Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases.
Louridas, George E; Lourida, Katerina G
2017-02-21
Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy.
Complex social contagion makes networks more vulnerable to disease outbreaks.
Campbell, Ellsworth; Salathé, Marcel
2013-01-01
Social network analysis is now widely used to investigate the dynamics of infectious disease spread. Vaccination dramatically disrupts disease transmission on a contact network, and indeed, high vaccination rates can potentially halt disease transmission altogether. Here, we build on mounting evidence that health behaviors - such as vaccination, and refusal thereof - can spread across social networks through a process of complex contagion that requires social reinforcement. Using network simulations that model health behavior and infectious disease spread, we find that under otherwise identical conditions, the process by which the health behavior spreads has a very strong effect on disease outbreak dynamics. This dynamic variability results from differences in the topology within susceptible communities that arise during the health behavior spreading process, which in turn depends on the topology of the overall social network. Our findings point to the importance of health behavior spread in predicting and controlling disease outbreaks.
Clinical Complexity in Medicine: A Measurement Model of Task and Patient Complexity.
Islam, R; Weir, C; Del Fiol, G
2016-01-01
Complexity in medicine needs to be reduced to simple components in a way that is comprehensible to researchers and clinicians. Few studies in the current literature propose a measurement model that addresses both task and patient complexity in medicine. The objective of this paper is to develop an integrated approach to understand and measure clinical complexity by incorporating both task and patient complexity components focusing on the infectious disease domain. The measurement model was adapted and modified for the healthcare domain. Three clinical infectious disease teams were observed, audio-recorded and transcribed. Each team included an infectious diseases expert, one infectious diseases fellow, one physician assistant and one pharmacy resident fellow. The transcripts were parsed and the authors independently coded complexity attributes. This baseline measurement model of clinical complexity was modified in an initial set of coding processes and further validated in a consensus-based iterative process that included several meetings and email discussions by three clinical experts from diverse backgrounds from the Department of Biomedical Informatics at the University of Utah. Inter-rater reliability was calculated using Cohen's kappa. The proposed clinical complexity model consists of two separate components. The first is a clinical task complexity model with 13 clinical complexity-contributing factors and 7 dimensions. The second is the patient complexity model with 11 complexity-contributing factors and 5 dimensions. The measurement model for complexity encompassing both task and patient complexity will be a valuable resource for future researchers and industry to measure and understand complexity in healthcare.
Physiology and pathogenesis of gastroesophageal reflux disease.
Mikami, Dean J; Murayama, Kenric M
2015-06-01
Gastroesophageal reflux disease (GERD) is one of the most common problems treated by primary care physicians. Almost 20% of the population in the United States experiences occasional regurgitation, heartburn, or retrosternal pain because of GERD. Reflux disease is complex, and the physiology and pathogenesis are still incompletely understood. However, abnormalities of any one or a combination of the three physiologic processes, namely, esophageal motility, lower esophageal sphincter function, and gastric motility or emptying, can lead to GERD. There are many diagnostic and therapeutic approaches to GERD today, but more studies are needed to better understand this complex disease process. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
McNamara, K. P.; O'Reilly, S. L.; George, J.; Peterson, G. M.; Jackson, S. L.; Duncan, G.; Howarth, H.; Dunbar, J. A.
2015-01-01
Background: Delivery of cardiovascular disease (CVD) prevention programs by community pharmacists appears effective and enhances health service access. However, their capacity to implement complex behavioural change processes during patient counselling remains largely unexplored. This study aims to determine intervention fidelity by pharmacists…
Coupled disease-behavior dynamics on complex networks: A review
NASA Astrophysics Data System (ADS)
Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.
2015-12-01
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen
2015-03-01
The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.
Towards a unified theory of health-disease: II. Holopathogenesis
Almeida-Filho, Naomar
2014-01-01
This article presents a systematic framework for modeling several classes of illness-sickness-disease named as Holopathogenesis. Holopathogenesis is defined as processes of over-determination of diseases and related conditions taken as a whole, comprising selected facets of the complex object Health. First, a conceptual background of Holopathogenesis is presented as a series of significant interfaces (biomolecular-immunological, physiopathological-clinical, epidemiological-ecosocial). Second, propositions derived from Holopathogenesis are introduced in order to allow drawing the disease-illness-sickness complex as a hierarchical network of networks. Third, a formalization of intra- and inter-level correspondences, over-determination processes, effects and links of Holopathogenesis models is proposed. Finally, the Holopathogenesis frame is evaluated as a comprehensive theoretical pathology taken as a preliminary step towards a unified theory of health-disease. PMID:24897040
Liu, Zhiming; Luo, Jiawei
2017-08-01
Associating protein complexes to human inherited diseases is critical for better understanding of biological processes and functional mechanisms of the disease. Many protein complexes have been identified and functionally annotated by computational and purification methods so far, however, the particular roles they were playing in causing disease have not yet been well determined. In this study, we present a novel method to identify associations between protein complexes and diseases. First, we construct a disease-protein heterogeneous network based on data integration and laplacian normalization. Second, we apply a random walk with restart on heterogeneous network (RWRH) algorithm on this network to quantify the strength of the association between proteins and the query disease. Third, we sum over the scores of member proteins to obtain a summary score for each candidate protein complex, and then rank all candidate protein complexes according to their scores. With a series of leave-one-out cross-validation experiments, we found that our method not only possesses high performance but also demonstrates robustness regarding the parameters and the network structure. We test our approach with breast cancer and select top 20 highly ranked protein complexes, 17 of the selected protein complexes are evidenced to be connected with breast cancer. Our proposed method is effective in identifying disease-related protein complexes based on data integration and laplacian normalization. Copyright © 2017. Published by Elsevier Ltd.
Coupled disease-behavior dynamics on complex networks: A review.
Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T
2015-12-01
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years. Copyright © 2015 Elsevier B.V. All rights reserved.
A complex case of congenital cystic renal disease
Cordiner, David S; Evans, Clair A; Brundler, Marie-Anne; McPhillips, Maeve; Murio, Enric; Darling, Mark; Taheri, Sepideh
2012-01-01
This case outlines the potential complexity of autosomal recessive polycystic kidney disease (ARPKD). It highlights the challenges involved in managing this condition, some of the complications faced and areas of uncertainty in the decision making process. With a paucity of published paediatric cases on this subject, this should add to the pool of information currently available. PMID:22605879
Ellis, Alicia M.; Garcia, Andres J.; Focks, Dana A.; Morrison, Amy C.; Scott, Thomas W.
2011-01-01
Models can be useful tools for understanding the dynamics and control of mosquito-borne disease. More detailed models may be more realistic and better suited for understanding local disease dynamics; however, evaluating model suitability, accuracy, and performance becomes increasingly difficult with greater model complexity. Sensitivity analysis is a technique that permits exploration of complex models by evaluating the sensitivity of the model to changes in parameters. Here, we present results of sensitivity analyses of two interrelated complex simulation models of mosquito population dynamics and dengue transmission. We found that dengue transmission may be influenced most by survival in each life stage of the mosquito, mosquito biting behavior, and duration of the infectious period in humans. The importance of these biological processes for vector-borne disease models and the overwhelming lack of knowledge about them make acquisition of relevant field data on these biological processes a top research priority. PMID:21813844
Links, Amanda E.; Draper, David; Lee, Elizabeth; Guzman, Jessica; Valivullah, Zaheer; Maduro, Valerie; Lebedev, Vlad; Didenko, Maxim; Tomlin, Garrick; Brudno, Michael; Girdea, Marta; Dumitriu, Sergiu; Haendel, Melissa A.; Mungall, Christopher J.; Smedley, Damian; Hochheiser, Harry; Arnold, Andrew M.; Coessens, Bert; Verhoeven, Steven; Bone, William; Adams, David; Boerkoel, Cornelius F.; Gahl, William A.; Sincan, Murat
2016-01-01
The National Institutes of Health Undiagnosed Diseases Program (NIH UDP) applies translational research systematically to diagnose patients with undiagnosed diseases. The challenge is to implement an information system enabling scalable translational research. The authors hypothesized that similar complex problems are resolvable through process management and the distributed cognition of communities. The team, therefore, built the NIH UDP integrated collaboration system (UDPICS) to form virtual collaborative multidisciplinary research networks or communities. UDPICS supports these communities through integrated process management, ontology-based phenotyping, biospecimen management, cloud-based genomic analysis, and an electronic laboratory notebook. UDPICS provided a mechanism for efficient, transparent, and scalable translational research and thereby addressed many of the complex and diverse research and logistical problems of the NIH UDP. Full definition of the strengths and deficiencies of UDPICS will require formal qualitative and quantitative usability and process improvement measurement. PMID:27785453
Proposal for an integrated evaluation model for the study of whole systems health care in cancer.
Jonas, Wayne B; Beckner, William; Coulter, Ian
2006-12-01
For more than 200 years, biomedicine has approached the treatment of disease by studying disease processes (patho-genesis), inferring causal connections and developing specific approaches for therapeutically interfering with those processes. This pathogenic approach has been highly successful in acute and traumatic disease but less successful in chronic disease, primarily because of the complex, multi-factorial nature of most chronic disease, which does not allow for simple causal inference or for simple therapeutic interventions. This article suggests that chronic disease is best approached by enhancing healing processes (salutogenesis) as a whole system. Because of the nature of complex systems in chronic disease, an evaluation model based on integrative medicine is felt to be more appropriate than a disease model. The authors propose and describe an integrated model for the evaluation of healing (IMEH) that collects multilevel "thick case" observational data in assessing complex practices for chronic disease. If successful, this approach could become a blueprint for studying healing capacity in whole medical systems, including complementary medicine, traditional medicine, and conventional primary care. In addition, streamlining data collection and applying rapid informatics management might allow for such data to be used in guiding clinical practice. The IMEH involves collection, integration, and potentially feedback of relevant variables in the following areas: (1) sociocultural, (2) psychological and behavioral, (3) clinical (diagnosis based), and (4) biological. Evaluation and integration of these components would involve specialized research teams that feed their data into a single data management and information analysis center. These data can then be subjected to descriptive and pathway analysis providing "bench and bedside" information.
Dynamic properties of epidemic spreading on finite size complex networks
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
A Chemical Engineer's Perspective on Health and Disease
Androulakis, Ioannis P.
2014-01-01
Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems. PMID:25506103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberger, Jutta; Kontaxis, Georg; Rancan, Chiara
The foot-and-mouth disease virus leader proteinase (Lb{sup pro}) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb{sup pro} L200F provide structural evidence for intramolecular self-processing. {sup 15}N-HSQC measurements of Lb{sup pro} L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb{sup pro}, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb{sup pro}, stably binds itsmore » own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb{sup pro} and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb{sup pro}. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes.« less
Minireview: Genetic basis of heterogeneity and severity in sickle cell disease
Habara, Alawi
2016-01-01
Sickle cell disease, a common single gene disorder, has a complex pathophysiology that at its root is initiated by the polymerization of deoxy sickle hemoglobin. Sickle vasoocclusion and hemolytic anemia drive the development of disease complications. In this review, we focus on the genetic modifiers of disease heterogeneity. The phenotypic heterogeneity of disease is only partially explained by genetic variability of fetal hemoglobin gene expression and co-inheritance of α thalassemia. Given the complexity of pathophysiology, many different definitions of severity are possible complicating a full understanding of its genetic foundation. The pathophysiological complexity and the interlocking nature of the biological processes underpinning disease severity are becoming better understood. Nevertheless, useful genetic signatures of severity, regardless of how this is defined, are insufficiently developed to be used for treatment decisions and for counseling. PMID:26936084
Aicardi-Goutières syndrome: a model disease for systemic autoimmunity.
Lee-Kirsch, M A; Wolf, C; Günther, C
2014-01-01
Systemic autoimmunity is a complex disease process that results from a loss of immunological tolerance characterized by the inability of the immune system to discriminate self from non-self. In patients with the prototypic autoimmune disease systemic lupus erythematosus (SLE), formation of autoantibodies targeting ubiquitous nuclear antigens and subsequent deposition of immune complexes in the vascular bed induces inflammatory tissue injury that can affect virtually any organ system. Given the extraordinary genetic and phenotypic heterogeneity of SLE, one approach to the genetic dissection of complex SLE is to study monogenic diseases, for which a single gene defect is responsible. Considerable success has been achieved from the analysis of the rare monogenic disorder Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that clinically resembles in-utero-acquired viral infection and that also shares features with SLE. Progress in understanding the cellular and molecular functions of the AGS causing genes has revealed novel pathways of the metabolism of intracellular nucleic acids, the major targets of the autoimmune attack in patients with SLE. Induction of autoimmunity initiated by immune recognition of endogenous nucleic acids originating from processes such as DNA replication/repair or endogenous retro-elements represents novel paradigms of SLE pathogenesis. These findings illustrate how investigating rare monogenic diseases can also fuel discoveries that advance our understanding of complex disease. This will not only aid the development of improved tools for SLE diagnosis and disease classification, but also the development of novel targeted therapeutic approaches. © 2013 British Society for Immunology.
Lupus erythematosus revisited.
Kuhn, Annegret; Wenzel, Joerg; Bijl, Marc
2016-01-01
Lupus erythematosus (LE) is a multifactorial autoimmune disease with clinical manifestations of differing severity. The exact pathomechanisms and interactions resulting in the inflammatory and immunological processes of this heterogeneous disease remain elusive. Approaches in the understanding of the pathomechanisms revealed that the clinical expression of LE is predisposed by susceptibility genes and that various environmental factors are responsible for an abnormal immune response. Several studies demonstrated that ultraviolet (UV) light is one of the major factors in the pathogenesis of the disease. Standardized photoprovocation in patients with LE has been shown to be a safe and efficient model for evaluating the underlying pathomechanisms which lead to the production of autoantibodies and immune complexes. In particular, interferons were defined as important players in the early activation of the immune system and were observed to play a specific role in the immunological interface between the innate and the adaptive immune system. Abnormalities or disturbances in the different processes of cell death, such as apoptosis or necrosis, have also been recognized as crucial in the pathogenesis of LE. Although each process is different and characterized by unique features, the processes are interrelated and result in a complex disease.
Shiver, Stacy A; Schmitt, Karla; Cooksey, Adrian
2009-01-01
The business of sexually transmitted disease (STD) prevention and control demands technology that is capable of supporting a wide array of program activities-from the processing of laboratory test results to the complex and confidential process involved in contact investigation. The need for a tool that enables public health officials to successfully manage the complex operations encountered in an STD prevention and control program, and the need to operate in an increasingly poor resource environment, led the Florida Bureau of STD to develop the Patient Reporting Investigation Surveillance Manager. Its unique approach, technical architecture, and sociotechnical philosophy have made this business application successful in real-time monitoring of disease burden for local communities, identification of emerging outbreaks, monitoring and assurance of appropriate treatments, improving access to laboratory data, and improving the quality of data for epidemiologic analysis. Additionally, the effort attempted to create and release a product that promoted the Centers for Disease Control and Prevention's ideas for integration of programs and processes.
Multi-compartmental modeling of SORLA’s influence on amyloidogenic processing in Alzheimer’s disease
2012-01-01
Background Proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in formation of neurotoxic Aβ peptides, causative of neurodegeneration in Alzheimer’s disease (AD). Processing involves monomeric and dimeric forms of APP that traffic through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and major AD risk factor. Results In this study, we developed a multi-compartment model to simulate the complexity of APP processing in neurons and to accurately describe the effects of SORLA on these processes. Based on dose–response data, our study concludes that SORLA specifically impairs processing of APP dimers, the preferred secretase substrate. In addition, SORLA alters the dynamic behavior of β-secretase, the enzyme responsible for the initial step in the amyloidogenic processing cascade. Conclusions Our multi-compartment model represents a major conceptual advance over single-compartment models previously used to simulate APP processing; and it identified APP dimers and β-secretase as the two distinct targets of the inhibitory action of SORLA in Alzheimer’s disease. PMID:22727043
Regulation of gamma-Secretase in Alzheimer's Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shuxia; Zhou, Hua; Walian, Peter
2007-02-07
The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol andmore » sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.« less
Protein-Protein Interface and Disease: Perspective from Biomolecular Networks.
Hu, Guang; Xiao, Fei; Li, Yuqian; Li, Yuan; Vongsangnak, Wanwipa
Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.
Novel insights into an old disease: recent developments in scabies mite biology.
Holt, Deborah C; Fischer, Katja
2013-04-01
Scabies is a serious disease of both humans and other animals caused by infestation of the skin with the ectoparasitic mite Sarcoptes scabiei. Our current understanding of scabies mite biology and disease processes is far outweighed by the significant, worldwide impact of the disease. This review summarizes the recent data which furthers our knowledge of mite biology, host specificity and parasite host evasion mechanisms. Recent data concords with the previous work demonstrating limited gene flow between different host-associated populations of scabies mites. This evidence of the host specificity of scabies mites has important implications for disease control programmes. Other studies have begun to decipher the molecular basis of the complex host-parasite interactions underlying scabies infestations. Scabies mites have developed complex mechanisms to interfere with the host defence processes that may also enhance the survival of the associated skin microbiome, consistent with the epidemiological evidence. Recently developed natural host models of scabies are valuable tools to further study the disease processes and to trial novel therapeutic agents. Although significant progress has been made, further research is needed to understand the biology, host-parasite interactions and pathogenesis of this ubiquitous parasite.
“Gestaltomics”: Systems Biology Schemes for the Study of Neuropsychiatric Diseases
Gutierrez Najera, Nora A.; Resendis-Antonio, Osbaldo; Nicolini, Humberto
2017-01-01
The integration of different sources of biological information about what defines a behavioral phenotype is difficult to unify in an entity that reflects the arithmetic sum of its individual parts. In this sense, the challenge of Systems Biology for understanding the “psychiatric phenotype” is to provide an improved vision of the shape of the phenotype as it is visualized by “Gestalt” psychology, whose fundamental axiom is that the observed phenotype (behavior or mental disorder) will be the result of the integrative composition of every part. Therefore, we propose the term “Gestaltomics” as a term from Systems Biology to integrate data coming from different sources of information (such as the genome, transcriptome, proteome, epigenome, metabolome, phenome, and microbiome). In addition to this biological complexity, the mind is integrated through multiple brain functions that receive and process complex information through channels and perception networks (i.e., sight, ear, smell, memory, and attention) that in turn are programmed by genes and influenced by environmental processes (epigenetic). Today, the approach of medical research in human diseases is to isolate one disease for study; however, the presence of an additional disease (co-morbidity) or more than one disease (multimorbidity) adds complexity to the study of these conditions. This review will present the challenge of integrating psychiatric disorders at different levels of information (Gestaltomics). The implications of increasing the level of complexity, for example, studying the co-morbidity with another disease such as cancer, will also be discussed. PMID:28536537
Vrahatis, Aristidis G; Rapti, Angeliki; Sioutas, Spyros; Tsakalidis, Athanasios
2017-01-01
In the era of Systems Biology and growing flow of omics experimental data from high throughput techniques, experimentalists are in need of more precise pathway-based tools to unravel the inherent complexity of diseases and biological processes. Subpathway-based approaches are the emerging generation of pathway-based analysis elucidating the biological mechanisms under the perspective of local topologies onto a complex pathway network. Towards this orientation, we developed PerSub, a graph-based algorithm which detects subpathways perturbed by a complex disease. The perturbations are imprinted through differentially expressed and co-expressed subpathways as recorded by RNA-seq experiments. Our novel algorithm is applied on data obtained from a real experimental study and the identified subpathways provide biological evidence for the brain aging.
Grip on health: A complex systems approach to transform health care.
van Wietmarschen, Herman A; Wortelboer, Heleen M; van der Greef, Jan
2018-02-01
This article addresses the urgent need for a transition in health care to deal with the increasing prevalence of chronic diseases and associated rapid rise of health care costs. Chronic diseases evolve and are predominantly related to lifestyle and environment. A shift is needed from a reductionist repair mode of thinking, toward a more integrated biopsychosocial way of thinking about health. The aim of this article is to discuss the opportunities that complexity science offer for transforming health care toward optimal treatment and prevention of chronic lifestyle diseases. Health and health care is discussed from a complexity science perspective. The benefits of concepts developed in the field of complexity science for stimulating transitions in health care are explored. Complexity science supports the elucidation of the essence of health processes. It provides a unique perspective on health with a focus on the relationships within networks of dynamically interacting factors and the emergence of health out of the organization of those relationships. Novel types of complexity science-based intervention strategies are being developed. The first application in practice is the integrated obesity treatment program currently piloted in the Netherlands, focusing on health awareness and healing relationships. Complexity science offers various theories and methods to capture the path toward unhealthy and healthy states, facilitating the development of a dynamic integrated biopsychosocial perspective on health. This perspective offers unique insights into health processes for patients and citizens. In addition, dynamic models driven by personal data provide simulations of health processes and the ability to detect transitions between health states. Such models are essential for aligning and reconnecting the many institutions and disciplines involved in the health care sector and evolve toward an integrated health care ecosystem. © 2016 John Wiley & Sons, Ltd.
The roles of cohesins in mitosis, meiosis, and human health and disease
Brooker, Amanda S.; Berkowitz, Karen M.
2015-01-01
Summary Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multi-protein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events, as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review will serve as a guide for the current knowledge of cohesins. PMID:24906316
Positional cloning in mice and its use for molecular dissection of inflammatory arthritis.
Abe, Koichiro; Yu, Philipp
2009-02-01
One of the upcoming next quests in the field of genetics might be molecular dissection of the genetic and environmental components of human complex diseases. In humans, however, there are certain experimental limitations for identification of a single component of the complex interactions by genetic analyses. Experimental animals offer simplified models for genetic and environmental interactions in human complex diseases. In particular, mice are the best mammalian models because of a long history and ample experience for genetic analyses. Forward genetics, which includes genetic screen and subsequent positional cloning of the causative genes, is a powerful strategy to dissect a complex phenomenon without preliminarily molecular knowledge of the process. In this review, first, we describe a general scheme of positional cloning in mice. Next, recent accomplishments on the patho-mechanisms of inflammatory arthritis by forward genetics approaches are introduced; Positional cloning effort for skg, Ali5, Ali18, cmo, and lupo mutants are provided as examples for the application to human complex diseases. As seen in the examples, the identification of genetic factors by positional cloning in the mouse have potential in solving molecular complexity of gene-environment interactions in human complex diseases.
Johnson, Julene K; Chow, Maggie L
2016-01-01
Music is a complex acoustic signal that relies on a number of different brain and cognitive processes to create the sensation of hearing. Changes in hearing function are generally not a major focus of concern for persons with a majority of neurodegenerative diseases associated with dementia, such as Alzheimer disease (AD). However, changes in the processing of sounds may be an early, and possibly preclinical, feature of AD and other neurodegenerative diseases. The aim of this chapter is to review the current state of knowledge concerning hearing and music perception in persons who have a dementia as a result of a neurodegenerative disease. The review focuses on both peripheral and central auditory processing in common neurodegenerative diseases, with a particular focus on the processing of music and other non-verbal sounds. The chapter also reviews music interventions used for persons with neurodegenerative diseases. PMID:25726296
Pathogenesis of Crohn's disease
Boyapati, Ray; Satsangi, Jack
2015-01-01
Significant progress in our understanding of Crohn's disease (CD), an archetypal common, complex disease, has now been achieved. Our ability to interrogate the deep complexities of the biological processes involved in maintaining gut mucosal homeostasis is a major over-riding factor underpinning this rapid progress. Key studies now offer many novel and expansive insights into the interacting roles of genetic susceptibility, immune function, and the gut microbiota in CD. Here, we provide overviews of these recent advances and new mechanistic themes, and address the challenges and prospects for translation from concept to clinic. PMID:26097717
NASA Astrophysics Data System (ADS)
Wu, Chun; Shea, Joan-Emma
Protein aggregation involves the self-assembly of proteins into large β-sheet-rich complexes. This process can be the result of aberrant protein folding and lead to "amyloidosis," a condition characterized by deposits of protein aggregates known as amyloids on various organs of the body [1]. Amyloid-related diseases include, among others, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease, and type II diabetes [2, 3, 4]. In other instances, however, protein aggregation is not a pathological process, but rather a functional one, with aggregates serving as structural scaffolds in a number of organisms [5].
Wang, Yonghua; Zheng, Chunli; Huang, Chao; Li, Yan; Chen, Xuetong; Wu, Ziyin; Wang, Zhenzhong; Xiao, Wei; Zhang, Boli
2015-01-01
Holistic medicine is an interdisciplinary field of study that integrates all types of biological information (protein, small molecules, tissues, organs, external environmental signals, etc.) to lead to predictive and actionable models for health care and disease treatment. Despite the global and integrative character of this discipline, a comprehensive picture of holistic medicine for the treatment of complex diseases is still lacking. In this study, we develop a novel systems pharmacology approach to dissect holistic medicine in treating cardiocerebrovascular diseases (CCDs) by TCM (traditional Chinese medicine). Firstly, by applying the TCM active ingredients screened out by a systems-ADME process, we explored and experimentalized the signed drug-target interactions for revealing the pharmacological actions of drugs at a molecule level. Then, at a/an tissue/organ level, the drug therapeutic mechanisms were further investigated by a target-organ location method. Finally, a translational integrating pathway approach was applied to extract the diseases-therapeutic modules for understanding the complex disease and its therapy at systems level. For the first time, the feature of the drug-target-pathway-organ-cooperations for treatment of multiple organ diseases in holistic medicine was revealed, facilitating the development of novel treatment paradigm for complex diseases in the future.
Wang, Yonghua; Zheng, Chunli; Huang, Chao; Li, Yan; Chen, Xuetong; Wu, Ziyin; Wang, Zhenzhong; Xiao, Wei; Zhang, Boli
2015-01-01
Holistic medicine is an interdisciplinary field of study that integrates all types of biological information (protein, small molecules, tissues, organs, external environmental signals, etc.) to lead to predictive and actionable models for health care and disease treatment. Despite the global and integrative character of this discipline, a comprehensive picture of holistic medicine for the treatment of complex diseases is still lacking. In this study, we develop a novel systems pharmacology approach to dissect holistic medicine in treating cardiocerebrovascular diseases (CCDs) by TCM (traditional Chinese medicine). Firstly, by applying the TCM active ingredients screened out by a systems-ADME process, we explored and experimentalized the signed drug-target interactions for revealing the pharmacological actions of drugs at a molecule level. Then, at a/an tissue/organ level, the drug therapeutic mechanisms were further investigated by a target-organ location method. Finally, a translational integrating pathway approach was applied to extract the diseases-therapeutic modules for understanding the complex disease and its therapy at systems level. For the first time, the feature of the drug-target-pathway-organ-cooperations for treatment of multiple organ diseases in holistic medicine was revealed, facilitating the development of novel treatment paradigm for complex diseases in the future. PMID:26101539
Herráiz Hidalgo, L; Cano Alonso, R; Carrascoso Arranz, J; Álvarez Moreno, E; Martínez de Vega Fernández, V
2014-01-01
Benign anorectal disease comprises a broad group of processes with very diverse origins; these processes may be congenital or acquired as well as inflammatory or tumor related. However, benign anorectal disease has received less attention in the scientific literature than malignant disease. We present an image-based review of the most common benign diseases of the anus and rectum. In this first part, we review the anatomy of the region and provide a brief description of the peculiarities of the high resolution protocol that we use with 3.0 T MRI. We go on to describe the most common benign anorectal tumors and developmental cystic lesions, together with their differential diagnoses, as well as congenital and acquired anomalies of the anorectal sphincter complex. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
STRIPAK complexes: structure, biological function, and involvement in human diseases.
Hwang, Juyeon; Pallas, David C
2014-02-01
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation. Copyright © 2013 Elsevier Ltd. All rights reserved.
McDermott, Jason E.; Wang, Jing; Mitchell, Hugh; Webb-Robertson, Bobbie-Jo; Hafen, Ryan; Ramey, John; Rodland, Karin D.
2012-01-01
Introduction The advent of high throughput technologies capable of comprehensive analysis of genes, transcripts, proteins and other significant biological molecules has provided an unprecedented opportunity for the identification of molecular markers of disease processes. However, it has simultaneously complicated the problem of extracting meaningful molecular signatures of biological processes from these complex datasets. The process of biomarker discovery and characterization provides opportunities for more sophisticated approaches to integrating purely statistical and expert knowledge-based approaches. Areas covered In this review we will present examples of current practices for biomarker discovery from complex omic datasets and the challenges that have been encountered in deriving valid and useful signatures of disease. We will then present a high-level review of data-driven (statistical) and knowledge-based methods applied to biomarker discovery, highlighting some current efforts to combine the two distinct approaches. Expert opinion Effective, reproducible and objective tools for combining data-driven and knowledge-based approaches to identify predictive signatures of disease are key to future success in the biomarker field. We will describe our recommendations for possible approaches to this problem including metrics for the evaluation of biomarkers. PMID:23335946
Benkner, Siegfried; Arbona, Antonio; Berti, Guntram; Chiarini, Alessandro; Dunlop, Robert; Engelbrecht, Gerhard; Frangi, Alejandro F; Friedrich, Christoph M; Hanser, Susanne; Hasselmeyer, Peer; Hose, Rod D; Iavindrasana, Jimison; Köhler, Martin; Iacono, Luigi Lo; Lonsdale, Guy; Meyer, Rodolphe; Moore, Bob; Rajasekaran, Hariharan; Summers, Paul E; Wöhrer, Alexander; Wood, Steven
2010-11-01
The increasing volume of data describing human disease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the @neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system's architecture is generic enough that it could be adapted to the treatment of other diseases. Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers clinicians the tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medical researchers gain access to a critical mass of aneurysm related data due to the system's ability to federate distributed information sources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access and work on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand for performing computationally intensive simulations for treatment planning and research.
Salvador-Severo, Karina; Gómez-Caudillo, Leopoldo; Quezada, Héctor; García-Trejo, José de Jesús; Cárdenas-Conejo, Alan; Vázquez-Memije, Martha Elisa; Minauro-Sanmiguel, Fernando
Mitochondriopathies are multisystem diseases affecting the oxidative phosphorylation (OXPHOS) system. Skin fibroblasts are a good model for the study of these diseases. Fibroblasts with a complex IV mitochondriopathy were used to determine the molecular mechanism and the main affected functions in this disease. Skin fibroblast were grown to assure disease phenotype. Mitochondria were isolated from these cells and their proteome extracted for protein identification. Identified proteins were validated with the MitoMiner database. Disease phenotype was corroborated on skin fibroblasts, which presented a complex IV defect. The mitochondrial proteome of these cells showed that the most affected proteins belonged to the OXPHOS system, mainly to the complexes that form supercomplexes or respirosomes (I, III, IV, and V). Defects in complex IV seemed to be due to assembly issues, which might prevent supercomplexes formation and efficient substrate channeling. It was also found that this mitochondriopathy affects other processes that are related to DNA genetic information flow (replication, transcription, and translation) as well as beta oxidation and tricarboxylic acid cycle. These data, as a whole, could be used for the better stratification of these diseases, as well as to optimize management and treatment options. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Bhaumik, Basabi
2016-01-01
A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm2. The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system. PMID:27284458
Jain, Sanjeev Kumar; Bhaumik, Basabi
2016-03-01
A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm(2). The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system.
Genetic discoveries and nursing implications for complex disease prevention and management.
Frazier, Lorraine; Meininger, Janet; Halsey Lea, Dale; Boerwinkle, Eric
2004-01-01
The purpose of this article is to examine the management of patients with complex diseases, in light of recent genetic discoveries, and to explore how these genetic discoveries will impact nursing practice and nursing research. The nursing science processes discussed are not comprehensive of all nursing practice but, instead, are concentrated in areas where genetics will have the greatest influence. Advances in genetic science will revolutionize our approach to patients and to health care in the prevention, diagnosis, and treatment of disease, raising many issues for nursing research and practice. As the scope of genetics expands to encompass multifactorial disease processes, a continuing reexamination of the knowledge base is required for nursing practice, with incorporation of genetic knowledge into the repertoire of every nurse, and with advanced knowledge for nurses who select specialty roles in the genetics area. This article explores the impact of this revolution on nursing science and practice as well as the opportunities for nursing science and practice to participate fully in this revolution. Because of the high proportion of the population at risk for complex diseases and because nurses are occupied every day in the prevention, assessment, treatment, and therapeutic intervention of patients with such diseases in practice and research, there is great opportunity for nurses to improve health care through the application (nursing practice) and discovery (nursing research) of genetic knowledge.
QUANTITATIVE RISK ASSESSMENT FOR MICROBIAL AGENTS
Compared to chemical risk assessment, the process for microbial agents and infectious disease is more complex because of host factors and the variety of settings in which disease transmission can occur. While the National Academy of Science has established a paradigm for performi...
NASA Astrophysics Data System (ADS)
Karmazikov, Y. V.; Fainberg, E. M.
2005-06-01
Work with DICOM compatible equipment integrated into hardware and software systems for medical purposes has been considered. Structures of process of reception and translormation of the data are resulted by the example of digital rentgenography and angiography systems, included in hardware-software complex DIMOL-IK. Algorithms of reception and the analysis of the data are offered. Questions of the further processing and storage of the received data are considered.
Lee, J C
2017-12-01
Genetic studies in complex diseases have been highly successful, but have also been largely one-dimensional: predominantly focusing on the genetic contribution to disease susceptibility. While this is undoubtedly important-indeed it is a pre-requisite for understanding the mechanisms underlying disease development-there are many other important aspects of disease biology that have received comparatively little attention. In this review, I will discuss how existing genetic data can be leveraged to provide new insights into other aspects of disease biology, why such insights could change the way we think about complex disease, and how this could provide opportunities for better therapies and/or facilitate personalised medicine. To do this, I will use the example of Crohn's disease-a chronic form of inflammatory bowel disease that has been one of the main success stories in complex disease genetics. Indeed, thanks to genetic studies, we now have a much more detailed understanding of the processes involved in Crohn's disease development, but still know relatively little about what determines the subsequent disease course (prognosis) and why this differs so considerably between individuals. I will discuss how we came to realise that genetic variation plays an important role in determining disease prognosis and how this has changed the way we think about Crohn's disease genetics. This will illustrate how phenotypic data can be used to leverage new insights from genetic data and will provide a broadly applicable framework that could yield new insights into the biology of multiple diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Complex and differential glial responses in Alzheimer's disease and ageing.
Rodríguez, José J; Butt, Arthur M; Gardenal, Emanuela; Parpura, Vladimir; Verkhratsky, Alexei
2016-01-01
Glial cells and their association with neurones are fundamental for brain function. The emergence of complex neurone-glial networks assures rapid information transfer, creating a sophisticated circuitry where both types of neural cells work in concert, serving different activities. All glial cells, represented by astrocytes, oligodendrocytes, microglia and NG2-glia, are essential for brain homeostasis and defence. Thus, glia are key not only for normal central nervous system (CNS) function, but also to its dysfunction, being directly associated with all forms of neuropathological processes. Therefore, the progression and outcome of neurological and neurodegenerative diseases depend on glial reactions. In this review, we provide a concise account of recent data obtained from both human material and animal models demonstrating the pathological involvement of glia in neurodegenerative processes, including Alzheimer's disease (AD), as well as physiological ageing.
Vicious circles in inflammatory bowel disease.
Sonnenberg, Amnon; Collins, Judith F
2006-10-01
Inflammatory bowel disease can present with a bewildering array of disease manifestations whose overall impact on patient health is difficult to disentangle. The multitude of disease complications and therapeutic side effects result in conflicting ideas on how to best manage a patient. The aim of the study is to test the usefulness of influence diagrams in resolving conflicts centered on managing complex disease processes. The influences of a disease process and the ensuing medical interventions on the health of a patient with inflammatory bowel disease are modeled by an influence diagram. Patient health is the focal point of multiple influences affecting its overall strength. Any downstream influence represents the focal point of other preceding upstream influences. The mathematics underlying the influence diagram is similar to that of a decision tree. Its formalism allows one to consider additive and inhibitory influences and include in the same analysis qualitatively different types of parameters, such as diagnoses, complications, side effects, and therapeutic outcomes. Three exemplary cases are presented to illustrate the potential use of influence diagrams. In all three case scenarios, Crohn's disease resulted in disease manifestations that seemingly interfered with its own therapy. The presence of negative feedback loops rendered the management of each case particularly challenging. The analyses by influence diagrams revealed subtle interactions among the multiple influences and their joint contributions to the patient's overall health that would have been difficult to appreciate by verbal reasoning alone. Influence diagrams represent a decision tool that is particularly suited to improve decision-making in inflammatory bowel disease. They highlight key factors of a complex disease process and help to assess their quantitative interactions.
Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-derived Human Neurons
Ren, Yong; Jiang, Houbo; Hu, Zhixing; Fan, Kevin; Wang, Jun; Janoschka, Stephen; Wang, Xiaomin; Ge, Shaoyu; Feng, Jian
2015-01-01
Parkinson’s disease (PD) is characterized by the degeneration of nigral dopaminergic (DA) neurons and non-DA neurons in many parts of the brain. Mutations of parkin, an E3 ubiquitin ligase that strongly binds to microtubules, are the most frequent cause of recessively inherited Parkinson’s disease. The lack of robust PD phenotype in parkin knockout mice suggests a unique vulnerability of human neurons to parkin mutations. Here, we show that the complexity of neuronal processes as measured by total neurite length, number of terminals, number of branch points and Sholl analysis, was greatly reduced in induced pluripotent stem cell (iPSC)-derived TH+ or TH− neurons from PD patients with parkin mutations. Consistent with these, microtubule stability was significantly decreased by parkin mutations in iPSC-derived neurons. Overexpression of parkin, but not its PD-linked mutant nor GFP, restored the complexity of neuronal processes and the stability of microtubules. Consistent with these, the microtubule-depolymerizing agent colchicine mimicked the effect of parkin mutations by decreasing neurite length and complexity in control neurons while the microtubule-stabilizing drug taxol mimicked the effect of parkin overexpression by enhancing the morphology of parkin-deficient neurons. The results suggest that parkin maintains the morphological complexity of human neurons by stabilizing microtubules. PMID:25332110
[Various pathways leading to the progression of chronic liver diseases].
Egresi, Anna; Lengyel, Gabriella; Somogyi, Anikó; Blázovics, Anna; Hagymási, Krisztina
2016-02-21
As the result of various effects (viruses, metabolic diseases, nutritional factors, toxic agents, autoimmune processes) abnormal liver function, liver steatosis and connective tissue remodeling may develop. Progression of this process is complex including various pathways and a number of factors. The authors summarize the factors involved in the progression of chronic liver disease. They describe the role of cells and the produced inflammatory mediators and cytokines, as well as the relationship between the disease and the intestinal flora. They emphasize the role of oxidative stress, mitochondrial dysfunction and cell death in disease progression. Insulin resistance and micro-elements (iron, copper) in relation to liver damage are also discussed, and genetic and epigenetic aspects underlying disease progression are summarized. Discovery of novel treatment options, assessment of the effectiveness of treatment, as well as the success and proper timing of liver transplantation may depend on a better understanding of the process of disease progression.
Peptide Regulation of Cells Renewal Processes in Kidney Tissue Cultures from Young and Old Animals.
Chalisova, N I; Lin'kova, N S; Nichik, T E; Ryzhak, A P; Dudkov, A V; Ryzhak, G A
2015-05-01
Polypeptide complex isolated from calf kidneys stimulates the processes of cell renewal in organotypic kidney tissue cultures from young and old rats. The polypeptide complex enhances expression of proliferation marker Ki-67 and reduces expression of proapoptotic peptide p53 in kidney explants obtained from young and old animals. Short peptides T-31 (AED) and T-35 (EDL) also stimulate proliferation and reduce apoptosis of the kidney cells, but to a lesser degree than the polypeptide complex. The results provide the basis for further investigation of the polypeptide complex as a preparation for the therapy of kidney diseases, including age-related pathologies.
Modeling treatment of ischemic heart disease with partially observable Markov decision processes.
Hauskrecht, M; Fraser, H
1998-01-01
Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead they are very often dependent and interleaved over time, mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of Partially observable Markov decision processes (POMDPs) developed and used in operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In the paper, we show how the POMDP framework could be used to model and solve the problem of the management of patients with ischemic heart disease, and point out modeling advantages of the framework over standard decision formalisms.
Expanded complexity of unstable repeat diseases
Polak, Urszula; McIvor, Elizabeth; Dent, Sharon Y.R.; Wells, Robert D.; Napierala, Marek
2015-01-01
Unstable Repeat Diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly expansion, of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequences of the repeat expansions is critical to developing successful therapies for these diseases. Recent technological breakthroughs in whole genome, transcriptome and proteome analyses will almost certainly lead to new discoveries regarding the mechanisms of repeat instability, the pathogenesis of URDs, and will facilitate development of novel therapeutic approaches. The aim of this review is to give a general overview of unstable repeats diseases, highlight the complexities of these diseases, and feature the emerging discoveries in the field. PMID:23233240
Role of the Retromer Complex in Neurodegenerative Diseases
Li, Chaosi; Shah, Syed Zahid Ali; Zhao, Deming; Yang, Lifeng
2016-01-01
The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases. PMID:26973516
Ameneiros-Lago, E; Carballada-Rico, C; Garrido-Sanjuán, J A; García Martínez, A
2015-01-01
Decision making in the patient with chronic advanced disease is especially complex. Health professionals are obliged to prevent avoidable suffering and not to add any more damage to that of the disease itself. The adequacy of the clinical interventions consists of only offering those diagnostic and therapeutic procedures appropriate to the clinical situation of the patient and to perform only those allowed by the patient or representative. In this article, the use of an algorithm is proposed that should serve to help health professionals in this decision making process. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.
Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd
2015-08-01
Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Despite the enormous relevance of zoonotic infections to world-wide public health, and despite much effort in modeling individual zoonoses, a fundamental understanding of the disease dynamics and the nature of outbreaks emanating from such a complex system is still lacking. We introduce a simple sto...
Multidisciplinary Interventions in Motor Neuron Disease
Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.
2014-01-01
Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009
Implementation of a portable device for real-time ECG signal analysis.
Jeon, Taegyun; Kim, Byoungho; Jeon, Moongu; Lee, Byung-Geun
2014-12-10
Cardiac disease is one of the main causes of catastrophic mortality. Therefore, detecting the symptoms of cardiac disease as early as possible is important for increasing the patient's survival. In this study, a compact and effective architecture for detecting atrial fibrillation (AFib) and myocardial ischemia is proposed. We developed a portable device using this architecture, which allows real-time electrocardiogram (ECG) signal acquisition and analysis for cardiac diseases. A noisy ECG signal was preprocessed by an analog front-end consisting of analog filters and amplifiers before it was converted into digital data. The analog front-end was minimized to reduce the size of the device and power consumption by implementing some of its functions with digital filters realized in software. With the ECG data, we detected QRS complexes based on wavelet analysis and feature extraction for morphological shape and regularity using an ARM processor. A classifier for cardiac disease was constructed based on features extracted from a training dataset using support vector machines. The classifier then categorized the ECG data into normal beats, AFib, and myocardial ischemia. A portable ECG device was implemented, and successfully acquired and processed ECG signals. The performance of this device was also verified by comparing the processed ECG data with high-quality ECG data from a public cardiac database. Because of reduced computational complexity, the ARM processor was able to process up to a thousand samples per second, and this allowed real-time acquisition and diagnosis of heart disease. Experimental results for detection of heart disease showed that the device classified AFib and ischemia with a sensitivity of 95.1% and a specificity of 95.9%. Current home care and telemedicine systems have a separate device and diagnostic service system, which results in additional time and cost. Our proposed portable ECG device provides captured ECG data and suspected waveform to identify sporadic and chronic events of heart diseases. This device has been built and evaluated for high quality of signals, low computational complexity, and accurate detection.
Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.
2011-01-01
Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. Availability The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download. PMID:21695124
Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I
2011-01-01
Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download.
Garcia, Macarena C; Garrett, Nedra Y; Singletary, Vivian; Brown, Sheereen; Hennessy-Burt, Tamara; Haney, Gillian; Link, Kimberly; Tripp, Jennifer; Mac Kenzie, William R; Yoon, Paula
2017-12-07
State and local public health agencies collect and use surveillance data to identify outbreaks, track cases, investigate causes, and implement measures to protect the public-s health through various surveillance systems and data exchange practices. The purpose of this assessment was to better understand current practices at state and local public health agencies for collecting, managing, processing, reporting, and exchanging notifiable disease surveillance information. Over an 18-month period (January 2014-June 2015), we evaluated the process of data exchange between surveillance systems, reporting burdens, and challenges within 3 states (California, Idaho, and Massachusetts) that were using 3 different reporting systems. All 3 states use a combination of paper-based and electronic information systems for managing and exchanging data on reportable conditions within the state. The flow of data from local jurisdictions to the state health departments varies considerably. When state and local information systems are not interoperable, manual duplicative data entry and other work-arounds are often required. The results of the assessment show the complexity of disease reporting at the state and local levels and the multiple systems, processes, and resources engaged in preparing, processing, and transmitting data that limit interoperability and decrease efficiency. Through this structured assessment, the Centers for Disease Control and Prevention (CDC) has a better understanding of the complexities for surveillance of using commercial off-the-shelf data systems (California and Massachusetts), and CDC-developed National Electronic Disease Surveillance System Base System. More efficient data exchange and use of data will help facilitate interoperability between National Notifiable Diseases Surveillance Systems.
SWI/SNF Chromatin-remodeling Factors: Multiscale Analyses and Diverse Functions*
Euskirchen, Ghia; Auerbach, Raymond K.; Snyder, Michael
2012-01-01
Chromatin-remodeling enzymes play essential roles in many biological processes, including gene expression, DNA replication and repair, and cell division. Although one such complex, SWI/SNF, has been extensively studied, new discoveries are still being made. Here, we review SWI/SNF biochemistry; highlight recent genomic and proteomic advances; and address the role of SWI/SNF in human diseases, including cancer and viral infections. These studies have greatly increased our understanding of complex nuclear processes. PMID:22952240
Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network.
Al-Harazi, Olfat; Al Insaif, Sadiq; Al-Ajlan, Monirah A; Kaya, Namik; Dzimiri, Nduna; Colak, Dilek
2016-06-20
A disease phenotype generally reflects various pathobiological processes that interact in a complex network. The highly interconnected nature of the human protein interaction network (interactome) indicates that, at the molecular level, it is difficult to consider diseases as being independent of one another. Recently, genome-wide molecular measurements, data mining and bioinformatics approaches have provided the means to explore human diseases from a molecular basis. The exploration of diseases and a system of disease relationships based on the integration of genome-wide molecular data with the human interactome could offer a powerful perspective for understanding the molecular architecture of diseases. Recently, subnetwork markers have proven to be more robust and reliable than individual biomarker genes selected based on gene expression profiles alone, and achieve higher accuracy in disease classification. We have applied one of these methodologies to idiopathic dilated cardiomyopathy (IDCM) data that we have generated using a microarray and identified significant subnetworks associated with the disease. In this paper, we review the recent endeavours in this direction, and summarize the existing methodologies and computational tools for network-based analysis of complex diseases and molecular relationships among apparently different disorders and human disease network. We also discuss the future research trends and topics of this promising field. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Aggregation and Disaggregation of Senile Plaques in Alzheimer Disease
NASA Astrophysics Data System (ADS)
Cruz, L.; Urbanc, B.; Buldyrev, S. V.; Christie, R.; Gomez-Isla, T.; Havlin, S.; McNamara, M.; Stanley, H. E.; Hyman, B. T.
1997-07-01
We quantitatively analyzed, using laser scanning confocal microscopy, the three-dimensional structure of individual senile plaques in Alzheimer disease. We carried out the quantitative analysis using statistical methods to gain insights about the processes that govern Aβ peptide deposition. Our results show that plaques are complex porous structures with characteristic pore sizes. We interpret plaque morphology in the context of a new dynamical model based on competing aggregation and disaggregation processes in kinetic steady-state equilibrium with an additional diffusion process allowing Aβ deposits to diffuse over the surface of plaques.
Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A
2018-03-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.
Gray, Alan; Neyton, Lucile P. A.; Barrett, Jeffrey; Stahl, Eli A.; Tenesa, Albert; Andersson, Robin; Brown, J. Ben; Faulkner, Geoffrey J.; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Kawaji, Hideya; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A.; Hacohen, Nir; Freeman, Thomas C.; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Hume, David A.
