Sample records for complex design problems

  1. The Problem of Size in Robust Design

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri

    1997-01-01

    To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.

  2. SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES

    EPA Science Inventory

    Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems, due to the complex nature of the problems, the need for complex assessments, and complicated ...

  3. Managing the Complexity of Design Problems through Studio-Based Learning

    ERIC Educational Resources Information Center

    Cennamo, Katherine; Brandt, Carol; Scott, Brigitte; Douglas, Sarah; McGrath, Margarita; Reimer, Yolanda; Vernon, Mitzi

    2011-01-01

    The ill-structured nature of design problems makes them particularly challenging for problem-based learning. Studio-based learning (SBL), however, has much in common with problem-based learning and indeed has a long history of use in teaching students to solve design problems. The purpose of this ethnographic study of an industrial design class,…

  4. A SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES

    EPA Science Inventory

    Evaluation and analysis of multiple objectives are very important in designing environmentally benign processes. They require a systematic procedure for solving multi-objective decision-making problems due to the complex nature of the problems and the need for complex assessment....

  5. Instructional Designers' Media Selection Practices for Distributed Problem-Based Learning Environments

    ERIC Educational Resources Information Center

    Fells, Stephanie

    2012-01-01

    The design of online or distributed problem-based learning (dPBL) is a nascent, complex design problem. Instructional designers are challenged to effectively unite the constructivist principles of problem-based learning (PBL) with appropriate media in order to create quality dPBL environments. While computer-mediated communication (CMC) tools and…

  6. Systems science and obesity policy: a novel framework for analyzing and rethinking population-level planning.

    PubMed

    Johnston, Lee M; Matteson, Carrie L; Finegood, Diane T

    2014-07-01

    We demonstrate the use of a systems-based framework to assess solutions to complex health problems such as obesity. We coded 12 documents published between 2004 and 2013 aimed at influencing obesity planning for complex systems design (9 reports from US and Canadian governmental or health authorities, 1 Cochrane review, and 2 Institute of Medicine reports). We sorted data using the intervention-level framework (ILF), a novel solutions-oriented approach to complex problems. An in-depth comparison of 3 documents provides further insight into complexity and systems design in obesity policy. The majority of strategies focused mainly on changing the determinants of energy imbalance (food intake and physical activity). ILF analysis brings to the surface actions aimed at higher levels of system function and points to a need for more innovative policy design. Although many policymakers acknowledge obesity as a complex problem, many strategies stem from the paradigm of individual choice and are limited in scope. The ILF provides a template to encourage natural systems thinking and more strategic policy design grounded in complexity science.

  7. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  8. A knowledge-based tool for multilevel decomposition of a complex design problem

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    Although much work has been done in applying artificial intelligence (AI) tools and techniques to problems in different engineering disciplines, only recently has the application of these tools begun to spread to the decomposition of complex design problems. A new tool based on AI techniques has been developed to implement a decomposition scheme suitable for multilevel optimization and display of data in an N x N matrix format.

  9. Assessing Design Activity in Complex CMOS Circuit Design.

    ERIC Educational Resources Information Center

    Biswas, Gautam; And Others

    This report characterizes human problem solving in digital circuit design. Protocols of 11 different designers with varying degrees of training were analyzed by identifying the designers' problem solving strategies and discussing activity patterns that differentiate the designers. These methods are proposed as a tentative basis for assessing…

  10. An intelligent advisor for the design manager

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Padula, Sharon L.

    1989-01-01

    A design problem is viewed as a complex system divisible into modules. Before the design of a complex system can begin, much time and money are spent in determining the couplings among modules and the presence of iterative loops. This is important because the design manager must know how to group the modules into substems and how to assign subsystems to design teams so that changes in one subsystem will have predictable effects on other subsystems. Determining these subsystems is not an easy, straightforward process and often important couplings are overlooked. Moreover, the planning task must be repeated as new information becomes available or as the design specifications change. The purchase of this research effort is to develop a knowledge-based tool to act as an intelligent advisor for the design manager. This tool identifies the subsystems of a complex design problem, orders them into a well-structured format, and marks the couplings among the subsystems to facilitate the use of multilevel tools. The tool was tested in the decomposition of the COFS (Control of Flexible Structures) mast design which has about 50 modules. This test indicated that this type of approach could lead to a substantial savings by organizing and displaying a complex problem as a sequence of subsystems easily divisible among design teams.

  11. Design and Implementation of the Game-Design and Learning Program

    ERIC Educational Resources Information Center

    Akcaoglu, Mete

    2016-01-01

    Design involves solving complex, ill-structured problems. Design tasks are consequently, appropriate contexts for children to exercise higher-order thinking and problem-solving skills. Although creating engaging and authentic design contexts for young children is difficult within the confines of traditional schooling, recently, game-design has…

  12. Dynamic Modeling as a Cognitive Regulation Scaffold for Developing Complex Problem-Solving Skills in an Educational Massively Multiplayer Online Game Environment

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Ge, Xun; Ifenthaler, Dirk; Law, Victor

    2011-01-01

    Following a design-based research framework, this article reports two empirical studies with an educational MMOG, called "McLarin's Adventures," on facilitating 9th-grade students' complex problem-solving skill acquisition in interdisciplinary STEM education. The article discusses the nature of complex and ill-structured problem solving…

  13. Designing for Decision Making

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2012-01-01

    Decision making is the most common kind of problem solving. It is also an important component skill in other more ill-structured and complex kinds of problem solving, including policy problems and design problems. There are different kinds of decisions, including choices, acceptances, evaluations, and constructions. After describing the centrality…

  14. Designing Cognitive Complexity in Mathematical Problem-Solving Items

    ERIC Educational Resources Information Center

    Daniel, Robert C.; Embretson, Susan E.

    2010-01-01

    Cognitive complexity level is important for measuring both aptitude and achievement in large-scale testing. Tests for standards-based assessment of mathematics, for example, often include cognitive complexity level in the test blueprint. However, little research exists on how mathematics items can be designed to vary in cognitive complexity level.…

  15. Managing Increasing Complexity in Undergraduate Digital Media Design Education: The Impact and Benefits of Multidisciplinary Collaboration

    ERIC Educational Resources Information Center

    Fleischmann, Katja; Daniel, Ryan

    2013-01-01

    Increasing complexity is one of the most pertinent issues when discussing the role and future of design, designers and their education. The evolving nature of digital media technology has resulted in a profession in a state of flux with increasingly complex communication and design problems. The ability to collaborate and interact with other…

  16. How Instructional Designers Solve Workplace Problems

    ERIC Educational Resources Information Center

    Fortney, Kathleen S.; Yamagata-Lynch, Lisa C.

    2013-01-01

    This naturalistic inquiry investigated how instructional designers engage in complex and ambiguous problem solving across organizational boundaries in two corporations. Participants represented a range of instructional design experience, from novices to experts. Research methods included a participant background survey, observations of…

  17. Dynamic programming methods for concurrent design and dynamic allocation of vehicles embedded in a system-of-systems

    NASA Astrophysics Data System (ADS)

    Nusawardhana

    2007-12-01

    Recent developments indicate a changing perspective on how systems or vehicles should be designed. Such transition comes from the way decision makers in defense related agencies address complex problems. Complex problems are now often posed in terms of the capabilities desired, rather than in terms of requirements for a single systems. As a result, the way to provide a set of capabilities is through a collection of several individual, independent systems. This collection of individual independent systems is often referred to as a "System of Systems'' (SoS). Because of the independent nature of the constituent systems in an SoS, approaches to design an SoS, and more specifically, approaches to design a new system as a member of an SoS, will likely be different than the traditional design approaches for complex, monolithic (meaning the constituent parts have no ability for independent operation) systems. Because a system of system evolves over time, this simultaneous system design and resource allocation problem should be investigated in a dynamic context. Such dynamic optimization problems are similar to conventional control problems. However, this research considers problems which not only seek optimizing policies but also seek the proper system or vehicle to operate under these policies. This thesis presents a framework and a set of analytical tools to solve a class of SoS problems that involves the simultaneous design of a new system and allocation of the new system along with existing systems. Such a class of problems belongs to the problems of concurrent design and control of a new systems with solutions consisting of both optimal system design and optimal control strategy. Rigorous mathematical arguments show that the proposed framework solves the concurrent design and control problems. Many results exist for dynamic optimization problems of linear systems. In contrary, results on optimal nonlinear dynamic optimization problems are rare. The proposed framework is equipped with the set of analytical tools to solve several cases of nonlinear optimal control problems: continuous- and discrete-time nonlinear problems with applications on both optimal regulation and tracking. These tools are useful when mathematical descriptions of dynamic systems are available. In the absence of such a mathematical model, it is often necessary to derive a solution based on computer simulation. For this case, a set of parameterized decision may constitute a solution. This thesis presents a method to adjust these parameters based on the principle of stochastic approximation simultaneous perturbation using continuous measurements. The set of tools developed here mostly employs the methods of exact dynamic programming. However, due to the complexity of SoS problems, this research also develops suboptimal solution approaches, collectively recognized as approximate dynamic programming solutions, for large scale problems. The thesis presents, explores, and solves problems from an airline industry, in which a new aircraft is to be designed and allocated along with an existing fleet of aircraft. Because the life cycle of an aircraft is on the order of 10 to 20 years, this problem is to be addressed dynamically so that the new aircraft design is the best design for the fleet over a given time horizon.

  18. DeMAID: A Design Manager's Aide for Intelligent Decomposition user's guide

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    A design problem is viewed as a complex system divisible into modules. Before the design of a complex system can begin, the couplings among modules and the presence of iterative loops is determined. This is important because the design manager must know how to group the modules into subsystems and how to assign subsystems to design teams so that changes in one subsystem will have predictable effects on other subsystems. Determining these subsystems is not an easy, straightforward process and often important couplings are overlooked. Moreover, the planning task must be repeated as new information become available or as the design specifications change. The purpose of this research is to develop a knowledge-based tool called the Design Manager's Aide for Intelligent Decomposition (DeMAID) to act as an intelligent advisor for the design manager. DeMaid identifies the subsystems of a complex design problem, orders them into a well-structured format, and marks the couplings among the subsystems to facilitate the use of multilevel tools. DeMAID also provides the design manager with the capability of examining the trade-offs between sequential and parallel processing. This type of approach could lead to a substantial savings or organizing and displaying a complex problem as a sequence of subsystems easily divisible among design teams. This report serves as a User's Guide for the program.

  19. Learning Problem-Solving through Making Games at the Game Design and Learning Summer Program

    ERIC Educational Resources Information Center

    Akcaoglu, Mete

    2014-01-01

    Today's complex and fast-evolving world necessitates young students to possess design and problem-solving skills more than ever. One alternative method of teaching children problem-solving or thinking skills has been using computer programming, and more recently, game-design tasks. In this pre-experimental study, a group of middle school…

  20. From a Disciplinary to an Interdisciplinary Design Research: Developing an Integrative Approach for Design

    ERIC Educational Resources Information Center

    Chou, Wen Huei; Wong, Ju-Joan

    2015-01-01

    As the new generation of designers face more complex design issues, the forms of design research start to shift towards a user-centred approach to problem-solving. The cooperation and communication among various fields and specialisations are becoming more complex; in many practical design cases, in particular, technology developers face…

  1. Estimating occupancy rates with imperfect detection under complex survey designs

    EPA Science Inventory

    Monitoring the occurrence of specific amphibian species is of interest. Typically, the monitoring design is a complex design that involves stratification and unequal probability of selection. When conducting field visits to selected sites, a common problem is that during a singl...

  2. Robust pinning control of heterogeneous complex networks with jointly connected topologies and time-varying parametric uncertainty

    NASA Astrophysics Data System (ADS)

    Manfredi, Sabato

    2018-05-01

    The pinning/leader control problems provide the design of the leader or pinning controller in order to guide a complex network to a desired trajectory or target (synchronisation or consensus). Let a time-invariant complex network, pinning/leader control problems include the design of the leader or pinning controller gain and number of nodes to pin in order to guide a network to a desired trajectory (synchronization or consensus). Usually, lower is the number of pinned nodes larger is the pinning gain required to assess network synchronisation. On the other side, realistic application scenario of complex networks is characterised by switching topologies, time-varying node coupling strength and link weight that make hard to solve the pinning/leader control problem. Additionally, the system dynamics at nodes can be heterogeneous. In this paper, we derive robust stabilisation conditions of time-varying heterogeneous complex networks with jointly connected topologies when coupling strength and link weight interactions are affected by time-varying uncertainties. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, we formulate low computationally demanding stabilisability conditions to design a pinning/leader control gain for robust network synchronisation. The effectiveness of the proposed approach is shown by several design examples applied to a paradigmatic well-known complex network composed of heterogeneous Chua's circuits.

  3. Inverse problems in complex material design: Applications to non-crystalline solids

    NASA Astrophysics Data System (ADS)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  4. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    NASA Astrophysics Data System (ADS)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  5. Teaching Problem Solving; the Effect of Algorithmic and Heuristic Problem Solving Training in Relation to Task Complexity and Relevant Aptitudes.

    ERIC Educational Resources Information Center

    de Leeuw, L.

    Sixty-four fifth and sixth-grade pupils were taught number series extrapolation by either an algorithm, fully prescribed problem-solving method or a heuristic, less prescribed method. The trained problems were within categories of two degrees of complexity. There were 16 subjects in each cell of the 2 by 2 design used. Aptitude Treatment…

  6. Natural Stream Channel Design Techniques and Review

    EPA Pesticide Factsheets

    Need for a Review Checklist: Stream restoration problems include; design complexity, many different design methodologies, inconsistency in design deliverables, communication difficulties, many failed projects

  7. An Architectural Experience for Interface Design

    ERIC Educational Resources Information Center

    Gong, Susan P.

    2016-01-01

    The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…

  8. Design concepts for the development of cooperative problem-solving systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Bihari, Tom

    1992-01-01

    There are many problem-solving tasks that are too complex to fully automate given the current state of technology. Nevertheless, significant improvements in overall system performance could result from the introduction of well-designed computer aids. We have been studying the development of cognitive tools for one such problem-solving task, enroute flight path planning for commercial airlines. Our goal was two-fold. First, we were developing specific systems designs to help with this important practical problem. Second, we are using this context to explore general design concepts to guide in the development of cooperative problem-solving systems. These designs concepts are described.

  9. A Silent Revolution: From Sketching to Coding--A Case Study on Code-Based Design Tool Learning

    ERIC Educational Resources Information Center

    Xu, Song; Fan, Kuo-Kuang

    2017-01-01

    Along with the information technology rising, Computer Aided Design activities are becoming more modern and more complex. But learning how to operation these new design tools has become the main problem lying in front of each designer. This study was purpose on finding problems encountered during code-based design tools learning period of…

  10. Variable Complexity Structural Optimization of Shells

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Venkataraman, Satchi

    1999-01-01

    Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-2110 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition, several modeling issues for the design of shells of revolution were studied.

  11. Variable Complexity Structural Optimization of Shells

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Venkataraman, Satchi

    1998-01-01

    Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-1808 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition several modeling issues for the design of shells of revolution were studied.

  12. Cognitive and Motivational Impacts of Learning Game Design on Middle School Children

    ERIC Educational Resources Information Center

    Akcaoglu, Mete

    2013-01-01

    In today`s complex and fast-evolving world, problem solving is an important skill to possess. For young children to be successful at their future careers, they need to have the "skill" and the "will" to solve complex problems that are beyond the well-defined problems that they learn to solve at schools. One promising approach…

  13. Formative feedback and scaffolding for developing complex problem solving and modelling outcomes

    NASA Astrophysics Data System (ADS)

    Frank, Brian; Simper, Natalie; Kaupp, James

    2018-07-01

    This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.

  14. Program Helps Decompose Complex Design Systems

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Hall, Laura E.

    1995-01-01

    DeMAID (Design Manager's Aid for Intelligent Decomposition) computer program is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problems such as large platforms in outer space. Groups modular subsystems on basis of interactions among them. Saves considerable amount of money and time in total design process, particularly in new design problem in which order of modules has not been defined. Originally written for design problems, also applicable to problems containing modules (processes) that take inputs and generate outputs. Available in three machine versions: Macintosh written in Symantec's Think C 3.01, Sun, and SGI IRIS in C language.

  15. Program Helps Decompose Complex Design Systems

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Hall, Laura E.

    1994-01-01

    DeMAID (A Design Manager's Aid for Intelligent Decomposition) computer program is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problem. Groups modular subsystems on basis of interactions among them. Saves considerable money and time in total design process, particularly in new design problem in which order of modules has not been defined. Available in two machine versions: Macintosh and Sun.

  16. Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments.

    PubMed

    Spinks, Jean; Mortimer, Duncan

    2016-02-03

    The provision of additional information is often assumed to improve consumption decisions, allowing consumers to more accurately weigh the costs and benefits of alternatives. However, increasing the complexity of decision problems may prompt changes in information processing. This is particularly relevant for experimental methods such as discrete choice experiments (DCEs) where the researcher can manipulate the complexity of the decision problem. The primary aims of this study are (i) to test whether consumers actually process additional information in an already complex decision problem, and (ii) consider the implications of any such 'complexity-driven' changes in information processing for design and analysis of DCEs. A discrete choice experiment (DCE) is used to simulate a complex decision problem; here, the choice between complementary and conventional medicine for different health conditions. Eye-tracking technology is used to capture the number of times and the duration that a participant looks at any part of a computer screen during completion of DCE choice sets. From this we can analyse what has become known in the DCE literature as 'attribute non-attendance' (ANA). Using data from 32 participants, we model the likelihood of ANA as a function of choice set complexity and respondent characteristics using fixed and random effects models to account for repeated choice set completion. We also model whether participants are consistent with regard to which characteristics (attributes) they consider across choice sets. We find that complexity is the strongest predictor of ANA when other possible influences, such as time pressure, ordering effects, survey specific effects and socio-demographic variables (including proxies for prior experience with the decision problem) are considered. We also find that most participants do not apply a consistent information processing strategy across choice sets. Eye-tracking technology shows promise as a way of obtaining additional information from consumer research, improving DCE design, and informing the design of policy measures. With regards to DCE design, results from the present study suggest that eye-tracking data can identify the point at which adding complexity (and realism) to DCE choice scenarios becomes self-defeating due to unacceptable increases in ANA. Eye-tracking data therefore has clear application in the construction of guidelines for DCE design and during piloting of DCE choice scenarios. With regards to design of policy measures such as labelling requirements for CAM and conventional medicines, the provision of additional information has the potential to make difficult decisions even harder and may not have the desired effect on decision-making.

  17. Creating targeted initial populations for genetic product searches in heterogeneous markets

    NASA Astrophysics Data System (ADS)

    Foster, Garrett; Turner, Callaway; Ferguson, Scott; Donndelinger, Joseph

    2014-12-01

    Genetic searches often use randomly generated initial populations to maximize diversity and enable a thorough sampling of the design space. While many of these initial configurations perform poorly, the trade-off between population diversity and solution quality is typically acceptable for small-scale problems. Navigating complex design spaces, however, often requires computationally intelligent approaches that improve solution quality. This article draws on research advances in market-based product design and heuristic optimization to strategically construct 'targeted' initial populations. Targeted initial designs are created using respondent-level part-worths estimated from discrete choice models. These designs are then integrated into a traditional genetic search. Two case study problems of differing complexity are presented to illustrate the benefits of this approach. In both problems, targeted populations lead to computational savings and product configurations with improved market share of preferences. Future research efforts to tailor this approach and extend it towards multiple objectives are also discussed.

  18. Hardware problems encountered in solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Cash, M.

    1978-01-01

    Numerous problems in the design, production, installation, and operation of solar energy systems are discussed. Described are hardware problems, which range from simple to obscure and complex, and their resolution.

  19. Enroute flight planning: Evaluating design concepts for the development of cooperative problem-solving systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.

    1995-01-01

    There are many problem-solving tasks that are too complex to fully automate given the current state of technology. Nevertheless, significant improvements in overall system performance could result from the introduction of well-designed computer aids. We have been studying the development of cognitive tools for one such problem-solving task, enroute flight path planning for commercial airlines. Our goal has been two-fold. First, we have been developing specific system designs to help with this important practical problem. Second, we have been using this context to explore general design concepts to guide in the development of cooperative problem-solving systems. These design concepts are described below, along with illustrations of their application.

  20. Word problems: a review of linguistic and numerical factors contributing to their difficulty

    PubMed Central

    Daroczy, Gabriella; Wolska, Magdalena; Meurers, Walt Detmar; Nuerk, Hans-Christoph

    2015-01-01

    Word problems (WPs) belong to the most difficult and complex problem types that pupils encounter during their elementary-level mathematical development. In the classroom setting, they are often viewed as merely arithmetic tasks; however, recent research shows that a number of linguistic verbal components not directly related to arithmetic contribute greatly to their difficulty. In this review, we will distinguish three components of WP difficulty: (i) the linguistic complexity of the problem text itself, (ii) the numerical complexity of the arithmetic problem, and (iii) the relation between the linguistic and numerical complexity of a problem. We will discuss the impact of each of these factors on WP difficulty and motivate the need for a high degree of control in stimuli design for experiments that manipulate WP difficulty for a given age group. PMID:25883575

  1. Creating Task-Centered Instruction for Web-Based Instruction: Obstacles and Solutions

    ERIC Educational Resources Information Center

    Gardner, Joel; Jeon, Tae

    2010-01-01

    Merrill proposes First Principles of Instruction, including a problem- or task-centered strategy for designing instruction. However, when the tasks or problems are ill-defined or complex, task-centered instruction can be difficult to design. We describe an online task-centered training at a land-grant university designed to train employees to use…

  2. Scaffolding a Complex Task of Experimental Design in Chemistry with a Computer Environment

    ERIC Educational Resources Information Center

    Girault, Isabelle; d'Ham, Cédric

    2014-01-01

    When solving a scientific problem through experimentation, students may have the responsibility to design the experiment. When students work in a conventional condition, with paper and pencil, the designed procedures stay at a very general level. There is a need for additional scaffolds to help the students perform this complex task. We propose a…

  3. Design and Diagnosis Problem Solving with Multifunctional Technical Knowledge Bases

    DTIC Science & Technology

    1992-09-29

    STRUCTURE METHODOLOGY Design problem solving is a complex activity involving a number of subtasks. and a number of alternative methods potentially available...Conference on Artificial Intelligence. London: The British Computer Society, pp. 621-633. Friedland, P. (1979). Knowledge-based experimental design ...Computing Milieuxl: Management of Computing and Information Systems- -ty,*m man- agement General Terms: Design . Methodology Additional Key Words and Phrases

  4. MDTS: automatic complex materials design using Monte Carlo tree search.

    PubMed

    M Dieb, Thaer; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-01-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  5. MDTS: automatic complex materials design using Monte Carlo tree search

    NASA Astrophysics Data System (ADS)

    Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-12-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  6. Designing the future of healthcare.

    PubMed

    Fidsa, Gianfranco Zaccai

    2009-01-01

    This paper describes the application of a holistic design process to a variety of problems plaguing current healthcare systems. A design process for addressing complex, multifaceted problems is contrasted with the piecemeal application of technological solutions to specific medical or administrative problems. The goal of this design process is the ideal customer experience, specifically the ideal experience for patients, healthcare providers, and caregivers within a healthcare system. Holistic design is shown to be less expensive and wasteful in the long run because it avoids solving one problem within a complex system at the cost of creating other problems within that system. The article applies this approach to the maintenance of good health throughout life; to the creation of an ideal experience when a person does need medical care; to the maintenance of personal independence as one ages; and to the enjoyment of a comfortable and dignified death. Virginia Mason Medical Center is discussed as an example of a healthcare institution attempting to create ideal patient and caregiver experiences, in this case by applying the principles of the Toyota Production System ("lean manufacturing") to healthcare. The article concludes that healthcare is inherently dedicated to an ideal, that science and technology have brought it closer to that ideal, and that design can bring it closer still.

  7. A restricted Steiner tree problem is solved by Geometric Method II

    NASA Astrophysics Data System (ADS)

    Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu

    2013-03-01

    The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.

  8. Improved mine blast algorithm for optimal cost design of water distribution systems

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Guen Yoo, Do; Kim, Joong Hoon

    2015-12-01

    The design of water distribution systems is a large class of combinatorial, nonlinear optimization problems with complex constraints such as conservation of mass and energy equations. Since feasible solutions are often extremely complex, traditional optimization techniques are insufficient. Recently, metaheuristic algorithms have been applied to this class of problems because they are highly efficient. In this article, a recently developed optimizer called the mine blast algorithm (MBA) is considered. The MBA is improved and coupled with the hydraulic simulator EPANET to find the optimal cost design for water distribution systems. The performance of the improved mine blast algorithm (IMBA) is demonstrated using the well-known Hanoi, New York tunnels and Balerma benchmark networks. Optimization results obtained using IMBA are compared to those using MBA and other optimizers in terms of their minimum construction costs and convergence rates. For the complex Balerma network, IMBA offers the cheapest network design compared to other optimization algorithms.

  9. Multi-level systems modeling and optimization for novel aircraft

    NASA Astrophysics Data System (ADS)

    Subramanian, Shreyas Vathul

    This research combines the disciplines of system-of-systems (SoS) modeling, platform-based design, optimization and evolving design spaces to achieve a novel capability for designing solutions to key aeronautical mission challenges. A central innovation in this approach is the confluence of multi-level modeling (from sub-systems to the aircraft system to aeronautical system-of-systems) in a way that coordinates the appropriate problem formulations at each level and enables parametric search in design libraries for solutions that satisfy level-specific objectives. The work here addresses the topic of SoS optimization and discusses problem formulation, solution strategy, the need for new algorithms that address special features of this problem type, and also demonstrates these concepts using two example application problems - a surveillance UAV swarm problem, and the design of noise optimal aircraft and approach procedures. This topic is critical since most new capabilities in aeronautics will be provided not just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same time, many new aircraft concepts are pressing the boundaries of cyber-physical complexity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL (Technology Readiness Level) scale. This compositional approach is envisioned to be active at three levels: validated sub-systems are integrated to form conceptual aircraft, which are further connected with others to perform a challenging mission capability at the SoS level. While these multiple levels represent layers of physical abstraction, each discipline is associated with tools of varying fidelity forming strata of 'analysis abstraction'. Further, the design (composition) will be guided by a suitable hierarchical complexity metric formulated for the management of complexity in both the problem (as part of the generative procedure and selection of fidelity level) and the product (i.e., is the mission best achieved via a large collection of interacting simple systems, or a relatively few highly capable, complex air vehicles). The vastly unexplored area of optimization in evolving design spaces will be studied and incorporated into the SoS optimization framework. We envision a framework that resembles a multi-level, mult-fidelity, multi-disciplinary assemblage of optimization problems. The challenge is not simply one of scaling up to a new level (the SoS), but recognizing that the aircraft sub-systems and the integrated vehicle are now intensely cyber-physical, with hardware and software components interacting in complex ways that give rise to new and improved capabilities. The work presented here is a step closer to modeling the information flow that exists in realistic SoS optimization problems between sub-contractors, contractors and the SoS architect.

  10. Developing a framework for qualitative engineering: Research in design and analysis of complex structural systems

    NASA Technical Reports Server (NTRS)

    Franck, Bruno M.

    1990-01-01

    The research is focused on automating the evaluation of complex structural systems, whether for the design of a new system or the analysis of an existing one, by developing new structural analysis techniques based on qualitative reasoning. The problem is to identify and better understand: (1) the requirements for the automation of design, and (2) the qualitative reasoning associated with the conceptual development of a complex system. The long-term objective is to develop an integrated design-risk assessment environment for the evaluation of complex structural systems. The scope of this short presentation is to describe the design and cognition components of the research. Design has received special attention in cognitive science because it is now identified as a problem solving activity that is different from other information processing tasks (1). Before an attempt can be made to automate design, a thorough understanding of the underlying design theory and methodology is needed, since the design process is, in many cases, multi-disciplinary, complex in size and motivation, and uses various reasoning processes involving different kinds of knowledge in ways which vary from one context to another. The objective is to unify all the various types of knowledge under one framework of cognition. This presentation focuses on the cognitive science framework that we are using to represent the knowledge aspects associated with the human mind's abstraction abilities and how we apply it to the engineering knowledge and engineering reasoning in design.

  11. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  12. Optimization Techniques for Clustering,Connectivity, and Flow Problems in Complex Networks

    DTIC Science & Technology

    2012-10-01

    discrete optimization and for analysis of performance of algorithm portfolios; introducing a metaheuristic framework of variable objective search that...The results of empirical evaluation of the proposed algorithm are also included. 1.3 Theoretical analysis of heuristics and designing new metaheuristic ...analysis of heuristics for inapproximable problems and designing new metaheuristic approaches for the problems of interest; (IV) Developing new models

  13. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    PubMed Central

    Van Regenmortel, Marc H. V.

    2018-01-01

    Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066

  14. Generalist solutions to complex problems: generating practice-based evidence - the example of managing multi-morbidity

    PubMed Central

    2013-01-01

    Background A growing proportion of people are living with long term conditions. The majority have more than one. Dealing with multi-morbidity is a complex problem for health systems: for those designing and implementing healthcare as well as for those providing the evidence informing practice. Yet the concept of multi-morbidity (the presence of >2 diseases) is a product of the design of health care systems which define health care need on the basis of disease status. So does the solution lie in an alternative model of healthcare? Discussion Strengthening generalist practice has been proposed as part of the solution to tackling multi-morbidity. Generalism is a professional philosophy of practice, deeply known to many practitioners, and described as expertise in whole person medicine. But generalism lacks the evidence base needed by policy makers and planners to support service redesign. The challenge is to fill this practice-research gap in order to critically explore if and when generalist care offers a robust alternative to management of this complex problem. We need practice-based evidence to fill this gap. By recognising generalist practice as a ‘complex intervention’ (intervening in a complex system), we outline an approach to evaluate impact using action-research principles. We highlight the implications for those who both commission and undertake research in order to tackle this problem. Summary Answers to the complex problem of multi-morbidity won’t come from doing more of the same. We need to change systems of care, and so the systems for generating evidence to support that care. This paper contributes to that work through outlining a process for generating practice-based evidence of generalist solutions to the complex problem of person-centred care for people with multi-morbidity. PMID:23919296

  15. Generalist solutions to complex problems: generating practice-based evidence--the example of managing multi-morbidity.

    PubMed

    Reeve, Joanne; Blakeman, Tom; Freeman, George K; Green, Larry A; James, Paul A; Lucassen, Peter; Martin, Carmel M; Sturmberg, Joachim P; van Weel, Chris

    2013-08-07

    A growing proportion of people are living with long term conditions. The majority have more than one. Dealing with multi-morbidity is a complex problem for health systems: for those designing and implementing healthcare as well as for those providing the evidence informing practice. Yet the concept of multi-morbidity (the presence of >2 diseases) is a product of the design of health care systems which define health care need on the basis of disease status. So does the solution lie in an alternative model of healthcare? Strengthening generalist practice has been proposed as part of the solution to tackling multi-morbidity. Generalism is a professional philosophy of practice, deeply known to many practitioners, and described as expertise in whole person medicine. But generalism lacks the evidence base needed by policy makers and planners to support service redesign. The challenge is to fill this practice-research gap in order to critically explore if and when generalist care offers a robust alternative to management of this complex problem. We need practice-based evidence to fill this gap. By recognising generalist practice as a 'complex intervention' (intervening in a complex system), we outline an approach to evaluate impact using action-research principles. We highlight the implications for those who both commission and undertake research in order to tackle this problem. Answers to the complex problem of multi-morbidity won't come from doing more of the same. We need to change systems of care, and so the systems for generating evidence to support that care. This paper contributes to that work through outlining a process for generating practice-based evidence of generalist solutions to the complex problem of person-centred care for people with multi-morbidity.

  16. Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS): A conceptual framework

    NASA Technical Reports Server (NTRS)

    Parnell, Gregory S.; Rowell, William F.; Valusek, John R.

    1987-01-01

    In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.

  17. Robot, computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1973-01-01

    The TENEX computer system, the ARPA network, and computer language design technology was applied to support the complex system programs. By combining the pragmatic and theoretical aspects of robot development, an approach is created which is grounded in realism, but which also has at its disposal the power that comes from looking at complex problems from an abstract analytical point of view.

  18. Ordinal optimization and its application to complex deterministic problems

    NASA Astrophysics Data System (ADS)

    Yang, Mike Shang-Yu

    1998-10-01

    We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.

  19. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  20. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  1. Design of a cooperative problem-solving system for en-route flight planning: An empirical evaluation

    NASA Technical Reports Server (NTRS)

    Layton, Charles; Smith, Philip J.; Mc Coy, C. Elaine

    1994-01-01

    Both optimization techniques and expert systems technologies are popular approaches for developing tools to assist in complex problem-solving tasks. Because of the underlying complexity of many such tasks, however, the models of the world implicitly or explicitly embedded in such tools are often incomplete and the problem-solving methods fallible. The result can be 'brittleness' in situations that were not anticipated by the system designers. To deal with this weakness, it has been suggested that 'cooperative' rather than 'automated' problem-solving systems be designed. Such cooperative systems are proposed to explicitly enhance the collaboration of the person (or a group of people) and the computer system. This study evaluates the impact of alternative design concepts on the performance of 30 airline pilots interacting with such a cooperative system designed to support en-route flight planning. The results clearly demonstrate that different system design concepts can strongly influence the cognitive processes and resultant performances of users. Based on think-aloud protocols, cognitive models are proposed to account for how features of the computer system interacted with specific types of scenarios to influence exploration and decision making by the pilots. The results are then used to develop recommendations for guiding the design of cooperative systems.

  2. Design of a cooperative problem-solving system for en-route flight planning: An empirical evaluation

    NASA Technical Reports Server (NTRS)

    Layton, Charles; Smith, Philip J.; McCoy, C. Elaine

    1994-01-01

    Both optimization techniques and expert systems technologies are popular approaches for developing tools to assist in complex problem-solving tasks. Because of the underlying complexity of many such tasks, however, the models of the world implicitly or explicitly embedded in such tools are often incomplete and the problem-solving methods fallible. The result can be 'brittleness' in situations that were not anticipated by the system designers. To deal with this weakness, it has been suggested that 'cooperative' rather than 'automated' problem-solving systems be designed. Such cooperative systems are proposed to explicitly enhance the collaboration of the person (or a group of people) and the computer system. This study evaluates the impact of alternative design concepts on the performance of 30 airline pilots interacting with such a cooperative system designed to support enroute flight planning. The results clearly demonstrate that different system design concepts can strongly influence the cognitive processes and resultant performances of users. Based on think-aloud protocols, cognitive models are proposed to account for how features of the computer system interacted with specific types of scenarios to influence exploration and decision making by the pilots. The results are then used to develop recommendations for guiding the design of cooperative systems.

  3. Center of Gravity within the Ill-Structured Problem

    DTIC Science & Technology

    2012-05-04

    NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Chad Livingston...Simon, Decision Making and Problem Solving 28 Cardon and Leonard, Unleashing Design, Planning and the Art of Battle Command, 2 11 complex, ill...Command. "Commander’s Appreciation and Campaign Design." Fort Monroe, VA, January 2008. Edward Cardon and Steve Leonard. "Unleashing Design, Planning

  4. USMC Ground Surveillance Robot (GSR): Lessons Learned

    NASA Astrophysics Data System (ADS)

    Harmon, S. Y.

