariance matrix is decomposed into symmetrical and asymmetrical components. Analysis indicates that the symmetrical component only affect the real part of the noise covariance matrix. Consequently, the delay-and-sum (DAS) beamforming is performed by using the imaginary part of the covariance matrix to remove the symmetrical component. However, the noise removal method causes two problems. First, the proposed method produces a false target. Second, the proposed method would seriously suppress the signal when it is located in some directions. To solve the first problem, two methods to reconstruct the signal covariance matrix are presented: based on the estimation of signal variance and based on the constrained optimization algorithm. To solve the second problem, we can design the array configuration and select the suitable working frequency. Theoretical analysis and experimental results are included to demonstrate that the proposed methods are particularly effective in complex noise environments with low SNR. The proposed method can be extended to any array. PMID:28598386
Wallace, Chris; Xue, Ming-Zhan; Newhouse, Stephen J; Marcano, Ana Carolina B; Onipinla, Abiodun K; Burke, Beverley; Gungadoo, Johannie; Dobson, Richard J; Brown, Morris; Connell, John M; Dominiczak, Anna; Lathrop, G Mark; Webster, John; Farrall, Martin; Mein, Charles; Samani, Nilesh J; Caulfield, Mark J; Clayton, David G; Munroe, Patricia B
2006-08-01
Identification of the genetic influences on human essential hypertension and other complex diseases has proved difficult, partly because of genetic heterogeneity. In many complex-trait resources, additional phenotypic data have been collected, allowing comorbid intermediary phenotypes to be used to characterize more genetically homogeneous subsets. The traditional approach to analyzing covariate-defined subsets has typically depended on researchers' previous expectations for definition of a comorbid subset and leads to smaller data sets, with a concomitant attrition in power. An alternative is to test for dependence between genetic sharing and covariates across the entire data set. This approach offers the advantage of exploiting the full data set and could be widely applied to complex-trait genome scans. However, existing maximum-likelihood methods can be prohibitively computationally expensive, especially since permutation is often required to determine significance. We developed a less computationally intensive score test and applied it to biometric and biochemical covariate data, from 2,044 sibling pairs with severe hypertension, collected by the British Genetics of Hypertension (BRIGHT) study. We found genomewide-significant evidence for linkage with hypertension and several related covariates. The strongest signals were with leaner-body-mass measures on chromosome 20q (maximum LOD = 4.24) and with parameters of renal function on chromosome 5p (maximum LOD = 3.71). After correction for the multiple traits and genetic locations studied, our global genomewide P value was .046. This is the first identity-by-descent regression analysis of hypertension to our knowledge, and it demonstrates the value of this approach for the incorporation of additional phenotypic information in genetic studies of complex traits.
Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.
George, Brandon; Aban, Inmaculada
2015-01-15
Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.
de Mooij, Susanne M M; Henson, Richard N A; Waldorp, Lourens J; Kievit, Rogier A
2018-06-20
It is well established that brain structures and cognitive functions change across the life span. A long-standing hypothesis called "age differentiation" additionally posits that the relations between cognitive functions also change with age. To date, however, evidence for age-related differentiation is mixed, and no study has examined differentiation of the relationship between brain and cognition. Here we use multigroup structural equation models (SEMs) and SEM trees to study differences within and between brain and cognition across the adult life span (18-88 years) in a large ( N > 646, closely matched across sexes), population-derived sample of healthy human adults from the Cambridge Centre for Ageing and Neuroscience (www.cam-can.org). After factor analyses of gray matter volume (from T1- and T2-weighted MRI) and white matter organization (fractional anisotropy from diffusion-weighted MRI), we found evidence for the differentiation of gray and white matter, such that the covariance between brain factors decreased with age. However, we found no evidence for age differentiation among fluid intelligence, language, and memory, suggesting a relatively stable covariance pattern among cognitive factors. Finally, we observed a specific pattern of age differentiation between brain and cognitive factors, such that a white matter factor, which loaded most strongly on the hippocampal cingulum, became less correlated with memory performance in later life. These patterns are compatible with the reorganization of cognitive functions in the face of neural decline, and/or with the emergence of specific subpopulations in old age. SIGNIFICANCE STATEMENT The theory of age differentiation posits age-related changes in the relationships among cognitive domains, either weakening (differentiation) or strengthening (dedifferentiation), but evidence for this hypothesis is mixed. Using age-varying covariance models in a large cross-sectional adult life span sample, we found age-related reductions in the covariance among both brain measures (neural differentiation), but no covariance change among cognitive factors of fluid intelligence, language, and memory. We also observed evidence of uncoupling (differentiation) between a white matter factor and cognitive factors in older age, most strongly for memory. Together, our findings support age-related differentiation as a complex, multifaceted pattern that differs for brain and cognition, and discuss several mechanisms that might explain the changing relationship between brain and cognition. Copyright © 2018 de Mooij et al.
Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.
Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan
2016-12-01
Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.
Kupek, Emil
2002-01-01
Background Frequent use of self-reports for investigating recent and past behavior in medical research requires statistical techniques capable of analyzing complex sources of bias associated with this methodology. In particular, although decreasing accuracy of recalling more distant past events is commonplace, the bias due to differential in memory errors resulting from it has rarely been modeled statistically. Methods Covariance structure analysis was used to estimate the recall error of self-reported number of sexual partners for past periods of varying duration and its implication for the bias. Results Results indicated increasing levels of inaccuracy for reports about more distant past. Considerable positive bias was found for a small fraction of respondents who reported ten or more partners in the last year, last two years and last five years. This is consistent with the effect of heteroscedastic random error where the majority of partners had been acquired in the more distant past and therefore were recalled less accurately than the partners acquired more recently to the time of interviewing. Conclusions Memory errors of this type depend on the salience of the events recalled and are likely to be present in many areas of health research based on self-reported behavior. PMID:12435276
Burby, Joshua W.; Lacker, Daniel
2016-01-01
Systems as diverse as the interacting species in a community, alleles at a genetic locus, and companies in a market are characterized by competition (over resources, space, capital, etc) and adaptation. Neutral theory, built around the hypothesis that individual performance is independent of group membership, has found utility across the disciplines of ecology, population genetics, and economics, both because of the success of the neutral hypothesis in predicting system properties and because deviations from these predictions provide information about the underlying dynamics. However, most tests of neutrality are weak, based on static system properties such as species-abundance distributions or the number of singletons in a sample. Time-series data provide a window onto a system’s dynamics, and should furnish tests of the neutral hypothesis that are more powerful to detect deviations from neutrality and more informative about to the type of competitive asymmetry that drives the deviation. Here, we present a neutrality test for time-series data. We apply this test to several microbial time-series and financial time-series and find that most of these systems are not neutral. Our test isolates the covariance structure of neutral competition, thus facilitating further exploration of the nature of asymmetry in the covariance structure of competitive systems. Much like neutrality tests from population genetics that use relative abundance distributions have enabled researchers to scan entire genomes for genes under selection, we anticipate our time-series test will be useful for quick significance tests of neutrality across a range of ecological, economic, and sociological systems for which time-series data are available. Future work can use our test to categorize and compare the dynamic fingerprints of particular competitive asymmetries (frequency dependence, volatility smiles, etc) to improve forecasting and management of complex adaptive systems. PMID:27689714
Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem*
Katsevich, E.; Katsevich, A.; Singer, A.
2015-01-01
In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule under examination exhibits structural variability, which poses a fundamental challenge in SPR. The heterogeneity problem is the task of mapping the space of conformational states of a molecule. It has been previously suggested that the leading eigenvectors of the covariance matrix of the 3D molecules can be used to solve the heterogeneity problem. Estimating the covariance matrix is challenging, since only projections of the molecules are observed, but not the molecules themselves. In this paper, we formulate a general problem of covariance estimation from noisy projections of samples. This problem has intimate connections with matrix completion problems and high-dimensional principal component analysis. We propose an estimator and prove its consistency. When there are finitely many heterogeneity classes, the spectrum of the estimated covariance matrix reveals the number of classes. The estimator can be found as the solution to a certain linear system. In the cryo-EM case, the linear operator to be inverted, which we term the projection covariance transform, is an important object in covariance estimation for tomographic problems involving structural variation. Inverting it involves applying a filter akin to the ramp filter in tomography. We design a basis in which this linear operator is sparse and thus can be tractably inverted despite its large size. We demonstrate via numerical experiments on synthetic datasets the robustness of our algorithm to high levels of noise. PMID:25699132
Covariance Structure Models for Gene Expression Microarray Data
ERIC Educational Resources Information Center
Xie, Jun; Bentler, Peter M.
2003-01-01
Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…
Tremblay, Marlène; Crim, Stacy M; Cole, Dana J; Hoekstra, Robert M; Henao, Olga L; Döpfer, Dörte
2017-10-01
The Foodborne Diseases Active Surveillance Network (FoodNet) is currently using a negative binomial (NB) regression model to estimate temporal changes in the incidence of Campylobacter infection. FoodNet active surveillance in 483 counties collected data on 40,212 Campylobacter cases between years 2004 and 2011. We explored models that disaggregated these data to allow us to account for demographic, geographic, and seasonal factors when examining changes in incidence of Campylobacter infection. We hypothesized that modeling structural zeros and including demographic variables would increase the fit of FoodNet's Campylobacter incidence regression models. Five different models were compared: NB without demographic covariates, NB with demographic covariates, hurdle NB with covariates in the count component only, hurdle NB with covariates in both zero and count components, and zero-inflated NB with covariates in the count component only. Of the models evaluated, the nonzero-augmented NB model with demographic variables provided the best fit. Results suggest that even though zero inflation was not present at this level, individualizing the level of aggregation and using different model structures and predictors per site might be required to correctly distinguish between structural and observational zeros and account for risk factors that vary geographically.
Huang, Chi-Wei; Hsu, Shih-Wei; Tsai, Shih-Jen; Chen, Nai-Ching; Liu, Mu-En; Lee, Chen-Chang; Huang, Shu-Hua; Chang, Weng-Neng; Chang, Ya-Ting; Tsai, Wan-Chen; Chang, Chiung-Chih
2017-01-18
Inflammatory processes play a pivotal role in the degenerative process of Alzheimer's disease. In humans, a biallelic (C/T) polymorphism in the promoter region (position-511) (rs16944) of the interleukin-1 beta gene has been significantly associated with differences in the secretory capacity of interleukin-1 beta. In this study, we investigated whether this functional polymorphism mediates the brain networks in patients with Alzheimer's disease. We enrolled a total of 135 patients with Alzheimer's disease (65 males, 70 females), and investigated their gray matter structural covariance networks using 3D T1 magnetic resonance imaging and their white matter macro-structural integrities using fractional anisotropy. The patients were classified into two genotype groups: C-carriers (n = 108) and TT-carriers (n = 27), and the structural covariance networks were constructed using seed-based analysis focusing on the default mode network medial temporal or dorsal medial subsystem, salience network and executive control network. Neurobehavioral scores were used as the major outcome factors for clinical correlations. There were no differences between the two genotype groups in the cognitive test scores, seed, or peak cluster volumes and white matter fractional anisotropy. The covariance strength showing C-carriers > TT-carriers was the entorhinal-cingulum axis. There were two peak clusters (Brodmann 6 and 10) in the salience network and four peak clusters (superior prefrontal, precentral, fusiform, and temporal) in the executive control network that showed C-carriers < TT-carriers in covariance strength. The salience network and executive control network peak clusters in the TT group and the default mode network peak clusters in the C-carriers strongly predicted the cognitive test scores. Interleukin-1 beta C-511 T polymorphism modulates the structural covariance strength on the anterior brain network and entorhinal-interconnected network which were independent of the white matter tract integrity. Depending on the specific C-511 T genotype, different network clusters could predict the cognitive tests.
MIMICKING COUNTERFACTUAL OUTCOMES TO ESTIMATE CAUSAL EFFECTS.
Lok, Judith J
2017-04-01
In observational studies, treatment may be adapted to covariates at several times without a fixed protocol, in continuous time. Treatment influences covariates, which influence treatment, which influences covariates, and so on. Then even time-dependent Cox-models cannot be used to estimate the net treatment effect. Structural nested models have been applied in this setting. Structural nested models are based on counterfactuals: the outcome a person would have had had treatment been withheld after a certain time. Previous work on continuous-time structural nested models assumes that counterfactuals depend deterministically on observed data, while conjecturing that this assumption can be relaxed. This article proves that one can mimic counterfactuals by constructing random variables, solutions to a differential equation, that have the same distribution as the counterfactuals, even given past observed data. These "mimicking" variables can be used to estimate the parameters of structural nested models without assuming the treatment effect to be deterministic.
A probabilistic framework to infer brain functional connectivity from anatomical connections.
Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel
2011-01-01
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.
Variations of cosmic large-scale structure covariance matrices across parameter space
NASA Astrophysics Data System (ADS)
Reischke, Robert; Kiessling, Alina; Schäfer, Björn Malte
2017-03-01
The likelihood function for cosmological parameters, given by e.g. weak lensing shear measurements, depends on contributions to the covariance induced by the non-linear evolution of the cosmic web. As highly non-linear clustering to date has only been described by numerical N-body simulations in a reliable and sufficiently precise way, the necessary computational costs for estimating those covariances at different points in parameter space are tremendous. In this work, we describe the change of the matter covariance and the weak lensing covariance matrix as a function of cosmological parameters by constructing a suitable basis, where we model the contribution to the covariance from non-linear structure formation using Eulerian perturbation theory at third order. We show that our formalism is capable of dealing with large matrices and reproduces expected degeneracies and scaling with cosmological parameters in a reliable way. Comparing our analytical results to numerical simulations, we find that the method describes the variation of the covariance matrix found in the SUNGLASS weak lensing simulation pipeline within the errors at one-loop and tree-level for the spectrum and the trispectrum, respectively, for multipoles up to ℓ ≤ 1300. We show that it is possible to optimize the sampling of parameter space where numerical simulations should be carried out by minimizing interpolation errors and propose a corresponding method to distribute points in parameter space in an economical way.
Ahmed, Newaz I; Thompson, Cole; Bolnick, Daniel I; Stuart, Yoel E
2017-05-01
The Clever Foraging Hypothesis asserts that organisms living in a more spatially complex environment will have a greater neurological capacity for cognitive processes related to spatial memory, navigation, and foraging. Because the telencephalon is often associated with spatial memory and navigation tasks, this hypothesis predicts a positive association between telencephalon size and environmental complexity. The association between habitat complexity and brain size has been supported by comparative studies across multiple species but has not been widely studied at the within-species level. We tested for covariation between environmental complexity and neuroanatomy of threespine stickleback ( Gasterosteus aculeatus ) collected from 15 pairs of lakes and their parapatric streams on Vancouver Island. In most pairs, neuroanatomy differed between the adjoining lake and stream populations. However, the magnitude and direction of this difference were inconsistent between watersheds and did not covary strongly with measures of within-site environmental heterogeneity. Overall, we find weak support for the Clever Foraging Hypothesis in our study.
Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C
2018-06-29
A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.
Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R
2012-08-01
A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.
Covariant diagrams for one-loop matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhengkang
Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less
Covariant diagrams for one-loop matching
Zhang, Zhengkang
2017-05-30
Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less
Bayes linear covariance matrix adjustment
NASA Astrophysics Data System (ADS)
Wilkinson, Darren J.
1995-12-01
In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be amenable to a similar approach. Diagnostics for matrix adjustments are also discussed.
Floral trait variation and integration as a function of sexual deception in Gorteria diffusa
Ellis, Allan G.; Brockington, Samuel F.; de Jager, Marinus L.; Mellers, Gregory; Walker, Rachel H.; Glover, Beverley J.
2014-01-01
Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. PMID:25002705
The Potential Observation Network Design with Mesoscale Ensemble Sensitivities in Complex Terrain
2012-03-01
in synoptic storms , extratropical transition and developing hurricanes. Because they rely on lagged covariances from a finite-sized ensemble, they...diagnose predictors of forecast error in synoptic storms , extratropical transition and developing hurricanes. Because they rely on lagged covariances...sensitivities can be used successfully to diagnose predictors of forecast error in synoptic storms (Torn and Hakim 2008), extratropical transition (Torn and
Corrected score estimation in the proportional hazards model with misclassified discrete covariates
Zucker, David M.; Spiegelman, Donna
2013-01-01
SUMMARY We consider Cox proportional hazards regression when the covariate vector includes error-prone discrete covariates along with error-free covariates, which may be discrete or continuous. The misclassification in the discrete error-prone covariates is allowed to be of any specified form. Building on the work of Nakamura and his colleagues, we present a corrected score method for this setting. The method can handle all three major study designs (internal validation design, external validation design, and replicate measures design), both functional and structural error models, and time-dependent covariates satisfying a certain ‘localized error’ condition. We derive the asymptotic properties of the method and indicate how to adjust the covariance matrix of the regression coefficient estimates to account for estimation of the misclassification matrix. We present the results of a finite-sample simulation study under Weibull survival with a single binary covariate having known misclassification rates. The performance of the method described here was similar to that of related methods we have examined in previous works. Specifically, our new estimator performed as well as or, in a few cases, better than the full Weibull maximum likelihood estimator. We also present simulation results for our method for the case where the misclassification probabilities are estimated from an external replicate measures study. Our method generally performed well in these simulations. The new estimator has a broader range of applicability than many other estimators proposed in the literature, including those described in our own earlier work, in that it can handle time-dependent covariates with an arbitrary misclassification structure. We illustrate the method on data from a study of the relationship between dietary calcium intake and distal colon cancer. PMID:18219700
ERIC Educational Resources Information Center
Molenaar, Dylan; Dolan, Conor V.; Wicherts, Jelle M.
2009-01-01
Research into sex differences in general intelligence, g, has resulted in two opposite views. In the first view, a g-difference is nonexistent, while in the second view, g is associated with a male advantage. Past research using Multi-Group Covariance and Mean Structure Analysis (MG-CMSA) found no sex difference in g. This failure raised the…
ERIC Educational Resources Information Center
Zhang, Wei
2008-01-01
A major issue in the utilization of covariance structure analysis is model fit evaluation. Recent years have witnessed increasing interest in various test statistics and so-called fit indexes, most of which are actually based on or closely related to F[subscript 0], a measure of model fit in the population. This study aims to provide a systematic…
Sun, Delin; Haswell, Courtney C; Morey, Rajendra A; De Bellis, Michael D
2018-04-10
Child maltreatment is a major cause of pediatric posttraumatic stress disorder (PTSD). Previous studies have not investigated potential differences in network architecture in maltreated youth with PTSD and those resilient to PTSD. High-resolution magnetic resonance imaging brain scans at 3 T were completed in maltreated youth with PTSD (n = 31), without PTSD (n = 32), and nonmaltreated controls (n = 57). Structural covariance network architecture was derived from between-subject intraregional correlations in measures of cortical thickness in 148 cortical regions (nodes). Interregional positive partial correlations controlling for demographic variables were assessed, and those correlations that exceeded specified thresholds constituted connections in cortical brain networks. Four measures of network centrality characterized topology, and the importance of cortical regions (nodes) within the network architecture were calculated for each group. Permutation testing and principle component analysis method were employed to calculate between-group differences. Principle component analysis is a methodological improvement to methods used in previous brain structural covariance network studies. Differences in centrality were observed between groups. Larger centrality was found in maltreated youth with PTSD in the right posterior cingulate cortex; smaller centrality was detected in the right inferior frontal cortex compared to youth resilient to PTSD and controls, demonstrating network characteristics unique to pediatric maltreatment-related PTSD. Larger centrality was detected in right frontal pole in maltreated youth resilient to PTSD compared to youth with PTSD and controls, demonstrating structural covariance network differences in youth resilience to PTSD following maltreatment. Smaller centrality was found in the left posterior cingulate cortex and in the right inferior frontal cortex in maltreated youth compared to controls, demonstrating attributes of structural covariance network topology that is unique to experiencing maltreatment. This work is the first to identify cortical thickness-based structural covariance network differences between maltreated youth with and without PTSD. We demonstrated network differences in both networks unique to maltreated youth with PTSD and those resilient to PTSD. The networks identified are important for the successful attainment of age-appropriate social cognition, attention, emotional processing, and inhibitory control. Our findings in maltreated youth with PTSD versus those without PTSD suggest vulnerability mechanisms for developing PTSD.
Performance of internal covariance estimators for cosmic shear correlation functions
Friedrich, O.; Seitz, S.; Eifler, T. F.; ...
2015-12-31
Data re-sampling methods such as the delete-one jackknife are a common tool for estimating the covariance of large scale structure probes. In this paper we investigate the concepts of internal covariance estimation in the context of cosmic shear two-point statistics. We demonstrate how to use log-normal simulations of the convergence field and the corresponding shear field to carry out realistic tests of internal covariance estimators and find that most estimators such as jackknife or sub-sample covariance can reach a satisfactory compromise between bias and variance of the estimated covariance. In a forecast for the complete, 5-year DES survey we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in themore » $$\\Omega_m$$-$$\\sigma_8$$ plane as measured with internally estimated covariance matrices is on average $$\\gtrsim 85\\%$$ of the volume derived from the true covariance matrix. The uncertainty on the parameter combination $$\\Sigma_8 \\sim \\sigma_8 \\Omega_m^{0.5}$$ derived from internally estimated covariances is $$\\sim 90\\%$$ of the true uncertainty.« less
ERIC Educational Resources Information Center
Grotzer, Tina A.; Solis, S. Lynneth; Tutwiler, M. Shane; Cuzzolino, Megan Powell
2017-01-01
Understanding complex systems requires reasoning about causal relationships that behave or appear to behave probabilistically. Features such as distributed agency, large spatial scales, and time delays obscure co-variation relationships and complex interactions can result in non-deterministic relationships between causes and effects that are best…
Des Roches, Carrie A; Vallila-Rohter, Sofia; Villard, Sarah; Tripodis, Yorghos; Caplan, David; Kiran, Swathi
2016-12-01
The current study examined treatment outcomes and generalization patterns following 2 sentence comprehension therapies: object manipulation (OM) and sentence-to-picture matching (SPM). Findings were interpreted within the framework of specific deficit and resource reduction accounts, which were extended in order to examine the nature of generalization following treatment of sentence comprehension deficits in aphasia. Forty-eight individuals with aphasia were enrolled in 1 of 8 potential treatment assignments that varied by task (OM, SPM), complexity of trained sentences (complex, simple), and syntactic movement (noun phrase, wh-movement). Comprehension of trained and untrained sentences was probed before and after treatment using stimuli that differed from the treatment stimuli. Linear mixed-model analyses demonstrated that, although both OM and SPM treatments were effective, OM resulted in greater improvement than SPM. Analyses of covariance revealed main effects of complexity in generalization; generalization from complex to simple linguistically related sentences was observed both across task and across movement. Results are consistent with the complexity account of treatment efficacy, as generalization effects were consistently observed from complex to simpler structures. Furthermore, results provide support for resource reduction accounts that suggest that generalization can extend across linguistic boundaries, such as across movement type.
Early grey matter changes in structural covariance networks in Huntington's disease.
Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C
2016-01-01
Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p < 0.001, in pre-HD p = 0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices (in HD p < 0.001, in pre-HD p = 0.023). Additionally, in HD patients only, decreased network integrity was observed in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices ( p = 0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but less prominent in cortical regions. Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.
Parcellation of the human orbitofrontal cortex based on gray matter volume covariance.
Liu, Huaigui; Qin, Wen; Qi, Haotian; Jiang, Tianzi; Yu, Chunshui
2015-02-01
The human orbitofrontal cortex (OFC) is an enigmatic brain region that cannot be parcellated reliably using diffusional and functional magnetic resonance imaging (fMRI) because there is signal dropout that results from an inherent defect in imaging techniques. We hypothesise that the OFC can be reliably parcellated into subregions based on gray matter volume (GMV) covariance patterns that are derived from artefact-free structural images. A total of 321 healthy young subjects were examined by high-resolution structural MRI. The OFC was parcellated into subregions-based GMV covariance patterns; and then sex and laterality differences in GMV covariance pattern of each OFC subregion were compared. The human OFC was parcellated into the anterior (OFCa), medial (OFCm), posterior (OFCp), intermediate (OFCi), and lateral (OFCl) subregions. This parcellation scheme was validated by the same analyses of the left OFC and the bilateral OFCs in male and female subjects. Both visual observation and quantitative comparisons indicated a unique GMV covariance pattern for each OFC subregion. These OFC subregions mainly covaried with the prefrontal and temporal cortices, cingulate cortex and amygdala. In addition, GMV correlations of most OFC subregions were similar across sex and laterality except for significant laterality difference in the OFCl. The right OFCl had stronger GMV correlation with the right inferior frontal cortex. Using high-resolution structural images, we established a reliable parcellation scheme for the human OFC, which may provide an in vivo guide for subregion-level studies of this region and improve our understanding of the human OFC at subregional levels. © 2014 Wiley Periodicals, Inc.
Meta-STEPP: subpopulation treatment effect pattern plot for individual patient data meta-analysis.
Wang, Xin Victoria; Cole, Bernard; Bonetti, Marco; Gelber, Richard D
2016-09-20
We have developed a method, called Meta-STEPP (subpopulation treatment effect pattern plot for meta-analysis), to explore treatment effect heterogeneity across covariate values in the meta-analysis setting for time-to-event data when the covariate of interest is continuous. Meta-STEPP forms overlapping subpopulations from individual patient data containing similar numbers of events with increasing covariate values, estimates subpopulation treatment effects using standard fixed-effects meta-analysis methodology, displays the estimated subpopulation treatment effect as a function of the covariate values, and provides a statistical test to detect possibly complex treatment-covariate interactions. Simulation studies show that this test has adequate type-I error rate recovery as well as power when reasonable window sizes are chosen. When applied to eight breast cancer trials, Meta-STEPP suggests that chemotherapy is less effective for tumors with high estrogen receptor expression compared with those with low expression. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2011-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.
The Structure of Personality Disorders in Individuals with Posttraumatic Stress Disorder
Wolf, Erika J.; Miller, Mark W.; Brown, Timothy A.
2015-01-01
Research on the structure of personality disorders (PDs) has relied primarily on exploratory analyses to evaluate trait-based models of the factors underlying the covariation of these disorders. This study used confirmatory factor analysis to evaluate whether a model that included both PD traits and a general personality dysfunction factor would account for the comorbidity of the PDs better than a trait-only model. It also examined if the internalizing/externalizing model of psychopathology, developed previously through research on the structure of Axis I disorders, might similarly account for the covariation of the Axis II disorders in a sample of 245 veterans and non-veterans with posttraumatic stress disorder. Results indicated that the best fitting model was a modified bifactor structure composed of nine lower-order common factors. These factors indexed pathology ranging from aggression to dependency, with the correlations among them accounted for by higher-order Internalizing and Externalizing factors. Further, a general factor, reflecting a construct that we termed boundary disturbance, accounted for additional variance and covariance across nearly all the indicators. The Internalizing, Externalizing, and Boundary Disturbance factors evidenced differential associations with trauma-related covariates. These findings suggest continuity in the underlying structure of psychopathology across DSM-IV Axes I & II and provide empirical evidence of a pervasive, core disturbance in the boundary between self and other across the PDs. PMID:22448802
Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise.
Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan
2018-03-09
This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method.
Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise
Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan
2018-01-01
This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method. PMID:29522499
ERIC Educational Resources Information Center
Dolan, Conor V.; Colom, Roberto; Abad, Francisco J.; Wicherts, Jelte M.; Hessen, David J.; van de Sluis, Sophie
2006-01-01
We investigated sex effects and the effects of educational attainment (EA) on the covariance structure of the WAIS-III in a subsample of the Spanish standardization data. We fitted both first order common factor models and second order common factor models. The latter include general intelligence ("g") as a second order common factor.…
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
1998-01-01
Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…
von Cramon-Taubadel, Noreen; Schroeder, Lauren
2016-10-01
Estimation of the variance-covariance (V/CV) structure of fragmentary bioarchaeological populations requires the use of proxy extant V/CV parameters. However, it is currently unclear whether extant human populations exhibit equivalent V/CV structures. Random skewers (RS) and hierarchical analyses of common principal components (CPC) were applied to a modern human cranial dataset. Cranial V/CV similarity was assessed globally for samples of individual populations (jackknifed method) and for pairwise population sample contrasts. The results were examined in light of potential explanatory factors for covariance difference, such as geographic region, among-group distance, and sample size. RS analyses showed that population samples exhibited highly correlated multivariate responses to selection, and that differences in RS results were primarily a consequence of differences in sample size. The CPC method yielded mixed results, depending upon the statistical criterion used to evaluate the hierarchy. The hypothesis-testing (step-up) approach was deemed problematic due to sensitivity to low statistical power and elevated Type I errors. In contrast, the model-fitting (lowest AIC) approach suggested that V/CV matrices were proportional and/or shared a large number of CPCs. Pairwise population sample CPC results were correlated with cranial distance, suggesting that population history explains some of the variability in V/CV structure among groups. The results indicate that patterns of covariance in human craniometric samples are broadly similar but not identical. These findings have important implications for choosing extant covariance matrices to use as proxy V/CV parameters in evolutionary analyses of past populations. © 2016 Wiley Periodicals, Inc.
AFCI-2.0 Library of Neutron Cross Section Covariances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, M.; Herman,M.; Oblozinsky,P.
2011-06-26
Neutron cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The primary purpose of the library is to provide covariances for the Advanced Fuel Cycle Initiative (AFCI) data adjustment project, which is focusing on the needs of fast advanced burner reactors. The covariances refer to central values given in the 2006 release of the U.S. neutron evaluated library ENDF/B-VII. The preliminary version (AFCI-2.0beta) has been completed in October 2010 and made available to the users for comments. In the final 2.0 release, covariances for a few materials were updated, in particular newmore » LANL evaluations for {sup 238,240}Pu and {sup 241}Am were adopted. BNL was responsible for covariances for structural materials and fission products, management of the library and coordination of the work, while LANL was in charge of covariances for light nuclei and for actinides.« less
Directional selection effects on patterns of phenotypic (co)variation in wild populations
Patton, J. L.; Hubbe, A.; Marroig, G.
2016-01-01
Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. PMID:27881744
Westgate, Philip M.
2016-01-01
When generalized estimating equations (GEE) incorporate an unstructured working correlation matrix, the variances of regression parameter estimates can inflate due to the estimation of the correlation parameters. In previous work, an approximation for this inflation that results in a corrected version of the sandwich formula for the covariance matrix of regression parameter estimates was derived. Use of this correction for correlation structure selection also reduces the over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a simulation study to demonstrate that an increase in variances of regression parameter estimates can occur when GEE incorporates structured working correlation matrices as well. Correspondingly, we show the ability of the corrected version of the sandwich formula to improve the validity of inference and correlation structure selection. We also study the relative influences of two popular corrections to a different source of bias in the empirical sandwich covariance estimator. PMID:27818539
Westgate, Philip M
2016-01-01
When generalized estimating equations (GEE) incorporate an unstructured working correlation matrix, the variances of regression parameter estimates can inflate due to the estimation of the correlation parameters. In previous work, an approximation for this inflation that results in a corrected version of the sandwich formula for the covariance matrix of regression parameter estimates was derived. Use of this correction for correlation structure selection also reduces the over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a simulation study to demonstrate that an increase in variances of regression parameter estimates can occur when GEE incorporates structured working correlation matrices as well. Correspondingly, we show the ability of the corrected version of the sandwich formula to improve the validity of inference and correlation structure selection. We also study the relative influences of two popular corrections to a different source of bias in the empirical sandwich covariance estimator.
Jamniczky, Heather A; Barry, Tegan N; Rogers, Sean M
2015-07-01
The tight fit between form and function in organisms suggests the influence of adaptive evolution in biomechanics; however, the prevalence of adaptive traits, the mechanisms by which they arise and the corresponding responses to selection are subjects of extensive debate. We used three-dimensional microcomputed tomography and geometric morphometrics to characterize the structure of phenotypic covariance within the G. aculeatus trophic apparatus and its supporting structures in wild and controlled crosses of fish from two different localities. Our results reveal that while the structure of phenotypic covariance is conserved in marine and freshwater forms, it may be disrupted in the progeny of artificial crosses or during rapid adaptive divergence events. We discuss these results within the context of integrating covariance structure with quantitative genetics, toward establishing predictive links between genes, development, biomechanics, and the environment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Application of copulas to improve covariance estimation for partial least squares.
D'Angelo, Gina M; Weissfeld, Lisa A
2013-02-20
Dimension reduction techniques, such as partial least squares, are useful for computing summary measures and examining relationships in complex settings. Partial least squares requires an estimate of the covariance matrix as a first step in the analysis, making this estimate critical to the results. In addition, the covariance matrix also forms the basis for other techniques in multivariate analysis, such as principal component analysis and independent component analysis. This paper has been motivated by an example from an imaging study in Alzheimer's disease where there is complete separation between Alzheimer's and control subjects for one of the imaging modalities. This separation occurs in one block of variables and does not occur with the second block of variables resulting in inaccurate estimates of the covariance. We propose the use of a copula to obtain estimates of the covariance in this setting, where one set of variables comes from a mixture distribution. Simulation studies show that the proposed estimator is an improvement over the standard estimators of covariance. We illustrate the methods from the motivating example from a study in the area of Alzheimer's disease. Copyright © 2012 John Wiley & Sons, Ltd.
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790
Structural Covariance Networks in Children with Autism or ADHD
Romero-Garcia, R.; Mak, E.; Bullmore, E. T.; Baron-Cohen, S.
2017-01-01
Abstract Background While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Method Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. Results We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Conclusions Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the groups are distinct, yet on others there is convergence. PMID:28633299
Structural Covariance Networks in Children with Autism or ADHD.
Bethlehem, R A I; Romero-Garcia, R; Mak, E; Bullmore, E T; Baron-Cohen, S
2017-08-01
While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the groups are distinct, yet on others there is convergence. © The Author 2017. Published by Oxford University Press.
Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.
Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao
2017-01-01
Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.
Structural equation modeling for observational studies
Grace, J.B.
2008-01-01
Structural equation modeling (SEM) represents a framework for developing and evaluating complex hypotheses about systems. This method of data analysis differs from conventional univariate and multivariate approaches familiar to most biologists in several ways. First, SEMs are multiequational and capable of representing a wide array of complex hypotheses about how system components interrelate. Second, models are typically developed based on theoretical knowledge and designed to represent competing hypotheses about the processes responsible for data structure. Third, SEM is conceptually based on the analysis of covariance relations. Most commonly, solutions are obtained using maximum-likelihood solution procedures, although a variety of solution procedures are used, including Bayesian estimation. Numerous extensions give SEM a very high degree of flexibility in dealing with nonnormal data, categorical responses, latent variables, hierarchical structure, multigroup comparisons, nonlinearities, and other complicating factors. Structural equation modeling allows researchers to address a variety of questions about systems, such as how different processes work in concert, how the influences of perturbations cascade through systems, and about the relative importance of different influences. I present 2 example applications of SEM, one involving interactions among lynx (Lynx pardinus), mongooses (Herpestes ichneumon), and rabbits (Oryctolagus cuniculus), and the second involving anuran species richness. Many wildlife ecologists may find SEM useful for understanding how populations function within their environments. Along with the capability of the methodology comes a need for care in the proper application of SEM.
ERIC Educational Resources Information Center
Gomez, Rapson
2009-01-01
Objective: This study used the mean and covariance structures analysis approach to examine the equality or invariance of ratings of the 18 ADHD symptoms. Method: 783 Australian and 928 Malaysian parents provided ratings for an ADHD rating scale. Invariance was tested across these groups (Comparison 1), and North European Australian (n = 623) and…
Improvement of structural models using covariance analysis and nonlinear generalized least squares
NASA Technical Reports Server (NTRS)
Glaser, R. J.; Kuo, C. P.; Wada, B. K.
1992-01-01
The next generation of large, flexible space structures will be too light to support their own weight, requiring a system of structural supports for ground testing. The authors have proposed multiple boundary-condition testing (MBCT), using more than one support condition to reduce uncertainties associated with the supports. MBCT would revise the mass and stiffness matrix, analytically qualifying the structure for operation in space. The same procedure is applicable to other common test conditions, such as empty/loaded tanks and subsystem/system level tests. This paper examines three techniques for constructing the covariance matrix required by nonlinear generalized least squares (NGLS) to update structural models based on modal test data. The methods range from a complicated approach used to generate the simulation data (i.e., the correct answer) to a diagonal matrix based on only two constants. The results show that NGLS is very insensitive to assumptions about the covariance matrix, suggesting that a workable NGLS procedure is possible. The examples also indicate that the multiple boundary condition procedure more accurately reduces errors than individual boundary condition tests alone.
Phenotypic Covariation and Morphological Diversification in the Ruminant Skull.
Haber, Annat
2016-05-01
Differences among clades in their diversification patterns result from a combination of extrinsic and intrinsic factors. In this study, I examined the role of intrinsic factors in the morphological diversification of ruminants, in general, and in the differences between bovids and cervids, in particular. Using skull morphology, which embodies many of the adaptations that distinguish bovids and cervids, I examined 132 of the 200 extant ruminant species. As a proxy for intrinsic constraints, I quantified different aspects of the phenotypic covariation structure within species and compared them with the among-species divergence patterns, using phylogenetic comparative methods. My results show that for most species, divergence is well aligned with their phenotypic covariance matrix and that those that are better aligned have diverged further away from their ancestor. Bovids have dispersed into a wider range of directions in morphospace than cervids, and their overall disparity is higher. This difference is best explained by the lower eccentricity of bovids' within-species covariance matrices. These results are consistent with the role of intrinsic constraints in determining amount, range, and direction of dispersion and demonstrate that intrinsic constraints can influence macroevolutionary patterns even as the covariance structure evolves.
Quantitative genetics of immunity and life history under different photoperiods.
Hammerschmidt, K; Deines, P; Wilson, A J; Rolff, J
2012-05-01
Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.
Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar
Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing
2015-01-01
In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri–Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method. PMID:26569241
Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar.
Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing
2015-11-10
In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri-Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.
Gil, Manuel
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263
Dwyer, John M; Laughlin, Daniel C
2017-07-01
Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes. © 2017 John Wiley & Sons Ltd/CNRS.
Accounting for uncertainty in health economic decision models by using model averaging.
Jackson, Christopher H; Thompson, Simon G; Sharples, Linda D
2009-04-01
Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment.
Floral trait variation and integration as a function of sexual deception in Gorteria diffusa.
Ellis, Allan G; Brockington, Samuel F; de Jager, Marinus L; Mellers, Gregory; Walker, Rachel H; Glover, Beverley J
2014-08-19
Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Singh, Nandini; Harvati, Katerina; Hublin, Jean-Jacques; Klingenberg, Christian P
2012-01-01
Morphological integration refers to coordinated variation among traits that are closely related in development and/or function. Patterns of integration can offer important insight into the structural relationship between phenotypic units, providing a framework to address questions about phenotypic evolvability and constraints. Integrative features of the primate cranium have recently become a popular subject of study. However, an important question that still remains under-investigated is: what is the pattern of cranial shape integration among closely related hominoids? To address this question, we conducted a Procrustes-based geometric morphometrics study to quantify and analyze shape covariation patterns between different cranial regions in Homo, Pan, Gorilla and Pongo. A total of fifty-six 3D landmarks were collected on 407 adult individuals. We then sub-divided the landmarks corresponding to cranial units as outlined in the 'functional matrix hypothesis.' Sub-dividing the cranium in this manner allowed us to explore patterns of covariation between the face, basicranium and cranial vault, using the two-block partial least squares approach. Our results suggest that integrated shape changes in the hominoid cranium are complex, but that the overall pattern of integration is similar among human and non-human apes. Thus, despite having very distinct morphologies the way in which the face, basicranium and cranial vault covary is shared among these taxa. These results imply that the pattern of cranial integration among hominoids is conserved. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chang, Chiung-Chih; Tsai, Shih-Jen; Chen, Nai-Ching; Huang, Chi-Wei; Hsu, Shih-Wei; Chang, Ya-Ting; Liu, Mu-En; Chang, Wen-Neng; Tsai, Wan-Chen; Lee, Chen-Chang
2018-06-01
The catechol-O-methyltransferase enzyme metabolizes dopamine in the prefrontal axis, and its genetic polymorphism (rs4680; Val158Met) is a known determinant of dopamine signaling. In this study, we investigated the possible structural covariance networks that may be modulated by this functional polymorphism in patients with Alzheimer's disease. Structural covariance networks were constructed by 3D T1 magnetic resonance imaging. The patients were divided into two groups: Met-carriers (n = 91) and Val-homozygotes (n = 101). Seed-based analysis was performed focusing on triple-network models and six striatal networks. Neurobehavioral scores served as the major outcome factors. The role of seed or peak cluster volumes, or a covariance strength showing Met-carriers > Val-homozygotes were tested for the effect on dopamine. Clinically, the Met-carriers had higher mental manipulation and hallucination scores than the Val-homozygotes. The volume-score correlations suggested the significance of the putaminal seed in the Met-carriers and caudate seed in the Val-homozygotes. Only the dorsal-rostral and dorsal-caudal putamen interconnected peak clusters showed covariance strength interactions (Met-carriers > Val-homozygotes), and the peak clusters also correlated with the neurobehavioral scores. Although the triple-network model is important for a diagnosis of Alzheimer's disease, our results validated the role of the dorsal-putaminal-anchored network by the catechol-O-methyltransferase Val158Met polymorphism in predicting the severity of cognitive and behavior in subjects with Alzheimer's disease.
Falcaro, Milena; Pickles, Andrew
2007-02-10
We focus on the analysis of multivariate survival times with highly structured interdependency and subject to interval censoring. Such data are common in developmental genetics and genetic epidemiology. We propose a flexible mixed probit model that deals naturally with complex but uninformative censoring. The recorded ages of onset are treated as possibly censored ordinal outcomes with the interval censoring mechanism seen as arising from a coarsened measurement of a continuous variable observed as falling between subject-specific thresholds. This bypasses the requirement for the failure times to be observed as falling into non-overlapping intervals. The assumption of a normal age-of-onset distribution of the standard probit model is relaxed by embedding within it a multivariate Box-Cox transformation whose parameters are jointly estimated with the other parameters of the model. Complex decompositions of the underlying multivariate normal covariance matrix of the transformed ages of onset become possible. The new methodology is here applied to a multivariate study of the ages of first use of tobacco and first consumption of alcohol without parental permission in twins. The proposed model allows estimation of the genetic and environmental effects that are shared by both of these risk behaviours as well as those that are specific. 2006 John Wiley & Sons, Ltd.
Nguyen, Tuong-Vi; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Ducharme, Simon; McCracken, James T
2017-02-01
Testosterone is thought to play a crucial role in mediating sexual differentiation of brain structures. Examinations of the cognitive effects of testosterone have also shown beneficial and potentially sex-specific effects on executive function and mnemonic processes. Yet these findings remain limited by an incomplete understanding of the critical timing and brain regions most affected by testosterone, the lack of documented links between testosterone-related structural brain changes and cognition, and the difficulty in distinguishing the effects of testosterone from those of related sex steroids such as of estradiol and dehydroepiandrosterone (DHEA). Here we examined associations between testosterone, cortico-hippocampal structural covariance, executive function (Behavior Rating Inventory of Executive Function) and verbal memory (California Verbal Learning Test-Children's Version), in a longitudinal sample of typically developing children and adolescents 6-22 yo, controlling for the effects of estradiol, DHEA, pubertal stage, collection time, age, handedness, and total brain volume. We found prefrontal-hippocampal covariance to vary as a function of testosterone levels, but only in boys. Boys also showed a specific association between positive prefrontal-hippocampal covariance (as seen at higher testosterone levels) and lower performance on specific components of executive function (monitoring the action process and flexibly shifting between actions). We also found the association between testosterone and a specific aspect of executive function (monitoring) to be significantly mediated by prefrontal-hippocampal structural covariance. There were no significant associations between testosterone-related cortico-hippocampal covariance and verbal memory. Taken together, these findings highlight the developmental importance of testosterone in supporting sexual differentiation of the brain and sex-specific executive function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain
2014-01-01
Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. PMID:24724612
Shen, Chung-Wei; Chen, Yi-Hau
2015-10-01
Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
New symmetries and ghost structure of covariant string theories
NASA Astrophysics Data System (ADS)
Neveu, A.; Nicolai, H.; West, P.
1986-02-01
It is shown that there exists an infinite set of new symmetries of the previously given covariant string formulations. These symmetries have themselves an infinite set of hidden local symmetries and so on. A new physically equivalent further extended string action is given in which the infinite set of symmetries is most easily displayed. A quantization involving gauge fixing and ghosts of the various covariant string actions is given. permanent address: Kings College, Mathematics Department, London WC2R 2LS, UK.
Directional selection effects on patterns of phenotypic (co)variation in wild populations.
Assis, A P A; Patton, J L; Hubbe, A; Marroig, G
2016-11-30
Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Menga, G.
1975-01-01
An approach, is proposed for the design of approximate, fixed order, discrete time realizations of stochastic processes from the output covariance over a finite time interval, was proposed. No restrictive assumptions are imposed on the process; it can be nonstationary and lead to a high dimension realization. Classes of fixed order models are defined, having the joint covariance matrix of the combined vector of the outputs in the interval of definition greater or equal than the process covariance; (the difference matrix is nonnegative definite). The design is achieved by minimizing, in one of those classes, a measure of the approximation between the model and the process evaluated by the trace of the difference of the respective covariance matrices. Models belonging to these classes have the notable property that, under the same measurement system and estimator structure, the output estimation error covariance matrix computed on the model is an upper bound of the corresponding covariance on the real process. An application of the approach is illustrated by the modeling of random meteorological wind profiles from the statistical analysis of historical data.
Wright, Aidan G. C.; Beltz, Adriene M.; Gates, Kathleen M.; Molenaar, Peter C. M.; Simms, Leonard J.
2015-01-01
Psychiatric diagnostic covariation suggests that the underlying structure of psychopathology is not one of circumscribed disorders. Quantitative modeling of individual differences in diagnostic patterns has uncovered several broad domains of mental disorder liability, of which the Internalizing and Externalizing spectra have garnered the greatest support. These dimensions have generally been estimated from lifetime or past-year comorbidity patters, which are distal from the covariation of symptoms and maladaptive behavior that ebb and flow in daily life. In this study, structural models are applied to daily diary data (Median = 94 days) of maladaptive behaviors collected from a sample (N = 101) of individuals diagnosed with personality disorders (PDs). Using multilevel and unified structural equation modeling, between-person, within-person, and person-specific structures were estimated from 16 behaviors that are encompassed by the Internalizing and Externalizing spectra. At the between-person level (i.e., individual differences in average endorsement across days) we found support for a two-factor Internalizing–Externalizing model, which exhibits significant associations with corresponding diagnostic spectra. At the within-person level (i.e., dynamic covariation among daily behavior pooled across individuals) we found support for a more differentiated, four-factor, Negative Affect-Detachment-Hostility-Disinhibition structure. Finally, we demonstrate that the person-specific structures of associations between these four domains are highly idiosyncratic. PMID:26732546
Des Roches, Carrie A.; Vallila-Rohter, Sofia; Villard, Sarah; Tripodis, Yorghos; Caplan, David
2016-01-01
Purpose The current study examined treatment outcomes and generalization patterns following 2 sentence comprehension therapies: object manipulation (OM) and sentence-to-picture matching (SPM). Findings were interpreted within the framework of specific deficit and resource reduction accounts, which were extended in order to examine the nature of generalization following treatment of sentence comprehension deficits in aphasia. Method Forty-eight individuals with aphasia were enrolled in 1 of 8 potential treatment assignments that varied by task (OM, SPM), complexity of trained sentences (complex, simple), and syntactic movement (noun phrase, wh-movement). Comprehension of trained and untrained sentences was probed before and after treatment using stimuli that differed from the treatment stimuli. Results Linear mixed-model analyses demonstrated that, although both OM and SPM treatments were effective, OM resulted in greater improvement than SPM. Analyses of covariance revealed main effects of complexity in generalization; generalization from complex to simple linguistically related sentences was observed both across task and across movement. Conclusions Results are consistent with the complexity account of treatment efficacy, as generalization effects were consistently observed from complex to simpler structures. Furthermore, results provide support for resource reduction accounts that suggest that generalization can extend across linguistic boundaries, such as across movement type. PMID:27997950
Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations
Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel
2018-01-01
Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102
Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife
ERIC Educational Resources Information Center
Jennrich, Robert I.
2008-01-01
The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…
Some Properties of Estimated Scale Invariant Covariance Structures.
ERIC Educational Resources Information Center
Dijkstra, T. K.
1990-01-01
An example of scale invariance is provided via the LISREL model that is subject only to classical normalizations and zero constraints on the parameters. Scale invariance implies that the estimated covariance matrix must satisfy certain equations, and the nature of these equations depends on the fitting function used. (TJH)
The spatial structure of chronic morbidity: evidence from UK census returns.
Dutey-Magni, Peter F; Moon, Graham
2016-08-24
Disease prevalence models have been widely used to estimate health, lifestyle and disability characteristics for small geographical units when other data are not available. Yet, knowledge is often lacking about how to make informed decisions around the specification of such models, especially regarding spatial assumptions placed on their covariance structure. This paper is concerned with understanding processes of spatial dependency in unexplained variation in chronic morbidity. 2011 UK census data on limiting long-term illness (LLTI) is used to look at the spatial structure in chronic morbidity across England and Wales. The variance and spatial clustering of the odds of LLTI across local authority districts (LADs) and middle layer super output areas are measured across 40 demographic cross-classifications. A series of adjacency matrices based on distance, contiguity and migration flows are tested to examine the spatial structure in LLTI. Odds are then modelled using a logistic mixed model to examine the association with district-level covariates and their predictive power. The odds of chronic illness are more dispersed than local age characteristics, mortality, hospitalisation rates and chance alone would suggest. Of all adjacency matrices, the three-nearest neighbour method is identified as the best fitting. Migration flows can also be used to construct spatial weights matrices which uncover non-negligible autocorrelation. Once the most important characteristics observable at the LAD-level are taken into account, substantial spatial autocorrelation remains which can be modelled explicitly to improve disease prevalence predictions. Systematic investigation of spatial structures and dependency is important to develop model-based estimation tools in chronic disease mapping. Spatial structures reflecting migration interactions are easy to develop and capture autocorrelation in LLTI. Patterns of spatial dependency in the geographical distribution of LLTI are not comparable across ethnic groups. Ethnic stratification of local health information is needed and there is potential to further address complexity in prevalence models by improving access to disaggregated data.
Levy Matrices and Financial Covariances
NASA Astrophysics Data System (ADS)
Burda, Zdzislaw; Jurkiewicz, Jerzy; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail
2003-10-01
In a given market, financial covariances capture the intra-stock correlations and can be used to address statistically the bulk nature of the market as a complex system. We provide a statistical analysis of three SP500 covariances with evidence for raw tail distributions. We study the stability of these tails against reshuffling for the SP500 data and show that the covariance with the strongest tails is robust, with a spectral density in remarkable agreement with random Lévy matrix theory. We study the inverse participation ratio for the three covariances. The strong localization observed at both ends of the spectral density is analogous to the localization exhibited in the random Lévy matrix ensemble. We discuss two competitive mechanisms responsible for the occurrence of an extensive and delocalized eigenvalue at the edge of the spectrum: (a) the Lévy character of the entries of the correlation matrix and (b) a sort of off-diagonal order induced by underlying inter-stock correlations. (b) can be destroyed by reshuffling, while (a) cannot. We show that the stocks with the largest scattering are the least susceptible to correlations, and likely candidates for the localized states. We introduce a simple model for price fluctuations which captures behavior of the SP500 covariances. It may be of importance for assets diversification.
Murad, Havi; Kipnis, Victor; Freedman, Laurence S
2016-10-01
Assessing interactions in linear regression models when covariates have measurement error (ME) is complex.We previously described regression calibration (RC) methods that yield consistent estimators and standard errors for interaction coefficients of normally distributed covariates having classical ME. Here we extend normal based RC (NBRC) and linear RC (LRC) methods to a non-classical ME model, and describe more efficient versions that combine estimates from the main study and internal sub-study. We apply these methods to data from the Observing Protein and Energy Nutrition (OPEN) study. Using simulations we show that (i) for normally distributed covariates efficient NBRC and LRC were nearly unbiased and performed well with sub-study size ≥200; (ii) efficient NBRC had lower MSE than efficient LRC; (iii) the naïve test for a single interaction had type I error probability close to the nominal significance level, whereas efficient NBRC and LRC were slightly anti-conservative but more powerful; (iv) for markedly non-normal covariates, efficient LRC yielded less biased estimators with smaller variance than efficient NBRC. Our simulations suggest that it is preferable to use: (i) efficient NBRC for estimating and testing interaction effects of normally distributed covariates and (ii) efficient LRC for estimating and testing interactions for markedly non-normal covariates. © The Author(s) 2013.
Covariance Matrix Estimation for Massive MIMO
NASA Astrophysics Data System (ADS)
Upadhya, Karthik; Vorobyov, Sergiy A.
2018-04-01
We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.
Pley, H W; Flaherty, K M; McKay, D B
1994-11-03
In large structured RNAs, RNA hairpins in which the strands of the duplex stem are connected by a tetraloop of the consensus sequence 5'-GNRA (where N is any nucleotide, and R is either G or A) are unusually frequent. In group I introns there is a covariation in sequence between nucleotides in the third and fourth positions of the loop with specific distant base pairs in putative RNA duplex stems: GNAA loops correlate with successive 5'-C-C.G-C base pairs in stems, whereas GNGA loops correlate with 5'-C-U.G-A. This has led to the suggestion that GNRA tetraloops may be involved in specific long-range tertiary interactions, with each A in position 3 or 4 of the loop interacting with a C-G base pair in the duplex, and G in position 3 interacting with a U-A base pair. This idea is supported experimentally for the GAAA loop of the P5b extension of the group I intron of Tetrahymena thermophila and the L9 GUGA terminal loop of the td intron of bacteriophage T4 (ref. 4). NMR has revealed the overall structure of the tetraloop for 12-nucleotide hairpins with GCAA and GAAA loops and models have been proposed for the interaction of GNRA tetraloops with base pairs in the minor groove of A-form RNA. Here we describe the crystal structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. The interactions we observe correlate with the specificity of GNRA tetraloops inferred from phylogenetic studies, suggesting that this complex is a legitimate model for intramolecular tertiary interactions mediated by GNRA tetraloops in large structured RNAs.
WAIS-IV subtest covariance structure: conceptual and statistical considerations.
Ward, L Charles; Bergman, Maria A; Hebert, Katina R
2012-06-01
D. Wechsler (2008b) reported confirmatory factor analyses (CFAs) with standardization data (ages 16-69 years) for 10 core and 5 supplemental subtests from the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV). Analyses of the 15 subtests supported 4 hypothesized oblique factors (Verbal Comprehension, Working Memory, Perceptual Reasoning, and Processing Speed) but also revealed unexplained covariance between Block Design and Visual Puzzles (Perceptual Reasoning subtests). That covariance was not included in the final models. Instead, a path was added from Working Memory to Figure Weights (Perceptual Reasoning subtest) to improve fit and achieve a desired factor pattern. The present research with the same data (N = 1,800) showed that the path from Working Memory to Figure Weights increases the association between Working Memory and Matrix Reasoning. Specifying both paths improves model fit and largely eliminates unexplained covariance between Block Design and Visual Puzzles but with the undesirable consequence that Figure Weights and Matrix Reasoning are equally determined by Perceptual Reasoning and Working Memory. An alternative 4-factor model was proposed that explained theory-implied covariance between Block Design and Visual Puzzles and between Arithmetic and Figure Weights while maintaining compatibility with WAIS-IV Index structure. The proposed model compared favorably with a 5-factor model based on Cattell-Horn-Carroll theory. The present findings emphasize that covariance model comparisons should involve considerations of conceptual coherence and theoretical adherence in addition to statistical fit. (c) 2012 APA, all rights reserved
Kustatscher, Georg; Grabowski, Piotr; Rappsilber, Juri
2016-02-01
Subcellular localization is an important aspect of protein function, but the protein composition of many intracellular compartments is poorly characterized. For example, many nuclear bodies are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here, we explore covariation in proteomics data as an alternative route to subcellular proteomes. Rather than targeting a structure of interest biochemically, we target it by machine learning. This becomes possible by taking data obtained for one organelle and searching it for traces of another organelle. As an extreme example and proof-of-concept we predict mitochondrial proteins based on their covariation in published interphase chromatin data. We detect about ⅓ of the known mitochondrial proteins in our chromatin data, presumably most as contaminants. However, these proteins are not present at random. We show covariation of mitochondrial proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with different databases on mitochondrial composition. This benchmark test raises the possibility that, in principle, covariation proteomics may also be applicable to structures for which no biochemical isolation procedures are available. © 2015 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jahng, Seungmin; Wood, Phillip K.