2018-01-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits. PMID:29494619
Zhang, Zhou; Fish, Jason
2012-01-01
American adults receive the recommended care just over half of the time for all recommended services. Many patient reminder strategies have attempted to increase the adherence rates for preventative and chronic disease management. However, there is a lack of data available in relation to adherence rates for symptom-specific recommended services and a lack of data identifying any contributions from the organisational structures to these adherence rates. To identify the efficacy and differences in patient reminder letter strategies on various categories of recommended services, as well as to analyse the relationship between a novel quantification of a healthcare system's process complexity with adherence rates. Retrospective cohort study analysing pilot data collected from an urban, academic healthcare provider utilising patient reminder letters. Adults attending one academic medical centre's outpatient practice from 2008 to 2009. Two reminder letters sent chronologically if the recommended care was not completed in the appropriate time frame. Adherence rates of each recommended service at baseline, after first and second reminder letters, and non-adherence rates despite the reminder letter intervention. Process flow complexity was calculated as a composite score combining elements of fastest time to complete routine order, number of different steps in routine order, number of departments involved, and number of sites patients visit. Patient adherence rates increased for all the recommended services after the first reminder letter. Preventative and Chronic Disease Management recommendations demonstrated additional moderate increases after the second reminder letter. Referrals and Radiologogy and Diagnostic Testing (acute, symptom specific) and Labs (acute and nonacute) demonstrated additional minimal adherence rate increases after the second reminder letter. Comparison of the process flow complexity demonstrated an inverse relationship between process complexity and adherence rates, particularly for non-acute orders. One reminder letter seemed to be sufficient for most recommended care. The complexity of the healthcare process may be an important predictive factor for patient adherence.
Simopoulos, Artemis P
2010-01-01
All diseases have a genetic predisposition. Genome-wide association studies (GWASs) by large international consortia are discovering genetic variants that contribute to complex diseases. However, nutrient information is missing, which is essential for the development of dietary advice for prevention and management of disease. Nutrigenetics/nutrigenomics studies provide data on mechanisms of nutrient and gene interactions in health and disease needed for personalized nutrition. A process will be needed to define when gene-nutrient-disease associations are ready to be evaluated as potential tools to improve public health.
Regan, Kelly; Wang, Kanix; Doughty, Emily; Li, Haiquan; Li, Jianrong; Lee, Younghee; Kann, Maricel G
2012-01-01
Objective Although trait-associated genes identified as complex versus single-gene inheritance differ substantially in odds ratio, the authors nonetheless posit that their mechanistic concordance can reveal fundamental properties of the genetic architecture, allowing the automated interpretation of unique polymorphisms within a personal genome. Materials and methods An analytical method, SPADE-gen, spanning three biological scales was developed to demonstrate the mechanistic concordance between Mendelian and complex inheritance of Alzheimer's disease (AD) genes: biological functions (BP), protein interaction modeling, and protein domain implicated in the disease-associated polymorphism. Results Among Gene Ontology (GO) biological processes (BP) enriched at a false detection rate <5% in 15 AD genes of Mendelian inheritance (Online Mendelian Inheritance in Man) and independently in those of complex inheritance (25 host genes of intragenic AD single-nucleotide polymorphisms confirmed in genome-wide association studies), 16 overlapped (empirical p=0.007) and 45 were similar (empirical p<0.009; information theory). SPAN network modeling extended the canonical pathway of AD (KEGG) with 26 new protein interactions (empirical p<0.0001). Discussion The study prioritized new AD-associated biological mechanisms and focused the analysis on previously unreported interactions associated with the biological processes of polymorphisms that affect specific protein domains within characterized AD genes and their direct interactors using (1) concordant GO-BP and (2) domain interactions within STRING protein–protein interactions corresponding to the genomic location of the AD polymorphism (eg, EPHA1, APOE, and CD2AP). Conclusion These results are in line with unique-event polymorphism theory, indicating how disease-associated polymorphisms of Mendelian or complex inheritance relate genetically to those observed as ‘unique personal variants’. They also provide insight for identifying novel targets, for repositioning drugs, and for personal therapeutics. PMID:22319180
The Biology of Bone Metastasis.
Esposito, Mark; Guise, Theresa; Kang, Yibin
2018-06-01
Bone metastasis, or the development of secondary tumors within the bone of cancer patients, is a debilitating and incurable disease. Despite its morbidity, the biology of bone metastasis represents one of the most complex and intriguing of all oncogenic processes. This complexity derives from the intricately organized bone microenvironment in which the various stages of hematopoiesis, osteogenesis, and osteolysis are jointly regulated but spatially restricted. Disseminated tumor cells (DTCs) from various common malignancies such as breast, prostate, lung, and kidney cancers or myeloma are uniquely primed to subvert these endogenous bone stromal elements to grow into pathological osteolytic or osteoblastic lesions. This colonization process can be separated into three key steps: seeding, dormancy, and outgrowth. Targeting the processes of dormancy and initial outgrowth offers the most therapeutic promise. Here, we discuss the concepts of the bone metastasis niche, from controlling tumor-cell survival to growth into clinically detectable disease. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Smits, Paulien; Smeitink, Jan; van den Heuvel, Lambert
2010-01-01
Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases, which are amongst the most common inherited human diseases. These disorders are caused by defects in the oxidative phosphorylation (OXPHOS) system, which comprises five multisubunit enzyme complexes encoded by both the nuclear and the mitochondrial genomes. Due to the multitude of proteins and intricacy of the processes required for a properly functioning OXPHOS system, identifying the genetic defect that underlies an OXPHOS deficiency is not an easy task, especially in the case of combined OXPHOS defects. In the present communication we give an extensive overview of the proteins and processes (in)directly involved in mitochondrial translation and the biogenesis of the OXPHOS system and their roles in combined OXPHOS deficiencies. This knowledge is important for further research into the genetic causes, with the ultimate goal to effectively prevent and cure these complex and often devastating disorders. PMID:20396601
Amyloid Precursor Protein Processing and Alzheimer’s Disease
O’Brien, Richard J.; Wong, Philip C.
2011-01-01
Alzheimer’s disease (AD), the leading cause of dementia worldwide, is characterized by the accumulation of the β-amyloid peptide (Aβ) within the brain along with hyperphosphorylated and cleaved forms of the microtubule-associated protein tau. Genetic, biochemical, and behavioral research suggest that physiologic generation of the neurotoxic Aβ peptide from sequential amyloid precursor protein (APP) proteolysis is the crucial step in the development of AD. APP is a single-pass transmembrane protein expressed at high levels in the brain and metabolized in a rapid and highly complex fashion by a series of sequential proteases, including the intramembranous γ-secretase complex, which also process other key regulatory molecules. Why Aβ accumulates in the brains of elderly individuals is unclear but could relate to changes in APP metabolism or Aβ elimination. Lessons learned from biochemical and genetic studies of APP processing will be crucial to the development of therapeutic targets to treat AD. PMID:21456963
Planning treatment of ischemic heart disease with partially observable Markov decision processes.
Hauskrecht, M; Fraser, H
2000-03-01
Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead, they are very often dependent and interleaved over time. This is mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of partially observable Markov decision processes (POMDPs) developed and used in the operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In this paper, we show how the POMDP framework can be used to model and solve the problem of the management of patients with ischemic heart disease (IHD), and demonstrate the modeling advantages of the framework over standard decision formalisms.
Garg, Puneet
2018-05-31
Podocyte biology is a developing science that promises to help improve understanding of the mechanistic nature of multiple diseases associated with proteinuria. Proteinuria in nephrotic syndrome has been linked to mechanistic dysfunctions in the renal glomerulus involving the function of podocyte epithelial cells, including podocyte foot process effacement. Developments in imaging technology are improving knowledge of the detailed structure of the human renal glomerulus and cortex. Podocyte foot processes attach themselves to the glomerular capillaries at the glomerular basement membrane (GBM) forming intercellular junctions that form slit diaphragm filtration barriers that help maintain normal renal function. Damage in this area has been implicated in glomerular disease. Injured podocytes undergo effacement whereby they lose their structure and spread out, leading to a reduction in filtration barrier function. Effacement is typically associated with the presence of proteinuria in focal segmental glomerulosclerosis, minimal change disease, and diabetes. It is thought to be due to a breakdown in the actin cytoskeleton of the foot processes, complex contractile apparatuses that allow podocytes to dynamically reorganize according to changes in filtration requirements. The process of podocyte depletion correlates with the development of glomerular sclerosis and chronic kidney disease. Focal adhesion complexes that interact with the underlying GBM bind the podocytes within the glomerular structure and prevent their detachment. Key Messages: Knowledge of glomerular podocyte biology is helping to advance our understanding of the science and mechanics of the glomerular filtering process, opening the way to a variety of new potential applications for clinical targeting. © 2018 S. Karger AG, Basel.
DNA methylation in complex disease: applications in nursing research, practice, and policy.
Wright, Michelle L; Ralph, Jody L; Ohm, Joyce E; Anderson, Cindy M
2013-01-01
DNA methylation is an epigenomic modification that is essential to normal human development and biological processes. DNA methylation patterns are heritable and dynamic throughout the life span. Environmental exposures can alter DNA methylation patterns, contributing to the development of complex disease. Identification and modulation of environmental factors influencing disease susceptibility through alterations in DNA methylation are amenable to nursing intervention and form the basis for individualized patient care. Here we describe the evidence supporting the translation of DNA methylation analyses as a tool for screening, diagnosis, and treatment of complex disease in nursing research and practice. The ethical, legal, social, and economic considerations of advances in genomics are considered as a model for epigenomic policy. We conclude that contemporary and informed nurse scientists and clinicians are uniquely poised to apply innovations in epigenomic research to clinical populations and develop appropriate policies that guide equitable and ethical use of new strategies to improve patient care. Copyright © 2013 Elsevier Inc. All rights reserved.
The aging-disease false dichotomy: understanding senescence as pathology
Gems, David
2015-01-01
From a biological perspective aging (senescence) appears to be a form of complex disease syndrome, though this is not the traditional view. This essay aims to foster a realistic understanding of aging by scrutinizing ideas old and new. The conceptual division between aging-related diseases and an underlying, non-pathological aging process underpins various erroneous traditional ideas about aging. Among biogerontologists, another likely error involves the aspiration to treat the entire aging process, which recent advances suggest is somewhat utopian. It also risks neglecting a more modest but realizable goal: to develop preventative treatments that partially protect against aging. PMID:26136770
Multiparametric Imaging of Organ System Interfaces
Vandoorne, Katrien; Nahrendorf, Matthias
2017-01-01
Cardiovascular diseases are a consequence of genetic and environmental risk factors that together generate arterial wall and cardiac pathologies. Blood vessels connect multiple systems throughout the entire body and allow organs to interact via circulating messengers. These same interactions facilitate nervous and metabolic system influence on cardiovascular health. Multiparametric imaging offers the opportunity to study these interfacing systems’ distinct processes, to quantify their interactions and to explore how these contribute to cardiovascular disease. Noninvasive multiparametric imaging techniques are emerging tools that can further our understanding of this complex and dynamic interplay. PET/MRI and multichannel optical imaging are particularly promising because they can simultaneously sample multiple biomarkers. Preclinical multiparametric diagnostics could help discover clinically relevant biomarker combinations pivotal for understanding cardiovascular disease. Interfacing systems important to cardiovascular disease include the immune, nervous and hematopoietic systems. These systems connect with ‘classical’ cardiovascular organs, like the heart and vasculature, and with the brain. The dynamic interplay between these systems and organs enables processes such as hemostasis, inflammation, angiogenesis, matrix remodeling, metabolism and fibrosis. As the opportunities provided by imaging expand, mapping interconnected systems will help us decipher the complexity of cardiovascular disease and monitor novel therapeutic strategies. PMID:28360260
The Endocytic Receptor Megalin and its Associated Proteins in Proximal Tubule Epithelial Cells
De, Shankhajit; Kuwahara, Shoji; Saito, Akihiko
2014-01-01
Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases. PMID:25019425
Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...
Psczolla, M
2013-10-01
In Germany there is a clear deficit in the non-operative treatment of chronic and complex diseases and pain disorders in acute care hospitals. Only about 20 % of the treatments are carried out in orthopedic hospitals. Hospitals specialized in manual medicine have therefore formed a working group on non-operative orthopedic manual medicine acute care clinics (ANOA). The ANOA has developed a multimodal assessment procedure called the OPS 8-977 which describes the structure and process quality of multimodal and interdisciplinary diagnosis and treatment of the musculoskeletal system. Patients are treated according to clinical pathways oriented on the clinical findings. The increased duration of treatment in the German diagnosis-related groups (DRG) system is compensated for with a supplemental remuneration. Thus, complex and multifactorial orthopedic diseases and pain disorders are conservatively and appropriately treated as inpatient departments of acute care hospitals.
Epigenetics and migraine; complex mitochondrial interactions contributing to disease susceptibility.
Roos-Araujo, Deidré; Stuart, Shani; Lea, Rod A; Haupt, Larisa M; Griffiths, Lyn R
2014-06-10
Migraine is a common neurological disorder classified by the World Health Organisation (WHO) as one of the top twenty most debilitating diseases in the developed world. Current therapies are only effective for a proportion of sufferers and new therapeutic targets are desperately needed to alleviate this burden. Recently the role of epigenetics in the development of many complex diseases including migraine has become an emerging topic. By understanding the importance of acetylation, methylation and other epigenetic modifications, it then follows that this modification process is a potential target to manipulate epigenetic status with the goal of treating disease. Bisulphite sequencing and methylated DNA immunoprecipitation have been used to demonstrate the presence of methylated cytosines in the human D-loop of mitochondrial DNA (mtDNA), proving that the mitochondrial genome is methylated. For the first time, it has been shown that there is a difference in mtDNA epigenetic status between healthy controls and those with disease, especially for neurodegenerative and age related conditions. Given co-morbidities with migraine and the suggestive link between mitochondrial dysfunction and the lowered threshold for triggering a migraine attack, mitochondrial methylation may be a new avenue to pursue. Creative thinking and new approaches are needed to solve complex problems and a systems biology approach, where multiple layers of information are integrated is becoming more important in complex disease modelling. Copyright © 2014 Elsevier B.V. All rights reserved.
Mathematical and Computational Modeling in Complex Biological Systems
Li, Wenyang; Zhu, Xiaoliang
2017-01-01
The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology. PMID:28386558
Mathematical and Computational Modeling in Complex Biological Systems.
Ji, Zhiwei; Yan, Ke; Li, Wenyang; Hu, Haigen; Zhu, Xiaoliang
2017-01-01
The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology.
Mahajan, Shikha; Manetsch, Roman; Merkler, David J.; Stevens Jr., Stanley M.
2015-01-01
Proteomics is a powerful approach used for investigating the complex molecular mechanisms of disease pathogenesis and progression. An important challenge in modern protein profiling approaches involves targeting of specific protein activities in order to identify altered molecular processes associated with disease pathophysiology. Adenosine-binding proteins represent an important subset of the proteome where aberrant expression or activity changes of these proteins have been implicated in numerous human diseases. Herein, we describe an affinity-based approach for the enrichment of adenosine-binding proteins from a complex cell proteome. A novel N 6-biotinylated-8-azido-adenosine probe (AdoR probe) was synthesized, which contains a reactive group that forms a covalent bond with the target proteins, as well as a biotin tag for affinity enrichment using avidin chromatography. Probe specificity was confirmed with protein standards prior to further evaluation in a complex protein mixture consisting of a lysate derived from mouse neuroblastoma N18TG2 cells. Protein identification and relative quantitation using mass spectrometry allowed for the identification of small variations in abundance of nucleoside- and nucleotide-binding proteins in these samples where a significant enrichment of AdoR-binding proteins in the labeled proteome from the neuroblastoma cells was observed. The results from this study demonstrate the utility of this method to enrich for nucleoside- and nucleotide-binding proteins in a complex protein mixture, pointing towards a unique set of proteins that can be examined in the context of further understanding mechanisms of disease, or fundamental biological processes in general. PMID:25671571
Matrix metalloproteinase processing of signaling molecules to regulate inflammation.
Butler, Georgina S; Overall, Christopher M
2013-10-01
Inflammation is a complex and highly regulated process that facilitates the clearance of pathogens and mediates tissue repair. Failure to resolve inflammation can lead to chronic inflammatory diseases such as periodontitis. Matrix metalloproteinases are generally thought to be detrimental in disease because degradation of extracellular matrix contributes to pathology. However, proteomic techniques (degradomics) are revealing that matrix metalloproteinases process a diverse array of substrates and therefore have a broad range of functions. Many matrix metalloproteinase substrates modulate inflammation and hence, by processing these proteins, matrix metalloproteinases can orchestrate the inflammatory response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yang, Jihong; Li, Zheng; Fan, Xiaohui; Cheng, Yiyu
2014-09-22
The high incidence of complex diseases has become a worldwide threat to human health. Multiple targets and pathways are perturbed during the pathological process of complex diseases. Systematic investigation of complex relationship between drugs and diseases is necessary for new association discovery and drug repurposing. For this purpose, three causal networks were constructed herein for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. A causal inference-probabilistic matrix factorization (CI-PMF) approach was proposed to predict and classify drug-disease associations, and further used for drug-repositioning predictions. First, multilevel systematic relations between drugs and diseases were integrated from heterogeneous databases to construct causal networks connecting drug-target-pathway-gene-disease. Then, the association scores between drugs and diseases were assessed by evaluating a drug's effects on multiple targets and pathways. Furthermore, PMF models were learned based on known interactions, and associations were then classified into three types by trained models. Finally, therapeutic associations were predicted based upon the ranking of association scores and predicted association types. In terms of drug-disease association prediction, modified causal inference included in CI-PMF outperformed existing causal inference with a higher AUC (area under receiver operating characteristic curve) score and greater precision. Moreover, CI-PMF performed better than single modified causal inference in predicting therapeutic drug-disease associations. In the top 30% of predicted associations, 58.6% (136/232), 50.8% (31/61), and 39.8% (140/352) hit known therapeutic associations, while precisions obtained by the latter were only 10.2% (231/2264), 8.8% (36/411), and 9.7% (189/1948). Clinical verifications were further conducted for the top 100 newly predicted therapeutic associations. As a result, 21, 12, and 32 associations have been studied and many treatment effects of drugs on diseases were investigated for cardiovascular diseases, diabetes mellitus, and neoplasms, respectively. Related chains in causal networks were extracted for these 65 clinical-verified associations, and we further illustrated the therapeutic role of etodolac in breast cancer by inferred chains. Overall, CI-PMF is a useful approach for associating drugs with complex diseases and provides potential values for drug repositioning.
microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations.
Singh, Nagendra Kumar
2017-09-01
microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.
The role of intestinal microbiota in the pathogenesis of metabolic diseases.
Węgielska, Iwona; Suliburska, Joanna
2016-01-01
The incidence of metabolic diseases is increasing rapidly all over the world. This situation has led researchers to attempt to explain the pathomechanisms of these disorders and to develop specific recommendations for the prevention and treatment of diseases such as obesity, type-2 diabetes, and atherosclerosis. Recent studies show clear evidence of the role of human intestinal microbiota in health and in predispositions to diseases. Gut microbiota affect a number of complex metabolic reactions, significantly altering the functioning of the human body. Numerous experiments have shown the key role played by the formation process of the intestinal ecosystem in the early stages of human life for programming its metabolic health. The following article is a compilation of the literature available on the formation of the complex intestinal ecosystem and its impact on the incidence of diseases such as obesity, type-2 diabetes, and atherosclerosis.
Towards an integrated approach in surveillance of vector-borne diseases in Europe
2011-01-01
Vector borne disease (VBD) emergence is a complex and dynamic process. Interactions between multiple disciplines and responsible health and environmental authorities are often needed for an effective early warning, surveillance and control of vectors and the diseases they transmit. To fully appreciate this complexity, integrated knowledge about the human and the vector population is desirable. In the current paper, important parameters and terms of both public health and medical entomology are defined in order to establish a common language that facilitates collaboration between the two disciplines. Special focus is put on the different VBD contexts with respect to the current presence or absence of the disease, the pathogen and the vector in a given location. Depending on the context, whether a VBD is endemic or not, surveillance activities are required to assess disease burden or threat, respectively. Following a decision for action, surveillance activities continue to assess trends. PMID:21967706
Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease.
Singh, Pragyan; Saha, Upasana; Paira, Sunirmal; Das, Biswadip
2018-05-11
Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall
2018-05-23
Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Conformational Transitions in Molecular Systems
NASA Astrophysics Data System (ADS)
Bachmann, M.; Janke, W.
2008-11-01
Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.
Visual dysfunction in Parkinson’s disease
Weil, Rimona S.; Schrag, Anette E.; Warren, Jason D.; Crutch, Sebastian J.; Lees, Andrew J.; Morris, Huw R.
2016-01-01
Patients with Parkinson’s disease have a number of specific visual disturbances. These include changes in colour vision and contrast sensitivity and difficulties with complex visual tasks such as mental rotation and emotion recognition. We review changes in visual function at each stage of visual processing from retinal deficits, including contrast sensitivity and colour vision deficits to higher cortical processing impairments such as object and motion processing and neglect. We consider changes in visual function in patients with common Parkinson’s disease-associated genetic mutations including GBA and LRRK2. We discuss the association between visual deficits and clinical features of Parkinson’s disease such as rapid eye movement sleep behavioural disorder and the postural instability and gait disorder phenotype. We review the link between abnormal visual function and visual hallucinations, considering current models for mechanisms of visual hallucinations. Finally, we discuss the role of visuo-perceptual testing as a biomarker of disease and predictor of dementia in Parkinson’s disease. PMID:27412389
Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair
2011-01-01
Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183
Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology
ERIC Educational Resources Information Center
Wright, Robin; Boggs, James
2002-01-01
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…
Chen, Pei; Li, Yongjun; Liu, Xiaoping; Liu, Rui; Chen, Luonan
2017-10-26
The progression of complex diseases, such as diabetes and cancer, is generally a nonlinear process with three stages, i.e., normal state, pre-disease state, and disease state, where the pre-disease state is a critical state or tipping point immediately preceding the disease state. Traditional biomarkers aim to identify a disease state by exploiting the information of differential expressions for the observed molecules, but may fail to detect a pre-disease state because there are generally little significant differences between the normal and pre-disease states. Thus, it is challenging to signal the pre-disease state, which actually implies the disease prediction. In this work, by exploiting the information of differential associations among the observed molecules between the normal and pre-disease states, we propose a temporal differential network based computational method to accurately signal the pre-disease state or predict the occurrence of severe disease. The theoretical foundation of this work is the quantification of the critical state using dynamical network biomarkers. Considering that there is one stationary Markov process before reaching the tipping point, a novel index, inconsistency score (I-score), is proposed to quantitatively measure the change of the stationary processes from the normal state so as to detect the onset of pre-disease state. In other words, a drastic increase of I-score implies the high inconsistency with the preceding stable state and thus signals the upcoming critical transition. This approach is applied to the simulated and real datasets of three diseases, which demonstrates the effectiveness of our method for predicting the deterioration into disease states. Both functional analysis and pathway enrichment also validate the computational results from the perspectives of both molecules and networks. At the molecular network level, this method provides a computational way of unravelling the underlying mechanism of the dynamical progression when a biological system is near the tipping point, and thus detecting the early-warning signal of the imminent critical transition, which may help to achieve timely intervention. Moreover, the rewiring of differential networks effectively extracts discriminatively interpretable features, and systematically demonstrates the dynamical change of a biological system.
Xenopus: An Emerging Model for Studying Congenital Heart Disease
Kaltenbrun, Erin; Tandon, Panna; Amin, Nirav M.; Waldron, Lauren; Showell, Chris; Conlon, Frank L.
2011-01-01
Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well-studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes. PMID:21538812
Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype
Tsuda, Takeshi; Fitzgerald, Kristi K.
2017-01-01
Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts. PMID:29367543
Steps in Prostate Cancer Progression that lead to Bone Metastasis
Jin, Jung-Kang; Dayyani, Farshid; Gallick, Gary E.
2011-01-01
Prostate cancer is a complex disease in which metastasis to the bone is the main cause of death. Initial stages of metastasis are generally similar to those for most solid tumors; however, the mechanisms that underlie the homing of prostate tumor cells to the bone remain incompletely understood. Prostate cancer bone metastasis is also a microenvironment-driven disease, involving bi-directional interactions between the tumor and the bone microenvironment. In this review, we discuss the current understanding of the biologic processes and regulatory factors involved in the metastasis of prostate cancer cells, and their specific properties that promote growth in bone. Although many of these processes still need to be fully elucidated, a better understanding of the complex tumor/microenvironment interplay is slowly leading to more effective therapies for patients with prostate cancer bone metastases. PMID:21365645
Gout and Metabolic Syndrome: a Tangled Web.
Thottam, Gabrielle E; Krasnokutsky, Svetlana; Pillinger, Michael H
2017-08-26
The complexity of gout continues to unravel with each new investigation. Gout sits at the intersection of multiple intrinsically complex processes, and its prevalence, impact on healthcare costs, and association with important co-morbidities make it increasingly relevant. The association between gout and type 2 diabetes, hypertension, hyperlipidemia, cardiovascular disease, renal disease, and obesity suggest that either gout, or its necessary precursor hyperuricemia, may play an important role in the manifestations of the metabolic syndrome. In this review, we analyze the complex interconnections between gout and metabolic syndrome, by reviewing gout's physiologic and epidemiologic relationships with its major co-morbidities. Increasing evidence supports gout's association with metabolic syndrome. More specifically, both human studies and animal models suggest that hyperuricemia may play a role in promoting inflammation, hypertension and cardiovascular disease, adipogenesis and lipogenesis, insulin and glucose dysregulation, and liver disease. Fructose ingestion is associated with increased rates of hypertension, weight gain, impaired glucose tolerance, and dyslipidemia and is a key driver of urate biosynthesis. AMP kinase (AMPK) is a central regulator of processes that tend to mitigate against the metabolic syndrome. Within hepatocytes, leukocytes, and other cells, a fructose/urate metabolic loop drives key inhibitors of AMPK, including AMP deaminase and fructokinase, that may tilt the balance toward metabolic syndrome progression. Preliminary evidence suggests that agents that block the intracellular synthesis of urate may restore AMPK activity and help maintain metabolic homeostasis. Gout is both an inflammatory and a metabolic disease. With further investigation of urate's role, the possibility of proper gout management additionally mitigating metabolic syndrome is an evolving and important question.
Complex adaptive chronic care.
Martin, Carmel; Sturmberg, Joachim
2009-06-01
The Chronic Care Model (CCM) is widely taken up as the universal operational framework for redesigning health systems to address the increasing chronic disease burden of an ageing population. Chronic care encompasses health promotion, prevention, self management, disease control, treatment and palliation to address 'chronicity' of long journeys through disease, illness and care in the varying contexts of complex health systems. Yet at an operational level, CCM activities are predominantly based on an evidence-base of discreet chronic disease interventions in specific settings; and their demonstrable impact is limited to processes of select disease management such as diabetes in specific disease management programs. This paper proposes a framework that makes sense of the nature of chronicity and its multiple dimensions beyond disease and argues for a set of building blocks and leverage points that should constitute the starting points for 'redesign'? Complex Adaptive Chronic Care is proposed as an idea for an explanatory and implementation framework for addressing chronicity in existing and future chronic care models. Chronicity is overtly conceptualized to encompass the phenomena of an individual journey, with simple and complicated, complex and chaotic phases, through long term asymptomatic disease to bodily dysfunction and illness, located in family and communities. Chronicity encompasses trajectories of self-care and health care, as health, illness and disease co-exist and co-evolve in the setting of primary care, local care networks and at times institutions. A systems approach to individuals in their multi-layered networks making sense of and optimizing experiences of their chronic illness would build on core values and agency around a local vision of health, empowerment of individuals and adaptive leadership, and it responds in line with the local values inherent in the community's disease-based knowledge and the local service's history and dynamics. Complex Adaptive Chronic Care exceeds the current notions of disease management as an endpoint. Primary care team members are system adaptors in partnership with individuals constructing their care and system leadership in response to chronic illness, and enable healthy resilience as well as personal healing and support. Outcomes of complex adaptive chronic care are the emergence of health in individuals and communities through adaptability, self-organization and empowerment. Chronic care reform from within a complex adaptive system framework is bottom up and emergent and stands in stark contrast to (but has to co-exist with) the prevailing protocol based disease care rewarding selective surrogate indicators of disease control. Frameworks such as the Chronic Care Model provide guidance, but do not replace individual experience, local adaptive leadership and responsiveness. The awareness of complexity means opening up problems to a different reality demanding different set of questions and approaches to answer them.
Analyzing complex networks evolution through Information Theory quantifiers
NASA Astrophysics Data System (ADS)
Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martín Gómez
2011-01-01
A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.
Poverty, Disease, and the Ecology of Complex Systems
Pluciński, Mateusz M.; Murray, Megan B.; Farmer, Paul E.; Barrett, Christopher B.; Keenan, Donald C.
2014-01-01
Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems—such as agriculture, fisheries, nutrition, and land use change—to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development. PMID:24690902
Poverty, disease, and the ecology of complex systems.
Ngonghala, Calistus N; Pluciński, Mateusz M; Murray, Megan B; Farmer, Paul E; Barrett, Christopher B; Keenan, Donald C; Bonds, Matthew H
2014-04-01
Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems--such as agriculture, fisheries, nutrition, and land use change--to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development.
Liu, Quan-Hui; Wang, Wei; Tang, Ming; Zhang, Hai-Feng
2016-01-01
Information diffusion and disease spreading in communication-contact layered network are typically asymmetrically coupled with each other, in which disease spreading can be significantly affected by the way an individual being aware of disease responds to the disease. Many recent studies have demonstrated that human behavioral adoption is a complex and non-Markovian process, where the probability of behavior adoption is dependent on the cumulative times of information received and the social reinforcement effect of the cumulative information. In this paper, the impacts of such a non-Markovian vaccination adoption behavior on the epidemic dynamics and the control effects are explored. It is found that this complex adoption behavior in the communication layer can significantly enhance the epidemic threshold and reduce the final infection rate. By defining the social cost as the total cost of vaccination and treatment, it can be seen that there exists an optimal social reinforcement effect and optimal information transmission rate allowing the minimal social cost. Moreover, a mean-field theory is developed to verify the correctness of simulation results. PMID:27156574
Liu, Quan-Hui; Wang, Wei; Tang, Ming; Zhang, Hai-Feng
2016-05-09
Information diffusion and disease spreading in communication-contact layered network are typically asymmetrically coupled with each other, in which disease spreading can be significantly affected by the way an individual being aware of disease responds to the disease. Many recent studies have demonstrated that human behavioral adoption is a complex and non-Markovian process, where the probability of behavior adoption is dependent on the cumulative times of information received and the social reinforcement effect of the cumulative information. In this paper, the impacts of such a non-Markovian vaccination adoption behavior on the epidemic dynamics and the control effects are explored. It is found that this complex adoption behavior in the communication layer can significantly enhance the epidemic threshold and reduce the final infection rate. By defining the social cost as the total cost of vaccination and treatment, it can be seen that there exists an optimal social reinforcement effect and optimal information transmission rate allowing the minimal social cost. Moreover, a mean-field theory is developed to verify the correctness of simulation results.
Systems thinking in combating infectious diseases.
Xia, Shang; Zhou, Xiao-Nong; Liu, Jiming
2017-09-11
The transmission of infectious diseases is a dynamic process determined by multiple factors originating from disease pathogens and/or parasites, vector species, and human populations. These factors interact with each other and demonstrate the intrinsic mechanisms of the disease transmission temporally, spatially, and socially. In this article, we provide a comprehensive perspective, named as systems thinking, for investigating disease dynamics and associated impact factors, by means of emphasizing the entirety of a system's components and the complexity of their interrelated behaviors. We further develop the general steps for performing systems approach to tackling infectious diseases in the real-world settings, so as to expand our abilities to understand, predict, and mitigate infectious diseases.
Information spreading in complex networks with participation of independent spreaders
NASA Astrophysics Data System (ADS)
Ma, Kun; Li, Weihua; Guo, Quantong; Zheng, Xiaoqi; Zheng, Zhiming; Gao, Chao; Tang, Shaoting
2018-02-01
Information diffusion dynamics in complex networks is often modeled as a contagion process among neighbors which is analogous to epidemic diffusion. The attention of previous literature is mainly focused on epidemic diffusion within one network, which, however neglects the possible interactions between nodes beyond the underlying network. The disease can be transmitted to other nodes by other means without following the links in the focal network. Here we account for this phenomenon by introducing the independent spreaders in a susceptible-infectious-recovered contagion process. We derive the critical epidemic thresholds on Erdős-Rényi and scale-free networks as a function of infectious rate, recovery rate and the activeness of independent spreaders. We also present simulation results on ER and SF networks, as well as on a real-world email network. The result shows that the extent to which a disease can infect might be more far-reaching, than we can explain in terms of link contagion only. Besides, these results also help to explain how activeness of independent spreaders can affect the diffusion process, which can be used to explore many other dynamical processes.
Srihari, Sriganesh; Yong, Chern Han; Patil, Ashwini; Wong, Limsoon
2015-09-14
Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organisation of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight their limitations and challenges, in particular at detecting sparse and small or sub-complexes and discerning overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Erraguntla, Madhav; Zapletal, Josef; Lawley, Mark
2017-12-01
The impact of infectious disease on human populations is a function of many factors including environmental conditions, vector dynamics, transmission mechanics, social and cultural behaviors, and public policy. A comprehensive framework for disease management must fully connect the complete disease lifecycle, including emergence from reservoir populations, zoonotic vector transmission, and impact on human societies. The Framework for Infectious Disease Analysis is a software environment and conceptual architecture for data integration, situational awareness, visualization, prediction, and intervention assessment. Framework for Infectious Disease Analysis automatically collects biosurveillance data using natural language processing, integrates structured and unstructured data from multiple sources, applies advanced machine learning, and uses multi-modeling for analyzing disease dynamics and testing interventions in complex, heterogeneous populations. In the illustrative case studies, natural language processing from social media, news feeds, and websites was used for information extraction, biosurveillance, and situation awareness. Classification machine learning algorithms (support vector machines, random forests, and boosting) were used for disease predictions.
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.
Respiratory chain complex II as general sensor for apoptosis.
Grimm, Stefan
2013-05-01
I review here the evidence that complex II of the respiratory chain (RC) constitutes a general sensor for apoptosis induction. This concept emerged from work on neurodegenerative diseases and from recent data on metabolic alterations in cancer cells affecting the RC and in particular on mutations of complex II subunits. It is also supported by experiments with many anticancer compounds that compared the apoptosis sensitivities of complex II-deficient versus WT cells. These results are explained by the mechanistic understanding of how complex II mediates the diverse range of apoptosis signals. This protein aggregate is specifically activated for apoptosis by pH change as a common and early feature of dying cells. This leads to the dissociation of its SDHA and SDHB subunits from the remaining membrane-anchored subunits and the consequent block of it enzymatic SQR activity, while its SDH activity, which is contained in the SDHA/SDHB subcomplex, remains intact. The uncontrolled SDH activity then generates excessive amounts of reactive oxygen species for the demise of the cell. Future studies on these mitochondrial processes will help refine this model, unravel the contribution of mutations in complex II subunits as the cause of degenerative neurological diseases and tumorigenesis, and aid in discovering novel interference options. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease. Copyright © 2012 Elsevier B.V. All rights reserved.
Delfani, P; Sturfelt, G; Gullstrand, B; Carlsson, A; Kassandra, M; Borrebaeck, C A K; Bengtsson, A A; Wingren, C
2017-04-01
Systemic lupus erythematosus (SLE) is a severe chronic inflammatory autoimmune connective tissue disease. Despite major efforts, SLE remains a poorly understood disease with unpredictable course, unknown etiology and complex pathogenesis. Apoptosis combined with deficiency in clearing apoptotic cells is an important etiopathogenic event in SLE, which could contribute to the increased load of potential autoantigen(s); however, the lack of disease-specific protein signatures deciphering SLE and the underlying biological processes is striking and represents a key limitation. In this retrospective pilot study, we explored the immune system as a specific sensor for disease, in order to advance our understanding of SLE. To this end, we determined multiplexed serum protein expression profiles of crude SLE serum samples, using antibody microarrays. The aim was to identify differential immunoprofiles, or snapshots of the immune response modulated by the disease, reflecting apoptosis, a key process in the etiology of SLE and disease activity. The results showed that multiplexed panels of SLE-associated serum biomarkers could be decoded, in particular reflecting disease activity, but potentially the apoptosis process as well. While the former biomarkers could display a potential future use for prognosis, the latter biomarkers might help shed further light on the apoptosis process taking place in SLE.
Asmall, Shaidah
2015-01-01
Background South Africa is facing a complex burden of disease arising from a combination of chronic infectious illness and non-communicable diseases. As the burden of chronic diseases (communicable and non-communicable) increases, providing affordable and effective care to the increasing numbers of chronic patients will be an immense challenge. Methods The framework recommended by the Medical Research Council of the United Kingdom for the development and evaluation of complex health interventions was used to conceptualise the intervention. The breakthrough series was utilised for the implementation process. These two frameworks were embedded within the clinical practice improvement model that served as the overarching framework for the development and implementation of the model. Results The Chronic Care Model was ideally suited to improve the facility component and patient experience; however, the deficiencies in other aspects of the health system building blocks necessitated a hybrid model. An integrated chronic disease management model using a health systems approach was initiated across 42 primary health care facilities. The interventions were implemented in a phased approach using learning sessions and action periods to introduce the planned and targeted changes. Conclusion The implementation of the integrated chronic disease management model is feasible at primary care in South Africa provided that systemic challenges and change management are addressed during the implementation process. PMID:26528101
Mahomed, Ozayr Haroon; Asmall, Shaidah
2015-01-01
South Africa is facing a complex burden of disease arising from a combination of chronic infectious illness and non-communicable diseases. As the burden of chronic diseases (communicable and non-communicable) increases, providing affordable and effective care to the increasing numbers of chronic patients will be an immense challenge. The framework recommended by the Medical Research Council of the United Kingdom for the development and evaluation of complex health interventions was used to conceptualise the intervention. The breakthrough series was utilised for the implementation process. These two frameworks were embedded within the clinical practice improvement model that served as the overarching framework for the development and implementation of the model. The Chronic Care Model was ideally suited to improve the facility component and patient experience; however, the deficiencies in other aspects of the health system building blocks necessitated a hybrid model. An integrated chronic disease management model using a health systems approach was initiated across 42 primary health care facilities. The interventions were implemented in a phased approach using learning sessions and action periods to introduce the planned and targeted changes. The implementation of the integrated chronic disease management model is feasible at primary care in South Africa provided that systemic challenges and change management are addressed during the implementation process.
Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity.
Trends in childhood cancer incidence: review of environmental linkages.
Buka, Irena; Koranteng, Samuel; Osornio Vargas, Alvaro R
2007-02-01
Cancer in children is rare and accounts for about 1% of all malignancies. In the developed world, however, it is the commonest cause of disease-related deaths in childhood, carrying with it a great economic and emotional cost. Cancers are assumed to be multivariate, multifactorial diseases that occur when a complex and prolonged process involving genetic and environmental factors interact in a multistage sequence. This article explores the available evidence for this process, primarily from the environmental linkages perspective but including some evidence of the genetic factors.
2018-04-01
Retroperitoneal sarcoma (RPS) is a rare disease accounting for 0.1%-0.2% of all malignancies. Management of RPS is complex and requires multidisciplinary, tailored treatment strategies at all stages, but especially in the context of metastatic or multifocal recurrent disease. Due to the rarity and heterogeneity of this family of diseases, the literature to guide management is limited. The Trans-Atlantic Retroperitoneal Sarcoma Working Group (TARPSWG) is an international collaboration of sarcoma experts from all disciplines convened in an effort to overcome these limitations. The TARPSWG has compiled the available evidence surrounding metastatic and multifocally recurrent RPS along with expert opinion in an iterative process to generate a consensus document regarding the complex management of this disease. The objective of this document is to guide sarcoma specialists from all disciplines in the diagnosis and treatment of multifocal recurrent or metastatic RPS. All aspects of patient assessment, diagnostic processes, local and systemic treatments, and palliation are reviewed in this document, and consensus recommendations provided accordingly. Recommendations were guided by available evidence, in conjunction with expert opinion where evidence was lacking. This consensus document combines the available literature regarding the management of multifocally recurrent or metastastic RPS with the practical expertise of high-volume sarcoma centers from multiple countries. It is designed as a tool for decision making in the complex multidisciplinary management of this condition and is expected to standardize management across centers, thereby ensuring that patients receive the highest quality care.
Barken, Tina Lien; Thygesen, Elin; Söderhamn, Ulrika
2017-12-28
Telemedicine is changing traditional nursing care, and entails nurses performing advanced and complex care within a new clinical environment, and monitoring patients at a distance. Telemedicine practice requires complex disease management, advocating that the nurses' reasoning and decision-making processes are supported. Computerised decision support systems are being used increasingly to assist reasoning and decision-making in different situations. However, little research has focused on the clinical reasoning of nurses using a computerised decision support system in a telemedicine setting. Therefore, the objective of the study is to explore the process of telemedicine nurses' clinical reasoning when using a computerised decision support system for the management of patients with chronic obstructive pulmonary disease. The factors influencing the reasoning and decision-making processes were investigated. In this ethnographic study, a combination of data collection methods, including participatory observations, the think-aloud technique, and a focus group interview was employed. Collected data were analysed using qualitative content analysis. When telemedicine nurses used a computerised decision support system for the management of patients with complex, unstable chronic obstructive pulmonary disease, two categories emerged: "the process of telemedicine nurses' reasoning to assess health change" and "the influence of the telemedicine setting on nurses' reasoning and decision-making processes". An overall theme, termed "advancing beyond the system", represented the connection between the reasoning processes and the telemedicine work and setting, where being familiar with the patient functioned as a foundation for the nurses' clinical reasoning process. In the telemedicine setting, when supported by a computerised decision support system, nurses' reasoning was enabled by the continuous flow of digital clinical data, regular video-mediated contact and shared decision-making with the patient. These factors fostered an in-depth knowledge of the patients and acted as a foundation for the nurses' reasoning process. Nurses' reasoning frequently advanced beyond the computerised decision support system recommendations. Future studies are warranted to develop more accurate algorithms, increase system maturity, and improve the integration of the digital clinical information with clinical experiences, to support telemedicine nurses' reasoning process.
Unusual causes of abdominal pain: sickle cell anemia.
Ahmed, Shahid; Shahid, Rabia K; Russo, Linda A
2005-04-01
Sickle cell disease is characterized by chronic hemolytic anemia and vaso-occlusive painful crises. The vascular occlusion in sickle cell disease is a complex process and accounts for the majority of the clinical manifestation of the disease. Abdominal pain is an important component of vaso-occlusive painful crises. It often represents a substantial diagnostic challenge in this population of patients. These episodes are often attributed to micro-vessel occlusion and infarcts of mesentery and abdominal viscera. Abdominal pain due to sickle cell vaso-occlusive crisis is often indistinguishable from an acute intra-abdominal disease process such as acute cholecystitis, acute pancreatitis, hepatic infarction, ischemic colitis and acute appendicitis. In the majority of cases, however, no specific cause is identified and spontaneous resolution occurs. This chapter will focus on etiologies, pathophysiology and management of abdominal pain in patients with sickle cell disease.
Lyu, Zhe; Whitman, William B
2017-01-01
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
The role of TREX in gene expression and disease
Heath, Catherine G.; Viphakone, Nicolas; Wilson, Stuart A.
2016-01-01
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems. PMID:27679854
Gonzalez Bernaldo de Quiros, Fernan; Dawidowski, Adriana R; Figar, Silvana
2017-02-01
In this study, we aimed: 1) to conceptualize the theoretical challenges facing health information systems (HIS) to represent patients' decisions about health and medical treatments in everyday life; 2) to suggest approaches for modeling these processes. The conceptualization of the theoretical and methodological challenges was discussed in 2015 during a series of interdisciplinary meetings attended by health informatics staff, epidemiologists and health professionals working in quality management and primary and secondary prevention of chronic diseases of the Hospital Italiano de Buenos Aires, together with sociologists, anthropologists and e-health stakeholders. HIS are facing the need and challenge to represent social human processes based on constructivist and complexity theories, which are the current frameworks of human sciences for understanding human learning and socio-cultural changes. Computer systems based on these theories can model processes of social construction of concrete and subjective entities and the interrelationships between them. These theories could be implemented, among other ways, through the mapping of health assets, analysis of social impact through community trials and modeling of complexity with system simulation tools. This analysis suggested the need to complement the traditional linear causal explanations of disease onset (and treatments) that are the bases for models of analysis of HIS with constructivist and complexity frameworks. Both may enlighten the complex interrelationships among patients, health services and the health system. The aim of this strategy is to clarify people's decision making processes to improve the efficiency, quality and equity of the health services and the health system.
Applications of systems approaches in the study of rheumatic diseases.
Kim, Ki-Jo; Lee, Saseong; Kim, Wan-Uk
2015-03-01
The complex interaction of molecules within a biological system constitutes a functional module. These modules are then acted upon by both internal and external factors, such as genetic and environmental stresses, which under certain conditions can manifest as complex disease phenotypes. Recent advances in high-throughput biological analyses, in combination with improved computational methods for data enrichment, functional annotation, and network visualization, have enabled a much deeper understanding of the mechanisms underlying important biological processes by identifying functional modules that are temporally and spatially perturbed in the context of disease development. Systems biology approaches such as these have produced compelling observations that would be impossible to replicate using classical methodologies, with greater insights expected as both the technology and methods improve in the coming years. Here, we examine the use of systems biology and network analysis in the study of a wide range of rheumatic diseases to better understand the underlying molecular and clinical features.
Stemmer, Nina; Strekalova, Elena; Djogo, Nevena; Plöger, Frank; Loers, Gabriele; Lutz, David; Buck, Friedrich; Michalak, Marek; Schachner, Melitta; Kleene, Ralf
2013-01-01
Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer's disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca(2+)- and N-glycan-independent interaction is mediated by amino acids 330-344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-β42 levels in culture supernatants, while transfection with the P-domain increases amyloid-β40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330-344 to amyloid precursor protein overexpressing cells result in elevated amyloid-β40 and amyloid-β42 levels, respectively. These findings indicate that the interaction of calreticulin with amyloid precursor protein and the γ-secretase complex regulates the proteolytic processing of amyloid precursor protein by the γ-secretase complex, pointing to calreticulin as a potential target for therapy in Alzheimer's disease.
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
NASA Astrophysics Data System (ADS)
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-02-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.
Dinov, Ivo D; Heavner, Ben; Tang, Ming; Glusman, Gustavo; Chard, Kyle; Darcy, Mike; Madduri, Ravi; Pa, Judy; Spino, Cathie; Kesselman, Carl; Foster, Ian; Deutsch, Eric W; Price, Nathan D; Van Horn, John D; Ames, Joseph; Clark, Kristi; Hood, Leroy; Hampstead, Benjamin M; Dauer, William; Toga, Arthur W
2016-01-01
A unique archive of Big Data on Parkinson's Disease is collected, managed and disseminated by the Parkinson's Progression Markers Initiative (PPMI). The integration of such complex and heterogeneous Big Data from multiple sources offers unparalleled opportunities to study the early stages of prevalent neurodegenerative processes, track their progression and quickly identify the efficacies of alternative treatments. Many previous human and animal studies have examined the relationship of Parkinson's disease (PD) risk to trauma, genetics, environment, co-morbidities, or life style. The defining characteristics of Big Data-large size, incongruency, incompleteness, complexity, multiplicity of scales, and heterogeneity of information-generating sources-all pose challenges to the classical techniques for data management, processing, visualization and interpretation. We propose, implement, test and validate complementary model-based and model-free approaches for PD classification and prediction. To explore PD risk using Big Data methodology, we jointly processed complex PPMI imaging, genetics, clinical and demographic data. Collective representation of the multi-source data facilitates the aggregation and harmonization of complex data elements. This enables joint modeling of the complete data, leading to the development of Big Data analytics, predictive synthesis, and statistical validation. Using heterogeneous PPMI data, we developed a comprehensive protocol for end-to-end data characterization, manipulation, processing, cleaning, analysis and validation. Specifically, we (i) introduce methods for rebalancing imbalanced cohorts, (ii) utilize a wide spectrum of classification methods to generate consistent and powerful phenotypic predictions, and (iii) generate reproducible machine-learning based classification that enables the reporting of model parameters and diagnostic forecasting based on new data. We evaluated several complementary model-based predictive approaches, which failed to generate accurate and reliable diagnostic predictions. However, the results of several machine-learning based classification methods indicated significant power to predict Parkinson's disease in the PPMI subjects (consistent accuracy, sensitivity, and specificity exceeding 96%, confirmed using statistical n-fold cross-validation). Clinical (e.g., Unified Parkinson's Disease Rating Scale (UPDRS) scores), demographic (e.g., age), genetics (e.g., rs34637584, chr12), and derived neuroimaging biomarker (e.g., cerebellum shape index) data all contributed to the predictive analytics and diagnostic forecasting. Model-free Big Data machine learning-based classification methods (e.g., adaptive boosting, support vector machines) can outperform model-based techniques in terms of predictive precision and reliability (e.g., forecasting patient diagnosis). We observed that statistical rebalancing of cohort sizes yields better discrimination of group differences, specifically for predictive analytics based on heterogeneous and incomplete PPMI data. UPDRS scores play a critical role in predicting diagnosis, which is expected based on the clinical definition of Parkinson's disease. Even without longitudinal UPDRS data, however, the accuracy of model-free machine learning based classification is over 80%. The methods, software and protocols developed here are openly shared and can be employed to study other neurodegenerative disorders (e.g., Alzheimer's, Huntington's, amyotrophic lateral sclerosis), as well as for other predictive Big Data analytics applications.