    1987-02-01

    This paper describes the design of an autonomous vehicle and the lessons learned during the implementation of that complex robot. The major problems encountered to which solutions were found include sensor processing bandwidth limitations, coordination of the interactions between major subsystems, sensor data fusion and system knowledge representation. Those problems remaining unresolved include system complexity management, the lack of powerful system monitoring and debugging tools, exploratory implementation of a complex system and safety and testing issues. Many of these problems arose from working with underdeveloped and continuously evolving technology and will probably be resolved as the technological resources mature and stabilize. Unfortunately, other problems will continue to plague developers throughout the evolution of autonomous system technology.

  5. Multi-step optimization strategy for fuel-optimal orbital transfer of low-thrust spacecraft

    NASA Astrophysics Data System (ADS)

    Rasotto, M.; Armellin, R.; Di Lizia, P.

    2016-03-01

    An effective method for the design of fuel-optimal transfers in two- and three-body dynamics is presented. The optimal control problem is formulated using calculus of variation and primer vector theory. This leads to a multi-point boundary value problem (MPBVP), characterized by complex inner constraints and a discontinuous thrust profile. The first issue is addressed by embedding the MPBVP in a parametric optimization problem, thus allowing a simplification of the set of transversality constraints. The second problem is solved by representing the discontinuous control function by a smooth function depending on a continuation parameter. The resulting trajectory optimization method can deal with different intermediate conditions, and no a priori knowledge of the control structure is required. Test cases in both the two- and three-body dynamics show the capability of the method in solving complex trajectory design problems.

  6. Designing and Developing Assessments of Complex Thinking in Mathematics for the Middle Grades

    ERIC Educational Resources Information Center

    Graf, Edith Aurora; Arieli-Attali, Meirav

    2015-01-01

    Designing an assessment system for complex thinking in mathematics involves decisions at every stage, from how to represent the target competencies to how to interpret evidence from student performances. Beyond learning to solve particular problems in a particular area, learning mathematics with understanding involves comprehending connections…

  7. Engineering applications of metaheuristics: an introduction

    NASA Astrophysics Data System (ADS)

    Oliva, Diego; Hinojosa, Salvador; Demeshko, M. V.

    2017-01-01

    Metaheuristic algorithms are important tools that in recent years have been used extensively in several fields. In engineering, there is a big amount of problems that can be solved from an optimization point of view. This paper is an introduction of how metaheuristics can be used to solve complex problems of engineering. Their use produces accurate results in problems that are computationally expensive. Experimental results support the performance obtained by the selected algorithms in such specific problems as digital filter design, image processing and solar cells design.

  8. An Application of Generalizability Theory and Many-Facet Rasch Measurement Using a Complex Problem-Solving Skills Assessment

    ERIC Educational Resources Information Center

    Smith, Jr., Everett V.; Kulikowich, Jonna M.

    2004-01-01

    This study describes the use of generalizability theory (GT) and many-facet Rasch measurement (MFRM) to evaluate psychometric properties of responses obtained from an assessment designed to measure complex problem-solving skills. The assessment revolved around the school activity of kickball. The task required of each student was to decide on a…

  9. The use of methods of structural optimization at the stage of designing high-rise buildings with steel construction

    NASA Astrophysics Data System (ADS)

    Vasilkin, Andrey

    2018-03-01

    The more designing solutions at the search stage for design for high-rise buildings can be synthesized by the engineer, the more likely that the final adopted version will be the most efficient and economical. However, in modern market conditions, taking into account the complexity and responsibility of high-rise buildings the designer does not have the necessary time to develop, analyze and compare any significant number of options. To solve this problem, it is expedient to use the high potential of computer-aided designing. To implement automated search for design solutions, it is proposed to develop the computing facilities, the application of which will significantly increase the productivity of the designer and reduce the complexity of designing. Methods of structural and parametric optimization have been adopted as the basis of the computing facilities. Their efficiency in the synthesis of design solutions is shown, also the schemes, that illustrate and explain the introduction of structural optimization in the traditional design of steel frames, are constructed. To solve the problem of synthesis and comparison of design solutions for steel frames, it is proposed to develop the computing facilities that significantly reduces the complexity of search designing and based on the use of methods of structural and parametric optimization.

  10. Transformations of software design and code may lead to reduced errors

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.

    1983-01-01

    The capability of programmers and non-programmers to specify problem solutions by developing example-solutions and also for the programmers by writing computer programs was investigated; each method of specification was accomplished at various levels of problem complexity. The level of difficulty of each problem was reflected by the number of steps needed by the user to develop a solution. Machine processing of the user inputs permitted inferences to be developed about the algorithms required to solve a particular problem. The interactive feedback of processing results led users to a more precise definition of the desired solution. Two participant groups (programmers and bookkeepers/accountants) working with three levels of problem complexity and three levels of processor complexity were used. The experimental task employed required specification of a logic for solution of a Navy task force problem.

  11. Dynamic Scaffolding in a Cloud-Based Problem Representation System: Empowering Pre-Service Teachers' Problem Solving

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Ling, Keck Voon; Reimann, Peter; Diponegoro, Yudho Ahmad; Koh, Chia Heng; Chew, Derwin

    2014-01-01

    Purpose: The purpose of this paper is to argue for the need to develop pre-service teachers' problem solving ability, in particular, in the context of real-world complex problems. Design/methodology/approach: To argue for the need to develop pre-service teachers' problem solving skills, the authors describe a web-based problem representation…

  12. An Algorithm for Integrated Subsystem Embodiment and System Synthesis

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper

    1997-01-01

    Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.

  13. Expert-guided evolutionary algorithm for layout design of complex space stations

    NASA Astrophysics Data System (ADS)

    Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu

    2017-08-01

    The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.

  14. [Design of Complex Cavity Structure in Air Route System of Automated Peritoneal Dialysis Machine].

    PubMed

    Quan, Xiaoliang

    2017-07-30

    This paper introduced problems about Automated Peritoneal Dialysis machine(APD) that the lack of technical issues such as the structural design of the complex cavities. To study the flow characteristics of this special structure, the application of ANSYS CFX software is used with k-ε turbulence model as the theoretical basis of fluid mechanics. The numerical simulation of flow field simulation result in the internal model can be gotten after the complex structure model is imported into ANSYS CFX module. Then, it will present the distribution of complex cavities inside the flow field and the flow characteristics parameter, which will provide an important reference design for APD design.

  15. From path models to commands during additive printing of large-scale architectural designs

    NASA Astrophysics Data System (ADS)

    Chepchurov, M. S.; Zhukov, E. M.; Yakovlev, E. A.; Matveykin, V. G.

    2018-05-01

    The article considers the problem of automation of the formation of large complex parts, products and structures, especially for unique or small-batch objects produced by a method of additive technology [1]. Results of scientific research in search for the optimal design of a robotic complex, its modes of operation (work), structure of its control helped to impose the technical requirements on the technological process for manufacturing and design installation of the robotic complex. Research on virtual models of the robotic complexes allowed defining the main directions of design improvements and the main goal (purpose) of testing of the the manufactured prototype: checking the positioning accuracy of the working part.

  16. Comfortable with Chaos: Operational Design in the Naval Special Warfare Planning Process

    DTIC Science & Technology

    2011-05-08

    President Alvaro Uribe Velez took office, Colombia was enduring a multi- faceted and interactively complex strategic situation. Three major insurgent groups...President Uribe took office and designed a comprehensive strategy to tackle the "wicked" problem. President Uribe designed an operational approach that...government -unattainable by previous presidents. From 2002 to 2006, the Uribe administration reframed 19 their understanding of the problem and

  17. A survey of intelligent tutoring systems: Implications for complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Chu, Rose W.

    1989-01-01

    An overview of the research in the field of intelligent tutorial systems (ITS) is provided. The various approaches in the design and implementation of ITS are examined and discussed in the context of problem solving in an environment of a complex dynamic system (CDS). Issues pertaining to a CDS and the nature of human problem solving especially in light of a CDS are considered. An overview of the architecture of an ITS is provided as the basis for the in-depth examination of various systems. Finally, the implications for the design and evaluation of an ITS are discussed.

  18. GRADIENT: Graph Analytic Approach for Discovering Irregular Events, Nascent and Temporal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Emilie

    2015-03-31

    Finding a time-ordered signature within large graphs is a computationally complex problem due to the combinatorial explosion of potential patterns. GRADIENT is designed to search and understand that problem space.

  19. GRADIENT: Graph Analytic Approach for Discovering Irregular Events, Nascent and Temporal

    ScienceCinema

    Hogan, Emilie

    2018-01-16

    Finding a time-ordered signature within large graphs is a computationally complex problem due to the combinatorial explosion of potential patterns. GRADIENT is designed to search and understand that problem space.

  20. Re-introducing Conceptual and Detailed Planning: Differentiating Between Decision Making and Problem Identification

    DTIC Science & Technology

    2012-05-17

    emphasizes its importance. BG Edward Cardon and LTC Steve Leonard point out, “many of the concepts underpinning design are not...70 BG Edward C. Cardon and LTC Steve Leonard, “Unleashing Design; Planning and the Art of Battle Command,” Military Review Mar...Apr (2010): 2. 71 Cardon and Leonard, “Unleashing Design; Planning and the Art of Battle Command,” 3. 33 structured problems using complexity theory

  1. Systematic procedure for designing processes with multiple environmental objectives.

    PubMed

    Kim, Ki-Joo; Smith, Raymond L

    2005-04-01

    Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems due to the complex nature of the problems, the need for complex assessments, and the complicated analysis of multidimensional results. In this paper, a novel systematic procedure is presented for designing processes with multiple environmental objectives. This procedure has four steps: initialization, screening, evaluation, and visualization. The first two steps are used for systematic problem formulation based on mass and energy estimation and order of magnitude analysis. In the third step, an efficient parallel multiobjective steady-state genetic algorithm is applied to design environmentally benign and economically viable processes and to provide more accurate and uniform Pareto optimal solutions. In the last step a new visualization technique for illustrating multiple objectives and their design parameters on the same diagram is developed. Through these integrated steps the decision-maker can easily determine design alternatives with respect to his or her preferences. Most importantly, this technique is independent of the number of objectives and design parameters. As a case study, acetic acid recovery from aqueous waste mixtures is investigated by minimizing eight potential environmental impacts and maximizing total profit. After applying the systematic procedure, the most preferred design alternatives and their design parameters are easily identified.

  2. Combinatorial algorithms for design of DNA arrays.

    PubMed

    Hannenhalli, Sridhar; Hubell, Earl; Lipshutz, Robert; Pevzner, Pavel A

    2002-01-01

    Optimal design of DNA arrays requires the development of algorithms with two-fold goals: reducing the effects caused by unintended illumination (border length minimization problem) and reducing the complexity of masks (mask decomposition problem). We describe algorithms that reduce the number of rectangles in mask decomposition by 20-30% as compared to a standard array design under the assumption that the arrangement of oligonucleotides on the array is fixed. This algorithm produces provably optimal solution for all studied real instances of array design. We also address the difficult problem of finding an arrangement which minimizes the border length and come up with a new idea of threading that significantly reduces the border length as compared to standard designs.

  3. Learning from the Pros: How Experienced Designers Translate Instructional Design Models into Practice

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; York, Cindy S.; Gedik, Nuray

    2009-01-01

    Understanding how experienced designers approach complex design problems provides new perspectives on how they translate instructional design (ID) models and processes into practice. In this article, the authors describe the results of a study in which 16 "seasoned" designers shared compelling stories from practice that offered insights into their…

  4. Cognitive Activity-based Design Methodology for Novice Visual Communication Designers

    ERIC Educational Resources Information Center

    Kim, Hyunjung; Lee, Hyunju

    2016-01-01

    The notion of design thinking is becoming more concrete nowadays, as design researchers and practitioners study the thinking processes involved in design and employ the concept of design thinking to foster better solutions to complex and ill-defined problems. The goal of the present research is to develop a cognitive activity-based design…

  5. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  6. Solving Real World Problems with Alternate Reality Gaming: Student Experiences in the Global Village Playground Capstone Course Design

    ERIC Educational Resources Information Center

    Dondlinger, Mary Jo; McLeod, Julie K.

    2015-01-01

    The Global Village Playground (GVP) was a capstone learning experience designed to address institutional assessment needs while providing an integrated and authentic learning experience for students aimed at fostering complex problem solving, as well as critical and creative thinking. In the GVP, students work on simulated and real-world problems…

  7. An operationalized post-normal science framework for assisting in the development of complex science policy solutions: the case of nanotechnology governance

    NASA Astrophysics Data System (ADS)

    Bernstein, Michael J.; Foley, Rider W.; Bennett, Ira

    2014-07-01

    Scientists, engineers, and policy analysts commonly suggest governance regimes for technology to maximize societal benefits and minimize negative societal and environmental impacts of innovation processes. Yet innovation is a complex socio-technical process that does not respond predictably to modification. Our human propensity to exclude complexity when attempting to manage systems often results in insufficient, one-dimensional solutions. The tendency to exclude complexity (1) reinforces itself by diminishing experience and capacity in the design of simple solutions to complex problems, and (2) leads to solutions that do not address the identified problem. To address the question of how to avoid a complexity- exclusion trap, this article operationalizes a post-normal science framework to assist in the enhancement or design of science policy proposals. A literature review of technological fixes, policy panaceas, and knowledge-to-action gaps is conducted to survey examples of post-normal science frameworks. Next, an operational framework is used to assess the case of a proposed international nanotechnology advisory board. The framework reveals that the board addresses a slice of the broader, more complex problem of nanotechnology governance. We argue that while the formation of an international advisory board is not problematic in-and-of-itself, it is symptomatic of and plays into a complexity- exclusion trap. We offer researchers, policy analysts, and decision-makers three recommendations that incorporate a more appropriate level of complexity into governance proposals.

  8. The Algebra of Complex Numbers.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  9. Design and performance frameworks for constructing problem-solving simulations.

    PubMed

    Stevens, Ron; Palacio-Cayetano, Joycelin

    2003-01-01

    Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement.

  10. Design and Performance Frameworks for Constructing Problem-Solving Simulations

    PubMed Central

    Stevens, Ron; Palacio-Cayetano, Joycelin

    2003-01-01

    Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement. PMID:14506505

  11. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.

    PubMed

    Higginson, J S; Neptune, R R; Anderson, F C

    2005-09-01

    Optimization problems for biomechanical systems have become extremely complex. Simulated annealing (SA) algorithms have performed well in a variety of test problems and biomechanical applications; however, despite advances in computer speed, convergence to optimal solutions for systems of even moderate complexity has remained prohibitive. The objective of this study was to develop a portable parallel version of a SA algorithm for solving optimization problems in biomechanics. The algorithm for simulated parallel annealing within a neighborhood (SPAN) was designed to minimize interprocessor communication time and closely retain the heuristics of the serial SA algorithm. The computational speed of the SPAN algorithm scaled linearly with the number of processors on different computer platforms for a simple quadratic test problem and for a more complex forward dynamic simulation of human pedaling.

  12. A modelling tool for policy analysis to support the design of efficient and effective policy responses for complex public health problems.

    PubMed

    Atkinson, Jo-An; Page, Andrew; Wells, Robert; Milat, Andrew; Wilson, Andrew

    2015-03-03

    In the design of public health policy, a broader understanding of risk factors for disease across the life course, and an increasing awareness of the social determinants of health, has led to the development of more comprehensive, cross-sectoral strategies to tackle complex problems. However, comprehensive strategies may not represent the most efficient or effective approach to reducing disease burden at the population level. Rather, they may act to spread finite resources less intensively over a greater number of programs and initiatives, diluting the potential impact of the investment. While analytic tools are available that use research evidence to help identify and prioritise disease risk factors for public health action, they are inadequate to support more targeted and effective policy responses for complex public health problems. This paper discusses the limitations of analytic tools that are commonly used to support evidence-informed policy decisions for complex problems. It proposes an alternative policy analysis tool which can integrate diverse evidence sources and provide a platform for virtual testing of policy alternatives in order to design solutions that are efficient, effective, and equitable. The case of suicide prevention in Australia is presented to demonstrate the limitations of current tools to adequately inform prevention policy and discusses the utility of the new policy analysis tool. In contrast to popular belief, a systems approach takes a step beyond comprehensive thinking and seeks to identify where best to target public health action and resources for optimal impact. It is concerned primarily with what can be reasonably left out of strategies for prevention and can be used to explore where disinvestment may occur without adversely affecting population health (or equity). Simulation modelling used for policy analysis offers promise in being able to better operationalise research evidence to support decision making for complex problems, improve targeting of public health policy, and offers a foundation for strengthening relationships between policy makers, stakeholders, and researchers.

  13. The Design Process in the Art Classroom: Building Problem Solving Skills for Life and Careers

    ERIC Educational Resources Information Center

    Vande Zande, Robin; Warnock, Lauren; Nikoomanesh, Barbara; Van Dexter, Kurt

    2014-01-01

    Problem solving is essential to everyone's life. People survive if they are nourished, sheltered, and protected--and they construct ways to obtain nourishment, shelter, and protection through problem solving. Though problems vary in complexity--survival at the one end and the pursuit of comfort at the other--we are reliant on our ability to…

  14. Use of Problem-Based Learning in the Teaching and Learning of Horticultural Production

    ERIC Educational Resources Information Center

    Abbey, Lord; Dowsett, Eric; Sullivan, Jan

    2017-01-01

    Purpose: Problem-based learning (PBL), a relatively novel teaching and learning process in horticulture, was investigated. Proper application of PBL can potentially create a learning context that enhances student learning. Design/Methodology/Approach: Students worked on two complex ill-structured problems: (1) to produce fresh baby greens for a…

  15. Creativity: Creativity in Complex Military Systems

    DTIC Science & Technology

    2017-05-25

    generation later in the problem-solving process. The design process is an alternative problem-solving framework individuals or groups use to orient...no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ...the potential of their formations. 15. SUBJECT TERMS Creativity, Divergent Thinking, Design , Systems Thinking, Operational Art 16. SECURITY

  16. Optimal Chebyshev polynomials on ellipses in the complex plane

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland

    1989-01-01

    The design of iterative schemes for sparse matrix computations often leads to constrained polynomial approximation problems on sets in the complex plane. For the case of ellipses, we introduce a new class of complex polynomials which are in general very good approximations to the best polynomials and even optimal in most cases.

  17. Improving the Effectiveness of Professional Education: Learning Managerial Accounting via a Complex Case.

    ERIC Educational Resources Information Center

    Carter, Melissa; And Others

    To give students more experience with real situations, many professional schools use case studies in their courses. Creating complex cases, case experiences that immerse students in complex problems, rather than mere case studies that require armchair analysis should help students gain better and more integrated knowledge. Designing, implementing,…

  18. Kinematical simulation of robotic complex operation for implementing full-scale additive technologies of high-end materials, composites, structures, and buildings

    NASA Astrophysics Data System (ADS)

    Antsiferov, S. I.; Eltsov, M. Iu; Khakhalev, P. A.

    2018-03-01

    This paper considers a newly designed electronic digital model of a robotic complex for implementing full-scale additive technologies, funded under a Federal Target Program. The electronic and digital model was used to solve the problem of simulating the movement of a robotic complex using the NX CAD/CAM/CAE system. The virtual mechanism was built and the main assemblies, joints, and drives were identified as part of solving the problem. In addition, the maximum allowed printable area size was identified for the robotic complex, and a simulation of printing a rectangular-shaped article was carried out.

  19. Object oriented development of engineering software using CLIPS

    NASA Technical Reports Server (NTRS)

    Yoon, C. John

    1991-01-01

    Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.

  20. Recent experience in simultaneous control-structure optimization

    NASA Technical Reports Server (NTRS)

    Salama, M.; Ramaker, R.; Milman, M.

    1989-01-01

    To show the feasibility of simultaneous optimization as design procedure, low order problems were used in conjunction with simple control formulations. The numerical results indicate that simultaneous optimization is not only feasible, but also advantageous. Such advantages come at the expense of introducing complexities beyond those encountered in structure optimization alone, or control optimization alone. Examples include: larger design parameter space, optimization may combine continuous and combinatoric variables, and the combined objective function may be nonconvex. Future extensions to include large order problems, more complex objective functions and constraints, and more sophisticated control formulations will require further research to ensure that the additional complexities do not outweigh the advantages of simultaneous optimization. Some areas requiring more efficient tools than currently available include: multiobjective criteria and nonconvex optimization. Efficient techniques to deal with optimization over combinatoric and continuous variables, and with truncation issues for structure and control parameters of both the model space as well as the design space need to be developed.

  1. Discovering Tradeoffs, Vulnerabilities, and Dependencies within Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Reed, P. M.

    2015-12-01

    There is a growing recognition and interest in using emerging computational tools for discovering the tradeoffs that emerge across complex combinations infrastructure options, adaptive operations, and sign posts. As a field concerned with "deep uncertainties", it is logically consistent to include a more direct acknowledgement that our choices for dealing with computationally demanding simulations, advanced search algorithms, and sensitivity analysis tools are themselves subject to failures that could adversely bias our understanding of how systems' vulnerabilities change with proposed actions. Balancing simplicity versus complexity in our computational frameworks is nontrivial given that we are often exploring high impact irreversible decisions. It is not always clear that accepted models even encompass important failure modes. Moreover as they become more complex and computationally demanding the benefits and consequences of simplifications are often untested. This presentation discusses our efforts to address these challenges through our "many-objective robust decision making" (MORDM) framework for the design and management water resources systems. The MORDM framework has four core components: (1) elicited problem conception and formulation, (2) parallel many-objective search, (3) interactive visual analytics, and (4) negotiated selection of robust alternatives. Problem conception and formulation is the process of abstracting a practical design problem into a mathematical representation. We build on the emerging work in visual analytics to exploit interactive visualization of both the design space and the objective space in multiple heterogeneous linked views that permit exploration and discovery. Many-objective search produces tradeoff solutions from potentially competing problem formulations that can each consider up to ten conflicting objectives based on current computational search capabilities. Negotiated design selection uses interactive visualization, reformulation, and optimization to discover desirable designs for implementation. Multi-city urban water supply portfolio planning will be used to illustrate the MORDM framework.

  2. Intelligent design of permanent magnet synchronous motor based on CBR

    NASA Astrophysics Data System (ADS)

    Li, Cong; Fan, Beibei

    2018-05-01

    Aiming at many problems in the design process of Permanent magnet synchronous motor (PMSM), such as the complexity of design process, the over reliance on designers' experience and the lack of accumulation and inheritance of design knowledge, a design method of PMSM Based on CBR is proposed in order to solve those problems. In this paper, case-based reasoning (CBR) methods of cases similarity calculation is proposed for reasoning suitable initial scheme. This method could help designers, by referencing previous design cases, to make a conceptual PMSM solution quickly. The case retain process gives the system self-enrich function which will improve the design ability of the system with the continuous use of the system.

  3. Cloud Computing Techniques for Space Mission Design

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Senent, Juan

    2014-01-01

    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  4. Assessing problem-solving skills in construction education with the virtual construction simulator

    NASA Astrophysics Data System (ADS)

    Castronovo, Fadi

    The ability to solve complex problems is an essential skill that a construction and project manager must possess when entering the architectural, engineering, and construction industry. Such ability requires a mixture of problem-solving skills, ranging from lower to higher order thinking skills, composed of cognitive and metacognitive processes. These skills include the ability to develop and evaluate construction plans and manage the execution of such plans. However, in a typical construction program, introducing students to such complex problems can be a challenge, and most commonly the learner is presented with only part of a complex problem. To support this challenge, the traditional methodology of delivering design, engineering, and construction instruction has been going through a technological revolution, due to the rise of computer-based technology. For example, in construction classrooms, and other disciplines, simulations and educational games are being utilized to support the development of problem-solving skills. Previous engineering education research has illustrated the high potential that simulations and educational games have in engaging in lower and higher order thinking skills. Such research illustrated their capacity to support the development of problem-solving skills. This research presents evidence supporting the theory that educational simulation games can help with the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems. The educational simulation game employed in this study is the Virtual Construction Simulator (VCS). The VCS is a game developed to provide students in an engaging learning activity that simulates the planning and managing phases of a construction project. Assessment of the third iteration of the VCS(3) game has shown pedagogical value in promoting students' motivation and a basic understanding of construction concepts. To further evaluate the benefits on problem-solving skills, a new version of the VCS(4) was developed, with new building modules and assessment framework. The design and development of the VCS4 leveraged research in educational psychology, multimedia learning, human-computer interaction, and Building Information Modeling. In this dissertation the researcher aimed to evaluate the pedagogical value of the VCS4 in fostering problem-solving skills. To answer the research questions, a crossover repeated measures quasi-experiment was designed to assess the educational gains that the VCS can provide to construction education. A group of 34 students, attending a fourth-year construction course at a university in the United States was chosen to participate in the experiment. The three learning modules of the VCS were used, which challenged the students to plan and manage the construction process of a wooden pavilion, the steel erection of a dormitory, and the concrete placement of the same dormitory. Based on the results the researcher was able to provide evidence supporting the hypothesis that the chosen sample of construction students were able to gain and retain problem-solving skills necessary to solve complex construction simulation problems, no matter what the sequence with which these modules were played. In conclusion, the presented results provide evidence supporting the theory that educational simulation games can help the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems.

  5. Concept of a Cloud Service for Data Preparation and Computational Control on Custom HPC Systems in Application to Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Puzyrkov, Dmitry; Polyakov, Sergey; Podryga, Viktoriia; Markizov, Sergey

    2018-02-01

    At the present stage of computer technology development it is possible to study the properties and processes in complex systems at molecular and even atomic levels, for example, by means of molecular dynamics methods. The most interesting are problems related with the study of complex processes under real physical conditions. Solving such problems requires the use of high performance computing systems of various types, for example, GRID systems and HPC clusters. Considering the time consuming computational tasks, the need arises of software for automatic and unified monitoring of such computations. A complex computational task can be performed over different HPC systems. It requires output data synchronization between the storage chosen by a scientist and the HPC system used for computations. The design of the computational domain is also quite a problem. It requires complex software tools and algorithms for proper atomistic data generation on HPC systems. The paper describes the prototype of a cloud service, intended for design of atomistic systems of large volume for further detailed molecular dynamic calculations and computational management for this calculations, and presents the part of its concept aimed at initial data generation on the HPC systems.

  6. Formal Learning Sequences and Progression in the Studio: A Framework for Digital Design Education

    ERIC Educational Resources Information Center

    Wärnestål, Pontus

    2016-01-01

    This paper examines how to leverage the design studio learning environment throughout long-term Digital Design education in order to support students to progress from tactical, well-defined, device-centric routine design, to confidently design sustainable solutions for strategic, complex, problems for a wide range of devices and platforms in the…

  7. Embracing Social Sustainability in Design Education: A Reflection on a Case Study in Haiti

    ERIC Educational Resources Information Center

    Kjøllesdal, Anders; Asheim, Jonas; Boks, Casper

    2014-01-01

    Sustainable design issues are complex and multi-faceted and need integration in the education of young designers. Current research recommends a holistic view based on problem-solving and inter-disciplinary work, yet few design educators have brought these ideas to their full consequence. Sustainability education for designers is still often rooted…

  8. Improving the simple, complicated and complex realities of community-acquired pneumonia.

    PubMed

    Liu, S K; Homa, K; Butterly, J R; Kirkland, K B; Batalden, P B

    2009-04-01

    This paper first describes efforts to improve the care for patients hospitalised with community-acquired pneumonia and the associated changes in quality measures at a rural academic medical centre. The results of the improvement interventions and the associated clinical realities, expected outcomes, measures, improvement interventions and improvement aims are then re-examined using the Glouberman and Zimmerman typology of healthcare problems--simple, complicated and complex. The typology is then used to explore the future design and assessment of improvement interventions, which may allow better matching with the types of problem healthcare providers and organisations are confronted with. Matching improvement interventions with problem category has the possibility of improving the success of improvement efforts and the reliability of care while at the same time preserving needed provider autonomy and judgement to adapt care for more complex problems.

  9. Promoting Experimental Problem-Solving Ability in Sixth-Grade Students through Problem-Oriented Teaching of Ecology: Findings of an Intervention Study in a Complex Domain

    ERIC Educational Resources Information Center

    Roesch, Frank; Nerb, Josef; Riess, Werner

    2015-01-01

    Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of "experimental problem-solving ability" better than conventional lessons in science. We used a paper-and-pencil test to assess…

  10. Verification of Algebra Step Problems: A Chronometric Study of Human Problem Solving. Technical Report No. 253. Psychology and Education Series.

    ERIC Educational Resources Information Center

    Matthews, Paul G.; Atkinson, Richard C.

    This paper reports an experiment designed to test theoretical relations among fast problem solving, more complex and slower problem solving, and research concerning fundamental memory processes. Using a cathode ray tube, subjects were presented with propositions of the form "Y is in list X" which they memorized. In later testing they were asked to…

  11. Complex multidisciplinary system composition for aerospace vehicle conceptual design

    NASA Astrophysics Data System (ADS)

    Gonzalez, Lex

    Although, there exists a vast amount of work concerning the analysis, design, integration of aerospace vehicle systems, there is no standard for how this data and knowledge should be combined in order to create a synthesis system. Each institution creating a synthesis system has in house vehicle and hardware components they are attempting to model and proprietary methods with which to model them. This leads to the fact that synthesis systems begin as one-off creations meant to answer a specific problem. As the scope of the synthesis system grows to encompass more and more problems, so does its size and complexity; in order for a single synthesis system to answer multiple questions the number of methods and method interface must increase. As a means to curtail the requirement that the increase of an aircraft synthesis systems capability leads to an increase in its size and complexity, this research effort focuses on the idea that each problem in aerospace requires its own analysis framework. By focusing on the creation of a methodology which centers on the matching of an analysis framework towards the problem being solved, the complexity of the analysis framework is decoupled from the complexity of the system that creates it. The derived methodology allows for the composition of complex multi-disciplinary systems (CMDS) through the automatic creation and implementation of system and disciplinary method interfaces. The CMDS Composition process follows a four step methodology meant to take a problem definition and progress towards the creation of an analysis framework meant to answer said problem. The unique implementation of the CMDS Composition process take user selected disciplinary analysis methods and automatically integrates them, together in order to create a syntactically composable analysis framework. As a means of assessing the validity of the CMDS Composition process a prototype system (AVDDBMS) has been developed. AVD DBMS has been used to model the Generic Hypersonic Vehicle (GHV), an open source family of hypersonic vehicles originating from the Air Force Research Laboratory. AVDDBMS has been applied in three different ways in order to assess its validity: Verification using GHV disciplinary data, Validation using selected disciplinary analysis methods, and Application of the CMDS Composition Process to assess the design solution space for the GHV hardware. The research demonstrates the holistic effect that selection of individual disciplinary analysis methods has on the structure and integration of the analysis framework.

  12. Learning To Live with Complexity.

    ERIC Educational Resources Information Center

    Dosa, Marta

    Neither the design of information systems and networks nor the delivery of library services can claim true user centricity without an understanding of the multifaceted psychological environment of users and potential users. The complexity of the political process, social problems, challenges to scientific inquiry, entrepreneurship, and…

  13. Software Performs Complex Design Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Designers use computational fluid dynamics (CFD) to gain greater understanding of the fluid flow phenomena involved in components being designed. They also use finite element analysis (FEA) as a tool to help gain greater understanding of the structural response of components to loads, stresses and strains, and the prediction of failure modes. Automated CFD and FEA engineering design has centered on shape optimization, which has been hindered by two major problems: 1) inadequate shape parameterization algorithms, and 2) inadequate algorithms for CFD and FEA grid modification. Working with software engineers at Stennis Space Center, a NASA commercial partner, Optimal Solutions Software LLC, was able to utilize its revolutionary, one-of-a-kind arbitrary shape deformation (ASD) capability-a major advancement in solving these two aforementioned problems-to optimize the shapes of complex pipe components that transport highly sensitive fluids. The ASD technology solves the problem of inadequate shape parameterization algorithms by allowing the CFD designers to freely create their own shape parameters, therefore eliminating the restriction of only being able to use the computer-aided design (CAD) parameters. The problem of inadequate algorithms for CFD grid modification is solved by the fact that the new software performs a smooth volumetric deformation. This eliminates the extremely costly process of having to remesh the grid for every shape change desired. The program can perform a design change in a markedly reduced amount of time, a process that would traditionally involve the designer returning to the CAD model to reshape and then remesh the shapes, something that has been known to take hours, days-even weeks or months-depending upon the size of the model.

  14. Architecture-driven reuse of code in KASE

    NASA Technical Reports Server (NTRS)

    Bhansali, Sanjay

    1993-01-01

    In order to support the synthesis of large, complex software systems, we need to focus on issues pertaining to the architectural design of a system in addition to algorithm and data structure design. An approach that is based on abstracting the architectural design of a set of problems in the form of a generic architecture, and providing tools that can be used to instantiate the generic architecture for specific problem instances is presented. Such an approach also facilitates reuse of code between different systems belonging to the same problem class. An application of our approach on a realistic problem is described; the results of the exercise are presented; and how our approach compares to other work in this area is discussed.

  15. Approximation, abstraction and decomposition in search and optimization

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1992-01-01

    In this paper, I discuss four different areas of my research. One portion of my research has focused on automatic synthesis of search control heuristics for constraint satisfaction problems (CSPs). I have developed techniques for automatically synthesizing two types of heuristics for CSPs: Filtering functions are used to remove portions of a search space from consideration. Another portion of my research is focused on automatic synthesis of hierarchic algorithms for solving constraint satisfaction problems (CSPs). I have developed a technique for constructing hierarchic problem solvers based on numeric interval algebra. Another portion of my research is focused on automatic decomposition of design optimization problems. We are using the design of racing yacht hulls as a testbed domain for this research. Decomposition is especially important in the design of complex physical shapes such as yacht hulls. Another portion of my research is focused on intelligent model selection in design optimization. The model selection problem results from the difficulty of using exact models to analyze the performance of candidate designs.

  16. The Teaching of Creativity in Information Systems Programmes at South African Higher Education Institutions

    ERIC Educational Resources Information Center

    Turpin, Marita; Matthee, Machdel; Kruger, Anine

    2015-01-01

    The development of problem solving skills is a shared goal in science, engineering, mathematics and technology education. In the applied sciences, problems are often open-ended and complex, requiring a multidisciplinary approach as well as new designs. In such cases, problem solving requires not only analytical capabilities, but also creativity…

  17. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  18. A programming environment for distributed complex computing. An overview of the Framework for Interdisciplinary Design Optimization (FIDO) project. NASA Langley TOPS exhibit H120b

    NASA Technical Reports Server (NTRS)

    Townsend, James C.; Weston, Robert P.; Eidson, Thomas M.

    1993-01-01

    The Framework for Interdisciplinary Design Optimization (FIDO) is a general programming environment for automating the distribution of complex computing tasks over a networked system of heterogeneous computers. For example, instead of manually passing a complex design problem between its diverse specialty disciplines, the FIDO system provides for automatic interactions between the discipline tasks and facilitates their communications. The FIDO system networks all the computers involved into a distributed heterogeneous computing system, so they have access to centralized data and can work on their parts of the total computation simultaneously in parallel whenever possible. Thus, each computational task can be done by the most appropriate computer. Results can be viewed as they are produced and variables changed manually for steering the process. The software is modular in order to ease migration to new problems: different codes can be substituted for each of the current code modules with little or no effect on the others. The potential for commercial use of FIDO rests in the capability it provides for automatically coordinating diverse computations on a networked system of workstations and computers. For example, FIDO could provide the coordination required for the design of vehicles or electronics or for modeling complex systems.