2017-01-01
Intensive longitudinal studies, such as ecological momentary assessment studies using electronic diaries, are gaining popularity across many areas of psychology. Multilevel models (MLMs) are most widely used analytical tools for intensive longitudinal data (ILD). Although ILD often have individually distinct patterns of serial correlation of measures over time, inferences of the fixed effects, and random components in MLMs are made under the assumption that all variance and autocovariance components are homogenous across individuals. In the present study, we introduced a multilevel model with Cholesky transformation to model ILD with individually heterogeneous covariance structure. In addition, the performance of the transformation method and the effects of misspecification of heterogeneous covariance structure were investigated through a Monte Carlo simulation. We found that, if individually heterogeneous covariances are incorrectly assumed as homogenous independent or homogenous autoregressive, MLMs produce highly biased estimates of the variance of random intercepts and the standard errors of the fixed intercept and the fixed effect of a level 2 covariate when the average autocorrelation is high. For intensive longitudinal data with individual specific residual covariance, the suggested transformation method showed lower bias in those estimates than the misspecified models when the number of repeated observations within individuals is 50 or more. PMID:28286490
Structural covariance networks across healthy young adults and their consistency.
Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li
2015-08-01
To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.
A computational proposal for designing structured RNA pools for in vitro selection of RNAs.
Kim, Namhee; Gan, Hin Hark; Schlick, Tamar
2007-04-01
Although in vitro selection technology is a versatile experimental tool for discovering novel synthetic RNA molecules, finding complex RNA molecules is difficult because most RNAs identified from random sequence pools are simple motifs, consistent with recent computational analysis of such sequence pools. Thus, enriching in vitro selection pools with complex structures could increase the probability of discovering novel RNAs. Here we develop an approach for engineering sequence pools that links RNA sequence space regions with corresponding structural distributions via a "mixing matrix" approach combined with a graph theory analysis. We define five classes of mixing matrices motivated by covariance mutations in RNA; these constructs define nucleotide transition rates and are applied to chosen starting sequences to yield specific nonrandom pools. We examine the coverage of sequence space as a function of the mixing matrix and starting sequence via clustering analysis. We show that, in contrast to random sequences, which are associated only with a local region of sequence space, our designed pools, including a structured pool for GTP aptamers, can target specific motifs. It follows that experimental synthesis of designed pools can benefit from using optimized starting sequences, mixing matrices, and pool fractions associated with each of our constructed pools as a guide. Automation of our approach could provide practical tools for pool design applications for in vitro selection of RNAs and related problems.
Washburne, Alex D.; Burby, Joshua W.; Lacker, Daniel; ...
2016-09-30
Systems as diverse as the interacting species in a community, alleles at a genetic locus, and companies in a market are characterized by competition (over resources, space, capital, etc) and adaptation. Neutral theory, built around the hypothesis that individual performance is independent of group membership, has found utility across the disciplines of ecology, population genetics, and economics, both because of the success of the neutral hypothesis in predicting system properties and because deviations from these predictions provide information about the underlying dynamics. However, most tests of neutrality are weak, based on static system properties such as species-abundance distributions or themore » number of singletons in a sample. Time-series data provide a window onto a system’s dynamics, and should furnish tests of the neutral hypothesis that are more powerful to detect deviations from neutrality and more informative about to the type of competitive asymmetry that drives the deviation. Here, we present a neutrality test for time-series data. We apply this test to several microbial time-series and financial time-series and find that most of these systems are not neutral. Our test isolates the covariance structure of neutral competition, thus facilitating further exploration of the nature of asymmetry in the covariance structure of competitive systems. Much like neutrality tests from population genetics that use relative abundance distributions have enabled researchers to scan entire genomes for genes under selection, we anticipate our time-series test will be useful for quick significance tests of neutrality across a range of ecological, economic, and sociological systems for which time-series data are available. Here, future work can use our test to categorize and compare the dynamic fingerprints of particular competitive asymmetries (frequency dependence, volatility smiles, etc) to improve forecasting and management of complex adaptive systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washburne, Alex D.; Burby, Joshua W.; Lacker, Daniel
Systems as diverse as the interacting species in a community, alleles at a genetic locus, and companies in a market are characterized by competition (over resources, space, capital, etc) and adaptation. Neutral theory, built around the hypothesis that individual performance is independent of group membership, has found utility across the disciplines of ecology, population genetics, and economics, both because of the success of the neutral hypothesis in predicting system properties and because deviations from these predictions provide information about the underlying dynamics. However, most tests of neutrality are weak, based on static system properties such as species-abundance distributions or themore » number of singletons in a sample. Time-series data provide a window onto a system’s dynamics, and should furnish tests of the neutral hypothesis that are more powerful to detect deviations from neutrality and more informative about to the type of competitive asymmetry that drives the deviation. Here, we present a neutrality test for time-series data. We apply this test to several microbial time-series and financial time-series and find that most of these systems are not neutral. Our test isolates the covariance structure of neutral competition, thus facilitating further exploration of the nature of asymmetry in the covariance structure of competitive systems. Much like neutrality tests from population genetics that use relative abundance distributions have enabled researchers to scan entire genomes for genes under selection, we anticipate our time-series test will be useful for quick significance tests of neutrality across a range of ecological, economic, and sociological systems for which time-series data are available. Here, future work can use our test to categorize and compare the dynamic fingerprints of particular competitive asymmetries (frequency dependence, volatility smiles, etc) to improve forecasting and management of complex adaptive systems.« less
Investigating scintillometer source areas
NASA Astrophysics Data System (ADS)
Perelet, A. O.; Ward, H. C.; Pardyjak, E.
2017-12-01
Scintillometry is an indirect ground-based method for measuring line-averaged surface heat and moisture fluxes on length scales of 0.5 - 10 km. These length scales are relevant to urban and other complex areas where setting up traditional instrumentation like eddy covariance is logistically difficult. In order to take full advantage of scintillometry, a better understanding of the flux source area is needed. The source area for a scintillometer is typically calculated as a convolution of point sources along the path. A weighting function is then applied along the path to compensate for a total signal contribution that is biased towards the center of the beam path, and decreasing near the beam ends. While this method of calculating the source area provides an estimate of the contribution of the total flux along the beam, there are still questions regarding the physical meaning of the weighted source area. These questions are addressed using data from an idealized experiment near the Salt Lake City International Airport in northern Utah, U.S.A. The site is a flat agricultural area consisting of two different land uses. This simple heterogeneity in the land use facilitates hypothesis testing related to source areas. Measurements were made with a two wavelength scintillometer system spanning 740 m along with three standard open-path infrared gas analyzer-based eddy-covariance stations along the beam path. This configuration allows for direct observations of fluxes along the beam and comparisons to the scintillometer average. The scintillometer system employed measures the refractive index structure parameter of air for two wavelengths of electromagnetic radiation, 880 μm and 1.86 cm to simultaneously estimate path-averaged heat and moisture fluxes, respectively. Meteorological structure parameters (CT2, Cq2, and CTq) as well as surface fluxes are compared for various amounts of source area overlap between eddy covariance and scintillometry. Additionally, surface properties from LANDSAT 7 & 8 are used to help understand source area composition for different times throughout the experiment.
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-01-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-04-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.
McKenny, H.C.; Keeton, W.S.; Donovan, T.M.
2006-01-01
Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed "structural complexity enhancement" (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement and the two uneven-aged approaches maintained important microhabitat characteristics for red-backed salamander populations in the short term. Over the long-term, given decay processes as a determinant of biological availability, forestry practices such as SCE that enhance CWD availability and recruitment may result in associated population responses. ?? 2006 Elsevier B.V. All rights reserved.
Modified Distribution-Free Goodness-of-Fit Test Statistic.
Chun, So Yeon; Browne, Michael W; Shapiro, Alexander
2018-03-01
Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62-83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.
Covariant balance laws in continua with microstructure
NASA Astrophysics Data System (ADS)
Yavari, Arash; Marsden, Jerrold E.
2009-02-01
The purpose of this paper is to extend the Green-Naghdi-Rivlin balance of energy method to continua with microstructure. The key idea is to replace the group of Galilean transformations with the group of diffeomorphisms of the ambient space. A key advantage is that one obtains in a natural way all the needed balance laws on both the macro and micro levels along with two Doyle-Erickson formulas. We model a structured continuum as a triplet of Riemannian manifolds: a material manifold, the ambient space manifold of material particles and a director field manifold. The Green-Naghdi-Rivlin theorem and its extensions for structured continua are critically reviewed. We show that when the ambient space is Euclidean and when the microstructure manifold is the tangent space of the ambient space manifold, postulating a single balance of energy law and its invariance under time-dependent isometries of the ambient space, one obtains conservation of mass, balances of linear and angular momenta but not a separate balance of linear momentum. We develop a covariant elasticity theory for structured continua by postulating that energy balance is invariant under time-dependent spatial diffeomorphisms of the ambient space, which in this case is the product of two Riemannian manifolds. We then introduce two types of constrained continua in which microstructure manifold is linked to the reference and ambient space manifolds. In the case when at every material point, the microstructure manifold is the tangent space of the ambient space manifold at the image of the material point, we show that the assumption of covariance leads to balances of linear and angular momenta with contributions from both forces and micro-forces along with two Doyle-Ericksen formulas. We show that generalized covariance leads to two balances of linear momentum and a single coupled balance of angular momentum. Using this theory, we covariantly obtain the balance laws for two specific examples, namely elastic solids with distributed voids and mixtures. Finally, the Lagrangian field theory of structured elasticity is revisited and a connection is made between covariance and Noether's theorem.
Wu, Cen; Jiang, Yu; Ren, Jie; Cui, Yuehua; Ma, Shuangge
2018-02-10
Identification of gene-environment (G × E) interactions associated with disease phenotypes has posed a great challenge in high-throughput cancer studies. The existing marginal identification methods have suffered from not being able to accommodate the joint effects of a large number of genetic variants, while some of the joint-effect methods have been limited by failing to respect the "main effects, interactions" hierarchy, by ignoring data contamination, and by using inefficient selection techniques under complex structural sparsity. In this article, we develop an effective penalization approach to identify important G × E interactions and main effects, which can account for the hierarchical structures of the 2 types of effects. Possible data contamination is accommodated by adopting the least absolute deviation loss function. The advantage of the proposed approach over the alternatives is convincingly demonstrated in both simulation and a case study on lung cancer prognosis with gene expression measurements and clinical covariates under the accelerated failure time model. Copyright © 2017 John Wiley & Sons, Ltd.
Variational Gaussian approximation for Poisson data
NASA Astrophysics Data System (ADS)
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain
2014-08-01
Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. © 2014 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
The Impact of Conditional Scores on the Performance of DETECT.
ERIC Educational Resources Information Center
Zhang, Yanwei Oliver; Yu, Feng; Nandakumar, Ratna
DETECT is a nonparametric, conditional covariance-based procedure to identify dimensional structure and the degree of multidimensionality of test data. The ability composite or conditional score used to estimate conditional covariance plays a significant role in the performance of DETECT. The number correct score of all items in the test (T) and…
System identification for modeling for control of flexible structures
NASA Technical Reports Server (NTRS)
Mettler, Edward; Milman, Mark
1986-01-01
The major components of a design and operational flight strategy for flexible structure control systems are presented. In this strategy an initial distributed parameter control design is developed and implemented from available ground test data and on-orbit identification using sophisticated modeling and synthesis techniques. The reliability of this high performance controller is directly linked to the accuracy of the parameters on which the design is based. Because uncertainties inevitably grow without system monitoring, maintaining the control system requires an active on-line system identification function to supply parameter updates and covariance information. Control laws can then be modified to improve performance when the error envelopes are decreased. In terms of system safety and stability the covariance information is of equal importance as the parameter values themselves. If the on-line system ID function detects an increase in parameter error covariances, then corresponding adjustments must be made in the control laws to increase robustness. If the error covariances exceed some threshold, an autonomous calibration sequence could be initiated to restore the error enveloped to an acceptable level.
Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
NASA Astrophysics Data System (ADS)
Cremaschini, Claudio; Tessarotto, Massimo
2017-05-01
A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor \\widehat{g}(r)≡ { \\widehat{g}_{μ ν }(r)} solution of the Einstein field equations which determines the geometry of the background space-time and suitable variational fields x≡ { g,π } obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations.
Predicting ecosystem vulnerability to biodiversity loss from community composition.
Heilpern, Sebastian A; Weeks, Brian C; Naeem, Shahid
2018-05-01
Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change. © 2018 by the Ecological Society of America.
Accounting for uncertainty in health economic decision models by using model averaging
Jackson, Christopher H; Thompson, Simon G; Sharples, Linda D
2009-01-01
Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment. PMID:19381329
Parametric embedding for class visualization.
Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B
2007-09-01
We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.
A TALE-inspired computational screen for proteins that contain approximate tandem repeats.
Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias
2017-01-01
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.
A TALE-inspired computational screen for proteins that contain approximate tandem repeats
Krwawicz, Joanna
2017-01-01
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen. PMID:28617832
Plis, Sergey M; George, J S; Jun, S C; Paré-Blagoev, J; Ranken, D M; Wood, C C; Schmidt, D M
2007-01-01
We propose a new model to approximate spatiotemporal noise covariance for use in neural electromagnetic source analysis, which better captures temporal variability in background activity. As with other existing formalisms, our model employs a Kronecker product of matrices representing temporal and spatial covariance. In our model, spatial components are allowed to have differing temporal covariances. Variability is represented as a series of Kronecker products of spatial component covariances and corresponding temporal covariances. Unlike previous attempts to model covariance through a sum of Kronecker products, our model is designed to have a computationally manageable inverse. Despite increased descriptive power, inversion of the model is fast, making it useful in source analysis. We have explored two versions of the model. One is estimated based on the assumption that spatial components of background noise have uncorrelated time courses. Another version, which gives closer approximation, is based on the assumption that time courses are statistically independent. The accuracy of the structural approximation is compared to an existing model, based on a single Kronecker product, using both Frobenius norm of the difference between spatiotemporal sample covariance and a model, and scatter plots. Performance of ours and previous models is compared in source analysis of a large number of single dipole problems with simulated time courses and with background from authentic magnetoencephalography data.
Modeling Nonstationarity in Space and Time
2017-01-01
Summary We propose to model a spatio-temporal random field that has nonstationary covariance structure in both space and time domains by applying the concept of the dimension expansion method in Bornn et al. (2012). Simulations are conducted for both separable and nonseparable space-time covariance models, and the model is also illustrated with a streamflow dataset. Both simulation and data analyses show that modeling nonstationarity in both space and time can improve the predictive performance over stationary covariance models or models that are nonstationary in space but stationary in time. PMID:28134977
Modeling nonstationarity in space and time.
Shand, Lyndsay; Li, Bo
2017-09-01
We propose to model a spatio-temporal random field that has nonstationary covariance structure in both space and time domains by applying the concept of the dimension expansion method in Bornn et al. (2012). Simulations are conducted for both separable and nonseparable space-time covariance models, and the model is also illustrated with a streamflow dataset. Both simulation and data analyses show that modeling nonstationarity in both space and time can improve the predictive performance over stationary covariance models or models that are nonstationary in space but stationary in time. © 2017, The International Biometric Society.
Information matrix estimation procedures for cognitive diagnostic models.
Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei
2018-03-06
Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.
Ding, Aidong Adam; Hsieh, Jin-Jian; Wang, Weijing
2015-01-01
Bivariate survival analysis has wide applications. In the presence of covariates, most literature focuses on studying their effects on the marginal distributions. However covariates can also affect the association between the two variables. In this article we consider the latter issue by proposing a nonstandard local linear estimator for the concordance probability as a function of covariates. Under the Clayton copula, the conditional concordance probability has a simple one-to-one correspondence with the copula parameter for different data structures including those subject to independent or dependent censoring and dependent truncation. The proposed method can be used to study how covariates affect the Clayton association parameter without specifying marginal regression models. Asymptotic properties of the proposed estimators are derived and their finite-sample performances are examined via simulations. Finally, for illustration, we apply the proposed method to analyze a bone marrow transplant data set.
Anderson, D.E.; Farrar, C.D.
2001-01-01
Three pilot studies were performed to assess application of the eddy covariance micrometeorological method in the measurement of carbon dioxide (CO2) flux of volcanic origin. The selected study area is one of high diffuse CO2 emission on Mammoth Mountain, CA. Because terrain and source characteristics make this a complex setting for this type of measurement, added consideration was given to source area and upwind fetch. Footprint analysis suggests that the eddy covariance measurements were representative of an upwind elliptical source area (3.8 ?? 103 m2) which can vary with mean wind direction, surface roughness, and atmospheric stability. CO2 flux averaged 8-16 mg m-2 s-1 (0.7-1.4 kg m-2 day-1). Eddy covariance measurements of flux were compared with surface chamber measurements made in separate studies [Geophys. Res. Lett. 25 (1998a) 1947; EOS Trans. 79 (1998) F941.] and were found to be similar. ?? 2001 Elsevier Science B.V. All rights reserved.
Adams, K M; Brown, G G; Grant, I
1985-08-01
Analysis of Covariance (ANCOVA) is often used in neuropsychological studies to effect ex-post-facto adjustment of performance variables amongst groups of subjects mismatched on some relevant demographic variable. This paper reviews some of the statistical assumptions underlying this usage. In an attempt to illustrate the complexities of this statistical technique, three sham studies using actual patient data are presented. These staged simulations have varying relationships between group test performance differences and levels of covariate discrepancy. The results were robust and consistent in their nature, and were held to support the wisdom of previous cautions by statisticians concerning the employment of ANCOVA to justify comparisons between incomparable groups. ANCOVA should not be used in neuropsychological research to equate groups unequal on variables such as age and education or to exert statistical control whose objective is to eliminate consideration of the covariate as an explanation for results. Finally, the report advocates by example the use of simulation to further our understanding of neuropsychological variables.
Agier, Lydiane; Portengen, Lützen; Chadeau-Hyam, Marc; Basagaña, Xavier; Giorgis-Allemand, Lise; Siroux, Valérie; Robinson, Oliver; Vlaanderen, Jelle; González, Juan R; Nieuwenhuijsen, Mark J; Vineis, Paolo; Vrijheid, Martine; Slama, Rémy; Vermeulen, Roel
2016-12-01
The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. We compared the performances of linear regression-based statistical methods in assessing exposome-health associations. In a simulation study, we generated 237 exposure covariates with a realistic correlation structure and with a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and an FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm revealed a sensitivity of 81% and an FDP of 34%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%) despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study were limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. Although GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods. Citation: Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. 2016. A systematic comparison of linear regression-based statistical methods to assess exposome-health associations. Environ Health Perspect 124:1848-1856; http://dx.doi.org/10.1289/EHP172.
Holtschlag, David J.; Sweat, M.J.
1999-01-01
Quarterly water-level measurements were analyzed to assess the effectiveness of a monitoring network of 26 wells in Huron County, Michigan. Trends were identified as constant levels and autoregressive components were computed at all wells on the basis of data collected from 1993 to 1997, using structural time series analysis. Fixed seasonal components were identified at 22 wells and outliers were identified at 23 wells. The 95- percent confidence intervals were forecast for water-levels during the first and second quarters of 1998. Intervals in the first quarter were consistent with 92.3 percent of the measured values. In the second quarter, measured values were within the forecast intervals only 65.4 percent of the time. Unusually low precipitation during the second quarter is thought to have contributed to the reduced reliability of the second-quarter forecasts. Spatial interrelations among wells were investigated on the basis of the autoregressive components, which were filtered to create a set of innovation sequences that were temporally uncorrelated. The empirical covariance among the innovation sequences indicated both positive and negative spatial interrelations. The negative covariance components are considered to be physically implausible and to have resulted from random sampling error. Graphical modeling, a form of multivariate analysis, was used to model the covariance structure. Results indicate that only 29 of the 325 possible partial correlations among the water-level innovations were statistically significant. The model covariance matrix, corresponding to the model partial correlation structure, contained only positive elements. This model covariance was sequentially partitioned to compute a set of partial covariance matrices that were used to rank the effectiveness of the 26 monitoring wells from greatest to least. Results, for example, indicate that about 50 percent of the uncertainty of the water-level innovations currently monitored by the 26- well network could be described by the 6 most effective wells.
Scale covariant gravitation. V - Kinetic theory. VI - Stellar structure and evolution
NASA Technical Reports Server (NTRS)
Hsieh, S.-H.; Canuto, V. M.
1981-01-01
A scale covariant kinetic theory for particles and photons is developed. The mathematical framework of the theory is given by the tangent bundle of a Weyl manifold. The Liouville equation is derived, and solutions to corresponding equilibrium distributions are presented and shown to yield thermodynamic results identical to the ones obtained previously. The scale covariant theory is then used to derive results of interest to stellar structure and evolution. A radiative transfer equation is derived that can be used to study stellar evolution with a variable gravitational constant. In addition, it is shown that the sun's absolute luminosity scales as L approximately equal to GM/kappa, where kappa is the stellar opacity. Finally, a formula is derived for the age of globular clusters as a function of the gravitational constant using a previously derived expression for the absolute luminosity.
Lorentz covariance of loop quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rovelli, Carlo; Speziale, Simone
2011-05-15
The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the conventional SU(2)-spin-network Hilbert space can be mapped to a space K of SL(2,C) functions, where Lorentz covariance is manifest. K can be described in terms of a certain subset of the projected spin networks studied by Livine, Alexandrov and Dupuis. It is formed by SL(2,C) functions completely determined by their restriction on SU(2). These are square-integrable in the SU(2) scalar product, but not in the SL(2,C) one. Thus, SU(2)-spin-network states can be represented by Lorentz-covariant SL(2,C) functions, as two-component photons can be described in the Lorentz-covariant Gupta-Bleulermore » formalism. As shown by Wolfgang Wieland in a related paper, this manifestly Lorentz-covariant formulation can also be directly obtained from canonical quantization. We show that the spinfoam dynamics of loop quantum gravity is locally SL(2,C)-invariant in the bulk, and yields states that are precisely in K on the boundary. This clarifies how the SL(2,C) spinfoam formalism yields an SU(2) theory on the boundary. These structures define a tidy Lorentz-covariant formalism for loop gravity.« less
Covariance specification and estimation to improve top-down Green House Gas emission estimates
NASA Astrophysics Data System (ADS)
Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.
2015-12-01
The National Institute of Standards and Technology (NIST) operates the North-East Corridor (NEC) project and the Indianapolis Flux Experiment (INFLUX) in order to develop measurement methods to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties in urban domains using a top down inversion method. Top down inversion updates prior knowledge using observations in a Bayesian way. One primary consideration in a Bayesian inversion framework is the covariance structure of (1) the emission prior residuals and (2) the observation residuals (i.e. the difference between observations and model predicted observations). These covariance matrices are respectively referred to as the prior covariance matrix and the model-data mismatch covariance matrix. It is known that the choice of these covariances can have large effect on estimates. The main objective of this work is to determine the impact of different covariance models on inversion estimates and their associated uncertainties in urban domains. We use a pseudo-data Bayesian inversion framework using footprints (i.e. sensitivities of tower measurements of GHGs to surface emissions) and emission priors (based on Hestia project to quantify fossil-fuel emissions) to estimate posterior emissions using different covariance schemes. The posterior emission estimates and uncertainties are compared to the hypothetical truth. We find that, if we correctly specify spatial variability and spatio-temporal variability in prior and model-data mismatch covariances respectively, then we can compute more accurate posterior estimates. We discuss few covariance models to introduce space-time interacting mismatches along with estimation of the involved parameters. We then compare several candidate prior spatial covariance models from the Matern covariance class and estimate their parameters with specified mismatches. We find that best-fitted prior covariances are not always best in recovering the truth. To achieve accuracy, we perform a sensitivity study to further tune covariance parameters. Finally, we introduce a shrinkage based sample covariance estimation technique for both prior and mismatch covariances. This technique allows us to achieve similar accuracy nonparametrically in a more efficient and automated way.
Kuhn, Laura J; Willoughby, Michael T; Vernon-Feagans, Lynne; Blair, Clancy B
2016-08-01
To investigate whether children's early language skills support the development of executive functions (EFs), the current study used an epidemiological sample (N=1121) to determine whether two key language indicators, vocabulary and language complexity, were predictive of EF abilities over the preschool years. We examined vocabulary and language complexity both as time-varying covariates that predicted time-specific indicators of EF at 36 and 60 months of age and as time-invariant covariates that predicted children's EF at 60 months and change in EF from 36 to 60 months. We found that the rate of change in children's vocabulary between 15 and 36 months was associated with both the trajectory of EF from 36 to 60 months and the resulting abilities at 60 months. In contrast, children's language complexity had a time-specific association with EF only at 60 months. These findings suggest that children's early gains in vocabulary may be particularly relevant for emerging EF abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Alternative bi-Hamiltonian structures for WDVV equations of associativity
NASA Astrophysics Data System (ADS)
Kalayci, J.; Nutku, Y.
1998-01-01
The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.
Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.
Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania
2017-02-01
Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2015-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789
An intrinsic and exterior form of the Bianchi identities
NASA Astrophysics Data System (ADS)
Do, Thoan; Prince, Geoff
2017-09-01
We give an elegant formulation of the structure equations (of Cartan) and the Bianchi identities in terms of exterior calculus without reference to a particular basis and without the exterior covariant derivative. This approach allows both structure equations and the Bianchi identities to be expressed in terms of forms of arbitrary degree. We demonstrate the relationship with both the conventional vector version of the Bianchi identities and to the exterior covariant derivative approach. Contact manifolds, codimension one foliations and the Cartan form of classical mechanics are studied as examples of its flexibility and utility.
Jin, Huifeng; Cheng, Haojie; Chen, Wei; Sheng, Xiaoming; Levy, Mark A; Brown, Mark J; Tian, Junqiang
2018-05-01
The single nucleotide polymorphism of the gene 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T (or rs1801133) is the most established genetic factor that increases plasma total homocysteine (tHcy) and consequently results in hyperhomocysteinemia. Yet, given the limited penetrance of this genetic variant, it is necessary to individually predict the risk of hyperhomocysteinemia for an rs1801133 carrier. We hypothesized that variability in this genetic risk is largely due to the presence of factors (covariates) that serve as effect modifiers, confounders, or both, such as folic acid (FA) intake, and aimed to assess this risk in the complex context of these covariates. We systematically extracted from published studies the data on tHcy, rs1801133, and any previously reported rs1801133 covariates. The resulting metadata set was first used to analyze the covariates' modifying effect by meta-regression and other statistical means. Subsequently, we controlled for this modifying effect by genotype-stratifying tHcy data and analyzed the variability in the risk resulting from the confounding of covariates. The data set contains data on 36 rs1801133 covariates that were collected from 114,799 participants and 256 qualified studies, among which 6 covariates (sex, age, race, FA intake, smoking, and alcohol consumption) are the most frequently informed and therefore included for statistical analysis. The effect of rs1801133 on tHcy exhibits significant variability that can be attributed to effect modification as well as confounding by these covariates. Via statistical modeling, we predicted the covariate-dependent risk of tHcy elevation and hyperhomocysteinemia in a systematic manner. We showed an evidence-based approach that globally assesses the covariate-dependent effect of rs1801133 on tHcy. The results should assist clinicians in interpreting the rs1801133 data from genetic testing for their patients. Such information is also important for the public, who increasingly receive genetic data from commercial services without interpretation of its clinical relevance. This study was registered at Research Registry with the registration number reviewregistry328.