Capacity building in pediatric transplant infectious diseases: an international perspective.
Danziger-Isakov, Lara; Evans, Helen M; Green, Michael; McCulloch, Mignon; Michaels, Marian G; Posfay-Barbe, Klara M; Verma, Anita; Allen, Upton
2014-12-01
Transplant infectious diseases is a rapidly emerging subspecialty within pediatric infectious diseases reflecting the increasing volumes and complexity of this patient population. Incorporating transplant infectious diseases into the transplant process would provide an opportunity to improve clinical outcome and advocacy as well as expand research. The relationship between transplant physicians and infectious diseases (ID) specialists is one of partnership, collaboration, and mutual continuing professional education. The ID CARE Committee of the International Pediatric Transplant Association (IPTA) views the development and integration of transplant infectious diseases into pediatric transplant care as an international priority. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Simulations for designing and interpreting intervention trials in infectious diseases.
Halloran, M Elizabeth; Auranen, Kari; Baird, Sarah; Basta, Nicole E; Bellan, Steven E; Brookmeyer, Ron; Cooper, Ben S; DeGruttola, Victor; Hughes, James P; Lessler, Justin; Lofgren, Eric T; Longini, Ira M; Onnela, Jukka-Pekka; Özler, Berk; Seage, George R; Smith, Thomas A; Vespignani, Alessandro; Vynnycky, Emilia; Lipsitch, Marc
2017-12-29
Interventions in infectious diseases can have both direct effects on individuals who receive the intervention as well as indirect effects in the population. In addition, intervention combinations can have complex interactions at the population level, which are often difficult to adequately assess with standard study designs and analytical methods. Herein, we urge the adoption of a new paradigm for the design and interpretation of intervention trials in infectious diseases, particularly with regard to emerging infectious diseases, one that more accurately reflects the dynamics of the transmission process. In an increasingly complex world, simulations can explicitly represent transmission dynamics, which are critical for proper trial design and interpretation. Certain ethical aspects of a trial can also be quantified using simulations. Further, after a trial has been conducted, simulations can be used to explore the possible explanations for the observed effects. Much is to be gained through a multidisciplinary approach that builds collaborations among experts in infectious disease dynamics, epidemiology, statistical science, economics, simulation methods, and the conduct of clinical trials.
The Nucleosome Remodeling and Deacetylase (NuRD) Complex in Development and Disease
Basta, Jeannine; Rauchman, Michael
2014-01-01
The Nucleosome Remodeling and Deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis and accelerated ageing. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer. PMID:24880148
Prefrontal cortex, dopamine, and jealousy endophenotype.
Marazziti, Donatella; Poletti, Michele; Dell'Osso, Liliana; Baroni, Stefano; Bonuccelli, Ubaldo
2013-02-01
Jealousy is a complex emotion characterized by the perception of a threat of loss of something that the person values,particularly in reference to a relationship with a loved one, which includes affective, cognitive, and behavioral components. Neural systems and cognitive processes underlying jealousy are relatively unclear, and only a few neuroimaging studies have investigated them. The current article discusses recent empirical findings on delusional jealousy, which is the most severe form of this feeling, in neurodegenerative diseases. After reviewing empirical findings on neurological and psychiatric disorders with delusional jealousy, and after considering its high prevalence in patients with Parkinson's disease under dopamine agonist treatment, we propose a core neural network and core cognitive processes at the basis of (delusional) jealousy, characterizing this symptom as possible endophenotype. In any case,empirical investigation of the neural bases of jealousy is just beginning, and further studies are strongly needed to elucidate the biological roots of this complex emotion.
Three dimensions of the amyloid hypothesis: time, space and 'wingmen'.
Musiek, Erik S; Holtzman, David M
2015-06-01
The amyloid hypothesis, which has been the predominant framework for research in Alzheimer's disease (AD), has been the source of considerable controversy. The amyloid hypothesis postulates that amyloid-β peptide (Aβ) is the causative agent in AD. It is strongly supported by data from rare autosomal dominant forms of AD. However, the evidence that Aβ causes or contributes to age-associated sporadic AD is more complex and less clear, prompting criticism of the hypothesis. We provide an overview of the major arguments for and against the amyloid hypothesis. We conclude that Aβ likely is the key initiator of a complex pathogenic cascade that causes AD. However, we argue that Aβ acts primarily as a trigger of other downstream processes, particularly tau aggregation, which mediate neurodegeneration. Aβ appears to be necessary, but not sufficient, to cause AD. Its major pathogenic effects may occur very early in the disease process.
Fruci, D; Romania, P; D'Alicandro, V; Locatelli, F
2014-08-01
Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Goal-setting in clinical medicine.
Bradley, E H; Bogardus, S T; Tinetti, M E; Inouye, S K
1999-07-01
The process of setting goals for medical care in the context of chronic disease has received little attention in the medical literature, despite the importance of goal-setting in the achievement of desired outcomes. Using qualitative research methods, this paper develops a theory of goal-setting in the care of patients with dementia. The theory posits several propositions. First, goals are generated from embedded values but are distinct from values. Goals vary based on specific circumstances and alternatives whereas values are person-specific and relatively stable in the face of changing circumstances. Second, goals are hierarchical in nature, with complex mappings between general and specific goals. Third, there are a number of factors that modify the goal-setting process, by affecting the generation of goals from values or the translation of general goals to specific goals. Modifying factors related to individuals include their degree of risk-taking, perceived self-efficacy, and acceptance of the disease. Disease factors that modify the goal-setting process include the urgency and irreversibility of the medical condition. Pertinent characteristics of the patient-family-clinician interaction include the level of participation, control, and trust among patients, family members, and clinicians. The research suggests that the goal-setting process in clinical medicine is complex, and the potential for disagreements regarding goals substantial. The nature of the goal-setting process suggests that explicit discussion of goals for care may be necessary to promote effective patient-family-clinician communication and adequate care planning.
Decoding the Heart through Next Generation Sequencing Approaches.
Pawlak, Michal; Niescierowicz, Katarzyna; Winata, Cecilia Lanny
2018-06-07
: Vertebrate organs develop through a complex process which involves interaction between multiple signaling pathways at the molecular, cell, and tissue levels. Heart development is an example of such complex process which, when disrupted, results in congenital heart disease (CHD). This complexity necessitates a holistic approach which allows the visualization of genome-wide interaction networks, as opposed to assessment of limited subsets of factors. Genomics offers a powerful solution to address the problem of biological complexity by enabling the observation of molecular processes at a genome-wide scale. The emergence of next generation sequencing (NGS) technology has facilitated the expansion of genomics, increasing its output capacity and applicability in various biological disciplines. The application of NGS in various aspects of heart biology has resulted in new discoveries, generating novel insights into this field of study. Here we review the contributions of NGS technology into the understanding of heart development and its disruption reflected in CHD and discuss how emerging NGS based methodologies can contribute to the further understanding of heart repair.
Aging and inflammation: etiological culprits of cancer.
Ahmad, Aamir; Banerjee, Sanjeev; Wang, Zhiwei; Kong, Dejuan; Majumdar, Adhip P N; Sarkar, Fazlul H
2009-12-01
The biochemical phenomenon of aging, as universal as it is, still remains poorly understood. A number of diseases are associated with aging either as a cause or consequence of the aging process. The incidence of human cancers increases exponentially with age and therefore cancer stands out as a disease that is intricately connected to the process of aging. Emerging evidence clearly suggests that there is a symbiotic relationship between aging, inflammation and chronic diseases such as cancer; however, it is not clear whether aging leads to the induction of inflammatory processes thereby resulting in the development and maintenance of chronic diseases or whether inflammation is the causative factor for inducing both aging and chronic diseases such as cancer. Moreover, the development of chronic diseases especially cancer could also lead to the induction of inflammatory processes and may cause premature aging, suggesting that longitudinal research strategies must be employed for dissecting the interrelationships between aging, inflammation and cancer. Here, we have described our current understanding on the importance of inflammation, activation of NF-kappaB and various cytokines and chemokines in the processes of aging and in the development of chronic diseases especially cancer. We have also reviewed the prevailing theories of aging and provided succinct evidence in support of novel theories such as those involving cancer stem cells, the molecular understanding of which would likely hold a great promise towards unraveling the complex relationships between aging, inflammation and cancer.
Decoding transcriptional enhancers: Evolving from annotation to functional interpretation
Engel, Krysta L.; Mackiewicz, Mark; Hardigan, Andrew A.; Myers, Richard M.; Savic, Daniel
2016-01-01
Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. PMID:27224938
Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.
Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel
2016-09-01
Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endophthalmitis and Mycotic Aneurysm: The Only Clues to Underlying Endocarditis
Surles, Taylor; Brown, Alisha
2018-01-01
Infective endocarditis is a deadly disease that can present as a myriad of symptoms and thus its diagnosis can be missed. We present a case of infective endocarditis presenting as endogenous endophthalmitis and a ruptured mycotic aneurysm. This case illustrates both the complexity of infective endocarditis as a disease process and the more subtle diagnostic criteria as outlined by the Modified Duke Criteria. PMID:29849250
MPP+ analogs acting on mitochondria and inducing neuro-degeneration.
Kotake, Y; Ohta, S
2003-12-01
This review focuses on the mechanisms of action and the injurious effect of complex I inhibitors, of which 1-methyl-4-phenylpyridinium ion (MPP(+)) is a well studied example. These compounds can be divided into two groups, i.e. competitive inhibitors with respect to ubiquinone, such as piericidine A, and non-competitive inhibitors such as rotenone. Complex I inhibitors such as MPP(+) have been reported to induce anatomical, behavioral, and biochemical changes similar to those seen in Parkinson's disease, which is characterized by nigrostriatal dopaminergic neuro-degeneration. Spectroscopic analyses and structure-activity relationship studies have indicated that the V-shaped structure of the rotenone molecule is critical for binding to the rotenone binding site on complex I. Many isoquinoline derivatives, some of them endogenous, are also complex I inhibitors. Many lines of evidence show that complex I inhibitors elicit neuronal cell death. Recently, it was reported that chronic and systemic exposure to low-dose rotenone reproduces the features of Parkinson's disease. This work further focused attention on compounds acting on mitochondria, such as MPP(+). In Guadeloupe, the French West Indies, patients with atypical parkinsonism or progressive supranuclear palsy are frequently encountered. These diseases seem to be associated with ingestion of tropical herbal teas or tropical fruits of the Annonaceae family, which contain complex I inhibitors such as benzylisoquinoline derivatives and acetogenins. Complex I inhibitors may not simply result in reactive oxygen species generation or ATP exhaustion, but may influence complex downstream signal transduction processes. An understanding of these changes would throw light on the ways in which complex I inhibitors induce a wide range of abnormalities.
Markov and non-Markov processes in complex systems by the dynamical information entropy
NASA Astrophysics Data System (ADS)
Yulmetyev, R. M.; Gafarov, F. M.
1999-12-01
We consider the Markov and non-Markov processes in complex systems by the dynamical information Shannon entropy (DISE) method. The influence and important role of the two mutually dependent channels of entropy alternation (creation or generation of correlation) and anti-correlation (destroying or annihilation of correlation) have been discussed. The developed method has been used for the analysis of the complex systems of various natures: slow neutron scattering in liquid cesium, psychology (short-time numeral and pattern human memory and effect of stress on the dynamical taping-test), random dynamics of RR-intervals in human ECG (problem of diagnosis of various disease of the human cardio-vascular systems), chaotic dynamics of the parameters of financial markets and ecological systems.
Animal models for periodontal regeneration and peri-implant responses.
Kantarci, Alpdogan; Hasturk, Hatice; Van Dyke, Thomas E
2015-06-01
Translation of experimental data to the clinical setting requires the safety and efficacy of such data to be confirmed in animal systems before application in humans. In dental research, the animal species used is dependent largely on the research question or on the disease model. Periodontal disease and, by analogy, peri-implant disease, are complex infections that result in a tissue-degrading inflammatory response. It is impossible to explore the complex pathogenesis of periodontitis or peri-implantitis using only reductionist in-vitro methods. Both the disease process and healing of the periodontal and peri-implant tissues can be studied in animals. Regeneration (after periodontal surgery), in response to various biologic materials with potential for tissue engineering, is a continuous process involving various types of tissue, including epithelia, connective tissues and alveolar bone. The same principles apply to peri-implant healing. Given the complexity of the biology, animal models are necessary and serve as the standard for successful translation of regenerative materials and dental implants to the clinical setting. Smaller species of animal are more convenient for disease-associated research, whereas larger animals are more appropriate for studies that target tissue healing as the anatomy of larger animals more closely resembles human dento-alveolar architecture. This review focuses on the animal models available for the study of regeneration in periodontal research and implantology; the advantages and disadvantages of each animal model; the interpretation of data acquired; and future perspectives of animal research, with a discussion of possible nonanimal alternatives. Power calculations in such studies are crucial in order to use a sample size that is large enough to generate statistically useful data, whilst, at the same time, small enough to prevent the unnecessary use of animals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Volker, Nerida; Williams, Lauren T; Davey, Rachel C; Cochrane, Thomas; Clancy, Tanya
2017-02-24
The reorientation of primary health care towards prevention is fundamental to addressing the rising burden of chronic disease. However, in Australia, cardiovascular disease prevention practice in primary health care is not generally consistent with existing guidelines. The Model for Prevention study was a whole-of-system cardiovascular disease prevention intervention, with one component being enhanced lifestyle modification support and addition of a health coaching service in the general practice setting. To determine the feasibility of translating intervention outcomes into real world practice, implementation work done by stakeholders was examined using Normalisation Process Theory as a framework. Data was collected through interviews with 40 intervention participants and included general practitioners, practice nurses, practice managers, lifestyle advisors and participants. Data analysis was informed by normalisation process theory constructs. Stakeholders were in agreement that, while prevention is a key function of general practice, it was not their usual work. There were varying levels of engagement with the intervention by practice staff due to staff interest, capacity and turnover, but most staff reconfigured their work for required activities. The Lifestyle Advisors believed staff had varied levels of interest in and understanding of, their service, but most staff felt their role was useful. Patients expanded their existing relationships with their general practice, and most achieved their lifestyle modification goals. While the study highlighted the complex nature of the change required, many of the new or enhanced processes implemented as part of the intervention could be scaled up to improve the systems approach to prevention. Overcoming the barriers to change, such as the perception of CVD prevention as a 'hard sell', is going to rely on improving the value proposition for all stakeholders. The study provided a detailed understanding of the work required to implement a complex cardiovascular disease prevention intervention within general practice. The findings highlighted the need for multiple strategies that engage all stakeholders. Normalisation process theory was a useful framework for guiding change implementation.
Long non-coding RNAs and complex diseases: from experimental results to computational models.
Chen, Xing; Yan, Chenggang Clarence; Zhang, Xu; You, Zhu-Hong
2017-07-01
LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of lncRNAs would contribute to the development of various human complex diseases. In this review, we first made a brief introduction about the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important publicly available lncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of lncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available lncRNA-disease associations and predicting potential human lncRNA-disease associations have become important tasks of bioinformatics, which would benefit human complex diseases mechanism understanding at lncRNA level, disease biomarker detection and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art computational models, which could be effectively used to identify disease-related lncRNAs on a large scale and select the most promising disease-related lncRNAs for experimental validation. We also analyzed the limitations of these models and discussed the future directions of developing computational models for lncRNA research. © The Author 2016. Published by Oxford University Press.
Salvador, Cátia; Martins, M Rosário; Caldeira, A Teresa
2015-02-01
Different compounds of edible mushrooms are responsible for their bioactivity. The ability to synthesize polysaccharides, namely protein-polysaccharide (PPS) complexes, is related to the antioxidant capacity of these compounds and present great interest in preventing a number of diseases, including cancer, cardiovascular and auto-immune diseases, and accelerated aging. Amanita ponderosa are wild edible mushrooms that grow in Mediterranean "montado" areas [Portuguese name given to cork oak (Quercus suber) and holm oak (Quercus ilex) forests]. The aim of this study was to evaluate the production of PPS complexes obtained from A. ponderosa cultures using a new microanalytical approach to quickly and easily monitor the production process. Microanalysis using Fourier-transform infrared using attenuated total reflection and Raman spectroscopy of PPS samples showed spectra compatible with identification of this type of compound in culture extracts. PPS separated by size-exclusion chromatography showed seven main complexes. Molecular weights of the main PPS complexes isolated from cultures ranged between 1.5 and 20 kDa and did not present toxicity against Artemia salina, demonstrating the potential of A. ponderosa as a source of biologically active compounds with nutraceutical value. Application of this microanalytical approach to monitoring the production of PPS compounds can be successfully applied in biotechnological processes.
Martínez-Romero, Marcos; Vázquez-Naya, José M; Rabuñal, Juan R; Pita-Fernández, Salvador; Macenlle, Ramiro; Castro-Alvariño, Javier; López-Roses, Leopoldo; Ulla, José L; Martínez-Calvo, Antonio V; Vázquez, Santiago; Pereira, Javier; Porto-Pazos, Ana B; Dorado, Julián; Pazos, Alejandro; Munteanu, Cristian R
2010-05-01
Colorectal cancer is one of the most frequent types of cancer in the world and generates important social impact. The understanding of the specific metabolism of this disease and the transformations of the specific drugs will allow finding effective prevention, diagnosis and treatment of the colorectal cancer. All the terms that describe the drug metabolism contribute to the construction of ontology in order to help scientists to link the correlated information and to find the most useful data about this topic. The molecular components involved in this metabolism are included in complex network such as metabolic pathways in order to describe all the molecular interactions in the colorectal cancer. The graphical method of processing biological information such as graphs and complex networks leads to the numerical characterization of the colorectal cancer drug metabolic network by using invariant values named topological indices. Thus, this method can help scientists to study the most important elements in the metabolic pathways and the dynamics of the networks during mutations, denaturation or evolution for any type of disease. This review presents the last studies regarding ontology and complex networks of the colorectal cancer drug metabolism and a basic topology characterization of the drug metabolic process sub-ontology from the Gene Ontology.
Implications of sex-specific selection for the genetic basis of disease.
Morrow, Edward H; Connallon, Tim
2013-12-01
Mutation and selection are thought to shape the underlying genetic basis of many common human diseases. However, both processes depend on the context in which they occur, such as environment, genetic background, or sex. Sex has widely known effects on phenotypic expression of genotype, but an analysis of how it influences the evolutionary dynamics of disease-causing variants has not yet been explored. We develop a simple population genetic model of disease susceptibility and evaluate it using a biologically plausible empirically based distribution of fitness effects among contributing mutations. The model predicts that alleles under sex-differential selection, including sexually antagonistic alleles, will disproportionately contribute to genetic variation for disease predisposition, thereby generating substantial sexual dimorphism in the genetic architecture of complex (polygenic) diseases. This is because such alleles evolve into higher population frequencies for a given effect size, relative to alleles experiencing equally strong purifying selection in both sexes. Our results provide a theoretical justification for expecting a sexually dimorphic genetic basis for variation in complex traits such as disease. Moreover, they suggest that such dimorphism is interesting - not merely something to control for - because it reflects the action of natural selection in molding the evolution of common disease phenotypes.
Genetics of liver disease: From pathophysiology to clinical practice.
Karlsen, Tom H; Lammert, Frank; Thompson, Richard J
2015-04-01
Paralleling the first 30 years of the Journal of Hepatology we have witnessed huge advances in our understanding of liver disease and physiology. Genetic advances have played no small part in that. Initial studies in the 1970s and 1980s identified the strong major histocompatibility complex associations in autoimmune liver diseases. During the 1990 s, developments in genomic technologies drove the identification of genes responsible for Mendelian liver diseases. Over the last decade, genome-wide association studies have allowed for the dissection of the genetic susceptibility to complex liver disorders, in which also environmental co-factors play important roles. Findings have allowed the identification and elaboration of pathophysiological processes, have indicated the need for reclassification of liver diseases and have already pointed to new disease treatments. In the immediate future genetics will allow further stratification of liver diseases and contribute to personalized medicine. Challenges exist with regard to clinical implementation of rapidly developing technologies and interpretation of the wealth of accumulating genetic data. The historical perspective of genetics in liver diseases illustrates the opportunities for future research and clinical care of our patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Colacurcio, Daniel J.; Nixon, Ralph A.
2016-01-01
Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson Disease and Alzheimer Disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal proteolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum. PMID:27197071
Blázquez-Sánchez, María Teresa; de Matos, Ana M; Rauter, Amélia P
2017-05-24
Prion diseases are fatal neurodegenerative disorders caused by protein misfolding and aggregation, affecting the brain progressively and consequently the quality of life. Alzheimer's is also a protein misfolding disease, causing dementia in over 40 million people worldwide. There are no therapeutics able to cure these diseases. Cellular prion protein is a high-affinity binding partner of amyloid β (Aβ) oligomers, the most toxic species in Alzheimer's pathology. These findings motivate the development of new chemicals for a better understanding of the events involved. Disease control is far from being reached by the presently known therapeutics. In this review we describe the synthesis and mode of action of molecular entities with intervention in prion diseases' biological processes and, if known, their role in Alzheimer's. A diversity of structures is covered, based on glycans, steroids and terpenes, heterocycles, polyphenols, most of them embodying aromatics and a structural complexity. These molecules may be regarded as chemical tools to foster the understanding of the complex mechanisms involved, and to encourage the scientific community towards further developments for the cure of these devastating diseases.
Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration
van Dijk, Gertjan; van Heijningen, Steffen; Reijne, Aaffien C.; Nyakas, Csaba; van der Zee, Eddy A.; Eisel, Ulrich L. M.
2015-01-01
Alzheimer's disease (AD) is a complex, multifactorial disease with a number of leading mechanisms, including neuroinflammation, processing of amyloid precursor protein (APP) to amyloid β peptide, tau protein hyperphosphorylation, relocalization, and deposition. These mechanisms are propagated by obesity, the metabolic syndrome and type-2 diabetes mellitus. Stress, sedentariness, dietary overconsumption of saturated fat and refined sugars, and circadian derangements/disturbed sleep contribute to obesity and related metabolic diseases, but also accelerate age-related damage and senescence that all feed the risk of developing AD too. The complex and interacting mechanisms are not yet completely understood and will require further analysis. Instead of investigating AD as a mono- or oligocausal disease we should address the disease by understanding the multiple underlying mechanisms and how these interact. Future research therefore might concentrate on integrating these by “systems biology” approaches, but also to regard them from an evolutionary medicine point of view. The current review addresses several of these interacting mechanisms in animal models and compares them with clinical data giving an overview about our current knowledge and puts them into an integrated framework. PMID:26041981
[Emerging infectious diseases: complex, unpredictable processes].
Guégan, Jean-François
2016-01-01
In the light of a double approach, at first empirical, later theoretical and comparative, illustrated by the example of the Buruli ulcer and its mycobacterial agent Mycobacterium ulcerans on which I focused my research activity these last ten years by studying determinants and factors of emerging infectious or parasitic diseases, the complexity of events explaining emerging diseases will be presented. The cascade of events occurring at various levels of spatiotemporal scales and organization of life, which lead to the numerous observed emergences, nowadays requires better taking into account the interactions between host(s), pathogen(s) and the environment by including the behavior of both individuals and the population. In numerous research studies on emerging infectious diseases, microbial hazard is described rather than infectious disease risk, the latter resulting from the confrontation between an association of threatening phenomena, or hazards, and a susceptible population. Beyond, the theme of emerging infectious diseases and its links with global environmental and societal changes leads to reconsider some well-established knowledge in infectiology and parasitology. © Société de Biologie, 2017.
Cardiac Arrhythmia: In vivo screening in the zebrafish to overcome complexity in drug discovery.
Macrae, Calum A
2010-07-01
IMPORTANCE OF THE FIELD: Cardiac arrhythmias remain a major challenge for modern drug discovery. Clinical events are paroxysmal, often rare and may be asymptomatic until a highly morbid complication. Target selection is often based on limited information and though highly specific agents are identified in screening, the final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index and substantial toxicities. AREAS COVERED IN THIS REVIEW: Our understanding of complexity of arrhythmogenesis has grown dramatically over the last two decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in arrhythmia. This review surveys the literature on arrhythmia mechanisms from 1965 to the present day, outlines the complex biology underlying potentially each and every rhythm disturbance, and highlights the problems for rational target identification. The rationale for in vivo screening is described and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described. WHAT THE READER WILL GAIN: An overview of the complex mechanisms underlying most clinical arrhythmias, and insight into the limits of ion channel conductances as drug targets. An introduction to the zebrafish as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery in the face of complex biology including in vivo screening of zebrafish genetic disease models. TAKE HOME MESSAGE: In vivo screening in faithful disease models allows the effects of drugs on integrative physiology and disease biology to be captured during the screening process, in a manner agnostic to potential drug target or targets. This systematic strategy bypasses current gaps in our understanding of disease biology, but emphasizes the importance of the rigor of the disease model.
Solution structure of the Legionella pneumophila Mip-rapamycin complex.
Ceymann, Andreas; Horstmann, Martin; Ehses, Philipp; Schweimer, Kristian; Paschke, Anne-Katrin; Steinert, Michael; Faber, Cornelius
2008-03-17
Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. We have solved the solution structure of free Mip77-213 and the Mip77-213-rapamycin complex by NMR spectroscopy. Mip77-213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors.
Solution structure of the Legionella pneumophila Mip-rapamycin complex
Ceymann, Andreas; Horstmann, Martin; Ehses, Philipp; Schweimer, Kristian; Paschke, Anne-Katrin; Steinert, Michael; Faber, Cornelius
2008-01-01
Background Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. Results We have solved the solution structure of free Mip77–213 and the Mip77–213-rapamycin complex by NMR spectroscopy. Mip77–213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. Conclusion The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors. PMID:18366641
Gurung, A B; Bhattacharjee, A; Ajmal Ali, M; Al-Hemaid, F; Lee, Joongku
2017-02-01
Protein-protein interaction is a vital process which drives many important physiological processes in the cell and has also been implicated in several diseases. Though the protein-protein interaction network is quite complex but understanding its interacting partners using both in silico as well as molecular biology techniques can provide better insights for targeting such interactions. Targeting protein-protein interaction with small molecules is a challenging task because of druggability issues. Nevertheless, several studies on the kinetics as well as thermodynamic properties of protein-protein interactions have immensely contributed toward better understanding of the affinity of these complexes. But, more recent studies on hot spots and interface residues have opened up new avenues in the drug discovery process. This approach has been used in the design of hot spot based modulators targeting protein-protein interaction with the objective of normalizing such interactions.
Maghsoudi, Amirhossein; Fakharzadeh, Saideh; Hafizi, Maryam; Abbasi, Maryam; Kohram, Fatemeh; Sardab, Shima; Tahzibi, Abbas; Kalanaky, Somayeh; Nazaran, Mohammad Hassan
2015-03-01
Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.
Application of Proteomic Approaches to Accelerate Drug Development for Psychiatric Disorders.
Rahmoune, Hassan; Martins-de-Souza, Daniel; Guest, Paul C
2017-01-01
Proteomic-based biomarkers are now an integral part of the drug development process. This chapter covers the role of proteomic biomarker tests as useful tools for improving preclinical research and clinical development. One medical area that has been lagging behind this process is the study of psychiatric disorders, and this is most likely due to the complexity of these diseases. The potential of incorporating biomarkers in the clinical pipeline to improve decision-making, accelerate drug development, improve translation and reduce development costs is also discussed, with a focus on psychiatric diseases like schizophrenia. This chapter will also discuss the next steps that must be taken to keep moving this process forwards.
Preliminary Characterization of Erythrocytes Deformability on the Entropy-Complexity Plane
Korol, Ana M; D’Arrigo, Mabel; Foresto, Patricia; Pérez, Susana; Martín, Maria T; Rosso, Osualdo A
2010-01-01
We present an application of wavelet-based Information Theory quantifiers (Normalized Total Shannon Entropy, MPR-Statistical Complexity and Entropy-Complexity plane) on red blood cells membrane viscoelasticity characterization. These quantifiers exhibit important localization advantages provided by the Wavelet Theory. The present approach produces a clear characterization of this dynamical system, finding out an evident manifestation of a random process on the red cell samples of healthy individuals, and its sharp reduction of randomness on analyzing a human haematological disease, such as β-thalassaemia minor. PMID:21611139
Follett, Jordan; Bugarcic, Andrea; Yang, Zhe; Ariotti, Nicholas; Norwood, Suzanne J; Collins, Brett M; Parton, Robert G; Teasdale, Rohan D
2016-08-26
Endosomal sorting is a highly orchestrated cellular process. Retromer is a heterotrimeric complex that associates with endosomal membranes and facilitates the retrograde sorting of multiple receptors, including the cation-independent mannose 6-phosphate receptor for lysosomal enzymes. The cycling of retromer on and off the endosomal membrane is regulated by a network of retromer-interacting proteins. Here, we find that Parkinson disease-associated Vps35 variant, R524W, but not P316S, is a loss-of-function mutation as marked by a reduced association with this regulatory network and dysregulation of endosomal receptor sorting. Expression of Vps35 R524W-containing retromer results in the accumulation of intracellular α-synuclein-positive aggregates, a hallmark of Parkinson disease. Overall, the Vps35 R524W-containing retromer has a decreased endosomal association, which can be partially rescued by R55, a small molecule previously shown to stabilize the retromer complex, supporting the potential for future targeting of the retromer complex in the treatment of Parkinson disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease.
Brown, Juliana; Quadrato, Giorgia; Arlotta, Paola
2018-01-01
The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease. © 2018 Elsevier Inc. All rights reserved.
Bipartite Community Structure of eQTLs.
Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John
2016-09-01
Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.
Inflammasome Priming in Sterile Inflammatory Disease.
Patel, Meghana N; Carroll, Richard G; Galván-Peña, Silvia; Mills, Evanna L; Olden, Robin; Triantafilou, Martha; Wolf, Amaya I; Bryant, Clare E; Triantafilou, Kathy; Masters, Seth L
2017-02-01
The inflammasome is a cytoplasmic protein complex that processes interleukins (IL)-1β and IL-18, and drives a form of cell death known as pyroptosis. Oligomerization of this complex is actually the second step of activation, and a priming step must occur first. This involves transcriptional upregulation of pro-IL-1β, inflammasome sensor NLRP3, or the non-canonical inflammasome sensor caspase-11. An additional aspect of priming is the post-translational modification of particular inflammasome constituents. Priming is typically accomplished in vitro using a microbial Toll-like receptor (TLR) ligand. However, it is now clear that inflammasomes are activated during the progression of sterile inflammatory diseases such as atherosclerosis, metabolic disease, and neuroinflammatory disorders. Therefore, it is time to consider the endogenous factors and mechanisms that may prime the inflammasome in these conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Three-dimensional (3D) printing and its applications for aortic diseases.
Hangge, Patrick; Pershad, Yash; Witting, Avery A; Albadawi, Hassan; Oklu, Rahmi
2018-04-01
Three-dimensional (3D) printing is a process which generates prototypes from virtual objects in computer-aided design (CAD) software. Since 3D printing enables the creation of customized objects, it is a rapidly expanding field in an age of personalized medicine. We discuss the use of 3D printing in surgical planning, training, and creation of devices for the treatment of aortic diseases. 3D printing can provide operators with a hands-on model to interact with complex anatomy, enable prototyping of devices for implantation based upon anatomy, or even provide pre-procedural simulation. Potential exists to expand upon current uses of 3D printing to create personalized implantable devices such as grafts. Future studies should aim to demonstrate the impact of 3D printing on outcomes to make this technology more accessible to patients with complex aortic diseases.
Convergent molecular defects underpin diverse neurodegenerative diseases.
Tofaris, George K; Buckley, Noel J
2018-02-19
In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Clinical metabolomics paves the way towards future healthcare strategies
Collino, Sebastiano; Martin, François‐Pierre J.; Rezzi, Serge
2013-01-01
Metabolomics is recognized as a powerful top‐down system biological approach to understand genetic‐environment‐health paradigms paving new avenues to identify clinically relevant biomarkers. It is nowadays commonly used in clinical applications shedding new light on physiological regulatory processes of complex mammalian systems with regard to disease aetiology, diagnostic stratification and, potentially, mechanism of action of therapeutic solutions. A key feature of metabolomics lies in its ability to underpin the complex metabolic interactions of the host with its commensal microbial partners providing a new way to define individual and population phenotypes. This review aims at describing recent applications of metabolomics in clinical fields with insight into diseases, diagnostics/monitoring and improvement of homeostatic metabolic regulation. PMID:22348240
NASA Astrophysics Data System (ADS)
Bürli, Roland W.; Thomas, Elizabeth; Beaumont, Vahri
Neurodegenerative disorders are devastating for patients and their social environment. Their etiology is poorly understood and complex. As a result, there is clearly an urgent need for therapeutic agents that slow down disease progress and alleviate symptoms. In this respect, interference with expression and function of multiple gene products at the epigenetic level has offered much promise, and histone deacetylases play a crucial role in these processes. This review presents an overview of the biological pathways in which these enzymes are involved and illustrates the complex network of proteins that governs their activity. An overview of small molecules that interfere with histone deacetylase function is provided.
Preparation, linear and NLO properties of DNA-CTMA-SBE complexes
NASA Astrophysics Data System (ADS)
Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia
2013-10-01
Synthesis of deoxyribonucleic acid (DNA) - was cetyltrimethylammonium (CTMA) - sea buckthorn extract (SBE) at different concentrations is decribed. The complexes were processed into good optical quality thin films by spin coating on different substrates such as: glass, silica and ITO covered glass substrates. SBE contains many bioactive substances that can be used in the treatment of several diseases, such as cardiovascular disease, cancer, and acute mountain sickness. The obtained thin films were characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties as function of SBE concentration. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1 064.2 nm fundamental wavelength.
Kasai, Masataka; Ishida, Reiko; Nakahara, Kazuhiko; Okumura, Ko; Aoki, Katsunori
2018-05-08
Translin and translin-associated factor X (translin/TRAX) proteins have been implicated in a variety of cellular activities central to nucleic acid metabolism. Accumulating evidence indicates that translin/TRAX complexes participate in processes ensuring the replication of DNA, as well as cell division. Significant progress has been made in understanding the roles of translin/TRAX complexes in RNA metabolism, such as through RNA-induced silencing complex activation or the microRNA depletion that occurs in Dicer deficiency. At the cellular level, translin-deficient (Tsn -/- ) mice display delayed endochondral ossification or progressive bone marrow failure with ectopic osteogenesis and adipogenesis, suggesting involvement in mesenchymal cell differentiation. In this review, we summarize the molecular and cellular functions of translin homo-octamer and translin/TRAX hetero-octamer. Finally, we discuss the multifaceted roles of translin, TRAX, and associated proteins in the healthy and disease states. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.
Rare bone diseases and their dental, oral, and craniofacial manifestations.
Foster, B L; Ramnitz, M S; Gafni, R I; Burke, A B; Boyce, A M; Lee, J S; Wright, J T; Akintoye, S O; Somerman, M J; Collins, M T
2014-07-01
Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease. © International & American Associations for Dental Research.
Uriarte, Silvia M.; Edmisson, Jacob S.; Jimenez-Flores, Emeri
2017-01-01
Summary Neutrophils are a major component of the innate host response, and the outcome of the interaction between the oral microbiota and neutrophils is a key determinant of oral health status. The composition of the oral microbiome is very complex and different in health and disease. Neutrophils are constantly recruited to the oral cavity, and their protective role is highlighted in cases where their number or functional responses are impeded, resulting in different forms of periodontal disease. Periodontitis, one of the more severe and irreversible forms of periodontal disease, is a microbial-induced chronic inflammatory disease that affects the gingival tissues supporting the tooth. This chronic inflammatory disease is the result of a shift of the oral bacterial symbiotic community to a dysbiotic more complex community. Chronic inflammatory infectious diseases such as periodontitis can occur because the pathogens are able to evade or disable the innate immune system. In this review, we discuss how human neutrophils interact with both the symbiotic and the dysbiotic oral community; an understanding of which is essential to increase our knowledge of the periodontal disease process. PMID:27558341
Rare Bone Diseases and Their Dental, Oral, and Craniofacial Manifestations
Foster, B.L.; Ramnitz, M.S.; Gafni, R.I.; Burke, A.B.; Boyce, A.M.; Lee, J.S.; Wright, J.T.; Akintoye, S.O.; Somerman, M.J.; Collins, M.T.
2014-01-01
Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease. PMID:24700690
Lung tumor diagnosis and subtype discovery by gene expression profiling.
Wang, Lu-yong; Tu, Zhuowen
2006-01-01
The optimal treatment of patients with complex diseases, such as cancers, depends on the accurate diagnosis by using a combination of clinical and histopathological data. In many scenarios, it becomes tremendously difficult because of the limitations in clinical presentation and histopathology. To accurate diagnose complex diseases, the molecular classification based on gene or protein expression profiles are indispensable for modern medicine. Moreover, many heterogeneous diseases consist of various potential subtypes in molecular basis and differ remarkably in their response to therapies. It is critical to accurate predict subgroup on disease gene expression profiles. More fundamental knowledge of the molecular basis and classification of disease could aid in the prediction of patient outcome, the informed selection of therapies, and identification of novel molecular targets for therapy. In this paper, we propose a new disease diagnostic method, probabilistic boosting tree (PB tree) method, on gene expression profiles of lung tumors. It enables accurate disease classification and subtype discovery in disease. It automatically constructs a tree in which each node combines a number of weak classifiers into a strong classifier. Also, subtype discovery is naturally embedded in the learning process. Our algorithm achieves excellent diagnostic performance, and meanwhile it is capable of detecting the disease subtype based on gene expression profile.
Dinov, Ivo D.; Heavner, Ben; Tang, Ming; Glusman, Gustavo; Chard, Kyle; Darcy, Mike; Madduri, Ravi; Pa, Judy; Spino, Cathie; Kesselman, Carl; Foster, Ian; Deutsch, Eric W.; Price, Nathan D.; Van Horn, John D.; Ames, Joseph; Clark, Kristi; Hood, Leroy; Hampstead, Benjamin M.; Dauer, William; Toga, Arthur W.
2016-01-01
Background A unique archive of Big Data on Parkinson’s Disease is collected, managed and disseminated by the Parkinson’s Progression Markers Initiative (PPMI). The integration of such complex and heterogeneous Big Data from multiple sources offers unparalleled opportunities to study the early stages of prevalent neurodegenerative processes, track their progression and quickly identify the efficacies of alternative treatments. Many previous human and animal studies have examined the relationship of Parkinson’s disease (PD) risk to trauma, genetics, environment, co-morbidities, or life style. The defining characteristics of Big Data–large size, incongruency, incompleteness, complexity, multiplicity of scales, and heterogeneity of information-generating sources–all pose challenges to the classical techniques for data management, processing, visualization and interpretation. We propose, implement, test and validate complementary model-based and model-free approaches for PD classification and prediction. To explore PD risk using Big Data methodology, we jointly processed complex PPMI imaging, genetics, clinical and demographic data. Methods and Findings Collective representation of the multi-source data facilitates the aggregation and harmonization of complex data elements. This enables joint modeling of the complete data, leading to the development of Big Data analytics, predictive synthesis, and statistical validation. Using heterogeneous PPMI data, we developed a comprehensive protocol for end-to-end data characterization, manipulation, processing, cleaning, analysis and validation. Specifically, we (i) introduce methods for rebalancing imbalanced cohorts, (ii) utilize a wide spectrum of classification methods to generate consistent and powerful phenotypic predictions, and (iii) generate reproducible machine-learning based classification that enables the reporting of model parameters and diagnostic forecasting based on new data. We evaluated several complementary model-based predictive approaches, which failed to generate accurate and reliable diagnostic predictions. However, the results of several machine-learning based classification methods indicated significant power to predict Parkinson’s disease in the PPMI subjects (consistent accuracy, sensitivity, and specificity exceeding 96%, confirmed using statistical n-fold cross-validation). Clinical (e.g., Unified Parkinson's Disease Rating Scale (UPDRS) scores), demographic (e.g., age), genetics (e.g., rs34637584, chr12), and derived neuroimaging biomarker (e.g., cerebellum shape index) data all contributed to the predictive analytics and diagnostic forecasting. Conclusions Model-free Big Data machine learning-based classification methods (e.g., adaptive boosting, support vector machines) can outperform model-based techniques in terms of predictive precision and reliability (e.g., forecasting patient diagnosis). We observed that statistical rebalancing of cohort sizes yields better discrimination of group differences, specifically for predictive analytics based on heterogeneous and incomplete PPMI data. UPDRS scores play a critical role in predicting diagnosis, which is expected based on the clinical definition of Parkinson’s disease. Even without longitudinal UPDRS data, however, the accuracy of model-free machine learning based classification is over 80%. The methods, software and protocols developed here are openly shared and can be employed to study other neurodegenerative disorders (e.g., Alzheimer’s, Huntington’s, amyotrophic lateral sclerosis), as well as for other predictive Big Data analytics applications. PMID:27494614
Climate change: effects on animal disease systems and implications for surveillance and control.
de La Rocque, S; Rioux, J A; Slingenbergh, J
2008-08-01
Climate driven and other changes in landscape structure and texture, plus more general factors, may create favourable ecological niches for emerging diseases. Abiotic factors impact on vectors, reservoirs and pathogen bionomics and their ability to establish in new ecosystems. Changes in climatic patterns and in seasonal conditions may affect disease behaviour in terms of spread pattern, diffusion range, amplification and persistence in novel habitats. Pathogen invasion may result in the emergence of novel disease complexes, presenting major challenges for the sustainability of future animal agriculture at the global level. In this paper, some of the ecological mechanisms underlying the impact of climatic change on disease transmission and disease spread are further described. Potential effects of different climatic variables on pathogens and host population dynamics and distribution are complex to assess, and different approaches are used to describe the underlying epidemiological processes and the availability of ecological niches for pathogens and vectors. The invasion process can disrupt the long-term co-evolution of species. Pathogens adhering to an r-type strategy (e.g. RNA viruses) may be more inclined to encroach on a novel niche resulting from climate change. However, even when linkage between disease dynamics and climate change are relatively strong, there are other factors changing disease behaviour, and these should be accounted for as well. Overall vulnerability of a given ecosystem is a key variable in this regard. The impact of climate-driven changes varies in different parts of the world and in the different agro-climatic zones. Perhaps priority should go to those geographical areas where the integrity of the ecosystem is most severely affected and the adaptability, in terms of robustness and sustainability of response, relatively low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanBrocklin, H.F.; Enas, J.D.; Hanrahan, S.M.
1994-05-01
The mitochondrial electron transport chain (ETC) consists of five enzyme complexes (I-V) which participate in the transfer of electrons to oxygen and phosphorylation of ADP (oxidative phosphorylation). ETC dysfunction has been linked to several genetic neurological diseases as well as implicated in Parkinson`s (complex I) and Huntington`s (complex I) disease and normal aging processes. Dihydrorotenone (DHR) is a specific high affinity inhibitor of complex I. In order to develop a PET tracer for complex I, we have labeled DHR with fluorine-18. The tosylate precursor was produced in three steps from commercially available rotenone. Fluorine-18 was introduced by nucleophilic displacement ofmore » the tosylate using tetrabutyl-ammonium fluoride. Subsequent oxidation with MnO{sub 2} and HPLC purification gave the desired [{sup 18}F]fluoro-DHR. Initial biodistribution studies were carried out in {approximately}200 g male Sprague-Dawley rats. The tracer was taken up rapidly in the heart, an organ highly enriched with mitochondria, (5.5-6% injected dose (ID)/g at 30 minutes) and in the brain ({approximately}1.5% ID/g at 1 hour).« less
Epidemic processes in complex networks
NASA Astrophysics Data System (ADS)
Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro
2015-07-01
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
Contrasting effects of strong ties on SIR and SIS processes in temporal networks
NASA Astrophysics Data System (ADS)
Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola
2015-12-01
Most real networks are characterized by connectivity patterns that evolve in time following complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on activity driven networks with and without memory (i.e., Markovian and non-Markovian). We find that memory inhibits the spreading process in SIR models by shifting the epidemic threshold to larger values and reducing the final fraction of recovered nodes. On the contrary, in SIS processes memory reduces the epidemic threshold and, for a wide range of disease parameters, increases the fraction of nodes affected by the disease in the endemic state. The heterogeneity in tie strengths, and the frequent repetition of strong ties it entails, allows in fact less virulent SIS-like diseases to survive in tightly connected local clusters that serve as reservoir for the virus. We validate this picture by studying both processes on two real temporal networks.
Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases
Jazurek, Magdalena; Ciesiolka, Adam; Starega-Roslan, Julia; Bilinska, Katarzyna; Krzyzosiak, Wlodzimierz J.
2016-01-01
RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases. PMID:27625393
Pomorska, Grazyna; Ockene, Judith K
2017-11-01
The goal of this article was to look at the problem of Alzheimer's disease (AD) through the lens of a socioecological resilience-thinking framework to help expand our view of the prevention and treatment of AD. This serious and complex public health problem requires a holistic systems approach. We present the view that resilience thinking, a theoretical framework that offers multidisciplinary approaches in ecology and natural resource management to solve environmental problems, can be applied to the prevention and treatment of AD. Resilience thinking explains a natural process that occurs in all complex systems in response to stressful challenges. The brain is a complex system, much like an ecosystem, and AD is a disturbance (allostatic overload) within the ecosystem of the brain. Resilience thinking gives us guidance, direction, and ideas about how to comprehensively prevent and treat AD and tackle the AD epidemic.
Towards an ontological representation of morbidity and mortality in Description Logics.
Santana, Filipe; Freitas, Fred; Fernandes, Roberta; Medeiros, Zulma; Schober, Daniel
2012-09-21
Despite the high coverage of biomedical ontologies, very few sound definitions of death can be found. Nevertheless, this concept has its relevance in epidemiology, such as for data integration within mortality notification systems. We here introduce an ontological representation of the complex biological qualities and processes that inhere in organisms transitioning from life to death. We further characterize them by causal processes and their temporal borders. Several representational difficulties were faced, mainly regarding kinds of processes with blurred or fiat borders that change their type in a continuous rather than discrete mode. Examples of such hard to grasp concepts are life, death and its relationships with injuries and diseases. We illustrate an iterative optimization of definitions within four versions of the ontology, so as to stress the typical problems encountered in representing complex biological processes. We point out possible solutions for representing concepts related to biological life cycles, preserving identity of participating individuals, i.e. for a patient in transition from life to death. This solution however required the use of extended description logics not yet supported by tools. We also focus on the interdependencies and need to change further parts if one part is changed. The axiomatic definition of mortality we introduce allows the description of biologic processes related to the transition from healthy to diseased or injured, and up to a final death state. Exploiting such definitions embedded into descriptions of pathogen transmissions by arthropod vectors, the complete sequence of infection and disease processes can be described, starting from the inoculation of a pathogen by a vector, until the death of an individual, preserving the identity of the patient.
Sanjak, Jaleal S.; Long, Anthony D.; Thornton, Kevin R.
2017-01-01
The genetic component of complex disease risk in humans remains largely unexplained. A corollary is that the allelic spectrum of genetic variants contributing to complex disease risk is unknown. Theoretical models that relate population genetic processes to the maintenance of genetic variation for quantitative traits may suggest profitable avenues for future experimental design. Here we use forward simulation to model a genomic region evolving under a balance between recurrent deleterious mutation and Gaussian stabilizing selection. We consider multiple genetic and demographic models, and several different methods for identifying genomic regions harboring variants associated with complex disease risk. We demonstrate that the model of gene action, relating genotype to phenotype, has a qualitative effect on several relevant aspects of the population genetic architecture of a complex trait. In particular, the genetic model impacts genetic variance component partitioning across the allele frequency spectrum and the power of statistical tests. Models with partial recessivity closely match the minor allele frequency distribution of significant hits from empirical genome-wide association studies without requiring homozygous effect sizes to be small. We highlight a particular gene-based model of incomplete recessivity that is appealing from first principles. Under that model, deleterious mutations in a genomic region partially fail to complement one another. This model of gene-based recessivity predicts the empirically observed inconsistency between twin and SNP based estimated of dominance heritability. Furthermore, this model predicts considerable levels of unexplained variance associated with intralocus epistasis. Our results suggest a need for improved statistical tools for region based genetic association and heritability estimation. PMID:28103232
How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis.