  19. Navigating Complex Trade-Offs in Conservation and Development: An Integrative Framework

    ERIC Educational Resources Information Center

    Hirsch, Paul D.; Brosius, J. Peter

    2013-01-01

    We present a framework that makes space for multiple perspectives and ways of thinking about complex trade-off problems in conservation and development. At the core of the framework are three "integrative lenses" designed to facilitate lines of inquiry according to three unique ways of perceiving complexity. The aim of the framework is…

  20. Minimal perceptrons for memorizing complex patterns

    NASA Astrophysics Data System (ADS)

    Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo

    2016-11-01

    Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.

  1. Aggregate absorption in HMA mixtures.

    DOT National Transportation Integrated Search

    2013-12-01

    Designing hot mix asphalt (HMA) that will perform for many years is a complex balancing act of selecting an : appropriate design asphalt binder content that is sufficiently high to provide durability but not so high as to lead : to rutting problems. ...

  2. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    NASA Astrophysics Data System (ADS)

    Ryan, R.; Gross, L. A.

    1995-05-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  3. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Gross, L. A.

    1995-01-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  4. Strategic Teaching: Student Learning through Working the Process

    ERIC Educational Resources Information Center

    Spanbroek, Nancy

    2010-01-01

    The designers of our future built environment must possess intellectual tools which will allow them to be disciplined, flexible and analytical thinkers, able to address and resolve new and complex problems. In response, an experimental and collaborative design studio was designed to inspire and build on students' knowledge and their creative…

  5. Complexity of GPs' explanations about mental health problems: development, reliability, and validity of a measure

    PubMed Central

    Cape, John; Morris, Elena; Burd, Mary; Buszewicz, Marta

    2008-01-01

    Background How GPs understand mental health problems determines their treatment choices; however, measures describing GPs' thinking about such problems are not currently available. Aim To develop a measure of the complexity of GP explanations of common mental health problems and to pilot its reliability and validity. Design of study A qualitative development of the measure, followed by inter-rater reliability and validation pilot studies. Setting General practices in North London. Method Vignettes of simulated consultations with patients with mental health problems were videotaped, and an anchored measure of complexity of psychosocial explanation in response to these vignettes was developed. Six GPs, four psychologists, and two lay people viewed the vignettes. Their responses were rated for complexity, both using the anchored measure and independently by two experts in primary care mental health. In a second reliability and revalidation study, responses of 50 GPs to two vignettes were rated for complexity. The GPs also completed a questionnaire to determine their interest and training in mental health, and they completed the Depression Attitudes Questionnaire. Results Inter-rater reliability of the measure of complexity of explanation in both pilot studies was satisfactory (intraclass correlation coefficient = 0.78 and 0.72). The measure correlated with expert opinion as to what constitutes a complex explanation, and the responses of psychologists, GPs, and lay people differed in measured complexity. GPs with higher complexity scores had greater interest, more training in mental health, and more positive attitudes to depression. Conclusion Results suggest that the complexity of GPs' psychosocial explanations about common mental health problems can be reliably and validly assessed by this new standardised measure. PMID:18505616

  6. Space and Atmospheric Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Day, John H. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on space environments and the protection of materials and structures from their harsh conditions. Space environments are complex, and the complexity of spacecraft systems is increasing. Design accommodation must be realistic. Environmental problems can be limited at low cost relative to spacecraft cost.

  7. Robustness of linear quadratic state feedback designs in the presence of system uncertainty. [application to Augmentor Wing Jet STOL Research Aircraft flare control autopilot design

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Toda, M.; Sridhar, B.

    1977-01-01

    The paper deals with the problem of expressing the robustness (stability) property of a linear quadratic state feedback (LQSF) design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices so that the closed-loop system remains stable. Nonlinear time-varying and linear time-invariant perturbations are considered. The only computation required in obtaining a measure of the robustness of an LQSF design is to determine the eigenvalues of two symmetric matrices determined when solving the algebraic Riccati equation corresponding to the LQSF design problem. Results are applied to a complex dynamic system consisting of the flare control of a STOL aircraft. The design of the flare control is formulated as an LQSF tracking problem.

  8. Design optimization of transmitting antennas for weakly coupled magnetic induction communication systems

    PubMed Central

    2017-01-01

    This work focuses on the design of transmitting coils in weakly coupled magnetic induction communication systems. We propose several optimization methods that reduce the active, reactive and apparent power consumption of the coil. These problems are formulated as minimization problems, in which the power consumed by the transmitting coil is minimized, under the constraint of providing a required magnetic field at the receiver location. We develop efficient numeric and analytic methods to solve the resulting problems, which are of high dimension, and in certain cases non-convex. For the objective of minimal reactive power an analytic solution for the optimal current distribution in flat disc transmitting coils is provided. This problem is extended to general three-dimensional coils, for which we develop an expression for the optimal current distribution. Considering the objective of minimal apparent power, a method is developed to reduce the computational complexity of the problem by transforming it to an equivalent problem of lower dimension, allowing a quick and accurate numeric solution. These results are verified experimentally by testing a number of coil geometries. The results obtained allow reduced power consumption and increased performances in magnetic induction communication systems. Specifically, for wideband systems, an optimal design of the transmitter coil reduces the peak instantaneous power provided by the transmitter circuitry, and thus reduces its size, complexity and cost. PMID:28192463

  9. Methodological Problems of Nanotechnoscience

    NASA Astrophysics Data System (ADS)

    Gorokhov, V. G.

    Recently, we have reported on the definitions of nanotechnology as a new type of NanoTechnoScience and on the nanotheory as a cluster of the different natural and engineering theories. Nanotechnology is not only a new type of scientific-engineering discipline, but it evolves also in a “nonclassical” way. Nanoontology or nano scientific world view has a function of the methodological orientation for the choice the theoretical means and methods toward a solution to the scientific and engineering problems. This allows to change from one explanation and scientific world view to another without any problems. Thus, nanotechnology is both a field of scientific knowledge and a sphere of engineering activity, in other words, NanoTechnoScience is similar to Systems Engineering as the analysis and design of large-scale, complex, man/machine systems but micro- and nanosystems. Nano systems engineering as well as Macro systems engineering includes not only systems design but also complex research. Design orientation has influence on the change of the priorities in the complex research and of the relation to the knowledge, not only to “the knowledge about something”, but also to the knowledge as the means of activity: from the beginning control and restructuring of matter at the nano-scale is a necessary element of nanoscience.

  10. Making Sense of the Data from Complex Assessments.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Steinberg, Linda S.; Breyer, F. Jay; Almond, Russell G.; Johnson, Lynn

    2002-01-01

    Presents a design framework that incorporates integrated structures for modeling knowledge and skills, designing tasks, and extracting and synthesizing evidence. Illustrates these ideas in the context of a project that assesses problem solving in dental hygiene through computer-based simulations. (SLD)

  11. A design thinking framework for healthcare management and innovation.

    PubMed

    Roberts, Jess P; Fisher, Thomas R; Trowbridge, Matthew J; Bent, Christine

    2016-03-01

    The business community has learned the value of design thinking as a way to innovate in addressing people's needs--and health systems could benefit enormously from doing the same. This paper lays out how design thinking applies to healthcare challenges and how systems might utilize this proven and accessible problem-solving process. We show how design thinking can foster new approaches to complex and persistent healthcare problems through human-centered research, collective and diverse teamwork and rapid prototyping. We introduce the core elements of design thinking for a healthcare audience and show how it can supplement current healthcare management, innovation and practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Computer Systems for Teaching Complex Concepts.

    ERIC Educational Resources Information Center

    Feurzeig, Wallace

    Four Programing systems--Mentor, Stringcomp, Simon, and Logo--were designed and implemented as integral parts of research into the various ways computers may be used for teaching problem-solving concepts and skills. Various instructional contexts, among them medicine, mathematics, physics, and basic problem-solving for elementary school children,…

  13. Leveraging Collaborative, Thematic Problem-Based Learning to Integrate Curricula

    ERIC Educational Resources Information Center

    Sroufe, Robert; Ramos, Diane P.

    2015-01-01

    This study chronicles learning from faculty who designed and delivered collaborative, problem-based learning courses that anchor a one-year MBA emphasizing sustainability. While cultivating the application of learning across the curriculum, the authors engaged MBA students in solving complex, real-world sustainability challenges using a…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline ofmore » CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.« less

  15. A study on axial and torsional resonant mode matching for a mechanical system with complex nonlinear geometries

    NASA Astrophysics Data System (ADS)

    Watson, Brett; Yeo, Leslie; Friend, James

    2010-06-01

    Making use of mechanical resonance has many benefits for the design of microscale devices. A key to successfully incorporating this phenomenon in the design of a device is to understand how the resonant frequencies of interest are affected by changes to the geometric parameters of the design. For simple geometric shapes, this is quite easy, but for complex nonlinear designs, it becomes significantly more complex. In this paper, two novel modeling techniques are demonstrated to extract the axial and torsional resonant frequencies of a complex nonlinear geometry. The first decomposes the complex geometry into easy to model components, while the second uses scaling techniques combined with the finite element method. Both models overcome problems associated with using current analytical methods as design tools, and enable a full investigation of how changes in the geometric parameters affect the resonant frequencies of interest. The benefit of such models is then demonstrated through their use in the design of a prototype piezoelectric ultrasonic resonant micromotor which has improved performance characteristics over previous prototypes.

  16. Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    1997-01-01

    A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.

  17. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  18. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  19. Toward a Practical Model of Cognitive/Information Task Analysis and Schema Acquisition for Complex Problem-Solving Situations.

    ERIC Educational Resources Information Center

    Braune, Rolf; Foshay, Wellesley R.

    1983-01-01

    The proposed three-step strategy for research on human information processing--concept hierarchy analysis, analysis of example sets to teach relations among concepts, and analysis of problem sets to build a progressively larger schema for the problem space--may lead to practical procedures for instructional design and task analysis. Sixty-four…

  20. Examining the Effects of Principals' Transformational Leadership on Teachers' Creative Practices and Students' Performance in Problem-Solving

    ERIC Educational Resources Information Center

    Owoh, Jeremy Strickland

    2015-01-01

    In today's technology enriched schools and workforces, creative problem-solving is involved in many aspects of a person's life. The educational systems of developed nations are designed to raise students who are creative and skillful in solving complex problems. Technology and the age of information require nations to develop generations of…

  1. Helping Your Students To Understand Complex Social Problems.

    ERIC Educational Resources Information Center

    Valentine, Tom, Ed.; Sandlin, Jenny, Ed.

    1998-01-01

    This document, which was developed to assist individuals working in publicly sponsored literacy programs in Georgia, offers instructional plans and practical strategies designed to help teachers help students of adult literacy, adult basic education, General Educational Development, and English as a second language understand complex social…

  2. Implementation of Complexity Analyzing Based on Additional Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Li, Na; Liang, Yanhong; Liu, Fang

    According to the Complexity Theory, there is complexity in the system when the functional requirement is not be satisfied. There are several study performances for Complexity Theory based on Axiomatic Design. However, they focus on reducing the complexity in their study and no one focus on method of analyzing the complexity in the system. Therefore, this paper put forth a method of analyzing the complexity which is sought to make up the deficiency of the researches. In order to discussing the method of analyzing the complexity based on additional effect, this paper put forth two concepts which are ideal effect and additional effect. The method of analyzing complexity based on additional effect combines Complexity Theory with Theory of Inventive Problem Solving (TRIZ). It is helpful for designers to analyze the complexity by using additional effect. A case study shows the application of the process.

  3. The potential application of the blackboard model of problem solving to multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.

  4. Investigation of model-based physical design restrictions (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Lucas, Kevin; Baron, Stanislas; Belledent, Jerome; Boone, Robert; Borjon, Amandine; Couderc, Christophe; Patterson, Kyle; Riviere-Cazaux, Lionel; Rody, Yves; Sundermann, Frank; Toublan, Olivier; Trouiller, Yorick; Urbani, Jean-Christophe; Wimmer, Karl

    2005-05-01

    As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.

  5. Cycle life machine for AX-5 space suit

    NASA Technical Reports Server (NTRS)

    Schenberger, Deborah S.

    1990-01-01

    In order to accurately test the AX-5 space suit, a complex series of motions needed to be performed which provided a unique opportunity for mechanism design. The cycle life machine design showed how 3-D computer images can enhance mechanical design as well as help in visualizing mechanisms before manufacturing them. In the early stages of the design, potential problems in the motion of the joint and in the four bar linkage system were resolved using CAD. Since these problems would have been very difficult and tedious to solve on a drawing board, they would probably not have been addressed prior to fabrication, thus limiting the final design or requiring design modification after fabrication.

  6. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. In this paper a general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  7. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. A general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  8. A Wicked Problem: Early Childhood Safety in the Dynamic, Interactive Environment of Home

    PubMed Central

    Simpson, Jean; Fougere, Geoff; McGee, Rob

    2013-01-01

    Young children being injured at home is a perennial problem. When parents of young children and family workers discussed what influenced parents’ perceptions and responses to child injury risk at home, both “upstream” and “downstream” causal factors were identified. Among the former, complex and interactive facets of society and contemporary living emerged as potentially critical features. The “wicked problems” model arose from the need to find resolutions for complex problems in multidimensional environments and it proved a useful analogy for child injury. Designing dynamic strategies to provide resolutions to childhood injury, may address our over-dependence on ‘tame solutions’ that only deal with physical cause-and-effect relationships and which cannot address the complex interactive contexts in which young children are often injured. PMID:23615453

  9. Reflection as a Means of Developing Expertise in Problem Solving, Decision Making, and Complex Thinking of Designers.

    ERIC Educational Resources Information Center

    Moallem, Mahnaz

    This paper focuses on reflection and reflective thinking as a means of developing expertise in instructional designers. The need for the reflective instructional designer is discussed, and reflective thinking is examined from several perspectives, i.e., controlled thinking, tacit knowledge, epistemic assumption, abductive reasoning, willingness to…

  10. Image Making and Meaning: Educational Benefits to Studying Design in the 21st Century

    ERIC Educational Resources Information Center

    Wynn, Nancy

    2007-01-01

    Over the past 27 years, the influence of technology has revolutionized the professional practice of Design and its products produced. At the same time, technology has also created more advanced and complex pedagogy for design education. However regardless of technology's influence, critical thinking, problem solving, and presentation are still…

  11. Application of 3D Laser Scanning Technology in Complex Rock Foundation Design

    NASA Astrophysics Data System (ADS)

    Junjie, Ma; Dan, Lu; Zhilong, Liu

    2017-12-01

    Taking the complex landform of Tanxi Mountain Landscape Bridge as an example, the application of 3D laser scanning technology in the mapping of complex rock foundations is studied in this paper. A set of 3D laser scanning technologies are formed and several key engineering problems are solved. The first is 3D laser scanning technology of complex landforms. 3D laser scanning technology is used to obtain a complete 3D point cloud data model of the complex landform. The detailed and accurate results of the surveying and mapping decrease the measuring time and supplementary measuring times. The second is 3D collaborative modeling of the complex landform. A 3D model of the complex landform is established based on the 3D point cloud data model. The super-structural foundation model is introduced for 3D collaborative design. The optimal design plan is selected and the construction progress is accelerated. And the last is finite-element analysis technology of the complex landform foundation. A 3D model of the complex landform is introduced into ANSYS for building a finite element model to calculate anti-slide stability of the rock, and provides a basis for the landform foundation design and construction.

  12. Instruction Emphasizing Effort Improves Physics Problem Solving

    ERIC Educational Resources Information Center

    Li, Daoquan

    2012-01-01

    Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

  13. Moderator’s comments

    Treesearch

    Neil R. Honeycutt

    1995-01-01

    The urban and wildland interface (mix) problem exists in many communities in the United States. To effectively deal with these complex issues, cooperative approaches should be used to solve regional problems. This panel discussed the unique programs currently at work in Alameda and Contra Costa Counties in northern California. These programs were designed after the...

  14. Designing and Validating Assessments of Complex Thinking in Science

    ERIC Educational Resources Information Center

    Ryoo, Kihyun; Linn, Marcia C.

    2015-01-01

    Typical assessment systems often measure isolated ideas rather than the coherent understanding valued in current science classrooms. Such assessments may motivate students to memorize, rather than to use new ideas to solve complex problems. To meet the requirements of the Next Generation Science Standards, instruction needs to emphasize sustained…

  15. Complexity Science and the Dynamics of Climate and Communication: Reducing Nursing Home Turnover

    ERIC Educational Resources Information Center

    Anderson, Ruth A.; Corazzini, Kirsten N.; McDaniel, Reuben R., Jr.

    2004-01-01

    Purpose: Turnover in nursing homes is a widespread problem adversely affecting care quality. Using complexity theory, we tested the effect of administrative climate, communication patterns, and the interaction between the two on turnover, controlling for facility context. Design and Methods: Perceptions of administrative climate and communication…

  16. Systems engineering for very large systems

    NASA Technical Reports Server (NTRS)

    Lewkowicz, Paul E.

    1993-01-01

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  17. Systems engineering for very large systems

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Paul E.

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  18. Parameter Optimization for Turbulent Reacting Flows Using Adjoints

    NASA Astrophysics Data System (ADS)

    Lapointe, Caelan; Hamlington, Peter E.

    2017-11-01

    The formulation of a new adjoint solver for topology optimization of turbulent reacting flows is presented. This solver provides novel configurations (e.g., geometries and operating conditions) based on desired system outcomes (i.e., objective functions) for complex reacting flow problems of practical interest. For many such problems, it would be desirable to know optimal values of design parameters (e.g., physical dimensions, fuel-oxidizer ratios, and inflow-outflow conditions) prior to real-world manufacture and testing, which can be expensive, time-consuming, and dangerous. However, computational optimization of these problems is made difficult by the complexity of most reacting flows, necessitating the use of gradient-based optimization techniques in order to explore a wide design space at manageable computational cost. The adjoint method is an attractive way to obtain the required gradients, because the cost of the method is determined by the dimension of the objective function rather than the size of the design space. Here, the formulation of a novel solver is outlined that enables gradient-based parameter optimization of turbulent reacting flows using the discrete adjoint method. Initial results and an outlook for future research directions are provided.

  19. On the solution of two-point linear differential eigenvalue problems. [numerical technique with application to Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1976-01-01

    A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.

  20. Game Design Narrative for Learning: Appropriating Adventure Game Design Narrative Devices and Techniques for the Design of Interactive Learning Environments

    ERIC Educational Resources Information Center

    Dickey, Michele D.

    2006-01-01

    The purpose of this conceptual analysis is to investigate how contemporary video and computer games might inform instructional design by looking at how narrative devices and techniques support problem solving within complex, multimodal environments. Specifically, this analysis presents a brief overview of game genres and the role of narrative in…

  1. Analyzing SystemC Designs: SystemC Analysis Approaches for Varying Applications

    PubMed Central

    Stoppe, Jannis; Drechsler, Rolf

    2015-01-01

    The complexity of hardware designs is still increasing according to Moore's law. With embedded systems being more and more intertwined and working together not only with each other, but also with their environments as cyber physical systems (CPSs), more streamlined development workflows are employed to handle the increasing complexity during a system's design phase. SystemC is a C++ library for the design of hardware/software systems, enabling the designer to quickly prototype, e.g., a distributed CPS without having to decide about particular implementation details (such as whether to implement a feature in hardware or in software) early in the design process. Thereby, this approach reduces the initial implementation's complexity by offering an abstract layer with which to build a working prototype. However, as SystemC is based on C++, analyzing designs becomes a difficult task due to the complex language features that are available to the designer. Several fundamentally different approaches for analyzing SystemC designs have been suggested. This work illustrates several different SystemC analysis approaches, including their specific advantages and shortcomings, allowing designers to pick the right tools to assist them with a specific problem during the design of a system using SystemC. PMID:25946632

  2. Analyzing SystemC Designs: SystemC Analysis Approaches for Varying Applications.

    PubMed

    Stoppe, Jannis; Drechsler, Rolf

    2015-05-04

    The complexity of hardware designs is still increasing according to Moore's law. With embedded systems being more and more intertwined and working together not only with each other, but also with their environments as cyber physical systems (CPSs), more streamlined development workflows are employed to handle the increasing complexity during a system's design phase. SystemC is a C++ library for the design of hardware/software systems, enabling the designer to quickly prototype, e.g., a distributed CPS without having to decide about particular implementation details (such as whether to implement a feature in hardware or in software) early in the design process. Thereby, this approach reduces the initial implementation's complexity by offering an abstract layer with which to build a working prototype. However, as SystemC is based on C++, analyzing designs becomes a difficult task due to the complex language features that are available to the designer. Several fundamentally different approaches for analyzing SystemC designs have been suggested. This work illustrates several different SystemC analysis approaches, including their specific advantages and shortcomings, allowing designers to pick the right tools to assist them with a specific problem during the design of a system using SystemC.

  3. Optical solver of combinatorial problems: nanotechnological approach.

    PubMed

    Cohen, Eyal; Dolev, Shlomi; Frenkel, Sergey; Kryzhanovsky, Boris; Palagushkin, Alexandr; Rosenblit, Michael; Zakharov, Victor

    2013-09-01

    We present an optical computing system to solve NP-hard problems. As nano-optical computing is a promising venue for the next generation of computers performing parallel computations, we investigate the application of submicron, or even subwavelength, computing device designs. The system utilizes a setup of exponential sized masks with exponential space complexity produced in polynomial time preprocessing. The masks are later used to solve the problem in polynomial time. The size of the masks is reduced to nanoscaled density. Simulations were done to choose a proper design, and actual implementations show the feasibility of such a system.

  4. Active Control of Generalized Complex Modal Structures in a Stochastic Environment

    DTIC Science & Technology

    1992-05-15

    began with the design of a baseline controller. The system of interest was a MIMO, heavily damped structure with complex modes, and the control objective...feed-through term in our system that was due to the use of accelerometers as sensors. This provided an acceptable baseline solution to our I problem...to which we could compare our ideas for improvement. One area in which the baseline design was deficient was robust stability to unstructured

  5. Statistical complex fatigue data for SAE 4340 steel and its use in design by reliability

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Smith, J. L.

    1970-01-01

    A brief description of the complex fatigue machines used in the test program is presented. The data generated from these machines are given and discussed. Two methods of obtaining strength distributions from the data are also discussed. Then follows a discussion of the construction of statistical fatigue diagrams and their use in designing by reliability. Finally, some of the problems encountered in the test equipment and a corrective modification are presented.

  6. Expert system development for commonality analysis in space programs

    NASA Technical Reports Server (NTRS)

    Yeager, Dorian P.

    1987-01-01

    This report is a combination of foundational mathematics and software design. A mathematical model of the Commonality Analysis problem was developed and some important properties discovered. The complexity of the problem is described herein and techniques, both deterministic and heuristic, for reducing that complexity are presented. Weaknesses are pointed out in the existing software (System Commonality Analysis Tool) and several improvements are recommended. It is recommended that: (1) an expert system for guiding the design of new databases be developed; (2) a distributed knowledge base be created and maintained for the purpose of encoding the commonality relationships between design items in commonality databases; (3) a software module be produced which automatically generates commonality alternative sets from commonality databases using the knowledge associated with those databases; and (4) a more complete commonality analysis module be written which is capable of generating any type of feasible solution.

  7. Promoting Post-Formal Thinking in a U.S. History Survey Course: A Problem-Based Approach

    ERIC Educational Resources Information Center

    Wynn, Charles T.; Mosholder, Richard S.; Larsen, Carolee A.

    2016-01-01

    This article presents a problem-based learning (PBL) model for teaching a college U.S. history survey course (U.S. history since 1890) designed to promote postformal thinking skills and identify and explain thinking systems inherent in adult complex problem-solving. We also present the results of a study in which the outcomes of the PBL model were…

  8. Characteristics of an ITS that evolves from tutor to operator's assistant. [intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Chu, R. W.; Mitchell, C. M.; Govindaraj, T.

    1989-01-01

    This paper discusses the motivation and goals of a research project which addresses the problems and issues of operator training in complex engineering sytems. The research proposes a tutor/aid paradigm for the design of an intelligent tutoring system (ITS) that evolves from a tutor to an operator's assistant for supervisory control of complex dynamic systems. Characteristics of an intelligent tutoring/aiding system are identified with respect to the representation of domain knowledge, the tutor's pedagogical structure, and the student knowledge representation. The research represents a first step in the design of an intelligent complex dynamic systems.

  9. Multidisciplinary Optimization Approach for Design and Operation of Constrained and Complex-shaped Space Systems

    NASA Astrophysics Data System (ADS)

    Lee, Dae Young

    The design of a small satellite is challenging since they are constrained by mass, volume, and power. To mitigate these constraint effects, designers adopt deployable configurations on the spacecraft that result in an interesting and difficult optimization problem. The resulting optimization problem is challenging due to the computational complexity caused by the large number of design variables and the model complexity created by the deployables. Adding to these complexities, there is a lack of integration of the design optimization systems into operational optimization, and the utility maximization of spacecraft in orbit. The developed methodology enables satellite Multidisciplinary Design Optimization (MDO) that is extendable to on-orbit operation. Optimization of on-orbit operations is possible with MDO since the model predictive controller developed in this dissertation guarantees the achievement of the on-ground design behavior in orbit. To enable the design optimization of highly constrained and complex-shaped space systems, the spherical coordinate analysis technique, called the "Attitude Sphere", is extended and merged with an additional engineering tools like OpenGL. OpenGL's graphic acceleration facilitates the accurate estimation of the shadow-degraded photovoltaic cell area. This technique is applied to the design optimization of the satellite Electric Power System (EPS) and the design result shows that the amount of photovoltaic power generation can be increased more than 9%. Based on this initial methodology, the goal of this effort is extended from Single Discipline Optimization to Multidisciplinary Optimization, which includes the design and also operation of the EPS, Attitude Determination and Control System (ADCS), and communication system. The geometry optimization satisfies the conditions of the ground development phase; however, the operation optimization may not be as successful as expected in orbit due to disturbances. To address this issue, for the ADCS operations, controllers based on Model Predictive Control that are effective for constraint handling were developed and implemented. All the suggested design and operation methodologies are applied to a mission "CADRE", which is space weather mission scheduled for operation in 2016. This application demonstrates the usefulness and capability of the methodology to enhance CADRE's capabilities, and its ability to be applied to a variety of missions.

  10. EMILiO: a fast algorithm for genome-scale strain design.

    PubMed

    Yang, Laurence; Cluett, William R; Mahadevan, Radhakrishnan

    2011-05-01

    Systems-level design of cell metabolism is becoming increasingly important for renewable production of fuels, chemicals, and drugs. Computational models are improving in the accuracy and scope of predictions, but are also growing in complexity. Consequently, efficient and scalable algorithms are increasingly important for strain design. Previous algorithms helped to consolidate the utility of computational modeling in this field. To meet intensifying demands for high-performance strains, both the number and variety of genetic manipulations involved in strain construction are increasing. Existing algorithms have experienced combinatorial increases in computational complexity when applied toward the design of such complex strains. Here, we present EMILiO, a new algorithm that increases the scope of strain design to include reactions with individually optimized fluxes. Unlike existing approaches that would experience an explosion in complexity to solve this problem, we efficiently generated numerous alternate strain designs producing succinate, l-glutamate and l-serine. This was enabled by successive linear programming, a technique new to the area of computational strain design. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Algorithms for sum-of-squares-based stability analysis and control design of uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Ataei-Esfahani, Armin

    In this dissertation, we present algorithmic procedures for sum-of-squares based stability analysis and control design for uncertain nonlinear systems. In particular, we consider the case of robust aircraft control design for a hypersonic aircraft model subject to parametric uncertainties in its aerodynamic coefficients. In recent years, Sum-of-Squares (SOS) method has attracted increasing interest as a new approach for stability analysis and controller design of nonlinear dynamic systems. Through the application of SOS method, one can describe a stability analysis or control design problem as a convex optimization problem, which can efficiently be solved using Semidefinite Programming (SDP) solvers. For nominal systems, the SOS method can provide a reliable and fast approach for stability analysis and control design for low-order systems defined over the space of relatively low-degree polynomials. However, The SOS method is not well-suited for control problems relating to uncertain systems, specially those with relatively high number of uncertainties or those with non-affine uncertainty structure. In order to avoid issues relating to the increased complexity of the SOS problems for uncertain system, we present an algorithm that can be used to transform an SOS problem with uncertainties into a LMI problem with uncertainties. A new Probabilistic Ellipsoid Algorithm (PEA) is given to solve the robust LMI problem, which can guarantee the feasibility of a given solution candidate with an a-priori fixed probability of violation and with a fixed confidence level. We also introduce two approaches to approximate the robust region of attraction (RROA) for uncertain nonlinear systems with non-affine dependence on uncertainties. The first approach is based on a combination of PEA and SOS method and searches for a common Lyapunov function, while the second approach is based on the generalized Polynomial Chaos (gPC) expansion theorem combined with the SOS method and searches for parameter-dependent Lyapunov functions. The control design problem is investigated through a case study of a hypersonic aircraft model with parametric uncertainties. Through time-scale decomposition and a series of function approximations, the complexity of the aircraft model is reduced to fall within the capability of SDP solvers. The control design problem is then formulated as a convex problem using the dual of the Lyapunov theorem. A nonlinear robust controller is searched using the combined PEA/SOS method. The response of the uncertain aircraft model is evaluated for two sets of pilot commands. As the simulation results show, the aircraft remains stable under up to 50% uncertainty in aerodynamic coefficients and can follow the pilot commands.

  12. An adaptive response surface method for crashworthiness optimization

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Ren-Jye; Zhu, Ping

    2013-11-01

    Response surface-based design optimization has been commonly used for optimizing large-scale design problems in the automotive industry. However, most response surface models are built by a limited number of design points without considering data uncertainty. In addition, the selection of a response surface in the literature is often arbitrary. This article uses a Bayesian metric to systematically select the best available response surface among several candidates in a library while considering data uncertainty. An adaptive, efficient response surface strategy, which minimizes the number of computationally intensive simulations, was developed for design optimization of large-scale complex problems. This methodology was demonstrated by a crashworthiness optimization example.

  13. Problem based learning - A brief review

    NASA Astrophysics Data System (ADS)

    Nunes, Sandra; Oliveira, Teresa A.; Oliveira, Amílcar

    2017-07-01

    Teaching is a complex mission that requires not only the theoretical knowledge transmission, but furthermore requires to provide the students the necessary skills for solving real problems in their respective professional activities where complex issues and problems must be frequently faced. Over more than twenty years we have been experiencing an increase in scholar failure in the scientific area of mathematics, which means that Teaching Mathematics and related areas can be even a more complex and hard task. Scholar failure is a complex phenomenon that depends on various factors as social factors, scholar factors or biophysical factors. After numerous attempts made in order to reduce scholar failure our goal in this paper is to understand the role of "Problem Based Learning" and how this methodology can contribute to the solution of both: increasing mathematical courses success and increasing skills in the near future professionals in Portugal. Before designing a proposal for applying this technique in our institutions, we decided to conduct a survey to provide us with the necessary information about and the respective advantages and disadvantages of this methodology, so this is the brief review aim.

  14. Development of a Composite Tailoring Procedure for Airplane Wings

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    2000-01-01

    The quest for finding optimum solutions to engineering problems has existed for a long time. In modern times, the development of optimization as a branch of applied mathematics is regarded to have originated in the works of Newton, Bernoulli and Euler. Venkayya has presented a historical perspective on optimization in [1]. The term 'optimization' is defined by Ashley [2] as a procedure "...which attempts to choose the variables in a design process so as formally to achieve the best value of some performance index while not violating any of the associated conditions or constraints". Ashley presented an extensive review of practical applications of optimization in the aeronautical field till about 1980 [2]. It was noted that there existed an enormous amount of published literature in the field of optimization, but its practical applications in industry were very limited. Over the past 15 years, though, optimization has been widely applied to address practical problems in aerospace design [3-5]. The design of high performance aerospace systems is a complex task. It involves the integration of several disciplines such as aerodynamics, structural analysis, dynamics, and aeroelasticity. The problem involves multiple objectives and constraints pertaining to the design criteria associated with each of these disciplines. Many important trade-offs exist between the parameters involved which are used to define the different disciplines. Therefore, the development of multidisciplinary design optimization (MDO) techniques, in which different disciplines and design parameters are coupled into a closed loop numerical procedure, seems appropriate to address such a complex problem. The importance of MDO in successful design of aerospace systems has been long recognized. Recent developments in this field have been surveyed by Sobieszczanski-Sobieski and Haftka [6].

  15. The Factorial Survey: Design Selection and its Impact on Reliability and Internal Validity

    ERIC Educational Resources Information Center

    Dülmer, Hermann

    2016-01-01

    The factorial survey is an experimental design consisting of varying situations (vignettes) that have to be judged by respondents. For more complex research questions, it quickly becomes impossible for an individual respondent to judge all vignettes. To overcome this problem, random designs are recommended most of the time, whereas quota designs…

  16. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    ERIC Educational Resources Information Center

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  17. Design Thinking in Integrated STEAM Learning: Surveying the Landscape and Exploring Exemplars in Elementary Grades

    ERIC Educational Resources Information Center

    Cook, Kristin L.; Bush, Sarah B.

    2018-01-01

    Complementing the aims of problem-based inquiry, a pedagogical approach called design thinking (DT) has students grapple with issues that require a creative redefinition and reimagining of solutions akin to professional skills of designers, who consider conflicting priorities and complex negotiations to arrive at a solution to an ill-defined…

  18. Model-Based Optimal Experimental Design for Complex Physical Systems

    DTIC Science & Technology

    2015-12-03

    for public release. magnitude reduction in estimator error required to make solving the exact optimal design problem tractable. Instead of using a naive...for designing a sequence of experiments uses suboptimal approaches: batch design that has no feedback, or greedy ( myopic ) design that optimally...approved for public release. Equation 1 is difficult to solve directly, but can be expressed in an equivalent form using the principle of dynamic programming

  19. Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD) - Applications to the design of 3D-printed architectured materials

    NASA Astrophysics Data System (ADS)

    Sibileau, Alberto; Auricchio, Ferdinando; Morganti, Simone; Díez, Pedro

    2018-01-01

    Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.

  20. A hybrid fuzzy logic/constraint satisfaction problem approach to automatic decision making in simulation game models.

    PubMed

    Braathen, Sverre; Sendstad, Ole Jakob

    2004-08-01

    Possible techniques for representing automatic decision-making behavior approximating human experts in complex simulation model experiments are of interest. Here, fuzzy logic (FL) and constraint satisfaction problem (CSP) methods are applied in a hybrid design of automatic decision making in simulation game models. The decision processes of a military headquarters are used as a model for the FL/CSP decision agents choice of variables and rulebases. The hybrid decision agent design is applied in two different types of simulation games to test the general applicability of the design. The first application is a two-sided zero-sum sequential resource allocation game with imperfect information interpreted as an air campaign game. The second example is a network flow stochastic board game designed to capture important aspects of land manoeuvre operations. The proposed design is shown to perform well also in this complex game with a very large (billionsize) action set. Training of the automatic FL/CSP decision agents against selected performance measures is also shown and results are presented together with directions for future research.