Using nocturnal cold air drainage flow to monitor ecosystem processes in complex terrain
Thomas G. Pypker; Michael H. Unsworth; Alan C. Mix; William Rugh; Troy Ocheltree; Karrin Alstad; Barbara J. Bond
2007-01-01
This paper presents initial investigations of a new approach to monitor ecosystem processes in complex terrain on large scales. Metabolic processes in mountainous ecosystems are poorly represented in current ecosystem monitoring campaigns because the methods used for monitoring metabolism at the ecosystem scale (e.g., eddy covariance) require flat study sites. Our goal...
Eddy Covariance Method: Overview of General Guidelines and Conventional Workflow
NASA Astrophysics Data System (ADS)
Burba, G. G.; Anderson, D. J.; Amen, J. L.
2007-12-01
Atmospheric flux measurements are widely used to estimate water, heat, carbon dioxide and trace gas exchange between the ecosystem and the atmosphere. The Eddy Covariance method is one of the most direct, defensible ways to measure and calculate turbulent fluxes within the atmospheric boundary layer. However, the method is mathematically complex, and requires significant care to set up and process data. These reasons may be why the method is currently used predominantly by micrometeorologists. Modern instruments and software can potentially expand the use of this method beyond micrometeorology and prove valuable for plant physiology, hydrology, biology, ecology, entomology, and other non-micrometeorological areas of research. The main challenge of the method for a non-expert is the complexity of system design, implementation, and processing of the large volume of data. In the past several years, efforts of the flux networks (e.g., FluxNet, Ameriflux, CarboEurope, Fluxnet-Canada, Asiaflux, etc.) have led to noticeable progress in unification of the terminology and general standardization of processing steps. The methodology itself, however, is difficult to unify, because various experimental sites and different purposes of studies dictate different treatments, and site-, measurement- and purpose-specific approaches. Here we present an overview of theory and typical workflow of the Eddy Covariance method in a format specifically designed to (i) familiarize a non-expert with general principles, requirements, applications, and processing steps of the conventional Eddy Covariance technique, (ii) to assist in further understanding the method through more advanced references such as textbooks, network guidelines and journal papers, (iii) to help technicians, students and new researchers in the field deployment of the Eddy Covariance method, and (iv) to assist in its use beyond micrometeorology. The overview is based, to a large degree, on the frequently asked questions received from new users of the Eddy Covariance method and relevant instrumentation, and employs non-technical language to be of practical use to those new to this field. Information is provided on theory of the method (including state of methodology, basic derivations, practical formulations, major assumptions and sources of errors, error treatment, and use in non- traditional terrains), practical workflow (e.g., experimental design, implementation, data processing, and quality control), alternative methods and applications, and the most frequently overlooked details of the measurements. References and access to an extended 141-page Eddy Covariance Guideline in three electronic formats are also provided.
Zero-inflated count models for longitudinal measurements with heterogeneous random effects.
Zhu, Huirong; Luo, Sheng; DeSantis, Stacia M
2017-08-01
Longitudinal zero-inflated count data arise frequently in substance use research when assessing the effects of behavioral and pharmacological interventions. Zero-inflated count models (e.g. zero-inflated Poisson or zero-inflated negative binomial) with random effects have been developed to analyze this type of data. In random effects zero-inflated count models, the random effects covariance matrix is typically assumed to be homogeneous (constant across subjects). However, in many situations this matrix may be heterogeneous (differ by measured covariates). In this paper, we extend zero-inflated count models to account for random effects heterogeneity by modeling their variance as a function of covariates. We show via simulation that ignoring intervention and covariate-specific heterogeneity can produce biased estimates of covariate and random effect estimates. Moreover, those biased estimates can be rectified by correctly modeling the random effects covariance structure. The methodological development is motivated by and applied to the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study, the largest clinical trial of alcohol dependence performed in United States with 1383 individuals.
Lefort-Besnard, Jérémy; Bassett, Danielle S; Smallwood, Jonathan; Margulies, Daniel S; Derntl, Birgit; Gruber, Oliver; Aleman, Andre; Jardri, Renaud; Varoquaux, Gaël; Thirion, Bertrand; Eickhoff, Simon B; Bzdok, Danilo
2018-02-01
Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients. © 2017 Wiley Periodicals, Inc.
Blumen, Helena M; Brown, Lucy L; Habeck, Christian; Allali, Gilles; Ayers, Emmeline; Beauchet, Olivier; Callisaya, Michele; Lipton, Richard B; Mathuranath, P S; Phan, Thanh G; Pradeep Kumar, V G; Srikanth, Velandai; Verghese, Joe
2018-04-09
Accelerated gait decline in aging is associated with many adverse outcomes, including an increased risk for falls, cognitive decline, and dementia. Yet, the brain structures associated with gait speed, and how they relate to specific cognitive domains, are not well-understood. We examined structural brain correlates of gait speed, and how they relate to processing speed, executive function, and episodic memory in three non-demented and community-dwelling older adult cohorts (Overall N = 352), using voxel-based morphometry and multivariate covariance-based statistics. In all three cohorts, we identified gray matter volume covariance patterns associated with gait speed that included brain stem, precuneus, fusiform, motor, supplementary motor, and prefrontal (particularly ventrolateral prefrontal) cortex regions. Greater expression of these gray matter volume covariance patterns linked to gait speed were associated with better processing speed in all three cohorts, and with better executive function in one cohort. These gray matter covariance patterns linked to gait speed were not associated with episodic memory in any of the cohorts. These findings suggest that gait speed, processing speed (and to some extent executive functions) rely on shared neural systems that are subject to age-related and dementia-related change. The implications of these findings are discussed within the context of the development of interventions to compensate for age-related gait and cognitive decline.
Chirombo, James; Lowe, Rachel; Kazembe, Lawrence
2014-01-01
Background After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. Methods We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Results Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. Conclusions The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities. PMID:24991915
Ono, Yasuyuki; Takaesu, Yoshikazu; Nakai, Yukiei; Ichiki, Masahiko; Masuya, Jiro; Kusumi, Ichiro; Inoue, Takeshi
2017-08-01
The quality of parenting, neuroticism, and adult stressful life events are reportedly associated with depressive symptoms. However, previous studies have not examined the complex interaction between these three factors. In this study, we hypothesized that the quality of parenting (care and overprotection) acts on depressive symptoms through 'neuroticism' and the appraisal of adult stressful life events, and this hypothesis was verified by structural equation modeling. Four hundred one participants from the general adult population were studied using the following self-administered questionnaire surveys: Patient Health Questionnaire-9 (PHQ-9), Parental Bonding Instrument (PBI), neuroticism subscale of the short version of the Eysenck Personality Questionnaire-revised (EPQ-R), and Life Experiences Survey (LES). The data were analyzed with single and multiple regression analyses and covariance structure analyses. In the covariance structure analysis, neuroticism scores and negative change scores on the LES acted on the depressive symptoms (PHQ-9 scores) directly, but care or overprotection in childhood on the PBI did not act on them directly. Low care and high overprotection of the PBI increased depressive symptoms and negative change scores on the LES through enhanced neuroticism, which is regarded as a mediator in these effects. The subjects of this study were nonclinical volunteers; the findings might not be generalizable to psychiatric patients. This research showed that low care and high overprotection of maternal and paternal parenting in childhood influence depressive symptoms indirectly through enhanced neuroticism in general adults. These findings suggest that neuroticism mediates the long-term effect of the quality of parenting on depression in adulthood. Copyright © 2017 Elsevier B.V. All rights reserved.
Chirombo, James; Lowe, Rachel; Kazembe, Lawrence
2014-01-01
After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities.
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Auger, Ludovic
2003-01-01
A suboptimal Kalman filter system which evolves error covariances in terms of a truncated set of wavelet coefficients has been developed for the assimilation of chemical tracer observations of CH4. This scheme projects the discretized covariance propagation equations and covariance matrix onto an orthogonal set of compactly supported wavelets. Wavelet representation is localized in both location and scale, which allows for efficient representation of the inherently anisotropic structure of the error covariances. The truncation is carried out in such a way that the resolution of the error covariance is reduced only in the zonal direction, where gradients are smaller. Assimilation experiments which last 24 days, and used different degrees of truncation were carried out. These reduced the covariance size by 90, 97 and 99 % and the computational cost of covariance propagation by 80, 93 and 96 % respectively. The difference in both error covariance and the tracer field between the truncated and full systems over this period were found to be not growing in the first case, and growing relatively slowly in the later two cases. The largest errors in the tracer fields were found to occur in regions of largest zonal gradients in the constituent field. This results indicate that propagation of error covariances for a global two-dimensional data assimilation system are currently feasible. Recommendations for further reduction in computational cost are made with the goal of extending this technique to three-dimensional global assimilation systems.
Robust information propagation through noisy neural circuits
Pouget, Alexandre
2017-01-01
Sensory neurons give highly variable responses to stimulation, which can limit the amount of stimulus information available to downstream circuits. Much work has investigated the factors that affect the amount of information encoded in these population responses, leading to insights about the role of covariability among neurons, tuning curve shape, etc. However, the informativeness of neural responses is not the only relevant feature of population codes; of potentially equal importance is how robustly that information propagates to downstream structures. For instance, to quantify the retina’s performance, one must consider not only the informativeness of the optic nerve responses, but also the amount of information that survives the spike-generating nonlinearity and noise corruption in the next stage of processing, the lateral geniculate nucleus. Our study identifies the set of covariance structures for the upstream cells that optimize the ability of information to propagate through noisy, nonlinear circuits. Within this optimal family are covariances with “differential correlations”, which are known to reduce the information encoded in neural population activities. Thus, covariance structures that maximize information in neural population codes, and those that maximize the ability of this information to propagate, can be very different. Moreover, redundancy is neither necessary nor sufficient to make population codes robust against corruption by noise: redundant codes can be very fragile, and synergistic codes can—in some cases—optimize robustness against noise. PMID:28419098
Phenotypic covariance at species’ borders
2013-01-01
Background Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species’ borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Results Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Conclusions Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species’ borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future. PMID:23714580
Phenotypic covariance at species' borders.
Caley, M Julian; Cripps, Edward; Game, Edward T
2013-05-28
Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species' borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species' borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future.
An optimal strategy for functional mapping of dynamic trait loci.
Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling
2010-02-01
As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values.
Structural Equation Models in a Redundancy Analysis Framework With Covariates.
Lovaglio, Pietro Giorgio; Vittadini, Giorgio
2014-01-01
A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.
Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)
2016-01-01
Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.
2013-12-01
With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.
Liu, Feng; Tian, Hongjun; Li, Jie; Li, Shen; Zhuo, Chuanjun
2018-05-04
Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.
Foldnes, Njål; Olsson, Ulf Henning
2016-01-01
We present and investigate a simple way to generate nonnormal data using linear combinations of independent generator (IG) variables. The simulated data have prespecified univariate skewness and kurtosis and a given covariance matrix. In contrast to the widely used Vale-Maurelli (VM) transform, the obtained data are shown to have a non-Gaussian copula. We analytically obtain asymptotic robustness conditions for the IG distribution. We show empirically that popular test statistics in covariance analysis tend to reject true models more often under the IG transform than under the VM transform. This implies that overly optimistic evaluations of estimators and fit statistics in covariance structure analysis may be tempered by including the IG transform for nonnormal data generation. We provide an implementation of the IG transform in the R environment.
Filipiak, Katarzyna; Klein, Daniel; Roy, Anuradha
2017-01-01
The problem of testing the separability of a covariance matrix against an unstructured variance-covariance matrix is studied in the context of multivariate repeated measures data using Rao's score test (RST). The RST statistic is developed with the first component of the separable structure as a first-order autoregressive (AR(1)) correlation matrix or an unstructured (UN) covariance matrix under the assumption of multivariate normality. It is shown that the distribution of the RST statistic under the null hypothesis of any separability does not depend on the true values of the mean or the unstructured components of the separable structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Monte Carlo simulations are then used to study the comparative behavior of the null distribution of the RST statistic, as well as that of the LRT statistic, in terms of sample size considerations, and for the estimation of the empirical percentiles. Our findings are compared with existing results where the first component of the separable structure is a compound symmetry (CS) correlation matrix. It is also shown by simulations that the empirical null distribution of the RST statistic converges faster than the empirical null distribution of the LRT statistic to the limiting χ 2 distribution. The tests are implemented on a real dataset from medical studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Äijö, Tarmo; Yue, Xiaojing; Rao, Anjana; Lähdesmäki, Harri
2016-01-01
Motivation: 5-methylcytosine (5mC) is a widely studied epigenetic modification of DNA. The ten-eleven translocation (TET) dioxygenases oxidize 5mC into oxidized methylcytosines (oxi-mCs): 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). DNA methylation modifications have multiple functions. For example, 5mC is shown to be associated with diseases and oxi-mC species are reported to have a role in active DNA demethylation through 5mC oxidation and DNA repair, among others, but the detailed mechanisms are poorly understood. Bisulphite sequencing and its various derivatives can be used to gain information about all methylation modifications at single nucleotide resolution. Analysis of bisulphite based sequencing data is complicated due to the convoluted read-outs and experiment-specific variation in biochemistry. Moreover, statistical analysis is often complicated by various confounding effects. How to analyse 5mC and oxi-mC data sets with arbitrary and complex experimental designs is an open and important problem. Results: We propose the first method to quantify oxi-mC species with arbitrary covariate structures from bisulphite based sequencing data. Our probabilistic modeling framework combines a previously proposed hierarchical generative model for oxi-mC-seq data and a general linear model component to account for confounding effects. We show that our method provides accurate methylation level estimates and accurate detection of differential methylation when compared with existing methods. Analysis of novel and published data gave insights into to the demethylation of the forkhead box P3 (Foxp3) locus during the induced T regulatory cell differentiation. We also demonstrate how our covariate model accurately predicts methylation levels of the Foxp3 locus. Collectively, LuxGLM method improves the analysis of DNA methylation modifications, particularly for oxi-mC species. Availability and Implementation: An implementation of the proposed method is available under MIT license at https://github.org/tare/LuxGLM/ Contact: taijo@simonsfoundation.org or harri.lahdesmaki@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27587669
NASA Astrophysics Data System (ADS)
Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.
2015-03-01
We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.
Westgate, Philip M
2013-07-20
Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR-1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite-sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley & Sons, Ltd.
Picture of All Solutions of Successive 2-Block Maxbet Problems
ERIC Educational Resources Information Center
Choulakian, Vartan
2011-01-01
The Maxbet method is a generalized principal components analysis of a data set, where the group structure of the variables is taken into account. Similarly, 3-block[12,13] partial Maxdiff method is a generalization of covariance analysis, where only the covariances between blocks (1, 2) and (1, 3) are taken into account. The aim of this paper is…
Might "Unique" Factors Be "Common"? On the Possibility of Indeterminate Common-Unique Covariances
ERIC Educational Resources Information Center
Grayson, Dave
2006-01-01
The present paper shows that the usual factor analytic structured data dispersion matrix lambda psi lambda' + delta can readily arise from a set of scores y = lambda eta + epsilon, shere the "common" (eta) and "unique" (epsilon) factors have nonzero covariance: gamma = Cov epsilon,eta) is not equal to 0. Implications of this finding are discussed…
Quark Mass Functions and Pion Structure in the Covariant Spectator Theory
Biernat, Elmar P.; Gross, Franz; Pena, Teresa; ...
2018-05-24
The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter; Vysoký, Jan
2014-06-01
We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model.
Quark Mass Functions and Pion Structure in the Covariant Spectator Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biernat, Elmar P.; Gross, Franz; Pena, Teresa
The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.
MISTIC2: comprehensive server to study coevolution in protein families.
Colell, Eloy A; Iserte, Javier A; Simonetti, Franco L; Marino-Buslje, Cristina
2018-06-14
Correlated mutations between residue pairs in evolutionarily related proteins arise from constraints needed to maintain a functional and stable protein. Identifying these inter-related positions narrows down the search for structurally or functionally important sites. MISTIC is a server designed to assist users to calculate covariation in protein families and provide them with an interactive tool to visualize the results. Here, we present MISTIC2, an update to the previous server, that allows to calculate four covariation methods (MIp, mfDCA, plmDCA and gaussianDCA). The results visualization framework has been reworked for improved performance, compatibility and user experience. It includes a circos representation of the information contained in the alignment, an interactive covariation network, a 3D structure viewer and a sequence logo. Others components provide additional information such as residue annotations, a roc curve for assessing contact prediction, data tables and different ways of filtering the data and exporting figures. Comparison of different methods is easily done and scores combination is also possible. A newly implemented web service allows users to access MISTIC2 programmatically using an API to calculate covariation and retrieve results. MISTIC2 is available at: https://mistic2.leloir.org.ar.
Identification and characterization of a class of MALAT1 -like genomic loci
Zhang, Bin; Mao, Yuntao S.; Diermeier, Sarah D.; ...
2017-05-23
The MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that is processed into a long nuclear retained transcript ( MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA). Using an RNA sequence- and structure-based covariance model, we identified more than 130 genomic loci in vertebrate genomes containing the MALAT1 3' end triple-helix structure and its immediate downstream tRNA-like structure, including 44 in the green lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of components of the 3' end module. MALAT1-like genes in Anolis carolinensis are highly expressed in adult testis, thus we named them testis-abundant longmore » noncoding RNAs (tancRNAs). MALAT1-like loci also produce multiple small RNA species, including PIWI-interacting RNAs (piRNAs), from the antisense strand. The 3' ends of tancRNAs serve as potential targets for the PIWI-piRNA complex. Furthermore, we have identified an evolutionarily conserved class of long noncoding RNAs (lncRNAs) with similar structural constraints, post-transcriptional processing, and subcellular localization and a distinct function in spermatocytes.« less
Identification and characterization of a class of MALAT1 -like genomic loci
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bin; Mao, Yuntao S.; Diermeier, Sarah D.
The MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that is processed into a long nuclear retained transcript ( MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA). Using an RNA sequence- and structure-based covariance model, we identified more than 130 genomic loci in vertebrate genomes containing the MALAT1 3' end triple-helix structure and its immediate downstream tRNA-like structure, including 44 in the green lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of components of the 3' end module. MALAT1-like genes in Anolis carolinensis are highly expressed in adult testis, thus we named them testis-abundant longmore » noncoding RNAs (tancRNAs). MALAT1-like loci also produce multiple small RNA species, including PIWI-interacting RNAs (piRNAs), from the antisense strand. The 3' ends of tancRNAs serve as potential targets for the PIWI-piRNA complex. Furthermore, we have identified an evolutionarily conserved class of long noncoding RNAs (lncRNAs) with similar structural constraints, post-transcriptional processing, and subcellular localization and a distinct function in spermatocytes.« less
NASA Astrophysics Data System (ADS)
Wan, Tao; Naoe, Takashi; Futakawa, Masatoshi
2016-01-01
A double-wall structure mercury target will be installed at the high-power pulsed spallation neutron source in the Japan Proton Accelerator Research Complex (J-PARC). Cavitation damage on the inner wall is an important factor governing the lifetime of the target-vessel. To monitor the structural integrity of the target vessel, displacement velocity at a point on the outer surface of the target vessel is measured using a laser Doppler vibrometer (LDV). The measured signals can be used for evaluating the damage inside the target vessel because of cyclic loading and cavitation bubble collapse caused by pulsed-beam induced pressure waves. The wavelet differential analysis (WDA) was applied to reveal the effects of the damage on vibrational cycling. To reduce the effects of noise superimposed on the vibration signals on the WDA results, analysis of variance (ANOVA) and analysis of covariance (ANCOVA), statistical methods were applied. Results from laboratory experiments, numerical simulation results with random noise added, and target vessel field data were analyzed by the WDA and the statistical methods. The analyses demonstrated that the established in-situ diagnostic technique can be used to effectively evaluate the structural response of the target vessel.
Treating Sample Covariances for Use in Strongly Coupled Atmosphere-Ocean Data Assimilation
NASA Astrophysics Data System (ADS)
Smith, Polly J.; Lawless, Amos S.; Nichols, Nancy K.
2018-01-01
Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus, they require modification before they can be incorporated into a standard assimilation framework. Here we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show that it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localization via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative.
Small vessel disease is linked to disrupted structural network covariance in Alzheimer's disease.
Nestor, Sean M; Mišić, Bratislav; Ramirez, Joel; Zhao, Jiali; Graham, Simon J; Verhoeff, Nicolaas P L G; Stuss, Donald T; Masellis, Mario; Black, Sandra E
2017-07-01
Cerebral small vessel disease (SVD) is thought to contribute to Alzheimer's disease (AD) through abnormalities in white matter networks. Gray matter (GM) hub covariance networks share only partial overlap with white matter connectivity, and their relationship with SVD has not been examined in AD. We developed a multivariate analytical pipeline to elucidate the cortical GM thickness systems that covary with major network hubs and assessed whether SVD and neurodegenerative pathologic markers were associated with attenuated covariance network integrity in mild AD and normal elderly control subjects. SVD burden was associated with reduced posterior cingulate corticocortical GM network integrity and subneocorticocortical hub network integrity in AD. These findings provide evidence that SVD is linked to the selective disruption of cortical hub GM networks in AD brains and point to the need to consider GM hub covariance networks when assessing network disruption in mixed disease. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Counts, Christopher J.; Ho, P. Shing; Donlin, Maureen J.; Tavis, John E.; Chen, Chaoping
2015-01-01
HIV-1 protease (PR) is a viral enzyme vital to the production of infectious virions. It is initially synthesized as part of the Gag-Pol polyprotein precursor in the infected cell. The free mature PR is liberated as a result of precursor autoprocessing upon virion release. We previously described a model system to examine autoprocessing in transfected mammalian cells. Here, we report that a covariance analysis of miniprecursor (p6*-PR) sequences derived from drug naïve patients identified a series of amino acid pairs that vary together across independent viral isolates. These covariance pairs were used to build the first topology map of the miniprecursor that suggests high levels of interaction between the p6* peptide and the mature PR. Additionally, several PR-PR covariance pairs are located far from each other (>12 Å Cα to Cα) relative to their positions in the mature PR structure. Biochemical characterization of one such covariance pair (77–93) revealed that each residue shows distinct preference for one of three alkyl amino acids (V, I, and L) and that a polar or charged amino acid at either of these two positions abolishes precursor autoprocessing. The most commonly observed 77V is preferred by the most commonly observed 93I, but the 77I variant is preferred by other 93 variances (L, V, or M) in supporting precursor autoprocessing. Furthermore, the 77I93V covariant enhanced precursor autoprocessing and Gag polyprotein processing but decreased the mature PR activity. Therefore, both covariance and biochemical analyses support a functional association between residues 77 and 93, which are spatially distant from each other in the mature PR structure. Our data also suggests that these covariance pairs differentially regulate precursor autoprocessing and the mature protease activity. PMID:25893662
NASA Astrophysics Data System (ADS)
Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Karion, A.; Mueller, K.; Gourdji, S.; Martin, C.; Whetstone, J. R.
2017-12-01
The National Institute of Standards and Technology (NIST) supports the North-East Corridor Baltimore Washington (NEC-B/W) project and Indianapolis Flux Experiment (INFLUX) aiming to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties. These projects employ different flux estimation methods including top-down inversion approaches. The traditional Bayesian inversion method estimates emission distributions by updating prior information using atmospheric observations of Green House Gases (GHG) coupled to an atmospheric and dispersion model. The magnitude of the update is dependent upon the observed enhancement along with the assumed errors such as those associated with prior information and the atmospheric transport and dispersion model. These errors are specified within the inversion covariance matrices. The assumed structure and magnitude of the specified errors can have large impact on the emission estimates from the inversion. The main objective of this work is to build a data-adaptive model for these covariances matrices. We construct a synthetic data experiment using a Kalman Filter inversion framework (Lopez et al., 2017) employing different configurations of transport and dispersion model and an assumed prior. Unlike previous traditional Bayesian approaches, we estimate posterior emissions using regularized sample covariance matrices associated with prior errors to investigate whether the structure of the matrices help to better recover our hypothetical true emissions. To incorporate transport model error, we use ensemble of transport models combined with space-time analytical covariance to construct a covariance that accounts for errors in space and time. A Kalman Filter is then run using these covariances along with Maximum Likelihood Estimates (MLE) of the involved parameters. Preliminary results indicate that specifying sptio-temporally varying errors in the error covariances can improve the flux estimates and uncertainties. We also demonstrate that differences between the modeled and observed meteorology can be used to predict uncertainties associated with atmospheric transport and dispersion modeling which can help improve the skill of an inversion at urban scales.
Yu, Qingzhao; Li, Bin; Scribner, Richard Allen
2009-06-30
Previous studies have suggested a link between alcohol outlets and assaults. In this paper, we explore the effects of alcohol availability on assaults at the census tract level over time. In addition, we use a natural experiment to check whether a sudden loss of alcohol outlets is associated with deeper decreasing in assault violence. Several features of the data raise statistical challenges: (1) the association between covariates (for example, the alcohol outlet density of each census tract) and the assault rates may be complex and therefore cannot be described using a linear model without covariates transformation, (2) the covariates may be highly correlated with each other, (3) there are a number of observations that have missing inputs, and (4) there is spatial association in assault rates at the census tract level. We propose a hierarchical additive model, where the nonlinear correlations and the complex interaction effects are modeled using the multiple additive regression trees and the residual spatial association in the assault rates that cannot be explained in the model are smoothed using a conditional autoregressive (CAR) method. We develop a two-stage algorithm that connects the nonparametric trees with CAR to look for important covariates associated with the assault rates, while taking into account the spatial association of assault rates in adjacent census tracts. The proposed method is applied to the Los Angeles assault data (1990-1999). To assess the efficiency of the method, the results are compared with those obtained from a hierarchical linear model. Copyright (c) 2009 John Wiley & Sons, Ltd.
Estimating under-five mortality in space and time in a developing world context.
Wakefield, Jon; Fuglstad, Geir-Arne; Riebler, Andrea; Godwin, Jessica; Wilson, Katie; Clark, Samuel J
2018-01-01
Accurate estimates of the under-five mortality rate in a developing world context are a key barometer of the health of a nation. This paper describes a new model to analyze survey data on mortality in this context. We are interested in both spatial and temporal description, that is wishing to estimate under-five mortality rate across regions and years and to investigate the association between the under-five mortality rate and spatially varying covariate surfaces. We illustrate the methodology by producing yearly estimates for subnational areas in Kenya over the period 1980-2014 using data from the Demographic and Health Surveys, which use stratified cluster sampling. We use a binomial likelihood with fixed effects for the urban/rural strata and random effects for the clustering to account for the complex survey design. Smoothing is carried out using Bayesian hierarchical models with continuous spatial and temporally discrete components. A key component of the model is an offset to adjust for bias due to the effects of HIV epidemics. Substantively, there has been a sharp decline in Kenya in the under-five mortality rate in the period 1980-2014, but large variability in estimated subnational rates remains. A priority for future research is understanding this variability. In exploratory work, we examine whether a variety of spatial covariate surfaces can explain the variability in under-five mortality rate. Temperature, precipitation, a measure of malaria infection prevalence, and a measure of nearness to cities were candidates for inclusion in the covariate model, but the interplay between space, time, and covariates is complex.
Super-sample covariance approximations and partial sky coverage
NASA Astrophysics Data System (ADS)
Lacasa, Fabien; Lima, Marcos; Aguena, Michel
2018-04-01
Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.
Spatial Pyramid Covariance based Compact Video Code for Robust Face Retrieval in TV-series.