Drasdo, Dirk; Hoehme, Stefan; Hengstler, Jan G
2014-10-01
From the more than 100 liver diseases described, many of those with high incidence rates manifest themselves by histopathological changes, such as hepatitis, alcoholic liver disease, fatty liver disease, fibrosis, and, in its later stages, cirrhosis, hepatocellular carcinoma, primary biliary cirrhosis and other disorders. Studies of disease pathogeneses are largely based on integrating -omics data pooled from cells at different locations with spatial information from stained liver structures in animal models. Even though this has led to significant insights, the complexity of interactions as well as the involvement of processes at many different time and length scales constrains the possibility to condense disease processes in illustrations, schemes and tables. The combination of modern imaging modalities with image processing and analysis, and mathematical models opens up a promising new approach towards a quantitative understanding of pathologies and of disease processes. This strategy is discussed for two examples, ammonia metabolism after drug-induced acute liver damage, and the recovery of liver mass as well as architecture during the subsequent regeneration process. This interdisciplinary approach permits integration of biological mechanisms and models of processes contributing to disease progression at various scales into mathematical models. These can be used to perform in silico simulations to promote unravelling the relation between architecture and function as below illustrated for liver regeneration, and bridging from the in vitro situation and animal models to humans. In the near future novel mechanisms will usually not be directly elucidated by modelling. However, models will falsify hypotheses and guide towards the most informative experimental design. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Inefficient epidemic spreading in scale-free networks
NASA Astrophysics Data System (ADS)
Piccardi, Carlo; Casagrandi, Renato
2008-02-01
Highly heterogeneous degree distributions yield efficient spreading of simple epidemics through networks, but can be inefficient with more complex epidemiological processes. We study diseases with nonlinear force of infection whose prevalences can abruptly collapse to zero while decreasing the transmission parameters. We find that scale-free networks can be unable to support diseases that, on the contrary, are able to persist at high endemic levels in homogeneous networks with the same average degree.
Pathogenic cascades in lysosomal disease-Why so complex?
Walkley, S U
2009-04-01
Lysosomal disease represents a large group of more than 50 clinically recognized conditions resulting from inborn errors of metabolism affecting the organelle known as the lysosome. The lysosome is an integral part of the larger endosomal/lysosomal system, and is closely allied with the ubiquitin-proteosomal and autophagosomal systems, which together comprise essential cell machinery for substrate degradation and recycling, homeostatic control, and signalling. More than two-thirds of lysosomal diseases affect the brain, with neurons appearing particularly vulnerable to lysosomal compromise and showing diverse consequences ranging from specific axonal and dendritic abnormalities to neuron death. While failure of lysosomal function characteristically leads to lysosomal storage, new studies argue that lysosomal diseases may also be appropriately viewed as 'states of deficiency' rather than simply overabundance (storage). Interference with signalling events and salvage processing normally controlled by the endosomal/lysosomal system may represent key mechanisms accounting for the inherent complexity of lysosomal disorders. Analysis of lysosomal disease pathogenesis provides a unique window through which to observe the importance of the greater lysosomal system for normal cell health.
Magnin, E; Dumurgier, J; Bouaziz-Amar, E; Bombois, S; Wallon, D; Gabelle, A; Lehmann, S; Blanc, F; Bousiges, O; Hannequin, D; Jung, B; Miguet-Alfonsi, C; Quillard, M; Pasquier, F; Peoc'h, K; Laplanche, J-L; Hugon, J; Paquet, C
2017-04-01
The role of biomarkers in clinical research was recently highlighted in the new criteria for the diagnosis of Alzheimer's disease. Cerebro-spinal fluid (CSF) biomarkers (total Tau protein, threonine 181 phosphorylated Tau protein and amyloid Aβ1-42 peptide) are associated with cerebral neuropathological lesions observed in Alzheimer's disease (neuronal death, neurofibrillary tangle with abnormal Tau deposits and amyloid plaque). Aβ1-40 amyloid peptide dosage helps to interpret Aβ1-42 results. As suggested in the latest international criteria and the French HAS (Haute Autorité de santé) recommendations, using theses CSF biomarkers should not be systematic but sometimes could be performed to improve confidence about the diagnostic of Alzheimer's disease in young subjects or in complex clinical situations. Future biomarkers actually in development will additionally help in diagnostic process (differential diagnosis) and in prognostic evaluation of neurodegenerative diseases. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Auditory spatial processing in Alzheimer’s disease
Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.
2015-01-01
The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer’s disease syndromic spectrum. PMID:25468732
Presymptomatic detection of Parkinson's disease.
Jenner, P
1993-01-01
Presymptomatic detection of Parkinson's disease is necessary if neuroprotective therapies are to be utilized in its treatment. Various methods (PET, electrophysiology, enzyme assays, olfactory function) may be applicable but none has been rigorously evaluated. Other possible approaches are now considered. Plasma HVA levels (pHVA) in the presence of debrisoquine may reflect cerebral dopamine function. However, there are no detectable differences in pHVA between newly diagnosed and untreated parkinsonian patients and control subjects. Compensatory increases in dopamine turnover may mask a decrease in pHVA in the early stages of the disease. So, at present this technique could not be used as a diagnostic tool. Post-mortem studies of brain in Parkinson's disease may provide clues to biochemical markers indicative of nigral pathology. Mitochondrial complex I activity is reduced in substantia nigra in Parkinson's disease and it was reported also to be markedly reduced in blood platelets. However, subsequent studies suggest that the difference in platelet complex I activity is too small to be diagnostic of Parkinson's disease. There are also selective reductions in brain glutathione levels in Parkinson's disease restricted to substantia nigra, which do not occur in other neurodegenerative disorders and are not due to drug treatment. Importantly, in incidental Lewy body disease (preclinical Parkinson's disease) nigral glutathione levels are reduced to the same degree as in advanced Parkinson's disease. So, some peripheral index of altered glutathione function may be valuable in the early detection of the disease process.
Human Prostate Cancer Hallmarks Map
Datta, Dipamoy; Aftabuddin, Md.; Gupta, Dinesh Kumar; Raha, Sanghamitra; Sen, Prosenjit
2016-01-01
Human prostate cancer is a complex heterogeneous disease that mainly affects elder male population of the western world with a high rate of mortality. Acquisitions of diverse sets of hallmark capabilities along with an aberrant functioning of androgen receptor signaling are the central driving forces behind prostatic tumorigenesis and its transition into metastatic castration resistant disease. These hallmark capabilities arise due to an intense orchestration of several crucial factors, including deregulation of vital cell physiological processes, inactivation of tumor suppressive activity and disruption of prostate gland specific cellular homeostasis. The molecular complexity and redundancy of oncoproteins signaling in prostate cancer demands for concurrent inhibition of multiple hallmark associated pathways. By an extensive manual curation of the published biomedical literature, we have developed Human Prostate Cancer Hallmarks Map (HPCHM), an onco-functional atlas of human prostate cancer associated signaling and events. It explores molecular architecture of prostate cancer signaling at various levels, namely key protein components, molecular connectivity map, oncogenic signaling pathway map, pathway based functional connectivity map etc. Here, we briefly represent the systems level understanding of the molecular mechanisms associated with prostate tumorigenesis by considering each and individual molecular and cell biological events of this disease process. PMID:27476486
Matrix Metalloproteinases and Neurotrauma: Evolving Roles in Injury and Reparative Processes
Zhang, Haoqian; Adwanikar, Hita; Werb, Zena; Noble-Haeusslein, Linda J.
2010-01-01
Matrix metalloproteinases (MMPs) are involved in a wide range of proteolytic events in fetal development and normal tissue remodeling as well as wound healing and inflammation. In the CNS, they have been implicated in a variety of neurodegenerative diseases ranging from multiple sclerosis to Alzheimer disease and are integral to stroke-related cell damage. Although studies implicate increased activity of MMPs in pathogenesis in the CNS, there is also a growing literature to support their participation in events that support recovery processes. Here the authors provide a brief overview of MMPs and their regulation, address their complex roles following traumatic injuries to the adult and developing CNS, and consider their time- and context-dependent signatures that influence both injury and reparative processes. PMID:20400713
2013-01-01
Background Interest in how to implement evidence-based practices into routine health care has never been greater. Primary care faces challenges in managing the increasing burden of chronic disease in an ageing population. Reliable prescriptions for translating knowledge into practice, however, remain elusive, despite intense research and publication activity. This study seeks to explore this dilemma in general practice by challenging the current way of thinking about healthcare improvement and asking what can be learned by looking at change through a complexity lens. Methods This paper reports the local level of an embedded case study of organisational change for better chronic illness care over more than a decade. We used interviews, document review and direct observation to explore how improved chronic illness care developed in one practice. This formed a critical case to compare, using pattern matching logic, to the common prescription for local implementation of best evidence and a rival explanation drawn from complexity sciences interpreted through modern sociology and psychology. Results The practice changed continuously over more than a decade to deliver better chronic illness care in line with research findings and policy initiatives – re-designing care processes, developing community linkages, supporting patient self-management, using guidelines and clinical information systems, and integrating nurses into the practice team. None of these improvements was designed and implemented according to an explicit plan in response to a documented gap in chronic disease care. The process that led to high quality chronic illness care exhibited clear complexity elements of co-evolution, non-linearity, self-organisation, emergence and edge of chaos dynamics in a network of agents and relationships where a stable yet evolving way of organizing emerged from local level communicative interaction, power relating and values based choices. Conclusions The current discourse of implementation science as planned system change did not match organisational reality in this critical case of improvement in general practice. Complexity concepts translated in human terms as complex responsive processes of relating fit the pattern of change more accurately. They do not provide just another fashionable blueprint for change but inform how researchers, policymakers and providers participate in improving healthcare. PMID:23617833
Three-dimensional (3D) printing and its applications for aortic diseases
Hangge, Patrick; Pershad, Yash; Witting, Avery A.; Albadawi, Hassan
2018-01-01
Three-dimensional (3D) printing is a process which generates prototypes from virtual objects in computer-aided design (CAD) software. Since 3D printing enables the creation of customized objects, it is a rapidly expanding field in an age of personalized medicine. We discuss the use of 3D printing in surgical planning, training, and creation of devices for the treatment of aortic diseases. 3D printing can provide operators with a hands-on model to interact with complex anatomy, enable prototyping of devices for implantation based upon anatomy, or even provide pre-procedural simulation. Potential exists to expand upon current uses of 3D printing to create personalized implantable devices such as grafts. Future studies should aim to demonstrate the impact of 3D printing on outcomes to make this technology more accessible to patients with complex aortic diseases. PMID:29850416
Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan
2016-12-01
Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.
Downsizing of lean body mass is a key determinant of Alzheimer's disease.
Ingenbleek, Yves; Bernstein, Larry H
2015-01-01
Lean body mass (LBM) encompasses all metabolically active organs distributed into visceral and structural tissue compartments and collecting the bulk of N and K stores of the human body. Transthyretin (TTR) is a plasma protein mainly secreted by the liver within a trimolecular TTR-RBP-retinol complex revealing from birth to old age strikingly similar evolutionary patterns with LBM in health and disease. TTR is also synthesized by the choroid plexus along distinct regulatory pathways. Chronic dietary methionine (Met) deprivation or cytokine-induced inflammatory disorders generates LBM downsizing following differentiated physiopathological processes. Met-restricted regimens downregulate the transsulfuration cascade causing upstream elevation of homocysteine (Hcy) safeguarding Met homeostasis and downstream drop of hydrogen sulfide (H2S) impairing anti-oxidative capacities. Elderly persons constitute a vulnerable population group exposed to increasing Hcy burden and declining H2S protection, notably in plant-eating communities or in the course of inflammatory illnesses. Appropriate correction of defective protein status and eradication of inflammatory processes may restore an appropriate LBM size allowing the hepatic production of the retinol circulating complex to resume, in contrast with the refractory choroidal TTR secretory process. As a result of improved health status, augmented concentrations of plasma-derived TTR and retinol may reach the cerebrospinal fluid and dismantle senile amyloid plaques, contributing to the prevention or the delay of the onset of neurodegenerative events in elderly subjects at risk of Alzheimer's disease.
He, Min; van Wijk, Eduard; van Wietmarschen, Herman; Wang, Mei; Sun, Mengmeng; Koval, Slavik; van Wijk, Roeland; Hankemeier, Thomas; van der Greef, Jan
2017-03-01
The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Medina-Remón, Alexander; Kirwan, Richard; Lamuela-Raventós, Rosa M; Estruch, Ramón
2018-01-22
Diet and lifestyle play a significant role in the development chronic diseases; however the full complexity of this relationship is not yet understood. Dietary pattern investigation, which reflects the complexity of dietary intake, has emerged as an alternative and complementary approach for examining the association between diet and chronic diseases. Literature on this association has largely focused on individual nutrients, with conflicting outcomes, but individuals consume a combination of foods from many groups that form dietary patterns. Our objective was to systematically review the current findings on the effects of dietary patterns on chronic diseases. In this review, we describe and discuss the relationships between dietary patterns, such as the Mediterranean, the Dietary Approach to Stop Hypertension, Prudent, Seventh-day Adventists, and Western, with risk of obesity, type-2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenearive diseases. Evidence is increasing from both observational and clinical studies that plant-based dietary patterns, which are rich in fruits, vegetables, and whole grains, are valuable in preventing various chronic diseases, whereas a diet high in red and processed meat, refined grains and added sugar seems to increase said risk. Dietary pattern analysis might be especially valuable to the development and evaluation of food-based dietary guidelines.
[Role of myostatin in wasting syndrome associated with chronic diseases].
Zamora, Elisabet; Galán, Amparo; Simó, Rafael
2008-11-01
Muscle wasting is a common process of numerous chronic diseases. Sarcopenia is associated with poor prognosis independently of the outcome of the disease. To date, the mechanisms by which sarcopenia induces these alterations are unknown, but the complexity of muscular metabolism anticipates that many factors can be involved. Myostatin, a new family member of transforming growth factor beta, was initially described from the observation of significant muscular growing in knock out mice for myostatin. Numerous experimental and clinical studies have provided insights in the physiologic knowledge of this protein and its implication in muscle wasting conditions. In recent years different substances have been described that counteract myostatin through numerous physiopathological mecanisms and, therefore, they might be novel therapeutic strategies against the wasting syndrome associated with chronic diseases. In spite of that, more studies are needed to improve the knowledge of all processes involved in muscle wasting in order to prevent its devastating consequences.
Disruption of the Gut Ecosystem by Antibiotics
2018-01-01
The intestinal microbiota is a complex ecosystem consisting of various microorganisms that expands human genetic repertoire and therefore affects human health and disease. The metabolic processes and signal transduction pathways of the host and intestinal microorganisms are intimately linked, and abnormal progression of each process leads to changes in the intestinal environment. Alterations in microbial communities lead to changes in functional structures based on the metabolites produced in the gut, and these environmental changes result in various bacterial infections and chronic enteric inflammatory diseases. Here, we illustrate how antibiotics are associated with an increased risk of antibiotic-associated diseases by driving intestinal environment changes that favor the proliferation and virulence of pathogens. Understanding the pathogenesis caused by antibiotics would be a crucial key to the treatment of antibiotic-associated diseases by mitigating changes in the intestinal environment and restoring it to its original state. PMID:29214770
Arosio, Paolo
2017-12-01
An increasing amount of findings suggests that the aggregation of soluble peptides and proteins into amyloid fibrils is a relevant upstream process in the complex cascade of events leading to the pathology of Alzheimer's disease and several other neurodegenerative disorders. Nevertheless, several aspects of the correlation between the aggregation process and the onset and development of the pathology remain largely elusive. In this context, biophysical and biochemical studies in test tubes have proven extremely powerful in providing quantitative information about the structure and the reactivity of amyloids at the molecular level. In this review we use selected recent examples to illustrate the importance of such biophysical research to complement phenomenological studies based on cellular and molecular biology, and we discuss the implications for pharmaceutical applications associated with Alzheimer's disease and other neurodegenerative disorders in both academic and industrial contexts.
Redman, Joseph S; Natarajan, Yamini; Hou, Jason K; Wang, Jingqi; Hanif, Muzammil; Feng, Hua; Kramer, Jennifer R; Desiderio, Roxanne; Xu, Hua; El-Serag, Hashem B; Kanwal, Fasiha
2017-10-01
Natural language processing is a powerful technique of machine learning capable of maximizing data extraction from complex electronic medical records. We utilized this technique to develop algorithms capable of "reading" full-text radiology reports to accurately identify the presence of fatty liver disease. Abdominal ultrasound, computerized tomography, and magnetic resonance imaging reports were retrieved from the Veterans Affairs Corporate Data Warehouse from a random national sample of 652 patients. Radiographic fatty liver disease was determined by manual review by two physicians and verified with an expert radiologist. A split validation method was utilized for algorithm development. For all three imaging modalities, the algorithms could identify fatty liver disease with >90% recall and precision, with F-measures >90%. These algorithms could be used to rapidly screen patient records to establish a large cohort to facilitate epidemiological and clinical studies and examine the clinic course and outcomes of patients with radiographic hepatic steatosis.
Learning cell biology as a team: a project-based approach to upper-division cell biology.
Wright, Robin; Boggs, James
2002-01-01
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.
Zhu, Jinyong; Dai, Wenfang; Qiu, Qiongfen; Dong, Chunming; Zhang, Jinjie; Xiong, Jinbo
2016-11-01
Intestinal bacterial communities play a pivotal role in promoting host health; therefore, the disruption of intestinal bacterial homeostasis could result in disease. However, the effect of the occurrences of disease on intestinal bacterial community assembly remains unclear. To address this gap, we compared the multifaceted ecological differences in maintaining intestinal bacterial community assembly between healthy and diseased shrimps. The neutral model analysis shows that the relative importance of neutral processes decreases when disease occurs. This pattern is further corroborated by the ecosphere null model, revealing that the bacterial community assembly of diseased samples is dominated by stochastic processes. In addition, the occurrence of shrimp disease reduces the complexity and cooperative activities of species-to-species interactions. The keystone taxa affiliated with Alphaproteobacteria and Actinobacteria in healthy shrimp gut shift to Gammaproteobacteria species in diseased shrimp. Changes in intestinal bacterial communities significantly alter biological functions in shrimp. Within a given metabolic pathway, the pattern of enrichment or decrease between healthy and deceased shrimp is correlated with its functional effects. We propose that stressed shrimp are more prone to invasion by alien strains (evidenced by more stochastic assembly and higher migration rate in diseased shrimp), which, in turn, disrupts the cooperative activity among resident species. These findings greatly aid our understanding of the underlying mechanisms that govern shrimp intestinal community assembly between health statuses.
Drinking water disinfection has effectively eliminated much of the morbidity and mortality associated with waterborne infectious diseases in the United States. Various disinfection processes, however, produce certain types and amounts of disinfection by-products (DBPs), including...
Development of an Ontology for Periodontitis.
Suzuki, Asami; Takai-Igarashi, Takako; Nakaya, Jun; Tanaka, Hiroshi
2015-01-01
In the clinical dentists and periodontal researchers' community, there is an obvious demand for a systems model capable of linking the clinical presentation of periodontitis to underlying molecular knowledge. A computer-readable representation of processes on disease development will give periodontal researchers opportunities to elucidate pathways and mechanisms of periodontitis. An ontology for periodontitis can be a model for integration of large variety of factors relating to a complex disease such as chronic inflammation in different organs accompanied by bone remodeling and immune system disorders, which has recently been referred to as osteoimmunology. Terms characteristic of descriptions related to the onset and progression of periodontitis were manually extracted from 194 review articles and PubMed abstracts by experts in periodontology. We specified all the relations between the extracted terms and constructed them into an ontology for periodontitis. We also investigated matching between classes of our ontology and that of Gene Ontology Biological Process. We developed an ontology for periodontitis called Periodontitis-Ontology (PeriO). The pathological progression of periodontitis is caused by complex, multi-factor interrelationships. PeriO consists of all the required concepts to represent the pathological progression and clinical treatment of periodontitis. The pathological processes were formalized with reference to Basic Formal Ontology and Relation Ontology, which accounts for participants in the processes realized by biological objects such as molecules and cells. We investigated the peculiarity of biological processes observed in pathological progression and medical treatments for the disease in comparison with Gene Ontology Biological Process (GO-BP) annotations. The results indicated that peculiarities of Perio existed in 1) granularity and context dependency of both the conceptualizations, and 2) causality intrinsic to the pathological processes. PeriO defines more specific concepts than GO-BP, and thus can be added as descendants of GO-BP leaf nodes. PeriO defines causal relationships between the process concepts, which are not shown in GO-BP. The difference can be explained by the goal of conceptualization: PeriO focuses on mechanisms of the pathogenic progress, while GO-BP focuses on cataloguing all of the biological processes observed in experiments. The goal of conceptualization in PeriO may reflect the domain knowledge where a consequence in the causal relationships is a primary interest. We believe the peculiarities can be shared among other diseases when comparing processes in disease against GO-BP. This is the first open biomedical ontology of periodontitis capable of providing a foundation for an ontology-based model of aspects of molecular biology and pathological processes related to periodontitis, as well as its relations with systemic diseases. PeriO is available at http://bio-omix.tmd.ac.jp/periodontitis/.
Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease.
Hiatt, William R; Armstrong, Ehrin J; Larson, Christopher J; Brass, Eric P
2015-04-24
Patients with peripheral artery disease have a marked reduction in exercise performance and daily ambulatory activity irrespective of their limb symptoms of classic or atypical claudication. This review will evaluate the multiple pathophysiologic mechanisms underlying the exercise impairment in peripheral artery disease based on an evaluation of the current literature and research performed by the authors. Peripheral artery disease results in atherosclerotic obstructions in the major conduit arteries supplying the lower extremities. This arterial disease process impairs the supply of oxygen and metabolic substrates needed to match the metabolic demand generated by active skeletal muscle during walking exercise. However, the hemodynamic impairment associated with the occlusive disease process does not fully account for the reduced exercise impairment, indicating that additional pathophysiologic mechanisms contribute to the limb manifestations. These mechanisms include a cascade of pathophysiological responses during exercise-induced ischemia and reperfusion at rest that are associated with endothelial dysfunction, oxidant stress, inflammation, and muscle metabolic abnormalities that provide opportunities for targeted therapeutic interventions to address the complex pathophysiology of the exercise impairment in peripheral artery disease. © 2015 American Heart Association, Inc.
Krzewska, Aleksandra; Ben-Skowronek, Iwona
2016-01-01
Type 1 diabetes mellitus (T1DM) is one of the most common chronic diseases developing in childhood. The incidence of the disease in children increases for unknown reasons at a rate from 3 to 5% every year worldwide. The background of T1DM is associated with the autoimmune process of pancreatic beta cell destruction, which leads to absolute insulin deficiency and organ damage. Complex interactions between environmental and genetic factors contribute to the development of T1DM in genetically predisposed patients. The T1DM-inducing autoimmune process can also affect other organs, resulting in development of additional autoimmune diseases in the patient, thereby impeding diabetes control. The most common T1DM comorbidities include autoimmune thyroid diseases, celiac disease, and autoimmune gastritis; additionally, diabetes can be a component of PAS (Polyglandular Autoimmune Syndrome). The aim of this review is to assess the prevalence of T1DM-associated autoimmune diseases in children and adolescents and their impact on the course of T1DM. We also present suggestions concerning screening tests.
Brunner-La Rocca, Hans-Peter; Fleischhacker, Lutz; Golubnitschaja, Olga; Heemskerk, Frank; Helms, Thomas; Hoedemakers, Thom; Allianses, Sandra Huygen; Jaarsma, Tiny; Kinkorova, Judita; Ramaekers, Jan; Ruff, Peter; Schnur, Ivana; Vanoli, Emilio; Verdu, Jose; Zippel-Schultz, Bettina
2015-01-01
Chronic diseases are the leading causes of morbidity and mortality in Europe, accounting for more than 2/3 of all death causes and 75 % of the healthcare costs. Heart failure is one of the most prominent, prevalent and complex chronic conditions and is accompanied with multiple other chronic diseases. The current approach to care has important shortcomings with respect to diagnosis, treatment and care processes. A critical aspect of this situation is that interaction between stakeholders is limited and chronic diseases are usually addressed in isolation. Health care in Western countries requires an innovative approach to address chronic diseases to provide sustainability of care and to limit the excessive costs that may threaten the current systems. The increasing prevalence of chronic diseases combined with their enormous economic impact and the increasing shortage of healthcare providers are among the most critical threats. Attempts to solve these problems have failed, and future limitations in financial resources will result in much lower quality of care. Thus, changing the approach to care for chronic diseases is of utmost social importance.
The Mediator Complex and Lipid Metabolism.
Zhang, Yi; Xiaoli; Zhao, Xiaoping; Yang, Fajun
2013-03-01
The precise control of gene expression is essential for all biological processes. In addition to DNA-binding transcription factors, numerous transcription cofactors contribute another layer of regulation of gene transcription in eukaryotic cells. One of such transcription cofactors is the highly conserved Mediator complex, which has multiple subunits and is involved in various biological processes through directly interacting with relevant transcription factors. Although the current understanding on the biological functions of Mediator remains incomplete, research in the past decade has revealed an important role of Mediator in regulating lipid metabolism. Such function of Mediator is dependent on specific transcription factors, including peroxisome proliferator-activated receptor-gamma (PPARγ) and sterol regulatory element-binding proteins (SREBPs), which represent the master regulators of lipid metabolism. The medical significance of these findings is apparent, as aberrant lipid metabolism is intimately linked to major human diseases, such as type 2 diabetes and cardiovascular disease. Here, we briefly review the functions and molecular mechanisms of Mediator in regulation of lipid metabolism.
NASA Astrophysics Data System (ADS)
Velásquez-Rojas, Fátima; Vazquez, Federico
2017-05-01
Opinion formation and disease spreading are among the most studied dynamical processes on complex networks. In real societies, it is expected that these two processes depend on and affect each other. However, little is known about the effects of opinion dynamics over disease dynamics and vice versa, since most studies treat them separately. In this work we study the dynamics of the voter model for opinion formation intertwined with that of the contact process for disease spreading, in a population of agents that interact via two types of connections, social and contact. These two interacting dynamics take place on two layers of networks, coupled through a fraction q of links present in both networks. The probability that an agent updates its state depends on both the opinion and disease states of the interacting partner. We find that the opinion dynamics has striking consequences on the statistical properties of disease spreading. The most important is that the smooth (continuous) transition from a healthy to an endemic phase observed in the contact process, as the infection probability increases beyond a threshold, becomes abrupt (discontinuous) in the two-layer system. Therefore, disregarding the effects of social dynamics on epidemics propagation may lead to a misestimation of the real magnitude of the spreading. Also, an endemic-healthy discontinuous transition is found when the coupling q overcomes a threshold value. Furthermore, we show that the disease dynamics delays the opinion consensus, leading to a consensus time that varies nonmonotonically with q in a large range of the model's parameters. A mean-field approach reveals that the coupled dynamics of opinions and disease can be approximately described by the dynamics of the voter model decoupled from that of the contact process, with effective probabilities of opinion and disease transmission.
Moraes, Karen CM
2010-01-01
Production of mature mRNAs that encode functional proteins involves highly complex pathways of synthesis, processing and surveillance. At numerous steps during the maturation process, the mRNA transcript undergoes scrutiny by cellular quality control machinery. This extensive RNA surveillance ensures that only correctly processed mature mRNAs are translated and precludes production of aberrant transcripts that could encode mutant or possibly deleterious proteins. Recent advances in elucidating the molecular mechanisms of mRNA processing have demonstrated the existence of an integrated network of events, and have revealed that a variety of human diseases are caused by disturbances in the well-coordinated molecular equilibrium of these events. From a medical perspective, both loss and gain of function are relevant, and a considerable number of different diseases exemplify the importance of the mechanistic function of RNA surveillance in a cell. Here, mechanistic hallmarks of mRNA processing steps are reviewed, highlighting the medical relevance of their deregulation and how the understanding of such mechanisms can contribute to the development of therapeutic strategies. PMID:19829759
Aging and the Kidneys: Anatomy, Physiology and Consequences for Defining Chronic Kidney Disease.
Glassock, Richard J; Rule, Andrew D
2016-01-01
The varied functions of the kidneys are influenced by the complex process of aging. The glomerular filtration rate (GFR) steadily declines with normal aging, and the progress of this process can be influenced by superimposed diseases. Microscopically, nephron numbers decrease as global glomerulosclerosis becomes more evident. The precise mechanisms underlying nephron loss with aging are not well understood, but derangements in podocyte biology appear to be involved. Classifications of chronic kidney disease (CKD) incorporate GFR values and attendant risk of adverse events. Arbitrary and fixed thresholds of GFR for defining CKD have led to an overdiagnosis of CKD in the elderly. An age-sensitive definition of CKD could offer a solution to this problem and more meaningfully capture the prognostic implications of CKD. © 2016 S. Karger AG, Basel.
An inference method from multi-layered structure of biomedical data.
Kim, Myungjun; Nam, Yonghyun; Shin, Hyunjung
2017-05-18
Biological system is a multi-layered structure of omics with genome, epigenome, transcriptome, metabolome, proteome, etc., and can be further stretched to clinical/medical layers such as diseasome, drugs, and symptoms. One advantage of omics is that we can figure out an unknown component or its trait by inferring from known omics components. The component can be inferred by the ones in the same level of omics or the ones in different levels. To implement the inference process, an algorithm that can be applied to the multi-layered complex system is required. In this study, we develop a semi-supervised learning algorithm that can be applied to the multi-layered complex system. In order to verify the validity of the inference, it was applied to the prediction problem of disease co-occurrence with a two-layered network composed of symptom-layer and disease-layer. The symptom-disease layered network obtained a fairly high value of AUC, 0.74, which is regarded as noticeable improvement when comparing 0.59 AUC of single-layered disease network. If further stretched to whole layered structure of omics, the proposed method is expected to produce more promising results. This research has novelty in that it is a new integrative algorithm that incorporates the vertical structure of omics data, on contrary to other existing methods that integrate the data in parallel fashion. The results can provide enhanced guideline for disease co-occurrence prediction, thereby serve as a valuable tool for inference process of multi-layered biological system.
Decision aids for multiple-decision disease management as affected by weather input errors.
Pfender, W F; Gent, D H; Mahaffee, W F; Coop, L B; Fox, A D
2011-06-01
Many disease management decision support systems (DSSs) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation, or estimation from off-site sources, may affect model calculations and management decision recommendations. The extent to which errors in weather inputs affect the quality of the final management outcome depends on a number of aspects of the disease management context, including whether management consists of a single dichotomous decision, or of a multi-decision process extending over the cropping season(s). Decision aids for multi-decision disease management typically are based on simple or complex algorithms of weather data which may be accumulated over several days or weeks. It is difficult to quantify accuracy of multi-decision DSSs due to temporally overlapping disease events, existence of more than one solution to optimizing the outcome, opportunities to take later recourse to modify earlier decisions, and the ongoing, complex decision process in which the DSS is only one component. One approach to assessing importance of weather input errors is to conduct an error analysis in which the DSS outcome from high-quality weather data is compared with that from weather data with various levels of bias and/or variance from the original data. We illustrate this analytical approach for two types of DSS, an infection risk index for hop powdery mildew and a simulation model for grass stem rust. Further exploration of analysis methods is needed to address problems associated with assessing uncertainty in multi-decision DSSs.
Doody, R
2017-01-01
Alzheimer's disease (AD) is a chronic neurodegenerative disease for which no preventative or disease-modifying treatments currently exist. Pathological hallmarks include amyloid plaques and neurofibrillary tangles composed of hyper-phosphorylated tau protein. Evidence suggests that both pathologies are self-propagating once established. However, the lag time between neuropathological changes in the brain and the onset of even subtle clinical symptomatology means that patients are often diagnosed late when pathology, and neurodegeneration secondary to these changes, may have been established for several years. Complex pathological pathways associated with susceptibility to AD and changes that occur downstream of the neuropathologic process further contribute to the challenging endeavour of developing novel disease-modifying therapy. Recognising this complexity, effective management of AD must include reliable screening and early diagnosis in combination with effective therapeutic management of the pathological processes. Roche and Genentech are committed to addressing these unmet needs through developing a comprehensive portfolio of diagnostics and novel therapies. Beginning with the most scientifically supported targets, this approach includes two targeted amyloid-β monoclonal antibody therapies, crenezumab and gantenerumab, and an anti-tau monoclonal antibody, RO7105705, as well as a robust biomarker platform to aid in the early identification of people at risk or in the early stages of AD. Identification and implementation of diagnostic tools will support the enrolment of patients into clinical trials; furthermore, these tools should also support evaluation of the clinical efficacy and safety profile of the novel therapeutic agents tested in these trials. This review discusses the therapeutic agents currently under clinical development.
Multiplex method for initial complex testing of antibodies to blood transmitted diseases agents.
Poltavchenko, Alexander G; Nechitaylo, Oleg V; Filatov, Pavel V; Ersh, Anna V; Gureyev, Vadim N
2016-10-01
Initial screening of donors and population at high risk of infection with blood transmitted diseases involves a number of analyses using monospesific diagnostic systems, and therefore is expensive labor- and time-consuming process. The goal of this work is to construct a multiplex test enabling to carry out rapid initial complex testing at a low price. The paper describes a kit making it possible to detect simultaneously antibodies to six agents of the most significant blood transmitted diseases: HIV virus, hepatitis B and C viruses, cytomegalovirus, T. pallidum and T. gondii in blood products. The kit comprises multiplex dot-immunoassay based on plane protein arrays (immune chips) using colloidal gold conjugates and silver development. It provides an opportunity to carry out complex analysis within 70min at room temperature, and there is no need of well-qualified personnel. We compared laboratory findings of the kit with monospecific kits for ELISA produced by two Russian commercial companies. Dot-assay results correlate well with data obtained using commercial kits for ELISA. Furthermore, multiplex analysis is quicker and cheaper in comparison with ELISA and can be carried out in non-laboratory conditions. The kit for multiplex dot-immunoassay of antibodies to blood transmitted agents can significantly simplify initial complex testing. Copyright © 2016 Elsevier B.V. All rights reserved.
Twin methodology in epigenetic studies.
Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob; Christensen, Kaare
2015-01-01
Since the final decades of the last century, twin studies have made a remarkable contribution to the genetics of human complex traits and diseases. With the recent rapid development in modern biotechnology of high-throughput genetic and genomic analyses, twin modelling is expanding from analysis of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method to molecular phenotypes offers new opportunities to study the genetic (nature) and environmental (nurture) contributions to epigenetic regulation of gene activity during developmental, ageing and disease processes. Besides the classical twin model, the case co-twin design using identical twins discordant for a trait or disease is becoming a popular and powerful design for epigenome-wide association study in linking environmental exposure to differential epigenetic regulation and to disease status while controlling for individual genetic make-up. It can be expected that novel uses of twin methods in epigenetic studies are going to help with efficiently unravelling the genetic and environmental basis of epigenomics in human complex diseases. © 2015. Published by The Company of Biologists Ltd.
Hayhow, Bradleigh D; Hassan, Islam; Looi, Jeffrey C L; Gaillard, Francesco; Velakoulis, Dennis; Walterfang, Mark
2013-01-01
Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.
Computational multiscale modeling in protein--ligand docking.
Taufer, Michela; Armen, Roger; Chen, Jianhan; Teller, Patricia; Brooks, Charles
2009-01-01
In biological systems, the binding of small molecule ligands to proteins is a crucial process for almost every aspect of biochemistry and molecular biology. Enzymes are proteins that function by catalyzing specific biochemical reactions that convert reactants into products. Complex organisms are typically composed of cells in which thousands of enzymes participate in complex and interconnected biochemical pathways. Some enzymes serve as sequential steps in specific pathways (such as energy metabolism), while others function to regulate entire pathways and cellular functions [1]. Small molecule ligands can be designed to bind to a specific enzyme and inhibit the biochemical reaction. Inhibiting the activity of key enzymes may result in the entire biochemical pathways being turned on or off [2], [3]. Many small molecule drugs marketed today function in this generic way as enzyme inhibitors. If research identifies a specific enzyme as being crucial to the progress of disease, then this enzyme may be targeted with an inhibitor, which may slow down or reverse the progress of disease. In this way, enzymes are targeted from specific pathogens (e.g., virus, bacteria, fungi) for infectious diseases [4], [5], and human enzymes are targeted for noninfectious diseases such as cardiovascular disease, cancer, diabetes, and neurodegenerative diseases [6].
New insights from monogenic diabetes for “common” type 2 diabetes
Tallapragada, Divya Sri Priyanka; Bhaskar, Seema; Chandak, Giriraj R.
2015-01-01
Boundaries between monogenic and complex genetic diseases are becoming increasingly blurred, as a result of better understanding of phenotypes and their genetic determinants. This had a large impact on the way complex disease genetics is now being investigated. Starting with conventional approaches like familial linkage, positional cloning and candidate genes strategies, the scope of complex disease genetics has grown exponentially with scientific and technological advances in recent times. Despite identification of multiple loci harboring common and rare variants associated with complex diseases, interpreting and evaluating their functional role has proven to be difficult. Information from monogenic diseases, especially related to the intermediate traits associated with complex diseases comes handy. The significant overlap between traits and phenotypes of monogenic diseases with related complex diseases provides a platform to understand the disease biology better. In this review, we would discuss about one such complex disease, type 2 diabetes, which shares marked similarity of intermediate traits with different forms of monogenic diabetes. PMID:26300908
Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease
Rouault, Tracey A.
2012-01-01
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors composed of iron and inorganic sulfur. They are required for the function of proteins involved in a wide range of activities, including electron transport in respiratory chain complexes, regulatory sensing, photosynthesis and DNA repair. The proteins involved in the biogenesis of Fe-S clusters are evolutionarily conserved from bacteria to humans, and many insights into the process of Fe-S cluster biogenesis have come from studies of model organisms, including bacteria, fungi and plants. It is now clear that several rare and seemingly dissimilar human diseases are attributable to defects in the basic process of Fe-S cluster biogenesis. Although these diseases –which include Friedreich’s ataxia (FRDA), ISCU myopathy, a rare form of sideroblastic anemia, an encephalomyopathy caused by dysfunction of respiratory chain complex I and multiple mitochondrial dysfunctions syndrome – affect different tissues, a feature common to many of them is that mitochondrial iron overload develops as a secondary consequence of a defect in Fe-S cluster biogenesis. This Commentary outlines the basic steps of Fe-S cluster biogenesis as they have been defined in model organisms. In addition, it draws attention to refinements of the process that might be specific to the subcellular compartmentalization of Fe-S cluster biogenesis proteins in some eukaryotes, including mammals. Finally, it outlines several important unresolved questions in the field that, once addressed, should offer important clues into how mitochondrial iron homeostasis is regulated, and how dysfunction in Fe-S cluster biogenesis can contribute to disease. PMID:22382365
Pericentrin in cellular function and disease
Delaval, Benedicte
2010-01-01
Pericentrin is an integral component of the centrosome that serves as a multifunctional scaffold for anchoring numerous proteins and protein complexes. Through these interactions, pericentrin contributes to a diversity of fundamental cellular processes. Recent studies link pericentrin to a growing list of human disorders. Studies on pericentrin at the cellular, molecular, and, more recently, organismal level, provide a platform for generating models to elucidate the etiology of these disorders. Although the complexity of phenotypes associated with pericentrin-mediated disorders is somewhat daunting, insights into the cellular basis of disease are beginning to come into focus. In this review, we focus on human conditions associated with loss or elevation of pericentrin and propose cellular and molecular models that might explain them. PMID:19951897
ROS as Regulators of Mitochondrial Dynamics in Neurons.
Cid-Castro, Carolina; Hernández-Espinosa, Diego Rolando; Morán, Julio
2018-07-01
Mitochondrial dynamics is a complex process, which involves the fission and fusion of mitochondrial outer and inner membranes. These processes organize the mitochondrial size and morphology, as well as their localization throughout the cells. In the last two decades, it has become a spotlight due to their importance in the pathophysiological processes, particularly in neurological diseases. It is known that Drp1, mitofusin 1 and 2, and Opa1 constitute the core of proteins that coordinate this intricate and dynamic process. Likewise, changes in the levels of reactive oxygen species (ROS) lead to modifications in the expression and/or activity of the proteins implicated in the mitochondrial dynamics, suggesting an involvement of these molecules in the process. In this review, we discuss the role of ROS in the regulation of fusion/fission in the nervous system, as well as the involvement of mitochondrial dynamics proteins in neurodegenerative diseases.
Current Dilemmas in Defining the Boundaries of Disease.
Doust, Jenny; Jean Walker, Mary; Rogers, Wendy A
2017-08-01
Boorse's biostatistical theory states that diseases should be defined in ways that reflect disturbances of biological function and that are objective and value free. We use three examples from contemporary medicine that demonstrate the complex issues that arise when defining the boundaries of disease: polycystic ovary syndrome, chronic kidney disease, and myocardial infarction. We argue that the biostatistical theory fails to provide sufficient guidance on where the boundaries of disease should be drawn, contains ambiguities relating to choice of reference class, and is out of step with medical processes for identifying disease boundaries. Although proponents of the biostatistical theory might regard these practical issues as irrelevant to the aim of providing a theoretical account of disease, we take them to indicate the need for a theoretical account that is adequate for current needs-including limiting new forms of medicalization that are driven by the identification of disease based on dysfunction. Our processes for determining the boundaries for disease need to recognize that there is no value-free method for making these decisions. © The Author 2017. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Huang, Dandan; Yi, Xianfu; Zhang, Shijie; Zheng, Zhanye; Wang, Panwen; Xuan, Chenghao; Sham, Pak Chung; Wang, Junwen; Li, Mulin Jun
2018-05-16
Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants.
Zhang, Lili; Zhang, Zesheng; Jasa, John; Li, Dongli; Cleveland, Robin O; Negahban, Mehrdad; Jérusalem, Antoine
2017-08-16
The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as "mechanical catalysts" to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.
Vector-borne disease intelligence: strategies to deal with disease burden and threats.
Braks, Marieta; Medlock, Jolyon M; Hubalek, Zdenek; Hjertqvist, Marika; Perrin, Yvon; Lancelot, Renaud; Duchyene, Els; Hendrickx, Guy; Stroo, Arjan; Heyman, Paul; Sprong, Hein
2014-01-01
Owing to the complex nature of vector-borne diseases (VBDs), whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of VBDs. Knowledge on the presence and distribution of vectors and the pathogens that they transmit is vital to the risk assessment process to permit effective early warning, surveillance, and control of VBDs. Upon accepting this reality, public health authorities face an ever-increasing range of possible surveillance targets and an associated prioritization process. Here, we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance, and context-based surveillance for EU member states to tailor the best surveillance strategy for control of VBDs in their geographic region. By classifying the surveillance structure into five different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for VBDs entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure.
Vector-Borne Disease Intelligence: Strategies to Deal with Disease Burden and Threats
Braks, Marieta; Medlock, Jolyon M.; Hubalek, Zdenek; Hjertqvist, Marika; Perrin, Yvon; Lancelot, Renaud; Duchyene, Els; Hendrickx, Guy; Stroo, Arjan; Heyman, Paul; Sprong, Hein
2014-01-01
Owing to the complex nature of vector-borne diseases (VBDs), whereby monitoring of human case patients does not suffice, public health authorities experience challenges in surveillance and control of VBDs. Knowledge on the presence and distribution of vectors and the pathogens that they transmit is vital to the risk assessment process to permit effective early warning, surveillance, and control of VBDs. Upon accepting this reality, public health authorities face an ever-increasing range of possible surveillance targets and an associated prioritization process. Here, we propose a comprehensive approach that integrates three surveillance strategies: population-based surveillance, disease-based surveillance, and context-based surveillance for EU member states to tailor the best surveillance strategy for control of VBDs in their geographic region. By classifying the surveillance structure into five different contexts, we hope to provide guidance in optimizing surveillance efforts. Contextual surveillance strategies for VBDs entail combining organization and data collection approaches that result in disease intelligence rather than a preset static structure. PMID:25566522
Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype.
Dowling, Damian K
2014-04-01
Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. Copyright © 2013. Published by Elsevier B.V.
Crabtree, Gregg W.; Gogos, Joseph A.
2014-01-01
Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409
A Non-Degenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk
Blair, David R.; Lyttle, Christopher S.; Mortensen, Jonathan M.; Bearden, Charles F.; Jensen, Anders Boeck; Khiabanian, Hossein; Melamed, Rachel; Rabadan, Raul; Bernstam, Elmer V.; Brunak, Søren; Jensen, Lars Juhl; Nicolae, Dan; Shah, Nigam H.; Grossman, Robert L.; Cox, Nancy J.; White, Kevin P.; Rzhetsky, Andrey
2013-01-01
Summary Whereas countless highly penetrant variants have been associated with Mendelian disorders, the genetic etiologies underlying complex diseases remain largely unresolved. Here, we examine the extent to which Mendelian variation contributes to complex disease risk by mining the medical records of over 110 million patients. We detect thousands of associations between Mendelian and complex diseases, revealing a non-degenerate, phenotypic code that links each complex disorder to a unique collection of Mendelian loci. Using genome-wide association results, we demonstrate that common variants associated with complex diseases are enriched in the genes indicated by this “Mendelian code.” Finally, we detect hundreds of comorbidity associations among Mendelian disorders, and we use probabilistic genetic modeling to demonstrate that Mendelian variants likely contribute non-additively to the risk for a subset of complex diseases. Overall, this study illustrates a complementary approach for mapping complex disease loci and provides unique predictions concerning the etiologies of specific diseases. PMID:24074861
Advances in sepsis research derived from animal models.
Männel, Daniela N
2007-09-01
Inflammation is the basic process by which tissues of the body respond to infection. Activation of the immune system normally leads to removal of microbial pathogens, and after resolution of the inflammation immune homeostasis is restored. This controlled process, however, can be disturbed resulting in disease. Therefore, many studies using infection models have investigated the participating immune mechanisms aiming at possible therapeutic interventions. Defined model substances such as bacterial lipopolysaccharide (endotoxin) have been used to mimic bacterial infections and analyze their immune stimulating functions. A complex network of molecular mechanisms involved in the recognition and activation processes of bacterial infections and their regulation has developed from these studies. More complex infection models will now help to interpret earlier observations leading to the design of relevant new infection models.
[Daily practice and pulp diseases].
Calmein, S; Claisse, A
1990-09-01
Constructive or destructive processes of pulp tissue depend on many factors: anatomic topography, particular physiology, or intensity and duration of infectious, mechanical and chemical aggression. Also irritation of the pulpo-dentinal complex induce histologic and physiologic changes. The positive diagnosis of hyperemia, acute or chronic pulpitis, pulpal necrosis and acute or chronic apical abscess is performed by clinical investigations which allow a differential diagnosis with other dental or extra-dental diseases. These multiple steps lead to an adapted and appropriate treatment.
Meng, Guofeng; Zhong, Xiaoyan; Mei, Hongkang
2016-01-01
Aging, as a complex biological process, is accompanied by the accumulation of functional loses at different levels, which makes age to be the biggest risk factor to many neurological diseases. Even following decades of investigation, the process of aging is still far from being fully understood, especially at a systematic level. In this study, we identified aging related genes in brain by collecting the ones with sustained and consistent gene expression or DNA methylation changes in the aging process. Functional analysis with Gene Ontology to these genes suggested transcriptional regulators to be the most affected genes in the aging process. Transcription regulation analysis found some transcription factors, especially Specificity Protein 1 (SP1), to play important roles in regulating aging related gene expression. Module-based functional analysis indicated these genes to be associated with many well-known aging related pathways, supporting the validity of our approach to select aging related genes. Finally, we investigated the roles of aging related genes on Alzheimer's Disease (AD). We found that aging and AD related genes both involved some common pathways, which provided a possible explanation why aging made the brain more vulnerable to Alzheimer's Disease.
The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond
Nakatsu, Fubito; Hase, Koji; Ohno, Hiroshi
2014-01-01
The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells. PMID:25387275
The adaptation process of mothers raising a child with complex congenital heart disease.
Ahn, Jeong-Ah; Lee, Sunhee
2018-01-01
Mothers of children with congenital heart disease (CHD) tend to be concerned about their child's normal life. The majority of these mothers tend to experience negative psychological problems. In this study, the adaptation process of mothers raising a child with complex CHD was investigated based on the sociocultural context of Korea. The data collection was conducted by in-depth interviews and theoretical sampling was performed until the data were saturated. The collected data were analyzed using continuous theoretical comparisons. The results of the present study showed that the core category in the mothers' adaptation process was 'anxiety regarding the future', and the mothers' adaptation process consisted of the impact phase, standing against phase, and accepting phase. In the impact phase, the participants emotionally fluctuated between 'feelings of abandonment' and 'entertaining hope'. In the standing against phase, participants tended to dedicate everything to child-rearing while being affected by 'being encouraged by support' and 'being frustrated by tasks beyond their limits'. In the accepting phase, the subjects attempted to 'accept the child as is', 'resist hard feelings', and 'share hope'. Health-care providers need to develop programs that include information regarding CHD, how to care for a child with CHD, and effective child-rearing behaviors.
Humour processing in frontotemporal lobar degeneration: A behavioural and neuroanatomical analysis
Clark, Camilla N.; Nicholas, Jennifer M.; Henley, Susie M.D.; Downey, Laura E.; Woollacott, Ione O.; Golden, Hannah L.; Fletcher, Phillip D.; Mummery, Catherine J.; Schott, Jonathan M.; Rohrer, Jonathan D.; Crutch, Sebastian J.; Warren, Jason D.