  1. Interesting and Difficult Mathematical Problems: Changing Teachers' Views by Employing Multiple-Solution Tasks

    ERIC Educational Resources Information Center

    Guberman, Raisa; Leikin, Roza

    2013-01-01

    The study considers mathematical problem solving to be at the heart of mathematics teaching and learning, while mathematical challenge is a core element of any educational process. The study design addresses the complexity of teachers' knowledge. It is aimed at exploring the development of teachers' mathematical and pedagogical conceptions…

  2. Design as a Fusion Problem

    DTIC Science & Technology

    2008-07-01

    consider a proof as a composition relative to some system of music or as a painting. From the Bayesian perspective, any sufciently complex problem has...these types algorithms based on maximum entropy analysis. An example is the Bar-Shalom- Campo Fusion Rule: Xf (kjk) = X2(kjk) + (P22 P21)U1[X1(kjk

  3. Math Thinkercises. A Good Apple Math Activity Book for Students. Grades 4-8.

    ERIC Educational Resources Information Center

    Daniel, Becky

    This booklet designed for students in grades 4-8 provides 52 activities, including puzzles and problems. Activities range from simple to complex, giving learners practice in finding patterns, numeration, permutation, and problem solving. Calculators should be available, and students should be encouraged to discuss solutions with classmates,…

  4. The Quiet Revolution in Land Use Control.

    ERIC Educational Resources Information Center

    Bosselman, Fred; Callies, David

    The Council on Environmental Quality commissioned this report on the innovative land use laws of several states to learn how some of the most complex land use issues and problems of re-allocating responsibilities between state and local governments are being addressed. Many of the laws analyzed are designed to deal with problems that are treated…

  5. Deep Learning towards Expertise Development in a Visualization-Based Learning Environment

    ERIC Educational Resources Information Center

    Yuan, Bei; Wang, Minhong; Kushniruk, Andre W.; Peng, Jun

    2017-01-01

    With limited problem-solving capability and practical experience, novices have difficulties developing expert-like performance. It is important to make the complex problem-solving process visible to learners and provide them with necessary help throughout the process. This study explores the design and effects of a model-based learning approach…

  6. Using Scenarios to Design Complex Technology-Enhanced Learning Environments

    ERIC Educational Resources Information Center

    de Jong, Ton; Weinberger, Armin; Girault, Isabelle; Kluge, Anders; Lazonder, Ard W.; Pedaste, Margus; Ludvigsen, Sten; Ney, Muriel; Wasson, Barbara; Wichmann, Astrid; Geraedts, Caspar; Giemza, Adam; Hovardas, Tasos; Julien, Rachel; van Joolingen, Wouter R.; Lejeune, Anne; Manoli, Constantinos C.; Matteman, Yuri; Sarapuu, Tago; Verkade, Alex; Vold, Vibeke; Zacharia, Zacharias C.

    2012-01-01

    Science Created by You (SCY) learning environments are computer-based environments in which students learn about science topics in the context of addressing a socio-scientific problem. Along their way to a solution for this problem students produce many types of intermediate products or learning objects. SCY learning environments center the entire…

  7. Investigations of a Complex, Realistic Task: Intentional, Unsystematic, and Exhaustive Experimenters

    ERIC Educational Resources Information Center

    McElhaney, Kevin W.; Linn, Marcia C.

    2011-01-01

    This study examines how students' experimentation with a virtual environment contributes to their understanding of a complex, realistic inquiry problem. We designed a week-long, technology-enhanced inquiry unit on car collisions. The unit uses new technologies to log students' experimentation choices. Physics students (n = 148) in six diverse high…

  8. The importance of design thinking in medical education.

    PubMed

    Badwan, Basil; Bothara, Roshit; Latijnhouwers, Mieke; Smithies, Alisdair; Sandars, John

    2018-04-01

    Design thinking provides a creative and innovate approach to solve a complex problem. The discover, define, develop and delivery phases of design thinking lead to the most effective solution and this approach can be widely applied in medical education, from technology intervention projects to curriculum development. Participants in design thinking acquire essential transferable life-long learning skills in dealing with uncertainty and collaborative team working.

  9. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  10. A steam inerting system for hydrogen disposal for the Vandenberg Shuttle

    NASA Technical Reports Server (NTRS)

    Belknap, Stuart B.

    1988-01-01

    A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.

  11. Engineering Antifragile Systems: A Change In Design Philosophy

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.

    2014-01-01

    While technology has made astounding advances in the last century, problems are confronting the engineering community that must be solved. Cost and schedule of producing large systems are increasing at an unsustainable rate and these systems often do not perform as intended. New systems are required that may not be achieved by current methods. To solve these problems, NASA is working to infuse concepts from Complexity Science into the engineering process. Some of these problems may be solved by a change in design philosophy. Instead of designing systems to meet known requirements that will always lead to fragile systems at some degree, systems should be designed wherever possible to be antifragile: designing cognitive cyberphysical systems that can learn from their experience, adapt to unforeseen events they face in their environment, and grow stronger in the face of adversity. Several examples are presented of on ongoing research efforts to employ this philosophy.

  12. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  13. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.

  14. Design of supercritical cascades with high solidity

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1982-01-01

    The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.

  15. Designing collective behavior in a termite-inspired robot construction team.

    PubMed

    Werfel, Justin; Petersen, Kirstin; Nagpal, Radhika

    2014-02-14

    Complex systems are characterized by many independent components whose low-level actions produce collective high-level results. Predicting high-level results given low-level rules is a key open challenge; the inverse problem, finding low-level rules that give specific outcomes, is in general still less understood. We present a multi-agent construction system inspired by mound-building termites, solving such an inverse problem. A user specifies a desired structure, and the system automatically generates low-level rules for independent climbing robots that guarantee production of that structure. Robots use only local sensing and coordinate their activity via the shared environment. We demonstrate the approach via a physical realization with three autonomous climbing robots limited to onboard sensing. This work advances the aim of engineering complex systems that achieve specific human-designed goals.

  16. An Advanced User Interface Approach for Complex Parameter Study Process Specification in the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)

    2000-01-01

    The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.

  17. L.E.A.D.: a framework for evidence gathering and use for the prevention of obesity and other complex public health problems.

    PubMed

    Chatterji, Madhabi; Green, Lawrence W; Kumanyika, Shiriki

    2014-02-01

    This article summarizes a comprehensive, systems-oriented framework designed to improve the use of a wide variety of evidence sources to address population-wide obesity problems. The L.E.A.D. framework (for Locate the evidence, Evaluate the evidence, Assemble the evidence, and inform Decisions), developed by an expert consensus committee convened by the Institute of Medicine, is broadly applicable to complex, community-wide health problems. The article explains how to use the framework, presenting an evidence typology that helps specify relevant research questions and includes examples of how particular research methodologies and sources of evidence relate to questions that stem from decision-maker needs. The utility of a range of quantitative, qualitative, and mixed method designs and data sources for assembling a broad and credible evidence base is discussed, with a call for ongoing "evidence generation" to fill information gaps using the recommended systems perspective.

  18. Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.

  19. How Do High School Students Solve Probability Problems? A Mixed Methods Study on Probabilistic Reasoning

    ERIC Educational Resources Information Center

    Heyvaert, Mieke; Deleye, Maarten; Saenen, Lore; Van Dooren, Wim; Onghena, Patrick

    2018-01-01

    When studying a complex research phenomenon, a mixed methods design allows to answer a broader set of research questions and to tap into different aspects of this phenomenon, compared to a monomethod design. This paper reports on how a sequential equal status design (QUAN ? QUAL) was used to examine students' reasoning processes when solving…

  20. Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.

    1996-01-01

    The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.

  1. Using three dimensional silicone ``boots`` to solve complex remedial design problems in curtain walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.J.

    1998-12-31

    Stick system curtain wall leak problems are frequently caused by water entry at the splice joints of the curtain wall frame and failure of the internal metal joinery seals. Remedial solutions involving occupied buildings inevitably face the multiple constraints of existing construction and business operations not present during the original curtain wall construction. In most cases, even partial disassembly of the curtain wall for internal seal repairs is not feasible. Remedial solutions which must be executed from the exterior of the curtain wall often involve wet-applied or preformed sealant tape bridge joints. However, some of the more complex joints cannotmore » be repaired effectively or economically with the conventional bridge joint. Fortunately, custom fabricated three-dimensional preformed sealant boots are becoming available to address these situations. This paper discusses the design considerations and the selective use of three-dimensional preformed boots in sealing complex joint geometry that would not be effective with the conventional two-dimensional bridge joint.« less

  2. Hypertext-based design of a user interface for scheduling

    NASA Technical Reports Server (NTRS)

    Woerner, Irene W.; Biefeld, Eric

    1993-01-01

    Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.

  3. Maximum Entropy/Optimal Projection (MEOP) control design synthesis: Optimal quantification of the major design tradeoffs

    NASA Technical Reports Server (NTRS)

    Hyland, D. C.; Bernstein, D. S.

    1987-01-01

    The underlying philosophy and motivation of the optimal projection/maximum entropy (OP/ME) stochastic modeling and reduced control design methodology for high order systems with parameter uncertainties are discussed. The OP/ME design equations for reduced-order dynamic compensation including the effect of parameter uncertainties are reviewed. The application of the methodology to several Large Space Structures (LSS) problems of representative complexity is illustrated.

  4. Cognitive Task Analysis: Implications for the Theory and Practice of Instructional Design.

    ERIC Educational Resources Information Center

    Dehoney, Joanne

    Cognitive task analysis grew out of efforts by cognitive psychologists to understand problem-solving in a lab setting. It has proved a useful tool for describing expert performance in complex problem solving domains. This review considers two general models of cognitive task analysis and examines the procedures and results of analyses in three…

  5. Designs for Operationalizing Collaborative Problem Solving for Automated Assessment

    ERIC Educational Resources Information Center

    Scoular, Claire; Care, Esther; Hesse, Friedrich W.

    2017-01-01

    Collaborative problem solving is a complex skill set that draws on social and cognitive factors. The construct remains in its infancy due to lack of empirical evidence that can be drawn upon for validation. The differences and similarities between two large-scale initiatives that reflect this state of the art, in terms of underlying assumptions…

  6. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  7. Authentic Education by Providing a Situation for Student-Selected Problem-Based Learning

    ERIC Educational Resources Information Center

    Strimel, Greg

    2014-01-01

    Students are seldom given an authentic experience within school that allows them the opportunity to solve real-life complex engineering design problems that have meaning to their lives and/ or the greater society. They are often confined to learning environments that are limited by the restrictions set by course content for assessment purposes and…

  8. The problem of site variation within red pine provenance experiments

    Treesearch

    Mark J. Holst

    1966-01-01

    In spite of care taken in the selection of site and experimental design of provenance experiments, site heterogenity within the experimental area may be more complex than was anticipated when the experiment was established. The present paper describes a problem of this nature encountered in a red pine (Pinus resinosa Ait.) provenance experiment at...

  9. Guidelines for a Training Course in Noise Survey Techniques.

    ERIC Educational Resources Information Center

    Shadley, John; And Others

    The course is designed to train noise survey technicians during a 3-5 day period to make reliable measurements of 75 percent of the noise problems encountered in the community. The more complex noise problems remaining will continue to be handled by experienced specialists. These technicians will be trained to assist State and local governments in…

  10. Using Neural Networks in the Mapping of Mixed Discrete/Continuous Design Spaces With Application to Structural Design

    DTIC Science & Technology

    1994-02-01

    desired that the problem to which the design space mapping techniques were applied be easily analyzed, yet provide a design space with realistic complexity...consistent fully stressed solution. 3 DESIGN SPACE MAPPING In order to reduce the computational expense required to optimize design spaces, neural networks...employed in this study. Some of the issues involved in using neural networks to do design space mapping are how to configure the neural network, how much

  11. Learning to Predict Combinatorial Structures

    NASA Astrophysics Data System (ADS)

    Vembu, Shankar

    2009-12-01

    The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.

  12. Student Learning of Complex Earth Systems: Conceptual Frameworks of Earth Systems and Instructional Design

    ERIC Educational Resources Information Center

    Scherer, Hannah H.; Holder, Lauren; Herbert, Bruce

    2017-01-01

    Engaging students in authentic problem solving concerning environmental issues in near-surface complex Earth systems involves both developing student conceptualization of Earth as a system and applying that scientific knowledge using techniques that model those used by professionals. In this first paper of a two-part series, we review the state of…

  13. Training Social Workers and Human Service Professionals to Address the Complex Financial Needs of Clients

    ERIC Educational Resources Information Center

    Frey, Jodi Jacobson; Hopkins, Karen; Osteen, Philip; Callahan, Christine; Hageman, Sally; Ko, Jungyai

    2017-01-01

    In social work and other community-based human services settings, clients often present with complex financial problems. As a need for more formal training is beginning to be addressed, evaluation of existing training is important, and this study evaluates outcomes from the Financial Stability Pathway (FSP) project. Designed to prepare…

  14. Enhancements to the Design Manager's Aide for Intelligent Decomposition (DeMAID)

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Barthelemy, Jean-Francois M.

    1992-01-01

    This paper discusses the addition of two new enhancements to the program Design Manager's Aide for Intelligent Decomposition (DeMAID). DeMAID is a knowledge-based tool used to aid a design manager in understanding the interactions among the tasks of a complex design problem. This is done by ordering the tasks to minimize feedback, determining the participating subsystems, and displaying them in an easily understood format. The two new enhancements include (1) rules for ordering a complex assembly process and (2) rules for determining which analysis tasks must be re-executed to compute the output of one task based on a change in input to that or another task.

  15. Enhancements to the Design Manager's Aide for Intelligent Decomposition (DeMaid)

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Barthelemy, Jean-Francois M.

    1992-01-01

    This paper discusses the addition of two new enhancements to the program Design Manager's Aide for Intelligent Decomposition (DeMAID). DeMAID is a knowledge-based tool used to aid a design manager in understanding the interactions among the tasks of a complex design problem. This is done by ordering the tasks to minimize feedback, determining the participating subsystems, and displaying them in an easily understood format. The two new enhancements include (1) rules for ordering a complex assembly process and (2) rules for determining which analysis tasks must be re-executed to compute the output of one task based on a change in input to that or another task.

  16. Method of transition from 3D model to its ontological representation in aircraft design process

    NASA Astrophysics Data System (ADS)

    Govorkov, A. S.; Zhilyaev, A. S.; Fokin, I. V.

    2018-05-01

    This paper proposes the method of transition from a 3D model to its ontological representation and describes its usage in the aircraft design process. The problems of design for manufacturability and design automation are also discussed. The introduced method is to aim to ease the process of data exchange between important aircraft design phases, namely engineering and design control. The method is also intended to increase design speed and 3D model customizability. This requires careful selection of the complex systems (CAD / CAM / CAE / PDM), providing the basis for the integration of design and technological preparation of production and more fully take into account the characteristics of products and processes for their manufacture. It is important to solve this problem, as investment in the automation define the company's competitiveness in the years ahead.

  17. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design Using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.

    2015-01-01

    Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multiobjective hybrid optimal control problem. The method is demonstrated on several real-world problems.

  18. Navigating complex patients using an innovative tool: the MTM Spider Web.

    PubMed

    Morello, Candis M; Hirsch, Jan D; Lee, Kelly C

    2013-01-01

    To introduce a teaching tool that can be used to assess the complexity of medication therapy management (MTM) patients, prioritize appropriate interventions, and design patient-centered care plans for each encounter. MTM patients are complex as a result of multiple comorbidities, medications, and socioeconomic and behavioral issues. Pharmacists who provide MTM services are required to synthesize a plethora of information (medical and nonmedical), evaluate and prioritize the clinical problems, and design a comprehensive patient-centered care plan. The MTM Spider Web is a visual tool to facilitate this process. A description is provided regarding how to build the MTM Spider Web using case-based scenarios. This model can be used to teach pharmacists, health professional students, and patients. The MTM Spider Web is an innovative teaching tool that can be used to teach pharmacists and students how to assess complex patients and design a patient-centered care plan to deliver the most appropriate medication therapy.

  19. Using VCL as an Aspect-Oriented Approach to Requirements Modelling

    NASA Astrophysics Data System (ADS)

    Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian

    Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.

  20. Tackling 'wicked' health promotion problems: a New Zealand case study.

    PubMed

    Signal, Louise N; Walton, Mat D; Ni Mhurchu, Cliona; Maddison, Ralph; Bowers, Sharron G; Carter, Kristie N; Gorton, Delvina; Heta, Craig; Lanumata, Tolotea S; McKerchar, Christina W; O'Dea, Des; Pearce, Jamie

    2013-03-01

    This paper reports on a complex environmental approach to addressing 'wicked' health promotion problems devised to inform policy for enhancing food security and physical activity among Māori, Pacific and low-income people in New Zealand. This multi-phase research utilized literature reviews, focus groups, stakeholder workshops and key informant interviews. Participants included members of affected communities, policy-makers and academics. Results suggest that food security and physical activity 'emerge' from complex systems. Key areas for intervention include availability of money within households; the cost of food; improvements in urban design and culturally specific physical activity programmes. Seventeen prioritized intervention areas were explored in-depth and recommendations for action identified. These include healthy food subsidies, increasing the statutory minimum wage rate and enhancing open space and connectivity in communities. This approach has moved away from seeking individual solutions to complex social problems. In doing so, it has enabled the mapping of the relevant systems and the identification of a range of interventions while taking account of the views of affected communities and the concerns of policy-makers. The complex environmental approach used in this research provides a method to identify how to intervene in complex systems that may be relevant to other 'wicked' health promotion problems.

  1. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem.

    PubMed

    Englander, Jacob A; Conway, Bruce A

    2017-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto.

  2. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Conway, Bruce

    2016-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto.

  3. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem

    PubMed Central

    Englander, Jacob A.; Conway, Bruce A.

    2017-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto. PMID:29515289

  4. Characterizing Protein Complexes with UV absorption, Light Scattering, and Refractive Index Detection.

    NASA Astrophysics Data System (ADS)

    Trainoff, Steven

    2009-03-01

    Many modern pharmaceuticals and naturally occurring biomolecules consist of complexes of proteins and polyethylene glycol or carbohydrates. In the case of vaccine development, these complexes are often used to induce or amplify immune responses. For protein therapeutics they are used to modify solubility and function, or to control the rate of degradation and elimination of a drug from the body. Characterizing the stoichiometry of these complexes is an important industrial problem that presents a formidable challenge to analytical instrument designers. Traditional analytical methods, such as using florescent tagging, chemical assays, and mass spectrometry perturb the system so dramatically that the complexes are often destroyed or uncontrollably modified by the measurement. A solution to this problem consists of fractionating the samples and then measuring the fractions using sequential non-invasive detectors that are sensitive to different components of the complex. We present results using UV absorption, which is primarily sensitive to the protein fraction, Light Scattering, which measures the total weight average molar mass, and Refractive Index detection, which measures the net concentration. We also present a solution of the problem inter-detector band-broadening problem that has heretofore made this approach impractical. Presented will be instrumentation and an analysis method that overcome these obstacles and make this technique a reliable and robust way of non-invasively characterizing these industrially important compounds.

  5. An outer approximation method for the road network design problem

    PubMed Central

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well. PMID:29590111

  6. An outer approximation method for the road network design problem.

    PubMed

    Asadi Bagloee, Saeed; Sarvi, Majid

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well.

  7. From ``wiggly structures'' to ``unshaky towers'': problem framing, solution finding, and negotiation of courses of actions during a civil engineering unit for elementary students

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    1995-12-01

    The present study was designed to investigate problem- and solution-related activity of elementary students in ill-defined and open-ended settings. One Grade 4/5 class of 28 students engaged in the activities of the “Engineering for Children: Structures” curriculum, designed as a vehicle for introducing science concepts, providing ill-defined problem solving contexts, and fostering positive attitudes towards science and technology. Data included video recordings, ethnographic field notes, student produced artefacts (projects and engineering logbooks), and interviews with teachers and observers. These data supported the notion of problems, solutions, and courses of actions as entities with flexible ontologies. In the course of their negotiations, students demonstrated an uncanny competence to frame and reframe problems and solutions and to decide courses of actions of different complexities in spite of the ambiguous nature of (arte)facts, plans, and language. A case study approach was chosen as the literary device to report these general findings. The discussion focuses on the inevitably ambiguous nature of (arte)facts, plans, and language and the associated notion of “interpretive flexibility.” Suggestions are provided for teachers on how to deal with interpretive flexibility without seeking recourse to the didactic approaches of direct teaching. But what happens when problems and solutions are negotiable, when there are no longer isolated problems which one tries to solve but problems which maintain complex linkages with ensembles of other problems and diverse constraints, or when problems and solutions are simultaneously invented? (Lestel, 1989, p. 692, my translation)

  8. Expert systems for superalloy studies

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    There are many areas in science and engineering which require knowledge of an extremely complex foundation of experimental results in order to design methodologies for developing new materials or products. Superalloys are an area which fit well into this discussion in the sense that they are complex combinations of elements which exhibit certain characteristics. Obviously the use of superalloys in high performance, high temperature systems such as the Space Shuttle Main Engine is of interest to NASA. The superalloy manufacturing process is complex and the implementation of an expert system within the design process requires some thought as to how and where it should be implemented. A major motivation is to develop a methodology to assist metallurgists in the design of superalloy materials using current expert systems technology. Hydrogen embrittlement is disasterous to rocket engines and the heuristics can be very complex. Attacking this problem as one module in the overall design process represents a significant step forward. In order to describe the objectives of the first phase implementation, the expert system was designated Hydrogen Environment Embrittlement Expert System (HEEES).

  9. Incorporating Flexibility in the Design of Repairable Systems - Design of Microgrids

    DTIC Science & Technology

    2014-01-01

    MICROGRIDS Vijitashwa Pandey1 Annette Skowronska1,2...optimization of complex systems such as a microgrid is however, computationally intensive. The problem is exacerbated if we must incorporate...flexibility in terms of allowing the microgrid architecture and its running protocol to change with time. To reduce the computational effort, this paper

  10. Authentic Performance of Complex Problem-Solving Tasks with an EPSS.

    ERIC Educational Resources Information Center

    Leighton, Chet; McCabe, Cynthia

    Just-In-Time Learning (JIT Learning) is a semester-long graduate course that teaches corporate trainers and instructional designers how to design performance improvement interventions. This course is part of a Master's program in Instructional Technology at San Francisco State University. The course has been offered three times and has been…

  11. Instructional Design as Knowledge Management: A Knowledge-in-Practice Approach to Choosing Instructional Methods

    ERIC Educational Resources Information Center

    McIver, Derrick; Fitzsimmons, Stacey; Flanagan, David

    2016-01-01

    Decisions about instructional methods are becoming more complex, with options ranging from problem sets to experiential service-learning projects. However, instructors not trained in instructional design may make these important decisions based on convenience, comfort, or trends. Instead, this article draws on the knowledge management literature…

  12. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    NASA Astrophysics Data System (ADS)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  13. Path optimization method for the sign problem

    NASA Astrophysics Data System (ADS)

    Ohnishi, Akira; Mori, Yuto; Kashiwa, Kouji

    2018-03-01

    We propose a path optimization method (POM) to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t)(f ɛ R) and by optimizing f(t) to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.

  14. Design consideration in constructing high performance embedded Knowledge-Based Systems (KBS)

    NASA Technical Reports Server (NTRS)

    Dalton, Shelly D.; Daley, Philip C.

    1988-01-01

    As the hardware trends for artificial intelligence (AI) involve more and more complexity, the process of optimizing the computer system design for a particular problem will also increase in complexity. Space applications of knowledge based systems (KBS) will often require an ability to perform both numerically intensive vector computations and real time symbolic computations. Although parallel machines can theoretically achieve the speeds necessary for most of these problems, if the application itself is not highly parallel, the machine's power cannot be utilized. A scheme is presented which will provide the computer systems engineer with a tool for analyzing machines with various configurations of array, symbolic, scaler, and multiprocessors. High speed networks and interconnections make customized, distributed, intelligent systems feasible for the application of AI in space. The method presented can be used to optimize such AI system configurations and to make comparisons between existing computer systems. It is an open question whether or not, for a given mission requirement, a suitable computer system design can be constructed for any amount of money.

  15. Building information modelling review with potential applications in tunnel engineering of China.

    PubMed

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  16. Building information modelling review with potential applications in tunnel engineering of China

    PubMed Central

    Zhou, Weihong; Qin, Haiyang; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-01-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance. PMID:28878970

  17. Building information modelling review with potential applications in tunnel engineering of China

    NASA Astrophysics Data System (ADS)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  18. The mathematical statement for the solving of the problem of N-version software system design

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The N-version programming, as a methodology of the fault-tolerant software systems design, allows successful solving of the mentioned tasks. The use of N-version programming approach turns out to be effective, since the system is constructed out of several parallel executed versions of some software module. Those versions are written to meet the same specification but by different programmers. The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality.

  19. Asynchronous State Estimation for Discrete-Time Switched Complex Networks With Communication Constraints.

    PubMed

    Zhang, Dan; Wang, Qing-Guo; Srinivasan, Dipti; Li, Hongyi; Yu, Li

    2018-05-01

    This paper is concerned with the asynchronous state estimation for a class of discrete-time switched complex networks with communication constraints. An asynchronous estimator is designed to overcome the difficulty that each node cannot access to the topology/coupling information. Also, the event-based communication, signal quantization, and the random packet dropout problems are studied due to the limited communication resource. With the help of switched system theory and by resorting to some stochastic system analysis method, a sufficient condition is proposed to guarantee the exponential stability of estimation error system in the mean-square sense and a prescribed performance level is also ensured. The characterization of the desired estimator gains is derived in terms of the solution to a convex optimization problem. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.

  20. Computer-Based Access to Patient Care Guidelines

    PubMed Central

    Oliver, Diane E.; Estey, Greg; Ford, Penny; Burke, Sheila M.; Teplick, Richard S.; Zielstorff, Rita D.; Barnett, G. Octo

    1990-01-01

    As health care becomes more complex and expensive, interest in the potential benefits of developing and implementing patient care guidelines has emerged. We propose that a hypertext-based system designed to deal with patient-specific problems can provide a valuable method of access to such guidelines. Because intensive care medicine is one area which has become extraordinarily complex in recent years, we have chosen this as an area in which the need exists for readily accessible expertise. More specifically, in this project we are focusing on the development and implementation of guidelines for troubleshooting problems associated with the of a pulmonary artery catheter.

  1. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hierarchical calibration and validation of computational fluid dynamics models for solid sorbent-based carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Zhijie; Pan, Wenxiao

    2016-01-01

    To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesianmore » calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.« less

  3. Characterization of complex systems using the design of experiments approach: transient protein expression in tobacco as a case study.

    PubMed

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-31

    Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.

  4. On Developing a Taxonomy for Multidisciplinary Design Optimization: A Decision-Based Perspective

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper; Mistree, Farrokh

    1995-01-01

    In this paper, we approach MDO from a Decision-Based Design (DBD) perspective and explore classification schemes for designing complex systems and processes. Specifically, we focus on decisions, which are only a small portion of the Decision Support Problem (DSP) Technique, our implementation of DBD. We map coupled nonhierarchical and hierarchical representations from the DSP Technique into the Balling-Sobieski (B-S) framework (Balling and Sobieszczanski-Sobieski, 1994), and integrate domain-independent linguistic terms to complete our taxonomy. Application of DSPs to the design of complex, multidisciplinary systems include passenger aircraft, ships, damage tolerant structural and mechanical systems, and thermal energy systems. In this paper we show that Balling-Sobieski framework is consistent with that of the Decision Support Problem Technique through the use of linguistic entities to describe the same type of formulations. We show that the underlying linguistics of the solution approaches are the same and can be coalesced into a homogeneous framework with which to base the research, application, and technology MDO upon. We introduce, in the Balling-Sobieski framework, examples of multidisciplinary design, namely, aircraft, damage tolerant structural and mechanical systems, and thermal energy systems.

  5. A systems-based approach for integrated design of materials, products and design process chains

    NASA Astrophysics Data System (ADS)

    Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh

    2007-12-01

    The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by applying the method to the MESM design problem, we show that the integrated design of materials and products can be carried out more efficiently by explicitly accounting for design process decisions with the hierarchy of models.

  6. The Social Essentials of Learning: An Experimental Investigation of Collaborative Problem Solving and Knowledge Construction in Mathematics Classrooms in Australia and China

    ERIC Educational Resources Information Center

    Chan, Man Ching Esther; Clarke, David; Cao, Yiming

    2018-01-01

    Interactive problem solving and learning are priorities in contemporary education, but these complex processes have proved difficult to research. This project addresses the question "How do we optimise social interaction for the promotion of learning in a mathematics classroom?" Employing the logic of multi-theoretic research design,…

  7. An analysis of running skyline load path.

    Treesearch

    Ward W. Carson; Charles N. Mann

    1971-01-01

    This paper is intended for those who wish to prepare an algorithm to determine the load path of a running skyline. The mathematics of a simplified approach to this running skyline design problem are presented. The approach employs assumptions which reduce the complexity of the problem to the point where it can be solved on desk-top computers of limited capacities. The...

  8. L.E.A.D.: A Framework for Evidence Gathering and Use for the Prevention of Obesity and Other Complex Public Health Problems

    ERIC Educational Resources Information Center

    Chatterji, Madhabi; Green, Lawrence W.; Kumanyika, Shiriki

    2014-01-01

    This article summarizes a comprehensive, systems-oriented framework designed to improve the use of a wide variety of evidence sources to address population-wide obesity problems. The L.E.A.D. framework (for "Locate" the evidence, "Evaluate" the evidence, "Assemble" the evidence, and inform "Decisions"),…

  9. Advising a Bus Company on Number of Needed Buses: How High-School Physics Students' Deal With a "Complex Problem"?

    ERIC Educational Resources Information Center

    Balukovic, Jasmina; Slisko, Josip; Hadzibegovic, Zalkida

    2011-01-01

    Since 2003, international project PISA evaluates 15-year old students in solving problems that include "decision taking", "analysis and design of systems" and "trouble-shooting". This article presents the results of a pilot research conducted with 215 students from first to fourth grade of a high school in Sarajevo…

  10. An information driven strategy to support multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rangan, Ravi M.; Fulton, Robert E.

    1990-01-01

    The design of complex engineering systems such as aircraft, automobiles, and computers is primarily a cooperative multidisciplinary design process involving interactions between several design agents. The common thread underlying this multidisciplinary design activity is the information exchange between the various groups and disciplines. The integrating component in such environments is the common data and the dependencies that exist between such data. This may be contrasted to classical multidisciplinary analyses problems where there is coupling between distinct design parameters. For example, they may be expressed as mathematically coupled relationships between aerodynamic and structural interactions in aircraft structures, between thermal and structural interactions in nuclear plants, and between control considerations and structural interactions in flexible robots. These relationships provide analytical based frameworks leading to optimization problem formulations. However, in multidisciplinary design problems, information based interactions become more critical. Many times, the relationships between different design parameters are not amenable to analytical characterization. Under such circumstances, information based interactions will provide the best integration paradigm, i.e., there is a need to model the data entities and their dependencies between design parameters originating from different design agents. The modeling of such data interactions and dependencies forms the basis for integrating the various design agents.

  11. New Approaches to HSCT Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schrage, D. P.; Craig, J. I.; Fulton, R. E.; Mistree, F.

    1996-01-01

    The successful development of a capable and economically viable high speed civil transport (HSCT) is perhaps one of the most challenging tasks in aeronautics for the next two decades. At its heart it is fundamentally the design of a complex engineered system that has significant societal, environmental and political impacts. As such it presents a formidable challenge to all areas of aeronautics, and it is therefore a particularly appropriate subject for research in multidisciplinary design and optimization (MDO). In fact, it is starkly clear that without the availability of powerful and versatile multidisciplinary design, analysis and optimization methods, the design, construction and operation of im HSCT simply cannot be achieved. The present research project is focused on the development and evaluation of MDO methods that, while broader and more general in scope, are particularly appropriate to the HSCT design problem. The research aims to not only develop the basic methods but also to apply them to relevant examples from the NASA HSCT R&D effort. The research involves a three year effort aimed first at the HSCT MDO problem description, next the development of the problem, and finally a solution to a significant portion of the problem.

  12. Quality improvement--boon or boondoggle?

    PubMed

    Paterson, M A; Wendel, J

    1994-01-01

    Is quality improvement (QI) reducing healthcare costs while improving patient care? Researchers find that QI has improved employee satisfaction and morale, but it was designed to do more. One solution is to use problem-solving techniques to help teams identify the level at which they want to address a problem, whether that be the subinstitutional, institutional, or system level. If QI is to fulfill its promise, skilled managers must create effective teams capable of defining and solving complex problems.

  13. Aeropropulsion 1987. Session 2: Aeropropulsion Structures Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Aeropropulsion systems present unique problems to the structural engineer. The extremes in operating temperatures, rotational effects, and behaviors of advanced material systems combine into complexities that require advances in many scientific disciplines involved in structural analysis and design procedures. This session provides an overview of the complexities of aeropropulsion structures and the theoretical, computational, and experimental research conducted to achieve the needed advances.

  14. Analysis and Design of Complex Network Environments

    DTIC Science & Technology

    2014-02-01

    entanglements among un- measured variables. This “potential entanglement ” type of network complexity is previously unaddressed in the literature, yet it...Appreciating the power of structural representations that allow for potential entanglement among unmeasured variables to simplify network inference problems...rely on the idea of subsystems and allows for potential entanglement among unmeasured states. As a result, inferring a system’s signal structure

  15. A Complexity Approach to Psychological Well-Being in Adolescence: Major Strengths and Methodological Issues

    ERIC Educational Resources Information Center

    Gonzalez, Monica; Casas, Ferran; Coenders, Germa

    2007-01-01

    Psychological well-being in adolescence is an increasing field of study. Deepening in its knowledge during this period of life can be of a lot of help to the designing of more adjusted prevention programs aimed to avoid or reduce the problems adolescents might be experiencing. Complexity theories can be a productive alternative to the important…

  16. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    NASA Technical Reports Server (NTRS)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  17. Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.

    PubMed

    Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee

    2014-10-01

    Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.

  18. Multi-objective engineering design using preferences

    NASA Astrophysics Data System (ADS)

    Sanchis, J.; Martinez, M.; Blasco, X.

    2008-03-01

    System design is a complex task when design parameters have to satisy a number of specifications and objectives which often conflict with those of others. This challenging problem is called multi-objective optimization (MOO). The most common approximation consists in optimizing a single cost index with a weighted sum of objectives. However, once weights are chosen the solution does not guarantee the best compromise among specifications, because there is an infinite number of solutions. A new approach can be stated, based on the designer's experience regarding the required specifications and the associated problems. This valuable information can be translated into preferences for design objectives, and will lead the search process to the best solution in terms of these preferences. This article presents a new method, which enumerates these a priori objective preferences. As a result, a single objective is built automatically and no weight selection need be performed. Problems occuring because of the multimodal nature of the generated single cost index are managed with genetic algorithms (GAs).

  19. About the bears and the bees: Adaptive responses to asymmetric warfare

    NASA Astrophysics Data System (ADS)

    Ryan, Alex

    Conventional military forces are organised to generate large scale effects against similarly structured adversaries. Asymmetric warfare is a 'game' between a conventional military force and a weaker adversary that is unable to match the scale of effects of the conventional force. In asymmetric warfare, an insurgents' strategy can be understood using a multi-scale perspective: by generating and exploiting fine scale complexity, insurgents prevent the conventional force from acting at the scale they are designed for. This paper presents a complex systems approach to the problem of asymmetric warfare, which shows how future force structures can be designed to adapt to environmental complexity at multiple scales and achieve full spectrum dominance.