Li, Yan; Wang, Ruiping; Cui, Zhen; Shan, Shiguang; Chen, Xilin
2016-10-10
We address the problem of face video retrieval in TV-series which searches video clips based on the presence of specific character, given one face track of his/her. This is tremendously challenging because on one hand, faces in TV-series are captured in largely uncontrolled conditions with complex appearance variations, and on the other hand retrieval task typically needs efficient representation with low time and space complexity. To handle this problem, we propose a compact and discriminative representation for the huge body of video data, named Compact Video Code (CVC). Our method first models the face track by its sample (i.e., frame) covariance matrix to capture the video data variations in a statistical manner. To incorporate discriminative information and obtain more compact video signature suitable for retrieval, the high-dimensional covariance representation is further encoded as a much lower-dimensional binary vector, which finally yields the proposed CVC. Specifically, each bit of the code, i.e., each dimension of the binary vector, is produced via supervised learning in a max margin framework, which aims to make a balance between the discriminability and stability of the code. Besides, we further extend the descriptive granularity of covariance matrix from traditional pixel-level to more general patchlevel, and proceed to propose a novel hierarchical video representation named Spatial Pyramid Covariance (SPC) along with a fast calculation method. Face retrieval experiments on two challenging TV-series video databases, i.e., the Big Bang Theory and Prison Break, demonstrate the competitiveness of the proposed CVC over state-of-the-art retrieval methods. In addition, as a general video matching algorithm, CVC is also evaluated in traditional video face recognition task on a standard Internet database, i.e., YouTube Celebrities, showing its quite promising performance by using an extremely compact code with only 128 bits.
Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E; Kim, Hee Jin; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung
2016-01-01
Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are "small world." There were significant difference between NC and AD group in characteristic path lengths (z = -2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC dataset.
An example of complex modelling in dentistry using Markov chain Monte Carlo (MCMC) simulation.
Helfenstein, Ulrich; Menghini, Giorgio; Steiner, Marcel; Murati, Francesca
2002-09-01
In the usual regression setting one regression line is computed for a whole data set. In a more complex situation, each person may be observed for example at several points in time and thus a regression line might be calculated for each person. Additional complexities, such as various forms of errors in covariables may make a straightforward statistical evaluation difficult or even impossible. During recent years methods have been developed allowing convenient analysis of problems where the data and the corresponding models show these and many other forms of complexity. The methodology makes use of a Bayesian approach and Markov chain Monte Carlo (MCMC) simulations. The methods allow the construction of increasingly elaborate models by building them up from local sub-models. The essential structure of the models can be represented visually by directed acyclic graphs (DAG). This attractive property allows communication and discussion of the essential structure and the substantial meaning of a complex model without needing algebra. After presentation of the statistical methods an example from dentistry is presented in order to demonstrate their application and use. The dataset of the example had a complex structure; each of a set of children was followed up over several years. The number of new fillings in permanent teeth had been recorded at several ages. The dependent variables were markedly different from the normal distribution and could not be transformed to normality. In addition, explanatory variables were assumed to be measured with different forms of error. Illustration of how the corresponding models can be estimated conveniently via MCMC simulation, in particular, 'Gibbs sampling', using the freely available software BUGS is presented. In addition, how the measurement error may influence the estimates of the corresponding coefficients is explored. It is demonstrated that the effect of the independent variable on the dependent variable may be markedly underestimated if the measurement error is not taken into account ('regression dilution bias'). Markov chain Monte Carlo methods may be of great value to dentists in allowing analysis of data sets which exhibit a wide range of different forms of complexity.
Propensity score method: a non-parametric technique to reduce model dependence
2017-01-01
Propensity score analysis (PSA) is a powerful technique that it balances pretreatment covariates, making the causal effect inference from observational data as reliable as possible. The use of PSA in medical literature has increased exponentially in recent years, and the trend continue to rise. The article introduces rationales behind PSA, followed by illustrating how to perform PSA in R with MatchIt package. There are a variety of methods available for PS matching such as nearest neighbors, full matching, exact matching and genetic matching. The task can be easily done by simply assigning a string value to the method argument in the matchit() function. The generic summary() and plot() functions can be applied to an object of class matchit to check covariate balance after matching. Furthermore, there is a useful package PSAgraphics that contains several graphical functions to check covariate balance between treatment groups across strata. If covariate balance is not achieved, one can modify model specifications or use other techniques such as random forest and recursive partitioning to better represent the underlying structure between pretreatment covariates and treatment assignment. The process can be repeated until the desirable covariate balance is achieved. PMID:28164092
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biernat, Elmer P.; Pena, Maria Teresa; Ribiero, Jose' Emilio F.
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Generalized Least Squares Estimators in the Analysis of Covariance Structures.
ERIC Educational Resources Information Center
Browne, Michael W.
This paper concerns situations in which a p x p covariance matrix is a function of an unknown q x 1 parameter vector y-sub-o. Notation is defined in the second section, and some algebraic results used in subsequent sections are given. Section 3 deals with asymptotic properties of generalized least squares (G.L.S.) estimators of y-sub-o. Section 4…
Eigenvalue statistics for the sum of two complex Wishart matrices
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2014-09-01
The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.
Mason, Nicholas A; Shultz, Allison J; Burns, Kevin J
2014-08-07
The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the 'transfer hypothesis' is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Van der Elst, Wim; Molenberghs, Geert; Hilgers, Ralf-Dieter; Verbeke, Geert; Heussen, Nicole
2016-11-01
There are various settings in which researchers are interested in the assessment of the correlation between repeated measurements that are taken within the same subject (i.e., reliability). For example, the same rating scale may be used to assess the symptom severity of the same patients by multiple physicians, or the same outcome may be measured repeatedly over time in the same patients. Reliability can be estimated in various ways, for example, using the classical Pearson correlation or the intra-class correlation in clustered data. However, contemporary data often have a complex structure that goes well beyond the restrictive assumptions that are needed with the more conventional methods to estimate reliability. In the current paper, we propose a general and flexible modeling approach that allows for the derivation of reliability estimates, standard errors, and confidence intervals - appropriately taking hierarchies and covariates in the data into account. Our methodology is developed for continuous outcomes together with covariates of an arbitrary type. The methodology is illustrated in a case study, and a Web Appendix is provided which details the computations using the R package CorrMixed and the SAS software. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Some estimation formulae for continuous time-invariant linear systems
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Sidhu, G. S.
1975-01-01
In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.
Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I
2013-09-01
In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.
A Study of Effects of MultiCollinearity in the Multivariable Analysis
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.
2015-01-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257
A Study of Effects of MultiCollinearity in the Multivariable Analysis.
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W
2014-10-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.
Perspective: Structural fluctuation of protein and Anfinsen's thermodynamic hypothesis
NASA Astrophysics Data System (ADS)
Hirata, Fumio; Sugita, Masatake; Yoshida, Masasuke; Akasaka, Kazuyuki
2018-01-01
The thermodynamics hypothesis, casually referred to as "Anfinsen's dogma," is described theoretically in terms of a concept of the structural fluctuation of protein or the first moment (average structure) and the second moment (variance and covariance) of the structural distribution. The new theoretical concept views the unfolding and refolding processes of protein as a shift of the structural distribution induced by a thermodynamic perturbation, with the variance-covariance matrix varying. Based on the theoretical concept, a method to characterize the mechanism of folding (or unfolding) is proposed. The transition state, if any, between two stable states is interpreted as a gap in the distribution, which is created due to an extensive reorganization of hydrogen bonds among back-bone atoms of protein and with water molecules in the course of conformational change. Further perspective to applying the theory to the computer-aided drug design, and to the material science, is briefly discussed.
Verma, Sharad; Goyal, Sukriti; Tyagi, Chetna; Jamal, Salma; Singh, Aditi; Grover, Abhinav
2016-06-01
The interaction of BAX (BCL-2-associated X protein) with BIM (BCL-2 interacting mediator of cell death) SAHB (stabilized α helix of BCL2) directly initiates BAX-mediated mitochondrial apoptosis. This molecular dynamics study reveals that BIM SAHB forms a stable complex with BAX but it remains in a non-functional conformation. N terminal of BAX folds towards the core which has been reported exposed in the functional monomer. The α1-α2 loop, which has been reported in open conformation in functional BAX, acquires a closed conformation during the simulation. BH3/α2 remains less exposed as compared to initial structure. The hydrophobic residues of BIM accommodates in the rear pocket of BAX during the simulation. A steep decrease in radius of gyration and solvent accessible surface area (SASA) indicates the complex folding to acquire a more stable but inactive conformation. Further the covariance matrix reveals that the backbone atoms' motions favour the inactive conformation of the complex. This is the first report on the non-functional BAX-BIM SAHB complex by molecular dynamics simulation in the best of our knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.
Patterns of precipitation and soil moisture extremes in Texas, US: A complex network analysis
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Xia, Youlong; Caldwell, Todd G.; Hao, Zengchao
2018-02-01
Understanding of the spatial and temporal dynamics of extreme precipitation not only improves prediction skills, but also helps to prioritize hazard mitigation efforts. This study seeks to enhance the understanding of spatiotemporal covariation patterns embedded in precipitation (P) and soil moisture (SM) by using an event-based, complex-network-theoretic approach. Events concurrences are quantified using a nonparametric event synchronization measure, and spatial patterns of hydroclimate variables are analyzed by using several network measures and a community detection algorithm. SM-P coupling is examined using a directional event coincidence analysis measure that takes the order of event occurrences into account. The complex network approach is demonstrated for Texas, US, a region possessing a rich set of hydroclimate features and is frequented by catastrophic flooding. Gridded daily observed P data and simulated SM data are used to create complex networks of P and SM extremes. The uncovered high degree centrality regions and community structures are qualitatively in agreement with the overall existing knowledge of hydroclimate extremes in the study region. Our analyses provide new visual insights on the propagation, connectivity, and synchronicity of P extremes, as well as the SM-P coupling, in this flood-prone region, and can be readily used as a basis for event-driven predictive analytics for other regions.
Cox, R M; Costello, R A; Camber, B E; McGlothlin, J W
2017-07-01
Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the 'laws of inheritance'. Although a number of studies have supported this view by demonstrating substantial between-sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative-genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half-sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance-covariance structure (G) that is broadly similar in males (G m ) and females (G f ). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between-sex genetic correlations (r mf ), sexually dimorphic features, such as area and brightness, exhibit reduced r mf values that do not differ from zero. Using a modified random skewers analysis, we show that the between-sex genetic variance-covariance matrix (B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Schep, Daniel G.; Rubinstein, John L.
2016-01-01
Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669
Age-related changes in brain structural covariance networks.
Li, Xinwei; Pu, Fang; Fan, Yubo; Niu, Haijun; Li, Shuyu; Li, Deyu
2013-01-01
Previous neuroimaging studies have suggested that cerebral changes over normal aging are not simply characterized by regional alterations, but rather by the reorganization of cortical connectivity patterns. The investigation of structural covariance networks (SCNs) using voxel-based morphometry is an advanced approach to examining the pattern of covariance in gray matter (GM) volumes among different regions of the human cortex. To date, how the organization of critical SCNs change during normal aging remains largely unknown. In this study, we used an SCN mapping approach to investigate eight large-scale networks in 240 healthy participants aged 18-89 years. These participants were subdivided into young (18-23 years), middle aged (30-58 years), and older (61-89 years) subjects. Eight seed regions were chosen from widely reported functional intrinsic connectivity networks. The voxels showing significant positive associations with these seed regions were used to describe the topological organization of an SCN. All of these networks exhibited non-linear patterns in their spatial extent that were associated with normal aging. These networks, except the primary motor network, had a distributed topology in young participants, a sharply localized topology in middle aged participants, and were relatively stable in older participants. The structural covariance derived using the primary motor cortex was limited to the ipsilateral motor regions in the young and older participants, but included contralateral homologous regions in the middle aged participants. In addition, there were significant between-group differences in the structural networks associated with language-related speech and semantics processing, executive control, and the default-mode network (DMN). Taken together, the results of this study demonstrate age-related changes in the topological organization of SCNs, and provide insights into normal aging of the human brain.
Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.
Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L
2016-11-01
Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.
de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J
2017-01-01
In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2 = 0.070) and p = 0.001 (β = - 0.264, η p 2 = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Niles, Paul B.; Blake, Weston; Leveille, Richard
2009-01-01
This work seeks to use the chemical, isotopic, and mineralogical characteristics of secondary carbonate minerals produced during brief aqueous events to identify the conditions of the aqueous environment in which they formed. Liquid water near the surface of Mars is subject to either rapid freezing and/or evaporation. These processes are also active on Earth, and produce secondary minerals that have complex chemical, mineralogical, and isotopic textures and compositions that can include covariant relationships between Delta C-13 (sub VPDB) and delta O-18 (sub VSMOW). The extremely well studied four billion year old carbonates preserved in martian meteorite ALH 84001 also show covariant delta C-13 and delta O-18 compositions, but these variations are manifested on a micro-scale in a single thin section while the variation observed so far in terrestrial carbonates is seen between different hand samples.
Soil Moisture fusion across scales using a multiscale nonstationary Spatial Hierarchical Model
NASA Astrophysics Data System (ADS)
Kathuria, D.; Mohanty, B.; Katzfuss, M.
2017-12-01
Soil moisture (SM) datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors, on the other hand, provide observations on a finer spatial scale (meter scale or less) but are sparsely available. SM is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables and these interactions change dynamically with footprint scales. Past literature has largely focused on the scale specific effect of these covariates on soil moisture. The present study proposes a robust Multiscale-Nonstationary Spatial Hierarchical Model (MN-SHM) which can assimilate SM from point to RS footprints. The spatial structure of SM across footprints is modeled by a class of scalable covariance functions whose nonstationary depends on atmospheric forcings (such as precipitation) and surface physical controls (such as topography, soil-texture and vegetation). The proposed model is applied to fuse point and airborne ( 1.5 km) SM data obtained during the SMAPVEX12 campaign in the Red River watershed in Southern Manitoba, Canada with SMOS ( 30km) data. It is observed that precipitation, soil-texture and vegetation are the dominant factors which affect the SM distribution across various footprint scales (750 m, 1.5 km, 3 km, 9 km,15 km and 30 km). We conclude that MN-SHM handles the change of support problems easily while retaining reasonable predictive accuracy across multiple spatial resolutions in the presence of surface heterogeneity. The MN-SHM can be considered as a complex non-stationary extension of traditional geostatistical prediction methods (such as Kriging) for fusing multi-platform multi-scale datasets.
NASA Astrophysics Data System (ADS)
Hardiman, B. S.; Atkins, J.; Dahlin, K.; Fahey, R. T.; Gough, C. M.
2016-12-01
Canopy physical structure - leaf quantity and arrangement - strongly affects light interception and distribution. As such, canopy physical structure is a key driver of forest carbon (C) dynamics. Terrestrial lidar systems (TLS) provide spatially explicit, quantitative characterizations of canopy physical structure at scales commensurate with plot-scale C cycling processes. As an example, previous TLS-based studies established that light use efficiency is positively correlated with canopy physical structure, influencing the trajectory of net primary production throughout forest development. Linking TLS measurements of canopy structure to multispectral satellite observations of forest canopies may enable scaling of ecosystem C cycling processes from leaves to continents. We will report on our study relating a suite of canopy structural metrics to well-established remotely sensed measurements (NDVI, EVI, albedo, tasseled cap indices, etc.) which are indicative of important forest characteristics (leaf area, canopy nitrogen, light interception, etc.). We used Landsat data, which provides observations at 30m resolution, a scale comparable to that of TLS. TLS data were acquired during 2009-2016 from forest sites throughout Eastern North America, comprised primarily of NEON and Ameriflux sites. Canopy physical structure data were compared with contemporaneous growing-season Landsat data. Metrics of canopy physical structure are expected to covary with forest composition and dominant PFT, likely influencing interaction strength between TLS and Landsat canopy metrics. More structurally complex canopies (those with more heterogeneous distributions of leaf area) are expected to have lower albedo, suggesting greater canopy light absorption (higher fAPAR) than simpler canopies. We expect that vegetation indices (NDVI, EVI) will increase with TLS metrics of spatial heterogeneity, and not simply quantity, of leaves, supporting our hypothesis that canopy light absorption is dependent on both leaf quantity and arrangement. Relating satellite observations of canopy properties to TLS metrics of canopy physical structure represents an important advance for modelling canopy energy balance and forest C cycling processes at large spatial scales.
Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity.
Chang, Jinyuan; Zheng, Chao; Zhou, Wen-Xin; Zhou, Wen
2017-12-01
In this article, we study the problem of testing the mean vectors of high dimensional data in both one-sample and two-sample cases. The proposed testing procedures employ maximum-type statistics and the parametric bootstrap techniques to compute the critical values. Different from the existing tests that heavily rely on the structural conditions on the unknown covariance matrices, the proposed tests allow general covariance structures of the data and therefore enjoy wide scope of applicability in practice. To enhance powers of the tests against sparse alternatives, we further propose two-step procedures with a preliminary feature screening step. Theoretical properties of the proposed tests are investigated. Through extensive numerical experiments on synthetic data sets and an human acute lymphoblastic leukemia gene expression data set, we illustrate the performance of the new tests and how they may provide assistance on detecting disease-associated gene-sets. The proposed methods have been implemented in an R-package HDtest and are available on CRAN. © 2017, The International Biometric Society.
Gomez, Rapson
2009-03-01
This study used the mean and covariance structures analysis approach to examine the equality or invariance of ratings of the 18 ADHD symptoms. 783 Australian and 928 Malaysian parents provided ratings for an ADHD rating scale. Invariance was tested across these groups (Comparison 1), and North European Australian (n = 623) and Malay Malaysian (n = 571, Comparison 2) groups. Results indicate support for form and item factor loading invariance; more than half the total number of symptoms showed item intercept invariance, and 14 symptoms showed invariance for error variances. There was invariance for both the factor variances and the covariance, and the latent mean scores for hyperactivity/impulsivity. For inattention latent scores, the Malaysian (Comparison 1) and Malay Malaysian (Comparison 2) groups had higher scores. These results indicate fairly good support for invariance for parent ratings of the ADHD symptoms across the groups compared.
Exploring the Sequence-based Prediction of Folding Initiation Sites in Proteins.
Raimondi, Daniele; Orlando, Gabriele; Pancsa, Rita; Khan, Taushif; Vranken, Wim F
2017-08-18
Protein folding is a complex process that can lead to disease when it fails. Especially poorly understood are the very early stages of protein folding, which are likely defined by intrinsic local interactions between amino acids close to each other in the protein sequence. We here present EFoldMine, a method that predicts, from the primary amino acid sequence of a protein, which amino acids are likely involved in early folding events. The method is based on early folding data from hydrogen deuterium exchange (HDX) data from NMR pulsed labelling experiments, and uses backbone and sidechain dynamics as well as secondary structure propensities as features. The EFoldMine predictions give insights into the folding process, as illustrated by a qualitative comparison with independent experimental observations. Furthermore, on a quantitative proteome scale, the predicted early folding residues tend to become the residues that interact the most in the folded structure, and they are often residues that display evolutionary covariation. The connection of the EFoldMine predictions with both folding pathway data and the folded protein structure suggests that the initial statistical behavior of the protein chain with respect to local structure formation has a lasting effect on its subsequent states.
KÖLLER, OLAF
2016-01-01
ABSTRACT National and international large‐scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students’ achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory‐driven two‐dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments. PMID:27818532
Kampa, Nele; Köller, Olaf
2016-09-01
National and international large-scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students' achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory-driven two-dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments.
Wang, Xuetong; Yu, Yang; Zhao, Weina; Li, Qiongling; Li, Xinwei; Li, Shuyu; Yin, Changhao; Han, Ying
2018-01-01
The hippocampus plays important roles in memory processing. However, the hippocampus is not a homogeneous structure, which consists of several subfields. The hippocampal subfields are differently affected by many neurodegenerative diseases, especially mild cognitive impairment (MCI). Amnestic mild cognitive impairment (aMCI) and subcortical vascular mild cognitive impairment (svMCI) are the two subtypes of MCI. aMCI is characterized by episodic memory loss, and svMCI is characterized by extensive white matter hyperintensities and multiple lacunar infarctions on magnetic resonance imaging. The primary cognitive impairment in svMCI is executive function, attention, and semantic memory. Some variations or disconnections within specific large-scale brain networks have been observed in aMCI and svMCI patients. The aim of this study was to investigate abnormalities in structural covariance networks (SCNs) between hippocampal subfields and the whole cerebral cortex in aMCI and svMCI patients, and whether these abnormalities are different between the two groups. Automated segmentation of hippocampal subfields was performed with FreeSurfer 5.3, and we selected five hippocampal subfields as the seeds of SCN analysis: CA1, CA2/3, CA4/dentate gyrus (DG), subiculum, and presubiculum. SCNs were constructed based on these hippocampal subfield seeds for each group. Significant correlations between hippocampal subfields, fusiform gyrus (FFG), and entorhinal cortex (ERC) in gray matter volume were found in each group. We also compared the differences in the strength of structural covariance between any two groups. In the aMCI group, compared to the normal controls (NC) group, we observed an increased association between the left CA1/CA4/DG/subiculum and the left temporal pole. Additionally, the hippocampal subfields (bilateral CA1, left CA2/3) significantly covaried with the orbitofrontal cortex in the svMCI group compared to the NC group. In the aMCI group compared to the svMCI group, we observed decreased association between hippocampal subfields and the right FFG, while we also observed an increased association between the bilateral subiculum/presubiculum and bilateral ERC. These findings provide new evidence that there is altered whole-brain structural covariance of the hippocampal subfields in svMCI and aMCI patients and provide insights to the pathological mechanisms of different MCI subtypes.
Non-Gaussian Methods for Causal Structure Learning.
Shimizu, Shohei
2018-05-22
Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.
Chong, Joanna Su Xian; Liu, Siwei; Loke, Yng Miin; Hilal, Saima; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian; Zhou, Juan
2017-11-01
Network-sensitive neuroimaging methods have been used to characterize large-scale brain network degeneration in Alzheimer's disease and its prodrome. However, few studies have investigated the combined effect of Alzheimer's disease and cerebrovascular disease on brain network degeneration. Our study sought to examine the intrinsic functional connectivity and structural covariance network changes in 235 prodromal and clinical Alzheimer's disease patients with and without cerebrovascular disease. We focused particularly on two higher-order cognitive networks-the default mode network and the executive control network. We found divergent functional connectivity and structural covariance patterns in Alzheimer's disease patients with and without cerebrovascular disease. Alzheimer's disease patients without cerebrovascular disease, but not Alzheimer's disease patients with cerebrovascular disease, showed reductions in posterior default mode network functional connectivity. By comparison, while both groups exhibited parietal reductions in executive control network functional connectivity, only Alzheimer's disease patients with cerebrovascular disease showed increases in frontal executive control network connectivity. Importantly, these distinct executive control network changes were recapitulated in prodromal Alzheimer's disease patients with and without cerebrovascular disease. Across Alzheimer's disease patients with and without cerebrovascular disease, higher default mode network functional connectivity z-scores correlated with greater hippocampal volumes while higher executive control network functional connectivity z-scores correlated with greater white matter changes. In parallel, only Alzheimer's disease patients without cerebrovascular disease showed increased default mode network structural covariance, while only Alzheimer's disease patients with cerebrovascular disease showed increased executive control network structural covariance compared to controls. Our findings demonstrate the differential neural network structural and functional changes in Alzheimer's disease with and without cerebrovascular disease, suggesting that the underlying pathology of Alzheimer's disease patients with cerebrovascular disease might differ from those without cerebrovascular disease and reflect a combination of more severe cerebrovascular disease and less severe Alzheimer's disease network degeneration phenotype. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer’s disease
Chong, Joanna Su Xian; Liu, Siwei; Loke, Yng Miin; Hilal, Saima; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian
2017-01-01
Abstract Network-sensitive neuroimaging methods have been used to characterize large-scale brain network degeneration in Alzheimer’s disease and its prodrome. However, few studies have investigated the combined effect of Alzheimer’s disease and cerebrovascular disease on brain network degeneration. Our study sought to examine the intrinsic functional connectivity and structural covariance network changes in 235 prodromal and clinical Alzheimer’s disease patients with and without cerebrovascular disease. We focused particularly on two higher-order cognitive networks—the default mode network and the executive control network. We found divergent functional connectivity and structural covariance patterns in Alzheimer’s disease patients with and without cerebrovascular disease. Alzheimer’s disease patients without cerebrovascular disease, but not Alzheimer’s disease patients with cerebrovascular disease, showed reductions in posterior default mode network functional connectivity. By comparison, while both groups exhibited parietal reductions in executive control network functional connectivity, only Alzheimer’s disease patients with cerebrovascular disease showed increases in frontal executive control network connectivity. Importantly, these distinct executive control network changes were recapitulated in prodromal Alzheimer’s disease patients with and without cerebrovascular disease. Across Alzheimer’s disease patients with and without cerebrovascular disease, higher default mode network functional connectivity z-scores correlated with greater hippocampal volumes while higher executive control network functional connectivity z-scores correlated with greater white matter changes. In parallel, only Alzheimer’s disease patients without cerebrovascular disease showed increased default mode network structural covariance, while only Alzheimer’s disease patients with cerebrovascular disease showed increased executive control network structural covariance compared to controls. Our findings demonstrate the differential neural network structural and functional changes in Alzheimer’s disease with and without cerebrovascular disease, suggesting that the underlying pathology of Alzheimer’s disease patients with cerebrovascular disease might differ from those without cerebrovascular disease and reflect a combination of more severe cerebrovascular disease and less severe Alzheimer’s disease network degeneration phenotype. PMID:29053778
TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION
Allen, Genevera I.; Tibshirani, Robert
2015-01-01
Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility. PMID:26877823
TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION.
Allen, Genevera I; Tibshirani, Robert
2010-06-01
Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable , meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal , in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.
Linear mixed-effects modeling approach to FMRI group analysis
Chen, Gang; Saad, Ziad S.; Britton, Jennifer C.; Pine, Daniel S.; Cox, Robert W.
2013-01-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance–covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance–covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. PMID:23376789
Structure and covariance of cloud and rain water in marine stratocumulus
NASA Astrophysics Data System (ADS)
Witte, Mikael; Morrison, Hugh; Gettelman, Andrew
2017-04-01
Many state of the art cloud microphysics parameterizations in large-scale models use assumed probability density functions (pdfs) to represent subgrid scale variability of relevant resolved scale variables such as vertical velocity and cloud liquid water content (LWC). Integration over the assumed pdfs of small scale variability results in physically consistent prediction of nonlinear microphysical process rates and obviates the need to apply arbitrary tuning parameters to the calculated rates. In such parameterizations, the covariance of cloud and rain LWC is an important quantity for parameterizing the accretion process by which rain drops grow via collection of cloud droplets. This covariance has been diagnosed by other workers from a variety of observational and model datasets (Boutle et al., 2013; Larson and Griffin, 2013; Lebsock et al., 2013), but there is poor agreement in findings across the studies. Two key assumptions that may explain some of the discrepancies among past studies are 1) LWC (both cloud and rain) distributions are statistically stationary and 2) spatial structure may be neglected. Given the highly intermittent nature of precipitation and the fact that cloud LWC has been found to be poorly represented by stationary pdfs (e.g. Marshak et al., 1997), neither of the aforementioned assumptions are valid. Therefore covariance must be evaluated as a function of spatial scale without the assumption of stationary statistics (i.e. variability cannot be expressed as a fractional standard deviation, which necessitates well-defined first and second moments of the LWC distribution). The present study presents multifractal analyses of both rain and cloud LWC using aircraft data from the VOCALS-REx field campaign to illustrate the importance of spatial structure in microphysical parameterizations and extends the results of Boutle et al. (2013) to provide a parameterization of rain-cloud water covariance as a function of spatial scale without the assumption of statistical stationarity.
Linear mixed-effects modeling approach to FMRI group analysis.
Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W
2013-06-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. Published by Elsevier Inc.
Galaxy two-point covariance matrix estimation for next generation surveys
NASA Astrophysics Data System (ADS)
Howlett, Cullan; Percival, Will J.