2015-01-01
Humour is a complex cognitive and emotional construct that is vulnerable in neurodegenerative diseases, notably the frontotemporal lobar degenerations. However, humour processing in these diseases has been little studied. Here we assessed humour processing in patients with behavioural variant frontotemporal dementia (n = 22, mean age 67 years, four female) and semantic dementia (n = 11, mean age 67 years, five female) relative to healthy individuals (n = 21, mean age 66 years, 11 female), using a joint cognitive and neuroanatomical approach. We created a novel neuropsychological test requiring a decision about the humorous intent of nonverbal cartoons, in which we manipulated orthogonally humour content and familiarity of depicted scenarios. Structural neuroanatomical correlates of humour detection were assessed using voxel-based morphometry. Assessing performance in a signal detection framework and after adjusting for standard measures of cognitive function, both patient groups showed impaired accuracy of humour detection in familiar and novel scenarios relative to healthy older controls (p < .001). Patient groups showed similar overall performance profiles; however the behavioural variant frontotemporal dementia group alone showed a significant advantage for detection of humour in familiar relative to novel scenarios (p = .045), suggesting that the behavioural variant syndrome may lead to particular difficulty decoding novel situations for humour, while semantic dementia produces a more general deficit of humour detection that extends to stock comedic situations. Humour detection accuracy was associated with grey matter volume in a distributed network including temporo-parietal junctional and anterior superior temporal cortices, with predominantly left-sided correlates of processing humour in familiar scenarios and right-sided correlates of processing novel humour. The findings quantify deficits of core cognitive operations underpinning humour processing in frontotemporal lobar degenerations and suggest a candidate brain substrate in cortical hub regions processing incongruity and semantic associations. Humour is a promising candidate tool with which to assess complex social signal processing in neurodegenerative disease. PMID:25973788
Searching for Genotype-Phenotype Structure: Using Hierarchical Log-Linear Models in Crohn Disease
Chapman, Juliet M.; Onnie, Clive M.; Prescott, Natalie J.; Fisher, Sheila A.; Mansfield, John C.; Mathew, Christopher G.; Lewis, Cathryn M.; Verzilli, Claudio J.; Whittaker, John C.
2009-01-01
There has been considerable recent success in the detection of gene-disease associations. We consider here the development of tools that facilitate the more detailed characterization of the effect of a genetic variant on disease. We replace the simplistic classification of individuals according to a single binary disease indicator with classification according to a number of subphenotypes. This more accurately reflects the underlying biological complexity of the disease process, but it poses additional analytical difficulties. Notably, the subphenotypes that make up a particular disease are typically highly associated, and it becomes difficult to distinguish which genes might be causing which subphenotypes. Such problems arise in many complex diseases. Here, we concentrate on an application to Crohn disease (CD). We consider this problem as one of model selection based upon log-linear models, fitted in a Bayesian framework via reversible-jump Metropolis-Hastings approach. We evaluate the performance of our suggested approach with a simple simulation study and then apply the method to a real data example in CD, revealing a sparse disease structure. Most notably, the associated NOD2.908G→R mutation appears to be directly related to more severe disease behaviors, whereas the other two associated NOD2 variants, 1007L→FS and 702R→W, are more generally related to disease in the small bowel (ileum and jejenum). The ATG16L1.300T→A variant appears to be directly associated with only disease of the small bowel. PMID:19185283
Surgical treatment of complex small bowel Crohn disease.
Michelassi, Fabrizio; Sultan, Samuel
2014-08-01
The clinical presentations of Crohn disease of the small bowel vary from low to high complexity. Understanding the complexity of Crohn disease of the small bowel is important for the surgeon and the gastroenterologist caring for the patient and may be relevant for clinical research as a way to compare outcomes. Here, we present a categorization of complex small bowel Crohn disease and review its surgical treatment as a potential initial step toward the establishment of a definition of complex disease. The complexity of small bowel Crohn disease can be sorted into several categories: technical challenges, namely, fistulae, abscesses, bowel or ureteral obstruction, hemorrhage, cancer and thickened mesentery; extensive disease; the presence of short gut; a history of prolonged use of medications, particularly steroids, immunomodulators, and biological agents; and a high risk of recurrence. Although the principles of modern surgical treatment of Crohn disease have evolved to bowel conservation such as strictureplasty techniques and limited resection margins, such practices by themselves are often not sufficient for the management of complex small bowel Crohn disease. This manuscript reviews each category of complex small bowel Crohn disease, with special emphasis on appropriate surgical strategy.
2011-01-01
Background Disease management programmes (DMPs) have been developed to improve effectiveness and economic efficiency within chronic care delivery by combining patient-related, professional-directed, and organisational interventions. The benefits of DMPs within different settings, patient groups, and versions remain unclear. In this article we propose a protocol to evaluate a range of current DMPs by capturing them in a single conceptual framework, employing comparable structure, process, and outcome measures, and combining qualitative and quantitative research methods. Methods To assess DMP effectiveness a practical clinical trial will be conducted. Twenty-two disease management experiments will be studied in various Dutch regions consisting of a variety of collaborations between organisations and/or professionals. Patient cohorts include those with cardiovascular diseases, chronic obstructive pulmonary disease, diabetes, stroke, depression, psychotic diseases, and eating disorders. Our methodological approach combines qualitative and quantitative research methods to enable a comprehensive evaluation of complex programmes. Process indicators will be collected from health care providers' data registries and measured via physician and staff questionnaires. Patient questionnaires include health care experiences, health care utilisation, and quality of life. Qualitative data will be gathered by means of interviews and document analysis for an in depth description of project interventions and the contexts in which DMPs are embedded, and an ethnographic process evaluation in five DMPs. Such a design will provide insight into ongoing DMPs and demonstrate which elements of the intervention are potentially (cost)-effective for which patient populations. It will also enable sound comparison of the results of the different programmes. Discussion The study will lead to a better understanding of (1) the mechanisms of disease management, (2) the feasibility, and cost-effectiveness of a disease management approach to improving health care, and (3) the factors that determine success and failure of DMPs. Our study results will be relevant to decision makers and managers who confront the challenge of implementing and integrating DMPs into the health care system. Moreover, it will contribute to the search for methods to evaluate complex healthcare interventions. PMID:21219620
Lemmens, Karin M M; Rutten-Van Mölken, Maureen P M H; Cramm, Jane M; Huijsman, Robbert; Bal, Roland A; Nieboer, Anna P
2011-01-10
Disease management programmes (DMPs) have been developed to improve effectiveness and economic efficiency within chronic care delivery by combining patient-related, professional-directed, and organisational interventions. The benefits of DMPs within different settings, patient groups, and versions remain unclear. In this article we propose a protocol to evaluate a range of current DMPs by capturing them in a single conceptual framework, employing comparable structure, process, and outcome measures, and combining qualitative and quantitative research methods. To assess DMP effectiveness a practical clinical trial will be conducted. Twenty-two disease management experiments will be studied in various Dutch regions consisting of a variety of collaborations between organisations and/or professionals. Patient cohorts include those with cardiovascular diseases, chronic obstructive pulmonary disease, diabetes, stroke, depression, psychotic diseases, and eating disorders. Our methodological approach combines qualitative and quantitative research methods to enable a comprehensive evaluation of complex programmes. Process indicators will be collected from health care providers' data registries and measured via physician and staff questionnaires. Patient questionnaires include health care experiences, health care utilisation, and quality of life. Qualitative data will be gathered by means of interviews and document analysis for an in depth description of project interventions and the contexts in which DMPs are embedded, and an ethnographic process evaluation in five DMPs. Such a design will provide insight into ongoing DMPs and demonstrate which elements of the intervention are potentially (cost)-effective for which patient populations. It will also enable sound comparison of the results of the different programmes. The study will lead to a better understanding of (1) the mechanisms of disease management, (2) the feasibility, and cost-effectiveness of a disease management approach to improving health care, and (3) the factors that determine success and failure of DMPs. Our study results will be relevant to decision makers and managers who confront the challenge of implementing and integrating DMPs into the health care system. Moreover, it will contribute to the search for methods to evaluate complex healthcare interventions.
2016-01-01
Periodontal disease afflicts 20% of world population. This process usually occurs in the form of being lethargic and chronic, and consequently this disease is known as chronic process. All chronic diseases constantly cause activation of the immune system, and therefore the presentation of microbial peptides which are presented to lymphocytes by professional antigen presenting cells can present microbial peptides very similar to important structures of human economy causing autoimmune diseases, process known as molecular mimicry. Thus, the aim of this study was to verify the presence of molecular mimicry phenomenon between periodontopathogens and human proteins. Blasting microbes of Socransky periodontal complexes against human collagen were performed and then the proteins with similarities were modelled and were screened in the MHI binding virtual methods. The epitopes selected were produced and plasma of chronic periodontal volunteers was obtained and a dot immunobinding assay was performed. Hypothetical protein of Prevotella sp. and human collagen epitopes with high similarities were positive for dot immunobinding assay. With this result it can be suggested that the mimicry phenomena can occur on periodontal disease. PMID:28116146
Neumann, Frank; Sturm, Christine; Hülsmeyer, Martin; Dauth, Nina; Guillaume, Philippe; Luescher, Immanuel F; Pfreundschuh, Michael; Held, Gerhard
2009-08-15
In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.
Beyond the zebrafish: diverse fish species for modeling human disease
Schartl, Manfred
2014-01-01
ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780
SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease
Li, Darrick K.; Tisdale, Sarah; Lotti, Francesco; Pellizzoni, Livio
2014-01-01
At the post-transcriptional level, expression of protein-coding genes is controlled by a series of RNA regulatory events including nuclear processing of primary transcripts, transport of mature mRNAs to specific cellular compartments, translation and ultimately, turnover. These processes are orchestrated through the dynamic association of mRNAs with RNA binding proteins and ribonucleoprotein (RNP) complexes. Accurate formation of RNPs in vivo is fundamentally important to cellular development and function, and its impairment often leads to human disease. The survival motor neuron (SMN) protein is key to this biological paradigm: SMN is essential for the biogenesis of various RNPs that function in mRNA processing, and genetic mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP assembly. We discuss advances in our understanding of SMN activity as a chaperone of RNPs and how disruption of SMN-dependent RNA pathways can cause motor neuron disease. PMID:24769255
Mervis, Carolyn B.; Velleman, Shelley L.
2012-01-01
Williams syndrome (WS) is a rare genetic disorder characterized by heart disease, failure to thrive, hearing loss, intellectual or learning disability, speech and language delay, gregariousness, and non-social anxiety. The WS psycholinguistic profile is complex, including relative strengths in concrete vocabulary, phonological processing, and verbal short-term memory and relative weaknesses in relational/conceptual language, reading comprehension, and pragmatics. Many children evidence difficulties with finiteness marking and complex grammatical constructions. Speech-language intervention, support, and advocacy are crucial. PMID:22754603
Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense
Häffner, Eva; Konietzki, Sandra; Diederichsen, Elke
2015-01-01
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding. PMID:27135337
Complex Relationships Between Food, Diet, and the Microbiome.
Pace, Laura A; Crowe, Sheila E
2016-06-01
Diet is a risk factor in several medically important disease states, including obesity, celiac disease, and functional gastrointestinal disorders. Modification of diet can prevent, treat, or alleviate some of the symptoms associated with these diseases and improve general health. It is important to provide patients with simple dietary recommendations to increase the probability of successful implementation. These recommendations include increasing vegetable, fruit, and fiber intake, consuming lean protein sources to enhance satiety, avoiding or severely limiting highly processed foods, and reducing portion sizes for overweight and obese patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Nucleotide Excision Repair and Transcriptional Regulation: TFIIH and Beyond.
Compe, Emmanuel; Egly, Jean-Marc
2016-06-02
Transcription factor IIH (TFIIH) is a multiprotein complex involved in both transcription and DNA repair, revealing a striking functional link between these two processes. Some of its subunits also belong to complexes involved in other cellular processes, such as chromosome segregation and cell cycle regulation, emphasizing the multitasking capabilities of this factor. This review aims to depict the structure of TFIIH and to dissect the roles of its subunits in different cellular mechanisms. Our understanding of the biochemistry of TFIIH has greatly benefited from studies focused on diseases related to TFIIH mutations. We address the etiology of these disorders and underline the fact that TFIIH can be considered a promising target for therapeutic strategies.
Spectroscopic techniques to study the immune response in human saliva
NASA Astrophysics Data System (ADS)
Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.
2018-01-01
Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.
An Ensemble Framework Coping with Instability in the Gene Selection Process.
Castellanos-Garzón, José A; Ramos, Juan; López-Sánchez, Daniel; de Paz, Juan F; Corchado, Juan M
2018-03-01
This paper proposes an ensemble framework for gene selection, which is aimed at addressing instability problems presented in the gene filtering task. The complex process of gene selection from gene expression data faces different instability problems from the informative gene subsets found by different filter methods. This makes the identification of significant genes by the experts difficult. The instability of results can come from filter methods, gene classifier methods, different datasets of the same disease and multiple valid groups of biomarkers. Even though there is a wide number of proposals, the complexity imposed by this problem remains a challenge today. This work proposes a framework involving five stages of gene filtering to discover biomarkers for diagnosis and classification tasks. This framework performs a process of stable feature selection, facing the problems above and, thus, providing a more suitable and reliable solution for clinical and research purposes. Our proposal involves a process of multistage gene filtering, in which several ensemble strategies for gene selection were added in such a way that different classifiers simultaneously assess gene subsets to face instability. Firstly, we apply an ensemble of recent gene selection methods to obtain diversity in the genes found (stability according to filter methods). Next, we apply an ensemble of known classifiers to filter genes relevant to all classifiers at a time (stability according to classification methods). The achieved results were evaluated in two different datasets of the same disease (pancreatic ductal adenocarcinoma), in search of stability according to the disease, for which promising results were achieved.
Igartúa, Daniela E; Martinez, Carolina S; Temprana, C Facundo; Alonso, Silvia Del V; Prieto, M Jimena
2018-06-10
Carbamazepine (CBZ) is an antiepileptic drug, which also could be used in the treatment of neurodegenerative diseases, such as the Alzheimer's disease. However, its use has been limited due to its low solubility, inefficient pharmacokinetic profiles, and multiple side effects. PAMAM dendrimers, ethylenediamine core, generation 4.0 (amine terminal groups) and 4.5 (carboxylate terminal groups) (DG4.0 and DG4.5 respectively) are polymers that can increase drug solubility through complexation. Thus, the aim of this work was to obtain and characterize complexes between CBZ and dendrimers. Both DG4.0 and DG4.5 allowed the incorporation of ∼20 molecules of CBZ per dendrimer, into their hydrophobic pockets. DG4.0-CBZ and DG4.5-CBZ complexes were found to be stable for 90 days at 37 °C and resistant to a lyophilization process, presenting controlled drug release. Also, the complexes nanotoxicity was tested ex vivo (human red blood cells), in vitro (N2a cell line), and in vivo (zebrafish). No hemolytic effect was observed in the ex vivo model. As regards in vitro toxicity, the DG4.5-CBZ complexes significantly reduced the toxicity caused by the free drug. Moreover, the DG4.5-CBZ did not cause neurotoxicity or cardiotoxicity in zebrafish larvae. In conclusion, a stable and biocompatible drug delivery system based on the DG4.5 capable of complex the CBZ has been developed. This achievement highlights the advantages of using negatively charged dendrimers for nanomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.
Three-Dimensional Coculture Of Human Small-Intestine Cells
NASA Technical Reports Server (NTRS)
Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy
1994-01-01
Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).
Yamamoto, Satoshi; Ooshima, Yuki; Nakata, Mitsugu; Yano, Takashi; Matsuoka, Kunio; Watanabe, Sayuri; Maeda, Ryouta; Takahashi, Hideki; Takeyama, Michiyasu; Matsumoto, Yoshio; Hashimoto, Tadatoshi
2013-06-01
Gene-targeting technology using mouse embryonic stem (ES) cells has become the "gold standard" for analyzing gene functions and producing disease models. Recently, genetically modified mice with multiple mutations have increasingly been produced to study the interaction between proteins and polygenic diseases. However, introduction of an additional mutation into mice already harboring several mutations by conventional natural crossbreeding is an extremely time- and labor-intensive process. Moreover, to do so in mice with a complex genetic background, several years may be required if the genetic background is to be retained. Establishing ES cells from multiple-mutant mice, or disease-model mice with a complex genetic background, would offer a possible solution. Here, we report the establishment and characterization of novel ES cell lines from a mouse model of Alzheimer's disease (3xTg-AD mouse, Oddo et al. in Neuron 39:409-421, 2003) harboring 3 mutated genes (APPswe, TauP301L, and PS1M146V) and a complex genetic background. Thirty blastocysts were cultured and 15 stable ES cell lines (male: 11; female: 4) obtained. By injecting these ES cells into diploid or tetraploid blastocysts, we generated germline-competent chimeras. Subsequently, we confirmed that F1 mice derived from these animals showed similar biochemical and behavioral characteristics to the original 3xTg-AD mice. Furthermore, we introduced a gene-targeting vector into the ES cells and successfully obtained gene-targeted ES cells, which were then used to generate knockout mice for the targeted gene. These results suggest that the present methodology is effective for introducing an additional mutation into mice already harboring multiple mutated genes and/or a complex genetic background.
Bahde, Ralf; Kapoor, Sorabh; Bhargava, Kuldeep K; Palestro, Christopher J; Gupta, Sanjeev
2014-01-01
Identification by molecular imaging of key processes in handling of transition state metals, such as copper (Cu), will be of considerable clinical value. For instance, the ability to diagnose Wilson’s disease with molecular imaging by identifying copper excretion in an ATP7B-dependent manner will be very significant. To develop highly effective diagnostic approaches, we hypothesized that targeting of radiocopper via the asialoglycoprotein receptor will be appropriate for positron emission tomography, and examined this approach in a rat model of Wilson’s disease. After complexing 64Cu to asialofetuin we studied handling of this complex compared with 64Cu in healthy LEA rats and diseased homozygous LEC rats lacking ATP7B and exhibiting hepatic copper toxicosis. We analyzed radiotracer clearance from blood, organ uptake, and biliary excretion, including sixty minute dynamic positron emission tomography recordings. In LEA rats, 64Cu-asialofetuin was better cleared from blood followed by liver uptake and greater biliary excretion than 64Cu. In LEC rats, 64Cu-asialofetuin activity cleared even more rapidly from blood followed by greater uptake in liver, but neither 64Cu-asialofetuin nor 64Cu appeared in bile. Image analysis demonstrated rapid visualization of liver after 64Cu-asialofetuin administration followed by decreased liver activity in LEA rats while liver activity progressively increased in LEC rats. Image analysis resolved this difference in hepatic activity within one hour. We concluded that 64Cu-asialofetuin complex was successfully targeted to the liver and radiocopper was then excreted into bile in an ATP7B-dependent manner. Therefore, hepatic targeting of radiocopper will be appropriate for improving molecular diagnosis and for developing drug/cell/gene therapies in Wilson’s disease. PMID:25250203
Community of protein complexes impacts disease association
Wang, Qianghu; Liu, Weisha; Ning, Shangwei; Ye, Jingrun; Huang, Teng; Li, Yan; Wang, Peng; Shi, Hongbo; Li, Xia
2012-01-01
One important challenge in the post-genomic era is uncovering the relationships among distinct pathophenotypes by using molecular signatures. Given the complex functional interdependencies between cellular components, a disease is seldom the consequence of a defect in a single gene product, instead reflecting the perturbations of a group of closely related gene products that carry out specific functions together. Therefore, it is meaningful to explore how the community of protein complexes impacts disease associations. Here, by integrating a large amount of information from protein complexes and the cellular basis of diseases, we built a human disease network in which two diseases are linked if they share common disease-related protein complex. A systemic analysis revealed that linked disease pairs exhibit higher comorbidity than those that have no links, and that the stronger association two diseases have based on protein complexes, the higher comorbidity they are prone to display. Moreover, more connected diseases tend to be malignant, which have high prevalence. We provide novel disease associations that cannot be identified through previous analysis. These findings will potentially provide biologists and clinicians new insights into the etiology, classification and treatment of diseases. PMID:22549411
Registered nurses' clinical reasoning skills and reasoning process: A think-aloud study.
Lee, JuHee; Lee, Young Joo; Bae, JuYeon; Seo, Minjeong
2016-11-01
As complex chronic diseases are increasing, nurses' prompt and accurate clinical reasoning skills are essential. However, little is known about the reasoning skills of registered nurses. This study aimed to determine how registered nurses use their clinical reasoning skills and to identify how the reasoning process proceeds in the complex clinical situation of hospital setting. A qualitative exploratory design was used with a think-aloud method. A total of 13 registered nurses (mean years of experience=11.4) participated in the study, solving an ill-structured clinical problem based on complex chronic patients cases in a hospital setting. Data were analyzed using deductive content analysis. Findings showed that the registered nurses used a variety of clinical reasoning skills. The most commonly used skill was 'checking accuracy and reliability.' The reasoning process of registered nurses covered assessment, analysis, diagnosis, planning/implementation, and evaluation phase. It is critical that registered nurses apply appropriate clinical reasoning skills in complex clinical practice. The main focus of registered nurses' reasoning in this study was assessing a patient's health problem, and their reasoning process was cyclic, rather than linear. There is a need for educational strategy development to enhance registered nurses' competency in determining appropriate interventions in a timely and accurate fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.
George, Britta; Verma, Rakesh; Soofi, Abdulsalam A.; Garg, Puneet; Zhang, Jidong; Park, Tae-Ju; Giardino, Laura; Ryzhova, Larisa; Johnstone, Duncan B.; Wong, Hetty; Nihalani, Deepak; Salant, David J.; Hanks, Steven K.; Curran, Tom; Rastaldi, Maria Pia; Holzman, Lawrence B.
2012-01-01
The morphology of healthy podocyte foot processes is necessary for maintaining the characteristics of the kidney filtration barrier. In most forms of glomerular disease, abnormal filter barrier function results when podocytes undergo foot process spreading and retraction by remodeling their cytoskeletal architecture and intercellular junctions during a process known as effacement. The cell adhesion protein nephrin is necessary for establishing the morphology of the kidney podocyte in development by transducing from the specialized podocyte intercellular junction phosphorylation-mediated signals that regulate cytoskeletal dynamics. The present studies extend our understanding of nephrin function by showing that nephrin activation in cultured podocytes induced actin dynamics necessary for lamellipodial protrusion. This process required a PI3K-, Cas-, and Crk1/2-dependent signaling mechanism distinct from the previously described nephrin-Nck1/2 pathway necessary for assembly and polymerization of actin filaments. Our present findings also support the hypothesis that mechanisms governing lamellipodial protrusion in culture are similar to those used in vivo during foot process effacement in a subset of glomerular diseases. In mice, podocyte-specific deletion of Crk1/2 prevented foot process effacement in one model of podocyte injury and attenuated foot process effacement and associated proteinuria in a delayed fashion in a second model. In humans, focal adhesion kinase and Cas phosphorylation — markers of focal adhesion complex–mediated Crk-dependent signaling — was induced in minimal change disease and membranous nephropathy, but not focal segmental glomerulosclerosis. Together, these observations suggest that activation of a Cas-Crk1/2–dependent complex is necessary for foot process effacement observed in distinct subsets of human glomerular diseases. PMID:22251701
Sugrue, Patrick A; OʼShaughnessy, Brian A; Blanke, Kathy M; Lenke, Lawrence G
2013-02-15
Case report and review of the literature. This case illustrates the importance of the costosternal complex in maintaining the stability and alignment of the thoracic spine. The patient was iatrogenically destabilized by placement of a pectus bar leading to rapid symptomatic progression of his Scheuermann's kyphosis, ultimately requiring surgical correction. Scheuermann's kyphosis is a disease process defined by strict radiographical and clinical criteria. Surgical treatment is generally recommended for curves greater than 75°. This case demonstrates the critical role of the costosternal complex in maintaining the stability of the thoracic spine. The patient described in this report underwent placement of a pectus bar for correction of symptomatic pectus excavatum. He subsequently developed a progressive symptomatic Scheuermann's kyphosis as a result of the destabilization of his costosternal complex. This patient ultimately required removal of the pectus bar and posterior instrumented kyphosis correction. Progressive symptomatic Scheuermann's kyphosis (105°) corrected by removal of the pectus bar, T11 posterior vertebral-column resection and T4-L3 instrumented posterior spinal fusion. The patient had an uneventful immediate postoperative course. He was discharged neurologically intact with dramatic kyphosis correction and significant symptomatic improvement. Radiographs obtained 3 years postoperatively reveal stable thoracolumbar correction. The costosternal complex plays a critically important role in the intrinsic stability of the thoracic spine. Iatrogenic disruption of the costosternal complex can result in rapid progression of thoracic/thoracolumbar kyphosis in the setting of Scheuermann's disease.
Kanata, Eirini; Dafou, Dimitra; Díaz-Lucena, Daniela; Vivancos, Ana; Shomroni, Orr; Zafar, Saima; Schmitz, Matthias; Fernández-Borges, Natalia; Andréoletti, Olivier; Díez, Juana; Fischer, Andre; Sklaviadis, Theodoros; Ferrer, Isidre; Zerr, Inga
2018-01-01
Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer’s disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation. PMID:29357384
Llorens, Franc; Thüne, Katrin; Martí, Eulàlia; Kanata, Eirini; Dafou, Dimitra; Díaz-Lucena, Daniela; Vivancos, Ana; Shomroni, Orr; Zafar, Saima; Schmitz, Matthias; Michel, Uwe; Fernández-Borges, Natalia; Andréoletti, Olivier; Del Río, José Antonio; Díez, Juana; Fischer, Andre; Bonn, Stefan; Sklaviadis, Theodoros; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga
2018-01-01
Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer's disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation.
Medication Management: The Macrocognitive Workflow of Older Adults With Heart Failure
2016-01-01
Background Older adults with chronic disease struggle to manage complex medication regimens. Health information technology has the potential to improve medication management, but only if it is based on a thorough understanding of the complexity of medication management workflow as it occurs in natural settings. Prior research reveals that patient work related to medication management is complex, cognitive, and collaborative. Macrocognitive processes are theorized as how people individually and collaboratively think in complex, adaptive, and messy nonlaboratory settings supported by artifacts. Objective The objective of this research was to describe and analyze the work of medication management by older adults with heart failure, using a macrocognitive workflow framework. Methods We interviewed and observed 61 older patients along with 30 informal caregivers about self-care practices including medication management. Descriptive qualitative content analysis methods were used to develop categories, subcategories, and themes about macrocognitive processes used in medication management workflow. Results We identified 5 high-level macrocognitive processes affecting medication management—sensemaking, planning, coordination, monitoring, and decision making—and 15 subprocesses. Data revealed workflow as occurring in a highly collaborative, fragile system of interacting people, artifacts, time, and space. Process breakdowns were common and patients had little support for macrocognitive workflow from current tools. Conclusions Macrocognitive processes affected medication management performance. Describing and analyzing this performance produced recommendations for technology supporting collaboration and sensemaking, decision making and problem detection, and planning and implementation. PMID:27733331
Medication Management: The Macrocognitive Workflow of Older Adults With Heart Failure.
Mickelson, Robin S; Unertl, Kim M; Holden, Richard J
2016-10-12
Older adults with chronic disease struggle to manage complex medication regimens. Health information technology has the potential to improve medication management, but only if it is based on a thorough understanding of the complexity of medication management workflow as it occurs in natural settings. Prior research reveals that patient work related to medication management is complex, cognitive, and collaborative. Macrocognitive processes are theorized as how people individually and collaboratively think in complex, adaptive, and messy nonlaboratory settings supported by artifacts. The objective of this research was to describe and analyze the work of medication management by older adults with heart failure, using a macrocognitive workflow framework. We interviewed and observed 61 older patients along with 30 informal caregivers about self-care practices including medication management. Descriptive qualitative content analysis methods were used to develop categories, subcategories, and themes about macrocognitive processes used in medication management workflow. We identified 5 high-level macrocognitive processes affecting medication management-sensemaking, planning, coordination, monitoring, and decision making-and 15 subprocesses. Data revealed workflow as occurring in a highly collaborative, fragile system of interacting people, artifacts, time, and space. Process breakdowns were common and patients had little support for macrocognitive workflow from current tools. Macrocognitive processes affected medication management performance. Describing and analyzing this performance produced recommendations for technology supporting collaboration and sensemaking, decision making and problem detection, and planning and implementation.
An ultra low power ECG signal processor design for cardiovascular disease detection.
Jain, Sanjeev Kumar; Bhaumik, Basabi
2015-08-01
This paper presents an ultra low power ASIC design based on a new cardiovascular disease diagnostic algorithm. This new algorithm based on forward search is designed for real time ECG signal processing. The algorithm is evaluated for Physionet PTB database from the point of view of cardiovascular disease diagnosis. The failed detection rate of QRS complex peak detection of our algorithm ranges from 0.07% to 0.26% for multi lead ECG signal. The ASIC is designed using 130-nm CMOS low leakage process technology. The area of ASIC is 1.21 mm(2). This ASIC consumes only 96 nW at an operating frequency of 1 kHz with a supply voltage of 0.9 V. Due to ultra low power consumption, our proposed ASIC design is most suitable for energy efficient wearable ECG monitoring devices.
Modeling the complex pathology of Alzheimer’s disease in Drosophila
Fernandez-Funez, Pedro; de Mena, Lorena; Rincon-Limas, Diego E.
2015-01-01
Alzheimer’s disease (AD) is the leading cause of dementia and the most common neurodegenerative disorder. AD is mostly a sporadic disorder and its main risk factor is age, but mutations in three genes that promote the accumulation of the amyloid-β (Aβ42) peptide revealed the critical role of Amyloid precursor protein (APP) processing in AD. Neurofibrillary tangles enriched in tau are the other pathological hallmark of AD, but the lack of causative tau mutations still puzzles researchers. Here, we describe the contribution of a powerful invertebrate model, the fruit fly Drosophila melanogaster, to uncovering the function and pathogenesis of human APP, Aβ42, and tau. APP and tau participate in many complex cellular processes, although their main function is microtubule stabilization and the to-and-fro transport of axonal vesicles. Additionally, expression of secreted Aβ42 induces prominent neuronal death in Drosophila, a critical feature of AD, making this model a popular choice for identifying intrinsic and extrinsic factors mediating Aβ42 neurotoxicity. Overall, Drosophila has made significant contributions to better understand the complex pathology of AD, although additional insight can be expected from combining multiple transgenes, performing genome-wide loss-of-function screens, and testing anti-tau therapies alone or in combination with Aβ42. PMID:26024860
Double life of centrioles: CP110 in the spotlight.
Bettencourt-Dias, Mónica; Carvalho-Santos, Zita
2008-01-01
Centrioles lead an important double life: they can give rise to the centrosome or convert to basal bodies and template cilia. Little is known about the control of centriole fate. Spektor and colleagues have now identified a centriolar complex, composed of CP110 and CEP97, which inhibits centriole to basal body conversion, preventing cilia formation. This work paves the way to understanding centriole and cilia biogenesis, which are two processes misregulated in human diseases, such as cancer and polycystic kidney disease.
Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-03-22
Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking.
Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-01-01
Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking. PMID:21445339
Socio-ecological dynamics and challenges to the governance of Neglected Tropical Disease control.
Michael, Edwin; Madon, Shirin
2017-02-06
The current global attempts to control the so-called "Neglected Tropical Diseases (NTDs)" have the potential to significantly reduce the morbidity suffered by some of the world's poorest communities. However, the governance of these control programmes is driven by a managerial rationality that assumes predictability of proposed interventions, and which thus primarily seeks to improve the cost-effectiveness of implementation by measuring performance in terms of pre-determined outputs. Here, we argue that this approach has reinforced the narrow normal-science model for controlling parasitic diseases, and in doing so fails to address the complex dynamics, uncertainty and socio-ecological context-specificity that invariably underlie parasite transmission. We suggest that a new governance approach is required that draws on a combination of non-equilibrium thinking about the operation of complex, adaptive, systems from the natural sciences and constructivist social science perspectives that view the accumulation of scientific knowledge as contingent on historical interests and norms, if more effective control approaches sufficiently sensitive to local disease contexts are to be devised, applied and managed. At the core of this approach is an emphasis on the need for a process that assists with the inclusion of diverse perspectives, social learning and deliberation, and a reflexive approach to addressing system complexity and incertitude, while balancing this flexibility with stability-focused structures. We derive and discuss a possible governance framework and outline an organizational structure that could be used to effectively deal with the complexity of accomplishing global NTD control. We also point to examples of complexity-based management structures that have been used in parasite control previously, which could serve as practical templates for developing similar governance structures to better manage global NTD control. Our results hold important wider implications for global health policy aiming to effectively control and eradicate parasitic diseases across the world.
Ioannidis, J P; McQueen, P G; Goedert, J J; Kaslow, R A
1998-03-01
Complex immunogenetic associations of disease involving a large number of gene products are difficult to evaluate with traditional statistical methods and may require complex modeling. The authors evaluated the performance of feed-forward backpropagation neural networks in predicting rapid progression to acquired immunodeficiency syndrome (AIDS) for patients with human immunodeficiency virus (HIV) infection on the basis of major histocompatibility complex variables. Networks were trained on data from patients from the Multicenter AIDS Cohort Study (n = 139) and then validated on patients from the DC Gay cohort (n = 102). The outcome of interest was rapid disease progression, defined as progression to AIDS in <6 years from seroconversion. Human leukocyte antigen (HLA) variables were selected as network inputs with multivariate regression and a previously described algorithm selecting markers with extreme point estimates for progression risk. Network performance was compared with that of logistic regression. Networks with 15 HLA inputs and a single hidden layer of five nodes achieved a sensitivity of 87.5% and specificity of 95.6% in the training set, vs. 77.0% and 76.9%, respectively, achieved by logistic regression. When validated on the DC Gay cohort, networks averaged a sensitivity of 59.1% and specificity of 74.3%, vs. 53.1% and 61.4%, respectively, for logistic regression. Neural networks offer further support to the notion that HIV disease progression may be dependent on complex interactions between different class I and class II alleles and transporters associated with antigen processing variants. The effect in the current models is of moderate magnitude, and more data as well as other host and pathogen variables may need to be considered to improve the performance of the models. Artificial intelligence methods may complement linear statistical methods for evaluating immunogenetic associations of disease.
Autoimmune Addison's disease - An update on pathogenesis.
Hellesen, Alexander; Bratland, Eirik; Husebye, Eystein S
2018-06-01
Autoimmunity against the adrenal cortex is the leading cause of Addison's disease in industrialized countries, with prevalence estimates ranging from 93-220 per million in Europe. The immune-mediated attack on adrenocortical cells cripples their ability to synthesize vital steroid hormones and necessitates life-long hormone replacement therapy. The autoimmune disease etiology is multifactorial involving variants in immune genes and environmental factors. Recently, we have come to appreciate that the adrenocortical cell itself is an active player in the autoimmune process. Here we summarize the complex interplay between the immune system and the adrenal cortex and highlight unanswered questions and gaps in our current understanding of the disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Sturmberg, Joachim P
2012-12-01
It is stated everywhere that chronic care poses one of the biggest challenges for the future of medicine. Critical analysis however suggests that these statements are oversimplistic and based on limited, and at times, spurious assumptions. This paper highlights some basic realities: epidemiology shows that at any time, 80% of people experience 'good enough health', and that only 0.8% require tertiary medical care; most people with chronic conditions experience a stable illness trajectory; 'true' multi-morbidity is a pattern of advanced age; ageing and the physiological decline of our organ systems is a slow and steady process starting at the age of 30; and, as our health declines in a variety of patterns with disease and ageing, our psycho-socio-semiotic care needs increase dramatically. I argue that managing the complexities associated with chronic disease care successfully requires an equally complex management approach, 'muddling through', defined by Lindblom as making decisions based on successive limited comparisons. Our patients - rightly - expect that we make these decisions in their best interest. Individual health care professionals and health care policy makers firmly need to put the patient at the centre of the health care system. © 2012 Blackwell Publishing Ltd.
Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii.
Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J
2015-07-21
Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.
The Coagulation Profile of End-Stage Liver Disease and Considerations for Intraoperative Management.
Forkin, Katherine T; Colquhoun, Douglas A; Nemergut, Edward C; Huffmyer, Julie L
2018-01-01
The coagulopathy of end-stage liver disease results from a complex derangement in both anticoagulant and procoagulant processes. With even minor insults, cirrhotic patients experience either inappropriate bleeding or clotting, or even both simultaneously. The various phases of liver transplantation along with fluid and blood product administration may contribute to additional disturbances in coagulation. Thus, anesthetic management of patients undergoing liver transplantation to improve hemostasis and avoid inappropriate thrombosis in the perioperative environment can be challenging. To add to this challenge, traditional laboratory tests of coagulation are difficult to interpret in patients with end-stage liver disease. Viscoelastic coagulation tests such as thromboelastography (Haemonetics Corporation, Braintree, MA) and rotational thromboelastometry (TEM International, Munich, Germany) have helped to reduce transfusion of allogeneic blood products, especially fresh frozen plasma, but have also lead to the increased use of fibrinogen-containing products. In general, advancements in surgical techniques and anesthetic management have led to significant reduction in blood transfusion requirements during liver transplantation. Targeted transfusion protocols and pharmacologic prevention of fibrinolysis may further aid in the management of the complex coagulopathy of end-stage liver disease.
Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii
Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J.
2015-01-01
Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias. PMID:26195778
The emergence of designed multiple ligands for neurodegenerative disorders.
Geldenhuys, Werner J; Youdim, Moussa B H; Carroll, Richard T; Van der Schyf, Cornelis J
2011-09-01
The incidence of neurodegenerative diseases has seen a constant increase in the global population, and is likely to be the result of extended life expectancy brought about by better health care. Despite this increase in the incidence of neurodegenerative diseases, there has been a dearth in the introduction of new disease-modifying therapies that are approved to prevent or delay the onset of these diseases, or reverse the degenerative processes in brain. Mounting evidence in the peer-reviewed literature shows that the etiopathology of these diseases is extremely complex and heterogeneous, resulting in significant comorbidity and therefore unlikely to be mitigated by any drug acting on a single pathway or target. A recent trend in drug design and discovery is the rational design or serendipitous discovery of novel drug entities with the ability to address multiple drug targets that form part of the complex pathophysiology of a particular disease state. In this review we discuss the rationale for developing such multifunctional drugs (also called designed multiple ligands or DMLs), and why these drug candidates seem to offer better outcomes in many cases compared to single-targeted drugs in pre-clinical studies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Examples are drawn from the literature of drug candidates that have already reached the market, some unsuccessful attempts, and others that are still in the drug development pipeline. Copyright © 2011. Published by Elsevier Ltd.
Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer's Disease.
Winick-Ng, Warren; Rylett, R Jane
2018-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.
In vivo PET imaging of neuroinflammation in Alzheimer's disease.
Lagarde, Julien; Sarazin, Marie; Bottlaender, Michel
2018-05-01
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Roth, Wera; Hecker, David; Fava, Eugenio
2016-01-01
MicroRNAs (miRNAs) are emerging as significant regulators of mRNA complexity in the human central nervous system (CNS) thereby controlling distinct gene expression profiles in a spatio-temporal manner during development, neuronal plasticity, aging and (age-related) neurodegeneration, including Alzheimer's disease (AD). Increasing effort is expended towards dissecting and deciphering the molecular and genetic mechanisms of neurobiological and pathological functions of these brain-enriched miRNAs. Along these lines, recent data pinpoint distinct miRNAs and miRNA networks being linked to APP splicing, processing and Aβ pathology (Lukiw et al., Front Genet 3:327, 2013), and furthermore, to the regulation of tau and its cellular subnetworks (Lau et al., EMBO Mol Med 5:1613, 2013), altogether underlying the onset and propagation of Alzheimer's disease. MicroRNA profiling studies in Alzheimer's disease suffer from poor consensus which is an acknowledged concern in the field, and constitutes one of the current technical challenges. Hence, a strong demand for experimental and computational systems biology approaches arises, to incorporate and integrate distinct levels of information and scientific knowledge into a complex system of miRNA networks in the context of the transcriptome, proteome and metabolome in a given cellular environment. Here, we will discuss the state-of-the-art technologies and computational approaches on hand that may lead to a deeper understanding of the complex biological networks underlying the pathogenesis of Alzheimer's disease.
He, Liang; Zhbannikov, Ilya; Arbeev, Konstantin G; Yashin, Anatoliy I; Kulminski, Alexander M
2017-11-01
Unraveling the underlying biological mechanisms or pathways behind the effects of genetic variations on complex diseases remains one of the major challenges in the post-GWAS (where GWAS is genome-wide association study) era. To further explore the relationship between genetic variations, biomarkers, and diseases for elucidating underlying pathological mechanism, a huge effort has been placed on examining pleiotropic and gene-environmental interaction effects. We propose a novel genetic stochastic process model (GSPM) that can be applied to GWAS and jointly investigate the genetic effects on longitudinally measured biomarkers and risks of diseases. This model is characterized by more profound biological interpretation and takes into account the dynamics of biomarkers during follow-up when investigating the hazards of a disease. We illustrate the rationale and evaluate the performance of the proposed model through two GWAS. One is to detect single nucleotide polymorphisms (SNPs) having interaction effects on type 2 diabetes (T2D) with body mass index (BMI) and the other is to detect SNPs affecting the optimal BMI level for protecting from T2D. We identified multiple SNPs that showed interaction effects with BMI on T2D, including a novel SNP rs11757677 in the CDKAL1 gene (P = 5.77 × 10 -7 ). We also found a SNP rs1551133 located on 2q14.2 that reversed the effect of BMI on T2D (P = 6.70 × 10 -7 ). In conclusion, the proposed GSPM provides a promising and useful tool in GWAS of longitudinal data for interrogating pleiotropic and interaction effects to gain more insights into the relationship between genes, quantitative biomarkers, and risks of complex diseases. © 2017 WILEY PERIODICALS, INC.
Yasui, Yutaka; McLerran, Dale; Adam, Bao-Ling; Winget, Marcy; Thornquist, Mark; Feng, Ziding
2003-01-01
Discovery of "signature" protein profiles that distinguish disease states (eg, malignant, benign, and normal) is a key step towards translating recent advancements in proteomic technologies into clinical utilities. Protein data generated from mass spectrometers are, however, large in size and have complex features due to complexities in both biological specimens and interfering biochemical/physical processes of the measurement procedure. Making sense out of such high-dimensional complex data is challenging and necessitates the use of a systematic data analytic strategy. We propose here a data processing strategy for two major issues in the analysis of such mass-spectrometry-generated proteomic data: (1) separation of protein "signals" from background "noise" in protein intensity measurements and (2) calibration of protein mass/charge measurements across samples. We illustrate the two issues and the utility of the proposed strategy using data from a prostate cancer biomarker discovery project as an example.
Alkaline Phosphatases in the Complex Chronic Kidney Disease-Mineral and Bone Disorders.
Bover, Jordi; Ureña, Pablo; Aguilar, Armando; Mazzaferro, Sandro; Benito, Silvia; López-Báez, Víctor; Ramos, Alejandra; daSilva, Iara; Cozzolino, Mario
2018-02-14
Alkaline phosphatases (APs) remove the phosphate (dephosphorylation) needed in multiple metabolic processes (from many molecules such as proteins, nucleotides, or pyrophosphate). Therefore, APs are important for bone mineralization but paradoxically they can also be deleterious for other processes, such as vascular calcification and the increasingly known cross-talk between bone and vessels. A proper balance between beneficial and harmful activities is further complicated in the context of chronic kidney disease (CKD). In this narrative review, we will briefly update the complexity of the enzyme, including its different isoforms such as the bone-specific alkaline phosphatase or the most recently discovered B1x. We will also analyze the correlations and potential discrepancies with parathyroid hormone and bone turnover and, most importantly, the valuable recent associations of AP's with cardiovascular disease and/or vascular calcification, and survival. Finally, a basic knowledge of the synthetic and degradation pathways of APs promises to open new therapeutic strategies for the treatment of the CKD-Mineral and Bone Disorder (CKD-MBD) in the near future, as well as for other processes such as sepsis, acute kidney injury, inflammation, endothelial dysfunction, metabolic syndrome or, in diabetes, cardiovascular complications. However, no studies have been done using APs as a primary therapeutic target for clinical outcomes, and therefore, AP's levels cannot yet be used alone as an isolated primary target in the treatment of CKD-MBD. Nonetheless, its diagnostic and prognostic potential should be underlined.
Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity.
Mena, Natalia P; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C; Núñez, Marco T
2011-06-03
Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease. Copyright © 2011 Elsevier Inc. All rights reserved.
β-Arrestin1 regulates γ-secretase complex assembly and modulates amyloid-β pathology
Liu, Xiaosong; Zhao, Xiaohui; Zeng, Xianglu; Bossers, Koen; Swaab, Dick F; Zhao, Jian; Pei, Gang
2013-01-01
Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease in which the γ-secretase-mediated amyloid-β (Aβ) pathology plays an important role. We found that a multifunctional protein, β-arrestin1, facilitated the formation of NCT/APH-1 (anterior pharynx-defective phenotype 1) precomplex and mature γ-secretase complex through its functional interaction with APH-1. Deficiency of β-arrestin1 or inhibition of binding of β-arrestin1 with APH-1 by small peptides reduced Aβ production without affecting Notch processing. Genetic ablation of β-arrestin1 diminished Aβ pathology and behavioral deficits in transgenic AD mice. Moreover, in brains of sporadic AD patients and transgenic AD mice, the expression of β-arrestin1 was upregulated and correlated well with neuropathological severity and senile Aβ plaques. Thus, our study identifies a regulatory mechanism underlying both γ-secretase assembly and AD pathogenesis, and indicates that specific reduction of Aβ pathology can be achieved by regulation of the γ-secretase assembly. PMID:23208420
Möller, André; Xie, Sheila Q.; Hosp, Fabian; Lang, Benjamin; Phatnani, Hemali P.; James, Sonya; Ramirez, Francisco; Collin, Gayle B.; Naggert, Jürgen K.; Babu, M. Madan; Greenleaf, Arno L.; Selbach, Matthias; Pombo, Ana
2012-01-01
RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology. PMID:22199231
Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis
Zhang, Chunhua; Brown, Michelle Q.; van de Ven, Wilhelmina; ...
2015-11-25
The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes. We discovered that the small molecule Endosidin2 (ES2) binds to the EXO70 (exocyst component of 70 kDa) subunit of the exocyst complex, resulting in inhibition of exocytosis and endosomal recycling in both plant and human cells andmore » enhancement of plant vacuolar trafficking. An EXO70 protein with a C-terminal truncation results in dominant ES2 resistance, uncovering possible distinct regulatory roles for the N terminus of the protein. Ultimately, this study not only provides a valuable tool in studying exocytosis regulation but also offers a potentially new target for drugs aimed at addressing human disease.« less
Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chunhua; Brown, Michelle Q.; van de Ven, Wilhelmina
The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes. We discovered that the small molecule Endosidin2 (ES2) binds to the EXO70 (exocyst component of 70 kDa) subunit of the exocyst complex, resulting in inhibition of exocytosis and endosomal recycling in both plant and human cells andmore » enhancement of plant vacuolar trafficking. An EXO70 protein with a C-terminal truncation results in dominant ES2 resistance, uncovering possible distinct regulatory roles for the N terminus of the protein. Ultimately, this study not only provides a valuable tool in studying exocytosis regulation but also offers a potentially new target for drugs aimed at addressing human disease.« less
Ben-Shachar, Dorit
2017-09-01
Mitochondria are key players in various essential cellular processes beyond being the main energy supplier of the cell. Accordingly, they are involved in neuronal synaptic transmission, neuronal growth and sprouting and consequently neuronal plasticity and connectivity. In addition, mitochondria participate in the modulation of gene transcription and inflammation as well in physiological responses in health and disease. Schizophrenia is currently regarded as a neurodevelopmental disorder associated with impaired immune system, aberrant neuronal differentiation and abnormalities in various neurotransmitter systems mainly the dopaminergic, glutaminergic and GABAergic. Ample evidence has been accumulated over the last decade indicating a multifaceted dysfunction of mitochondria in schizophrenia. Indeed, mitochondrial deficit can be of relevance for the majority of the pathologies observed in this disease. In the present article, we overview specific deficits of the mitochondria in schizophrenia, with a focus on the first complex (complex I) of the mitochondrial electron transport chain (ETC). We argue that complex I, being a major factor in the regulation of mitochondrial ETC, is a possible key modulator of various functions of the mitochondria. We review biochemical, molecular, cellular and functional evidence for mitochondrial impairments and their possible convergence to impact in-vitro neuronal differentiation efficiency in schizophrenia. Mitochondrial function in schizophrenia may advance our knowledge of the disease pathophysiology and open the road for new treatment targets for the benefit of the patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Designer cell signal processing circuits for biotechnology
Bradley, Robert W.; Wang, Baojun
2015-01-01
Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. PMID:25579192
Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network
Wang, Bingbo; Gao, Lin; Zhang, Qingfang; Li, Aimin; Deng, Yue; Guo, Xingli
2015-01-01
Background The complexity of biological systems motivates us to use the underlying networks to provide deep understanding of disease etiology and the human diseases are viewed as perturbations of dynamic properties of networks. Control theory that deals with dynamic systems has been successfully used to capture systems-level knowledge in large amount of quantitative biological interactions. But from the perspective of system control, the ways by which multiple genetic factors jointly perturb a disease phenotype still remain. Results In this work, we combine tools from control theory and network science to address the diversified control paths in complex networks. Then the ways by which the disease genes perturb biological systems are identified and quantified by the control paths in a human regulatory network. Furthermore, as an application, prioritization of candidate genes is presented by use of control path analysis and gene ontology annotation for definition of similarities. We use leave-one-out cross-validation to evaluate the ability of finding the gene-disease relationship. Results have shown compatible performance with previous sophisticated works, especially in directed systems. Conclusions Our results inspire a deeper understanding of molecular mechanisms that drive pathological processes. Diversified control paths offer a basis for integrated intervention techniques which will ultimately lead to the development of novel therapeutic strategies. PMID:26284649
A weighted U statistic for association analyses considering genetic heterogeneity.