  20. About the bears and the bees: Adaptive responses to asymmetric warfare

    NASA Astrophysics Data System (ADS)

    Ryan, Alex

    Conventional military forces are organised to generate large scale effects against similarly structured adversaries. Asymmetric warfare is a `game' between a conventional military force and a weaker adversary that is unable to match the scale of effects of the conventional force. In asymmetric warfare, an insurgents' strategy can be understood using a multi-scale perspective: by generating and exploiting fine scale complexity, insurgents prevent the conventional force from acting at the scale they are designed for. This paper presents a complex systems approach to the problem of asymmetric warfare, which shows how future force structures can be designed to adapt to environmental complexity at multiple scales and achieve full spectrum dominance.

  1. Design of bearings for rotor systems based on stability

    NASA Technical Reports Server (NTRS)

    Dhar, D.; Barrett, L. E.; Knospe, C. R.

    1992-01-01

    Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.

  2. GUIDELINES TO ASSESSING REGIONAL VULNERABILITIES

    EPA Science Inventory

    Decision-makers today face increasingly complex environmental problems that require integrative and innovative approaches for analyzing, modeling, and interpreting various types of information. ReVA acknowledges this need and is designed to evaluate methods and models for synthe...

  3. Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Nancy S.; Finley, Patrick D.; Beyeler, Walter Eugene

    2012-01-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understandingmore » and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS« less

  4. Study on planning and design of ecological tourist rural complex for the elderly

    NASA Astrophysics Data System (ADS)

    Han, Zhoulin; Jiang, Nan; He, Yunxiao; Long, Yanping

    2018-03-01

    In order to deal with the increasingly serious aging problem in China, a new model about serving the aged better needs to be explored. This paper puts forward the concept of ecological tourist rural complex for the elderly, a novel pattern that combining the rural retirement place with pastoral complex which is proposed recently. A concrete example of Deteng complex in Mianyang is given to explore the construction condition and planning approach. Three important aspects including pastoral, ecology, serving the aged are the core elements to develop ecological tourist rural complex for the elderly.

  5. Artificial intelligence and design: Opportunities, research problems and directions

    NASA Technical Reports Server (NTRS)

    Amarel, Saul

    1990-01-01

    The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions that are of intrinsic concern to AI. We present examples of current AI work on specific design tasks, and discuss new directions of research, both as extensions of current work and in the context of new design tasks where domain knowledge is either intractable or incomplete. The domains discussed include Digital Circuit Design, Mechanical Design of Rotational Transmissions, Design of Computer Architectures, Marine Design, Aircraft Design, and Design of Chemical Processes and Materials. Work in these domains is significant on technical grounds, and it is also important for economic and policy reasons.

  6. Rapid Design of Gravity Assist Trajectories

    NASA Technical Reports Server (NTRS)

    Carrico, J.; Hooper, H. L.; Roszman, L.; Gramling, C.

    1991-01-01

    Several International Solar Terrestrial Physics (ISTP) missions require the design of complex gravity assisted trajectories in order to investigate the interaction of the solar wind with the Earth's magnetic field. These trajectories present a formidable trajectory design and optimization problem. The philosophy and methodology that enable an analyst to design and analyse such trajectories are discussed. The so called 'floating end point' targeting, which allows the inherently nonlinear multiple body problem to be solved with simple linear techniques, is described. The combination of floating end point targeting with analytic approximations with a Newton method targeter to achieve trajectory design goals quickly, even for the very sensitive double lunar swingby trajectories used by the ISTP missions, is demonstrated. A multiconic orbit integration scheme allows fast and accurate orbit propagation. A prototype software tool, Swingby, built for trajectory design and launch window analysis, is described.

  7. Tractable Experiment Design via Mathematical Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian J.

    This presentation summarizes the development and implementation of quantitative design criteria motivated by targeted inference objectives for identifying new, potentially expensive computational or physical experiments. The first application is concerned with estimating features of quantities of interest arising from complex computational models, such as quantiles or failure probabilities. A sequential strategy is proposed for iterative refinement of the importance distributions used to efficiently sample the uncertain inputs to the computational model. In the second application, effective use of mathematical surrogates is investigated to help alleviate the analytical and numerical intractability often associated with Bayesian experiment design. This approach allows formore » the incorporation of prior information into the design process without the need for gross simplification of the design criterion. Illustrative examples of both design problems will be presented as an argument for the relevance of these research problems.« less

  8. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.

  9. Algorithms for bilevel optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.

  10. An intelligent, knowledge-based multiple criteria decision making advisor for systems design

    NASA Astrophysics Data System (ADS)

    Li, Yongchang

    In systems engineering, design and operation of systems are two main problems which always attract researcher's attentions. The accomplishment of activities in these problems often requires proper decisions to be made so that the desired goal can be achieved, thus, decision making needs to be carefully fulfilled in the design and operation of systems. Design is a decision making process which permeates through out the design process, and is at the core of all design activities. In modern aircraft design, more and more attention is paid to the conceptual and preliminary design phases so as to increase the odds of choosing a design that will ultimately be successful at the completion of the design process, therefore, decisions made during these early design stages play a critical role in determining the success of a design. Since aerospace systems are complex systems with interacting disciplines and technologies, the Decision Makers (DMs) dealing with such design problems are involved in balancing the multiple, potentially conflicting attributes/criteria, transforming a large amount of customer supplied guidelines into a solidly defined set of requirement definitions. Thus, one could state with confidence that modern aerospace system design is a Multiple Criteria Decision Making (MCDM) process. A variety of existing decision making methods are available to deal with this type of decision problems. The selection of the most appropriate decision making method is of particular importance since inappropriate decision methods are likely causes of misleading engineering design decisions. With no sufficient knowledge about each of the methods, it is usually difficult for the DMs to find an appropriate analytical model capable of solving their problems. In addition, with the complexity of the decision problem and the demand for more capable methods increasing, new decision making methods are emerging with time. These various methods exacerbate the difficulty of the selection of an appropriate decision making method. Furthermore, some DMs may be exclusively using one or two specific methods which they are familiar with or trust and not realizing that they may be inappropriate to handle certain classes of the problems, thus yielding erroneous results. These issues reveal that in order to ensure a good decision a suitable decision method should be chosen before the decision making process proceeds. The first part of this dissertation proposes an MCDM process supported by an intelligent, knowledge-based advisor system referred to as Multi-Criteria Interactive Decision-Making Advisor and Synthesis process (MIDAS), which is able to facilitate the selection of the most appropriate decision making method and which provides insight to the user for fulfilling different preferences. The second part of this dissertation presents an autonomous decision making advisor which is capable of dealing with ever-evolving real time information and making autonomous decisions under uncertain conditions. The advisor encompasses a Markov Decision Process (MDP) formulation which takes uncertainty into account when determines the best action for each system state. (Abstract shortened by UMI.)

  11. Dependency visualization for complex system understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smart, J. Allison Cory

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impairedmore » as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.« less

  12. Optimization of coronagraph design for segmented aperture telescopes

    NASA Astrophysics Data System (ADS)

    Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave

    2017-09-01

    The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end-to-end telescope system stability requirements can be met. Ongoing work includes advances of the AFO algorithm reported here to design in additional robustness to a resolved star, and other phase or amplitude aberrations to be encountered in a real segmented aperture space telescope.

  13. A modular approach to large-scale design optimization of aerospace systems

    NASA Astrophysics Data System (ADS)

    Hwang, John T.

    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.

  14. Trajectory optimization for lunar soft landing with complex constraints

    NASA Astrophysics Data System (ADS)

    Chu, Huiping; Ma, Lin; Wang, Kexin; Shao, Zhijiang; Song, Zhengyu

    2017-11-01

    A unified trajectory optimization framework with initialization strategies is proposed in this paper for lunar soft landing for various missions with specific requirements. Two main missions of interest are Apollo-like Landing from low lunar orbit and Vertical Takeoff Vertical Landing (a promising mobility method) on the lunar surface. The trajectory optimization is characterized by difficulties arising from discontinuous thrust, multi-phase connections, jump of attitude angle, and obstacles avoidance. Here R-function is applied to deal with the discontinuities of thrust, checkpoint constraints are introduced to connect multiple landing phases, attitude angular rate is designed to get rid of radical changes, and safeguards are imposed to avoid collision with obstacles. The resulting dynamic problems are generally with complex constraints. The unified framework based on Gauss Pseudospectral Method (GPM) and Nonlinear Programming (NLP) solver are designed to solve the problems efficiently. Advanced initialization strategies are developed to enhance both the convergence and computation efficiency. Numerical results demonstrate the adaptability of the framework for various landing missions, and the performance of successful solution of difficult dynamic problems.

  15. Using cement paste rheology to predict concrete mix design problems : technical report.

    DOT National Transportation Integrated Search

    2009-07-01

    The complex interaction between cement and chemical/mineral admixtures in concrete mixture sometimes leads to : unpredictable concrete performance in the field, which is generally defined as concrete incompatibilities. Cement paste : rheology measure...

  16. Software For Least-Squares And Robust Estimation

    NASA Technical Reports Server (NTRS)

    Jeffreys, William H.; Fitzpatrick, Michael J.; Mcarthur, Barbara E.; Mccartney, James

    1990-01-01

    GAUSSFIT computer program includes full-featured programming language facilitating creation of mathematical models solving least-squares and robust-estimation problems. Programming language designed to make it easy to specify complex reduction models. Written in 100 percent C language.

  17. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  18. Satellite-borne active phased array techniques for mobile communications

    NASA Astrophysics Data System (ADS)

    Sheehan, P. G.; Forrest, J. R.

    1986-07-01

    This paper investigates the design of active phased arrays for communications satellites. In particular, consideration is given to the problems occurring when active arrays are required to produce multiple beams. There is a real need to keep the complexity of the array electronics to a minimum, but this conflicts with the desire to obtain the greatest possible freedom of control of the radiation pattern produced. The paper demonstrates a method of coping with the problem. Low-gain elements are used to provide design freedom and they are grouped into subarrays to limit the complexity of the rest of the system. With appropriate configurations of subarrays, greatly improved radiation pattern characteristics can be obtained and frequency reuse between multiple beams becomes feasible. A demonstration model of 108 microstrip patches grouped into 32 subarrays, operating at 12 GHz, has been constructed and verifies that the technique is effective.

  19. Fuzzy Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Prescribed Performance.

    PubMed

    Zhang, Jin-Xi; Yang, Guang-Hong

    2018-05-01

    This paper investigates the tracking control problem for a family of strict-feedback systems in the presence of unknown nonlinearities and immeasurable system states. A low-complexity adaptive fuzzy output feedback control scheme is proposed, based on a backstepping method. In the control design, a fuzzy adaptive state observer is first employed to estimate the unmeasured states. Then, a novel error transformation approach together with a new modification mechanism is introduced to guarantee the finite-time convergence of the output error to a predefined region and ensure the closed-loop stability. Compared with the existing methods, the main advantages of our approach are that: 1) without using extra command filters or auxiliary dynamic surface control techniques, the problem of explosion of complexity can still be addressed and 2) the design procedures are independent of the initial conditions. Finally, two practical examples are performed to further illustrate the above theoretic findings.

  20. Physical insight into the simultaneous optimization of structure and control

    NASA Technical Reports Server (NTRS)

    Jacques, Robert N.; Miller, David W.

    1993-01-01

    Recent trends in spacecraft design which yield larger structures with more stringent performance requirements place many flexible modes of the structure within the bandwidth of active controllers. The resulting complications to the spacecraft design make it highly desirable to understand the impact of structural changes on an optimally controlled structure. This work uses low structural models with optimal H(sub 2) and H(sub infinity) controllers to develop some basic insight into this problem. This insight concentrates on several basic approaches to improving controlled performance and how these approaches interact in determining the optimal designs. A numerical example is presented to demonstrate how this insight can be generalized to more complex problems.

  1. Lower bound on the time complexity of local adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Chen, Zhenghao; Koh, Pang Wei; Zhao, Yan

    2006-11-01

    The adiabatic theorem of quantum physics has been, in recent times, utilized in the design of local search quantum algorithms, and has been proven to be equivalent to standard quantum computation, that is, the use of unitary operators [D. Aharonov in Proceedings of the 45th Annual Symposium on the Foundations of Computer Science, 2004, Rome, Italy (IEEE Computer Society Press, New York, 2004), pp. 42-51]. Hence, the study of the time complexity of adiabatic evolution algorithms gives insight into the computational power of quantum algorithms. In this paper, we present two different approaches of evaluating the time complexity for local adiabatic evolution using time-independent parameters, thus providing effective tests (not requiring the evaluation of the entire time-dependent gap function) for the time complexity of newly developed algorithms. We further illustrate our tests by displaying results from the numerical simulation of some problems, viz. specially modified instances of the Hamming weight problem.

  2. Developing Seventh Grade Students' Understanding of Complex Environmental Problems with Systems Tools and Representations: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Doganca Kucuk, Zerrin; Saysel, Ali Kerem

    2018-01-01

    A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A…

  3. Problem Reframing: Intelligence Professionals’ Role in Design

    DTIC Science & Technology

    2010-04-01

    The idea of differences exists in intelligence analyst’s Don McDowell’s book Strategic Intelligence, when he explains that covering all events...Complexity, (New York, Basic Books , 2000), 7. 57 Gharajedaghi, 107. 20 intelligence community with an end result of increasing the potential for greater...Avoiding Error in Complex Situations, (New York: Basic Books , 1996), 164. 79 Ibid. 26 understanding the operational environment to planning the

  4. Early stage response problem for post-disaster incidents

    NASA Astrophysics Data System (ADS)

    Kim, Sungwoo; Shin, Youngchul; Lee, Gyu M.; Moon, Ilkyeong

    2018-07-01

    Research on evacuation plans for reducing damages and casualties has been conducted to advise defenders against threats. However, despite the attention given to the research in the past, emergency response management, designed to neutralize hazards, has been undermined since planners frequently fail to apprehend the complexities and contexts of the emergency situation. Therefore, this study considers a response problem with unique characteristics for the duration of the emergency. An early stage response problem is identified to find the optimal routing and scheduling plan for responders to prevent further hazards. Due to the complexity of the proposed mathematical model, two algorithms are developed. Data from a high-rise building, called Central City in Seoul, Korea, are used to evaluate the algorithms. Results show that the proposed algorithms can procure near-optimal solutions within a reasonable time.

  5. Human-Centered Aviation Automation: Principles and Guidelines

    NASA Technical Reports Server (NTRS)

    Billings, Charles E.

    1996-01-01

    This document presents principles and guidelines for human-centered automation in aircraft and in the aviation system. Drawing upon operational experience with highly automated aircraft, it describes classes of problems that have occurred in these vehicles, the effects of advanced automation on the human operators of the aviation system, and ways in which these problems may be avoided in the design of future aircraft and air traffic management automation. Many incidents and a few serious accidents suggest that these problems are related to automation complexity, autonomy, coupling, and opacity, or inadequate feedback to operators. An automation philosophy that emphasizes improved communication, coordination and cooperation between the human and machine elements of this complex, distributed system is required to improve the safety and efficiency of aviation operations in the future.

  6. High-frequency CAD-based scattering model: SERMAT

    NASA Astrophysics Data System (ADS)

    Goupil, D.; Boutillier, M.

    1991-09-01

    Specifications for an industrial radar cross section (RCS) calculation code are given: it must be able to exchange data with many computer aided design (CAD) systems, it must be fast, and it must have powerful graphic tools. Classical physical optics (PO) and equivalent currents (EC) techniques have proven their efficiency on simple objects for a long time. Difficult geometric problems occur when objects with very complex shapes have to be computed. Only a specific geometric code can solve these problems. We have established that, once these problems have been solved: (1) PO and EC give good results on complex objects of large size compared to wavelength; and (2) the implementation of these objects in a software package (SERMAT) allows fast and sufficiently precise domain RCS calculations to meet industry requirements in the domain of stealth.

  7. A Knowledge-Based and Model-Driven Requirements Engineering Approach to Conceptual Satellite Design

    NASA Astrophysics Data System (ADS)

    Dos Santos, Walter A.; Leonor, Bruno B. F.; Stephany, Stephan

    Satellite systems are becoming even more complex, making technical issues a significant cost driver. The increasing complexity of these systems makes requirements engineering activities both more important and difficult. Additionally, today's competitive pressures and other market forces drive manufacturing companies to improve the efficiency with which they design and manufacture space products and systems. This imposes a heavy burden on systems-of-systems engineering skills and particularly on requirements engineering which is an important phase in a system's life cycle. When this is poorly performed, various problems may occur, such as failures, cost overruns and delays. One solution is to underpin the preliminary conceptual satellite design with computer-based information reuse and integration to deal with the interdisciplinary nature of this problem domain. This can be attained by taking a model-driven engineering approach (MDE), in which models are the main artifacts during system development. MDE is an emergent approach that tries to address system complexity by the intense use of models. This work outlines the use of SysML (Systems Modeling Language) and a novel knowledge-based software tool, named SatBudgets, to deal with these and other challenges confronted during the conceptual phase of a university satellite system, called ITASAT, currently being developed by INPE and some Brazilian universities.

  8. Design of integrated pitch axis for autopilot/autothrottle and integrated lateral axis for autopilot/yaw damper for NASA TSRV airplane using integral LQG methodology

    NASA Technical Reports Server (NTRS)

    Kaminer, Isaac; Benson, Russell A.; Coleman, Edward E.; Ebrahimi, Yaghoob S.

    1990-01-01

    Two designs are presented for control systems for the NASA Transport System Research Vehicle (TSRV) using integral Linear Quadratic Gaussian (LQG) methodology. The first is an integrated longitudinal autopilot/autothrottle design and the second design is an integrated lateral autopilot/yaw damper/sideslip controller design. It is shown that a systematic top-down approach to a complex design problem combined with proper application of modern control synthesis techniques yields a satisfactory solution in a reasonable period of time.

  9. New Approaches to HSCT Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schrage, Daniel P.; Craig, James I.; Fulton, Robert E.; Mistree, Farrokh

    1999-01-01

    New approaches to MDO have been developed and demonstrated during this project on a particularly challenging aeronautics problem- HSCT Aeroelastic Wing Design. To tackle this problem required the integration of resources and collaboration from three Georgia Tech laboratories: ASDL, SDL, and PPRL, along with close coordination and participation from industry. Its success can also be contributed to the close interaction and involvement of fellows from the NASA Multidisciplinary Analysis and Optimization (MAO) program, which was going on in parallel, and provided additional resources to work the very complex, multidisciplinary problem, along with the methods being developed. The development of the Integrated Design Engineering Simulator (IDES) and its initial demonstration is a necessary first step in transitioning the methods and tools developed to larger industrial sized problems of interest. It also provides a framework for the implementation and demonstration of the methodology. Attachment: Appendix A - List of publications. Appendix B - Year 1 report. Appendix C - Year 2 report. Appendix D - Year 3 report. Appendix E - accompanying CDROM.

  10. Some problems with the design of self-learning management systems

    NASA Technical Reports Server (NTRS)

    Flikop, Ziny

    1992-01-01

    In this paper some problems in the design of management systems for complex objects are discussed. Considering the absence of adequate models and the fact that human expertise in the management of non-stationary objects becomes obsolete quickly, the use of self-learning together with a two-step optimization of on-line control rules is suggested. To prepare for the object analysis, a set of definitions has been proposed. Traditional and fuzzy sets approaches are used in the analysis. To decrease the reaction time of the control system, we propose the development of control rules without feedback.

  11. Fluctuating residual limb volume accommodated with an adjustable, modular socket design: A novel case report.

    PubMed

    Mitton, Kay; Kulkarni, Jai; Dunn, Kenneth William; Ung, Anthony Hoang

    2017-10-01

    This novel case report describes the problems of prescribing a prosthetic socket in a left transfemoral amputee secondary to chronic patellofemoral instability compounded by complex regional pain syndrome. Case Description and Methods: Following the amputation, complex regional pain syndrome symptoms recurred in the residual limb, presenting mainly with oedema. Due to extreme daily volume fluctuations of the residual limb, a conventional, laminated thermoplastic socket fitting was not feasible. Findings and Outcomes: An adjustable, modular socket design was trialled. The residual limb volume fluctuations were accommodated within the socket. Amputee rehabilitation could be continued, and the rehabilitation goals were achieved. The patient was able to wear the prosthesis for 8 h daily and to walk unaided indoors and outdoors. An adjustable, modular socket design accommodated the daily residual limb volume fluctuations and provided a successful outcome in this case. It demonstrates the complexities of socket fitting and design with volume fluctuations. Clinical relevance Ongoing complex regional pain syndrome symptoms within the residual limb can lead to fitting difficulties in a conventional, laminated thermoplastic socket due to volume fluctuations. An adjustable, modular socket design can accommodate this and provide a successful outcome.

  12. On the impact of communication complexity in the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  13. On the impact of communication complexity on the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D. B.; Van Rosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical alorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In this second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm-independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  14. Multiobjective optimization techniques for structural design

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The multiobjective programming techniques are important in the design of complex structural systems whose quality depends generally on a number of different and often conflicting objective functions which cannot be combined into a single design objective. The applicability of multiobjective optimization techniques is studied with reference to simple design problems. Specifically, the parameter optimization of a cantilever beam with a tip mass and a three-degree-of-freedom vabration isolation system and the trajectory optimization of a cantilever beam are considered. The solutions of these multicriteria design problems are attempted by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It has been observed that the game theory approach required the maximum computational effort, but it yielded better optimum solutions with proper balance of the various objective functions in all the cases.

  15. Designing Adaptive Low Dissipative High Order Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.; Parks, John W. (Technical Monitor)

    2002-01-01

    Proper control of the numerical dissipation/filter to accurately resolve all relevant multiscales of complex flow problems while still maintaining nonlinear stability and efficiency for long-time numerical integrations poses a great challenge to the design of numerical methods. The required type and amount of numerical dissipation/filter are not only physical problem dependent, but also vary from one flow region to another. This is particularly true for unsteady high-speed shock/shear/boundary-layer/turbulence/acoustics interactions and/or combustion problems since the dynamics of the nonlinear effect of these flows are not well-understood. Even with extensive grid refinement, it is of paramount importance to have proper control on the type and amount of numerical dissipation/filter in regions where it is needed.

  16. Computational problems and signal processing in SETI

    NASA Technical Reports Server (NTRS)

    Deans, Stanley R.; Cullers, D. K.; Stauduhar, Richard

    1991-01-01

    The Search for Extraterrestrial Intelligence (SETI), currently being planned at NASA, will require that an enormous amount of data (on the order of 10 exp 11 distinct signal paths for a typical observation) be analyzed in real time by special-purpose hardware. Even though the SETI system design is not based on maximum entropy and Bayesian methods (partly due to the real-time processing constraint), it is expected that enough data will be saved to be able to apply these and other methods off line where computational complexity is not an overriding issue. Interesting computational problems that relate directly to the system design for processing such an enormous amount of data have emerged. Some of these problems are discussed, along with the current status on their solution.

  17. Water Power in The Wilderness: The History of Bonneville Lock and Dam

    DTIC Science & Technology

    1997-01-01

    to present many complex problems of site selection, proper construction techniques, and equipment design . The project first received serious...Bonneville Dam amply lived up to the hopes and dreams of its promoters and designers . In the short term, Bonneville supplied essential power for the...plan for the Columbia River. It designated Grand Coulee as the key upriver project and Bonneville as the lowermost in the chain . Report data on the

  18. Design of automata theory of cubical complexes with applications to diagnosis and algorithmic description

    NASA Technical Reports Server (NTRS)

    Roth, J. P.

    1972-01-01

    Methods for development of logic design together with algorithms for failure testing, a method for design of logic for ultra-large-scale integration, extension of quantum calculus to describe the functional behavior of a mechanism component-by-component and to computer tests for failures in the mechanism using the diagnosis algorithm, and the development of an algorithm for the multi-output 2-level minimization problem are discussed.

  19. Is There Creativity in Design? From a Perspective of School Design and Technology in Hong Kong

    ERIC Educational Resources Information Center

    Wong, Yi Lin; Siu, Kin Wai Michael

    2012-01-01

    As creativity is likely to become a crucial aspect of living in the future, it is important for educators to teach students to think creatively when solving constantly evolving and increasingly complex problems. Supported by the idea that creativity can be taught and learnt, elements of creativity are now embedded in secondary school education.…

  20. Quest to Learn: Developing the School for Digital Kids

    ERIC Educational Resources Information Center

    Salen, Katie; Torres, Robert; Wolozin, Loretta; Rufo-Tepper, Rebecca; Shapiro, Arana

    2011-01-01

    Quest to Learn, an innovative school for grades 6 to 12 in New York City, grew out of the idea that gaming and game design offer a promising new paradigm for curriculum and learning. The designers of Quest to Learn developed an approach to learning that draws from what games do best: drop kids into inquiry-based, complex problem spaces that are…

  1. Improving engineering system design by formal decomposition, sensitivity analysis, and optimization

    NASA Technical Reports Server (NTRS)

    Sobieski, J.; Barthelemy, J. F. M.

    1985-01-01

    A method for use in the design of a complex engineering system by decomposing the problem into a set of smaller subproblems is presented. Coupling of the subproblems is preserved by means of the sensitivity derivatives of the subproblem solution to the inputs received from the system. The method allows for the division of work among many people and computers.

  2. Modeling Real-Time Applications with Reusable Design Patterns

    NASA Astrophysics Data System (ADS)

    Rekhis, Saoussen; Bouassida, Nadia; Bouaziz, Rafik

    Real-Time (RT) applications, which manipulate important volumes of data, need to be managed with RT databases that deal with time-constrained data and time-constrained transactions. In spite of their numerous advantages, RT databases development remains a complex task, since developers must study many design issues related to the RT domain. In this paper, we tackle this problem by proposing RT design patterns that allow the modeling of structural and behavioral aspects of RT databases. We show how RT design patterns can provide design assistance through architecture reuse of reoccurring design problems. In addition, we present an UML profile that represents patterns and facilitates further their reuse. This profile proposes, on one hand, UML extensions allowing to model the variability of patterns in the RT context and, on another hand, extensions inspired from the MARTE (Modeling and Analysis of Real-Time Embedded systems) profile.

  3. Artifact-Based Transformation of IBM Global Financing

    NASA Astrophysics Data System (ADS)

    Chao, Tian; Cohn, David; Flatgard, Adrian; Hahn, Sandy; Linehan, Mark; Nandi, Prabir; Nigam, Anil; Pinel, Florian; Vergo, John; Wu, Frederick Y.

    IBM Global Financing (IGF) is transforming its business using the Business Artifact Method, an innovative business process modeling technique that identifies key business artifacts and traces their life cycles as they are processed by the business. IGF is a complex, global business operation with many business design challenges. The Business Artifact Method is a fundamental shift in how to conceptualize, design and implement business operations. The Business Artifact Method was extended to solve the problem of designing a global standard for a complex, end-to-end process while supporting local geographic variations. Prior to employing the Business Artifact method, process decomposition, Lean and Six Sigma methods were each employed on different parts of the financing operation. Although they provided critical input to the final operational model, they proved insufficient for designing a complete, integrated, standard operation. The artifact method resulted in a business operations model that was at the right level of granularity for the problem at hand. A fully functional rapid prototype was created early in the engagement, which facilitated an improved understanding of the redesigned operations model. The resulting business operations model is being used as the basis for all aspects of business transformation in IBM Global Financing.

  4. Auto Draw from Excel Input Files

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Goullioud, Renaud; Cox, Brian; Grimes, James M.

    2011-01-01

    The design process often involves the use of Excel files during project development. To facilitate communications of the information in the Excel files, drawings are often generated. During the design process, the Excel files are updated often to reflect new input. The problem is that the drawings often lag the updates, often leading to confusion of the current state of the design. The use of this program allows visualization of complex data in a format that is more easily understandable than pages of numbers. Because the graphical output can be updated automatically, the manual labor of diagram drawing can be eliminated. The more frequent update of system diagrams can reduce confusion and reduce errors and is likely to uncover symmetric problems earlier in the design cycle, thus reducing rework and redesign.

  5. Uncertainties in building a strategic defense.

    PubMed

    Zraket, C A

    1987-03-27

    Building a strategic defense against nuclear ballistic missiles involves complex and uncertain functional, spatial, and temporal relations. Such a defensive system would evolve and grow over decades. It is too complex, dynamic, and interactive to be fully understood initially by design, analysis, and experiments. Uncertainties exist in the formulation of requirements and in the research and design of a defense architecture that can be implemented incrementally and be fully tested to operate reliably. The analysis and measurement of system survivability, performance, and cost-effectiveness are critical to this process. Similar complexities exist for an adversary's system that would suppress or use countermeasures against a missile defense. Problems and opportunities posed by these relations are described, with emphasis on the unique characteristics and vulnerabilities of space-based systems.

  6. International disaster research

    NASA Technical Reports Server (NTRS)

    Silverstein, Martin Elliot

    1991-01-01

    No existing telecommunications system can be expected to provide strategy and tactics appropriate to the complex, many faceted problem of disaster. Despite the exciting capabilities of space, communications, remote sensing, and the miracles of modern medicine, complete turnkey transfers to the disaster problem do not make the fit, and cannot be expected to do so. In 1980, a Presidential team assigned the mission of exploring disaster response within the U.S. Federal Government encountered an unanticipated obstacle: disaster was essentially undefined. In the absence of a scientifically based paradigm of disaster, there can be no measure of cost effectiveness, optimum design of manpower structure, or precise application of any technology. These problems spawned a 10-year, multidisciplinary study designed to define the origins, anatomy, and necessary management techniques for catastrophes. The design of the study necessarily reflects interests and expertise in disaster medicine, emergency medicine, telecommunications, computer communications, and forencsic sciences. This study is described.

  7. Visualization for Hyper-Heuristics. Front-End Graphical User Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroenung, Lauren

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. While such automated design has great advantages, it can often be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address thesemore » issues of usability by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics to support practitioners, as well as scientific visualization of the produced automated designs. My contributions to this project are exhibited in the user-facing portion of the developed system and the detailed scientific visualizations created from back-end data.« less

  8. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  9. Simulation methods to estimate design power: an overview for applied research.

    PubMed

    Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E

    2011-06-20

    Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.

  10. Simulation methods to estimate design power: an overview for applied research

    PubMed Central

    2011-01-01

    Background Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. Methods We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. Results We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Conclusions Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research. PMID:21689447

  11. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  12. Design applications for supercomputers

    NASA Technical Reports Server (NTRS)

    Studerus, C. J.

    1987-01-01

    The complexity of codes for solutions of real aerodynamic problems has progressed from simple two-dimensional models to three-dimensional inviscid and viscous models. As the algorithms used in the codes increased in accuracy, speed and robustness, the codes were steadily incorporated into standard design processes. The highly sophisticated codes, which provide solutions to the truly complex flows, require computers with large memory and high computational speed. The advent of high-speed supercomputers, such that the solutions of these complex flows become more practical, permits the introduction of the codes into the design system at an earlier stage. The results of several codes which either were already introduced into the design process or are rapidly in the process of becoming so, are presented. The codes fall into the area of turbomachinery aerodynamics and hypersonic propulsion. In the former category, results are presented for three-dimensional inviscid and viscous flows through nozzle and unducted fan bladerows. In the latter category, results are presented for two-dimensional inviscid and viscous flows for hypersonic vehicle forebodies and engine inlets.

  13. Examining the Effects of Field Dependence-Independence on Learners' Problem-Solving Performance and Interaction with a Computer Modeling Tool: Implications for the Design of Joint Cognitive Systems

    ERIC Educational Resources Information Center

    Angeli, Charoula

    2013-01-01

    An investigation was carried out to examine the effects of cognitive style on learners' performance and interaction during complex problem solving with a computer modeling tool. One hundred and nineteen undergraduates volunteered to participate in the study. Participants were first administered a test, and based on their test scores they were…

  14. Aspects of job scheduling

    NASA Technical Reports Server (NTRS)

    Phillips, K.

    1976-01-01

    A mathematical model for job scheduling in a specified context is presented. The model uses both linear programming and combinatorial methods. While designed with a view toward optimization of scheduling of facility and plant operations at the Deep Space Communications Complex, the context is sufficiently general to be widely applicable. The general scheduling problem including options for scheduling objectives is discussed and fundamental parameters identified. Mathematical algorithms for partitioning problems germane to scheduling are presented.

  15. A Three-Dimensional Finite-Element Model for Simulating Water Flow in Variably Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huyakorn, Peter S.; Springer, Everett P.; Guvanasen, Varut; Wadsworth, Terry D.

    1986-12-01

    A three-dimensional finite-element model for simulating water flow in variably saturated porous media is presented. The model formulation is general and capable of accommodating complex boundary conditions associated with seepage faces and infiltration or evaporation on the soil surface. Included in this formulation is an improved Picard algorithm designed to cope with severely nonlinear soil moisture relations. The algorithm is formulated for both rectangular and triangular prism elements. The element matrices are evaluated using an "influence coefficient" technique that avoids costly numerical integration. Spatial discretization of a three-dimensional region is performed using a vertical slicing approach designed to accommodate complex geometry with irregular boundaries, layering, and/or lateral discontinuities. Matrix solution is achieved using a slice successive overrelaxation scheme that permits a fairly large number of nodal unknowns (on the order of several thousand) to be handled efficiently on small minicomputers. Six examples are presented to verify and demonstrate the utility of the proposed finite-element model. The first four examples concern one- and two-dimensional flow problems used as sample problems to benchmark the code. The remaining examples concern three-dimensional problems. These problems are used to illustrate the performance of the proposed algorithm in three-dimensional situations involving seepage faces and anisotropic soil media.

  16. Battling Arrow's Paradox to Discover Robust Water Management Alternatives

    NASA Astrophysics Data System (ADS)

    Kasprzyk, J. R.; Reed, P. M.; Hadka, D.

    2013-12-01

    This study explores whether or not Arrow's Impossibility Theorem, a theory of social choice, affects the formulation of water resources systems planning problems. The theorem discusses creating an aggregation function for voters choosing from more than three alternatives for society. The Impossibility Theorem is also called Arrow's Paradox, because when trying to add more voters, a single individual's preference will dictate the optimal group decision. In the context of water resources planning, our study is motivated by recent theoretical work that has generalized the insights for Arrow's Paradox to the design of complex engineered systems. In this framing of the paradox, states of society are equivalent to water planning or design alternatives, and the voters are equivalent to multiple planning objectives (e.g. minimizing cost or maximizing performance). Seen from this point of view, multi-objective water planning problems are functionally equivalent to the social choice problem described above. Traditional solutions to such multi-objective problems aggregate multiple performance measures into a single mathematical objective. The Theorem implies that a subset of performance concerns will inadvertently dictate the overall design evaluations in unpredictable ways using such an aggregation. We suggest that instead of aggregation, an explicit many-objective approach to water planning can help overcome the challenges posed by Arrow's Paradox. Many-objective planning explicitly disaggregates measures of performance while supporting the discovery of the planning tradeoffs, employing multiobjective evolutionary algorithms (MOEAs) to find solutions. Using MOEA-based search to address Arrow's Paradox requires that the MOEAs perform robustly with increasing problem complexity, such as adding additional objectives and/or decisions. This study uses comprehensive diagnostic evaluation of MOEA search performance across multiple problem formulations (both aggregated and many-objective) to show whether or not aggregating performance measures biases decision making. In this study, we explore this hypothesis using an urban water portfolio management case study in the Lower Rio Grande Valley. The diagnostic analysis shows that modern self-adaptive MOEA search is efficient, effective, and reliable for the more complex many-objective LRGV planning formulations. Results indicate that although many classical water systems planning frameworks seek to account for multiple objectives, the common practice of reducing the problem into one or more highly aggregated performance measures can severely and negatively bias planning decisions.