2017-12-01
We perform a detailed analysis of the covariance matrix of the spherically averaged galaxy power spectrum and present a new, practical method for estimating this within an arbitrary survey without the need for running mock galaxy simulations that cover the full survey volume. The method uses theoretical arguments to modify the covariance matrix measured from a set of small-volume cubic galaxy simulations, which are computationally cheap to produce compared to larger simulations and match the measured small-scale galaxy clustering more accurately than is possible using theoretical modelling. We include prescriptions to analytically account for the window function of the survey, which convolves the measured covariance matrix in a non-trivial way. We also present a new method to include the effects of super-sample covariance and modes outside the small simulation volume which requires no additional simulations and still allows us to scale the covariance matrix. As validation, we compare the covariance matrix estimated using our new method to that from a brute-force calculation using 500 simulations originally created for analysis of the Sloan Digital Sky Survey Main Galaxy Sample. We find excellent agreement on all scales of interest for large-scale structure analysis, including those dominated by the effects of the survey window, and on scales where theoretical models of the clustering normally break down, but the new method produces a covariance matrix with significantly better signal-to-noise ratio. Although only formally correct in real space, we also discuss how our method can be extended to incorporate the effects of redshift space distortions.
Visualizing DOM super-spectrum covariance in vanKrevelen space
NASA Astrophysics Data System (ADS)
Fatland, D. R.; Kalawe, J.; Stubbins, A.; Spencer, R. G.; Sleighter, R. L.; Abdulla, H. A.; Dittmar, T.
2011-12-01
We investigate the fate of terrigenous organic matter, DOM exported to the coastal marine environ. Many methods (fluor., FT-ICR-MS, NMR, 13C, lignin, etc) help characterize this DOM. We define a 'super spectrum' as amalgamation of analyses to a data stack and we search for physically significant patterns therein beginning with covariance across 31 samples from six circum-Arctic rivers: The Ob, Kolyma, Mackenzie, Yukon, Lena, and Yenisey sampled five times throughout the year. A vanKrevelen diagram is convenient to view distributions of molecules provided by Fourier Transform Ion Cyclotron Resonance Mass Spectometry (FT-ICR-MS). We augment this distribution space in the vertical dimension, for example to show peak height, molecular mass, principle component weighting or covariance. We use Worldwide Telescope, a virtual globe with strong data support from Microsoft Research to explore covariance results along 3+ dimensions (adding brightness, color and a parameter slide). The results show interesting covariance e.g. between molecules and PARAFAC peaks, a step towards fluorophore and cohort identification in the terrigenous DOM spectrum. Given the geoscience explosion in data volume and data complexity we feel these results should survive beyond the end point of a journal article. We are building a cloud-based Library on the Microsoft Azure platform to support this and subsequent analyses to enable data and methods to carry over and benefit other research groups and objectives.
Unleashing Empirical Equations with "Nonlinear Fitting" and "GUM Tree Calculator"
NASA Astrophysics Data System (ADS)
Lovell-Smith, J. W.; Saunders, P.; Feistel, R.
2017-10-01
Empirical equations having large numbers of fitted parameters, such as the international standard reference equations published by the International Association for the Properties of Water and Steam (IAPWS), which form the basis of the "Thermodynamic Equation of Seawater—2010" (TEOS-10), provide the means to calculate many quantities very accurately. The parameters of these equations are found by least-squares fitting to large bodies of measurement data. However, the usefulness of these equations is limited since uncertainties are not readily available for most of the quantities able to be calculated, the covariance of the measurement data is not considered, and further propagation of the uncertainty in the calculated result is restricted since the covariance of calculated quantities is unknown. In this paper, we present two tools developed at MSL that are particularly useful in unleashing the full power of such empirical equations. "Nonlinear Fitting" enables propagation of the covariance of the measurement data into the parameters using generalized least-squares methods. The parameter covariance then may be published along with the equations. Then, when using these large, complex equations, "GUM Tree Calculator" enables the simultaneous calculation of any derived quantity and its uncertainty, by automatic propagation of the parameter covariance into the calculated quantity. We demonstrate these tools in exploratory work to determine and propagate uncertainties associated with the IAPWS-95 parameters.
Neaux, Dimitri; Guy, Franck; Gilissen, Emmanuel; Coudyzer, Walter; Vignaud, Patrick; Ducrocq, Stéphane
2013-01-01
The organization of the bony face is complex, its morphology being influenced in part by the rest of the cranium. Characterizing the facial morphological variation and craniofacial covariation patterns in extant hominids is fundamental to the understanding of their evolutionary history. Numerous studies on hominid facial shape have proposed hypotheses concerning the relationship between the anterior facial shape, facial block orientation and basicranial flexion. In this study we test these hypotheses in a sample of adult specimens belonging to three extant hominid genera (Homo, Pan and Gorilla). Intraspecific variation and covariation patterns are analyzed using geometric morphometric methods and multivariate statistics, such as partial least squared on three-dimensional landmarks coordinates. Our results indicate significant intraspecific covariation between facial shape, facial block orientation and basicranial flexion. Hominids share similar characteristics in the relationship between anterior facial shape and facial block orientation. Modern humans exhibit a specific pattern in the covariation between anterior facial shape and basicranial flexion. This peculiar feature underscores the role of modern humans' highly-flexed basicranium in the overall integration of the cranium. Furthermore, our results are consistent with the hypothesis of a relationship between the reduction of the value of the cranial base angle and a downward rotation of the facial block in modern humans, and to a lesser extent in chimpanzees. PMID:23441232
Morita, Wataru; Yano, Wataru; Nagaoka, Tomohito; Abe, Mikiko; Ohshima, Hayato; Nakatsukasa, Masato
2014-01-01
Tooth crown patterning is governed by the growth and folding of the inner enamel epithelium (IEE) and the following enamel deposition forms outer enamel surface (OES). We hypothesized that overall dental crown shape and covariation structure are determined by processes that configurate shape at the enamel–dentine junction (EDJ), the developmental vestige of IEE. This this hypothesis was tested by comparing patterns of morphological variation between EDJ and OES in human permanent maxillary first molar (UM1) and deciduous second molar (um2). Using geometric morphometric methods, we described morphological variation and covariation between EDJ and OES, and evaluated the strength of two components of phenotypic variability, canalization and morphological integration, in addition to the relevant evolutionary flexibility, i.e. the ability to respond to selective pressure. The strength of covariation between EDJ and OES was greater in um2 than in UM1, and the way that multiple traits covary between EDJ and OES was different between these teeth. The variability analyses showed that EDJ had less shape variation and a higher level of morphological integration than OES, which indicated that canalization and morphological integration acted as developmental constraints. These tendencies were greater in UM1 than in um2. On the other hand, EDJ and OES had a comparable level of evolvability in these teeth. Amelogenesis could play a significant role in tooth shape and covariation structure, and its influence was not constant among teeth, which may be responsible for the differences in the rate and/or period of enamel formation. PMID:24689536
Communication: Three-fold covariance imaging of laser-induced Coulomb explosions
NASA Astrophysics Data System (ADS)
Pickering, James D.; Amini, Kasra; Brouard, Mark; Burt, Michael; Bush, Ian J.; Christensen, Lauge; Lauer, Alexandra; Nielsen, Jens H.; Slater, Craig S.; Stapelfeldt, Henrik
2016-04-01
We apply a three-fold covariance imaging method to analyse previously acquired data [C. S. Slater et al., Phys. Rev. A 89, 011401(R) (2014)] on the femtosecond laser-induced Coulomb explosion of spatially pre-aligned 3,5-dibromo-3',5'-difluoro-4'-cyanobiphenyl molecules. The data were acquired using the "Pixel Imaging Mass Spectrometry" camera. We show how three-fold covariance imaging of ionic photofragment recoil trajectories can be used to provide new information about the parent ion's molecular structure prior to its Coulomb explosion. In particular, we show how the analysis may be used to obtain information about molecular conformation and provide an alternative route for enantiomer determination.
Problems with small area surveys: lensing covariance of supernova distance measurements.
Cooray, Asantha; Huterer, Dragan; Holz, Daniel E
2006-01-20
While luminosity distances from type Ia supernovae (SNe) are a powerful probe of cosmology, the accuracy with which these distances can be measured is limited by cosmic magnification due to gravitational lensing by the intervening large-scale structure. Spatial clustering of foreground mass leads to correlated errors in SNe distances. By including the full covariance matrix of SNe, we show that future wide-field surveys will remain largely unaffected by lensing correlations. However, "pencil beam" surveys, and those with narrow (but possibly long) fields of view, can be strongly affected. For a survey with 30 arcmin mean separation between SNe, lensing covariance leads to a approximately 45% increase in the expected errors in dark energy parameters.
The modified turning bands (MTB) model for space-time rainfall. I. Model definition and properties
NASA Astrophysics Data System (ADS)
Mellor, Dale
1996-02-01
A new stochastic model of space-time rainfall, the Modified Turning Bands (MTB) model, is proposed which reproduces, in particular, the movements and developments of rainbands, cluster potential regions and raincells, as well as their respective interactions. The ensemble correlation structure is unsuitable for practical estimation of the model parameters because the model is not ergodic in this statistic, and hence it cannot easily be measured from a single real storm. Thus, some general theory on the internal covariance structure of a class of stochastic models is presented, of which the MTB model is an example. It is noted that, for the MTB model, the internal covariance structure may be measured from a single storm, and can thus be used for model identification.
Prussia, G E; Kinicki, A J; Bracker, J S
1993-06-01
B. Weiner's (1985) attribution model of achievement motivation and emotion was used as a theoretical foundation to examine the mediating processes between involuntary job loss and employment status. Seventy-nine manufacturing employees were surveyed 1 month prior to permanent displacement, and finding another job was assessed 18 months later. Covariance structure analysis was used to evaluate goodness of fit and to compare the model to alternative measurement and structural representations. Discriminant validity analyses indicated that the causal dimensions underlying the model were not independent. Model predictions were supported in that internal and stable attributions for job loss negatively influenced finding another job through expectations for re-employment. These predictions held up even after controlling for influential unmeasured variables. Practical and theoretical implications are discussed.
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.
2004-01-01
One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when multivariate correction is used, as evident from the analyses of the rms differences of these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating the water masses with properties close to the observed, while the UOI failed to maintain the temperature and salinity structure.
Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S
2015-05-01
We hypothesize that coordinated functional activity within discrete neural circuits induces morphological organization and plasticity within those circuits. Identifying regions of morphological covariation that are independent of morphological covariation in other regions therefore may therefore allow us to identify discrete neural systems within the brain. Comparing the magnitude of these variations in individuals who have psychiatric disorders with the magnitude of variations in healthy controls may allow us to identify aberrant neural pathways in psychiatric illnesses. We measured surface morphological features by applying nonlinear, high-dimensional warping algorithms to manually defined brain regions. We transferred those measures onto the surface of a unit sphere via conformal mapping and then used spherical wavelets and their scaling coefficients to simplify the data structure representing these surface morphological features of each brain region. We used principal component analysis (PCA) to calculate covariation in these morphological measures, as represented by their scaling coefficients, across several brain regions. We then assessed whether brain subregions that covaried in morphology, as identified by large eigenvalues in the PCA, identified specific neural pathways of the brain. To do so, we spatially registered the subnuclei for each eigenvector into the coordinate space of a Diffusion Tensor Imaging dataset; we used these subnuclei as seed regions to track and compare fiber pathways with known fiber pathways identified in neuroanatomical atlases. We applied these procedures to anatomical MRI data in a cohort of 82 healthy participants (42 children, 18 males, age 10.5 ± 2.43 years; 40 adults, 22 males, age 32.42 ± 10.7 years) and 107 participants with Tourette's Syndrome (TS) (71 children, 59 males, age 11.19 ± 2.2 years; 36 adults, 21 males, age 37.34 ± 10.9 years). We evaluated the construct validity of the identified covariation in morphology using DTI data from a different set of 20 healthy adults (10 males, mean age 29.7 ± 7.7 years). The PCA identified portions of structures that covaried across the brain, the eigenvalues measuring the magnitude of the covariation in morphology along the respective eigenvectors. Our results showed that the eigenvectors, and the DTI fibers tracked from their associated brain regions, corresponded with known neural pathways in the brain. In addition, the eigenvectors that captured morphological covariation across regions, and the principal components along those eigenvectors, identified neural pathways with aberrant morphological features associated with TS. These findings suggest that covariations in brain morphology can identify aberrant neural pathways in specific neuropsychiatric disorders. Copyright © 2015. Published by Elsevier Inc.
Nguyen, Tuong-Vi; Wu, Mia; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Campbell, Benjamin C; Booij, Linda; Herba, Catherine; Monnier, Patricia; Ducharme, Simon; McCracken, James T
2017-12-01
Existing studies suggest that dehydroepiandrosterone (DHEA) may be important for human brain development and cognition. For example, molecular studies have hinted at the critical role of DHEA in enhancing brain plasticity. Studies of human brain development also support the notion that DHEA is involved in preserving cortical plasticity. Further, some, though not all, studies show that DHEA administration may lead to improvements in working memory in adults. Yet these findings remain limited by an incomplete understanding of the specific neuroanatomical mechanisms through which DHEA may impact the CNS during development. Here we examined associations between DHEA, cortico-hippocampal structural covariance, and working memory (216 participants [female=123], age range 6-22 years old, mean age: 13.6 +/-3.6 years, each followed for a maximum of 3 visits over the course of 4 years). In addition to administering performance-based, spatial working memory tests to these children, we also collected ecological, parent ratings of working memory in everyday situations. We found that increasingly higher DHEA levels were associated with a shift toward positive insular-hippocampal and occipito-hippocampal structural covariance. In turn, DHEA-related insular-hippocampal covariance was associated with lower spatial working memory but higher overall working memory as measured by the ecological parent ratings. Taken together with previous research, these results support the hypothesis that DHEA may optimize cortical functions related to general attentional and working memory processes, but impair the development of bottom-up, hippocampal-to-cortical connections, resulting in impaired encoding of spatial cues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advancing X-ray scattering metrology using inverse genetic algorithms.
Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph
2016-01-01
We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.
NASA Astrophysics Data System (ADS)
Congedo, Marco; Barachant, Alexandre
2015-01-01
Currently the Riemannian geometry of symmetric positive definite (SPD) matrices is gaining momentum as a powerful tool in a wide range of engineering applications such as image, radar and biomedical data signal processing. If the data is not natively represented in the form of SPD matrices, typically we may summarize them in such form by estimating covariance matrices of the data. However once we manipulate such covariance matrices on the Riemannian manifold we lose the representation in the original data space. For instance, we can evaluate the geometric mean of a set of covariance matrices, but not the geometric mean of the data generating the covariance matrices, the space of interest in which the geometric mean can be interpreted. As a consequence, Riemannian information geometry is often perceived by non-experts as a "black-box" tool and this perception prevents a wider adoption in the scientific community. Hereby we show that we can overcome this limitation by constructing a special form of SPD matrix embedding both the covariance structure of the data and the data itself. Incidentally, whenever the original data can be represented in the form of a generic data matrix (not even square), this special SPD matrix enables an exhaustive and unique description of the data up to second-order statistics. This is achieved embedding the covariance structure of both the rows and columns of the data matrix, allowing naturally a wide range of possible applications and bringing us over and above just an interpretability issue. We demonstrate the method by manipulating satellite images (pansharpening) and event-related potentials (ERPs) of an electroencephalography brain-computer interface (BCI) study. The first example illustrates the effect of moving along geodesics in the original data space and the second provides a novel estimation of ERP average (geometric mean), showing that, in contrast to the usual arithmetic mean, this estimation is robust to outliers. In conclusion, we are able to show that the Riemannian concepts of distance, geometric mean, moving along a geodesic, etc. can be readily transposed into a generic data space, whatever this data space represents.
Bayesian Semiparametric Structural Equation Models with Latent Variables
ERIC Educational Resources Information Center
Yang, Mingan; Dunson, David B.
2010-01-01
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
Enhanced visual statistical learning in adults with autism
Roser, Matthew E.; Aslin, Richard N.; McKenzie, Rebecca; Zahra, Daniel; Fiser, József
2014-01-01
Individuals with autism spectrum disorder (ASD) are often characterized as having social engagement and language deficiencies, but a sparing of visuo-spatial processing and short-term memory, with some evidence of supra-normal levels of performance in these domains. The present study expanded on this evidence by investigating the observational learning of visuospatial concepts from patterns of covariation across multiple exemplars. Child and adult participants with ASD, and age-matched control participants, viewed multi-shape arrays composed from a random combination of pairs of shapes that were each positioned in a fixed spatial arrangement. After this passive exposure phase, a post-test revealed that all participant groups could discriminate pairs of shapes with high covariation from randomly paired shapes with low covariation. Moreover, learning these shape-pairs with high covariation was superior in adults with ASD than in age-matched controls, while performance in children with ASD was no different than controls. These results extend previous observations of visuospatial enhancement in ASD into the domain of learning, and suggest that enhanced visual statistical learning may have arisen from a sustained bias to attend to local details in complex arrays of visual features. PMID:25151115
The Casalbuoni-Brink-Schwarz superparticle with covariant, reducible constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayi, O.F.
1992-04-30
This paper discusses the fermionic constraints of the massless Casalbuoni-Brink-Schwarz superparticle in d = 10 which are separated covariantly as first- and second-class constraints which are infinitely reducible. Although the reducibility conditions of the second-class constraints include the first-class ones a consistent quantization is possible. The ghost structure of the system for quantizing it in terms of the BFV-BRST methods is given and unitarity is shown.
A formal and data-based comparison of measures of motor-equivalent covariation.
Verrel, Julius
2011-09-15
Different analysis methods have been developed for assessing motor-equivalent organization of movement variability. In the uncontrolled manifold (UCM) method, the structure of variability is analyzed by comparing goal-equivalent and non-goal-equivalent variability components at the level of elemental variables (e.g., joint angles). In contrast, in the covariation by randomization (CR) approach, motor-equivalent organization is assessed by comparing variability at the task level between empirical and decorrelated surrogate data. UCM effects can be due to both covariation among elemental variables and selective channeling of variability to elemental variables with low task sensitivity ("individual variation"), suggesting a link between the UCM and CR method. However, the precise relationship between the notion of covariation in the two approaches has not been analyzed in detail yet. Analysis of empirical and simulated data from a study on manual pointing shows that in general the two approaches are not equivalent, but the respective covariation measures are highly correlated (ρ > 0.7) for two proposed definitions of covariation in the UCM context. For one-dimensional task spaces, a formal comparison is possible and in fact the two notions of covariation are equivalent. In situations in which individual variation does not contribute to UCM effects, for which necessary and sufficient conditions are derived, this entails the equivalence of the UCM and CR analysis. Implications for the interpretation of UCM effects are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Böbel, A.; Knapek, C. A.; Räth, C.
2018-05-01
Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski tensor analysis turns out to be a powerful tool for investigations of crystallization processes. It is capable of revealing nonlinear local topological properties, however, still provides easily interpretable results founded on a solid mathematical framework.
Santos, Xavier; Badiane, Arnaud; Matos, Cátia
2016-01-01
Changes in habitat structure constitute a major factor explaining responses of reptiles to fire. However, few studies have examined habitat factors that covary with fire-history variables to explain reptile responses. We hypothesise that more complex habitats should support richer reptile communities, and that species-specific relative abundance should be related to particular habitat features. From spring 2012-2014, twenty-five transects were surveyed in the Albera Region (north-east Iberia). The vegetation structure was measured and the extent of habitat types in a 1000-m buffer around each transect calculated. Reptile-community metrics (species richness and reptile abundance) were related to fire history, vegetation structure, and habitat types, using generalized additive models. These metrics correlated with habitat-structure variables but not with fire history. The number of species increased with more complex habitats but decreased with pine-plantation abundance in the 1000-m buffer. We found contrasting responses among reptiles in terms of time since fire and those responses differed according to vegetation variables and habitat types. An unplanned fire in August 2012 provided the opportunity to compare reptile abundance values between pre-fire and the short term (1-2 years) after the fire. Most species exhibited a negative short-term response to the 2012 fire except Tarentola mauritanica, a gecko that inhabits large rocks, as opposed to other ground-dwelling species. In the reptiles studied, contrasting responses to time since fire are consistent with the habitat-accommodation model of succession. These differences are linked to specific microhabitat preferences and suggest that functional traits can be used to predict species-specific responses to fire.
Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.
Andrews, T J; Coppola, D M
1999-08-01
Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.
ERIC Educational Resources Information Center
Mandys, Frantisek; Dolan, Conor V.; Molenaar, Peter C. M.
1994-01-01
Studied the conditions under which the quasi-Markov simplex model fits a linear growth curve covariance structure and determined when the model is rejected. Presents a quasi-Markov simplex model with structured means and gives an example. (SLD)
The Specific Analysis of Structural Equation Models
ERIC Educational Resources Information Center
McDonald, Roderick P.
2004-01-01
Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…
Derivation of a generalized Schrödinger equation from the theory of scale relativity
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2017-06-01
Using Nottale's theory of scale relativity relying on a fractal space-time, we derive a generalized Schrödinger equation taking into account the interaction of the system with the external environment. This equation describes the irreversible evolution of the system towards a static quantum state. We first interpret the scale-covariant equation of dynamics stemming from Nottale's theory as a hydrodynamic viscous Burgers equation for a potential flow involving a complex velocity field and an imaginary viscosity. We show that the Schrödinger equation can be directly obtained from this equation by performing a Cole-Hopf transformation equivalent to the WKB transformation. We then introduce a friction force proportional and opposite to the complex velocity in the scale-covariant equation of dynamics in a way that preserves the local conservation of the normalization condition. We find that the resulting generalized Schrödinger equation, or the corresponding fluid equations obtained from the Madelung transformation, involve not only a damping term but also an effective thermal term. The friction coefficient and the temperature are related to the real and imaginary parts of the complex friction coefficient in the scale-covariant equation of dynamics. This may be viewed as a form of fluctuation-dissipation theorem. We show that our generalized Schrödinger equation satisfies an H-theorem for the quantum Boltzmann free energy. As a result, the probability distribution relaxes towards an equilibrium state which can be viewed as a Boltzmann distribution including a quantum potential. We propose to apply this generalized Schrödinger equation to dark matter halos in the Universe, possibly made of self-gravitating Bose-Einstein condensates.
Ximénez, Carmen
2016-01-01
This article extends previous research on the recovery of weak factor loadings in confirmatory factor analysis (CFA) by exploring the effects of adding the mean structure. This issue has not been examined in previous research. This study is based on the framework of Yung and Bentler (1999) and aims to examine the conditions that affect the recovery of weak factor loadings when the model includes the mean structure, compared to analyzing the covariance structure alone. A simulation study was conducted in which several constraints were defined for one-, two-, and three-factor models. Results show that adding the mean structure improves the recovery of weak factor loadings and reduces the asymptotic variances for the factor loadings, particularly for the models with a smaller number of factors and a small sample size. Therefore, under certain circumstances, modeling the means should be seriously considered for covariance models containing weak factor loadings. PMID:26779071
Røislien, Jo; Clausen, Thomas; Gran, Jon Michael; Bukten, Anne
2014-05-17
The reduction of crime is an important outcome of opioid maintenance treatment (OMT). Criminal intensity and treatment regimes vary among OMT patients, but this is rarely adjusted for in statistical analyses, which tend to focus on cohort incidence rates and rate ratios. The purpose of this work was to estimate the relationship between treatment and criminal convictions among OMT patients, adjusting for individual covariate information and timing of events, fitting time-to-event regression models of increasing complexity. National criminal records were cross linked with treatment data on 3221 patients starting OMT in Norway 1997-2003. In addition to calculating cohort incidence rates, criminal convictions was modelled as a recurrent event dependent variable, and treatment a time-dependent covariate, in Cox proportional hazards, Aalen's additive hazards, and semi-parametric additive hazards regression models. Both fixed and dynamic covariates were included. During OMT, the number of days with criminal convictions for the cohort as a whole was 61% lower than when not in treatment. OMT was associated with reduced number of days with criminal convictions in all time-to-event regression models, but the hazard ratio (95% CI) was strongly attenuated when adjusting for covariates; from 0.40 (0.35, 0.45) in a univariate model to 0.79 (0.72, 0.87) in a fully adjusted model. The hazard was lower for females and decreasing with older age, while increasing with high numbers of criminal convictions prior to application to OMT (all p < 0.001). The strongest predictors were level of criminal activity prior to entering into OMT, and having a recent criminal conviction (both p < 0.001). The effect of several predictors was significantly time-varying with their effects diminishing over time. Analyzing complex observational data regarding to fixed factors only overlooks important temporal information, and naïve cohort level incidence rates might result in biased estimates of the effect of interventions. Applying time-to-event regression models, properly adjusting for individual covariate information and timing of various events, allows for more precise and reliable effect estimates, as well as painting a more nuanced picture that can aid health care professionals and policy makers.
ERIC Educational Resources Information Center
Okech, David
2012-01-01
Objectives: Using baseline and second wave data, the study evaluated the measurement and structural properties of parenting stress, personal mastery, and economic strain with N = 381 lower income parents who decided to join and those who did not join in a child development savings account program. Methods: Structural equation modeling mean and…
Tao, Chenyang; Nichols, Thomas E.; Hua, Xue; Ching, Christopher R.K.; Rolls, Edmund T.; Thompson, Paul M.; Feng, Jianfeng
2017-01-01
We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches. PMID:27666385
Debieu, Marilyne; Tang, Chunlao; Stich, Benjamin; Sikosek, Tobias; Effgen, Sigi; Josephs, Emily; Schmitt, Johanna; Nordborg, Magnus; Koornneef, Maarten; de Meaux, Juliette
2013-01-01
Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.
Modeling energy expenditure in children and adolescents using quantile regression
USDA-ARS?s Scientific Manuscript database
Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in energy expenditure (EE). Study objective is to apply quantile regression (QR) to predict EE and determine quantile-dependent variation in covariate effects in nonobese and obes...
Asymptotic approximations to posterior distributions via conditional moment equations
Yee, J.L.; Johnson, W.O.; Samaniego, F.J.
2002-01-01
We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.
Quantum corrections for the cubic Galileon in the covariant language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltas, Ippocratis D.; Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt
We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach inmore » this context is discussed, while all calculations are explicitly presented.« less
Corrected goodness-of-fit test in covariance structure analysis.
Hayakawa, Kazuhiko
2018-05-17
Many previous studies report simulation evidence that the goodness-of-fit test in covariance structure analysis or structural equation modeling suffers from the overrejection problem when the number of manifest variables is large compared with the sample size. In this study, we demonstrate that one of the tests considered in Browne (1974) can address this long-standing problem. We also propose a simple modification of Satorra and Bentler's mean and variance adjusted test for non-normal data. A Monte Carlo simulation is carried out to investigate the performance of the corrected tests in the context of a confirmatory factor model, a panel autoregressive model, and a cross-lagged panel (panel vector autoregressive) model. The simulation results reveal that the corrected tests overcome the overrejection problem and outperform existing tests in most cases. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Zinck, John W. R.
2016-01-01
Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus) to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD) were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation. PMID:27387485
A neural circuit covarying with social hierarchy in macaques.
Noonan, MaryAnn P; Sallet, Jerome; Mars, Rogier B; Neubert, Franz X; O'Reilly, Jill X; Andersson, Jesper L; Mitchell, Anna S; Bell, Andrew H; Miller, Karla L; Rushworth, Matthew F S
2014-09-01
Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.
A Neural Circuit Covarying with Social Hierarchy in Macaques
Neubert, Franz X.; O'Reilly, Jill X.; Andersson, Jesper L.; Mitchell, Anna S.; Bell, Andrew H.; Miller, Karla L.; Rushworth, Matthew F. S.
2014-01-01
Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status. PMID:25180883
Bayes factors for testing inequality constrained hypotheses: Issues with prior specification.