Wei, Changshuai; Elston, Robert C; Lu, Qing
2016-07-20
Converging evidence suggests that common complex diseases with the same or similar clinical manifestations could have different underlying genetic etiologies. While current research interests have shifted toward uncovering rare variants and structural variations predisposing to human diseases, the impact of heterogeneity in genetic studies of complex diseases has been largely overlooked. Most of the existing statistical methods assume the disease under investigation has a homogeneous genetic effect and could, therefore, have low power if the disease undergoes heterogeneous pathophysiological and etiological processes. In this paper, we propose a heterogeneity-weighted U (HWU) method for association analyses considering genetic heterogeneity. HWU can be applied to various types of phenotypes (e.g., binary and continuous) and is computationally efficient for high-dimensional genetic data. Through simulations, we showed the advantage of HWU when the underlying genetic etiology of a disease was heterogeneous, as well as the robustness of HWU against different model assumptions (e.g., phenotype distributions). Using HWU, we conducted a genome-wide analysis of nicotine dependence from the Study of Addiction: Genetics and Environments dataset. The genome-wide analysis of nearly one million genetic markers took 7h, identifying heterogeneous effects of two new genes (i.e., CYP3A5 and IKBKB) on nicotine dependence. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Jordan, Daniel M; Do, Ron
2018-04-11
While sequence-based genetic tests have long been available for specific loci, especially for Mendelian disease, the rapidly falling costs of genome-wide genotyping arrays, whole-exome sequencing, and whole-genome sequencing are moving us toward a future where full genomic information might inform the prognosis and treatment of a variety of diseases, including complex disease. Similarly, the availability of large populations with full genomic information has enabled new insights about the etiology and genetic architecture of complex disease. Insights from the latest generation of genomic studies suggest that our categorization of diseases as complex may conceal a wide spectrum of genetic architectures and causal mechanisms that ranges from Mendelian forms of complex disease to complex regulatory structures underlying Mendelian disease. Here, we review these insights, along with advances in the prediction of disease risk and outcomes from full genomic information. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 19 is August 31, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Wang, Rui-Sheng; Loscalzo, Joseph
2018-05-20
Understanding the genetic basis of complex diseases is challenging. Prior work shows that disease-related proteins do not typically function in isolation. Rather, they often interact with each other to form a network module that underlies dysfunctional mechanistic pathways. Identifying such disease modules will provide insights into a systems-level understanding of molecular mechanisms of diseases. Owing to the incompleteness of our knowledge of disease proteins and limited information on the biological mediators of pathobiological processes, the key proteins (seed proteins) for many diseases appear scattered over the human protein-protein interactome and form a few small branches, rather than coherent network modules. In this paper, we develop a network-based algorithm, called the Seed Connector algorithm (SCA), to pinpoint disease modules by adding as few additional linking proteins (seed connectors) to the seed protein pool as possible. Such seed connectors are hidden disease module elements that are critical for interpreting the functional context of disease proteins. The SCA aims to connect seed disease proteins so that disease mechanisms and pathways can be decoded based on predicted coherent network modules. We validate the algorithm using a large corpus of 70 complex diseases and binding targets of over 200 drugs, and demonstrate the biological relevance of the seed connectors. Lastly, as a specific proof of concept, we apply the SCA to a set of seed proteins for coronary artery disease derived from a meta-analysis of large-scale genome-wide association studies and obtain a coronary artery disease module enriched with important disease-related signaling pathways and drug targets not previously recognized. Copyright © 2018 Elsevier Ltd. All rights reserved.
Foss, A.; Cree, I.; Dolin, P.; Hungerford, J.
1999-01-01
BACKGROUND/AIM—There has been no consistent pattern reported on how mortality for uveal melanoma varies with age. This information can be useful to model the complexity of the disease. The authors have examined ocular cancer trends, as an indirect measure for uveal melanoma mortality, to see how rates vary with age and to compare the results with their other studies on predicting metastatic disease. METHODS—Age specific mortality was examined for England and Wales, the USA, and Canada. A log-log model was fitted to the data. The slopes of the log-log plots were used as measure of disease complexity and compared with the results of previous work on predicting metastatic disease. RESULTS—The log-log model provided a good fit for the US and Canadian data, but the observed rates deviated for England and Wales among people over the age of 65 years. The log-log model for mortality data suggests that the underlying process depends upon four rate limiting steps, while a similar model for the incidence data suggests between three and four rate limiting steps. Further analysis of previous data on predicting metastatic disease on the basis of tumour size and blood vessel density would indicate a single rate limiting step between developing the primary tumour and developing metastatic disease. CONCLUSIONS—There is significant underreporting or underdiagnosis of ocular melanoma for England and Wales in those over the age of 65 years. In those under the age of 65, a model is presented for ocular melanoma oncogenesis requiring three rate limiting steps to develop the primary tumour and a fourth rate limiting step to develop metastatic disease. The three steps in the generation of the primary tumour involve two key processes—namely, growth and angiogenesis within the primary tumour. The step from development of the primary to development of metastatic disease is likely to involve a single rate limiting process. PMID:10216060
Östbring, Malin Johansson; Eriksson, Tommy; Petersson, Göran; Hellström, Lina
2018-01-30
Trials of complex interventions are often criticized for being difficult to interpret because the effects of apparently similar interventions vary across studies dependent on context, targeted groups, and the delivery of the intervention. The Motivational Interviewing and Medication Review in Coronary heart disease (MIMeRiC) trial is a randomized controlled trial (RCT) of an intervention aimed at improving pharmacological secondary prevention. Guidelines for the development and evaluation of complex interventions have recently highlighted the need for better reporting of the development of interventions, including descriptions of how the intervention is assumed to work, how this theory informed the process evaluation, and how the process evaluation relates to the outcome evaluation. This paper aims to describe how the intervention was designed and developed. The aim of the process evaluation is to better understand how and why the intervention in the MIMeRiC trial was effective or not effective. The research questions for evaluating the process are based on the conceptual model of change processes assumed in the intervention and will be analyzed by qualitative and quantitative methods. Quantitative data are used to evaluate the medication review in terms of drug-related problems, to describe how patients' beliefs about medicines are affected by the intervention, and to evaluate the quality of motivational interviewing. Qualitative data will be used to analyze whether patients experienced the intervention as intended, how cardiologists experienced the collaboration and intervention, and how the intervention affected patients' overall experience of care after coronary heart disease. The development and piloting of the intervention are described in relation to the theoretical framework. Data for the process evaluation will be collected until March 2018. Some process evaluation questions will be analyzed before, and others will be analyzed after the outcomes of the MIMeRiC RCT are known. This paper describes the framework for the design of the intervention tested in the MIMeRiC trial, development of the intervention from the pilot stage to the complete trial intervention, and the framework and methods for the process evaluation. Providing the protocol of the process evaluation allows prespecification of the processes that will be evaluated, because we hypothesize that they will determine the outcomes of the MIMeRiC trial. This protocol also constitutes a contribution to the new field of process evaluations as made explicit in health services research and clinical trials of complex interventions. ©Malin Johansson Östbring, Tommy Eriksson, Göran Petersson, Lina Hellström. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 30.01.2018.
Integrating Epigenomics into the Understanding of Biomedical Insight.
Han, Yixing; He, Ximiao
2016-01-01
Epigenetics is one of the most rapidly expanding fields in biomedical research, and the popularity of the high-throughput next-generation sequencing (NGS) highlights the accelerating speed of epigenomics discovery over the past decade. Epigenetics studies the heritable phenotypes resulting from chromatin changes but without alteration on DNA sequence. Epigenetic factors and their interactive network regulate almost all of the fundamental biological procedures, and incorrect epigenetic information may lead to complex diseases. A comprehensive understanding of epigenetic mechanisms, their interactions, and alterations in health and diseases genome widely has become a priority in biological research. Bioinformatics is expected to make a remarkable contribution for this purpose, especially in processing and interpreting the large-scale NGS datasets. In this review, we introduce the epigenetics pioneering achievements in health status and complex diseases; next, we give a systematic review of the epigenomics data generation, summarize public resources and integrative analysis approaches, and finally outline the challenges and future directions in computational epigenomics.
Integrating Epigenomics into the Understanding of Biomedical Insight
Han, Yixing; He, Ximiao
2016-01-01
Epigenetics is one of the most rapidly expanding fields in biomedical research, and the popularity of the high-throughput next-generation sequencing (NGS) highlights the accelerating speed of epigenomics discovery over the past decade. Epigenetics studies the heritable phenotypes resulting from chromatin changes but without alteration on DNA sequence. Epigenetic factors and their interactive network regulate almost all of the fundamental biological procedures, and incorrect epigenetic information may lead to complex diseases. A comprehensive understanding of epigenetic mechanisms, their interactions, and alterations in health and diseases genome widely has become a priority in biological research. Bioinformatics is expected to make a remarkable contribution for this purpose, especially in processing and interpreting the large-scale NGS datasets. In this review, we introduce the epigenetics pioneering achievements in health status and complex diseases; next, we give a systematic review of the epigenomics data generation, summarize public resources and integrative analysis approaches, and finally outline the challenges and future directions in computational epigenomics. PMID:27980397
Systems medicine: a new approach to clinical practice.
Cardinal-Fernández, Pablo; Nin, Nicolás; Ruíz-Cabello, Jesús; Lorente, José A
2014-10-01
Most respiratory diseases are considered complex diseases as their susceptibility and outcomes are determined by the interaction between host-dependent factors (genetic factors, comorbidities, etc.) and environmental factors (exposure to microorganisms or allergens, treatments received, etc.) The reductionist approach in the study of diseases has been of fundamental importance for the understanding of the different components of a system. Systems biology or systems medicine is a complementary approach aimed at analyzing the interactions between the different components within one organizational level (genome, transcriptome, proteome), and then between the different levels. Systems medicine is currently used for the interpretation and understanding of the pathogenesis and pathophysiology of different diseases, biomarker discovery, design of innovative therapeutic targets, and the drawing up of computational models for different biological processes. In this review we discuss the most relevant concepts of the theory underlying systems medicine, as well as its applications in the various biological processes in humans. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.
Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease.
Kogan, Feliks; Fan, Audrey P; Gold, Garry E
2016-12-01
Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.
2012-01-01
Background Disease is a major factor driving the evolution of many organisms. In honey bees, selection for social behavioral responses is the primary adaptive process facilitating disease resistance. One such process, hygienic behavior, enables bees to resist multiple diseases, including the damaging parasitic mite Varroa destructor. The genetic elements and biochemical factors that drive the expression of these adaptations are currently unknown. Proteomics provides a tool to identify proteins that control behavioral processes, and these proteins can be used as biomarkers to aid identification of disease tolerant colonies. Results We sampled a large cohort of commercial queen lineages, recording overall mite infestation, hygiene, and the specific hygienic response to V. destructor. We performed proteome-wide correlation analyses in larval integument and adult antennae, identifying several proteins highly predictive of behavior and reduced hive infestation. In the larva, response to wounding was identified as a key adaptive process leading to reduced infestation, and chitin biosynthesis and immune responses appear to represent important disease resistant adaptations. The speed of hygienic behavior may be underpinned by changes in the antenna proteome, and chemosensory and neurological processes could also provide specificity for detection of V. destructor in antennae. Conclusions Our results provide, for the first time, some insight into how complex behavioural adaptations manifest in the proteome of honey bees. The most important biochemical correlations provide clues as to the underlying molecular mechanisms of social and innate immunity of honey bees. Such changes are indicative of potential divergence in processes controlling the hive-worker maturation. PMID:23021491
Parker, Robert; Guarna, M Marta; Melathopoulos, Andony P; Moon, Kyung-Mee; White, Rick; Huxter, Elizabeth; Pernal, Stephen F; Foster, Leonard J
2012-06-29
Disease is a major factor driving the evolution of many organisms. In honey bees, selection for social behavioral responses is the primary adaptive process facilitating disease resistance. One such process, hygienic behavior, enables bees to resist multiple diseases, including the damaging parasitic mite Varroa destructor. The genetic elements and biochemical factors that drive the expression of these adaptations are currently unknown. Proteomics provides a tool to identify proteins that control behavioral processes, and these proteins can be used as biomarkers to aid identification of disease tolerant colonies. We sampled a large cohort of commercial queen lineages, recording overall mite infestation, hygiene, and the specific hygienic response to V. destructor. We performed proteome-wide correlation analyses in larval integument and adult antennae, identifying several proteins highly predictive of behavior and reduced hive infestation. In the larva, response to wounding was identified as a key adaptive process leading to reduced infestation, and chitin biosynthesis and immune responses appear to represent important disease resistant adaptations. The speed of hygienic behavior may be underpinned by changes in the antenna proteome, and chemosensory and neurological processes could also provide specificity for detection of V. destructor in antennae. Our results provide, for the first time, some insight into how complex behavioural adaptations manifest in the proteome of honey bees. The most important biochemical correlations provide clues as to the underlying molecular mechanisms of social and innate immunity of honey bees. Such changes are indicative of potential divergence in processes controlling the hive-worker maturation.
Community Size Effects on Epidemic Spreading in Multiplex Social Networks.
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people's reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals' alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals' risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals' protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes.
Community Size Effects on Epidemic Spreading in Multiplex Social Networks
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people’s reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals’ alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals’ risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals’ protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes. PMID:27007112
Norris, Shane A; Ho, Julius Cheah Chee; Rashed, Aswir Abd; Vinding, Vibeke; Skau, Jutta K H; Biesma, Regien; Aagaard-Hansen, Jens; Hanson, Mark; Matzen, Priya
2016-11-17
Malaysia is experiencing a nutrition transition with burgeoning obesity, particularly in women, and a growing prevalence of non-communicable disease. These health burdens have severe implications not only for adult health but also across generations. Pre-conception health promotion could address the intergenerational risk of metabolic disease. This paper describes the development of the "Jom Mama" intervention using Intervention Mapping (IM). The Jom Mama intervention aims to improve the health of young adult couples in Malaysia prior to conception. IM comprises of five steps prior to the last one, which involves the evaluation of the intervention. We used the five steps to develop the Jom Mama intervention. Both the process and evidence is documented providing the rationale to the selection of the key objectives of the intervention: (i) increasing healthy dietary practice; (ii) increasing physical activity levels, (iii) reducing sedentary activity; and (iv) improving social support to offset stressful lifestyles. From the IM process, Jom Mama will be health-system centred approach that uniquely combines both community health promoters and an electronic-health platform to deliver the complex intervention. IM is an iterative process that systematically gathers "best" evidence, selects appropriate theories of behaviour change, and facilitates formative research so as to develop a complex intervention. Though the IM process is time consuming, complex, and costly, it has enriched the Jom Mama intervention with a number of notable advantages: (i) intervention fashioned on formative work with stakeholders and in the target group; (ii) intervention combines research evidence with theory; (iii) intervention acknowledges multiple dynamics of influence; and (iv) intervention is embedded within health service priorities in Malaysia for greater scale-up possibility.
Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mena, Natalia P.; Millennium Institute of Cell Dynamics and Biotechnology, Santiago; Bulteau, Anne Laure
2011-06-03
Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters aremore » involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease.« less
Complexity and Health Coaching: Synergies in Nursing
Mitchell, Gail J.; Wong, Winnie; Rush, Danica
2013-01-01
Health care professionals are increasingly aware that persons are complex and live in relation with other complex human communities and broader systems. Complex beings and systems are living and evolving in nonlinear ways through a process of mutual influence. Traditional standardized approaches in chronic disease management do not address these non-linear linkages and the meaning and changes that impact day-to-day life and caring for self and family. The RN health coach role described in this paper addresses the complexities and ambiguities for persons living with chronic illness in order to provide person-centered care and support that are unique and responsive to the context of persons' lives. Informed by complexity thinking and relational inquiry, the RN health coach is an emergent innovation of creative action with community and groups that support persons as they shape their health and patterns of living. PMID:24102025
Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni
2014-01-01
Ectopic mineralization of connective tissues is a complex process leading to deposition of calcium phosphate complexes in the extracellular matrix, particularly affecting the skin and the arterial blood vessels and common in age-associated disorders. A number of initiating and contributing metabolic and environmental factors are linked to aberrant mineralization in these diseases, making the identification of precise pathomechanistic pathways exceedingly difficult. However, there has been significant recent progress in understanding the ectopic mineralization processes through study of heritable single-gene disorders, which have allowed identification of discrete pathways and contributing factors leading to aberrant connective tissue mineralization. These studies have provided support for the concept of an intricate mineralization/anti-mineralization network present in peripheral connective tissues, providing a perspective to development of pharmacologic approaches to limit the phenotypic consequences of ectopic mineralization. This overview summarizes the current knowledge of ectopic heritable mineralization disorders, with accompanying animal models, focusing on pseudoxanthoma elasticum and generalized arterial calcification of infancy, two autosomal recessive diseases manifesting with extensive connective tissue mineralization in the skin and the cardiovascular system. © 2013.
Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni
2013-01-01
Ectopic mineralization of connective tissues is a complex process leading to deposition of calcium phosphate complexes in the extracellular matrix, particularly affecting the skin and the arterial blood vessels and common in age-associated disorders. A number of initiating and contributing metabolic and environmental factors are linked to aberrant mineralization in these diseases, making the identification of precise pathomechanistic pathways exceedingly difficult. However, there has been significant recent progress in understanding the ectopic mineralization processes through study of heritable single-gene disorders, which have allowed identification of discreet pathways and contributing factors leading to aberrant connective tissue mineralization. These studies have provided support for the concept of an intricate mineralization/anti-mineralization network present in peripheral connective tissues, providing a perspective to development of pharmacologic approaches to limit the phenotypic consequences of ectopic mineralization. This overview summarizes the current knowledge of ectopic heritable mineralization disorders, with accompanying animal models, focusing on pseudoxanthoma elasticum and generalized arterial calcification of infancy, two autosomal recessive diseases manifesting with extensive connective tissue mineralization in the skin and the cardiovascular system. PMID:23891698
Ahmed-Popova, Ferihan M; Mantarkov, Mladen J; Sivkov, Stefan T; Akabaliev, Valentin H
2014-01-01
Dermatoglyphic pattern formation and differentiation are complex processes which have been in the focus of research interest ever since dermatoglyphics became a science. The patterns' early differentiation and genetic uniqueness as well as the relatively simple methods used to obtain and store fingerprints make it possible to study the relationship between certain dermatoglyphic characteristics and the underlying pathological processes in a number of diseases, including mental disorders. The present review reports published data from fundamental and clinical studies on dermatoglyphics primarily in schizophrenia and bipolar disorder to lend additional support for the neurodevelopmental hypothesis in the etiology of these disorders. Following an analysis of the theories of dermatoglyphics formation and the complex association between ridge patterns and central nervous system in early embryogenesis, an attempt is made to present dermatoglyphics as possible biological markers of impaired neurodevelopment. The contradictory data in the literature on dermatoglyphics in mental disorders suggest the need for further studies on these biological markers in order to identify their place in the neurodevelopmental etiological model of these diseases.
Glasgow, Nicholas J; Wells, Robert; Butler, James; Gear, Anna
2008-04-21
To review the literature on the effectiveness of competency-based education (CBE) as a means of equipping the Australian general practice workforce to deliver optimal chronic disease outcomes to articulate policy options for the Australian context. Systematic review of the literature (1991-2005) using a narrative approach followed by analysis of the findings using the actors/context/ processes/content framework of Buse et al. Few high-quality studies were identified. National policy options include incorporating clear statements about education and training, research and evaluation in any policy document targeting chronic disease; and provision of funding to enhance general practice teaching facilities and/or facilitate the development of supportive coordinating and administrative structures for training practices. Designers of CBE should consider five key questions: Are the educational objectives of the CBE clearly aligned with the chronic disease or workforce-related outcomes of interest? Is the design of the CBE sound? Have similar educational programs targeting the same outcomes been identified and every attempt made to maximise synergies between programs? Are the educational designers fully aware of and working within the existing complexity of the training environment? Are all involved in the program actively managing the process of change? Policy options range from those relatively simple and achievable to more complex and difficult. The full report is available at http://www.anu.edu.au/aphcri/Domain/Workforce/final_25_glasgow.pdf.
Fahmi, Fahmi; Nasution, Tigor H; Anggreiny, Anggreiny
2017-01-01
The use of medical imaging in diagnosing brain disease is growing. The challenges are related to the big size of data and complexity of the image processing. High standard of hardware and software are demanded, which can only be provided in big hospitals. Our purpose was to provide a smart cloud system to help diagnosing brain diseases for hospital with limited infrastructure. The expertise of neurologists was first implanted in cloud server to conduct an automatic diagnosis in real time using image processing technique developed based on ITK library and web service. Users upload images through website and the result, in this case the size of tumor was sent back immediately. A specific image compression technique was developed for this purpose. The smart cloud system was able to measure the area and location of tumors, with average size of 19.91 ± 2.38 cm2 and an average response time 7.0 ± 0.3 s. The capability of the server decreased when multiple clients accessed the system simultaneously: 14 ± 0 s (5 parallel clients) and 27 ± 0.2 s (10 parallel clients). The cloud system was successfully developed to process and analyze medical images for diagnosing brain diseases in this case for tumor.
Settling the score: variant prioritization and Mendelian disease
Eilbeck, Karen; Quinlan, Aaron; Yandell, Mark
2018-01-01
When investigating Mendelian disease using exome or genome sequencing, distinguishing disease-causing genetic variants from the multitude of candidate variants is a complex, multidimensional task. Many prioritization tools and online interpretation resources exist, and professional organizations have offered clinical guidelines for review and return of prioritization results. In this Review, we describe the strengths and weaknesses of widely used computational approaches, explain their roles in the diagnostic and discovery process and discuss how they can inform (and misinform) expert reviewers. We place variant prioritization in the wider context of gene prioritization, burden testing and genotype–phenotype association, and we discuss opportunities and challenges introduced by whole-genome sequencing. PMID:28804138
Impact of age on markers of HIV-1 disease
Pirrone, Vanessa; Libon, David J; Sell, Christian; Lerner, Chad A; Nonnemacher, Michael R; Wigdahl, Brian
2013-01-01
Aging is a complicated process characterized by a progressive loss of homeostasis, which results in an increased vulnerability to multiple diseases. HIV-1-infected patients demonstrate a premature aging phenotype and develop certain age-related diseases earlier in their lifespan than what is seen in the general population. Age-related comorbidities may include the development of bone disease, metabolic disorders, neurologic impairment and immunosenescence. Age also appears to have an effect on traditional markers of HIV-1 disease progression, including CD4+ T-cell count and viral load. These effects are not only a consequence of HIV-1 infection, but in many cases, are also linked to antiretroviral therapy. This review summarizes the complex interplay between HIV-1 infection and aging, and the impact that aging has on markers of HIV-1 disease. PMID:23596462
Harel, Itamar; Brunet, Anne
2015-01-01
Why and how organisms age remains a mystery, and it defines one of the biggest challenges in biology. Aging is also the primary risk factor for many human pathologies, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. Thus, manipulating the aging rate and potentially postponing the onset of these devastating diseases could have a tremendous impact on human health. Recent studies, relying primarily on nonvertebrate short-lived model systems, have shown the importance of both genetic and environmental factors in modulating the aging rate. However, relatively little is known about aging in vertebrates or what processes may be unique and specific to these complex organisms. Here we discuss how advances in genomics and genome editing have significantly expanded our ability to probe the aging process in a vertebrate system. We highlight recent findings from a naturally short-lived vertebrate, the African turquoise killifish, which provides an attractive platform for exploring mechanisms underlying vertebrate aging and age-related diseases. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Bridging paradigms: hybrid mechanistic-discriminative predictive models.
Doyle, Orla M; Tsaneva-Atansaova, Krasimira; Harte, James; Tiffin, Paul A; Tino, Peter; Díaz-Zuccarini, Vanessa
2013-03-01
Many disease processes are extremely complex and characterized by multiple stochastic processes interacting simultaneously. Current analytical approaches have included mechanistic models and machine learning (ML), which are often treated as orthogonal viewpoints. However, to facilitate truly personalized medicine, new perspectives may be required. This paper reviews the use of both mechanistic models and ML in healthcare as well as emerging hybrid methods, which are an exciting and promising approach for biologically based, yet data-driven advanced intelligent systems.
Armand-Ugon, Mercedes; Ansoleaga, Belen; Berjaoui, Sara; Ferrer, Isidro
2017-01-01
It is well established that mitochondrial damage plays a role in the pathophysiology of Alzheimer's disease (AD). However, studies carried out in humans barely contemplate regional differences with disease progression. To study the expression of selected nuclear genes encoding subunits of the mitochondrial complexes and the activity of mitochondrial complexes in AD, in two regions: the entorhinal cortex (EC) and frontal cortex area 8 (FC). Frozen samples from 148 cases processed for gene expression by qRT-PCR and determination of individual activities of mitochondrial complexes I, II, IV and V using commercial kits and home-made assays. Decreased expression of NDUFA2, NDUFB3, UQCR11, COX7C, ATPD, ATP5L and ATP50, covering subunits of complex I, II, IV and V, occurs in total homogenates of the EC in AD stages V-VI when compared with stages I-II. However reduced activity of complexes I, II and V of isolated mitochondria occurs as early as stages I-II when compared with middle-aged individuals in the EC. In contrast, no alterations in the expression of the same genes and no alterations in the activity of mitochondrial complexes are found in the FC in the same series. Different mechanisms of impaired energy metabolism may occur in AD, one of them, represented by the EC, is the result of primary and early alteration of mitochondria; the other one is probably the result, at least in part, of decreased functional input and is represented by hypometabolism in the FC in AD patients aged 86 or younger. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Role of regulatory micro RNAs in type 2 diabetes mellitus-related inflammation.
Hamar, Péter
2012-10-01
Micro RNAs (miRNAs) are small, non-coding RNAs with the function of post-transcriptional gene expression regulation. Micro RNAs may function in networks, forming a complex relationship with diseases. Alterations of specific miRNA levels have significant correlation with diseases of divergent origin, such as diabetes. Type 2 diabetes mellitus (T2DM) has an increasing worldwide epidemic with serious complications. However, T2DM is a chronic process, and from early metabolic alterations to manifest complications decades may pass, during which our diagnostic arsenal is limited. Micro RNAs may thus serve as novel diagnostic tools as well as therapeutic targets in pre-diabetes. Recent Fundings: Micro RNAs (miRNAs) involved in inflammatory processes contributing to the development of type 2 diabetes mellitus (T2DM) published mostly in the past 2 years. MiRNAs are involved in such early diabetic processes as non-alcoholic steatohepatitis (NASH) and inflammation of the visceral adipose tissue. Evidence is emerging regarding the continuous spectrum between type 1 diabetes (T1DM) and T2DM being just 2 endpoints of the same disease with different genetic background. Thus, miRNA regulation of autoimmune components in T2DM may shed new light on pathogenesis. Finally, the involvement of miRNAs in inflammation as a key driving force of diabetic complications is also summarized. Inflammation is emerging as a central pathophysiological process in the development of T2DM. Visceral adipose tissue inflammation and non-alcoholic steatohepatitis together with insulitis are probably the first events leading to a complex metabolic disorder. These early events may be diagnosed or even influenced through our increasing knowledge about the involvement of post-transcriptional gene regulation by miRNAs.
Lung extracellular matrix and redox regulation
Watson, Walter H.; Ritzenthaler, Jeffrey D.; Roman, Jesse
2016-01-01
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an ‘end-stage’ process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation–reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention. PMID:26938939
Pericytes of the neurovascular unit: Key functions and signaling pathways
Sweeney, Melanie D.; Ayyadurai, Shiva; Zlokovic, Berislav V.
2017-01-01
Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles, and post-capillary venules. The central nervous system (CNS) pericytes are uniquely positioned within the neurovascular unit between endothelial cells, astrocytes, and neurons. They integrate, coordinate, and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation, and stem cell activity. Here, we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes, and neurons that control neurovascular functions. We also review the role of pericytes in different CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies. PMID:27227366
Matrix Metalloproteinases as Regulators of Periodontal Inflammation
Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández
2017-01-01
Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules—such as cytokines, chemokines, and growth factors, among others—regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation. PMID:28218665
Matrix Metalloproteinases as Regulators of Periodontal Inflammation.
Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández
2017-02-17
Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.
NASA Astrophysics Data System (ADS)
Morito, Daisuke; Nishikawa, Kouki; Hoseki, Jun; Kitamura, Akira; Kotani, Yuri; Kiso, Kazumi; Kinjo, Masataka; Fujiyoshi, Yoshinori; Nagata, Kazuhiro
2014-03-01
Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell.
Morito, Daisuke; Nishikawa, Kouki; Hoseki, Jun; Kitamura, Akira; Kotani, Yuri; Kiso, Kazumi; Kinjo, Masataka; Fujiyoshi, Yoshinori; Nagata, Kazuhiro
2014-01-01
Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell. PMID:24658080
Interacting epidemics and coinfection on contact networks.
Newman, M E J; Ferrario, Carrie R
2013-01-01
The spread of certain diseases can be promoted, in some cases substantially, by prior infection with another disease. One example is that of HIV, whose immunosuppressant effects significantly increase the chances of infection with other pathogens. Such coinfection processes, when combined with nontrivial structure in the contact networks over which diseases spread, can lead to complex patterns of epidemiological behavior. Here we consider a mathematical model of two diseases spreading through a single population, where infection with one disease is dependent on prior infection with the other. We solve exactly for the sizes of the outbreaks of both diseases in the limit of large population size, along with the complete phase diagram of the system. Among other things, we use our model to demonstrate how diseases can be controlled not only by reducing the rate of their spread, but also by reducing the spread of other infections upon which they depend.
Acute pancreatitis during sickle cell vaso-occlusive painful crisis.
Ahmed, Shahid; Siddiqui, Anita K; Siddiqui, Rina K; Kimpo, Miriam; Russo, Linda; Mattana, Joseph
2003-07-01
Sickle cell disease is characterized by chronic hemolytic anemia and vaso-occlusive painful crisis. The vascular occlusion in sickle cell disease is a complex process and accounts for the majority of the clinical manifestations of the disease. Abdominal pain is an important component of vaso-occlusive painful crisis and may mimic diseases such as acute appendicitis and cholecystitis. Acute pancreatitis is rarely included as a cause of abdominal pain in patients with sickle cell disease. When it occurs it may result form biliary obstruction, but in other instances it might be a consequence of microvessel occlusion causing ischemia. In this series we describe four cases of acute pancreatitis in patients with sickle cell disease apparently due to microvascular occlusion and ischemic injury to the pancreas. All patients responded to conservative management. Acute pancreatitis should be considered in the differential diagnosis of abdominal pain in patients with sickle cell disease. Copyright 2003 Wiley-Liss, Inc.
Ionita-Laza, Iuliana; Ottman, Ruth
2011-11-01
The recent progress in sequencing technologies makes possible large-scale medical sequencing efforts to assess the importance of rare variants in complex diseases. The results of such efforts depend heavily on the use of efficient study designs and analytical methods. We introduce here a unified framework for association testing of rare variants in family-based designs or designs based on unselected affected individuals. This framework allows us to quantify the enrichment in rare disease variants in families containing multiple affected individuals and to investigate the optimal design of studies aiming to identify rare disease variants in complex traits. We show that for many complex diseases with small values for the overall sibling recurrence risk ratio, such as Alzheimer's disease and most cancers, sequencing affected individuals with a positive family history of the disease can be extremely advantageous for identifying rare disease variants. In contrast, for complex diseases with large values of the sibling recurrence risk ratio, sequencing unselected affected individuals may be preferable.
Vinson, Amanda; Prongay, Kamm; Ferguson, Betsy
2013-01-01
Complex diseases (e.g., cardiovascular disease and type 2 diabetes, among many others) pose the biggest threat to human health worldwide and are among the most challenging to investigate. Susceptibility to complex disease may be caused by multiple genetic variants (GVs) and their interaction, by environmental factors, and by interaction between GVs and environment, and large study cohorts with substantial analytical power are typically required to elucidate these individual contributions. Here, we discuss the advantages of both power and feasibility afforded by the use of extended pedigrees of rhesus macaques (Macaca mulatta) for genetic studies of complex human disease based on next-generation sequence data. We present these advantages in the context of previous research conducted in rhesus macaques for several representative complex diseases. We also describe a single, multigeneration pedigree of Indian-origin rhesus macaques and a sample biobank we have developed for genetic analysis of complex disease, including power of this pedigree to detect causal GVs using either genetic linkage or association methods in a variance decomposition approach. Finally, we summarize findings of significant heritability for a number of quantitative traits that demonstrate that genetic contributions to risk factors for complex disease can be detected and measured in this pedigree. We conclude that the development and application of an extended pedigree to analysis of complex disease traits in the rhesus macaque have shown promising early success and that genome-wide genetic and higher order -omics studies in this pedigree are likely to yield useful insights into the architecture of complex human disease. PMID:24174435
Everitt, Ian K; Gerardin, Jennifer F; Rodriguez, Fred H; Book, Wendy M
2017-05-01
The transition and transfer from pediatric to adult care is becoming increasingly important as improvements in the diagnosis and management of congenital heart disease allow patients to live longer. Transition is a complex and continuous process that requires careful planning. Inadequate transition has adverse effects on patients, their families and healthcare delivery systems. Currently, significant gaps exist in patient care as adolescents transfer to adult care and there are little data to drive the informed management of transition and transfer of care in adolescent congenital heart disease patients. Appropriate congenital heart disease care has been shown to decrease mortality in the adult population. This paper reviews the transition and transfer of care processes and outlines current congenital heart disease specific guidelines in the United States and compares these recommendations to Canadian and European guidelines. It then reviews perceived and real barriers to successful transition and identifies predictors of success during transfer to adult congenital heart disease care. Lastly, it explores how disease-specific markers of outcomes and quality indicators are being utilized to guide transition and transfer of care in other chronic childhood illnesses, and identifies existing knowledge gaps and structural impediments to improving the management of transition and transfer among congenital heart disease patients. © 2017 Wiley Periodicals, Inc.
Jonkman, Nini H; Groenwold, Rolf H H; Trappenburg, Jaap C A; Hoes, Arno W; Schuurmans, Marieke J
2017-03-01
Meta-analyses using individual patient data (IPD) rather than aggregated data are increasingly applied to analyze sources of heterogeneity between trials and have only recently been applied to unravel multicomponent, complex interventions. This study reflects on methodological challenges encountered in two IPD meta-analyses on self-management interventions in patients with heart failure or chronic obstructive pulmonary disease. Critical reflection on prior IPD meta-analyses and discussion of literature. Experience from two IPD meta-analyses illustrates methodological challenges. Despite close collaboration with principal investigators, assessing the effect of characteristics of complex interventions on the outcomes of trials is compromised by lack of sufficient details on intervention characteristics and limited data on fidelity and adherence. Furthermore, trials collected baseline variables in a highly diverse way, limiting the possibilities to study subgroups of patients in a consistent manner. Possible solutions are proposed based on lessons learnt from the methodological challenges. Future researchers of complex interventions should pay considerable attention to the causal mechanism underlying the intervention and conducting process evaluations. Future researchers on IPD meta-analyses of complex interventions should carefully consider their own causal assumptions and availability of required data in eligible trials before undertaking such resource-intensive IPD meta-analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.
Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun
2009-09-01
One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.
He, Awen; Wang, Wenyu; Prakash, N Tejo; Tinkov, Alexey A; Skalny, Anatoly V; Wen, Yan; Hao, Jingcan; Guo, Xiong; Zhang, Feng
2018-03-01
Chemical elements are closely related to human health. Extensive genomic profile data of complex diseases offer us a good opportunity to systemically investigate the relationships between elements and complex diseases/traits. In this study, we applied gene set enrichment analysis (GSEA) approach to detect the associations between elements and complex diseases/traits though integrating element-gene interaction datasets and genome-wide association study (GWAS) data of complex diseases/traits. To illustrate the performance of GSEA, the element-gene interaction datasets of 24 elements were extracted from the comparative toxicogenomics database (CTD). GWAS summary datasets of 24 complex diseases or traits were downloaded from the dbGaP or GEFOS websites. We observed significant associations between 7 elements and 13 complex diseases or traits (all false discovery rate (FDR) < 0.05), including reported relationships such as aluminum vs. Alzheimer's disease (FDR = 0.042), calcium vs. bone mineral density (FDR = 0.031), magnesium vs. systemic lupus erythematosus (FDR = 0.012) as well as novel associations, such as nickel vs. hypertriglyceridemia (FDR = 0.002) and bipolar disorder (FDR = 0.027). Our study results are consistent with previous biological studies, supporting the good performance of GSEA. Our analyzing results based on GSEA framework provide novel clues for discovering causal relationships between elements and complex diseases. © 2017 WILEY PERIODICALS, INC.
System Dynamics Modeling for Public Health: Background and Opportunities
Homer, Jack B.; Hirsch, Gary B.
2006-01-01
The systems modeling methodology of system dynamics is well suited to address the dynamic complexity that characterizes many public health issues. The system dynamics approach involves the development of computer simulation models that portray processes of accumulation and feedback and that may be tested systematically to find effective policies for overcoming policy resistance. System dynamics modeling of chronic disease prevention should seek to incorporate all the basic elements of a modern ecological approach, including disease outcomes, health and risk behaviors, environmental factors, and health-related resources and delivery systems. System dynamics shows promise as a means of modeling multiple interacting diseases and risks, the interaction of delivery systems and diseased populations, and matters of national and state policy. PMID:16449591
Why infectious disease research needs community ecology
Johnson, Pieter T. J.; de Roode, Jacobus C.; Fenton, Andy
2016-01-01
Infectious diseases often emerge from interactions among multiple species and across nested levels of biological organization. Threats as diverse as Ebola virus, human malaria, and bat white-nose syndrome illustrate the need for a mechanistic understanding of the ecological interactions underlying emerging infections. We describe how recent advances in community ecology can be adopted to address contemporary challenges in disease research. These analytical tools can identify the factors governing complex assemblages of multiple hosts, parasites, and vectors, and reveal how processes link across scales from individual hosts to regions. They can also determine the drivers of heterogeneities among individuals, species, and regions to aid targeting of control strategies. We provide examples where these principles have enhanced disease management and illustrate how they can be further extended. PMID:26339035
Juvenile dermatomyositis: new insights and new treatment strategies
Martin, Neil; Li, Charles K.
2012-01-01
Juvenile dermatomyositis (JDM) is a rare but complex and potentially life-threatening autoimmune disease of childhood, primarily affecting proximal muscles and skin. Although the cause of JDM remains unknown it is clear that genetic and environmental influences play a role in the aetiology. In contrast to adults with dermatomyositis, children with JDM are more likely to have complications that are thought to indicate a vasculopathic process, such as severe skin disease, with ulceration or calcinosis, gut vasculopathy or central nervous system disease. New treatments are much needed and are becoming available and being tested through international multicentre trials. This review will focus on recent insights into pathogenesis, the assessment of the disease in children and the modern approach to its treatment. PMID:22870494
Visfatin and cardio-cerebro-vascular disease.
Wang, Pei; Vanhoutte, Paul M; Miao, Chao-Yu
2012-01-01
Nicotinamide phosphoribosyltransferase is the rate-limiting enzyme that catalyzes the first step in the biosynthesis of nicotinamide adenine dinucleotide from nicotinamide. This protein was originally cloned as a putative pre-B cell colony-enhancing factor and also found to be a visceral fat-derived adipokine (visfatin). As a multifunctional protein, visfatin plays an important role in immunity, metabolism, aging, inflammation, and responses to stress. Visfatin also participates in several pathophysiological processes contributing to cardio-cerebro-vascular diseases, including hypertension, atherosclerosis, ischemic heart disease, and ischemic stroke. However, whether visfatin is a friend or a foe in these diseases remains uncertain. This brief review focuses on the current understanding of the complex role of visfatin in the cardio-cerebro-vascular system under normal and pathophysiological conditions.
Shuai, Jianfei; Kim, Sunshin; Ryu, Hyeonsu; Park, Jinhyeon; Lee, Chae Kwan; Kim, Geun-Bae; Ultra, Venecio U; Yang, Wonho
2018-04-20
Studying human health in areas with industrial contamination is a serious and complex issue. In recent years, attention has increasingly focused on the health implications of large industrial complexes. A variety of potential toxic chemicals have been produced during manufacturing processes and activities in industrial complexes in South Korea. A large number of dyeing industries gathered together in Daegu dyeing industrial complex. The residents near the industrial complex could be often exposed to volatile organic compounds. This study aimed to evaluate VOCs levels in the ambient air of DDIC, to assess the impact on human health risks, and to find more convincing evidences to prove these VOCs emitted from DDIC. According to deterministic risk assessment, inhalation was the most important route. Residential indoor, outdoor and personal exposure air VOCs were measured by passive samplers in exposed area and controlled area in different seasons. Satisfaction with ambient environments and self-reported diseases were also obtained by questionnaire survey. The VOCs concentrations in exposed area and controlled area was compared by t-test. The relationships among every VOC were tested by correlation. The values of hazard quotient (HQ) and life cancer risk were estimated. The concentrations of measured VOCs were presented, moreover, the variety of concentrations according the distances from the residential settings to the industrial complex site in exposed area. The residential indoor, outdoor, and personal exposure concentrations of toluene, DMF and chloroform in exposed area were significantly higher than the corresponding concentrations in controlled area both in summer and autumn. Toluene, DMF, chloroform and MEK had significantly positive correlations with each other in indoor and outdoor, and even in personal exposure. The HQ for DMF exceeded 1, and the life cancer risk of chloroform was greater than 10 - 4 in exposed area. The prevalence of respiratory diseases, anaphylactic diseases and cardiovascular diseases in exposed area were significantly higher than in controlled area. This study showed that adverse cancer and non-cancer health effects may occur by VOCs emitted from DDIC, and some risk managements are needed. Moreover, this study provides a convenient preliminarily method for pollutants source characteristics.
Scorisa, Juliana M.; Freria, Camila M.; Victorio, Sheila C.; Barbizan, Roberta; Zanon, Renata G.; Oliveira, Alexandre L. R.
2011-01-01
The recent discovery that the major histocompatibility complex of class I (MHC I) expression has a role in the synaptic elimination process, represented an insight into understanding the cross talk between neurons. In the present study, the possibility that glatiramer acetate (GA) treatment influences the MHC class I expression and the synaptic plasticity process in the spinal cord during the course of EAE was investigated. C57BL/6J mice were induced to EAE and submitted to treatment either with a placebo solution or with GA (0.05mg/animal, subcutaneously, on a daily basis). All the animals were sacrificed at the peak disease (14 days after induction) or at the point of recovery of the clinical signs (21 days after induction). The spinal cords were removed and submitted to immunohistochemical examination, Western blotting and transmission electron microscopy analysis. The results showed that GA treatment was able to decrease synaptic loss during the course of EAE, which correlates with the downregulation of the MHC I complex. The present results reinforce the neuroprotective role of GA treatment, by reducing synaptic loss during the course of the disease. Such action may be associated with the recently described role of MHC I regulation during the synaptic plasticity process. PMID:22043176
Development of the infant intestinal microbiome: A bird's eye view of a complex process.
Meropol, Sharon B; Edwards, Amy
2015-12-01
Infants undergo profound shifts in colonizing intestinal microorganisms during their first year, especially during and after birth and during weaning. Microbiota are passed to infants through the placenta, during the vaginal birth process, and from early diet and other environmental exposures. These microbiota play an active role in the development of healthy infant metabolic and immunologic systems; profound shifts in microbiotal populations can be persistent, are associated with immediate alterations in gene expression, metabolic, immunologic, and neurologic function, and with downstream metabolic and immunologic consequences such as obesity, allergies, asthma, autoimmune diseases, and potentially neurologic conditions. Many modern exposures, including Cesarean section, formula feeding, and antibiotics, have been associated with microbiome shifts, and also with downstream diseases; while many published studies considered exposures individually, a more comprehensive understanding of their interaction and impact will consider the entirety of the infant's environment. It is not possible, nor desirable, to return to a world without toilets, sewers, tap water, delivery room antisepsis, Cesarean sections, antibiotics, immunizations, and refrigerators; our other alternative is to better understand these complex changes in infant developmental and molecular physiology. Protecting and repairing the developmental processes of the healthy infant microbiome is the modern medical frontier. © 2015 Wiley Periodicals, Inc.
Mason, Sarah L; Zhang, Jiaxiang; Begeti, Faye; Guzman, Natalie Valle; Lazar, Alpar S; Rowe, James B; Barker, Roger A; Hampshire, Adam
2015-04-01
Deficits in emotional processing can be detected in the pre-manifest stage of Huntington's disease and negative emotion recognition has been identified as a predictor of clinical diagnosis. The underlying neuropathological correlates of such deficits are typically established using correlative structural MRI studies. This approach does not take into consideration the impact of disruption to the complex interactions between multiple brain circuits on emotional processing. Therefore, exploration of the neural substrates of emotional processing in pre-manifest HD using fMRI connectivity analysis may be a useful way of evaluating the way brain regions interrelate in the period prior to diagnosis. We investigated the impact of predicted time to disease onset on brain activation when participants were exposed to pictures of faces with angry and neutral expressions, in 20 pre-manifest HD gene carriers and 23 healthy controls. On the basis of the results of this initial study went on to look at amygdala dependent cognitive performance in 79 Huntington's disease patients from a cross-section of disease stages (pre-manifest to late disease) and 26 healthy controls, using a validated theory of mind task: "the Reading the Mind in the Eyes Test" which has been previously been shown to be amygdala dependent. Psychophysiological interaction analysis identified reduced connectivity between the left amygdala and right fusiform facial area in pre-manifest HD gene carriers compared to controls when viewing angry compared to neutral faces. Change in PPI connectivity scores correlated with predicted time to disease onset (r=0.45, p<0.05). Furthermore, performance on the "Reading the Mind in the Eyes Test" correlated negatively with proximity to disease onset and became progressively worse with each stage of disease. Abnormalities in the neural networks underlying social cognition and emotional processing can be detected prior to clinical diagnosis in Huntington's disease. Connectivity between the amygdala and other brain regions is impacted by the disease process in pre-manifest HD and may therefore be a useful way of identifying participants who are approaching a clinical diagnosis. Furthermore, the "Reading the Mind in the Eyes Test" is a surrogate measure of amygdala function that is clinically useful across the entire cross-section of disease stages in HD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Genetic Markers of Cardiovascular Disease in Rheumatoid Arthritis
Rodríguez-Rodríguez, Luis; López-Mejías, Raquel; García-Bermúdez, Mercedes; González-Juanatey, Carlos; González-Gay, Miguel A.; Martín, Javier
2012-01-01
Cardiovascular (CV) disease is the most common cause of premature mortality in patients with rheumatoid arthritis (RA). It is the result of an accelerated atherosclerotic process. Both RA and atherosclerosis are complex polygenic diseases. Besides traditional CV risk factors and chronic inflammation, a number of studies have confirmed the role of genetic factors in the development of the atherogenesis observed in RA. In this regard, besides a strong association between the HLA-DRB1∗04 shared epitope alleles and both endothelial dysfunction, an early step in the atherosclerotic process, and clinically evident CV disease, other polymorphisms belonging to genes implicated in inflammatory and metabolic pathways, located inside and outside the HLA region, such as the 308 variant (G > A, rs1800629) of the TNFA locus, the rs1801131 polymorphism (A > C; position + 1298) of the MTHFR locus, or a deletion of 32 base pairs on the CCR5 gene, seem to be associated with the risk of CV disease in patients with RA. Despite considerable effort to decipher the genetic basis of CV disease in RA, further studies are required to better establish the genetic influence in the increased risk of CV events observed in patients with RA. PMID:22927710
Testa, Claudia M; Sherer, Todd B; Greenamyre, J Timothy
2005-03-24
Rotenone, a pesticide and complex I inhibitor, causes nigrostriatal degeneration similar to Parkinson disease pathology in a chronic, systemic, in vivo rodent model [M. Alam, W.J. Schmidt, Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats, Behav. Brain Res. 136 (2002) 317-324; R. Betarbet, T.B. Sherer, G. MacKenzie, M. Garcia-Osuna, A.V. Panov, J.T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci. 3 (2000) 1301-1306; S.M. Fleming, C. Zhu, P.O. Fernagut, A. Mehta, C.D. DiCarlo, R.L. Seaman, M.F. Chesselet, Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone, Exp. Neurol. 187 (2004) 418-429; T.B. Sherer, J.H. Kim, R. Betarbet, J.T. Greenamyre, Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation, Exp. Neurol. 179 (2003) 9-16.]. To better investigate the role of mitochondria and complex I inhibition in chronic, progressive neurodegenerative disease, we developed methods for long-term culture of rodent postnatal midbrain organotypic slices. Chronic complex I inhibition over weeks by low dose (10-50 nM) rotenone in this system lead to dose- and time-dependent destruction of substantia nigra pars compacta neuron processes, morphologic changes, some neuronal loss, and decreased tyrosine hydroxylase (TH) protein levels. Chronic complex I inhibition also caused oxidative damage to proteins, measured by protein carbonyl levels. This oxidative damage was blocked by the antioxidant alpha-tocopherol (vitamin E). At the same time, alpha-tocopherol also blocked rotenone-induced reductions in TH protein and TH immunohistochemical changes. Thus, oxidative damage is a primary mechanism of mitochondrial toxicity in intact dopaminergic neurons. The organotypic culture system allows close study of this and other interacting mechanisms over a prolonged time period in mature dopaminergic neurons with intact processes, surrounding glia, and synaptic connections.
Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P
2015-10-01
The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.
Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.
Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C
2015-11-05
The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.
Functional dynamics within the human ribosome regulate the rate of active protein synthesis
Ferguson, Angelica; Wang, Leyi; Altman, Roger B.; Terry, Daniel S.; Juette, Manuel F.; Burnett, Benjamin J.; Alejo, Jose L.; Dass, Randall A.; Parks, Matthew M.; Vincent, Theresa C.; Blanchard, Scott C.
2015-01-01
SUMMARY The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule FRET methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. PMID:26593721
Tran, Elizabeth J.; King, Megan C.; Corbett, Anita H.
2014-01-01
Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18-23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field. PMID:25116306
Chang, Tao-Hsin; Hsieh, Fu-Lien; Zebisch, Matthias; Harlos, Karl; Elegheert, Jonathan; Jones, E Yvonne
2015-01-01
Wnt signalling regulates multiple processes including angiogenesis, inflammation, and tumorigenesis. Norrin (Norrie Disease Protein) is a cystine-knot like growth factor. Although unrelated to Wnt, Norrin activates the Wnt/β-catenin pathway. Signal complex formation involves Frizzled4 (Fz4), low-density lipoprotein receptor related protein 5/6 (Lrp5/6), Tetraspanin-12 and glycosaminoglycans (GAGs). Here, we report crystallographic and small-angle X-ray scattering analyses of Norrin in complex with Fz4 cysteine-rich domain (Fz4CRD), of this complex bound with GAG analogues, and of unliganded Norrin and Fz4CRD. Our structural, biophysical and cellular data, map Fz4 and putative Lrp5/6 binding sites to distinct patches on Norrin, and reveal a GAG binding site spanning Norrin and Fz4CRD. These results explain numerous disease-associated mutations. Comparison with the Xenopus Wnt8–mouse Fz8CRD complex reveals Norrin mimics Wnt for Frizzled recognition. The production and characterization of wild-type and mutant Norrins reported here open new avenues for the development of therapeutics to combat abnormal Norrin/Wnt signalling. DOI: http://dx.doi.org/10.7554/eLife.06554.001 PMID:26158506
Transcription regulation by the Mediator complex.
Soutourina, Julie
2018-04-01
Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.
What can complexity do for diabetes management? Linking theory to practice.
Cooper, Helen C; Geyer, Robert
2009-08-01
Diabetes presents a multifaceted picture with its rapidly rising prevalence associated with changing demographics and increasing levels of obesity in the developed world. Deaths from diabetes are predicted to rise by 25% over the next 10 years. The enormity of this public health challenge has been recognized the world over, but little attention has been paid to the theoretical frameworks underpinning practical management. This paper aims to introduce complexity theory and discuss its practical application to diabetes, focusing on a single 'tool' to provide an example of how theory can be linked to practice. Critics have questioned the all inclusive nature of complexity seeing it as an intangible concept that fails to offer anything new to health care. However, few have appraised its practical application to a chronic disease that is currently managed using an outdated, linear, reduce and resolve model which fails to address the multiple interacting systems inherent within this condition. This article proposes that complexity theory provides an interprofessional perspective for describing and understanding the processes involved, and provides working 'tools' for patients, carers and practitioners that capture the reality of managing this chronic disease in modern life.
Oxidative Stress and Immune System in Vitiligo and Thyroid Diseases
Colucci, Roberta; Dragoni, Federica
2015-01-01
Vitiligo is an acquired dermatological disease frequently associated with autoimmune thyroid disorders. Several theories have been proposed so far to unravel the complex vitiligo pathogenesis. Currently, the autocytotoxic and the autoimmune theories are the most accredited hypothesis, since they are sustained by several important clinical and experimental evidences. A growing body of evidences shows that autoimmunity and oxidative stress strictly interact to finally determine melanocyte loss. In this scenario, associated thyroid autoimmunity might play an active and important role in triggering and maintaining the depigmentation process of vitiligo. PMID:25838868
B cell biology: implications for treatment of systemic lupus erythematosus.
Anolik, J H
2013-04-01
B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread utilization of B cell depletion therapy in autoimmune diseases and the need for new therapeutic approaches in SLE, a better understanding of human B cell subsets and the balance of pathogenic and regulatory functions is of the essence.
Mediated Plastid RNA Editing in Plant Immunity
García-Andrade, Javier; Ramírez, Vicente; López, Ana; Vera, Pablo
2013-01-01
Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes. PMID:24204264
Consolato, Francesco; Maltecca, Francesca; Tulli, Susanna; Sambri, Irene; Casari, Giorgio
2018-04-09
The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m) - AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m - AAA and i - AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shuxia; Zhou, Hua; Walian, Peter J.
2005-04-06
{gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLamore » cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins, such as APP, CD44, DCC, ErbB4, E-cadherin, LRP, N-cadherin, Nectin-1, and Notch, within their transmembranous regions (2-11); therefore, in addition to its role in AD, {gamma}-secretase has been found to participate in other important biological functions, such as intracellular signaling. {gamma}-secretase processing of APP requires prior removal of a major fragment of the APP extracellular domain (sAPP{sub {beta}}) by {beta}-secretase to yield a membrane bound fragment (APP CTF{sub {beta}}). Subsequent cleavage of this membrane bound fragment by {gamma}-secretase results in the release of the Alzheimer's disease (AD) associated amyloid {beta}-peptides (12). The proteolytic activity of {gamma}-secretase is found not to be critically dependent on the specific sequence, but instead on the size of the extracellular domain (13); such sequence independent characteristics of the substrate are reminiscent of those of the 26S proteasome complex that cleaves substrates in a non-sequence specific manner. {gamma}-secretase is present in almost all animal species, vertebrates and invertebrates; it is expressed in many human organs and tissues.« less
Simple versus complex degenerative mitral valve disease.
Javadikasgari, Hoda; Mihaljevic, Tomislav; Suri, Rakesh M; Svensson, Lars G; Navia, Jose L; Wang, Robert Z; Tappuni, Bassman; Lowry, Ashley M; McCurry, Kenneth R; Blackstone, Eugene H; Desai, Milind Y; Mick, Stephanie L; Gillinov, A Marc
2018-07-01
At a center where surgeons favor mitral valve (MV) repair for all subsets of leaflet prolapse, we compared results of patients undergoing repair for simple versus complex degenerative MV disease. From January 1985 to January 2016, 6153 patients underwent primary isolated MV repair for degenerative disease, 3101 patients underwent primary isolated MV repair for simple disease (posterior prolapse), and 3052 patients underwent primary isolated MV repair for complex disease (anterior or bileaflet prolapse), based on preoperative echocardiographic images. Logistic regression analysis was used to generate propensity scores for risk-adjusted comparisons (n = 2065 matched pairs). Durability was assessed by longitudinal recurrence of mitral regurgitation and reoperation. Compared with patients with simple disease, those undergoing repair of complex pathology were more likely to be younger and female (both P values < .0001) but with similar symptoms (P = .3). The most common repair technique was ring/band annuloplasty (3055/99% simple vs 3000/98% complex; P = .5), followed by leaflet resection (2802/90% simple vs 2249/74% complex; P < .0001). Among propensity-matched patients, recurrence of severe mitral regurgitation 10 years after repair was 6.2% for simple pathology versus 11% for complex pathology (P = .007), reoperation at 18 years was 6.3% for simple pathology versus 11% for complex pathology, and 20-year survival was 62% for simple pathology versus 61% for complex pathology (P = .6). Early surgical intervention has become more common in patients with degenerative MV disease, regardless of valve prolapse complexity or symptom status. Valve repair was associated with similarly low operative risk and time-related survival but less durability in complex disease. Lifelong annual echocardiographic surveillance after MV repair is recommended, particularly in patients with complex disease. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
A novel approach to simulate gene-environment interactions in complex diseases.
Amato, Roberto; Pinelli, Michele; D'Andrea, Daniel; Miele, Gennaro; Nicodemi, Mario; Raiconi, Giancarlo; Cocozza, Sergio
2010-01-05
Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.
Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.
Tan, Chris Soon Heng; Go, Ka Diam; Bisteau, Xavier; Dai, Lingyun; Yong, Chern Han; Prabhu, Nayana; Ozturk, Mert Burak; Lim, Yan Ting; Sreekumar, Lekshmy; Lengqvist, Johan; Tergaonkar, Vinay; Kaldis, Philipp; Sobota, Radoslaw M; Nordlund, Pär
2018-03-09
Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Sahakyan, Aleksandr B; Balasubramanian, Shankar
2016-03-12
The role of random mutations and genetic errors in defining the etiology of cancer and other multigenic diseases has recently received much attention. With the view that complex genes should be particularly vulnerable to such events, here we explore the link between the simple properties of the human genes, such as transcript length, number of splice variants, exon/intron composition, and their involvement in the pathways linked to cancer and other multigenic diseases. We reveal a substantial enrichment of cancer pathways with long genes and genes that have multiple splice variants. Although the latter two factors are interdependent, we show that the overall gene length and splicing complexity increase in cancer pathways in a partially decoupled manner. Our systematic survey for the pathways enriched with top lengthy genes and with genes that have multiple splice variants reveal, along with cancer pathways, the pathways involved in various neuronal processes, cardiomyopathies and type II diabetes. We outline a correlation between the gene length and the number of somatic mutations. Our work is a step forward in the assessment of the role of simple gene characteristics in cancer and a wider range of multigenic diseases. We demonstrate a significant accumulation of long genes and genes with multiple splice variants in pathways of multigenic diseases that have already been associated with de novo mutations. Unlike the cancer pathways, we note that the pathways of neuronal processes, cardiomyopathies and type II diabetes contain genes long enough for topoisomerase-dependent gene expression to also be a potential contributing factor in the emergence of pathologies, should topoisomerases become impaired.
Defining dysbiosis and its influence on host immunity and disease
Petersen, Charisse; Round, June L
2014-01-01
Mammalian immune system development depends on instruction from resident commensal microorganisms. Diseases associated with abnormal immune responses towards environmental and self antigens have been rapidly increasing over the last 50 years. These diseases include inflammatory bowel disease (IBD), multiple sclerosis (MS), type I diabetes (T1D), allergies and asthma. The observation that people with immune mediated diseases house a different microbial community when compared to healthy individuals suggests that pathogenesis arises from improper training of the immune system by the microbiota. However, with hundreds of different microorganisms on our bodies it is hard to know which of these contribute to health and more importantly how? Microbiologists studying pathogenic organisms have long adhered to Koch's postulates to directly relate a certain disease to a specific microbe, raising the question of whether this might be true of commensal–host relationships as well. Emerging evidence supports that rather than one or two dominant organisms inducing host health, the composition of the entire community of microbial residents influences a balanced immune response. Thus, perturbations to the structure of complex commensal communities (referred to as dysbiosis) can lead to deficient education of the host immune system and subsequent development of immune mediated diseases. Here we will overview the literature that describes the causes of dysbiosis and the mechanisms evolved by the host to prevent these changes to community structure. Building off these studies, we will categorize the different types of dysbiosis and define how collections of microorganisms can influence the host response. This research has broad implications for future therapies that go beyond the introduction of a single organism to induce health. We propose that identifying mechanisms to re-establish a healthy complex microbiota after dysbiosis has occurred, a process we will refer to as rebiosis, will be fundamental to treating complex immune diseases. PMID:24798552
Blood Sampling and Preparation Procedures for Proteomic Biomarker Studies of Psychiatric Disorders.
Guest, Paul C; Rahmoune, Hassan
2017-01-01
A major challenge in proteomic biomarker discovery and validation for psychiatric diseases is the inherent biological complexity underlying these conditions. There are also many technical issues which hinder this process such as the lack of standardization in sampling, processing and storage of bio-samples in preclinical and clinical settings. This chapter describes a reproducible procedure for sampling blood serum and plasma that is specifically designed for maximizing data quality output in two-dimensional gel electrophoresis, multiplex immunoassay and mass spectrometry profiling studies.
Connecting the virtual world of computers to the real world of medicinal chemistry.
Glen, Robert C
2011-03-01
Drug discovery involves the simultaneous optimization of chemical and biological properties, usually in a single small molecule, which modulates one of nature's most complex systems: the balance between human health and disease. The increased use of computer-aided methods is having a significant impact on all aspects of the drug-discovery and development process and with improved methods and ever faster computers, computer-aided molecular design will be ever more central to the discovery process.
Imaging of the meninges and the extra-axial spaces.
Kirmi, Olga; Sheerin, Fintan; Patel, Neel
2009-12-01
The separate meningeal layers and extraaxial spaces are complex and can only be differentiated by pathologic processes on imaging. Differentiation of the location of such processes can be achieved using different imaging modalities. In this pictorial review we address the imaging techniques, enhancement and location patterns, and disease spread that will promote accurate localization of the pathology, thus improving accuracy of diagnosis. Typical and unusual magnetic resonance (MR), computed tomography (CT), and ultrasound imaging findings of many conditions affecting these layers and spaces are described.
Using Contribution Analysis to Evaluate the Impacts of Research on Policy: Getting to "Good Enough"
ERIC Educational Resources Information Center
Riley, Barbara L.; Kernoghan, Alison; Stockton, Lisa; Montague, Steve; Yessis, Jennifer; Willis, Cameron D.
2018-01-01
Assessing societal impacts of research is more difficult than assessing advances in knowledge. Methods to evaluate research impact on policy processes and outcomes are especially underdeveloped, and are needed to optimize the influence of research on policy for addressing complex issues such as chronic diseases. Contribution analysis (CA), a…
Of Heart & Kidneys: Hands-On Activities for Demonstrating Organ Function & Repair
ERIC Educational Resources Information Center
Kao, Robert M.
2014-01-01
A major challenge in teaching organ development and disease is deconstructing a complex choreography of molecular and cellular changes over time into a linear stepwise process for students. As an entry toward learning developmental concepts, I propose two inexpensive hands-on activities to help facilitate learning of (1) how to identify defects in…
Scientific Scope | Division of Cancer Prevention
The Division of Cancer Prevention conducts and supports research to determine a person's risk of developing cancer and to find ways to reduce that risk. Through laboratory, clinical, and epidemiologic research, scientists have shown that the diseases of cancer occur not as single, catastrophic events, but rather as the result of a complex and long-evolving molecular process
Ruiz-Ruiz, F; Medrano, F J; Navarro-Puerto, M A; Rodríguez-Torres, P; Romero-Alonso, A; Santos-Lozano, J M; Alonso-Ortiz Del Rio, C; Varela-Aguilar, J M; Calderón, E J; Marín-León, I
2018-05-21
The aim of this study was to determine the opinion of internists on the management of anticoagulation and thromboembolism prophylaxis in complex clinical scenarios in which the risk-benefit ratio of surgery is narrow and to develop a consensus document on the use of drugs anticoagulant therapy in this patient group. To this end, we identified by consensus the clinical areas of greatest uncertainty, a survey was created with 20 scenarios laid out in 40 clinical questions, and we reviewed the specific literature. The survey was distributed among the internists of the Spanish Society of Internal Medicine (SEMI) and was completed by 290 of its members. The consensus process was implemented by changing the Delphi-RAND appropriateness method in an anonymous, double-round process that enabled an expert panel to identify the areas of agreement and uncertainty. In our case, we also added the survey results to the panel, a methodological innovation that helps provide additional information on the standard clinical practice. The result of the process is a set of 19 recommendations formulated by SEMI experts, which helps establish guidelines for action on anticoagulant therapy in complex scenarios (high risk or active haemorrhage, short life expectancy, coexistence of antiplatelet therapy or comorbidities such as kidney disease and liver disease), which are not uncommon in standard clinical practice. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Determining the disease management process for epileptic patients: A qualitative study.
Hosseini, Nazafarin; Sharif, Farkhondeh; Ahmadi, Fazlollah; Zare, Mohammad
2016-01-01
Epilepsy exposes patients to many physical, social, and emotional challenges. Thus, it seems to portray a complex picture and needs holistic care. Medical treatment and psychosocial part of epilepsy remain central to managing and improving the patient's qualify of life through team efforts. Some studies have shown the dimensions of self-management, but its management process of epilepsy patients, especially in Iran, is not clear. This study aimed to determine the disease management process in patients with epilepsy in Iran. This qualitative approach and grounded theory study was conducted from January 2009 to February 2012 in Isfahan city (Iran). Thirty-two participants were recruited by the goal-oriented, and snowball sample selection and theoretical sampling methods. After conducting a total of 43 in-depth interviews with the participants, the researchers reached data saturation. Data were analyzed using Strauss and Corbin method. With a focus on disease management process, researchers found three main themes and seven sub-themes as a psychosocial process (PSP). The main themes were: perception of threat to self-identity, effort to preserve self-identity, and burn out. The psychosocial aspect of the disease generated one main variable "the perception of identity loss" and one central variable "searching for self-identity." Participants attributed threat to self-identity and burn out to the way their disease was managed requiring efforts to preserve their identity. Recommendations consist of support programs and strategies to improve the public perception of epilepsy in Iran, help patients accept their condition and preserve self-identity, and most importantly, enhance medical management of epilepsy.
Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer’s Disease
Winick-Ng, Warren; Rylett, R. Jane
2018-01-01
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed. PMID:29541020
[Cancer and nutrition - a paradigma shift].
Imoberdorf, R; Rühlin, M; Ballmer, P E
2017-08-01
Substantial international differences in the prevalence of cancer disease suppose that nutrition may be an important factor in the development of cancer. Many experts believe, that nutritional factors may contribute up to 35 % to the development of malignant tumors. Many patients have lost substantial body weight already at the time of the diagnosis of the disease as consequence of undernutrition and malnutrition, respectively. During the course of the disease the nutritional status often is deteriorating further. Caused by both the cancer disease itself and the treatment, loss of appetite, changes in taste, nausea and vomiting may additionally contribute to undernutrition. Undernutrition is a relevant factor for the outcome of the disease and for the tolerance of the treatment as well. Therefore, supporting the heavily impaired patients in nutritional intake is of paramount importance and an urgent task for physicians and nurses. In view of physiology, pathophysiology, genetics and molecular biology, metabolic processes in cancer are highly complex regulated and there is increasing evidence that a diet rich in fat and protein is favourable. This, however, implies a paradigma shift away from the "healthy" balanced diet rich in fruit, vegetable and complex carbohydrates. So far, the evidence based data of this new concept is, however, a controversial issue. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Ivanova, Mariya A.; Klopov, Nicolay V.; Lebedev, Andrei D.; Noskin, Leonid A.; Noskin, Valentin A.; Pavlov, Michail Y.
1997-05-01
We discuss the use of the QELS method for screening of population groups for verified pathologies. For mathematical analysis of experimental data the regularization procedure have been used. This allows us to determine the histograms of particle size distribution of blood plasma samples. For the interpretation of the histogram data the special program of the mathematical processing - 'semiotic classifier' - have been created. The main idea of the 'semiotic classifier' is based on the fact, that formation of the pathological trace in human organism depends not only on concrete disease nature but also on the interaction between the organism sanogenetic mechanisms. We separate five pathological symptomatic complexes of organism status: allergic diseases, intoxications, organism catabolic shifts, auto-immune diseases and degenerative-dystrophy processes. The use of this 'semiotic classifier' in the system of monitoring investigations allows to solve the next problems: (1) to separate the persons with the expressed initial level of pathological processes to the risk groups for the special clinical investigations, (2) to set up the predisposition of the concrete individual towards definite pathologies at the preclinical stage, (3) under the conditions of expressed clinical pathology to study the dynamics of pathology processes.
The Inescapable Influence of Noncoding RNAs in Cancer
Adams, Brian D.; Anastasiadou, Eleni; Esteller, Manel; He, Lin; Slack, Frank J.
2015-01-01
This report summarizes information presented at the 2015 Keystone Symposium on “MicroRNAs and Noncoding RNAs in Cancer”. Nearly two decades after the discovery of the first microRNA (miRNA), the role of noncoding RNAs in developmental processes and the mechanisms behind their dysregulation in cancer has been steadily elucidated. Excitingly, miRNAs have begun making their way into the clinic to combat disease such a hepatitis C, and various forms of cancer. Therefore, at this Keystone meeting novel findings were presented that enhance our view on how small and long noncoding RNAs control developmental timing and oncogenic processes. Recurring themes included, 1) how miRNAs can be differentially processed, degraded, and regulated by ribonucleoprotein (RNP) complexes, 2) how particular miRNA genetic networks that control developmental process, when disrupted, can result in cancer disease, 3) the technologies available to therapeutically deliver RNA to combat diseases such as cancer, and 4) the elucidation of the mechanism of actions for long noncoding RNAs, currently a poorly understood class of noncoding RNA. During the meeting there was an emphasis on presenting unpublished findings, and the breadth of topics covered reflected how inescapable the influence of noncoding RNAs are in development and cancer. PMID:26567137
De novo immune complex deposition in kidney allografts: a series of 32 patients.
Lloyd, Isaac E; Ahmed, Faris; Revelo, Monica P; Khalighi, Mazdak A
2018-01-01
Immune complex deposition in kidney allografts can include both recurrent and de novo processes. Recurrent glomerulonephritis is a well-recognized phenomenon and has been shown to be a common cause of allograft failure. De novo immune complex-mediated disease remains relatively poorly characterized, likely owing to the less frequent use of immunofluorescence and electron microscopy in the transplant setting. We performed a retrospective review of kidney allograft biopsies showing glomerular immune complex deposition. Cases with de novo deposits were identified and further organized into two groups depending on whether the immune complex deposition could be clinically and/or histologically classified. Thirty-two patients with de novo immune complex deposition were identified over a 7-year period. A broad range of immune complex-mediated injuries were observed, the majority (63%) of which could be readily classified either clinically or histologically. These included cases of membranous glomerulonephropathy, IgA nephropathy, infection-related glomerulonephritis and glomerulonephritis related to an underlying autoimmune process. A smaller subset of patients (37%) demonstrated immune complex deposition that was difficult to histologically or clinically classify. These patients typically showed mild mesangial immune complex deposition with co-dominant IgG and IgM staining by immunofluorescence microscopy. The presence of concurrent antibody-mediated rejection and donor-specific antibody positivity was significantly higher in the unclassifiable group. The significance of these deposits and their possible relationship to allograft rejection deserves further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.
Garcia-Huerta, Paula; Troncoso-Escudero, Paulina; Jerez, Carolina; Hetz, Claudio; Vidal, Rene L
2016-10-15
One of the salient features of most neurodegenerative diseases is the aggregation of specific proteins in the brain. This proteostasis imbalance is proposed as a key event triggering the neurodegenerative cascade. The unfolded protein response (UPR) and autophagy pathways are emerging as critical processes implicated in handling disease-related misfolded proteins. However, in some conditions, perturbations in the buffering capacity of the proteostasis network may be part of the etiology of the disease. Thus, pharmacological or gene therapy strategies to enhance autophagy or UPR responses are becoming an attractive target for disease intervention. Here, we discuss current evidence depicting the complex involvement of autophagy and ER stress in brain diseases. Novel pathways to modulate protein misfolding are discussed including the relation between aging and growth factor signaling. This article is part of a Special Issue entitled SI:Autophagy. Copyright © 2016 Elsevier B.V. All rights reserved.
Marek, Lukáš; Tuček, Pavel; Pászto, Vít
2015-01-28
Visual analytics aims to connect the processing power of information technologies and the user's ability of logical thinking and reasoning through the complex visual interaction. Moreover, the most of the data contain the spatial component. Therefore, the need for geovisual tools and methods arises. Either one can develop own system but the dissemination of findings and its usability might be problematic or the widespread and well-known platform can be utilized. The aim of this paper is to prove the applicability of Google Earth™ software as a tool for geovisual analytics that helps to understand the spatio-temporal patterns of the disease distribution. We combined the complex joint spatio-temporal analysis with comprehensive visualisation. We analysed the spatio-temporal distribution of the campylobacteriosis in the Czech Republic between 2008 and 2012. We applied three main approaches in the study: (1) the geovisual analytics of the surveillance data that were visualised in the form of bubble chart; (2) the geovisual analytics of the disease's weekly incidence surfaces computed by spatio-temporal kriging and (3) the spatio-temporal scan statistics that was employed in order to identify high or low rates clusters of affected municipalities. The final data are stored in Keyhole Markup Language files and visualised in Google Earth™ in order to apply geovisual analytics. Using geovisual analytics we were able to display and retrieve information from complex dataset efficiently. Instead of searching for patterns in a series of static maps or using numerical statistics, we created the set of interactive visualisations in order to explore and communicate results of analyses to the wider audience. The results of the geovisual analytics identified periodical patterns in the behaviour of the disease as well as fourteen spatio-temporal clusters of increased relative risk. We prove that Google Earth™ software is a usable tool for the geovisual analysis of the disease distribution. Google Earth™ has many indisputable advantages (widespread, freely available, intuitive interface, space-time visualisation capabilities and animations, communication of results), nevertheless it is still needed to combine it with pre-processing tools that prepare the data into a form suitable for the geovisual analytics itself.
Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis.
Schaer, Christian A; Deuel, Jeremy W; Schildknecht, Daniela; Mahmoudi, Leila; Garcia-Rubio, Ines; Owczarek, Catherine; Schauer, Stefan; Kissner, Reinhard; Banerjee, Uddyalok; Palmer, Andre F; Spahn, Donat R; Irwin, David C; Vallelian, Florence; Buehler, Paul W; Schaer, Dominik J
2016-05-15
Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis. Characterization of an archetypical function by which Hb scavenger proteins could preserve NO signaling during hemolysis. We investigated NO reaction kinetics, effects on arterial NO signaling, and tissue distribution of cell-free Hb and its scavenger protein complexes. Extravascular translocation of cell-free Hb into interstitial spaces, including the vascular smooth muscle cell layer of rat and pig coronary arteries, promotes vascular NO resistance. This critical disease process is blocked by haptoglobin. Haptoglobin does not change NO dioxygenation rates of Hb; rather, the large size of the Hb:haptoglobin complex prevents Hb extravasation, which uncouples NO/Hb interaction and vasoconstriction. Size-selective compartmentalization of Hb functions as a substitute for red blood cells after hemolysis and preserves NO signaling in the vasculature. We found that evolutionarily and structurally unrelated Hb-binding proteins, such as PIT54 found in avian species, functionally converged with haptoglobin to protect NO signaling by sequestering cell-free Hb in large protein complexes. Sequential compartmentalization of Hb by erythrocytes and scavenger protein complexes is an archetypical mechanism, which may have supported coevolution of hemolysis and normal vascular function. Therapeutic supplementation of Hb scavengers may restore vascular NO signaling and attenuate disease complications in patients with hemolysis.
Nutrition and Metabolic Correlates of Obesity and Inflammation: Clinical Considerations123
Johnson, Amy R; Makowski, Liza
2015-01-01
Since 1980, the global prevalence of obesity has doubled; in the United States, it has almost tripled. Billions of people are overweight and obese; the WHO reports that >65% of the world’s population die of diseases related to overweight rather than underweight. Obesity is a complex disease that can be studied from “metropolis to metabolite”—that is, beginning at the policy and the population level through epidemiology and intervention studies; to bench work including preclinical models, tissue, and cell culture studies; to biochemical assays; and to metabolomics. Metabolomics is the next research frontier because it provides a real-time snapshot of biochemical building blocks and products of cellular processes. This report comments on practical considerations when conducting metabolomics research. The pros and cons and important study design concerns are addressed to aid in increasing metabolomics research in the United States. The link between metabolism and inflammation is an understudied phenomenon that has great potential to transform our understanding of immunometabolism in obesity, diabetes, cancer, and other diseases; metabolomics promises to be an important tool in understanding the complex relations between factors contributing to such diseases. PMID:25833891
Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis
Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.
2016-01-01
Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792
Wilke, Scott A.; Raam, Tara; Antonios, Joseph K.; Bushong, Eric A.; Koo, Edward H.; Ellisman, Mark H.; Ghosh, Anirvan
2014-01-01
The earliest stages of Alzheimer's disease (AD) are characterized by deficits in memory and cognition indicating hippocampal pathology. While it is now recognized that synapse dysfunction precedes the hallmark pathological findings of AD, it is unclear if specific hippocampal synapses are particularly vulnerable. Since the mossy fiber (MF) synapse between dentate gyrus (DG) and CA3 regions underlies critical functions disrupted in AD, we utilized serial block-face electron microscopy (SBEM) to analyze MF microcircuitry in a mouse model of familial Alzheimer's disease (FAD). FAD mutant MF terminal complexes were severely disrupted compared to control – they were smaller, contacted fewer postsynaptic spines and had greater numbers of presynaptic filopodial processes. Multi-headed CA3 dendritic spines in the FAD mutant condition were reduced in complexity and had significantly smaller sites of synaptic contact. Significantly, there was no change in the volume of classical dendritic spines at neighboring inputs to CA3 neurons suggesting input-specific defects in the early course of AD related pathology. These data indicate a specific vulnerability of the DG-CA3 network in AD pathogenesis and demonstrate the utility of SBEM to assess circuit specific alterations in mouse models of human disease. PMID:24454724
Sarcopenia in Patients with Chronic Liver Disease: Can It Be Altered by Diet and Exercise?
Kappus, Matthew R; Mendoza, Mardeli Saire; Nguyen, Douglas; Medici, Valentina; McClave, Stephen A
2016-08-01
Sarcopenia, a loss of muscle mass, is being increasingly recognized to have a deleterious effect on outcomes in patients with chronic liver disease. Factors related to diet and the inflammatory nature of chronic liver disease contribute to the occurrence of sarcopenia in these patients. Sarcopenia adversely influences quality of life, performance, morbidity, success of transplantation, and even mortality. Specific deficiencies in macronutrients (protein, polyunsaturated fatty acids) and micronutrients (vitamins C, D, and E, carotenoids, and selenium) have been linked to sarcopenia. Lessons learned from nutritional therapy in geriatric patient populations may provide strategies to manage sarcopenia in patients with liver disease. Combining diet modification and nutrient supplementation with an organized program of exercise may help ameliorate or even reverse the effects of sarcopenia on an already complex disease process.
Clonal evolution in myelodysplastic syndromes
da Silva-Coelho, Pedro; Kroeze, Leonie I.; Yoshida, Kenichi; Koorenhof-Scheele, Theresia N.; Knops, Ruth; van de Locht, Louis T.; de Graaf, Aniek O.; Massop, Marion; Sandmann, Sarah; Dugas, Martin; Stevens-Kroef, Marian J.; Cermak, Jaroslav; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; de Witte, Theo; Blijlevens, Nicole M. A.; Muus, Petra; Huls, Gerwin; van der Reijden, Bert A.; Ogawa, Seishi; Jansen, Joop H.
2017-01-01
Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5–11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without disease-modifying treatment. The application of disease-modifying therapy may create an evolutionary bottleneck after which more complex MDS, but also unrelated clones of haematopoietic cells, may emerge. In addition, subclones that acquired an additional mutation associated with treatment resistance (TP53) or disease progression (NRAS, KRAS) may be detected months before clinical changes become apparent. Monitoring the genetic landscape during the disease may help to guide treatment decisions. PMID:28429724
Lipid peroxidation and neurodegenerative disease.
Reed, Tanea T
2011-10-01
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease.
Barratt, Shaney L; Flower, Victoria A; Pauling, John D; Millar, Ann B
2018-04-24
Interstitial lung disease (ILD) encompasses a group of heterogeneous diseases characterised by varying degrees of aberrant inflammation and fibrosis of the lung parenchyma. This may occur in isolation, such as in idiopathic pulmonary fibrosis (IPF) or as part of a wider disease process affecting multiple organs, such as in systemic sclerosis. Anti-Vascular Endothelial Growth Factor (anti-VEGF) therapy is one component of an existing broad-spectrum therapeutic option in IPF (nintedanib) and may become part of the emerging therapeutic strategy for other ILDs in the future. This article describes our current understanding of VEGF biology in normal lung homeostasis and how changes in its bioavailability may contribute the pathogenesis of ILD. The complexity of VEGF biology is particularly highlighted with an emphasis on the potential non-vascular, non-angiogenic roles for VEGF in the lung, in both health and disease.
RNA Interference in Infectious Tropical Diseases
Hong, Young S.
2008-01-01
Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi. PMID:18344671
Inflammasomes link vascular disease with neuroinflammation and brain disorders
Lénárt, Nikolett; Brough, David
2016-01-01
The role of inflammation in neurological disorders is increasingly recognised. Inflammatory processes are associated with the aetiology and clinical progression of migraine, psychiatric conditions, epilepsy, cerebrovascular diseases, dementia and neurodegeneration, such as seen in Alzheimer’s or Parkinson’s disease. Both central and systemic inflammatory actions have been linked with the development of brain diseases, suggesting that complex neuro-immune interactions could contribute to pathological changes in the brain across multiple temporal and spatial scales. However, the mechanisms through which inflammation impacts on neurological disease are improperly defined. To develop effective therapeutic approaches, it is imperative to understand how detrimental inflammatory processes could be blocked selectively, or controlled for prolonged periods, without compromising essential immune defence mechanisms. Increasing evidence indicates that common risk factors for brain disorders, such as atherosclerosis, diabetes, hypertension, obesity or infection involve the activation of NLRP3, NLRP1, NLRC4 or AIM2 inflammasomes, which are also associated with various neurological diseases. This review focuses on the mechanisms whereby inflammasomes, which integrate diverse inflammatory signals in response to pathogen-driven stimuli, tissue injury or metabolic alterations in multiple cell types and different organs of the body, could functionally link vascular- and neurological diseases and hence represent a promising therapeutic target. PMID:27486046
Mendel, O I; Luchihina, L V; Mendel, W
2015-01-01
This article presents review on the processes underlying aging and the most common age-associated diseases. Special attention is given to the role of chronic nonspecific inflammation. Based on the literature data it was demonstrated that aging and osteoarthritis have the same basic molecular and cellular mechanisms, among which general are cascades intracellular transcription chronic nonspecific inflammation and metabolic disturbances plays an important role. It is concluded that the process of normal aging is not a disease, but makes the human body, and particularly the musculoskeletal system, susceptible to age-associated changes. Number of changes in the human body that accompany the aging process, and play a role in the development and progression of OA, are potentially reversible, regardless of age (eg, chronic non-specific inflammation), and can be considered as a possible entry points for the effective prevention and complex therapy of OA in elderly people.
Hydrogen Sulfide in Renal Physiology and Disease.
Feliers, Denis; Lee, Hak Joo; Kasinath, Balakuntalam S
2016-11-01
Hydrogen sulfide (H2S) has only recently gained recognition for its physiological effects. It is synthesized widely in the mammalian tissues and regulates several biologic processes ranging from development, angiogenesis, neurotransmission to protein synthesis. Recent Advances: The aim of this review is to critically evaluate the evidence for a role for H2S in kidney function and disease. H2S regulates fundamental kidney physiologic processes such as glomerular filtration and sodium reabsorption. In kidney disease states H2S appears to play a complex role in a context-dependent manner. In some disease states such as ischemia-reperfusion and diabetic kidney disease it can serve as an agent that ameliorates kidney injury. In other diseases such as cis-platinum-induced kidney disease it may mediate kidney injury although more investigation is needed. Recent studies have revealed that the actions of nitric oxide and H2S may be integrated in kidney cells. Further studies are needed to understand the full impact of H2S on kidney physiology. As it is endowed with the properties of regulating blood flow, oxidative stress, and inflammation, H2S should be investigated for its role in inflammatory and toxic diseases of the kidney. Such in-depth exploration may identify specific kidney diseases in which H2S may constitute a unique target for therapeutic intervention. Antioxid. Redox Signal. 25, 720-731.
Differential roles of NADPH oxidases in vascular physiology and pathophysiology
Amanso, Angelica M.; Griendling, Kathy K.
2012-01-01
Reactive oxygen species (ROS) are produced by all vascular cells and regulate the major physiological functions of the vasculature. Production and removal of ROS are tightly controlled and occur in discrete subcellular locations, allowing for specific, compartmentalized signaling. Among the many sources of ROS in the vessel wall, NADPH oxidases are implicated in physiological functions such as control of vasomotor tone, regulation of extracellular matrix and phenotypic modulation of vascular smooth muscle cells. They are involved in the response to injury, whether as an oxygen sensor during hypoxia, as a regulator of protein processing, as an angiogenic stimulus, or as a mechanism of wound healing. These enzymes have also been linked to processes leading to disease development, including migration, proliferation, hypertrophy, apoptosis and autophagy. As a result, NADPH oxidases participate in atherogenesis, systemic and pulmonary hypertension and diabetic vascular disease. The role of ROS in each of these processes and diseases is complex, and a more full understanding of the sources, targets, cell-specific responses and counterbalancing mechanisms is critical for the rational development of future therapeutics. PMID:22202108
Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy?
Vieira, Marcelo N N; Lyra E Silva, Natalia M; Ferreira, Sergio T; De Felice, Fernanda G
2017-01-01
Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.
Painting a new picture of personalised medicine for diabetes.
McCarthy, Mark I
2017-05-01
The current focus on delivery of personalised (or precision) medicine reflects the expectation that developments in genomics, imaging and other domains will extend our diagnostic and prognostic capabilities, and enable more effective targeting of current and future preventative and therapeutic options. The clinical benefits of this approach are already being realised in rare diseases and cancer but the impact on management of complex diseases, such as type 2 diabetes, remains limited. This may reflect reliance on inappropriate models of disease architecture, based around rare, high-impact genetic and environmental exposures that are poorly suited to our emerging understanding of type 2 diabetes. This review proposes an alternative 'palette' model, centred on a molecular taxonomy that focuses on positioning an individual with respect to the major pathophysiological processes that contribute to diabetes risk and progression. This model anticipates that many individuals with diabetes will have multiple parallel defects that affect several of these processes. One corollary of this model is that research efforts should, at least initially, be targeted towards identifying and characterising individuals whose adverse metabolic trajectory is dominated by perturbation in a restricted set of processes.
A "turn-on" fluorescent microbead sensor for detecting nitric oxide.
Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae
2015-01-01
Nitric oxide (NO) is a messenger molecule involved in numerous physical and pathological processes in biological systems. Therefore, the development of a highly sensitive material able to detect NO in vivo is a key step in treating cardiovascular and a number of types of cancer-related diseases, as well as neurological dysfunction. Here we describe the development of a fluorescent probe using microbeads to enhance the fluorescence signal. Microbeads are infused with the fluorophore, dansyl-piperazine (Ds-pip), and quenched when the fluorophore is coordinated with a rhodium (Rh)-complex, ie, Rh2(AcO(-))4(Ds-pip). In contrast, they are able to fluoresce when the transition-metal complex is replaced by NO. To confirm the "on/off" mechanism for detecting NO, we investigated the structural molecular properties using the Fritz Haber Institute ab initio molecular simulations (FHI-AIMS) package. According to the binding energy calculation, NO molecules bind more strongly and rapidly with the Rh-core of the Rh-complex than with Ds-pip. This suggests that NO can bond strongly with the Rh-core and replace Ds-pip, even though Ds-pip is already near the Rh-core. However, the recovery process takes longer than the quenching process because the recovery process needs to overcome the energy barrier for formation of the transition state complex, ie, NO-(AcO(-))4-(Ds-pip). Further, we confirm that the Rh-complex with the Ds-pip structure has too small an energy gap to give off visible light from the highest unoccupied molecular orbital/lowest unoccupied molecular orbital energy level.
AgMIP: Next Generation Models and Assessments
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2014-12-01
Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6 that involves the key modeling groups from around the world including North America, Europe, South America, Sub-Saharan Africa, South Asia, East Asia, and Australia and Oceania. This community process will lead to mutually agreed protocols for coordinated global and regional assessments.
Mouse models of ageing and their relevance to disease.
Kõks, Sulev; Dogan, Soner; Tuna, Bilge Guvenc; González-Navarro, Herminia; Potter, Paul; Vandenbroucke, Roosmarijn E
2016-12-01
Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Congdi; Long, Ben; Hu, Yarong
Alzheimer's disease is a representative age-related neurodegenerative disease that could result in loss of memory and cognitive deficiency. However, the precise onset time of Alzheimer's disease affecting neuronal circuits and the mechanisms underlying the changes are not clearly known. To address the neuroanatomical changes during the early pathologic developing process, we acquired the neuronal morphological characterization of AD in APP/PS1 double-transgenic mice using the Micro-Optical Sectioning Tomography system. We reconstructed the neurons in 3D datasets with a resolution of 0.32 × 0.32 × 1 μm and used the Sholl method to analyze the anatomical characterization of the dendritic branches. The results showed that, similar tomore » the progressive change in amyloid plaques, the number of dendritic branches were significantly decreased in 9-month-old mice. In addition, a distinct reduction of dendritic complexity occurred in third and fourth-order dendritic branches of 9-month-old mice, while no significant changes were identified in these parameters in 6-month-old mice. At the branch-level, the density distribution of dendritic arbors in the radial direction decreased in the range of 40–90 μm from the neuron soma in 6-month-old mice. These changes in the dendritic complexity suggest that these reductions contribute to the progressive cognitive impairment seen in APP/PS1 mice. This work may yield insights into the early changes in dendritic abnormality and its relevance to dysfunctional mechanisms of learning, memory and emotion in Alzheimer's disease. - Highlights: • Neuron-level, reduction of dendritic complexity in BLA of 9-month-old AD mice. • Specific range of branch decrease in density of 6-month-old AD mice. • 3D imaging with high resolution will provide insights into brain aging.« less
Epilepsy: habilitation and rehabilitation.
Marks, Warren A; Hernandez, Angel; Gabriel, Marsha
2003-06-01
Rehabilitation represents not only a distinct field of medicine, but also a philosophical and practical treatment approach that can be applied to a variety of chronic disorders. Neurology encompasses many chronic disorders, making it ideal for the application of rehabilitation principles in daily practice. Epilepsy offers a unique opportunity to incorporate rehabilitation principles into the management of a complex medical disorder. Epilepsy is an evolving disease process that changes with the maturation of the central nervous system. The rehabilitative model provides the framework for a dynamic treatment plan to meet the changing needs of the child with epilepsy through the social and developmental changes of childhood, adolescence, and adulthood. The development of epilepsy may complicate the recovery from many acute and chronic conditions that affect the central nervous system. The rehabilitation process must address these many aspects of the disease process and its sequelae. This makes neurologists uniquely qualified to manage the rehabilitation team. The impact of the therapeutic milieu on the recovery process may be as important as any specific medical or surgical intervention.
Yazdankhah, Siamak P.; Kriz, Paula; Tzanakaki, Georgina; Kremastinou, Jenny; Kalmusova, Jitka; Musilek, Martin; Alvestad, Torill; Jolley, Keith A.; Wilson, Daniel J.; McCarthy, Noel D.; Caugant, Dominique A.; Maiden, Martin C. J.
2004-01-01
The distribution of serogroups and multilocus sequence types (STs) in collections of disease-associated and carried meningococci from the period 1991 to 2000 in three European countries (the Czech Republic, Greece, and Norway) was investigated. A total of 314 patient isolates and 353 isolates from asymptomatic carriers were characterized. The frequency distributions of serogroups and clone complexes differed among countries and between disease and carrier isolate collections. Highly significant differentiation was seen at each housekeeping locus. A marked positive association of serogroup C with disease was evidenced. The ST-11 complex was strongly positively associated with disease; associations for other clone complexes were weaker. The genetic diversity of the clone complexes differed. A single ST dominated the ST-11 clone complex, while the ST-41/44 complex exhibited greater levels of diversity. These data robustly demonstrated differences in the distribution of meningococcal genotypes in disease and carrier isolates and among countries. Further, they indicated that differences in genotype diversity and pathogenicity exist between meningococcal clone complexes. PMID:15528708
Neurocognitive and executive functioning in adult survivors of congenital heart disease.
Klouda, Leda; Franklin, Wayne J; Saraf, Anita; Parekh, Dhaval R; Schwartz, David D
2017-01-01
Congenital heart disease (CHD) can affect the developing central nervous system, resulting in neurocognitive and behavioral deficits. Preoperative neurological abnormalities as well as sequelae of the open heart operations required to correct structural abnormalities of the heart contribute to these deficits. There are few studies examining the neurocognitive functioning of adults with CHD. This study sought to investigate multiple domains of neurocognitive functioning in adult survivors of CHD who had childhood cardiac surgery with either moderate or severe disease complexity. A total of 48 adults (18-49 years of age) who had undergone cardiac surgery for CHD prior to five years of age participated in the study. CHD severity was classified as moderate or severe according to the 32nd Bethesda Guidelines. A computerized battery of standardized neurocognitive tests (CNS-Vital Signs), a validated rating scale of executive functioning, and demographic questionnaires were administered. There were no significant differences between the moderate CHD group and normative data on any cognitive measure. In contrast, the severe CHD group differed from norms in multiple domains: psychomotor speed, processing speed, complex attention, reaction time, and on the overall neurocognitive index. Number of surgeries was strongly related to worse executive functioning. There was no association between age at first surgery or time since last surgery and neuropsychological functioning. Number of surgeries was also unrelated to neurocognitive test performance. Patients with severe CHD performed significantly worse on measures of processing speed, attention, and executive functioning. These findings may be useful in the long-term care of adults with congenital heart disease. © 2016 Wiley Periodicals, Inc.
Skeie, Jessica M; Aldrich, Benjamin T; Goldstein, Andrew S; Schmidt, Gregory A; Reed, Cynthia R; Greiner, Mark A
2018-01-01
The objective of this study was to characterize the proteome of the corneal endothelial cell layer and its basement membrane (Descemet membrane) in humans with various severities of type II diabetes mellitus compared to controls, and identify differentially expressed proteins across a range of diabetic disease severities that may influence corneal endothelial cell health. Endothelium-Descemet membrane complex tissues were peeled from transplant suitable donor corneas. Protein fractions were isolated from each sample and subjected to multidimensional liquid chromatography and tandem mass spectrometry. Peptide spectra were matched to the human proteome, assigned gene ontology, and grouped into protein signaling pathways unique to each of the disease states. We identified an average of 12,472 unique proteins in each of the endothelium-Descemet membrane complex tissue samples. There were 2,409 differentially expressed protein isoforms that included previously known risk factors for type II diabetes mellitus related to metabolic processes, oxidative stress, and inflammation. Gene ontology analysis demonstrated that diabetes progression has many protein footprints related to metabolic processes, binding, and catalysis. The most represented pathways involved in diabetes progression included mitochondrial dysfunction, cell-cell junction structure, and protein synthesis regulation. This proteomic dataset identifies novel corneal endothelial cell and Descemet membrane protein expression in various stages of diabetic disease. These findings give insight into the mechanisms involved in diabetes progression relevant to the corneal endothelium and its basement membrane, prioritize new pathways for therapeutic targeting, and provide insight into potential biomarkers for determining the health of this tissue.
The Proteasome and Oxidative Stress in Alzheimer's Disease.