  17. Research on Interactive Acquisition and Use of Knowledge.

    DTIC Science & Technology

    1983-11-01

    complex and challenging endeavor. Computer scientists faced with the problem of managing software complexity have de - veloped strict design disciplines...handle most-indeed, probably all-- phenomena in the syntax and semantics of natural language. It has also turned out to be well suited for the classes of...Semantics The previous grammar performs a de facto coordination of syntax and semantics by requiring that the (syntactically) preverbal NP play the

  18. Annual Research Briefs - 2006

    DTIC Science & Technology

    2006-12-01

    IACCARINO AND Q. WANG 3 Strain and stress analysis of uncertain engineering systems . D. GHOSH, C. FARHAT AND P. AVERY 17 Separated flow in a three...research in predictive science in complex systems , CTR has strived to maintain a critical mass in numerical analysis , computer science and physics based... analysis for a linear problem: heat conduction The design and analysis of complex engineering systems is challenging not only be- cause of the physical

  19. About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture

    NASA Astrophysics Data System (ADS)

    Grauer, Manfred; Barth, Thomas

    2004-06-01

    Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.

  20. The problems of designing a multifunctional courtyard space of high-rise buildings by the example of residential development in Volgograd

    NASA Astrophysics Data System (ADS)

    Matovnikov, Sergei; Matovnikova, Natalia; Samoylenko, Polina

    2018-03-01

    The paper considers the issues of designing a modern courtyard space for high-rise buildings in Volgograd to obtain a multifunctional environment through the arrangement of new recreational territories and the search of innovative planning methods for urban landscape design. In professionals' opinion, the problem concerning the design and construction of recreational zones and greenery planting is very acute for Volgograd, such territories are often absent in many districts of the city. Generally, the decrease in the natural component and a low level of recreational territories improvement are typical for Volgograd. In addition, the problem of designing a modern urban courtyard space for high-rise buildings to obtain a multi-functional environment exists and requires a thorough investigation. The question is if there is a possibility to solve these difficult tasks by means of local design methods only or whether there should be a complex approach at the stage of the formation of master plans for modern residential areas and which modern design methods can ensure the creation of a courtyard space as a multi-functional environment. These questions as well as some other ones will be the topic of our paper.

  1. Reliability based design optimization: Formulations and methodologies

    NASA Astrophysics Data System (ADS)

    Agarwal, Harish

    Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed. A trust region managed sequential approximate optimization methodology is employed for this purpose. Results from numerical test studies indicate that the methodology can be used for performing design optimization under severe uncertainty.

  2. Using concepts from biology to improve problem-solving methods

    NASA Astrophysics Data System (ADS)

    Goodman, Erik D.; Rothwell, Edward J.; Averill, Ronald C.

    2011-06-01

    Observing nature has been a cornerstone of engineering design. Today, engineers look not only at finished products, but imitate the evolutionary process by which highly optimized artifacts have appeared in nature. Evolutionary computation began by capturing only the simplest ideas of evolution, but today, researchers study natural evolution and incorporate an increasing number of concepts in order to evolve solutions to complex engineering problems. At the new BEACON Center for the Study of Evolution in Action, studies in the lab and field and in silico are laying the groundwork for new tools for evolutionary engineering design. This paper, which accompanies a keynote address, describes various steps in development and application of evolutionary computation, particularly as regards sensor design, and sets the stage for future advances.

  3. Focusing on the golden ball metaheuristic: an extended study on a wider set of problems.

    PubMed

    Osaba, E; Diaz, F; Carballedo, R; Onieva, E; Perallos, A

    2014-01-01

    Nowadays, the development of new metaheuristics for solving optimization problems is a topic of interest in the scientific community. In the literature, a large number of techniques of this kind can be found. Anyway, there are many recently proposed techniques, such as the artificial bee colony and imperialist competitive algorithm. This paper is focused on one recently published technique, the one called Golden Ball (GB). The GB is a multiple-population metaheuristic based on soccer concepts. Although it was designed to solve combinatorial optimization problems, until now, it has only been tested with two simple routing problems: the traveling salesman problem and the capacitated vehicle routing problem. In this paper, the GB is applied to four different combinatorial optimization problems. Two of them are routing problems, which are more complex than the previously used ones: the asymmetric traveling salesman problem and the vehicle routing problem with backhauls. Additionally, one constraint satisfaction problem (the n-queen problem) and one combinatorial design problem (the one-dimensional bin packing problem) have also been used. The outcomes obtained by GB are compared with the ones got by two different genetic algorithms and two distributed genetic algorithms. Additionally, two statistical tests are conducted to compare these results.

  4. Focusing on the Golden Ball Metaheuristic: An Extended Study on a Wider Set of Problems

    PubMed Central

    Osaba, E.; Diaz, F.; Carballedo, R.; Onieva, E.; Perallos, A.

    2014-01-01

    Nowadays, the development of new metaheuristics for solving optimization problems is a topic of interest in the scientific community. In the literature, a large number of techniques of this kind can be found. Anyway, there are many recently proposed techniques, such as the artificial bee colony and imperialist competitive algorithm. This paper is focused on one recently published technique, the one called Golden Ball (GB). The GB is a multiple-population metaheuristic based on soccer concepts. Although it was designed to solve combinatorial optimization problems, until now, it has only been tested with two simple routing problems: the traveling salesman problem and the capacitated vehicle routing problem. In this paper, the GB is applied to four different combinatorial optimization problems. Two of them are routing problems, which are more complex than the previously used ones: the asymmetric traveling salesman problem and the vehicle routing problem with backhauls. Additionally, one constraint satisfaction problem (the n-queen problem) and one combinatorial design problem (the one-dimensional bin packing problem) have also been used. The outcomes obtained by GB are compared with the ones got by two different genetic algorithms and two distributed genetic algorithms. Additionally, two statistical tests are conducted to compare these results. PMID:25165742

  5. Developing a new stochastic competitive model regarding inventory and price

    NASA Astrophysics Data System (ADS)

    Rashid, Reza; Bozorgi-Amiri, Ali; Seyedhoseini, S. M.

    2015-09-01

    Within the competition in today's business environment, the design of supply chains becomes more complex than before. This paper deals with the retailer's location problem when customers choose their vendors, and inventory costs have been considered for retailers. In a competitive location problem, price and location of facilities affect demands of customers; consequently, simultaneous optimization of the location and inventory system is needed. To prepare a realistic model, demand and lead time have been assumed as stochastic parameters, and queuing theory has been used to develop a comprehensive mathematical model. Due to complexity of the problem, a branch and bound algorithm has been developed, and its performance has been validated in several numerical examples, which indicated effectiveness of the algorithm. Also, a real case has been prepared to demonstrate performance of the model for real world.

  6. The Generation of Situational Awareness within Autonomous Systems - A Near to Mid term Study - Analysis

    DTIC Science & Technology

    2006-07-01

    mobility in complex terrain, robot system designers are still seeking workable processes for mapbuilding, with enduring problems that either require...human) robot system designers /users can seek to control the consequences of robot actions, deliberate or otherwise. A notable particular application...operators a sufficient feeling of presence; if not, robot system designers will have to provide autonomy to the robot to make up for the gaps in human input

  7. An n -material thresholding method for improving integerness of solutions in topology optimization

    DOE PAGES

    Watts, Seth; Tortorelli, Daniel A.

    2016-04-10

    It is common in solving topology optimization problems to replace an integer-valued characteristic function design field with the material volume fraction field, a real-valued approximation of the design field that permits "fictitious" mixtures of materials during intermediate iterations in the optimization process. This is reasonable so long as one can interpolate properties for such materials and so long as the final design is integer valued. For this purpose, we present a method for smoothly thresholding the volume fractions of an arbitrary number of material phases which specify the design. This method is trivial for two-material design problems, for example, themore » canonical topology design problem of specifying the presence or absence of a single material within a domain, but it becomes more complex when three or more materials are used, as often occurs in material design problems. We take advantage of the similarity in properties between the volume fractions and the barycentric coordinates on a simplex to derive a thresholding, method which is applicable to an arbitrary number of materials. As we show in a sensitivity analysis, this method has smooth derivatives, allowing it to be used in gradient-based optimization algorithms. Finally, we present results, which show synergistic effects when used with Solid Isotropic Material with Penalty and Rational Approximation of Material Properties material interpolation functions, popular methods of ensuring integerness of solutions.« less

  8. Rahman Prize Lecture: Lattice Boltzmann simulation of complex states of flowing matter

    NASA Astrophysics Data System (ADS)

    Succi, Sauro

    Over the last three decades, the Lattice Boltzmann (LB) method has gained a prominent role in the numerical simulation of complex flows across an impressively broad range of scales, from fully-developed turbulence in real-life geometries, to multiphase flows in micro-fluidic devices, all the way down to biopolymer translocation in nanopores and lately, even quark-gluon plasmas. After a brief introduction to the main ideas behind the LB method and its historical developments, we shall present a few selected applications to complex flow problems at various scales of motion. Finally, we shall discuss prospects for extreme-scale LB simulations of outstanding problems in the physics of fluids and its interfaces with material sciences and biology, such as the modelling of fluid turbulence, the optimal design of nanoporous gold catalysts and protein folding/aggregation in crowded environments.

  9. Towards an Analogue Neuromorphic VLSI Instrument for the Sensing of Complex Odours

    NASA Astrophysics Data System (ADS)

    Ab Aziz, Muhammad Fazli; Harun, Fauzan Khairi Che; Covington, James A.; Gardner, Julian W.

    2011-09-01

    Almost all electronic nose instruments reported today employ pattern recognition algorithms written in software and run on digital processors, e.g. micro-processors, microcontrollers or FPGAs. Conversely, in this paper we describe the analogue VLSI implementation of an electronic nose through the design of a neuromorphic olfactory chip. The modelling, design and fabrication of the chip have already been reported. Here a smart interface has been designed and characterised for thisneuromorphic chip. Thus we can demonstrate the functionality of the a VLSI neuromorphic chip, producing differing principal neuron firing patterns to real sensor response data. Further work is directed towards integrating 9 separate neuromorphic chips to create a large neuronal network to solve more complex olfactory problems.

  10. A unified approach to VLSI layout automation and algorithm mapping on processor arrays

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Pattabiraman, S.; Srinivasan, Vinoo N.

    1993-01-01

    Development of software tools for designing supercomputing systems is highly complex and cost ineffective. To tackle this a special purpose PAcube silicon compiler which integrates different design levels from cell to processor arrays has been proposed. As a part of this, we present in this paper a novel methodology which unifies the problems of Layout Automation and Algorithm Mapping.

  11. A Case Study of Introducing Innovation Through Design

    DTIC Science & Technology

    2014-03-01

    contacts, freeing more of their mental energy to assist the CO in developing and tackling the overall complexities of the mission. With more energy ...organizations experiencing change while design thinking is devoted to finding solutions to difficult problems by harnessing the creative energy inherent...change. “Rather than focusing on one major opportunity, [embedded actors] pepper the landscape with many cultivated opportunities.”53 (2) Fitting the

  12. An innovative artificial bee colony algorithm and its application to a practical intercell scheduling problem

    NASA Astrophysics Data System (ADS)

    Li, Dongni; Guo, Rongtao; Zhan, Rongxin; Yin, Yong

    2018-06-01

    In this article, an innovative artificial bee colony (IABC) algorithm is proposed, which incorporates two mechanisms. On the one hand, to provide the evolutionary process with a higher starting level, genetic programming (GP) is used to generate heuristic rules by exploiting the elements that constitute the problem. On the other hand, to achieve a better balance between exploration and exploitation, a leading mechanism is proposed to attract individuals towards a promising region. To evaluate the performance of IABC in solving practical and complex problems, it is applied to the intercell scheduling problem with limited transportation capacity. It is observed that the GP-generated rules incorporate the elements of the most competing human-designed rules, and they are more effective than the human-designed ones. Regarding the leading mechanism, the strategies of the ageing leader and multiple challengers make the algorithm less likely to be trapped in local optima.

  13. Development of a change management system

    NASA Technical Reports Server (NTRS)

    Parks, Cathy Bonifas

    1993-01-01

    The complexity and interdependence of software on a computer system can create a situation where a solution to one problem causes failures in dependent software. In the computer industry, software problems arise and are often solved with 'quick and dirty' solutions. But in implementing these solutions, documentation about the solution or user notification of changes is often overlooked, and new problems are frequently introduced because of insufficient review or testing. These problems increase when numerous heterogeneous systems are involved. Because of this situation, a change management system plays an integral part in the maintenance of any multisystem computing environment. At the NASA Ames Advanced Computational Facility (ACF), the Online Change Management System (OCMS) was designed and developed to manage the changes being applied to its multivendor computing environment. This paper documents the research, design, and modifications that went into the development of this change management system (CMS).

  14. Typification and taxonomic status re-evaluation of 15 taxon names within the species complex Cymbella affinis/tumidula/turgidula (Cymbellaceae, Bacillariophyta)

    PubMed Central

    da Silva, Weliton José; Jahn, Regine; Ludwig, Thelma Alvim Veiga; Hinz, Friedel; Menezes, Mariângela

    2015-01-01

    Abstract Specimens belonging to the Cymbella affinis / Cymbella tumidula / Cymbella turgidula species complex have many taxonomic problems, due to their high morphological variability and lack of type designations. Fifteen taxon names of this complex, distributed in five species, were re-evaluated concerning their taxonomic status, and lectotypified based on original material. In addition to light microscopy, some material was analyzed by electron microscopy. Four new combinations are proposed in order to reposition infraspecific taxa. PMID:26312038

  15. Expert systems for space power supply - Design, analysis, and evaluation

    NASA Technical Reports Server (NTRS)

    Cooper, Ralph S.; Thomson, M. Kemer; Hoshor, Alan

    1987-01-01

    The feasibility of applying expert systems to the conceptual design, analysis, and evaluation of space power supplies in particular, and complex systems in general is evaluated. To do this, the space power supply design process and its associated knowledge base were analyzed and characterized in a form suitable for computer emulation of a human expert. The existing expert system tools and the results achieved with them were evaluated to assess their applicability to power system design. Some new concepts for combining program architectures (modular expert systems and algorithms) with information about the domain were applied to create a 'deep' system for handling the complex design problem. NOVICE, a code to solve a simplified version of a scoping study of a wide variety of power supply types for a broad range of missions, has been developed, programmed, and tested as a concrete feasibility demonstration.

  16. Modeling And Simulation Of Bar Code Scanners Using Computer Aided Design Software

    NASA Astrophysics Data System (ADS)

    Hellekson, Ron; Campbell, Scott

    1988-06-01

    Many optical systems have demanding requirements to package the system in a small 3 dimensional space. The use of computer graphic tools can be a tremendous aid to the designer in analyzing the optical problems created by smaller and less costly systems. The Spectra Physics grocery store bar code scanner employs an especially complex 3 dimensional scan pattern to read bar code labels. By using a specially written program which interfaces with a computer aided design system, we have simulated many of the functions of this complex optical system. In this paper we will illustrate how a recent version of the scanner has been designed. We will discuss the use of computer graphics in the design process including interactive tweaking of the scan pattern, analysis of collected light, analysis of the scan pattern density, and analysis of the manufacturing tolerances used to build the scanner.

  17. Using Generative Representations to Evolve Robots. Chapter 1

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2004-01-01

    Recent research has demonstrated the ability of evolutionary algorithms to automatically design both the physical structure and software controller of real physical robots. One of the challenges for these automated design systems is to improve their ability to scale to the high complexities found in real-world problems. Here we claim that for automated design systems to scale in complexity they must use a representation which allows for the hierarchical creation and reuse of modules, which we call a generative representation. Not only is the ability to reuse modules necessary for functional scalability, but it is also valuable for improving efficiency in testing and construction. We then describe an evolutionary design system with a generative representation capable of hierarchical modularity and demonstrate it for the design of locomoting robots in simulation. Finally, results from our experiments show that evolution with our generative representation produces better robots than those evolved with a non-generative representation.

  18. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  19. University Students' Giftedness Diagnosis and Development

    ERIC Educational Resources Information Center

    Narikbaeva, Lora M.

    2016-01-01

    This article deals with the problem of students' giftedness development. Students' test results (n = 851) for "IQ level" and "creativity level" indicators demonstrated the need to improve the quality of work in reference to students' professional giftedness development at the university. Designed complex of pedagogical…

  20. ESTIMATING PROPORTION OF AREA OCCUPIED UNDER COMPLEX SURVEY DESIGNS

    EPA Science Inventory

    Estimating proportion of sites occupied, or proportion of area occupied (PAO) is a common problem in environmental studies. Typically, field surveys do not ensure that occupancy of a site is made with perfect detection. Maximum likelihood estimation of site occupancy rates when...

  1. University Learning Systems for Participative Courses.

    ERIC Educational Resources Information Center

    Billingham, Carol J.; Harper, William W.

    1980-01-01

    Describes the instructional development of a course for advanced finance students on the use of data files and/or databases for solving complex finance problems. Areas covered include course goals and the design. The course class schedule and sample learning assessment assignments are provided. (JD)

  2. Multi-agent based control of large-scale complex systems employing distributed dynamic inference engine

    NASA Astrophysics Data System (ADS)

    Zhang, Daili

    Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications are made for critical agents and are organized into logical rings. This architecture maintains clear guidelines for complexity decomposition and also increases the robustness of the whole system. Multiple Sectioned Dynamic Bayesian Networks (MSDBNs) as a distributed dynamic probabilistic inference engine, can be embedded into the control architecture to handle uncertainties of general large-scale complex systems. MSDBNs decomposes a large knowledge-based system into many agents. Each agent holds its partial perspective of a large problem domain by representing its knowledge as a Dynamic Bayesian Network (DBN). Each agent accesses local evidence from its corresponding local sensors and communicates with other agents through finite message passing. If the distributed agents can be organized into a tree structure, satisfying the running intersection property and d-sep set requirements, globally consistent inferences are achievable in a distributed way. By using different frequencies for local DBN agent belief updating and global system belief updating, it balances the communication cost with the global consistency of inferences. In this dissertation, a fully factorized Boyen-Koller (BK) approximation algorithm is used for local DBN agent belief updating, and the static Junction Forest Linkage Tree (JFLT) algorithm is used for global system belief updating. MSDBNs assume a static structure and a stable communication network for the whole system. However, for a real system, sub-Bayesian networks as nodes could be lost, and the communication network could be shut down due to partial damage in the system. Therefore, on-line and automatic MSDBNs structure formation is necessary for making robust state estimations and increasing survivability of the whole system. A Distributed Spanning Tree Optimization (DSTO) algorithm, a Distributed D-Sep Set Satisfaction (DDSSS) algorithm, and a Distributed Running Intersection Satisfaction (DRIS) algorithm are proposed in this dissertation. Combining these three distributed algorithms and a Distributed Belief Propagation (DBP) algorithm in MSDBNs makes state estimations robust to partial damage in the whole system. Combining the distributed control architecture design and the distributed inference engine design leads to a process of control system design for a general large-scale complex system. As applications of the proposed methodology, the control system design of a simplified ship chilled water system and a notional ship chilled water system have been demonstrated step by step. Simulation results not only show that the proposed methodology gives a clear guideline for control system design for general large-scale complex systems with dynamic and uncertain environment, but also indicate that the combination of MSDBNs and HyMABC can provide excellent performance for controlling general large-scale complex systems.

  3. Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite

    NASA Astrophysics Data System (ADS)

    Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin

    2017-09-01

    State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all-electric spacecraft system design.

  4. The design of multiplayer online video game systems

    NASA Astrophysics Data System (ADS)

    Hsu, Chia-chun A.; Ling, Jim; Li, Qing; Kuo, C.-C. J.

    2003-11-01

    The distributed Multiplayer Online Game (MOG) system is complex since it involves technologies in computer graphics, multimedia, artificial intelligence, computer networking, embedded systems, etc. Due to the large scope of this problem, the design of MOG systems has not yet been widely addressed in the literatures. In this paper, we review and analyze the current MOG system architecture followed by evaluation. Furthermore, we propose a clustered-server architecture to provide a scalable solution together with the region oriented allocation strategy. Two key issues, i.e. interesting management and synchronization, are discussed in depth. Some preliminary ideas to deal with the identified problems are described.

  5. Schedule Risks Due to Delays in Advanced Technology Development

    NASA Technical Reports Server (NTRS)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  6. Sustainable aggregate production planning in the chemical process industry - A benchmark problem and dataset.

    PubMed

    Brandenburg, Marcus; Hahn, Gerd J

    2018-06-01

    Process industries typically involve complex manufacturing operations and thus require adequate decision support for aggregate production planning (APP). The need for powerful and efficient approaches to solve complex APP problems persists. Problem-specific solution approaches are advantageous compared to standardized approaches that are designed to provide basic decision support for a broad range of planning problems but inadequate to optimize under consideration of specific settings. This in turn calls for methods to compare different approaches regarding their computational performance and solution quality. In this paper, we present a benchmarking problem for APP in the chemical process industry. The presented problem focuses on (i) sustainable operations planning involving multiple alternative production modes/routings with specific production-related carbon emission and the social dimension of varying operating rates and (ii) integrated campaign planning with production mix/volume on the operational level. The mutual trade-offs between economic, environmental and social factors can be considered as externalized factors (production-related carbon emission and overtime working hours) as well as internalized ones (resulting costs). We provide data for all problem parameters in addition to a detailed verbal problem statement. We refer to Hahn and Brandenburg [1] for a first numerical analysis based on and for future research perspectives arising from this benchmarking problem.

  7. Design and manufacturing methods for the integral field unit of the nirspec instrument on JWST

    NASA Astrophysics Data System (ADS)

    Lobb, Dan; Robertson, David

    2017-11-01

    An integral field unit, to be used with the near-IR spectrometer instrument of the James Webb Space Telescope (JWST), is currently under development by SSTL and CfAI. Special problems in design and manufacture of the optical system are outlined, and manufacturing methods for critical optical elements are discussed. The optical system is complex, requiring a total of 95 mirrors to produce 30 output channels. Emphasis is placed on the advantages of free-form machining in aluminium. These include: resistance to launch stress, insensitivity to temperature variations from ambient to cryogenic, and the possibility of relatively complex mirror surface shapes.

  8. Complex solution of problem of all-season construction of roads and pipelines on universal composite pontoon units

    NASA Astrophysics Data System (ADS)

    Ryabkov, A. V.; Stafeeva, N. A.; Ivanov, V. A.; Zakuraev, A. F.

    2018-05-01

    A complex construction consisting of a universal floating pontoon road for laying pipelines in automatic mode on its body all year round and in any weather for Siberia and the Far North has been designed. A new method is proposed for the construction of pipelines on pontoon modules, which are made of composite materials. Pontoons made of composite materials for bedding pipelines with track-forming guides for automated wheeled transport, pipelayer, are designed. The proposed system eliminates the construction of a road along the route, ensures the buoyancy and smoothness of the self-propelled automated stacker in the form of a "centipede", which has a number of significant advantages in the construction and operation of the entire complex in the swamp and watered areas without overburden.

  9. Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.

    2006-01-01

    Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.

  10. CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology.

    PubMed

    Cankorur-Cetinkaya, Ayca; Dias, Joao M L; Kludas, Jana; Slater, Nigel K H; Rousu, Juho; Oliver, Stephen G; Dikicioglu, Duygu

    2017-06-01

    Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).

  11. Efficient Computing Budget Allocation for Finding Simplest Good Designs

    PubMed Central

    Jia, Qing-Shan; Zhou, Enlu; Chen, Chun-Hung

    2012-01-01

    In many applications some designs are easier to implement, require less training data and shorter training time, and consume less storage than the others. Such designs are called simple designs, and are usually preferred over complex ones when they all have good performance. Despite the abundant existing studies on how to find good designs in simulation-based optimization (SBO), there exist few studies on finding simplest good designs. We consider this important problem in this paper, and make the following contributions. First, we provide lower bounds for the probabilities of correctly selecting the m simplest designs with top performance, and selecting the best m such simplest good designs, respectively. Second, we develop two efficient computing budget allocation methods to find m simplest good designs and to find the best m such designs, respectively; and show their asymptotic optimalities. Third, we compare the performance of the two methods with equal allocations over 6 academic examples and a smoke detection problem in wireless sensor networks. We hope that this work brings insight to finding the simplest good designs in general. PMID:23687404

  12. Requirements' Role in Mobilizing and Enabling Design Conversation

    NASA Astrophysics Data System (ADS)

    Bergman, Mark

    Requirements play a critical role in a design conversation of systems and products. Product and system design exists at the crossroads of problems, solutions and requirements. Requirements contextualize problems and solutions, pointing the way to feasible outcomes. These are captured with models and detailed specifications. Still, stakeholders need to be able to understand one-another using shared design representations in order to mobilize bias and transform knowledge towards legitimized, desired results. Many modern modeling languages, including UML, as well as detailed, logic-based specifications are beyond the comprehension of key stakeholders. Hence, they inhibit, rather than promote design conversation. Improved design boundary objects (DBO), especially design requirements boundary objects (DRBO), need to be created and refined to improve the communications between principals. Four key features of design boundary objects that improve and promote design conversation are discussed in detail. A systems analysis and design case study is presented which demonstrates these features in action. It describes how a small team of analysts worked with key stakeholders to mobilize and guide a complex system design discussion towards an unexpected, yet desired outcome within a short time frame.

  13. An empirical evaluation of graphical interfaces to support flight planning

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Bihari, Tom

    1995-01-01

    Whether optimization techniques or expert systems technologies are used, the underlying inference processes and the model or knowledge base for a computerized problem-solving system are likely to be incomplete for any given complex, real-world task. To deal with the resultant brittleness, it has been suggested that 'cooperative' rather than 'automated' problem-solving systems be designed. Such cooperative systems are proposed to explicitly enhance the collaboration of people and the computer system when working in partnership to solve problems. This study evaluates the impact of alternative design concepts on the performance of airline pilots interacting with such a cooperative system designed to support enroute flight planning. Thirty pilots were studied using three different versions of the system. The results clearly demonstrate that different system design concepts can strongly influence the cognitive processes of users. Indeed, one of the designs studied caused four times as many pilots to accept a poor flight amendment. Based on think-aloud protocols, cognitive models are proposed to account for how features of the computer system interacted with specific types of scenarios to influence exploration and decision-making by the pilots. The results are then used to develop recommendations for guiding the design of cooperative systems.

  14. The Cognitive Consequences of Patterns of Information Flow

    NASA Technical Reports Server (NTRS)

    Hutchins, Edwin

    1999-01-01

    The flight deck of a modern commercial airliner is a complex system consisting of two or more crew and a suite of technological devices. The flight deck of the state-of-the-art Boeing 747-400 is shown. When everything goes right, all modern flight decks are easy to use. When things go sour, however, automated flight decks provide opportunities for new kinds of problems. A recent article in Aviation Week cited industry concern over the problem of verifying the safety of complex systems on automated, digital aircraft, stating that the industry must "guard against the kind of incident in which people and the automation seem to mismanage a minor occurrence or non-routine situation into larger trouble." The design of automated flight deck systems that flight crews find easy to use safely is a challenge in part because this design activity requires a theoretical perspective which can simultaneously cover the interactions of people with each other and with technology. In this paper, some concepts that can be used to understand the flight deck as a system that is composed of two or more pilots and a complex suite of automated devices is introduced.

  15. Intelligent systems engineering methodology

    NASA Technical Reports Server (NTRS)

    Fouse, Scott

    1990-01-01

    An added challenge for the designers of large scale systems such as Space Station Freedom is the appropriate incorporation of intelligent system technology (artificial intelligence, expert systems, knowledge-based systems, etc.) into their requirements and design. This presentation will describe a view of systems engineering which successfully addresses several aspects of this complex problem: design of large scale systems, design with requirements that are so complex they only completely unfold during the development of a baseline system and even then continue to evolve throughout the system's life cycle, design that involves the incorporation of new technologies, and design and development that takes place with many players in a distributed manner yet can be easily integrated to meet a single view of the requirements. The first generation of this methodology was developed and evolved jointly by ISX and the Lockheed Aeronautical Systems Company over the past five years on the Defense Advanced Research Projects Agency/Air Force Pilot's Associate Program, one of the largest, most complex, and most successful intelligent systems constructed to date. As the methodology has evolved it has also been applied successfully to a number of other projects. Some of the lessons learned from this experience may be applicable to Freedom.

  16. Towards a Framework for Evolvable Network Design

    NASA Astrophysics Data System (ADS)

    Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed

    The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.

  17. Parallel processing for digital picture comparison

    NASA Technical Reports Server (NTRS)

    Cheng, H. D.; Kou, L. T.

    1987-01-01

    In picture processing an important problem is to identify two digital pictures of the same scene taken under different lighting conditions. This kind of problem can be found in remote sensing, satellite signal processing and the related areas. The identification can be done by transforming the gray levels so that the gray level histograms of the two pictures are closely matched. The transformation problem can be solved by using the packing method. Researchers propose a VLSI architecture consisting of m x n processing elements with extensive parallel and pipelining computation capabilities to speed up the transformation with the time complexity 0(max(m,n)), where m and n are the numbers of the gray levels of the input picture and the reference picture respectively. If using uniprocessor and a dynamic programming algorithm, the time complexity will be 0(m(3)xn). The algorithm partition problem, as an important issue in VLSI design, is discussed. Verification of the proposed architecture is also given.

  18. Contextual approach to technology assessment: Implications for one-factor fix solutions to complex social problems

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    The contextual approach is discussed which undertakes to demonstrate that technology assessment assists in the identification of the full range of implications of taking a particular action and facilitates the consideration of alternative means by which the total affected social problem context might be changed by available project options. It is found that the social impacts of an application on participants, institutions, processes, and social interests, and the accompanying interactions may not only induce modifications in the problem contest delineated for examination with respect to the design, operations, regulation, and use of the posited application, but also affect related social problem contexts.

  19. Computer aided design of extrusion forming tools for complex geometry profiles

    NASA Astrophysics Data System (ADS)

    Goncalves, Nelson Daniel Ferreira

    In the profile extrusion, the experience of the die designer is crucial for obtaining good results. In industry, it is quite usual the need of several experimental trials for a specific extrusion die before a balanced flow distribution is obtained. This experimental based trial-and-error procedure is time and money consuming, but, it works, and most of the profile extrusion companies rely on such method. However, the competition is forcing the industry to look for more effective procedures and the design of profile extrusion dies is not an exception. For this purpose, computer aided design seems to be a good route. Nowadays, the available computational rheology numerical codes allow the simulation of complex fluid flows. This permits the die designer to evaluate and to optimize the flow channel, without the need to have a physical die and to perform real extrusion trials. In this work, a finite volume based numerical code was developed, for the simulation of non-Newtonian (inelastic) fluid and non-isothermal flows using unstructured meshes. The developed code is able to model the forming and cooling stages of profile extrusion, and can be used to aid the design of forming tools used in the production of complex profiles. For the code verification three benchmark problems were tested: flow between parallel plates, flow around a cylinder, and the lid driven cavity flow. The code was employed to design two extrusion dies to produce complex cross section profiles: a medical catheter die and a wood plastic composite profile for decking applications. The last was experimentally validated. Simple extrusion dies used to produced L and T shaped profiles were studied in detail, allowing a better understanding of the effect of the main geometry parameters on the flow distribution. To model the cooling stage a new implicit formulation was devised, which allowed the achievement of better convergence rates and thus the reduction of the computation times. Having in mind the solution of large dimension problems, the code was parallelized using graphics processing units (GPUs). Speedups of ten times could be obtained, drastically decreasing the time required to obtain results.

  20. The more the merrier? Increasing group size may be detrimental to decision-making performance in nominal groups.

    PubMed

    Amir, Ofra; Amir, Dor; Shahar, Yuval; Hart, Yuval; Gal, Kobi

    2018-01-01

    Demonstrability-the extent to which group members can recognize a correct solution to a problem-has a significant effect on group performance. However, the interplay between group size, demonstrability and performance is not well understood. This paper addresses these gaps by studying the joint effect of two factors-the difficulty of solving a problem and the difficulty of verifying the correctness of a solution-on the ability of groups of varying sizes to converge to correct solutions. Our empirical investigations use problem instances from different computational complexity classes, NP-Complete (NPC) and PSPACE-complete (PSC), that exhibit similar solution difficulty but differ in verification difficulty. Our study focuses on nominal groups to isolate the effect of problem complexity on performance. We show that NPC problems have higher demonstrability than PSC problems: participants were significantly more likely to recognize correct and incorrect solutions for NPC problems than for PSC problems. We further show that increasing the group size can actually decrease group performance for some problems of low demonstrability. We analytically derive the boundary that distinguishes these problems from others for which group performance monotonically improves with group size. These findings increase our understanding of the mechanisms that underlie group problem-solving processes, and can inform the design of systems and processes that would better facilitate collective decision-making.

  1. Facilitating Argumentative Knowledge Construction through a Transactive Discussion Script in CSCL

    ERIC Educational Resources Information Center

    Noroozi, Omid; Weinberger, Armin; Biemans, Harm J. A.; Mulder, Martin; Chizari, Mohammad

    2013-01-01

    Learning to argue is prerequisite to solving complex problems in groups, especially when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) can be designed to facilitate argumentative knowledge construction. This study investigates how argumentative knowledge construction in…

  2. 33 CFR 273.13 - Program policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Program is designed to deal primarily with weed infestations of major economic significance including... should constitute investigation of a specific problem weed or weed complex, not generalized surveys of... Control Program, except as such areas may be used for experimental purposes in research performed for the...

  3. 33 CFR 273.13 - Program policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Program is designed to deal primarily with weed infestations of major economic significance including... should constitute investigation of a specific problem weed or weed complex, not generalized surveys of... Control Program, except as such areas may be used for experimental purposes in research performed for the...

  4. 33 CFR 273.13 - Program policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Program is designed to deal primarily with weed infestations of major economic significance including... should constitute investigation of a specific problem weed or weed complex, not generalized surveys of... Control Program, except as such areas may be used for experimental purposes in research performed for the...

  5. 33 CFR 273.13 - Program policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Program is designed to deal primarily with weed infestations of major economic significance including... should constitute investigation of a specific problem weed or weed complex, not generalized surveys of... Control Program, except as such areas may be used for experimental purposes in research performed for the...

  6. 33 CFR 273.13 - Program policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Program is designed to deal primarily with weed infestations of major economic significance including... should constitute investigation of a specific problem weed or weed complex, not generalized surveys of... Control Program, except as such areas may be used for experimental purposes in research performed for the...

  7. Minimal complexity control law synthesis

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Haddad, Wassim M.; Nett, Carl N.