Mulder, Joris
2014-02-01
Several issues are discussed when testing inequality constrained hypotheses using a Bayesian approach. First, the complexity (or size) of the inequality constrained parameter spaces can be ignored. This is the case when using the posterior probability that the inequality constraints of a hypothesis hold, Bayes factors based on non-informative improper priors, and partial Bayes factors based on posterior priors. Second, the Bayes factor may not be invariant for linear one-to-one transformations of the data. This can be observed when using balanced priors which are centred on the boundary of the constrained parameter space with a diagonal covariance structure. Third, the information paradox can be observed. When testing inequality constrained hypotheses, the information paradox occurs when the Bayes factor of an inequality constrained hypothesis against its complement converges to a constant as the evidence for the first hypothesis accumulates while keeping the sample size fixed. This paradox occurs when using Zellner's g prior as a result of too much prior shrinkage. Therefore, two new methods are proposed that avoid these issues. First, partial Bayes factors are proposed based on transformed minimal training samples. These training samples result in posterior priors that are centred on the boundary of the constrained parameter space with the same covariance structure as in the sample. Second, a g prior approach is proposed by letting g go to infinity. This is possible because the Jeffreys-Lindley paradox is not an issue when testing inequality constrained hypotheses. A simulation study indicated that the Bayes factor based on this g prior approach converges fastest to the true inequality constrained hypothesis. © 2013 The British Psychological Society.
A Note on the Factor Analysis of Partial Covariance Matrices
ERIC Educational Resources Information Center
McDonald, Roderick P.
1978-01-01
The relationship between the factor structure of a convariance matrix and the factor structure of a partial convariance matrix when one or more variables are partialled out of the original matrix is given in this brief note. (JKS)
The effects of stress and sex on selection, genetic covariance, and the evolutionary response.
Holman, L; Jacomb, F
2017-10-01
The capacity of a population to adapt to selection (evolvability) depends on whether the structure of genetic variation permits the evolution of fitter trait combinations. Selection, genetic variance and genetic covariance can change under environmental stress, and males and females are not genetically independent, yet the combined effects of stress and dioecy on evolvability are not well understood. Here, we estimate selection, genetic (co)variance and evolvability in both sexes of Tribolium castaneum flour beetles under stressful and benign conditions, using a half-sib breeding design. Although stress uncovered substantial latent heritability, stress also affected genetic covariance, such that evolvability remained low under stress. Sexual selection on males and natural selection on females favoured a similar phenotype, and there was positive intersex genetic covariance. Consequently, sexual selection on males augmented adaptation in females, and intralocus sexual conflict was weak or absent. This study highlights that increased heritability does not necessarily increase evolvability, suggests that selection can deplete genetic variance for multivariate trait combinations with strong effects on fitness, and tests the recent hypothesis that sexual conflict is weaker in stressful or novel environments. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Multivariate analysis of longitudinal rates of change.
Bryan, Matthew; Heagerty, Patrick J
2016-12-10
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel
2018-02-27
Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .
A Combinatorial Approach to Detecting Gene-Gene and Gene-Environment Interactions in Family Studies
Lou, Xiang-Yang; Chen, Guo-Bo; Yan, Lei; Ma, Jennie Z.; Mangold, Jamie E.; Zhu, Jun; Elston, Robert C.; Li, Ming D.
2008-01-01
Widespread multifactor interactions present a significant challenge in determining risk factors of complex diseases. Several combinatorial approaches, such as the multifactor dimensionality reduction (MDR) method, have emerged as a promising tool for better detecting gene-gene (G × G) and gene-environment (G × E) interactions. We recently developed a general combinatorial approach, namely the generalized multifactor dimensionality reduction (GMDR) method, which can entertain both qualitative and quantitative phenotypes and allows for both discrete and continuous covariates to detect G × G and G × E interactions in a sample of unrelated individuals. In this article, we report the development of an algorithm that can be used to study G × G and G × E interactions for family-based designs, called pedigree-based GMDR (PGMDR). Compared to the available method, our proposed method has several major improvements, including allowing for covariate adjustments and being applicable to arbitrary phenotypes, arbitrary pedigree structures, and arbitrary patterns of missing marker genotypes. Our Monte Carlo simulations provide evidence that the PGMDR method is superior in performance to identify epistatic loci compared to the MDR-pedigree disequilibrium test (PDT). Finally, we applied our proposed approach to a genetic data set on tobacco dependence and found a significant interaction between two taste receptor genes (i.e., TAS2R16 and TAS2R38) in affecting nicotine dependence. PMID:18834969
Givens, Geof H; Ozaksoy, Isin
2007-01-01
We describe a general model for pairwise microsatellite allele matching probabilities. The model can be used for analysis of population substructure, and is particularly focused on relating genetic correlation to measurable covariates. The approach is intended for cases when the existence of subpopulations is uncertain and a priori assignment of samples to hypothesized subpopulations is difficult. Such a situation arises, for example, with western Arctic bowhead whales, where genetic samples are available only from a possibly mixed migratory assemblage. We estimate genetic structure associated with spatial, temporal, or other variables that may confound the detection of population structure. In the bowhead case, the model permits detection of genetic patterns associated with a temporally pulsed multi-population assemblage in the annual migration. Hypothesis tests for population substructure and for covariate effects can be carried out using permutation methods. Simulated and real examples illustrate the effectiveness and reliability of the approach and enable comparisons with other familiar approaches. Analysis of the bowhead data finds no evidence for two temporally pulsed subpopulations using the best available data, although a significant pattern found by other researchers using preliminary data is also confirmed here. Code in the R language is available from www.stat.colostate.edu/~geof/gammmp.html.
Karim, Mohammad Ehsanul; Petkau, John; Gustafson, Paul; Platt, Robert W; Tremlett, Helen
2018-06-01
In longitudinal studies, if the time-dependent covariates are affected by the past treatment, time-dependent confounding may be present. For a time-to-event response, marginal structural Cox models are frequently used to deal with such confounding. To avoid some of the problems of fitting marginal structural Cox model, the sequential Cox approach has been suggested as an alternative. Although the estimation mechanisms are different, both approaches claim to estimate the causal effect of treatment by appropriately adjusting for time-dependent confounding. We carry out simulation studies to assess the suitability of the sequential Cox approach for analyzing time-to-event data in the presence of a time-dependent covariate that may or may not be a time-dependent confounder. Results from these simulations revealed that the sequential Cox approach is not as effective as marginal structural Cox model in addressing the time-dependent confounding. The sequential Cox approach was also found to be inadequate in the presence of a time-dependent covariate. We propose a modified version of the sequential Cox approach that correctly estimates the treatment effect in both of the above scenarios. All approaches are applied to investigate the impact of beta-interferon treatment in delaying disability progression in the British Columbia Multiple Sclerosis cohort (1995-2008).
HSQC-1,n-ADEQUATE: a new approach to long-range 13C-13C correlation by covariance processing.
Martin, Gary E; Hilton, Bruce D; Willcott, M Robert; Blinov, Kirill A
2011-10-01
Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound. Copyright © 2011 John Wiley & Sons, Ltd.
Shi, Ran; Guo, Ying
2016-12-01
Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).
Kopský, Vojtech
2006-03-01
This article is a roadmap to a systematic calculation and tabulation of tensorial covariants for the point groups of material physics. The following are the essential steps in the described approach to tensor calculus. (i) An exact specification of the considered point groups by their embellished Hermann-Mauguin and Schoenflies symbols. (ii) Introduction of oriented Laue classes of magnetic point groups. (iii) An exact specification of matrix ireps (irreducible representations). (iv) Introduction of so-called typical (standard) bases and variables -- typical invariants, relative invariants or components of the typical covariants. (v) Introduction of Clebsch-Gordan products of the typical variables. (vi) Calculation of tensorial covariants of ascending ranks with consecutive use of tables of Clebsch-Gordan products. (vii) Opechowski's magic relations between tensorial decompositions. These steps are illustrated for groups of the tetragonal oriented Laue class D(4z) -- 4(z)2(x)2(xy) of magnetic point groups and for tensors up to fourth rank.
Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S
2017-08-01
Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.
A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-01-01
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313
A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-02-25
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.
Pacini, Clare; Ajioka, James W; Micklem, Gos
2017-04-12
Correlation matrices are important in inferring relationships and networks between regulatory or signalling elements in biological systems. With currently available technology sample sizes for experiments are typically small, meaning that these correlations can be difficult to estimate. At a genome-wide scale estimation of correlation matrices can also be computationally demanding. We develop an empirical Bayes approach to improve covariance estimates for gene expression, where we assume the covariance matrix takes a block diagonal form. Our method shows lower false discovery rates than existing methods on simulated data. Applied to a real data set from Bacillus subtilis we demonstrate it's ability to detecting known regulatory units and interactions between them. We demonstrate that, compared to existing methods, our method is able to find significant covariances and also to control false discovery rates, even when the sample size is small (n=10). The method can be used to find potential regulatory networks, and it may also be used as a pre-processing step for methods that calculate, for example, partial correlations, so enabling the inference of the causal and hierarchical structure of the networks.
Adaptive Covariation between the Coat and Movement Proteins of Prunus Necrotic Ringspot Virus
Codoñer, Francisco M.; Fares, Mario A.; Elena, Santiago F.
2006-01-01
The relative functional and/or structural importance of different amino acid sites in a protein can be assessed by evaluating the selective constraints to which they have been subjected during the course of evolution. Here we explore such constraints at the linear and three-dimensional levels for the movement protein (MP) and coat protein (CP) encoded by RNA 3 of prunus necrotic ringspot ilarvirus (PNRSV). By a maximum-parsimony approach, the nucleotide sequences from 46 isolates of PNRSV varying in symptomatology, host tree, and geographic origin have been analyzed and sites under different selective pressures have been identified in both proteins. We have also performed covariation analyses to explore whether changes in certain amino acid sites condition subsequent variation in other sites of the same protein or the other protein. These covariation analyses shed light on which particular amino acids should be involved in the physical and functional interaction between MP and CP. Finally, we discuss these findings in the light of what is already known about the implication of certain sites and domains in structure and protein-protein and RNA-protein interactions. PMID:16731922
Adaptive covariation between the coat and movement proteins of prunus necrotic ringspot virus.
Codoñer, Francisco M; Fares, Mario A; Elena, Santiago F
2006-06-01
The relative functional and/or structural importance of different amino acid sites in a protein can be assessed by evaluating the selective constraints to which they have been subjected during the course of evolution. Here we explore such constraints at the linear and three-dimensional levels for the movement protein (MP) and coat protein (CP) encoded by RNA 3 of prunus necrotic ringspot ilarvirus (PNRSV). By a maximum-parsimony approach, the nucleotide sequences from 46 isolates of PNRSV varying in symptomatology, host tree, and geographic origin have been analyzed and sites under different selective pressures have been identified in both proteins. We have also performed covariation analyses to explore whether changes in certain amino acid sites condition subsequent variation in other sites of the same protein or the other protein. These covariation analyses shed light on which particular amino acids should be involved in the physical and functional interaction between MP and CP. Finally, we discuss these findings in the light of what is already known about the implication of certain sites and domains in structure and protein-protein and RNA-protein interactions.
Using Covariance Matrix for Change Detection of Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Esmaeilzade, M.; Jahani, F.; Amini, J.
2017-09-01
Nowadays change detection is an important role in civil and military fields. The Synthetic Aperture Radar (SAR) images due to its independent of atmospheric conditions and cloud cover, have attracted much attention in the change detection applications. When the SAR data are used, one of the appropriate ways to display the backscattered signal is using covariance matrix that follows the Wishart distribution. Based on this distribution a statistical test for equality of two complex variance-covariance matrices can be used. In this study, two full polarization data in band L from UAVSAR are used for change detection in agricultural fields and urban areas in the region of United States which the first image belong to 2014 and the second one is from 2017. To investigate the effect of polarization on the rate of change, full polarization data and dual polarization data were used and the results were compared. According to the results, full polarization shows more changes than dual polarization.
Adapting Covariance Propagation to Account for the Presence of Modeled and Unmodeled Maneuvers
NASA Technical Reports Server (NTRS)
Schiff, Conrad
2006-01-01
This paper explores techniques that can be used to adapt the standard linearized propagation of an orbital covariance matrix to the case where there is a maneuver and an associated execution uncertainty. A Monte Carlo technique is used to construct a final orbital covariance matrix for a 'prop-burn-prop' process that takes into account initial state uncertainty and execution uncertainties in the maneuver magnitude. This final orbital covariance matrix is regarded as 'truth' and comparisons are made with three methods using modified linearized covariance propagation. The first method accounts for the maneuver by modeling its nominal effect within the state transition matrix but excludes the execution uncertainty by omitting a process noise matrix from the computation. The second method does not model the maneuver but includes a process noise matrix to account for the uncertainty in its magnitude. The third method, which is essentially a hybrid of the first two, includes the nominal portion of the maneuver via the state transition matrix and uses a process noise matrix to account for the magnitude uncertainty. The first method is unable to produce the final orbit covariance except in the case of zero maneuver uncertainty. The second method yields good accuracy for the final covariance matrix but fails to model the final orbital state accurately. Agreement between the simulated covariance data produced by this method and the Monte Carlo truth data fell within 0.5-2.5 percent over a range of maneuver sizes that span two orders of magnitude (0.1-20 m/s). The third method, which yields a combination of good accuracy in the computation of the final covariance matrix and correct accounting for the presence of the maneuver in the nominal orbit, is the best method for applications involving the computation of times of closest approach and the corresponding probability of collision, PC. However, applications for the two other methods exist and are briefly discussed. Although the process model ("prop-burn-prop") that was studied is very simple - point-mass gravitational effects due to the Earth combined with an impulsive delta-V in the velocity direction for the maneuver - generalizations to more complex scenarios, including high fidelity force models, finite duration maneuvers, and maneuver pointing errors, are straightforward and are discussed in the conclusion.
NASA Astrophysics Data System (ADS)
Friedrich, Oliver; Eifler, Tim
2018-01-01
Computing the inverse covariance matrix (or precision matrix) of large data vectors is crucial in weak lensing (and multiprobe) analyses of the large-scale structure of the Universe. Analytically computed covariances are noise-free and hence straightforward to invert; however, the model approximations might be insufficient for the statistical precision of future cosmological data. Estimating covariances from numerical simulations improves on these approximations, but the sample covariance estimator is inherently noisy, which introduces uncertainties in the error bars on cosmological parameters and also additional scatter in their best-fitting values. For future surveys, reducing both effects to an acceptable level requires an unfeasibly large number of simulations. In this paper we describe a way to expand the precision matrix around a covariance model and show how to estimate the leading order terms of this expansion from simulations. This is especially powerful if the covariance matrix is the sum of two contributions, C = A+B, where A is well understood analytically and can be turned off in simulations (e.g. shape noise for cosmic shear) to yield a direct estimate of B. We test our method in mock experiments resembling tomographic weak lensing data vectors from the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST). For DES we find that 400 N-body simulations are sufficient to achieve negligible statistical uncertainties on parameter constraints. For LSST this is achieved with 2400 simulations. The standard covariance estimator would require >105 simulations to reach a similar precision. We extend our analysis to a DES multiprobe case finding a similar performance.
Fine-tuning structural RNA alignments in the twilight zone.
Bremges, Andreas; Schirmer, Stefanie; Giegerich, Robert
2010-04-30
A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.
Air-flow distortion and turbulence statistics near an animal facility
NASA Astrophysics Data System (ADS)
Prueger, J. H.; Eichinger, W. E.; Hipps, L. E.; Hatfield, J. L.; Cooper, D. I.
The emission and dispersion of particulates and gases from concentrated animal feeding operations (CAFO) at local to regional scales is a current issue in science and society. The transport of particulates, odors and toxic chemical species from the source into the local and eventually regional atmosphere is largely determined by turbulence. Any models that attempt to simulate the dispersion of particles must either specify or assume various statistical properties of the turbulence field. Statistical properties of turbulence are well documented for idealized boundary layers above uniform surfaces. However, an animal production facility is a complex surface with structures that act as bluff bodies that distort the turbulence intensity near the buildings. As a result, the initial release and subsequent dispersion of effluents in the region near a facility will be affected by the complex nature of the surface. Previous Lidar studies of plume dispersion over the facility used in this study indicated that plumes move in complex yet organized patterns that would not be explained by the properties of turbulence generally assumed in models. The objective of this study was to characterize the near-surface turbulence statistics in the flow field around an array of animal confinement buildings. Eddy covariance towers were erected in the upwind, within the building array and downwind regions of the flow field. Substantial changes in turbulence intensity statistics and turbulence-kinetic energy (TKE) were observed as the mean wind flow encountered the building structures. Spectra analysis demonstrated unique distribution of the spectral energy in the vertical profile above the buildings.
Tsamandouras, Nikolaos; Rostami-Hodjegan, Amin; Aarons, Leon
2015-01-01
Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate outside the studied population and experimental conditions. The trade-off for this advantage is a complex system of differential equations with a considerable number of model parameters. When these parameters cannot be informed from in vitro or in silico experiments they are usually optimized with respect to observed clinical data. Parameter estimation in complex models is a challenging task associated with many methodological issues which are discussed here with specific recommendations. Concepts such as structural and practical identifiability are described with regards to PBPK modelling and the value of experimental design and sensitivity analyses is sketched out. Parameter estimation approaches are discussed, while we also highlight the importance of not neglecting the covariance structure between model parameters and the uncertainty and population variability that is associated with them. Finally the possibility of using model order reduction techniques and minimal semi-mechanistic models that retain the physiological-mechanistic nature only in the parts of the model which are relevant to the desired modelling purpose is emphasized. Careful attention to all the above issues allows us to integrate successfully information from in vitro or in silico experiments together with information deriving from observed clinical data and develop mechanistically sound models with clinical relevance. PMID:24033787
Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance.
Minkova, Lora; Eickhoff, Simon B; Abdulkadir, Ahmed; Kaller, Christoph P; Peter, Jessica; Scheller, Elisa; Lahr, Jacob; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan
2016-01-01
Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs. © 2015 Wiley Periodicals, Inc.
Covariance of dynamic strain responses for structural damage detection
NASA Astrophysics Data System (ADS)
Li, X. Y.; Wang, L. X.; Law, S. S.; Nie, Z. H.
2017-10-01
A new approach to address the practical problems with condition evaluation/damage detection of structures is proposed based on the distinct features of a new damage index. The covariance of strain response function (CoS) is a function of modal parameters of the structure. A local stiffness reduction in structure would cause monotonous increase in the CoS. Its sensitivity matrix with respect to local damages of structure is negative and narrow-banded. The damage extent can be estimated with an approximation to the sensitivity matrix to decouple the identification equations. The CoS sensitivity can be calibrated in practice from two previous states of measurements to estimate approximately the damage extent of a structure. A seven-storey plane frame structure is numerically studied to illustrate the features of the CoS index and the proposed method. A steel circular arch in the laboratory is tested. Natural frequencies changed due to damage in the arch and the damage occurrence can be judged. However, the proposed CoS method can identify not only damage happening but also location, even damage extent without need of an analytical model. It is promising for structural condition evaluation of selected components.
Covariance estimation in Terms of Stokes Parameters with Application to Vector Sensor Imaging
2016-12-15
S. Klein, “HF Vector Sensor for Radio Astronomy : Ground Testing Results,” in AIAA SPACE 2016, ser. AIAA SPACE Forum, American Institute of... astronomy ,” in 2016 IEEE Aerospace Conference, Mar. 2016, pp. 1–17. doi: 10.1109/ AERO.2016.7500688. [4] K.-C. Ho, K.-C. Tan, and B. T. G. Tan, “Estimation of...Statistical Imaging in Radio Astronomy via an Expectation-Maximization Algorithm for Structured Covariance Estimation,” in Statistical Methods in Imaging: IN
A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling
Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.
2012-01-01
This paper considers semiparametric estimation of the Cox proportional hazards model for right-censored and length-biased data arising from prevalent sampling. To exploit the special structure of length-biased sampling, we propose a maximum pseudo-profile likelihood estimator, which can handle time-dependent covariates and is consistent under covariate-dependent censoring. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates the methods and theory. PMID:23843659
Porto, Arthur; Sebastião, Harley; Pavan, Silvia Eliza; VandeBerg, John L.; Marroig, Gabriel; Cheverud, James M.
2015-01-01
We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyze the morphological diversification of the Monodelphis brevicaudata species group. We found that within-species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between-species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation. PMID:25818173
Finding Imaging Patterns of Structural Covariance via Non-Negative Matrix Factorization
Sotiras, Aristeidis; Resnick, Susan M.; Davatzikos, Christos
2015-01-01
In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. PMID:25497684
[Job satisfaction of sales people: a covariance structure analysis of the motivational process].
Adachi, T
1998-08-01
The purpose of this study was to investigate the relationship among job satisfaction, job involvement, and work motivation. Two hundred thirty-nine sales people completed a questionnaire of job satisfaction (pay, interpersonal relationship, work environment, and job content), job involvement, and work motivation. The data were analyzed with covariance structure analysis, and the model, which was constructed beforehand, fitted well with relatively high GFI and AGFI. Results of the analysis showed that job satisfaction, in terms of pay and interpersonal relationship, influenced job content satisfaction, which in turn indirectly influenced work motivation, mediated through job involvement. In addition, the data indicated that satisfaction with customer relationship was strongly related to job content satisfaction in the sample of sales people.
Deep Independence Network Analysis of Structural Brain Imaging: Application to Schizophrenia
Castro, Eduardo; Hjelm, R. Devon; Plis, Sergey M.; Dinh, Laurent; Turner, Jessica A.; Calhoun, Vince D.
2016-01-01
Linear independent component analysis (ICA) is a standard signal processing technique that has been extensively used on neuroimaging data to detect brain networks with coherent brain activity (functional MRI) or covarying structural patterns (structural MRI). However, its formulation assumes that the measured brain signals are generated by a linear mixture of the underlying brain networks and this assumption limits its ability to detect the inherent nonlinear nature of brain interactions. In this paper, we introduce nonlinear independent component estimation (NICE) to structural MRI data to detect abnormal patterns of gray matter concentration in schizophrenia patients. For this biomedical application, we further addressed the issue of model regularization of nonlinear ICA by performing dimensionality reduction prior to NICE, together with an appropriate control of the complexity of the model and the usage of a proper approximation of the probability distribution functions of the estimated components. We show that our results are consistent with previous findings in the literature, but we also demonstrate that the incorporation of nonlinear associations in the data enables the detection of spatial patterns that are not identified by linear ICA. Specifically, we show networks including basal ganglia, cerebellum and thalamus that show significant differences in patients versus controls, some of which show distinct nonlinear patterns. PMID:26891483
A Structural Modeling Approach to a Multilevel Random Coefficients Model.
ERIC Educational Resources Information Center
Rovine, Michael J.; Molenaar, Peter C. M.
2000-01-01
Presents a method for estimating the random coefficients model using covariance structure modeling and allowing one to estimate both fixed and random effects. The method is applied to real and simulated data, including marriage data from J. Belsky and M. Rovine (1990). (SLD)
Xu, Weijia; Ozer, Stuart; Gutell, Robin R
2009-01-01
With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure.
Xu, Weijia; Ozer, Stuart; Gutell, Robin R.
2010-01-01
With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure. PMID:20502534
Quantifying Adventitious Error in a Covariance Structure as a Random Effect
Wu, Hao; Browne, Michael W.
2017-01-01
We present an approach to quantifying errors in covariance structures in which adventitious error, identified as the process underlying the discrepancy between the population and the structured model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter of this distribution to be estimated gives a measure of misspecification. Analytical properties of the resultant procedure are investigated and the measure of misspecification is found to be related to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The consistency and asymptotic sampling distributions of the estimators are established under a new asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. Simulations validate the asymptotic sampling distributions and demonstrate the importance of accounting for the variations in the parameter estimates due to adventitious error. Two examples are also given as illustrations. PMID:25813463
Using Sap Flow Monitoring for Improved Process-based Ecohydrologic Understanding 2022
USDA-ARS?s Scientific Manuscript database
Sap flow measurements can be an important tool for unraveling the complex web of ecosystem fluxes, especially when it is combined with other measurements like eddy covariance, isotopes, remote sensing, etc. In this talk, we will demonstrate how sap flow measurements have improved our process-level u...
Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan
2005-01-01
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
Patterns of covariance between forest stand and canopy structure in the Pacific Northwest.
Michael A. Lefsky; Andrew T. Hudak; Warren B. Cohen; S.A. Acker
2005-01-01
In the past decade, LIDAR (light detection and ranging) has emerged as a powerful tool for remotely sensing forest canopy and stand structure, including the estimation of aboveground biomass and carbon storage. Numerous papers have documented the use of LIDAR measurements to predict important aspects of forest stand structure, including aboveground biomass. Other...
Schwab, Joshua; Gruber, Susan; Blaser, Nello; Schomaker, Michael; van der Laan, Mark
2015-01-01
This paper describes a targeted maximum likelihood estimator (TMLE) for the parameters of longitudinal static and dynamic marginal structural models. We consider a longitudinal data structure consisting of baseline covariates, time-dependent intervention nodes, intermediate time-dependent covariates, and a possibly time-dependent outcome. The intervention nodes at each time point can include a binary treatment as well as a right-censoring indicator. Given a class of dynamic or static interventions, a marginal structural model is used to model the mean of the intervention-specific counterfactual outcome as a function of the intervention, time point, and possibly a subset of baseline covariates. Because the true shape of this function is rarely known, the marginal structural model is used as a working model. The causal quantity of interest is defined as the projection of the true function onto this working model. Iterated conditional expectation double robust estimators for marginal structural model parameters were previously proposed by Robins (2000, 2002) and Bang and Robins (2005). Here we build on this work and present a pooled TMLE for the parameters of marginal structural working models. We compare this pooled estimator to a stratified TMLE (Schnitzer et al. 2014) that is based on estimating the intervention-specific mean separately for each intervention of interest. The performance of the pooled TMLE is compared to the performance of the stratified TMLE and the performance of inverse probability weighted (IPW) estimators using simulations. Concepts are illustrated using an example in which the aim is to estimate the causal effect of delayed switch following immunological failure of first line antiretroviral therapy among HIV-infected patients. Data from the International Epidemiological Databases to Evaluate AIDS, Southern Africa are analyzed to investigate this question using both TML and IPW estimators. Our results demonstrate practical advantages of the pooled TMLE over an IPW estimator for working marginal structural models for survival, as well as cases in which the pooled TMLE is superior to its stratified counterpart. PMID:25909047
CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.
2015-10-20
We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectralmore » line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line “outliers.” By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.« less
Three Cs in measurement models: causal indicators, composite indicators, and covariates.
Bollen, Kenneth A; Bauldry, Shawn
2011-09-01
In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.
Conservative Sample Size Determination for Repeated Measures Analysis of Covariance.
Morgan, Timothy M; Case, L Douglas
2013-07-05
In the design of a randomized clinical trial with one pre and multiple post randomized assessments of the outcome variable, one needs to account for the repeated measures in determining the appropriate sample size. Unfortunately, one seldom has a good estimate of the variance of the outcome measure, let alone the correlations among the measurements over time. We show how sample sizes can be calculated by making conservative assumptions regarding the correlations for a variety of covariance structures. The most conservative choice for the correlation depends on the covariance structure and the number of repeated measures. In the absence of good estimates of the correlations, the sample size is often based on a two-sample t-test, making the 'ultra' conservative and unrealistic assumption that there are zero correlations between the baseline and follow-up measures while at the same time assuming there are perfect correlations between the follow-up measures. Compared to the case of taking a single measurement, substantial savings in sample size can be realized by accounting for the repeated measures, even with very conservative assumptions regarding the parameters of the assumed correlation matrix. Assuming compound symmetry, the sample size from the two-sample t-test calculation can be reduced at least 44%, 56%, and 61% for repeated measures analysis of covariance by taking 2, 3, and 4 follow-up measures, respectively. The results offer a rational basis for determining a fairly conservative, yet efficient, sample size for clinical trials with repeated measures and a baseline value.
Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
Kyle, Ryan P; Moodie, Erica E M; Klein, Marina B; Abrahamowicz, Michał
2016-08-01
Unbiased estimation of causal parameters from marginal structural models (MSMs) requires a fundamental assumption of no unmeasured confounding. Unfortunately, the time-varying covariates used to obtain inverse probability weights are often error-prone. Although substantial measurement error in important confounders is known to undermine control of confounders in conventional unweighted regression models, this issue has received comparatively limited attention in the MSM literature. Here we propose a novel application of the simulation-extrapolation (SIMEX) procedure to address measurement error in time-varying covariates, and we compare 2 approaches. The direct approach to SIMEX-based correction targets outcome model parameters, while the indirect approach corrects the weights estimated using the exposure model. We assess the performance of the proposed methods in simulations under different clinically plausible assumptions. The simulations demonstrate that measurement errors in time-dependent covariates may induce substantial bias in MSM estimators of causal effects of time-varying exposures, and that both proposed SIMEX approaches yield practically unbiased estimates in scenarios featuring low-to-moderate degrees of error. We illustrate the proposed approach in a simple analysis of the relationship between sustained virological response and liver fibrosis progression among persons infected with hepatitis C virus, while accounting for measurement error in γ-glutamyltransferase, using data collected in the Canadian Co-infection Cohort Study from 2003 to 2014. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hong, Seunghye; Zhang, Wei; Walton, Emily
2014-01-01
This study examines the associations of neighborhood ethnic density and poverty with social cohesion and self-rated mental health among Asian Americans and Latinos. Path analysis is employed to analyze data from the 2002–2003 National Latino and Asian American Study (NLAAS) and the 2000 U.S. Census (N=2095 Asian Americans living in N=259 neighborhoods; N=2554 Latinos living in N=317 neighborhoods). Findings reveal that neighborhood ethnic density relates to poor mental health in both groups. Social cohesion partially mediates that structural relationship, but is positively related to ethnic density among Latinos and negatively related to ethnic density among Asian Americans. Although higher neighborhood poverty is negatively associated with mental health for both groups, the relationship does not hold in the path models after accounting for social cohesion and covariates. Furthermore, social cohesion fully mediates the association between neighborhood poverty and mental health among Latinos. This study highlights the necessity of reconceptualizing existing theories of social relationships to reflect complex and nuanced mechanisms linking neighborhood structure and mental health for diverse racial and ethnic groups. PMID:24769491
PACM: A Two-Stage Procedure for Analyzing Structural Models.
ERIC Educational Resources Information Center
Lehmann, Donald R.; Gupta, Sunil
1989-01-01
Path Analysis of Covariance Matrix (PACM) is described as a way to separately estimate measurement and structural models using standard least squares procedures. PACM was empirically compared to simultaneous maximum likelihood estimation and use of the LISREL computer program, and its advantages are identified. (SLD)
Quantitative methods to direct exploration based on hydrogeologic information
Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.
2006-01-01
Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.
Modeling rainfall-runoff relationship using multivariate GARCH model
NASA Astrophysics Data System (ADS)
Modarres, R.; Ouarda, T. B. M. J.
2013-08-01
The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.
Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B
2017-11-01
Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.
Non-singular black holes and the limiting curvature mechanism: a Hamiltonian perspective
NASA Astrophysics Data System (ADS)
Ben Achour, J.; Lamy, F.; Liu, H.; Noui, K.
2018-05-01
We revisit the non-singular black hole solution in (extended) mimetic gravity with a limiting curvature from a Hamiltonian point of view. We introduce a parameterization of the phase space which allows us to describe fully the Hamiltonian structure of the theory. We write down the equations of motion that we solve in the regime deep inside the black hole, and we recover that the black hole has no singularity, due to the limiting curvature mechanism. Then, we study the relation between such black holes and effective polymer black holes which have been introduced in the context of loop quantum gravity. As expected, contrary to what happens in the cosmological sector, mimetic gravity with a limiting curvature fails to reproduce the usual effective dynamics of spherically symmetric loop quantum gravity which are generically not covariant. Nonetheless, we exhibit a theory in the class of extended mimetic gravity whose dynamics reproduces the general shape of the effective corrections of spherically symmetric polymer models, but in an undeformed covariant manner. These covariant effective corrections are found to be always metric dependent, i.e. within the bar mu-scheme, underlying the importance of this ingredient for inhomogeneous polymer models. In that respect, extended mimetic gravity can be viewed as an effective covariant theory which naturally implements a covariant notion of point wise holonomy-like corrections. The difference between the mimetic and polymer Hamiltonian formulations provides us with a guide to understand the deformation of covariance in inhomogeneous polymer models.
A comparative study of covariance selection models for the inference of gene regulatory networks.
Stifanelli, Patrizia F; Creanza, Teresa M; Anglani, Roberto; Liuzzi, Vania C; Mukherjee, Sayan; Schena, Francesco P; Ancona, Nicola
2013-10-01
The inference, or 'reverse-engineering', of gene regulatory networks from expression data and the description of the complex dependency structures among genes are open issues in modern molecular biology. In this paper we compared three regularized methods of covariance selection for the inference of gene regulatory networks, developed to circumvent the problems raising when the number of observations n is smaller than the number of genes p. The examined approaches provided three alternative estimates of the inverse covariance matrix: (a) the 'PINV' method is based on the Moore-Penrose pseudoinverse, (b) the 'RCM' method performs correlation between regression residuals and (c) 'ℓ(2C)' method maximizes a properly regularized log-likelihood function. Our extensive simulation studies showed that ℓ(2C) outperformed the other two methods having the most predictive partial correlation estimates and the highest values of sensitivity to infer conditional dependencies between genes even when a few number of observations was available. The application of this method for inferring gene networks of the isoprenoid biosynthesis pathways in Arabidopsis thaliana allowed to enlighten a negative partial correlation coefficient between the two hubs in the two isoprenoid pathways and, more importantly, provided an evidence of cross-talk between genes in the plastidial and the cytosolic pathways. When applied to gene expression data relative to a signature of HRAS oncogene in human cell cultures, the method revealed 9 genes (p-value<0.0005) directly interacting with HRAS, sharing the same Ras-responsive binding site for the transcription factor RREB1. This result suggests that the transcriptional activation of these genes is mediated by a common transcription factor downstream of Ras signaling. Software implementing the methods in the form of Matlab scripts are available at: http://users.ba.cnr.it/issia/iesina18/CovSelModelsCodes.zip. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.
2013-01-01
When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek obtained from the iterative two-stage method also improved predictive performance of the individual models and model averaging in both synthetic and experimental studies.
Multivariate Analysis of Longitudinal Rates of Change
Bryan, Matthew; Heagerty, Patrick J.
2016-01-01
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed by Roy and Lin [1]; Proust-Lima, Letenneur and Jacqmin-Gadda [2]; and Gray and Brookmeyer [3] among others. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, Gray and Brookmeyer [3] introduce an “accelerated time” method which assumes that covariates rescale time in longitudinal models for disease progression. In this manuscript we detail an alternative multivariate model formulation that directly structures longitudinal rates of change, and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. PMID:27417129
Thomson, James R; Kimmerer, Wim J; Brown, Larry R; Newman, Ken B; Mac Nally, Ralph; Bennett, William A; Feyrer, Frederick; Fleishman, Erica
2010-07-01
We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species. We then refitted change point models conditional on the selected covariates to explore whether those covariates could explain statistical trends or change points in species abundances. We also fitted a multispecies change point model that identified change points common to all species. All models included hierarchical structures to model data uncertainties, including observation errors and missing covariate values. There were step declines in abundances of all four species in the early 2000s, with a likely common decline in 2002. Abiotic variables, including water clarity, position of the 2 per thousand isohaline (X2), and the volume of freshwater exported from the estuary, explained some variation in species' abundances over the time series, but no selected covariates could explain statistically the post-2000 change points for any species.
Li, Y.; Graubard, B. I.; Huang, P.; Gastwirth, J. L.
2015-01-01
Determining the extent of a disparity, if any, between groups of people, for example, race or gender, is of interest in many fields, including public health for medical treatment and prevention of disease. An observed difference in the mean outcome between an advantaged group (AG) and disadvantaged group (DG) can be due to differences in the distribution of relevant covariates. The Peters–Belson (PB) method fits a regression model with covariates to the AG to predict, for each DG member, their outcome measure as if they had been from the AG. The difference between the mean predicted and the mean observed outcomes of DG members is the (unexplained) disparity of interest. We focus on applying the PB method to estimate the disparity based on binary/multinomial/proportional odds logistic regression models using data collected from complex surveys with more than one DG. Estimators of the unexplained disparity, an analytic variance–covariance estimator that is based on the Taylor linearization variance–covariance estimation method, as well as a Wald test for testing a joint null hypothesis of zero for unexplained disparities between two or more minority groups and a majority group, are provided. Simulation studies with data selected from simple random sampling and cluster sampling, as well as the analyses of disparity in body mass index in the National Health and Nutrition Examination Survey 1999–2004, are conducted. Empirical results indicate that the Taylor linearization variance–covariance estimation is accurate and that the proposed Wald test maintains the nominal level. PMID:25382235
An integrative model of evolutionary covariance: a symposium on body shape in fishes.
Walker, Jeffrey A
2010-12-01
A major direction of current and future biological research is to understand how multiple, interacting functional systems coordinate in producing a body that works. This understanding is complicated by the fact that organisms need to work well in multiple environments, with both predictable and unpredictable environmental perturbations. Furthermore, organismal design reflects a history of past environments and not a plan for future environments. How complex, interacting functional systems evolve, then, is a truly grand challenge. In accepting the challenge, an integrative model of evolutionary covariance is developed. The model combines quantitative genetics, functional morphology/physiology, and functional ecology. The model is used to convene scientists ranging from geneticists, to physiologists, to ecologists, to engineers to facilitate the emergence of body shape in fishes as a model system for understanding how complex, interacting functional systems develop and evolve. Body shape of fish is a complex morphology that (1) results from many developmental paths and (2) functions in many different behaviors. Understanding the coordination and evolution of the many paths from genes to body shape, body shape to function, and function to a working fish body in a dynamic environment is now possible given new technologies from genetics to engineering and new theoretical models that integrate the different levels of biological organization (from genes to ecology).
Chang, Ya-Ting; Lu, Cheng-Hsien; Wu, Ming-Kung; Hsu, Shih-Wei; Huang, Chi-Wei; Chang, Wen-Neng; Lien, Chia-Yi; Lee, Jun-Jun; Chang, Chiung-Chih
2017-01-01
Purpose: In Parkinson's disease with mild cognitive impairment (PD-MCI), we investigated the clinical significance of salience network (SN) in depression and cognitive performance. Methods: Seventy seven PD-MCI patients that fulfilled multi-domain and non-amnestic subtype were included. Gray matter structural covariance networks were constructed by 3D T1-magnetic resonance imaging and seed based analysis. The patients were divided into two groups by psychiatric interviews and screening of Geriatric Depression Scale (GDS): PD-MCI with depression (PD-MCI-D) or without depression (PD-MCI-ND). The seed or peak cluster volume, or the significant differences in the regression slopes in each seed-peak cluster correlation, were used to evaluate the significance with the neurobehavioral scores. Results: This study is the first to demonstrate that the PD-MCI-ND group presented a larger number of voxels of structural covariance in SN than the PD-MCI-D group. The right fronto-insular seed volumes and the peak cluster of left lingual gyrus showed significant inverse correlation with the Geriatric Depression Scale (GDS; r = -0.231, P = 0.046). Conclusions: This study is the first to validate the clinical significance of the SN in PD-MCI-D. The right insular seed value and the SN correlated with the severity of depression in PD-MCI.
Chang, Ya-Ting; Lu, Cheng-Hsien; Wu, Ming-Kung; Hsu, Shih-Wei; Huang, Chi-Wei; Chang, Wen-Neng; Lien, Chia-Yi; Lee, Jun-Jun; Chang, Chiung-Chih
2018-01-01
Purpose: In Parkinson’s disease with mild cognitive impairment (PD-MCI), we investigated the clinical significance of salience network (SN) in depression and cognitive performance. Methods: Seventy seven PD-MCI patients that fulfilled multi-domain and non-amnestic subtype were included. Gray matter structural covariance networks were constructed by 3D T1-magnetic resonance imaging and seed based analysis. The patients were divided into two groups by psychiatric interviews and screening of Geriatric Depression Scale (GDS): PD-MCI with depression (PD-MCI-D) or without depression (PD-MCI-ND). The seed or peak cluster volume, or the significant differences in the regression slopes in each seed-peak cluster correlation, were used to evaluate the significance with the neurobehavioral scores. Results: This study is the first to demonstrate that the PD-MCI-ND group presented a larger number of voxels of structural covariance in SN than the PD-MCI-D group. The right fronto-insular seed volumes and the peak cluster of left lingual gyrus showed significant inverse correlation with the Geriatric Depression Scale (GDS; r = -0.231, P = 0.046). Conclusions: This study is the first to validate the clinical significance of the SN in PD-MCI-D. The right insular seed value and the SN correlated with the severity of depression in PD-MCI. PMID:29375361
Discovering the intelligence in molecular biology.
Uberbacher, E
1995-12-01
The Third International Conference on Intelligent Systems in Molecular Biology was truly an outstanding event. Computational methods in molecular biology have reached a new level of maturity and utility, resulting in many high-impact applications. The success of this meeting bodes well for the rapid and continuing development of computational methods, intelligent systems and information-based approaches for the biosciences. The basic technology, originally most often applied to 'feasibility' problems, is now dealing effectively with the most difficult real-world problems. Significant progress has been made in understanding protein-structure information, structural classification, and how functional information and the relevant features of active-site geometry can be gleaned from structures by automated computational approaches. The value and limits of homology-based methods, and the ability to classify proteins by structure in the absence of homology, have reached a new level of sophistication. New methods for covariation analysis in the folding of large structures such as RNAs have shown remarkably good results, indicating the long-term potential to understand very complicated molecules and multimolecular complexes using computational means. Novel methods, such as HMMs, context-free grammars and the uses of mutual information theory, have taken center stage as highly valuable tools in our quest to represent and characterize biological information. A focus on creative uses of intelligent systems technologies and the trend toward biological application will undoubtedly continue and grow at the 1996 ISMB meeting in St Louis.
The Infinitesimal Moduli Space of Heterotic G 2 Systems
NASA Astrophysics Data System (ADS)
de la Ossa, Xenia; Larfors, Magdalena; Svanes, Eirik E.
2018-06-01
Heterotic string compactifications on integrable G 2 structure manifolds Y with instanton bundles {(V,A), (TY,\\tilde{θ})} yield supersymmetric three-dimensional vacua that are of interest in physics. In this paper, we define a covariant exterior derivative D and show that it is equivalent to a heterotic G 2 system encoding the geometry of the heterotic string compactifications. This operator D acts on a bundle Q}=T^*Y \\oplus End(V) \\oplus End(TY)} and satisfies a nilpotency condition \\check{{D^2=0} , for an appropriate projection of D. Furthermore, we determine the infinitesimal moduli space of these systems and show that it corresponds to the finite-dimensional cohomology group H^1_{D}(Q). We comment on the similarities and differences of our result with Atiyah's well-known analysis of deformations of holomorphic vector bundles over complex manifolds. Our analysis leads to results that are of relevance to all orders in the {α'} expansion.
Logit-normal mixed model for Indian Monsoon rainfall extremes
NASA Astrophysics Data System (ADS)
Dietz, L. R.; Chatterjee, S.
2014-03-01
Describing the nature and variability of Indian monsoon rainfall extremes is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Several GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data procured from the National Climatic Data Center. The logit-normal model was applied with fixed covariates of latitude, longitude, elevation, daily minimum and maximum temperatures with a random intercept by weather station. In general, the estimation methods concurred in their suggestion of a relationship between the El Niño Southern Oscillation (ENSO) and extreme rainfall variability estimates. This work provides a valuable starting point for extending GLMM to incorporate the intricate dependencies in extreme climate events.
Meixenberger, Karolin; Yousef, Kaveh Pouran; Smith, Maureen Rebecca; Somogyi, Sybille; Fiedler, Stefan; Bartmeyer, Barbara; Hamouda, Osamah; Bannert, Norbert; von Kleist, Max; Kücherer, Claudia
2017-11-14
Detailed knowledge of the evolutionary potential of polymorphic sites in a viral protein is important for understanding the development of drug resistance in the presence of an inhibitor. We therefore set out to analyse the molecular evolution of the HIV-1 subtype B integrase at the inter-patient level in Germany during a 20-year period prior to the first introduction of integrase strand inhibitors (INSTIs). We determined 337 HIV-1 integrase subtype B sequences (amino acids 1-278) from stored plasma samples of antiretroviral treatment-naïve individuals newly diagnosed with HIV-1 between 1986 and 2006. Shannon entropy was calculated to determine the variability at each amino acid position. Time trends in the frequency of amino acid variants were identified by linear regression. Direct coupling analysis was applied to detect covarying sites. Twenty-two time trends in the frequency of amino acid variants demonstrated either single amino acid exchanges or variation in the degree of polymorphy. Covariation was observed for 17 amino acid variants with a temporal trend. Some minor INSTI resistance mutations (T124A, V151I, K156 N, T206S, S230 N) and some INSTI-selected mutations (M50I, L101I, T122I, T124 N, T125A, M154I, G193E, V201I) were identified at overall frequencies >5%. Among these, the frequencies of L101I, T122I, and V201I increased over time, whereas the frequency of M154I decreased. Moreover, L101I, T122I, T124A, T125A, M154I, and V201I covaried with non-resistance-associated variants. Time-trending, covarying polymorphisms indicate that long-term evolutionary changes of the HIV-1 integrase involve defined clusters of possibly structurally or functionally associated sites independent of selective pressure through INSTIs at the inter-patient level. Linkage between polymorphic resistance- and non-resistance-associated sites can impact the selection of INSTI resistance mutations in complex ways. Identification of these sites can help in improving genotypic resistance assays, resistance prediction algorithms, and the development of new integrase inhibitors.
A Bayesian Approach for Analyzing Longitudinal Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum
2011-01-01
This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…
Modeling Human-Computer Decision Making with Covariance Structure Analysis.
ERIC Educational Resources Information Center
Coovert, Michael D.; And Others
Arguing that sufficient theory exists about the interplay between human information processing, computer systems, and the demands of various tasks to construct useful theories of human-computer interaction, this study presents a structural model of human-computer interaction and reports the results of various statistical analyses of this model.…
Effects of Employing Ridge Regression in Structural Equation Models.
ERIC Educational Resources Information Center
McQuitty, Shaun
1997-01-01
LISREL 8 invokes a ridge option when maximum likelihood or generalized least squares are used to estimate a structural equation model with a nonpositive definite covariance or correlation matrix. Implications of the ridge option for model fit, parameter estimates, and standard errors are explored through two examples. (SLD)
Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies
ERIC Educational Resources Information Center
Smith, Carrie E.; Cribbie, Robert A.
2013-01-01
When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…
A Methodological Review of Structural Equation Modelling in Higher Education Research
ERIC Educational Resources Information Center
Green, Teegan
2016-01-01
Despite increases in the number of articles published in higher education journals using structural equation modelling (SEM), research addressing their statistical sufficiency, methodological appropriateness and quantitative rigour is sparse. In response, this article provides a census of all covariance-based SEM articles published up until 2013…
Community factors to promote parents' quality of child-nurturing life.
Aoyama, Megumi; Wei, Chang Nian; Chang-nian, Wei; Harada, Koichi; Ueda, Kimiyo; Takano, Miyuki; Ueda, Atsushi
2013-01-01
The purpose of this study was to clarify the role of community factors in parents' quality of child-nurturing life (QCNL). We developed a questionnaire to evaluate the degree of QCNL and determine the structural factors related to QCNL as community factors related to parents' QCNL derived from focus group interviews and the Delphi technique. The questionnaire also included the battery of the self-rating depression scale and Tsumori-Inage Infant's Developmental Test. Using the questionnaire, we then conducted a quantitative survey of parents whose children attended nursery schools in Kumamoto Prefecture. Factor analysis, calculation of the mean score and/or ratio to each item, Pearson's correlation coefficient, t test, multiple regression analysis, and covariance structure analysis were performed. The questionnaire we developed consisted of seven items with 75 elements, involving ten elements as community factors. Subjects included 699 parents (mean age 33.6 ± 5.4 years) and 965 children (age range 0-6 years). Factor analysis revealed that community factors consisted of five factors, such as "lifestyle rooted in the ground," "balance of housekeeping and work," "community network," "amenity," and "regeneration of life". These factors may be dominant in a rural area. Finally, we developed a structural model with "community factors," QCNL, QOL, and "child growth" by covariance structural analysis. The analysis revealed that community factors had a positive relation to parents' QCNL (r = 0.81, p < 0.001) and that parental SDS score had a negative relation to parents' QCNL (r = -0.59, p < 0.001). The analysis did show that community factors were positively related to the sound growth of children. The covariance structure analysis revealed that community factors were associated with parents' QCNL, SDS, and "child growth."
Fully Anisotropic Rotational Diffusion Tensor from Molecular Dynamics Simulations.
Linke, Max; Köfinger, Jürgen; Hummer, Gerhard
2018-05-31
We present a method to calculate the fully anisotropic rotational diffusion tensor from molecular dynamics simulations. Our approach is based on fitting the time-dependent covariance matrix of the quaternions that describe the rigid-body rotational dynamics. Explicit analytical expressions have been derived for the covariances by Favro, which are valid irrespective of the degree of anisotropy. We use these expressions to determine an optimal rotational diffusion tensor from trajectory data. The molecular structures are aligned against a reference by optimal rigid-body superposition. The quaternion covariances can then be obtained directly from the rotation matrices used in the alignment. The rotational diffusion tensor is determined by a fit to the time-dependent quaternion covariances, or directly by Laplace transformation and matrix diagonalization. To quantify uncertainties in the fit, we derive analytical expressions and compare them with the results of Brownian dynamics simulations of anisotropic rotational diffusion. We apply the method to microsecond long trajectories of the Dickerson-Drew B-DNA dodecamer and of horse heart myoglobin. The anisotropic rotational diffusion tensors calculated from simulations agree well with predictions from hydrodynamics.
Fine-tuning structural RNA alignments in the twilight zone
2010-01-01
Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index. PMID:20433706
Purschke, Oliver; Michalski, Stefan G; Bruelheide, Helge; Durka, Walter
2017-12-01
Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species- and individual-level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between-plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late-successional stages, there was high presence-/absence-based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.
Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M
2018-05-07
A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.
Pereira, R J; Ayres, D R; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G
2013-09-27
We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields.
NASA Astrophysics Data System (ADS)
Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick
2016-11-01
Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.
Truong, Lisa; Ouedraogo, Gladys; Pham, LyLy; Clouzeau, Jacques; Loisel-Joubert, Sophie; Blanchet, Delphine; Noçairi, Hicham; Setzer, Woodrow; Judson, Richard; Grulke, Chris; Mansouri, Kamel; Martin, Matthew
2018-02-01
In an effort to address a major challenge in chemical safety assessment, alternative approaches for characterizing systemic effect levels, a predictive model was developed. Systemic effect levels were curated from ToxRefDB, HESS-DB and COSMOS-DB from numerous study types totaling 4379 in vivo studies for 1247 chemicals. Observed systemic effects in mammalian models are a complex function of chemical dynamics, kinetics, and inter- and intra-individual variability. To address this complex problem, systemic effect levels were modeled at the study-level by leveraging study covariates (e.g., study type, strain, administration route) in addition to multiple descriptor sets, including chemical (ToxPrint, PaDEL, and Physchem), biological (ToxCast), and kinetic descriptors. Using random forest modeling with cross-validation and external validation procedures, study-level covariates alone accounted for approximately 15% of the variance reducing the root mean squared error (RMSE) from 0.96 log 10 to 0.85 log 10 mg/kg/day, providing a baseline performance metric (lower expectation of model performance). A consensus model developed using a combination of study-level covariates, chemical, biological, and kinetic descriptors explained a total of 43% of the variance with an RMSE of 0.69 log 10 mg/kg/day. A benchmark model (upper expectation of model performance) was also developed with an RMSE of 0.5 log 10 mg/kg/day by incorporating study-level covariates and the mean effect level per chemical. To achieve a representative chemical-level prediction, the minimum study-level predicted and observed effect level per chemical were compared reducing the RMSE from 1.0 to 0.73 log 10 mg/kg/day, equivalent to 87% of predictions falling within an order-of-magnitude of the observed value. Although biological descriptors did not improve model performance, the final model was enriched for biological descriptors that indicated xenobiotic metabolism gene expression, oxidative stress, and cytotoxicity, demonstrating the importance of accounting for kinetics and non-specific bioactivity in predicting systemic effect levels. Herein, we generated an externally predictive model of systemic effect levels for use as a safety assessment tool and have generated forward predictions for over 30,000 chemicals.
2014-01-01
Background The reduction of crime is an important outcome of opioid maintenance treatment (OMT). Criminal intensity and treatment regimes vary among OMT patients, but this is rarely adjusted for in statistical analyses, which tend to focus on cohort incidence rates and rate ratios. The purpose of this work was to estimate the relationship between treatment and criminal convictions among OMT patients, adjusting for individual covariate information and timing of events, fitting time-to-event regression models of increasing complexity. Methods National criminal records were cross linked with treatment data on 3221 patients starting OMT in Norway 1997–2003. In addition to calculating cohort incidence rates, criminal convictions was modelled as a recurrent event dependent variable, and treatment a time-dependent covariate, in Cox proportional hazards, Aalen’s additive hazards, and semi-parametric additive hazards regression models. Both fixed and dynamic covariates were included. Results During OMT, the number of days with criminal convictions for the cohort as a whole was 61% lower than when not in treatment. OMT was associated with reduced number of days with criminal convictions in all time-to-event regression models, but the hazard ratio (95% CI) was strongly attenuated when adjusting for covariates; from 0.40 (0.35, 0.45) in a univariate model to 0.79 (0.72, 0.87) in a fully adjusted model. The hazard was lower for females and decreasing with older age, while increasing with high numbers of criminal convictions prior to application to OMT (all p < 0.001). The strongest predictors were level of criminal activity prior to entering into OMT, and having a recent criminal conviction (both p < 0.001). The effect of several predictors was significantly time-varying with their effects diminishing over time. Conclusions Analyzing complex observational data regarding to fixed factors only overlooks important temporal information, and naïve cohort level incidence rates might result in biased estimates of the effect of interventions. Applying time-to-event regression models, properly adjusting for individual covariate information and timing of various events, allows for more precise and reliable effect estimates, as well as painting a more nuanced picture that can aid health care professionals and policy makers. PMID:24886472
Model building strategy for logistic regression: purposeful selection.
Zhang, Zhongheng
2016-03-01
Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.
1/2-BPS D-branes from covariant open superstring in AdS4 × CP3 background
NASA Astrophysics Data System (ADS)
Park, Jaemo; Shin, Hyeonjoon
2018-05-01
We consider the open superstring action in the AdS4 × CP 3 background and investigate the suitable boundary conditions for the open superstring describing the 1/2-BPS D-branes by imposing the κ-symmetry of the action. This results in the classification of 1/2-BPS D-branes from covariant open superstring. It is shown that the 1/2-BPS D-brane configurations are restricted considerably by the Kähler structure on CP 3. We just consider D-branes without worldvolume fluxes.
A mixed model framework for teratology studies.
Braeken, Johan; Tuerlinckx, Francis
2009-10-01
A mixed model framework is presented to model the characteristic multivariate binary anomaly data as provided in some teratology studies. The key features of the model are the incorporation of covariate effects, a flexible random effects distribution by means of a finite mixture, and the application of copula functions to better account for the relation structure of the anomalies. The framework is motivated by data of the Boston Anticonvulsant Teratogenesis study and offers an integrated approach to investigate substantive questions, concerning general and anomaly-specific exposure effects of covariates, interrelations between anomalies, and objective diagnostic measurement.
Applications of geostatistics and Markov models for logo recognition
NASA Astrophysics Data System (ADS)
Pham, Tuan
2003-01-01
Spatial covariances based on geostatistics are extracted as representative features of logo or trademark images. These spatial covariances are different from other statistical features for image analysis in that the structural information of an image is independent of the pixel locations and represented in terms of spatial series. We then design a classifier in the sense of hidden Markov models to make use of these geostatistical sequential data to recognize the logos. High recognition rates are obtained from testing the method against a public-domain logo database.