    1989-01-01

    A paradigm for control law design for modern engineering systems is proposed: Minimize control law complexity subject to the achievement of a specified accuracy in the face of a specified level of uncertainty. Correspondingly, the overall goal is to make progress towards the development of a control law design methodology which supports this paradigm. Researchers achieve this goal by developing a general theory of optimal constrained-structure dynamic output feedback compensation, where here constrained-structure means that the dynamic-structure (e.g., dynamic order, pole locations, zero locations, etc.) of the output feedback compensation is constrained in some way. By applying this theory in an innovative fashion, where here the indicated iteration occurs over the choice of the compensator dynamic-structure, the paradigm stated above can, in principle, be realized. The optimal constrained-structure dynamic output feedback problem is formulated in general terms. An elegant method for reducing optimal constrained-structure dynamic output feedback problems to optimal static output feedback problems is then developed. This reduction procedure makes use of star products, linear fractional transformations, and linear fractional decompositions, and yields as a byproduct a complete characterization of the class of optimal constrained-structure dynamic output feedback problems which can be reduced to optimal static output feedback problems. Issues such as operational/physical constraints, operating-point variations, and processor throughput/memory limitations are considered, and it is shown how anti-windup/bumpless transfer, gain-scheduling, and digital processor implementation can be facilitated by constraining the controller dynamic-structure in an appropriate fashion.

  8. Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach

    NASA Technical Reports Server (NTRS)

    Aguilo, Miguel A.; Warner, James E.

    2017-01-01

    This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.

  9. A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems

    NASA Astrophysics Data System (ADS)

    Takata, Kenta; Marandi, Alireza; Hamerly, Ryan; Haribara, Yoshitaka; Maruo, Daiki; Tamate, Shuhei; Sakaguchi, Hiromasa; Utsunomiya, Shoko; Yamamoto, Yoshihisa

    2016-09-01

    Many tasks in our modern life, such as planning an efficient travel, image processing and optimizing integrated circuit design, are modeled as complex combinatorial optimization problems with binary variables. Such problems can be mapped to finding a ground state of the Ising Hamiltonian, thus various physical systems have been studied to emulate and solve this Ising problem. Recently, networks of mutually injected optical oscillators, called coherent Ising machines, have been developed as promising solvers for the problem, benefiting from programmability, scalability and room temperature operation. Here, we report a 16-bit coherent Ising machine based on a network of time-division-multiplexed femtosecond degenerate optical parametric oscillators. The system experimentally gives more than 99.6% of success rates for one-dimensional Ising ring and nondeterministic polynomial-time (NP) hard instances. The experimental and numerical results indicate that gradual pumping of the network combined with multiple spectral and temporal modes of the femtosecond pulses can improve the computational performance of the Ising machine, offering a new path for tackling larger and more complex instances.

  10. An overview of the genetic dissection of complex traits.

    PubMed

    Rao, D C

    2008-01-01

    Thanks to the recent revolutionary genomic advances such as the International HapMap consortium, resolution of the genetic architecture of common complex traits is beginning to look hopeful. While demonstrating the feasibility of genome-wide association (GWA) studies, the pathbreaking Wellcome Trust Case Control Consortium (WTCCC) study also serves to underscore the critical importance of very large sample sizes and draws attention to potential problems, which need to be addressed as part of the study design. Even the large WTCCC study had vastly inadequate power for several of the associations reported (and confirmed) and, therefore, most of the regions harboring relevant associations may not be identified anytime soon. This chapter provides an overview of some of the key developments in the methodological approaches to genetic dissection of common complex traits. Constrained Bayesian networks are suggested as especially useful for analysis of pathway-based SNPs. Likewise, composite likelihood is suggested as a promising method for modeling complex systems. It discusses the key steps in a study design, with an emphasis on GWA studies. Potential limitations highlighted by the WTCCC GWA study are discussed, including problems associated with massive genotype imputation, analysis of pooled national samples, shared controls, and the critical role of interactions. GWA studies clearly need massive sample sizes that are only possible through genuine collaborations. After all, for common complex traits, the question is not whether we can find some pieces of the puzzle, but how large and what kind of a sample we need to (nearly) solve the genetic puzzle.

  11. Toward the modelling of safety violations in healthcare systems.

    PubMed

    Catchpole, Ken

    2013-09-01

    When frontline staff do not adhere to policies, protocols, or checklists, managers often regard these violations as indicating poor practice or even negligence. More often than not, however, these policy and protocol violations reflect the efforts of well intentioned professionals to carry out their work efficiently in the face of systems poorly designed to meet the diverse demands of patient care. Thus, non-compliance with institutional policies and protocols often signals a systems problem, rather than a people problem, and can be influenced among other things by training, competing goals, context, process, location, case complexity, individual beliefs, the direct or indirect influence of others, job pressure, flexibility, rule definition, and clinician-centred design. Three candidates are considered for developing a model of safety behaviour and decision making. The dynamic safety model helps to understand the relationship between systems designs and human performance. The theory of planned behaviour suggests that intention is a function of attitudes, social norms and perceived behavioural control. The naturalistic decision making paradigm posits that decisions are based on a wider view of multiple patients, expertise, systems complexity, behavioural intention, individual beliefs and current understanding of the system. Understanding and predicting behavioural safety decisions could help us to encourage compliance to current processes and to design better interventions.

  12. Design Process-System and Methodology of Design Research

    NASA Astrophysics Data System (ADS)

    Bashier, Fathi

    2017-10-01

    Studies have recognized the failure of the traditional design approach both in practice and in the studio. They showed that design problems today are too complex for the traditional approach to cope with and reflected a new interest in a better quality design services in order to meet the challenges of our time. In the mid-1970s and early 1980s, there has been a significant shift in focus within the field of design research towards the aim of creating a ‘design discipline’. The problem, as will be discussed, is the lack of an integrated theory of design knowledge that can explicitly describe the design process in a coherent way. As a consequence, the traditional approach fails to operate systematically, in a disciplinary manner. Addressing this problem is the primary goal of the research study in the design process currently being conducted in the research-based master studio at Wollega University, Ethiopia. The research study seeks to make a contribution towards a disciplinary approach, through proper understanding the mechanism of knowledge development within design process systems. This is the task of the ‘theory of design knowledge’. In this article the research project is introduced, and a model of the design process-system is developed in the studio as a research plan and a tool of design research at the same time. Based on data drawn from students’ research projects, the theory of design knowledge is developed and empirically verified through the research project.

  13. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.

    PubMed

    Wang, Zhaocai; Huang, Dongmei; Meng, Huajun; Tang, Chengpei

    2013-10-01

    The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m+n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Dynamically Reconfigurable Approach to Multidisciplinary Problems

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalie M.; Lewis, Robert Michael

    2003-01-01

    The complexity and autonomy of the constituent disciplines and the diversity of the disciplinary data formats make the task of integrating simulations into a multidisciplinary design optimization problem extremely time-consuming and difficult. We propose a dynamically reconfigurable approach to MDO problem formulation wherein an appropriate implementation of the disciplinary information results in basic computational components that can be combined into different MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. We believe that this structure can and should be used to formulate and solve optimization problems in the multidisciplinary context. The present work identifies the basic computational components in several MDO problem formulations and examines the dynamically reconfigurable approach in the context of a popular class of optimization methods. We show that if the disciplinary sensitivity information is implemented in a modular fashion, the transfer of sensitivity information among the formulations under study is straightforward. This enables not only experimentation with a variety of problem formations in a research environment, but also the flexible use of formulations in a production design environment.

  15. Machine learning applications in proteomics research: how the past can boost the future.

    PubMed

    Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Ramon, Jan; Laukens, Kris; Valkenborg, Dirk; Barsnes, Harald; Martens, Lennart

    2014-03-01

    Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Data Synchronization Discrepancies in a Formation Flight Control System

    NASA Technical Reports Server (NTRS)

    Ryan, Jack; Hanson, Curtis E.; Norlin, Ken A.; Allen, Michael J.; Schkolnik, Gerard (Technical Monitor)

    2001-01-01

    Aircraft hardware-in-the-loop simulation is an invaluable tool to flight test engineers; it reveals design and implementation flaws while operating in a controlled environment. Engineers, however, must always be skeptical of the results and analyze them within their proper context. Engineers must carefully ascertain whether an anomaly that occurs in the simulation will also occur in flight. This report presents a chronology illustrating how misleading simulation timing problems led to the implementation of an overly complex position data synchronization guidance algorithm in place of a simpler one. The report illustrates problems caused by the complex algorithm and how the simpler algorithm was chosen in the end. Brief descriptions of the project objectives, approach, and simulation are presented. The misleading simulation results and the conclusions then drawn are presented. The complex and simple guidance algorithms are presented with flight data illustrating their relative success.

  17. A discussion on turbine design for safe operation

    NASA Astrophysics Data System (ADS)

    Brekke, H.

    2012-11-01

    The paper gives a brief description of the hydraulic design of Francis and Pelton runners. The dynamic behaviour at part load has been a major problem for low head and medium head Francis turbines. The main reason for this has been inter blade separation and unstable swirl flow in the draft tube. A description is given on the hydraulic design of X-BLADE runners to obtain stable operation on the whole range of operation by reducing the cross flow. A classical theoretical analysis is also given on the dynamic hydraulic load on Pelton buckets. Several CFD analyses of this non stationary flow have been presented during the last decade, but the velocity distribution in the jets have not been correct. Experimental research work is presented on the complexity of this problem.

  18. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1986-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  19. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  20. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  1. From Paper to PDA: Design and Evaluation of a Clinical Ward Instruction on a Mobile Device

    NASA Astrophysics Data System (ADS)

    Kanstrup, Anne Marie; Stage, Jan

    Mobile devices with small screens and minimal facilities for interaction are increasingly being used in complex human activities for accessing and processing information, while the user is moving. This paper presents a case study of the design and evaluation of a mobile system, which involved transformation of complex text and tables to digital format on a PDA. The application domain was an emergency medical ward, and the user group was junior registrars. We designed a PDA-based system for accessing information, focusing on the ward instruction, implemented a prototype and evaluated it for usability and utility. The evaluation results indicate significant problems in the interaction with the system as well as the extent to which the system is useful for junior registrars in their daily work.

  2. Developing Seventh Grade Students' Understanding of Complex Environmental Problems with Systems Tools and Representations: a Quasi-experimental Study

    NASA Astrophysics Data System (ADS)

    Doganca Kucuk, Zerrin; Saysel, Ali Kerem

    2017-03-01

    A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.

  3. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method

    PubMed Central

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-01-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity. PMID:28468308

  4. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method.

    PubMed

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-05-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity.

  5. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David

    2016-01-01

    Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.

  6. Microgravity isolation system design: A modern control analysis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from the manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. These methods, although more powerful than their classical counterparts, can nonetheless go only so far in meeting the design requirements for practical systems. Once a tentative controller design is available, it must still be evaluated to determine whether or not it is fully acceptable, and to compare it with other possible design candidates. Realistically, such evaluation will be an inherent part of a necessary iterative design process. In this paper, an approach is presented for applying complex mu-analysis methods to a closed-loop vibration isolation system (experiment plus controller). An analysis framework is presented for evaluating nominal stability, nominal performance, robust stability, and robust performance of active microgravity isolation systems, with emphasis on the effective use of mu-analysis methods.

  7. Designing Crowdcritique Systems for Formative Feedback

    ERIC Educational Resources Information Center

    Easterday, Matthew W.; Rees Lewis, Daniel; Gerber, Elizabeth M.

    2017-01-01

    Intelligent tutors based on expert systems often struggle to provide formative feedback on complex, ill-defined problems where answers are unknown. Hybrid crowdsourcing systems that combine the intelligence of multiple novices in face-to-face settings might provide an alternate approach for providing intelligent formative feedback. The purpose of…

  8. Proceedings of the Symposium on Long-Life Hardware for Space

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Two-volume edition of the papers of the symposium is described. It is divided into six sections - parts, materials, management, system testing, component design, and system test. Material presented focuses attention on problems created by the increased complexity of technology and long-term mission requirements.

  9. Math 3011--College Algebra and Trigonometry. Course Outline.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    This document contains the course syllabus and 12 independent practice modules for a college level mathematics course designed to provide the necessary foundation for success in calculus, develop logical thinking skills, and enhance analytic skills through problem solving. Topics include relations and functions; inequalities; complex numbers;…

  10. Structural Equation Modeling of School Violence Data: Methodological Considerations

    ERIC Educational Resources Information Center

    Mayer, Matthew J.

    2004-01-01

    Methodological challenges associated with structural equation modeling (SEM) and structured means modeling (SMM) in research on school violence and related topics in the social and behavioral sciences are examined. Problems associated with multiyear implementations of large-scale surveys are discussed. Complex sample designs, part of any…

  11. Building a Greener Future

    ERIC Educational Resources Information Center

    Baldwin, Blake; Koenig, Kathleen; Van der Bent, Andries

    2016-01-01

    Integrating engineering and science in the classroom can be challenging, and creating authentic experiences that address real-world problems is often even more difficult. "A Framework for K-12 Science Education" (NRC 2012), however, calls for high school graduates to be able to undertake more complex engineering design projects related…

  12. Design and multi-physics optimization of rotary MRF brakes

    NASA Astrophysics Data System (ADS)

    Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan

    2018-03-01

    Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.

  13. The Applied Mathematics for Power Systems (AMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less

  14. Beyond information access: Support for complex cognitive activities in public health informatics tools.

    PubMed

    Sedig, Kamran; Parsons, Paul; Dittmer, Mark; Ola, Oluwakemi

    2012-01-01

    Public health professionals work with a variety of information sources to carry out their everyday activities. In recent years, interactive computational tools have become deeply embedded in such activities. Unlike the early days of computational tool use, the potential of tools nowadays is not limited to simply providing access to information; rather, they can act as powerful mediators of human-information discourse, enabling rich interaction with public health information. If public health informatics tools are designed and used properly, they can facilitate, enhance, and support the performance of complex cognitive activities that are essential to public health informatics, such as problem solving, forecasting, sense-making, and planning. However, the effective design and evaluation of public health informatics tools requires an understanding of the cognitive and perceptual issues pertaining to how humans work and think with information to perform such activities. This paper draws on research that has examined some of the relevant issues, including interaction design, complex cognition, and visual representations, to offer some human-centered design and evaluation considerations for public health informatics tools.

  15. Towards Engineering Biological Systems in a Broader Context.

    PubMed

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Shape optimization techniques for musical instrument design

    NASA Astrophysics Data System (ADS)

    Henrique, Luis; Antunes, Jose; Carvalho, Joao S.

    2002-11-01

    The design of musical instruments is still mostly based on empirical knowledge and costly experimentation. One interesting improvement is the shape optimization of resonating components, given a number of constraints (allowed parameter ranges, shape smoothness, etc.), so that vibrations occur at specified modal frequencies. Each admissible geometrical configuration generates an error between computed eigenfrequencies and the target set. Typically, error surfaces present many local minima, corresponding to suboptimal designs. This difficulty can be overcome using global optimization techniques, such as simulated annealing. However these methods are greedy, concerning the number of function evaluations required. Thus, the computational effort can be unacceptable if complex problems, such as bell optimization, are tackled. Those issues are addressed in this paper, and a method for improving optimization procedures is proposed. Instead of using the local geometric parameters as searched variables, the system geometry is modeled in terms of truncated series of orthogonal space-funcitons, and optimization is performed on their amplitude coefficients. Fourier series and orthogonal polynomials are typical such functions. This technique reduces considerably the number of searched variables, and has a potential for significant computational savings in complex problems. It is illustrated by optimizing the shapes of both current and uncommon marimba bars.

  17. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  18. Designing worked examples for learning tangent lines to circles

    NASA Astrophysics Data System (ADS)

    Retnowati, E.; Marissa

    2018-03-01

    Geometry is a branch of mathematics that deals with shape and space, including the circle. A difficult topic in the circle may be the tangent line to circle. This is considered a complex material since students have to simultaneously apply several principles to solve the problems, these are the property of circle, definition of the tangent, measurement and Pythagorean theorem. This paper discusses designs of worked examples for learning tangent line to circles and how to apply this design to an effective and efficient instructional activity. When students do not have sufficient prior knowledge, solving tangent problems might be clumsy, and as a consequence, the problem-solving activity hinders learning. According to a Cognitive Load Theory, learning occurs when students can construct new knowledge based on the relevant knowledge previously learned. When the relevant knowledge is unavailable, providing students with the worked example is suggested. Worked example may reduce unproductive process during learning that causes extraneous cognitive load. Nevertheless, worked examples must be created in such a way facilitate learning.

  19. Solving bi-level optimization problems in engineering design using kriging models

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Liu, Xiaojie; Du, Gang

    2018-05-01

    Stackelberg game-theoretic approaches are applied extensively in engineering design to handle distributed collaboration decisions. Bi-level genetic algorithms (BLGAs) and response surfaces have been used to solve the corresponding bi-level programming models. However, the computational costs for BLGAs often increase rapidly with the complexity of lower-level programs, and optimal solution functions sometimes cannot be approximated by response surfaces. This article proposes a new method, namely the optimal solution function approximation by kriging model (OSFAKM), in which kriging models are used to approximate the optimal solution functions. A detailed example demonstrates that OSFAKM can obtain better solutions than BLGAs and response surface-based methods, and at the same time reduce the workload of computation remarkably. Five benchmark problems and a case study of the optimal design of a thin-walled pressure vessel are also presented to illustrate the feasibility and potential of the proposed method for bi-level optimization in engineering design.

  20. Decentralized control of large flexible structures by joint decoupling

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Juang, Jer-Nan

    1994-01-01

    This paper presents a novel method to design decentralized controllers for large complex flexible structures by using the idea of joint decoupling. Decoupling of joint degrees of freedom from the interior degrees of freedom is achieved by setting the joint actuator commands to cancel the internal forces exerting on the joint degrees of freedom. By doing so, the interactions between substructures are eliminated. The global structure control design problem is then decomposed into several substructure control design problems. Control commands for interior actuators are set to be localized state feedback using decentralized observers for state estimation. The proposed decentralized controllers can operate successfully at the individual substructure level as well as at the global structure level. Not only control design but also control implementation is decentralized. A two-component mass-spring-damper system is used as an example to demonstrate the proposed method.

  1. Design of automata theory of cubical complexes with applications to diagnosis and algorithmic description

    NASA Technical Reports Server (NTRS)

    Roth, J. P.

    1972-01-01

    The following problems are considered: (1) methods for development of logic design together with algorithms, so that it is possible to compute a test for any failure in the logic design, if such a test exists, and developing algorithms and heuristics for the purpose of minimizing the computation for tests; and (2) a method of design of logic for ultra LSI (large scale integration). It was discovered that the so-called quantum calculus can be extended to render it possible: (1) to describe the functional behavior of a mechanism component by component, and (2) to compute tests for failures, in the mechanism, using the diagnosis algorithm. The development of an algorithm for the multioutput two-level minimization problem is presented and the program MIN 360 was written for this algorithm. The program has options of mode (exact minimum or various approximations), cost function, cost bound, etc., providing flexibility.

  2. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  3. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  4. Practicality of electronic beam steering for MST/ST radars, part 6.2A

    NASA Technical Reports Server (NTRS)

    Clark, W. L.; Green, J. L.

    1984-01-01

    Electronic beam steering is described as complex and expensive. The Sunset implementation of electronic steering is described, and it is demonstrated that such systems are cost effective, versatile, and no more complex than fixed beam alternatives, provided three or more beams are needed. The problem of determining accurate meteorological wind components in the presence of spatial variation is considered. A cost comparison of steerable and fixed systems allowing solution of this problem is given. The concepts and relations involved in phase steering are given, followed by the description of the Sunset ST radar steering system. The implications are discussed, references to the competing SAD method are provided, and a recommendation concerning the design of the future Doppler ST/MST systems is made.

  5. Big-Data Based Decision-Support Systems to Improve Clinicians' Cognition.

    PubMed

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians' cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems.

  6. Big-Data Based Decision-Support Systems to Improve Clinicians’ Cognition

    PubMed Central

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians’ cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems. PMID:27990498

  7. Analysis of Complexity Evolution Management and Human Performance Issues in Commercial Aircraft Automation Systems

    NASA Technical Reports Server (NTRS)

    Vakil, Sanjay S.; Hansman, R. John

    2000-01-01

    Autoflight systems in the current generation of aircraft have been implicated in several recent incidents and accidents. A contributory aspect to these incidents may be the manner in which aircraft transition between differing behaviours or 'modes.' The current state of aircraft automation was investigated and the incremental development of the autoflight system was tracked through a set of aircraft to gain insight into how these systems developed. This process appears to have resulted in a system without a consistent global representation. In order to evaluate and examine autoflight systems, a 'Hybrid Automation Representation' (HAR) was developed. This representation was used to examine several specific problems known to exist in aircraft systems. Cyclomatic complexity is an analysis tool from computer science which counts the number of linearly independent paths through a program graph. This approach was extended to examine autoflight mode transitions modelled with the HAR. A survey was conducted of pilots to identify those autoflight mode transitions which airline pilots find difficult. The transitions identified in this survey were analyzed using cyclomatic complexity to gain insight into the apparent complexity of the autoflight system from the perspective of the pilot. Mode transitions which had been identified as complex by pilots were found to have a high cyclomatic complexity. Further examination was made into a set of specific problems identified in aircraft: the lack of a consistent representation of automation, concern regarding appropriate feedback from the automation, and the implications of physical limitations on the autoflight systems. Mode transitions involved in changing to and leveling at a new altitude were identified across multiple aircraft by numerous pilots. Where possible, evaluation and verification of the behaviour of these autoflight mode transitions was investigated via aircraft-specific high fidelity simulators. Three solution approaches to concerns regarding autoflight systems, and mode transitions in particular, are presented in this thesis. The first is to use training to modify pilot behaviours, or procedures to work around known problems. The second approach is to mitigate problems by enhancing feedback. The third approach is to modify the process by which automation is designed. The Operator Directed Process forces the consideration and creation of an automation model early in the design process for use as the basis of the software specification and training.

  8. Direct Multiple Shooting Optimization with Variable Problem Parameters

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan J.; Ocampo, Cesar A.

    2009-01-01

    Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.

  9. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-10-23

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation.

  10. The pseudo-Boolean optimization approach to form the N-version software structure

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality. Some additional modifications of MVP have been made to solve the problem of N-version systems design. Those algorithms take into account the discovered specific features of the objective function. The practical experiments have shown the advantage of using these algorithm modifications because of reducing a search space.

  11. Informatics tools to improve clinical research study implementation.

    PubMed

    Brandt, Cynthia A; Argraves, Stephanie; Money, Roy; Ananth, Gowri; Trocky, Nina M; Nadkarni, Prakash M

    2006-04-01

    There are numerous potential sources of problems when performing complex clinical research trials. These issues are compounded when studies are multi-site and multiple personnel from different sites are responsible for varying actions from case report form design to primary data collection and data entry. We describe an approach that emphasizes the use of a variety of informatics tools that can facilitate study coordination, training, data checks and early identification and correction of faulty procedures and data problems. The paper focuses on informatics tools that can help in case report form design, procedures and training and data management. Informatics tools can be used to facilitate study coordination and implementation of clinical research trials.

  12. Research study concerning the 3D printing adittion (FDM-fused deposition modeling) to design UAV (UAV-unconventional aerial vehicle) structures

    NASA Astrophysics Data System (ADS)

    Pascu, Nicoleta Elisabeta; CǎruÅ£aşu, Nicoleta LuminiÅ£a.; Geambaşu, Gabriel George; Adîr, Victor Gabriel; Arion, Aurel Florin; Ivaşcu, Laura

    2018-02-01

    Aerial vehicles have become indispensable. There are in this field UAV (Unconventional Aerial vehicle) and transportation airplanes and other aerospace vehicles for spatial tourism. Today, the research and development activity in aerospace industry is focused to obtain a good and efficient design for airplanes, to solve the problem of high pollution and to reduce the noise. For these goals are necessary to realize light and resistant components. The aerospace industry products are, generally, very complex concerning geometric shapes and the costs are high, usually. Due to the progress in this field (products obtained using FDM) was possible to reduce the number of used tools, welding belts, and, of course, to eliminate a lot of machine tools. In addition, the complex shapes are easier product using this high technology, the cost is more attractive and the time is lower. This paper allows to present a few aspects about FDM technology and the obtained structures using it, as follows: computer geometric modeling (different designing softs) to design and redesign complex structures using 3D printing, for this kind of vehicles; finite element analysis to identify what is the influence of design for different structures; testing the structures.

  13. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  14. Maximizing photovoltaic power generation of a space-dart configured satellite

    NASA Astrophysics Data System (ADS)

    Lee, Dae Young; Cutler, James W.; Mancewicz, Joe; Ridley, Aaron J.

    2015-06-01

    Many small satellites are power constrained due to their minimal solar panel area and the eclipse environment of low-Earth orbit. As with larger satellites, these small satellites, including CubeSats, use deployable power arrays to increase power production. This presents a design opportunity to develop various objective functions related to energy management and methods for optimizing these functions over a satellite design. A novel power generation model was created, and a simulation system was developed to evaluate various objective functions describing energy management for complex satellite designs. The model uses a spacecraft-body-fixed spherical coordinate system to analyze the complex geometry of a satellite's self-induced shadowing with computation provided by the Open Graphics Library. As an example design problem, a CubeSat configured as a space-dart with four deployable panels is optimized. Due to the fast computation speed of the solution, an exhaustive search over the design space is used to find the solar panel deployment angles which maximize total power generation. Simulation results are presented for a variety of orbit scenarios. The method is extendable to a variety of complex satellite geometries and power generation systems.

  15. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    PubMed Central

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  16. Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models

    NASA Astrophysics Data System (ADS)

    Koziel, Slawomir; Bekasiewicz, Adrian

    2016-10-01

    Multi-objective optimization of antenna structures is a challenging task owing to the high computational cost of evaluating the design objectives as well as the large number of adjustable parameters. Design speed-up can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation models and design refinement methods permits identification of the Pareto-optimal set of designs within a reasonable timeframe. Here, a study concerning the scalability of surrogate-assisted multi-objective antenna design is carried out based on a set of benchmark problems, with the dimensionality of the design space ranging from six to 24 and a CPU cost of the EM antenna model from 10 to 20 min per simulation. Numerical results indicate that the computational overhead of the design process increases more or less quadratically with the number of adjustable geometric parameters of the antenna structure at hand, which is a promising result from the point of view of handling even more complex problems.

  17. Ordering Design Tasks Based on Coupling Strengths

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Bloebaum, C. L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  18. Ordering design tasks based on coupling strengths

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Bloebaum, Christina L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  19. First flights of genetic-algorithm Kitty Hawk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, D.E.

    1994-12-31

    The design of complex systems requires an effective methodology of invention. This paper considers the methodology of the Wright brothers in inventing the powered airplane and suggests how successes in the design of genetic algorithms have come at the hands of a Wright-brothers-like approach. Recent reliable subquadratic results in solving hard problems with nontraditional GAs and predictions of the limits of simple GAs are presented as two accomplishments achieved in this manner.

  20. Development of an Autonomous Face Recognition Machine.

    DTIC Science & Technology

    1986-12-08

    This approach, like Baron’s, would be a very time consuming task. The problem of locating a face in Bromley’s work was the least complex of the three...top level design and the development and design decisions that were made in developing the Autonomous Face Recognition Machine (AFRM). The chapter is...images within a digital image. The second sectio examines the algorithm used in performing face recognition. The decision to divide the development

  1. Development of a Rubric to Improve Critical Thinking

    ERIC Educational Resources Information Center

    Hildenbrand, Kasee J.; Schultz, Judy A.

    2012-01-01

    Context: Health care professionals, including athletic trainers are confronted daily with multiple complex problems that require critical thinking. Objective: This research attempts to develop a reliable process to assess students' critical thinking in a variety of athletic training and kinesiology courses. Design: Our first step was to create a…

  2. Simple Logic for Big Problems: An Inside Look at Relational Databases.

    ERIC Educational Resources Information Center

    Seba, Douglas B.; Smith, Pat

    1982-01-01

    Discusses database design concept termed "normalization" (process replacing associations between data with associations in two-dimensional tabular form) which results in formation of relational databases (they are to computers what dictionaries are to spoken languages). Applications of the database in serials control and complex systems…

  3. Simulations for the Test Flight of an Experimental HALE Aircraft

    DTIC Science & Technology

    2011-06-01

    as a plant representation for HALE aircraft control design. It focuses on a reduced number of states to represent the complex nonlinear problem...Atkins, Ella M., Shearer, Christopher M. and Nathan A. Pitcher . “X-HALE: A Very Flexible UAV for Nonlinear Aeroelastic Tests.” (AIAA 2010-2715), April

  4. Design Rationale for a Complex Performance Assessment

    ERIC Educational Resources Information Center

    Williamson, David M.; Bauer, Malcolm; Steinberg, Linda S.; Mislevy, Robert J.; Behrens, John T.; DeMark, Sarah F.

    2004-01-01

    In computer-based interactive environments meant to support learning, students must bring a wide range of relevant knowledge, skills, and abilities to bear jointly as they solve meaningful problems in a learning domain. To function effectively as an assessment, a computer system must additionally be able to evoke and interpret observable evidence…

  5. An Introduction to Air Chemistry.

    ERIC Educational Resources Information Center

    Butcher, Samuel S.; Charlson, Robert J.

    Designed for those with no previous experience in the field, this book synthesizes the areas of chemistry and meteorology required to bring into focus some of the complex problems associated with the atmospheric environment. Subject matter moves from a review of the relevant chemical and meteorological principles to a discussion of the general…

  6. How Can I Help My Struggling Readers?

    ERIC Educational Resources Information Center

    Duke, Nell K.; Pressley, Michael

    2005-01-01

    The reasons some children struggle with reading are as varied as the children themselves. From trouble decoding words to problems retaining information, reading difficulties are complex. All kids, says the International Reading Association, "have a right to instruction designed with their specific needs in mind." The question is how to identify…

  7. Navigating through Number and Operations in Grades 9-12

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, 2006

    2006-01-01

    This book's activities probe rational and irrational numbers and investigate properties of integers and complex numbers. They explore numbers and operations embedded in physical objects and show how simple problems can lead to sophisticated considerations. Students examine the usefulness of irrational numbers in designing musical scales and of…

  8. The Growing Problems with Spreadsheet Budgeting

    ERIC Educational Resources Information Center

    Solomon, Jeff; Johnson, Stella; Wilcox, Leon; Olson, Tom

    2010-01-01

    The ubiquitous spreadsheet in some version has been the sole and unrivaled instrument of financial management for decades. And it has served well. The spreadsheet provides the flexibility to design a unique business process. It allows users to create formulas that execute complex calculations, and it is available in the globally standardized Excel…

  9. Examination of the Computational Thinking Skills of Students

    ERIC Educational Resources Information Center

    Korucu, Agah Tugrul; Gencturk, Abdullah Tarik; Gundogdu, Mustafa Mucahit

    2017-01-01

    Computational thinking is generally considered as a kind of analytical way of thinking. According to Wings (2008) it shares with mathematical thinking, engineering thinking and scientific thinking in the general ways in which we may use for solving a problem, designing and evaluating complex systems or understanding computability and intelligence…

  10. Postgraduate Programmes on Environmental Water Resources Engineering and Management in Greek Universities

    ERIC Educational Resources Information Center

    Latinopoulos, Pericles; Angelidis, Panagiotis

    2014-01-01

    The management of complex water problems is nowadays being practised through new ways and approaches. Therefore, water engineers, planners and managers should be appropriately educated through modern undergraduate curricula and by well-designed postgraduate specialisation programmes. Within this framework, a study of the specific characteristics…

  11. Simulated Agribusiness.

    ERIC Educational Resources Information Center

    Salisbury, Howard G., III

    "Simulated Agribusiness" is designed to provide the student with a role playing situation dealing with the complexities and problems of modern agriculture. It is a competitive game played on a hypothetical mid-latitude diversified farm in a capitalistic system. The player is faced with a series of decisions which will determine his success or…

  12. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  13. Primer-optimized results and trends for circular phasing and other circle-to-circle impulsive coplanar rendezvous

    NASA Astrophysics Data System (ADS)

    Sandrik, Suzannah

    Optimal solutions to the impulsive circular phasing problem, a special class of orbital maneuver in which impulsive thrusts shift a vehicle's orbital position by a specified angle, are found using primer vector theory. The complexities of optimal circular phasing are identified and illustrated using specifically designed Matlab software tools. Information from these new visualizations is applied to explain discrepancies in locally optimal solutions found by previous researchers. Two non-phasing circle-to-circle impulsive rendezvous problems are also examined to show the applicability of the tools developed here to a broader class of problems and to show how optimizing these rendezvous problems differs from the circular phasing case.

  14. Interactive design optimization of magnetorheological-brake actuators using the Taguchi method

    NASA Astrophysics Data System (ADS)

    Erol, Ozan; Gurocak, Hakan

    2011-10-01

    This research explored an optimization method that would automate the process of designing a magnetorheological (MR)-brake but still keep the designer in the loop. MR-brakes apply resistive torque by increasing the viscosity of an MR fluid inside the brake. This electronically controllable brake can provide a very large torque-to-volume ratio, which is very desirable for an actuator. However, the design process is quite complex and time consuming due to many parameters. In this paper, we adapted the popular Taguchi method, widely used in manufacturing, to the problem of designing a complex MR-brake. Unlike other existing methods, this approach can automatically identify the dominant parameters of the design, which reduces the search space and the time it takes to find the best possible design. While automating the search for a solution, it also lets the designer see the dominant parameters and make choices to investigate only their interactions with the design output. The new method was applied for re-designing MR-brakes. It reduced the design time from a week or two down to a few minutes. Also, usability experiments indicated significantly better brake designs by novice users.

  15. Operability engineering in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Wilkinson, Belinda

    1993-01-01

    Many operability problems exist at the three Deep Space Communications Complexes (DSCC's) of the Deep Space Network (DSN). Four years ago, the position of DSN Operability Engineer was created to provide the opportunity for someone to take a system-level approach to solving these problems. Since that time, a process has been developed for personnel and development engineers and for enforcing user interface standards in software designed for the DSCC's. Plans are for the participation of operations personnel in the product life-cycle to expand in the future.

  16. Advanced solar receiver conceptual design study

    NASA Technical Reports Server (NTRS)

    Kesseli, J. B.; Lacy, D. E.

    1987-01-01

    High temperature solar dynamic Brayton and Stirling receivers are investigated as candidate electrical power generating systems for future LEO missions. These receivers are smaller and more efficient than conventional receivers, and they offer less structural complexity and fewer thermal stress problems. Use of the advanced Direct Absorption Storage Receiver allows many of the problems associated with working with high-volumetric-change phase-change materials to be avoided. A specific mass reduction of about 1/3 with respect to the baseline receiver has been realized.

  17. Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred

    2008-01-01

    Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.

  18. Human performance models for computer-aided engineering

    NASA Technical Reports Server (NTRS)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  19. Progress in multidisciplinary design optimization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    1993-01-01

    Multidisciplinary Design Optimization refers to some combination of disciplinary analyses, sensitivity analysis, and optimization techniques used to design complex engineering systems. The ultimate objective of this research at NASA Langley Research Center is to help the US industry reduce the costs associated with development, manufacturing, and maintenance of aerospace vehicles while improving system performance. This report reviews progress towards this objective and highlights topics for future research. Aerospace design problems selected from the author's research illustrate strengths and weaknesses in existing multidisciplinary optimization techniques. The techniques discussed include multiobjective optimization, global sensitivity equations and sequential linear programming.

  20. Paraxial design of an optical element with variable focal length and fixed position of principal planes.

    PubMed

    Mikš, Antonín; Novák, Pavel

    2018-05-10

    In this article, we analyze the problem of the paraxial design of an active optical element with variable focal length, which maintains the positions of its principal planes fixed during the change of its optical power. Such optical elements are important in the process of design of complex optical systems (e.g., zoom systems), where the fixed position of principal planes during the change of optical power is essential for the design process. The proposed solution is based on the generalized membrane tunable-focus fluidic lens with several membrane surfaces.

  1. The evaluative imaging of mental models - Visual representations of complexity

    NASA Technical Reports Server (NTRS)

    Dede, Christopher

    1989-01-01

    The paper deals with some design issues involved in building a system that could visually represent the semantic structures of training materials and their underlying mental models. In particular, hypermedia-based semantic networks that instantiate classification problem solving strategies are thought to be a useful formalism for such representations; the complexity of these web structures can be best managed through visual depictions. It is also noted that a useful approach to implement in these hypermedia models would be some metrics of conceptual distance.

  2. CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology

    PubMed Central

    Cankorur-Cetinkaya, Ayca; Dias, Joao M. L.; Kludas, Jana; Slater, Nigel K. H.; Rousu, Juho; Dikicioglu, Duygu

    2017-01-01

    Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple‐to‐use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257). PMID:28635591

  3. Virtual Construction of Space Habitats: Connecting Building Information Models (BIM) and SysML

    NASA Technical Reports Server (NTRS)

    Polit-Casillas, Raul; Howe, A. Scott

    2013-01-01

    Current trends in design, construction and management of complex projects make use of Building Information Models (BIM) connecting different types of data to geometrical models. This information model allow different types of analysis beyond pure graphical representations. Space habitats, regardless their size, are also complex systems that require the synchronization of many types of information and disciplines beyond mass, volume, power or other basic volumetric parameters. For this, the state-of-the-art model based systems engineering languages and processes - for instance SysML - represent a solid way to tackle this problem from a programmatic point of view. Nevertheless integrating this with a powerful geometrical architectural design tool with BIM capabilities could represent a change in the workflow and paradigm of space habitats design applicable to other aerospace complex systems. This paper shows some general findings and overall conclusions based on the ongoing research to create a design protocol and method that practically connects a systems engineering approach with a BIM architectural and engineering design as a complete Model Based Engineering approach. Therefore, one hypothetical example is created and followed during the design process. In order to make it possible this research also tackles the application of IFC categories and parameters in the aerospace field starting with the application upon the space habitats design as way to understand the information flow between disciplines and tools. By building virtual space habitats we can potentially improve in the near future the way more complex designs are developed from very little detail from concept to manufacturing.

  4. Automated divertor target design by adjoint shape sensitivity analysis and a one-shot method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekeyser, W., E-mail: Wouter.Dekeyser@kuleuven.be; Reiter, D.; Baelmans, M.

    As magnetic confinement fusion progresses towards the development of first reactor-scale devices, computational tokamak divertor design is a topic of high priority. Presently, edge plasma codes are used in a forward approach, where magnetic field and divertor geometry are manually adjusted to meet design requirements. Due to the complex edge plasma flows and large number of design variables, this method is computationally very demanding. On the other hand, efficient optimization-based design strategies have been developed in computational aerodynamics and fluid mechanics. Such an optimization approach to divertor target shape design is elaborated in the present paper. A general formulation ofmore » the design problems is given, and conditions characterizing the optimal designs are formulated. Using a continuous adjoint framework, design sensitivities can be computed at a cost of only two edge plasma simulations, independent of the number of design variables. Furthermore, by using a one-shot method the entire optimization problem can be solved at an equivalent cost of only a few forward simulations. The methodology is applied to target shape design for uniform power load, in simplified edge plasma geometry.« less

  5. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Low-Thrust Mission Design

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.; Ghosh, Alexander R.

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  6. Applications of Evolutionary Technology to Manufacturing and Logistics Systems : State-of-the Art Survey

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin

    Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.

  7. Flight-deck automation - Promises and problems

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.; Curry, R. E.

    1980-01-01

    The paper analyzes the role of human factors in flight-deck automation, identifies problem areas, and suggests design guidelines. Flight-deck automation using microprocessor technology and display systems improves performance and safety while leading to a decrease in size, cost, and power consumption. On the other hand negative factors such as failure of automatic equipment, automation-induced error compounded by crew error, crew error in equipment set-up, failure to heed automatic alarms, and loss of proficiency must also be taken into account. Among the problem areas discussed are automation of control tasks, monitoring of complex systems, psychosocial aspects of automation, and alerting and warning systems. Guidelines are suggested for designing, utilising, and improving control and monitoring systems. Investigation into flight-deck automation systems is important as the knowledge gained can be applied to other systems such as air traffic control and nuclear power generation, but the many problems encountered with automated systems need to be analyzed and overcome in future research.

  8. Water facilities in retrospect and prospect: An illuminating tool for vehicle design

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Peak, D. J.; Delfrate, J.; Skow, A. M.; Malcolm, G. N.

    1986-01-01

    Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady three-dimensional flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.

  9. A knowledge-based system with learning for computer communication network design

    NASA Technical Reports Server (NTRS)

    Pierre, Samuel; Hoang, Hai Hoc; Tropper-Hausen, Evelyne

    1990-01-01

    Computer communication network design is well-known as complex and hard. For that reason, the most effective methods used to solve it are heuristic. Weaknesses of these techniques are listed and a new approach based on artificial intelligence for solving this problem is presented. This approach is particularly recommended for large packet switched communication networks, in the sense that it permits a high degree of reliability and offers a very flexible environment dealing with many relevant design parameters such as link cost, link capacity, and message delay.

  10. DEM Calibration Approach: design of experiment

    NASA Astrophysics Data System (ADS)

    Boikov, A. V.; Savelev, R. V.; Payor, V. A.

    2018-05-01

    The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.

  11. The role of CFD in the design process

    NASA Astrophysics Data System (ADS)

    Jennions, Ian K.

    1994-05-01

    Over the last decade the role played by CFD codes in turbomachinery design has changed remarkably. While convergence/stability or even the existence of unique solutions was discussed fervently ten years ago, CFD codes now form a valuable part of an overall integrated design system and have caused us to re-think much of what we do. The geometric and physical complexities addressed have also evolved, as have the number of software houses competing with in-house developers to provide solutions to daily design problems. This paper reviews how GE Aircraft Engines (GEAE) uses CFD in the turbomachinery design process and examines many of the issues faced in successful code implementation.

  12. Two-Stage Path Planning Approach for Designing Multiple Spacecraft Reconfiguration Maneuvers

    NASA Technical Reports Server (NTRS)

    Aoude, Georges S.; How, Jonathan P.; Garcia, Ian M.

    2007-01-01

    The paper presents a two-stage approach for designing optimal reconfiguration maneuvers for multiple spacecraft. These maneuvers involve well-coordinated and highly-coupled motions of the entire fleet of spacecraft while satisfying an arbitrary number of constraints. This problem is particularly difficult because of the nonlinearity of the attitude dynamics, the non-convexity of some of the constraints, and the coupling between the positions and attitudes of all spacecraft. As a result, the trajectory design must be solved as a single 6N DOF problem instead of N separate 6 DOF problems. The first stage of the solution approach quickly provides a feasible initial solution by solving a simplified version without differential constraints using a bi-directional Rapidly-exploring Random Tree (RRT) planner. A transition algorithm then augments this guess with feasible dynamics that are propagated from the beginning to the end of the trajectory. The resulting output is a feasible initial guess to the complete optimal control problem that is discretized in the second stage using a Gauss pseudospectral method (GPM) and solved using an off-the-shelf nonlinear solver. This paper also places emphasis on the importance of the initialization step in pseudospectral methods in order to decrease their computation times and enable the solution of a more complex class of problems. Several examples are presented and discussed.

  13. Deployment Process, Mechanization, and Testing for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Iskenderian, Ted

    2004-01-01

    NASA's Mar Exploration Rover (MER) robotic prospectors were produced in an environment of unusually challenging schedule, volume, and mass restrictions. The technical challenges pushed the system s design towards extensive integration of function, which resulted in complex system engineering issues. One example of the system's integrated complexity can be found in the deployment process for the rover. Part of this process, rover "standup", is outlined in this paper. Particular attention is given to the Rover Lift Mechanism's (RLM) role and its design. Analysis methods are presented and compared to test results. It is shown that because prudent design principles were followed, a robust mechanism was created that minimized the duration of integration and test, and enabled recovery without perturbing related systems when reasonably foreseeable problems did occur. Examples of avoidable, unnecessary difficulty are also presented.

  14. Superconducting racetrack booster for the ion complex of MEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filatov, Yu; Kondratenko, A. M.; Kondratenko, M. A.

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c.more » The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.« less

  15. Context sensitivity and ambiguity in component-based systems design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bespalko, S.J.; Sindt, A.

    1997-10-01

    Designers of components-based, real-time systems need to guarantee to correctness of soft-ware and its output. Complexity of a system, and thus the propensity for error, is best characterized by the number of states a component can encounter. In many cases, large numbers of states arise where the processing is highly dependent on context. In these cases, states are often missed, leading to errors. The following are proposals for compactly specifying system states which allow the factoring of complex components into a control module and a semantic processing module. Further, the need for methods that allow for the explicit representation ofmore » ambiguity and uncertainty in the design of components is discussed. Presented herein are examples of real-world problems which are highly context-sensitive or are inherently ambiguous.« less

  16. New Single Piece Blast Hardware design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Andri; Steinzig, Michael Louis; Aragon, Daniel Adrian

    W, Q and PF engineers and machinists designed and fabricated, on the new Mazak i300, the first Single Piece Blast Hardware (unclassified design shown) reducing fabrication and inspection time by over 50%. The first DU Single Piece is completed and will be used for Hydro Test 3680. Past hydro tests used a twopiece assembly due to a lack of equipment capable of machining the complex saddle shape in a single piece. The i300 provides turning and milling 5-axis machining on one machine. The milling head on the i300 can machine past 90 relative to the spindle axis. This makes itmore » possible to machine the complex saddle surface on a single piece. Going to a single piece eliminates tolerance problems, such as tilting and eccentricity, that typically occurred when assembling the two pieces together« less

  17. Promoting Experimental Problem-solving Ability in Sixth-grade Students Through Problem-oriented Teaching of Ecology: Findings of an intervention study in a complex domain

    NASA Astrophysics Data System (ADS)

    Roesch, Frank; Nerb, Josef; Riess, Werner

    2015-03-01

    Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of experimental problem-solving ability better than conventional lessons in science. We used a paper-and-pencil test to assess students' abilities in a quasi-experimental intervention study utilizing a pretest/posttest control-group design (N = 340; average performing sixth-grade students). The treatment group received lessons on forest ecosystems consistent with the principle of education for sustainable development. This learning environment was expected to help students enhance their ecological knowledge and their theoretical and methodological experimental competencies. Two control groups received either the teachers' usual lessons on forest ecosystems or non-specific lessons on other science topics. We found that the treatment promoted specific components of experimental problem-solving ability (generating epistemic questions, planning two-factorial experiments, and identifying correct experimental controls). However, the observed effects were small, and awareness for aspects of higher ecological experimental validity was not promoted by the treatment.

  18. Hiding the system from the user: Moving from complex mental models to elegant metaphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis W. Nielsen; David J. Bruemmer

    2007-08-01

    In previous work, increased complexity of robot behaviors and the accompanying interface design often led to operator confusion and/or a fight for control between the robot and operator. We believe the reason for the conflict was that the design of the interface and interactions presented too much of the underlying robot design model to the operator. Since the design model includes the implementation of sensors, behaviors, and sophisticated algorithms, the result was that the operator’s cognitive efforts were focused on understanding the design of the robot system as opposed to focusing on the task at hand. This paper illustrates howmore » this very problem emerged at the INL and how the implementation of new metaphors for interaction has allowed us to hide the design model from the user and allow the user to focus more on the task at hand. Supporting the user’s focus on the task rather than on the design model allows increased use of the system and significant performance improvement in a search task with novice users.« less

  19. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017.

  20. Aircraft family design using enhanced collaborative optimization

    NASA Astrophysics Data System (ADS)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component commonality, but of appropriate fidelity for aircraft conceptual design. The thesis also introduces a new aircraft family concept. Unlike most families, the intent is not necessarily to produce all family members. Rather, the family includes members for immediate production and members that address potential future market conditions and/or environmental regulations. The result is a set of designs that yield a small performance penalty today in return for significant future flexibility to produce family members that respond to new market conditions and environmental regulations.

  1. Phenomenological theory of collective decision-making

    NASA Astrophysics Data System (ADS)

    Zafeiris, Anna; Koman, Zsombor; Mones, Enys; Vicsek, Tamás

    2017-08-01

    An essential task of groups is to provide efficient solutions for the complex problems they face. Indeed, considerable efforts have been devoted to the question of collective decision-making related to problems involving a single dominant feature. Here we introduce a quantitative formalism for finding the optimal distribution of the group members' competences in the more typical case when the underlying problem is complex, i.e., multidimensional. Thus, we consider teams that are aiming at obtaining the best possible answer to a problem having a number of independent sub-problems. Our approach is based on a generic scheme for the process of evaluating the proposed solutions (i.e., negotiation). We demonstrate that the best performing groups have at least one specialist for each sub-problem - but a far less intuitive result is that finding the optimal solution by the interacting group members requires that the specialists also have some insight into the sub-problems beyond their unique field(s). We present empirical results obtained by using a large-scale database of citations being in good agreement with the above theory. The framework we have developed can easily be adapted to a variety of realistic situations since taking into account the weights of the sub-problems, the opinions or the relations of the group is straightforward. Consequently, our method can be used in several contexts, especially when the optimal composition of a group of decision-makers is designed.

  2. The application of dynamic programming in production planning

    NASA Astrophysics Data System (ADS)

    Wu, Run

    2017-05-01

    Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.

  3. Encouraging an ecological evolution of data infrastructure

    NASA Astrophysics Data System (ADS)

    Parsons, M. A.

    2015-12-01

    Infrastructure is often thought of as a complex physical construct usually designed to transport information or things (e.g. electricity, water, cars, money, sound, data…). The Research Data Alliance (RDA) takes a more holistic view and considers infrastructure as a complex body of relationships between people, machines, and organisations. This paper will describe how this more ecological perspective leads RDA to define and govern an agile virtual organization. We seek to harness the power of the volunteer, through an open problem solving approach that focusses on the problems of our individual members and their organisations. We focus on implementing solutions that make data sharing work better without defining a priori what is necessary. We do not judge the fitness of a solution, per se, but instead assess how broadly the solution is adopted, recognizing that adoption is often the social challenge of technical problem. We seek to encourage a bottoms up approach with light guidance on principles from the top. The goal is to develop community solutions that solve real problems today yet are adaptive to changing technologies and needs.

  4. Fine-Scale Structure Design for 3D Printing

    NASA Astrophysics Data System (ADS)

    Panetta, Francis Julian

    Modern additive fabrication technologies can manufacture shapes whose geometric complexities far exceed what existing computational design tools can analyze or optimize. At the same time, falling costs have placed these fabrication technologies within the average consumer's reach. Especially for inexpert designers, new software tools are needed to take full advantage of 3D printing technology. This thesis develops such tools and demonstrates the exciting possibilities enabled by fine-tuning objects at the small scales achievable by 3D printing. The thesis applies two high-level ideas to invent these tools: two-scale design and worst-case analysis. The two-scale design approach addresses the problem that accurately simulating--let alone optimizing--the full-resolution geometry sent to the printer requires orders of magnitude more computational power than currently available. However, we can decompose the design problem into a small-scale problem (designing tileable structures achieving a particular deformation behavior) and a macro-scale problem (deciding where to place these structures in the larger object). This separation is particularly effective, since structures for every useful behavior can be designed once, stored in a database, then reused for many different macroscale problems. Worst-case analysis refers to determining how likely an object is to fracture by studying the worst possible scenario: the forces most efficiently breaking it. This analysis is needed when the designer has insufficient knowledge or experience to predict what forces an object will undergo, or when the design is intended for use in many different scenarios unknown a priori. The thesis begins by summarizing the physics and mathematics necessary to rigorously approach these design and analysis problems. Specifically, the second chapter introduces linear elasticity and periodic homogenization. The third chapter presents a pipeline to design microstructures achieving a wide range of effective isotropic elastic material properties on a single-material 3D printer. It also proposes a macroscale optimization algorithm placing these microstructures to achieve deformation goals under prescribed loads. The thesis then turns to worst-case analysis, first considering the macroscale problem: given a user's design, the fourth chapter aims to determine the distribution of pressures over the surface creating the highest stress at any point in the shape. Solving this problem exactly is difficult, so we introduce two heuristics: one to focus our efforts on only regions likely to concentrate stresses and another converting the pressure optimization into an efficient linear program. Finally, the fifth chapter introduces worst-case analysis at the microscopic scale, leveraging the insight that the structure of periodic homogenization enables us to solve the problem exactly and efficiently. Then we use this worst-case analysis to guide a shape optimization, designing structures with prescribed deformation behavior that experience minimal stresses in generic use.

  5. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  6. Studying PubMed usages in the field for complex problem solving: Implications for tool design

    PubMed Central

    Song, Jean; Tonks, Jennifer Steiner; Meng, Fan; Xuan, Weijian; Ameziane, Rafiqa

    2012-01-01

    Many recent studies on MEDLINE-based information seeking have shed light on scientists’ behaviors and associated tool innovations that may improve efficiency and effectiveness. Few if any studies, however, examine scientists’ problem-solving uses of PubMed in actual contexts of work and corresponding needs for better tool support. Addressing this gap, we conducted a field study of novice scientists (14 upper level undergraduate majors in molecular biology) as they engaged in a problem solving activity with PubMed in a laboratory setting. Findings reveal many common stages and patterns of information seeking across users as well as variations, especially variations in cognitive search styles. Based on findings, we suggest tool improvements that both confirm and qualify many results found in other recent studies. Our findings highlight the need to use results from context-rich studies to inform decisions in tool design about when to offer improved features to users. PMID:24376375

  7. Simultaneous personnel and vehicle shift scheduling in the waste management sector.

    PubMed

    Ghiani, Gianpaolo; Guerriero, Emanuela; Manni, Andrea; Manni, Emanuele; Potenza, Agostino

    2013-07-01

    Urban waste management is becoming an increasingly complex task, absorbing a huge amount of resources, and having a major environmental impact. The design of a waste management system consists in various activities, and one of these is related to the definition of shift schedules for both personnel and vehicles. This activity has a great incidence on the tactical and operational cost for companies. In this paper, we propose an integer programming model to find an optimal solution to the integrated problem. The aim is to determine optimal schedules at minimum cost. Moreover, we design a fast and effective heuristic to face large-size problems. Both approaches are tested on data from a real-world case in Southern Italy and compared to the current practice utilized by the company managing the service, showing that simultaneously solving these problems can lead to significant monetary savings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Catalyzing Transdisciplinarity: A Systems Ethnography of Cancer-Obesity Comorbidity and Risk Coincidence.

    PubMed

    Graham, S Scott; Harley, Amy; Kessler, Molly M; Roberts, Laura; DeVasto, Dannielle; Card, Daniel J; Neuner, Joan M; Kim, Sang-Yeon

    2017-05-01

    Effectively addressing wicked health problems, that is, those arising from complex multifactorial biological and socio-economic causes, requires transdisciplinary action. However, a significant body of research points toward substantial difficulties in cultivating transdisciplinary collaboration. Accordingly, this article presents the results of a study that adapts Systems Ethnography and Qualitative Modeling (SEQM) in response to wicked health problems. SEQM protocols were designed to catalyze transdisciplinary responses to national defense concerns. We adapted these protocols to address cancer-obesity comorbidity and risk coincidence. In so doing, we conducted participant-observations and interviews with a diverse range of health care providers, community health educators, and health advocacy professionals who target either cancer or obesity. We then convened a transdisciplinary conference designed to catalyze a coordinated response. The findings offer productive insights into effective ways of catalyzing transdisciplinarity in addressing wicked health problems action and demonstrate the promise of SEQM for continued use in health care contexts.

  9. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.

  10. State analysis requirements database for engineering complex embedded systems

    NASA Technical Reports Server (NTRS)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreedharan, Priya

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships amongmore » sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system performance and offset the need for more contaminant sensors. Physics- and algorithm-based frameworks are presented for selecting and fusing information from noncontaminant sensors. The frameworks are demonstrated with door-position sensors, which are found to be more useful in natural airflow conditions, but which cannot compensate for poor placement of contaminant sensors. The concepts and empirical findings have the potential to help in the design of sensor systems for more complex building systems. The research has broader relevance to additional environmental monitoring problems, fault detection and diagnostics, and system design.« less

  12. Developing predictive systems models to address complexity and relevance for ecological risk assessment.

    PubMed

    Forbes, Valery E; Calow, Peter

    2013-07-01

    Ecological risk assessments (ERAs) are not used as well as they could be in risk management. Part of the problem is that they often lack ecological relevance; that is, they fail to grasp necessary ecological complexities. Adding realism and complexity can be difficult and costly. We argue that predictive systems models (PSMs) can provide a way of capturing complexity and ecological relevance cost-effectively. However, addressing complexity and ecological relevance is only part of the problem. Ecological risk assessments often fail to meet the needs of risk managers by not providing assessments that relate to protection goals and by expressing risk in ratios that cannot be weighed against the costs of interventions. Once more, PSMs can be designed to provide outputs in terms of value-relevant effects that are modulated against exposure and that can provide a better basis for decision making than arbitrary ratios or threshold values. Recent developments in the modeling and its potential for implementation by risk assessors and risk managers are beginning to demonstrate how PSMs can be practically applied in risk assessment and the advantages that doing so could have. Copyright © 2013 SETAC.

  13. Design Guidelines and Criteria for User/Operator Transactions with Battlefield Automated Systems. Volume 5. Background Literature

    DTIC Science & Technology

    1981-02-01

    the machine . ARI’s efforts in this area focus on human perfor- mance problems related to interactions with command and control centers, and on issues...improvement of the user- machine interface. Lacking consistent design principles, current practice results in a fragmented and unsystematic approach to system...complexity in the user- machine interface of BAS, ARI supported this effort for develop- me:nt of an online language for Army tactical intelligence

  14. Optical Neural Classification Of Binary Patterns

    NASA Astrophysics Data System (ADS)

    Gustafson, Steven C.; Little, Gordon R.

    1988-05-01

    Binary pattern classification that may be implemented using optical hardware and neural network algorithms is considered. Pattern classification problems that have no concise description (as in classifying handwritten characters) or no concise computation (as in NP-complete problems) are expected to be particularly amenable to this approach. For example, optical processors that efficiently classify binary patterns in accordance with their Boolean function complexity might be designed. As a candidate for such a design, an optical neural network model is discussed that is designed for binary pattern classification and that consists of an optical resonator with a dynamic multiplex-recorded reflection hologram and a phase conjugate mirror with thresholding and gain. In this model, learning or training examples of binary patterns may be recorded on the hologram such that one bit in each pattern marks the pattern class. Any input pattern, including one with an unknown class or marker bit, will be modified by a large number of parallel interactions with the reflection hologram and nonlinear mirror. After perhaps several seconds and 100 billion interactions, a steady-state pattern may develop with a marker bit that represents a minimum-Boolean-complexity classification of the input pattern. Computer simulations are presented that illustrate progress in understanding the behavior of this model and in developing a processor design that could have commanding and enduring performance advantages compared to current pattern classification techniques.

  15. Object-oriented philosophy in designing adaptive finite-element package for 3D elliptic deferential equations

    NASA Astrophysics Data System (ADS)

    Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.

    2007-12-01

    Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.

  16. Applying AN Object-Oriented Database Model to a Scientific Database Problem: Managing Experimental Data at Cebaf.

    NASA Astrophysics Data System (ADS)

    Ehlmann, Bryon K.

    Current scientific experiments are often characterized by massive amounts of very complex data and the need for complex data analysis software. Object-oriented database (OODB) systems have the potential of improving the description of the structure and semantics of this data and of integrating the analysis software with the data. This dissertation results from research to enhance OODB functionality and methodology to support scientific databases (SDBs) and, more specifically, to support a nuclear physics experiments database for the Continuous Electron Beam Accelerator Facility (CEBAF). This research to date has identified a number of problems related to the practical application of OODB technology to the conceptual design of the CEBAF experiments database and other SDBs: the lack of a generally accepted OODB design methodology, the lack of a standard OODB model, the lack of a clear conceptual level in existing OODB models, and the limited support in existing OODB systems for many common object relationships inherent in SDBs. To address these problems, the dissertation describes an Object-Relationship Diagram (ORD) and an Object-oriented Database Definition Language (ODDL) that provide tools that allow SDB design and development to proceed systematically and independently of existing OODB systems. These tools define multi-level, conceptual data models for SDB design, which incorporate a simple notation for describing common types of relationships that occur in SDBs. ODDL allows these relationships and other desirable SDB capabilities to be supported by an extended OODB system. A conceptual model of the CEBAF experiments database is presented in terms of ORDs and the ODDL to demonstrate their functionality and use and provide a foundation for future development of experimental nuclear physics software using an OODB approach.

  17. A Simplified Design with a Toothed Belt and Non-Circular Pulleys to Separate Parts from a Magazine File

    NASA Astrophysics Data System (ADS)

    Hanke, U.; Modler, K.-H.; Neumann, R.; Fischer, C.

    The objective of this paper is to simplify a very complex guidance mechanism, currently used for lid separating issues in a packaging-machine. The task of this machine is to pick up a lid from a magazine file, rotate it around 180° and place it on tins. The developed mechanism works successfully but with a very complex construction. It consists of a planetary cam mechanism, combined with a toothed gear (with a constant transmission ratio) and a guiding mechanism with a toothed belt and circular pulleys. Such complex constructions are very common in industrial solutions. The idea of the authors is to show a much simpler design in solving the same problem. They developed a guidance mechanism realizing the same function, consisting only of a toothed belt with non-circular pulleys. The used parts are common trade articles.

  18. The Design Manager's Aid for Intelligent Decomposition (DeMAID)

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1994-01-01

    Before the design of new complex systems such as large space platforms can begin, the possible interactions among subsystems and their parts must be determined. Once this is completed, the proposed system can be decomposed to identify its hierarchical structure. The design manager's aid for intelligent decomposition (DeMAID) is a knowledge based system for ordering the sequence of modules and identifying a possible multilevel structure for design. Although DeMAID requires an investment of time to generate and refine the list of modules for input, it could save considerable money and time in the total design process, particularly in new design problems where the ordering of the modules has not been defined.

  19. Fuel-Air Mixing and Combustion in Scramjets. Chapter 6

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.

    2006-01-01

    At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.

  20. The archiving of meteor research information

    NASA Technical Reports Server (NTRS)

    Nechitailenko, V. A.

    1987-01-01

    The results obtained over the past years under GLOBMET are not reviewed but some of the problems the solution of which will guide further development of meteor investigation and international cooperation in this field for the near term are discussed. The main attention is paid to problems which the meteor community itself can solve, or at least expedite. Most of them are more or less connected with the problem of information archiving. Information archiving deals with methods and techniques of solving two closely connected groups of problems. The first is the analysis of data and information as an integral part of meteor research and deals with the solution of certain methodological problems. The second deals with gathering data and information for the designing of models of the atmosphere and/or meteor complex and its utilization. These problem solutions are discussed.

  1. A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model.

    PubMed

    Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei

    2017-12-01

    As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.

  2. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    PubMed Central

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  3. Application of response surface techniques to helicopter rotor blade optimization procedure

    NASA Technical Reports Server (NTRS)

    Henderson, Joseph Lynn; Walsh, Joanne L.; Young, Katherine C.

    1995-01-01

    In multidisciplinary optimization problems, response surface techniques can be used to replace the complex analyses that define the objective function and/or constraints with simple functions, typically polynomials. In this work a response surface is applied to the design optimization of a helicopter rotor blade. In previous work, this problem has been formulated with a multilevel approach. Here, the response surface takes advantage of this decomposition and is used to replace the lower level, a structural optimization of the blade. Problems that were encountered and important considerations in applying the response surface are discussed. Preliminary results are also presented that illustrate the benefits of using the response surface.

  4. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.

  5. Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    NASA Technical Reports Server (NTRS)

    Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.

    2001-01-01

    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.

  6. Moneymed: a game to develop management skills in general practice

    PubMed Central

    Essex, B.; Jackson, R. N.

    1981-01-01

    A game has been developed to train people in the financial and administrative skills needed for effective general practice management. These skills cover a wide range of legal, economic, administrative and personnel problems encountered in general practice. Thirty-four trainees and six trainers showed a highly significant improvement in knowledge and problem-solving skills after playing the game. The format and design of the game allow the problem type, complexity and solution to vary and to be readily updated. So far, this seems to be one of the most effective instruments yet developed for learning these skills. Imagesp736-a PMID:7338867

  7. Code IN Exhibits - Supercomputing 2000

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob F.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    The creation of parameter study suites has recently become a more challenging problem as the parameter studies have become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers immense resource opportunities but at the expense of great difficulty of use. We present ILab, an advanced graphical user interface approach to this problem. Our novel strategy stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.

  8. The Affordance of Online Multiuser Virtual Environments (MUVE) for Creative Collaboration

    ERIC Educational Resources Information Center

    Hong, Seung Wan

    2013-01-01

    Creativity is an important criterion for evaluating conceptual and design abilities of architects and their praxis. However, in recent years, the world has grown more complex. New problems have emerged that are often outside the architect's capacity. Given this challenge, architects collaborate with colleagues from architecture and other related…

  9. Designing a Better Experience: A Qualitative Investigation of Student Engineering Internships

    ERIC Educational Resources Information Center

    Paknejad, Mohammad R.

    2016-01-01

    Science, Technology, Engineering and Mathematics (STEM) education play a very important role in preparing students with skills necessary to obtain better jobs, solve real-world challenges, and compete in the global economy. STEM education develops critical thinking and the ability to solve complex problems. Research showed that 8 out of 10 most…

  10. Creating a Complex Measurement Model Using Evidence Centered Design.

    ERIC Educational Resources Information Center

    Williamson, David M.; Bauer, Malcom; Steinberg, Linda S.; Mislevy, Robert J.; Behrens, John T.

    In computer-based simulations meant to support learning, students must bring a wide range of relevant knowledge, skills, and abilities to bear jointly as they solve meaningful problems in a learning domain. To function efficiently as an assessment, a simulation system must also be able to evoke and interpret observable evidence about targeted…

  11. Germany: The Search for Unity.

    ERIC Educational Resources Information Center

    Blankenship, Glen, Ed.

    The 12 lessons in this collection are designed so that they may be used individually, integrated into the curriculum at appropriate places, or used as a complete unit. The lessons are entitled: (1) Impressions of Germany and Germans; (2) The Location and Population of Germany; (3) Pollution in Germany: A Complex Problems; (4) German Political…

  12. Training Design Conception and Reflexive Practice: How to Answer Teachers' Questions?

    ERIC Educational Resources Information Center

    Clottu, Régine

    2017-01-01

    This research studies the practices related to the conception of training "on demand" in the field of continuous training of teachers. Training "on demand" adapts itself to the problems of professionals. The analysis of the demand faces the complexity of the different contexts as well as the diversity of professionals'…

  13. Child Welfare Design Teams: An Intervention to Improve Workforce Retention and Facilitate Organizational Development

    ERIC Educational Resources Information Center

    Caringi, James C.; Lawson, Hal A.; Strolin-Goltzman, Jessica; McCarthy, Mary; Briar-Lawson, Katharine; Claiborne, Nancy

    2008-01-01

    Workforce turnover in public child welfare is a national problem. Individual, supervisory, and organizational factors, individually and in combination, account for some of the turnover. Complex, comprehensive interventions are needed to address these several factors and their interactions. A research and development team is field testing one such…

  14. Dan Says - Continuum Magazine | NREL

    Science.gov Websites

    Dan Says Leading Energy Systems Integration A headshot of a man in a suit, smiling. Photo by Dennis U.S. dedicated to solving the complex problems associated with energy systems integration (ESI) on a national scale. Our 185,000-square-foot Energy Systems Integration Facility (ESIF) is designed to provide a

  15. A Framework for Scaffolding Students' Assessment of the Credibility of Evidence

    ERIC Educational Resources Information Center

    Nicolaidou, Iolie; Kyza, Eleni A.; Terzian, Frederiki; Hadjichambis, Andreas; Kafouris, Dimitris

    2011-01-01

    Assessing the credibility of evidence in complex, socio-scientific problems is of paramount importance. However, there is little discussion in the science education literature on this topic and on how students can be supported in developing such skills. In this article, we describe an instructional design framework, which we call the Credibility…

  16. Culture, Context, and the Pursuit of Sustainability: Contemplating Problems, Parameters, and Possibilities in an Increasingly Complex World

    ERIC Educational Resources Information Center

    Sinclair, Brian R.

    2009-01-01

    Modern design and planning are routinely confounded by endemic conditions of deep fragmentation, rampant bureaucratization, and ineffective regulation. Such barriers hamper our ability to succeed in the execution of responsive, responsible, and superb ventures. Added to the mix are cost escalation, outdated technologies, cumbersome techniques,…

  17. Arts-Based Learning and Leadership Development: A Case Study

    ERIC Educational Resources Information Center

    Brenner, Michael Yoel

    2010-01-01

    This qualitative case study was designed to explore how participants in an arts-based leadership development program learned to draw on their right brain capabilities in order to develop the creative competencies required to solve complex modern-day problems in new and different ways. The rationale for this study emerges from the researcher's…

  18. Practicing What We Preach: Assessing "Critical Thinking" in Organic Chemistry

    ERIC Educational Resources Information Center

    Stowe, Ryan L.; Cooper, Melanie M.

    2017-01-01

    Organic chemistry is often promoted as a course designed to cultivate skill in scientific "ways of thinking." Expert organic chemists perceive their field as one in which plausible answers to complex questions are arrived at through analytical thought processes. They draw analogy between problem solving in organic chemistry and diagnosis…

  19. Changing a Generation's Way of Thinking: Teaching Computational Thinking through Programming

    ERIC Educational Resources Information Center

    Buitrago Flórez, Francisco; Casallas, Rubby; Hernández, Marcela; Reyes, Alejandro; Restrepo, Silvia; Danies, Giovanna

    2017-01-01

    Computational thinking (CT) uses concepts that are essential to computing and information science to solve problems, design and evaluate complex systems, and understand human reasoning and behavior. This way of thinking has important implications in computer sciences as well as in almost every other field. Therefore, we contend that CT should be…

  20. Cognitive Load Theory and the Acquisition of Complex Cognitive Skills in the Elderly: Towards an Integrative Framework.

    ERIC Educational Resources Information Center

    Van Gerven, Pascal W. M.; Paas, Fred G. W. C.; Van Merrienboer, Jeroen J. G.; Schmidt, Henk G.

    2000-01-01

    Cognitive load (CL) theory suggests minimizing extraneous CL and maximizing germane CL in order not to overload working memory. Instructional design for older adults should therefore include goal-free problems, worked examples, and different modalities and avoid splitting attention and including redundant information. (SK)

Top