Bonet-Costa, Vicent; Pomatto, Laura Corrales-Diaz; Davies, Kelvin J A
2016-12-01
Alzheimer's disease is a neurodegenerative disorder that is projected to exceed more than 100 million cases worldwide by 2050. Aging is considered the primary risk factor for some 90% of Alzheimer's cases but a significant 10% of patients suffer from aggressive, early-onset forms of the disease. There is currently no effective Alzheimer's treatment and this, coupled with a growing aging population, highlights the necessity to understand the mechanism(s) of disease initiation and propagation. A major hallmark of Alzheimer's disease pathology is the accumulation of amyloid-β (Aβ) aggregates (an early marker of Alzheimer's disease), and neurofibrillary tangles, comprising the hyper-phosphorylated microtubule-associated protein Tau. Recent Advances: Protein oxidation is frequently invoked as a potential factor in the progression of Alzheimer's disease; however, whether it is a cause or a consequence of the pathology is still being debated. The Proteasome complex is a major regulator of intracellular protein quality control and an essential proteolytic enzyme for the processing of both Aβ and Tau. Recent studies have indicated that both protein oxidation and excessive phosphorylation may limit Proteasomal processing of Aβ and Tau in Alzheimer's disease. Thus, the Proteasome may be a key factor in understanding the development of Alzheimer's disease pathology; however, its significance is still very much under investigation. Discovering how the proteasome is affected, regulated, or dysregulated in Alzheimer's disease could be a valuable tool in the efforts to understand and, ultimately, eradicate the disease. Antioxid. Redox Signal. 25, 886-901.
Regarding Obesity as a Disease: Evolving Policies and Their Implications
Dhurandhar, Emily J.; Allison, David B.
2016-01-01
Synopsis The 2013 decision of the American Medical Association (AMA) to recognize obesity as a complex, chronic disease that requires medical attention came as the result of developments over three decades. Defining a condition such as obesity to be a disease is a very public process that is largely driven by expectation of costs and benefits. Although the public has been slow to embrace defining obesity as a purely medical condition, evidence is emerging for broader awareness of factors beyond personal choice influencing obesity. The AMA decision appears to be working in concert with other factors to bring more access to care, less blame for people with the condition, and more favorable conditions for research to identify effective strategies for prevention and clinical care to reduce the impact of this disease. PMID:27519127
Framing Strategies to Avoid Mother-Blame in Communicating the Origins of Chronic Disease.
Winett, Liana B; Wulf, Alyssa B; Wallack, Lawrence
2016-08-01
Evolving research in epigenetics and the developmental origins of health and disease offers tremendous promise in explaining how the social environment, place, and resources available to us have enduring effects on our health. Troubling from a communications perspective, however, is the tendency in framing the science to hold mothers almost uniquely culpable for their offspring's later disease risk. The purpose of this article is to add to the conversation about avoiding this unintended outcome by (1) discussing the importance of cognitive processing and issue frames, (2) describing framing challenges associated with communicating about developmental origins of health and disease and offering principles to address them, and (3) providing examples of conceptual metaphors that may be helpful in telling this complex and contextual story for public health.
Functional inhibition of UQCRB suppresses angiogenesis in zebrafish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok
2013-04-19
Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levelsmore » in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.« less
Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy.
Batchelor, Clare L; Winder, Steve J
2006-04-01
The dystrophin-glycoprotein complex (DGC) can be considered as a specialized adhesion complex, linking the extracellular matrix to the actin cytoskeleton, primarily in muscle cells. Mutations in several components of the DGC lead to its partial or total loss, resulting in various forms of muscular dystrophy. These typically manifest as progressive wasting diseases with loss of muscle integrity. Debate is ongoing about the precise function of the DGC: initially a strictly mechanical role was proposed but it has been suggested that there is aberrant calcium handling in muscular dystrophy and, more recently, changes in MAP kinase and GTPase signalling have been implicated in the aetiology of the disease. Here, we discuss new and interesting developments in these aspects of DGC function and attempt to rationalize the mechanical, calcium and signalling hypotheses to provide a unifying hypothesis of the underlying process of muscular dystrophy.
The fuzzy cube and causal efficacy: representation of concomitant mechanisms in stroke.
Jobe, Thomas H.; Helgason, Cathy M.
1998-04-01
Twentieth century medical science has embraced nineteenth century Boolean probability theory based upon two-valued Aristotelian logic. With the later addition of bit-based, von Neumann structured computational architectures, an epistemology based on randomness has led to a bivalent epidemiological methodology that dominates medical decision making. In contrast, fuzzy logic, based on twentieth century multi-valued logic, and computational structures that are content addressed and adaptively modified, has advanced a new scientific paradigm for the twenty-first century. Diseases such as stroke involve multiple concomitant causal factors that are difficult to represent using conventional statistical methods. We tested which paradigm best represented this complex multi-causal clinical phenomenon-stroke. We show that the fuzzy logic paradigm better represented clinical complexity in cerebrovascular disease than current probability theory based methodology. We believe this finding is generalizable to all of clinical science since multiple concomitant causal factors are involved in nearly all known pathological processes.
What to Expect from the Evolving Field of Geriatric Cardiology
Bell, Susan P.; Orr, Nicole M.; Dodson, John A.; Rich, Michael W.; Wenger, Nanette K.; Blum, Kay; Harold, John Gordon; Tinetti, Mary; Maurer, Mathew S.; Forman, Daniel E.
2016-01-01
The population of older adults is expanding rapidly and aging predisposes to cardiovascular disease. The principle of patient-centered care must respond to the preponderance of cardiac disease that now occurs in combination with complexities of old age. Geriatric cardiology melds cardiovascular perspectives with multimorbidity, polypharmacy, frailty, cognitive decline, and other clinical, social, financial, and psychological dimensions of aging. While some assume a cardiologist may instinctively cultivate some of these skills over the course of a career, we assert that the volume and complexity of older cardiovascular patients in contemporary practice warrants a more direct approach to achieve suitable training and a more reliable process of care. We present a rationale and vision for geriatric cardiology as a melding of primary cardiovascular and geriatrics skills, and thereby infusing cardiology practice with expanded proficiencies in diagnosis, risks, care coordination, communications, end-of-life, and other competences required to best manage older cardiovascular patients. PMID:26361161
Aymé, Ségolène; Bockenhauer, Detlef; Day, Simon; Devuyst, Olivier; Guay-Woodford, Lisa M; Ingelfinger, Julie R; Klein, Jon B; Knoers, Nine V A M; Perrone, Ronald D; Roberts, Julia; Schaefer, Franz; Torres, Vicente E; Cheung, Michael; Wheeler, David C; Winkelmayer, Wolfgang C
2017-10-01
Rare kidney diseases encompass at least 150 different conditions, most of which are inherited. Although individual rare kidney diseases raise specific issues, as a group these rare diseases can have overlapping challenges in diagnosis and treatment. These challenges include small numbers of affected patients, unidentified causes of disease, lack of biomarkers for monitoring disease progression, and need for complex care. To address common clinical and patient issues among rare kidney diseases, the KDIGO Controversies Conference entitled, Common Elements in Rare Kidney Diseases, brought together a panel of multidisciplinary clinical providers and patient advocates to address five central issues for rare kidney diseases. These issues encompassed diagnostic challenges, management of kidney functional decline and progression of chronic kidney disease, challenges in clinical study design, translation of advances in research to clinical care, and provision of practical and integrated patient support. Thus, by a process of consensus, guidance for addressing these challenges was developed and is presented here. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Experiences of living with motor neurone disease: a review of qualitative research.
Sakellariou, Dikaios; Boniface, Gail; Brown, Paul
2013-10-01
This review sought to answer the question "what is known about people's experiences of living with MND?". The review followed the guidelines of the Centre of Reviews and Dissemination. Twenty articles met the inclusion criteria and their results were analysed thematically. Data were managed and coded using the software package NVIVO and the analysis was performed in two stages, with the first stage aiming to develop descriptive themes offering an overview of the included data. During the second stage, analytical themes were developed with the explicit aim to answer the review question. The themes that emerged point to the following: (a) people with motor neurone disease (MND) develop experiential knowledge that helps them to live with the disease and (b) while people with MND believe they do not have any control over the disease, they try to have control over their lives through active choices, e.g. how and when to use adaptive equipment. This review highlights the decision-making and knowledge generating processes used by people with MND. Further research is required to explore these processes and their implications for the care of people with MND. Decision-making process by MND patients regarding their care is complex and takes into account the social elements of the disease as well as the medical. Exploring the practical knowledge that patients develop can offer insights on appropriate care for MND patients.
Zündorf, Gregor
2011-01-01
Abstract The intracellular free calcium concentration subserves complex signaling roles in brain. Calcium cations (Ca2+) regulate neuronal plasticity underlying learning and memory and neuronal survival. Homo- and heterocellular control of Ca2+ homeostasis supports brain physiology maintaining neural integrity. Ca2+ fluxes across the plasma membrane and between intracellular organelles and compartments integrate diverse cellular functions. A vast array of checkpoints controls Ca2+, like G protein-coupled receptors, ion channels, Ca2+ binding proteins, transcriptional networks, and ion exchangers, in both the plasma membrane and the membranes of mitochondria and endoplasmic reticulum. Interactions between Ca2+ and reactive oxygen species signaling coordinate signaling, which can be either beneficial or detrimental. In neurodegenerative disorders, cellular Ca2+-regulating systems are compromised. Oxidative stress, perturbed energy metabolism, and alterations of disease-related proteins result in Ca2+-dependent synaptic dysfunction, impaired plasticity, and neuronal demise. We review Ca2+ control processes relevant for physiological and pathophysiological conditions in brain tissue. Dysregulation of Ca2+ is decisive for brain cell death and degeneration after ischemic stroke, long-term neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, inflammatory processes, such as in multiple sclerosis, epileptic sclerosis, and leucodystrophies. Understanding the underlying molecular processes is of critical importance for the development of novel therapeutic strategies to prevent neurodegeneration and confer neuroprotection. Antioxid. Redox Signal. 14, 1275–1288. PMID:20615073
mTOR signaling for biological control and cancer.
Alayev, Anya; Holz, Marina K
2013-08-01
Mammalian target of rapamycin (mTOR) is a major intersection that connects signals from the extracellular milieu to corresponding changes in intracellular processes. When abnormally regulated, the mTOR signaling pathway is implicated in a wide spectrum of cancers, neurological diseases, and proliferative disorders. Therefore, pharmacological agents that restore the regulatory balance of the mTOR pathway could be beneficial for a great number of diseases. This review summarizes current understanding of mTOR signaling and some unanswered questions in the field. We describe the composition of the mTOR complexes, upstream signals that activate mTOR, and physiological processes that mTOR regulates. We also discuss the role of mTOR and its downstream effectors in cancer, obesity and diabetes, and autism. Copyright © 2013 Wiley Periodicals, Inc.
Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem?
Mosca, Alexis; Leclerc, Marion; Hugot, Jean P.
2016-01-01
Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations, and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability, and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota. PMID:27065999
Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data
Zhang, Ai-Di; Dai, Shao-Xing; Huang, Jing-Fei
2013-01-01
With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases. PMID:24222897
Is there a genetic solution to bovine respiratory disease complex?
USDA-ARS?s Scientific Manuscript database
Bovine respiratory disease complex (BRDC) is a complex multi-factor disease, which increases costs and reduces revenue from feedlot cattle. Multiple stressors and pathogens (viral and bacterial) have been implicated in the etiology of BRDC, therefore multiple approaches will be needed to evaluate a...
The Network Organization of Cancer-associated Protein Complexes in Human Tissues
Zhao, Jing; Lee, Sang Hoon; Huss, Mikael; Holme, Petter
2013-01-01
Differential gene expression profiles for detecting disease genes have been studied intensively in systems biology. However, it is known that various biological functions achieved by proteins follow from the ability of the protein to form complexes by physically binding to each other. In other words, the functional units are often protein complexes rather than individual proteins. Thus, we seek to replace the perspective of disease-related genes by disease-related complexes, exemplifying with data on 39 human solid tissue cancers and their original normal tissues. To obtain the differential abundance levels of protein complexes, we apply an optimization algorithm to genome-wide differential expression data. From the differential abundance of complexes, we extract tissue- and cancer-selective complexes, and investigate their relevance to cancer. The method is supported by a clustering tendency of bipartite cancer-complex relationships, as well as a more concrete and realistic approach to disease-related proteomics. PMID:23567845
A simple and fast representation space for classifying complex time series
NASA Astrophysics Data System (ADS)
Zunino, Luciano; Olivares, Felipe; Bariviera, Aurelio F.; Rosso, Osvaldo A.
2017-03-01
In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.
Medical image segmentation based on SLIC superpixels model
NASA Astrophysics Data System (ADS)
Chen, Xiang-ting; Zhang, Fan; Zhang, Ruo-ya
2017-01-01
Medical imaging has been widely used in clinical practice. It is an important basis for medical experts to diagnose the disease. However, medical images have many unstable factors such as complex imaging mechanism, the target displacement will cause constructed defect and the partial volume effect will lead to error and equipment wear, which increases the complexity of subsequent image processing greatly. The segmentation algorithm which based on SLIC (Simple Linear Iterative Clustering, SLIC) superpixels is used to eliminate the influence of constructed defect and noise by means of the feature similarity in the preprocessing stage. At the same time, excellent clustering effect can reduce the complexity of the algorithm extremely, which provides an effective basis for the rapid diagnosis of experts.
The Mediator complex: a master coordinator of transcription and cell lineage development.
Yin, Jing-wen; Wang, Gang
2014-03-01
Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.
Schurdak, Mark E; Pei, Fen; Lezon, Timothy R; Carlisle, Diane; Friedlander, Robert; Taylor, D Lansing; Stern, Andrew M
2018-01-01
Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.
Quantifying the complexity of medical research.
Rodriguez-Esteban, Raul; Loging, William T
2013-11-15
A crucial phenomenon of our times is the diminishing marginal returns of investments in pharmaceutical research and development. A potential reason is that research into diseases is becoming increasingly complex, and thus more burdensome, for humans to handle. We sought to investigate whether we could measure research complexity by analyzing the published literature. Through the text mining of the publication record of multiple diseases, we have found that the complexity and novelty of disease research has been increasing over the years. Surprisingly, we have also found that research on diseases with higher publication rate does not possess greater complexity or novelty than that on less-studied diseases. We have also shown that the research produced about a disease can be seen as a differentiated area of knowledge within the wider biomedical research. For our analysis, we have conceptualized disease research as a parallel multi-agent search in which each scientific agent (a scientist) follows a search path based on a model of a disease. We have looked at trends in facts published for diseases, measured their diversity and turnover using the entropy measure and found similar patterns across disease areas. raul.rodriguez-esteban@roche.com.
Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases
Smith, J. A.; Leonardi, T.; Huang, B.; Iraci, N.; Vega, B.; Pluchino, S.
2015-01-01
Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs—or specific EV cargoes—are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases. PMID:24973266
Autoimmune abnormality affects ovulation and oocyte-pick-up in MRL/MpJ-Fas lpr/lpr mice.
Hosotani, M; Ichii, O; Nakamura, T; Kanazawa, S O; Elewa, Y Hosny Ali; Kon, Y
2018-01-01
Ovulation and oocyte-pick-up are essential processes in fertilization. Herein, we found associations between autoimmune disease and the aforementioned processes in mice. At three and six months, along with the evaluation of autoimmune disease indices, the ovary, mesosalpinx, and oviducts were histologically examined in C57BL/6, MRL/MpJ, and MRL/MpJ-Fas lpr/lpr mice as healthy control, mild and severe models of autoimmune disease, respectively. In superovulated mice, the number of "oocyte cumulus complexes" found in the ampulla was macroscopically counted, and that of "ovulated oocytes" was histologically evaluated, as indicated by ruptured follicles or corpora hemorrhagica in ovaries. Finally, the oocyte-pick-up rate was calculated. In MRL/MpJ-Fas lpr/lpr mice, the oocyte-pick-up rate decreased with disease-related deterioration, unlike in other mouse strains. Further, more ovulated oocytes were found in MRL/MpJ mice than in C57BL/6 mice, and this number significantly decreased with aging in MRL/MpJ-Fas lpr/lpr mice. Numerous T-cells infiltrated into the infundibulum or a part of the mesosalpinx in aged MRL/MpJ-Fas lpr/lpr mice, and their infundibulum showed swelling and fewer ciliated epithelial cells compared to that of C57BL/6 mice. In conclusion, the progression of severe autoimmune disease affected the oocyte-pick-up process through histopathological changes in the infundibulum. These results provide important insights into female infertility associated with autoimmune disease.
Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases.
Smith, J A; Leonardi, T; Huang, B; Iraci, N; Vega, B; Pluchino, S
2015-04-01
Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs-or specific EV cargoes-are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases.
Podtelezhnikov, Alexei A; Tanis, Keith Q; Nebozhyn, Michael; Ray, William J; Stone, David J; Loboda, Andrey P
2011-01-01
Alzheimer's disease (AD) is a complex neurodegenerative disorder that diverges from the process of normal brain aging by unknown mechanisms. We analyzed the global structure of age- and disease-dependent gene expression patterns in three regions from more than 600 brains. Gene expression variation could be almost completely explained by four transcriptional biomarkers that we named BioAge (biological age), Alz (Alzheimer), Inflame (inflammation), and NdStress (neurodegenerative stress). BioAge captures the first principal component of variation and includes genes statistically associated with neuronal loss, glial activation, and lipid metabolism. Normally BioAge increases with chronological age, but in AD it is prematurely expressed as if some of the subjects were 140 years old. A component of BioAge, Lipa, contains the AD risk factor APOE and reflects an apparent early disturbance in lipid metabolism. The rate of biological aging in AD patients, which cannot be explained by BioAge, is associated instead with NdStress, which includes genes related to protein folding and metabolism. Inflame, comprised of inflammatory cytokines and microglial genes, is broadly activated and appears early in the disease process. In contrast, the disease-specific biomarker Alz was selectively present only in the affected areas of the AD brain, appears later in pathogenesis, and is enriched in genes associated with the signaling and cell adhesion changes during the epithelial to mesenchymal (EMT) transition. Together these biomarkers provide detailed description of the aging process and its contribution to Alzheimer's disease progression. © 2011 Podtelezhnikov et al.
Molecular Insights into the Pathogenesis of Alzheimer's Disease and Its Relationship to Normal Aging
Podtelezhnikov, Alexei A.; Tanis, Keith Q.; Nebozhyn, Michael; Ray, William J.
2011-01-01
Alzheimer's disease (AD) is a complex neurodegenerative disorder that diverges from the process of normal brain aging by unknown mechanisms. We analyzed the global structure of age- and disease-dependent gene expression patterns in three regions from more than 600 brains. Gene expression variation could be almost completely explained by four transcriptional biomarkers that we named BioAge (biological age), Alz (Alzheimer), Inflame (inflammation), and NdStress (neurodegenerative stress). BioAge captures the first principal component of variation and includes genes statistically associated with neuronal loss, glial activation, and lipid metabolism. Normally BioAge increases with chronological age, but in AD it is prematurely expressed as if some of the subjects were 140 years old. A component of BioAge, Lipa, contains the AD risk factor APOE and reflects an apparent early disturbance in lipid metabolism. The rate of biological aging in AD patients, which cannot be explained by BioAge, is associated instead with NdStress, which includes genes related to protein folding and metabolism. Inflame, comprised of inflammatory cytokines and microglial genes, is broadly activated and appears early in the disease process. In contrast, the disease-specific biomarker Alz was selectively present only in the affected areas of the AD brain, appears later in pathogenesis, and is enriched in genes associated with the signaling and cell adhesion changes during the epithelial to mesenchymal (EMT) transition. Together these biomarkers provide detailed description of the aging process and its contribution to Alzheimer's disease progression. PMID:22216330
Bookey-Bassett, Sue; Markle-Reid, Maureen; Mckey, Colleen A; Akhtar-Danesh, Noori
2017-01-01
To report a concept analysis of interprofessional collaboration in the context of chronic disease management, for older adults living in communities. Increasing prevalence of chronic disease among older adults is creating significant burden for patients, families and healthcare systems. Managing chronic disease for older adults living in the community requires interprofessional collaboration across different health and other care providers, organizations and sectors. However, there is a lack of consensus about the definition and use of interprofessional collaboration for community-based chronic disease management. Concept analysis. Electronic databases CINAHL, Medline, HealthStar, EMBASE, PsychINFO, Ageline and Cochrane Database were searched from 2000 - 2013. Rodgers' evolutionary method for concept analysis. The most common surrogate term was interdisciplinary collaboration. Related terms were interprofessional team, multidisciplinary team and teamwork. Attributes included: an evolving interpersonal process; shared goals, decision-making and care planning; interdependence; effective and frequent communication; evaluation of team processes; involving older adults and family members in the team; and diverse and flexible team membership. Antecedents comprised: role awareness; interprofessional education; trust between team members; belief that interprofessional collaboration improves care; and organizational support. Consequences included impacts on team composition and function, care planning processes and providers' knowledge, confidence and job satisfaction. Interprofessional collaboration is a complex evolving concept. Key components of interprofessional collaboration in chronic disease management for community-living older adults are identified. Implications for nursing practice, education and research are proposed. © 2016 John Wiley & Sons Ltd.
Zhang, Sarah X.; Ma, Jacey H.; Bhatta, Maulasri; Fliesler, Steven J.; Wang, Joshua J.
2015-01-01
Angiogenesis is a complex, step-wise process of new vessel formation that is involved in both normal embryonic development as well as postnatal pathological processes, such as cancer, cardiovascular disease, and diabetes. Aberrant blood vessel growth, also known as neovascularization, in the retina and the choroid is a major cause of vision loss in severe eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, and central and branch retinal vein occlusion. Yet, retinal neovascularization is causally and dynamically associated with vasodegeneration, ischemia, and vascular remodeling in retinal tissues. Understanding the mechanisms of retinal neovascularization is an urgent unmet need for developing new treatments for these devastating diseases. Accumulating evidence suggests a vital role for the unfolded protein response (UPR) in regulation of angiogenesis, in part through coordinating the secretion of pro-angiogenic growth factors, such as VEGF, and modulating endothelial cell survival and activity. Herein, we summarize current research in the context of endoplasmic reticulum (ER) stress and UPR signaling in retinal angiogenesis and vascular remodeling, highlighting potential implications of targeting these stress response pathways in the prevention and treatment of retinal vascular diseases that result in visual deficits and blindness. PMID:25529848
Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.
Ho, Beatrice Xuan; Pek, Nicole Min Qian; Soh, Boon-Seng
2018-03-21
The rising interest in human induced pluripotent stem cell (hiPSC)-derived organoid culture has stemmed from the manipulation of various combinations of directed multi-lineage differentiation and morphogenetic processes that mimic organogenesis. Organoids are three-dimensional (3D) structures that are comprised of multiple cell types, self-organized to recapitulate embryonic and tissue development in vitro. This model has been shown to be superior to conventional two-dimensional (2D) cell culture methods in mirroring functionality, architecture, and geometric features of tissues seen in vivo. This review serves to highlight recent advances in the 3D organoid technology for use in modeling complex hereditary diseases, cancer, host-microbe interactions, and possible use in translational and personalized medicine where organoid cultures were used to uncover diagnostic biomarkers for early disease detection via high throughput pharmaceutical screening. In addition, this review also aims to discuss the advantages and shortcomings of utilizing organoids in disease modeling. In summary, studying human diseases using hiPSC-derived organoids may better illustrate the processes involved due to similarities in the architecture and microenvironment present in an organoid, which also allows drug responses to be properly recapitulated in vitro.
Early environments and the ecology of inflammation
McDade, Thomas W.
2012-01-01
Recent research has implicated inflammatory processes in the pathophysiology of a wide range of chronic degenerative diseases, although inflammation has long been recognized as a critical line of defense against infectious disease. However, current scientific understandings of the links between chronic low-grade inflammation and diseases of aging are based primarily on research in high-income nations with low levels of infectious disease and high levels of overweight/obesity. From a comparative and historical point of view, this epidemiological situation is relatively unique, and it may not capture the full range of ecological variation necessary to understand the processes that shape the development of inflammatory phenotypes. The human immune system is characterized by substantial developmental plasticity, and a comparative, developmental, ecological framework is proposed to cast light on the complex associations among early environments, regulation of inflammation, and disease. Recent studies in the Philippines and lowland Ecuador reveal low levels of chronic inflammation, despite higher burdens of infectious disease, and point to nutritional and microbial exposures in infancy as important determinants of inflammation in adulthood. By shaping the regulation of inflammation, early environments moderate responses to inflammatory stimuli later in life, with implications for the association between inflammation and chronic diseases. Attention to the eco-logics of inflammation may point to promising directions for future research, enriching our understanding of this important physiological system and informing approaches to the prevention and treatment of disease. PMID:23045646
Genetic and epigenetic mechanisms in the pathogenesis of neurofibromatosis type I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metheny, L.J.; Amedeo, M.S.; Cappione, J.
Neurofibromatosis type I (NF1) is a common genetic disease which leads to a variety of clinical features affecting cells of neural crest origin. In the period since the NF1 gene was isolated 1991, our understanding of the genetics of NF1 has increased remarkably. One of the most striking aspects of NF1 genetics is its complexity, both in terms of gene organization and expression. The gene is large and, when mutated, gives rise to diverse manifestations. A growing body of data suggests that mutations in the NF1 gene alone may not be responsible for all of the features of this disease.more » Epigenetic mechanisms, those which affect the NF1 transcript, play a role in the normal expression of the NF1 gene. Therefore, aberrations in those epigenetic processes are most likely pathogenic. Herein we summarize salient aspects of the vast body of NF1 literature and provide some insights into the myriad of regulatory mechanisms that may go awry in the genesis of this common but complex disease. 58 refs., 3 figs.« less
Structural and congenital heart disease interventions: the role of three-dimensional printing.
Meier, L M; Meineri, M; Qua Hiansen, J; Horlick, E M
2017-02-01
Advances in catheter-based interventions in structural and congenital heart disease have mandated an increased demand for three-dimensional (3D) visualisation of complex cardiac anatomy. Despite progress in 3D imaging modalities, the pre- and periprocedural visualisation of spatial anatomy is relegated to two-dimensional flat screen representations. 3D printing is an evolving technology based on the concept of additive manufacturing, where computerised digital surface renders are converted into physical models. Printed models replicate complex structures in tangible forms that cardiovascular physicians and surgeons can use for education, preprocedural planning and device testing. In this review we discuss the different steps of the 3D printing process, which include image acquisition, segmentation, printing methods and materials. We also examine the expanded applications of 3D printing in the catheter-based treatment of adult patients with structural and congenital heart disease while highlighting the current limitations of this technology in terms of segmentation, model accuracy and dynamic capabilities. Furthermore, we provide information on the resources needed to establish a hospital-based 3D printing laboratory.
The social and political lives of zoonotic disease models: narratives, science and policy.
Leach, Melissa; Scoones, Ian
2013-07-01
Zoonotic diseases currently pose both major health threats and complex scientific and policy challenges, to which modelling is increasingly called to respond. In this article we argue that the challenges are best met by combining multiple models and modelling approaches that elucidate the various epidemiological, ecological and social processes at work. These models should not be understood as neutral science informing policy in a linear manner, but as having social and political lives: social, cultural and political norms and values that shape their development and which they carry and project. We develop and illustrate this argument in relation to the cases of H5N1 avian influenza and Ebola, exploring for each the range of modelling approaches deployed and the ways they have been co-constructed with a particular politics of policy. Addressing the complex, uncertain dynamics of zoonotic disease requires such social and political lives to be made explicit in approaches that aim at triangulation rather than integration, and plural and conditional rather than singular forms of policy advice. Copyright © 2013 Elsevier Ltd. All rights reserved.
Notch Signaling in Vascular Smooth Muscle Cells
Baeten, J.T.; Lilly, B.
2018-01-01
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801
γ-Secretase Heterogeneity in the Aph1 Subunit: Relevance for Alzheimer’s Disease
Serneels, Lutgarde; Van Biervliet, Jérôme; Craessaerts, Katleen; Dejaegere, Tim; Horré, Katrien; Van Houtvin, Tine; Esselmann, Hermann; Paul, Sabine; Schäfer, Martin K.; Berezovska, Oksana; Hyman, Bradley T.; Sprangers, Ben; Sciot, Raf; Moons, Lieve; Jucker, Mathias; Yang, Zhixiang; May, Patrick C.; Karran, Eric; Wiltfang, Jens; D’Hooge, Rudi; De Strooper, Bart
2009-01-01
The γ-secretase complex plays a role in Alzheimer’s disease (AD) and cancer progression. The development of clinical useful inhibitors, however, is complicated by the role of the γ-secretase complex in regulated intramembrane proteolysis of Notch and other essential proteins. Different γ-secretase complexes containing different Presenilin or Aph1 protein subunits are present in various tissues. Here we show that these complexes have heterogeneous biochemical and physiological properties. Specific inactivation of the Aph1B γ-secretase in a murine Alzheimer’s disease model led to improvements of Alzheimer’s disease-relevant phenotypic features without any Notch-related side effects. The Aph1B complex contributes to total γ-secretase activity in the human brain, thus specific targeting of Aph1B-containing γ-secretase complexes may be helpful in generating less toxic therapies for Alzheimer’s disease. PMID:19299585
Cross-presentation of IgG-containing immune complexes
Baker, Kristi; Rath, Timo; Lencer, Wayne I.; Fiebiger, Edda
2012-01-01
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4+ T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8+ T cells. PMID:22847331
Schiepek, Günter; Tominschek, Igor; Heinzel, Stephan; Aigner, Martin; Dold, Markus; Unger, Annemarie; Lenz, Gerhard; Windischberger, Christian; Moser, Ewald; Plöderl, Martin; Lutz, Jürgen; Meindl, Thomas; Zaudig, Michael; Pogarell, Oliver; Karch, Susanne
2013-01-01
This study investigates neuronal activation patterns during the psychotherapeutic process, assuming that change dynamics undergo critical instabilities and discontinuous transitions. An internet-based system was used to collect daily self-assessments during inpatient therapies. A dynamic complexity measure was applied to the resulting time series. Critical phases of the change process were indicated by the maxima of the varying complexity. Repeated functional magnetic resonance imaging (fMRI) measurements were conducted over the course of the therapy. The study was realized with 9 patients suffering from obsessive-compulsive disorder (subtype: washing/contamination fear) and 9 matched healthy controls. For symptom-provocative stimulation individualized pictures from patients’ personal environments were used. The neuronal responses to these disease-specific pictures were compared to the responses during standardized disgust-provoking and neutral pictures. Considerably larger neuronal changes in therapy-relevant brain areas (cingulate cortex/supplementary motor cortex, bilateral dorsolateral prefrontal cortex, bilateral insula, bilateral parietal cortex, cuneus) were observed during critical phases (order transitions), as compared to non-critical phases, and also compared to healthy controls. The data indicate that non-stationary changes play a crucial role in the psychotherapeutic process supporting self-organization and complexity models of therapeutic change. PMID:23977168
Metabonomics and medicine: the Biochemical Oracle.
Mitchell, Steve; Holmes, Elaine; Carmichael, Paul
2002-10-01
Occasionally, a new idea emerges that has the potential to revolutionize an entire field of scientific endeavour. It is now within our grasp to be able to detect subtle perturbations within the phenomenally complex biochemical matrix of living organisms. The discipline of metabonomics promises an all-encompassing approach to understanding total, yet fundamental, changes occurring in disease processes, drug toxicity and cell function.
Hadjiargyrou, Michael; O’Keefe, Regis J
2015-01-01
The complexity of fracture repair makes it an ideal process for studying the interplay between the molecular, cellular, tissue, and organ level events involved in tissue regeneration. Additionally, as fracture repair recapitulates many of the processes that occur during embryonic development, investigations of fracture repair provide insights regarding skeletal embryogenesis. Specifically, inflammation, signaling, gene expression, cellular proliferation and differentiation, osteogenesis, chondrogenesis, angiogenesis, and remodeling represent the complex array of interdependent biological events that occur during fracture repair. Here we review studies of bone regeneration in genetically modified mouse models, during aging, following environmental exposure, and in the setting of disease that provide insights regarding the role of multipotent cells and their regulation during fracture repair. Complementary animal models and ongoing scientific discoveries define an increasing number of molecular and cellular targets to reduce the morbidity and complications associated with fracture repair. Last, some new and exciting areas of stem cell research such as the contribution of mitochondria function, limb regeneration signaling, and microRNA (miRNA) posttranscriptional regulation are all likely to further contribute to our understanding of fracture repair as an active branch of regenerative medicine. PMID:25264148
Graph theoretical analysis of complex networks in the brain
Stam, Cornelis J; Reijneveld, Jaap C
2007-01-01
Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern. PMID:17908336
Respiratory Chain Complexes in Dynamic Mitochondria Display a Patchy Distribution in Life Cells
Muster, Britta; Kohl, Wladislaw; Wittig, Ilka; Strecker, Valentina; Joos, Friederike; Haase, Winfried; Bereiter-Hahn, Jürgen; Busch, Karin
2010-01-01
Background Mitochondria, the main suppliers of cellular energy, are dynamic organelles that fuse and divide frequently. Constraining these processes impairs mitochondrial is closely linked to certain neurodegenerative diseases. It is proposed that functional mitochondrial dynamics allows the exchange of compounds thereby providing a rescue mechanism. Methodology/Principal Findings The question discussed in this paper is whether fusion and fission of mitochondria in different cell lines result in re-localization of respiratory chain (RC) complexes and of the ATP synthase. This was addressed by fusing cells containing mitochondria with respiratory complexes labelled with different fluorescent proteins and resolving their time dependent re-localization in living cells. We found a complete reshuffling of RC complexes throughout the entire chondriome in single HeLa cells within 2–3 h by organelle fusion and fission. Polykaryons of fused cells completely re-mixed their RC complexes in 10–24 h in a progressive way. In contrast to the recently described homogeneous mixing of matrix-targeted proteins or outer membrane proteins, the distribution of RC complexes and ATP synthase in fused hybrid mitochondria, however, was not homogeneous but patterned. Thus, complete equilibration of respiratory chain complexes as integral inner mitochondrial membrane complexes is a slow process compared with matrix proteins probably limited by complete fusion. In co-expressing cells, complex II is more homogenously distributed than complex I and V, resp. Indeed, this result argues for higher mobility and less integration in supercomplexes. Conclusion/Significance Our results clearly demonstrate that mitochondrial fusion and fission dynamics favours the re-mixing of all RC complexes within the chondriome. This permanent mixing avoids a static situation with a fixed composition of RC complexes per mitochondrion. PMID:20689601
Advances in the genetically complex autoinflammatory diseases.
Ombrello, Michael J
2015-07-01
Monogenic diseases usually demonstrate Mendelian inheritance and are caused by highly penetrant genetic variants of a single gene. In contrast, genetically complex diseases arise from a combination of multiple genetic and environmental factors. The concept of autoinflammation originally emerged from the identification of individual, activating lesions of the innate immune system as the molecular basis of the hereditary periodic fever syndromes. In addition to these rare, monogenic forms of autoinflammation, genetically complex autoinflammatory diseases like the periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome, chronic recurrent multifocal osteomyelitis (CRMO), Behçet's disease, and systemic arthritis also fulfill the definition of autoinflammatory diseases-namely, the development of apparently unprovoked episodes of inflammation without identifiable exogenous triggers and in the absence of autoimmunity. Interestingly, investigations of these genetically complex autoinflammatory diseases have implicated both innate and adaptive immune abnormalities, blurring the line between autoinflammation and autoimmunity. This reinforces the paradigm of concerted innate and adaptive immune dysfunction leading to genetically complex autoinflammatory phenotypes.
Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury
Camara, Amadou K. S.; Bienengraeber, Martin; Stowe, David F.
2011-01-01
The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury. PMID:21559063
Faure, Eric
2014-01-01
In nature, organisms are commonly infected by an assemblage of different parasite species or by genetically distinct parasite strains that interact in complex ways. Linked to co-infections, pathocoenosis, a term proposed by M. Grmek in 1969, refers to a pathological state arising from the interactions of diseases within a population and to the temporal and spatial dynamics of all of the diseases. In the long run, malaria was certainly one of the most important component of past pathocoenoses. Today this disease, which affects hundreds of millions of individuals and results in approximately one million deaths each year, is always highly endemic in over 20% of the world and is thus co-endemic with many other diseases. Therefore, the incidences of co-infections and possible direct and indirect interactions with Plasmodium parasites are very high. Both positive and negative interactions between malaria and other diseases caused by parasites belonging to numerous taxa have been described and in some cases, malaria may modify the process of another disease without being affected itself. Interactions include those observed during voluntary malarial infections intended to cure neuro-syphilis or during the enhanced activations of bacterial gastro-intestinal diseases and HIV infections. Complex relationships with multiple effects should also be considered, such as those observed during helminth infections. Moreover, reports dating back over 2000 years suggested that co- and multiple infections have generally deleterious consequences and analyses of historical texts indicated that malaria might exacerbate both plague and cholera, among other diseases. Possible biases affecting the research of etiological agents caused by the protean manifestations of malaria are discussed. A better understanding of the manner by which pathogens, particularly Plasmodium, modulate immune responses is particularly important for the diagnosis, cure, and control of diseases in human populations. PMID:25484866
Network Medicine: From Cellular Networks to the Human Diseasome
NASA Astrophysics Data System (ADS)
Barabasi, Albert-Laszlo
2014-03-01
Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The tools of network science offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction not only enrich our understanding of complex systems, but are also essential to identify new disease genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases.
Neural correlates of impaired emotion processing in manifest Huntington's disease.
Dogan, Imis; Saß, Christian; Mirzazade, Shahram; Kleiman, Alexandra; Werner, Cornelius J; Pohl, Anna; Schiefer, Johannes; Binkofski, Ferdinand; Schulz, Jörg B; Shah, N Jon; Reetz, Kathrin
2014-05-01
The complex phenotype of Huntington's disease (HD) encompasses motor, psychiatric and cognitive dysfunctions, including early impairments in emotion recognition. In this first functional magnetic resonance imaging study, we investigated emotion-processing deficits in 14 manifest HD patients and matched controls. An emotion recognition task comprised short video clips displaying one of six basic facial expressions (sadness, happiness, disgust, fear, anger and neutral). Structural changes between patients and controls were assessed by means of voxel-based morphometry. Along with deficient recognition of negative emotions, patients exhibited predominantly lower neural response to stimuli of negative valences in the amygdala, hippocampus, striatum, insula, cingulate and prefrontal cortices, as well as in sensorimotor, temporal and visual areas. Most of the observed reduced activity patterns could not be explained merely by regional volume loss. Reduced activity in the thalamus during fear correlated with lower thalamic volumes. During the processing of sadness, patients exhibited enhanced amygdala and hippocampal activity along with reduced recruitment of the medial prefrontal cortex. Higher amygdala activity was related to more pronounced amygdala atrophy and disease burden. Overall, the observed emotion-related dysfunctions in the context of structural neurodegeneration suggest both disruptions of striatal-thalamo-cortical loops and potential compensation mechanism with greater disease severity in manifest HD.
Developing an active implementation model for a chronic disease management program.
Smidth, Margrethe; Christensen, Morten Bondo; Olesen, Frede; Vedsted, Peter
2013-04-01
Introduction and diffusion of new disease management programs in healthcare is usually slow, but active theory-driven implementation seems to outperform other implementation strategies. However, we have only scarce evidence on the feasibility and real effect of such strategies in complex primary care settings where municipalities, general practitioners and hospitals should work together. The Central Denmark Region recently implemented a disease management program for chronic obstructive pulmonary disease (COPD) which presented an opportunity to test an active implementation model against the usual implementation model. The aim of the present paper is to describe the development of an active implementation model using the Medical Research Council's model for complex interventions and the Chronic Care Model. We used the Medical Research Council's five-stage model for developing complex interventions to design an implementation model for a disease management program for COPD. First, literature on implementing change in general practice was scrutinised and empirical knowledge was assessed for suitability. In phase I, the intervention was developed; and in phases II and III, it was tested in a block- and cluster-randomised study. In phase IV, we evaluated the feasibility for others to use our active implementation model. The Chronic Care Model was identified as a model for designing efficient implementation elements. These elements were combined into a multifaceted intervention, and a timeline for the trial in a randomised study was decided upon in accordance with the five stages in the Medical Research Council's model; this was captured in a PaTPlot, which allowed us to focus on the structure and the timing of the intervention. The implementation strategies identified as efficient were use of the Breakthrough Series, academic detailing, provision of patient material and meetings between providers. The active implementation model was tested in a randomised trial (results reported elsewhere). The combination of the theoretical model for complex interventions and the Chronic Care Model and the chosen specific implementation strategies proved feasible for a practice-based active implementation model for a chronic-disease-management-program for COPD. Using the Medical Research Council's model added transparency to the design phase which further facilitated the process of implementing the program. http://www.clinicaltrials.gov/(NCT01228708).
Recurrent aphthous stomatitis: clinical characteristics and associated systemic disorders.
Rogers, R S
1997-12-01
Recurrent aphthous stomatitis (RAS), commonly known as canker sores, has been reported as recurrent oral ulcers, recurrent aphthous ulcers, or simple or complex aphthosis. RAS is the most common inflammatory ulcerative condition of the oral mucosa in North American patients. One of its variants is the most painful condition of the oral mucosa. Recurrent aphthous stomatitis has been the subject of active investigation along multiple lines of research, including epidemiology, immunology, clinical correlations, and therapy. Clinical evaluation of the patient requires correct diagnosis of RAS and classification of the disease based on morphology (MiAU, MjAU, HU) and severity (simple versus complex). The natural history of individual lesions of RAS is important, because it is the bench mark against which treatment benefits are measured. The lesions of RAS are not caused by a single factor but occur in an environment that is permissive for development of lesions. These factors include trauma, smoking, stress, hormonal state, family history, food hypersensitivity and infectious or immunologic factors. The clinician should consider these elements of a multifactorial process leading to the development of lesions of RAS. To properly diagnose and treat a patient with lesions of RAS, the clinician must identify or exclude associated systemic disorders or "correctable causes." Behçet's disease and complex aphthosis variants, such as ulcus vulvae acutum, mouth and genital ulcers with inflamed cartilage (MAGIC) syndrome, fever, aphthosis, pharyngitis, and adenitis (FAPA) syndrome, and cyclic neutropenia, should be considered. The aphthous-like oral ulcerations of patients with human immunodeficiency virus (HIV) disease represent a challenging differential diagnosis. The association of lesions of RAS with hematinic deficiencies and gastrointestinal diseases provides an opportunity to identify a "correctable cause," which, with appropriate treatment, can result in a remission or substantial lessening of disease activity.
Li, Wan; Zhu, Lina; Huang, Hao; He, Yuehan; Lv, Junjie; Li, Weimin; Chen, Lina; He, Weiming
2017-10-01
Complex chronic diseases are caused by the effects of genetic and environmental factors. Single nucleotide polymorphisms (SNPs), one common type of genetic variations, played vital roles in diseases. We hypothesized that disease risk functional SNPs in coding regions and protein interaction network modules were more likely to contribute to the identification of disease susceptible genes for complex chronic diseases. This could help to further reveal the pathogenesis of complex chronic diseases. Disease risk SNPs were first recognized from public SNP data for coronary heart disease (CHD), hypertension (HT) and type 2 diabetes (T2D). SNPs in coding regions that were classified into nonsense and missense by integrating several SNP functional annotation databases were treated as functional SNPs. Then, regions significantly associated with each disease were screened using random permutations for disease risk functional SNPs. Corresponding to these regions, 155, 169 and 173 potential disease susceptible genes were identified for CHD, HT and T2D, respectively. A disease-related gene product interaction network in environmental context was constructed for interacting gene products of both disease genes and potential disease susceptible genes for these diseases. After functional enrichment analysis for disease associated modules, 5 CHD susceptible genes, 7 HT susceptible genes and 3 T2D susceptible genes were finally identified, some of which had pleiotropic effects. Most of these genes were verified to be related to these diseases in literature. This was similar for disease genes identified from another method proposed by Lee et al. from a different aspect. This research could provide novel perspectives for diagnosis and treatment of complex chronic diseases and susceptible genes identification for other diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Dupuytren disease: an evolving understanding of an age-old disease.
Black, Eric M; Blazar, Philip E
2011-12-01
Dupuytren disease, a clinical entity originally described more than 400 years ago, is a progressive disease of genetic origin. Excessive myofibroblast proliferation and altered collagen matrix composition lead to thickened and contracted palmar fascia; the resultant digital flexion contractures may severely limit function. The pathophysiology is multifactorial and remains a topic of research and debate. Genetic predisposition, trauma, inflammatory response, ischemia, and environment, as well as variable expression of proteins and growth factors within the local tissue, all play a role in the disease process. Common treatments of severe disease include open fasciectomy or fasciotomy. These procedures may be complicated by the complex anatomic relationships between cords (pathologic contracted fascia) and adjacent neurovascular structures. Recent advances in the management of Dupuytren disease involve less invasive treatments, such as percutaneous needle fasciotomy and injectable collagenase Clostridium histolyticum. Postoperative management focuses on minimizing the cellular response of cord disruption and maximizing range of motion through static or dynamic extension splinting.
Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead
Walter, Katharine S.; Wesolowski, Amy; Buckee, Caroline O.; Shevliakova, Elena; Tatem, Andrew J.; Boos, William R.; Weinberger, Daniel M.; Pitzer, Virginia E.
2017-01-01
Climate change is likely to profoundly modulate the burden of infectious diseases. However, attributing health impacts to a changing climate requires being able to associate changes in infectious disease incidence with the potentially complex influences of climate. This aim is further complicated by nonlinear feedbacks inherent in the dynamics of many infections, driven by the processes of immunity and transmission. Here, we detail the mechanisms by which climate drivers can shape infectious disease incidence, from direct effects on vector life history to indirect effects on human susceptibility, and detail the scope of variation available with which to probe these mechanisms. We review approaches used to evaluate and quantify associations between climate and infectious disease incidence, discuss the array of data available to tackle this question, and detail remaining challenges in understanding the implications of climate change for infectious disease incidence. We point to areas where synthesis between approaches used in climate science and infectious disease biology provide potential for progress. PMID:28814655
Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead.
Metcalf, C Jessica E; Walter, Katharine S; Wesolowski, Amy; Buckee, Caroline O; Shevliakova, Elena; Tatem, Andrew J; Boos, William R; Weinberger, Daniel M; Pitzer, Virginia E
2017-08-16
Climate change is likely to profoundly modulate the burden of infectious diseases. However, attributing health impacts to a changing climate requires being able to associate changes in infectious disease incidence with the potentially complex influences of climate. This aim is further complicated by nonlinear feedbacks inherent in the dynamics of many infections, driven by the processes of immunity and transmission. Here, we detail the mechanisms by which climate drivers can shape infectious disease incidence, from direct effects on vector life history to indirect effects on human susceptibility, and detail the scope of variation available with which to probe these mechanisms. We review approaches used to evaluate and quantify associations between climate and infectious disease incidence, discuss the array of data available to tackle this question, and detail remaining challenges in understanding the implications of climate change for infectious disease incidence. We point to areas where synthesis between approaches used in climate science and infectious disease biology provide potential for progress. © 2017 The Authors.
Current Concepts of Neurodegenerative Mechanisms in Alzheimer's Disease.
Magalingam, Kasthuri Bai; Radhakrishnan, Ammu; Ping, Ng Shee; Haleagrahara, Nagaraja
2018-01-01
Neurodegenerative diseases are hereditary or sporadic conditions that result in the progressive loss of the structure and function of neurons as well as neuronal death. Although a range of diseases lie under this umbrella term, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases that affect a large population around the globe. Alzheimer's disease is characterized by the abnormal accumulation of extracellular amyloid- β plaques and intraneuronal neurofibrillary tangles in brain regions and manifests as a type of dementia in aged individuals that results in memory loss, multiple cognitive abnormalities, and intellectual disabilities that interfere with quality of life. Since the discovery of AD, a wealth of new information has emerged that delineates the causes, mechanisms of disease, and potential therapeutic agents, but an effective remedy to cure the diseases has not been identified yet. This could be because of the complexity of the disease process, as it involves various contributing factors that include environmental factors and genetic predispositions. This review summarizes the current understanding on neurodegenerative mechanisms that lead to the emergence of the pathology of AD.
Dupuytren's: a systems biology disease
2011-01-01
Dupuytren's disease (DD) is an ill-defined fibroproliferative disorder of the palm of the hands leading to digital contracture. DD commonly occurs in individuals of northern European extraction. Cellular components and processes associated with DD pathogenesis include altered gene and protein expression of cytokines, growth factors, adhesion molecules, and extracellular matrix components. Histology has shown increased but varying levels of particular types of collagen, myofibroblasts and myoglobin proteins in DD tissue. Free radicals and localised ischaemia have been suggested to trigger the proliferation of DD tissue. Although the existing available biological information on DD may contain potentially valuable (though largely uninterpreted) information, the precise aetiology of DD remains unknown. Systems biology combines mechanistic modelling with quantitative experimentation in studies of networks and better understanding of the interaction of multiple components in disease processes. Adopting systems biology may be the ideal approach for future research in order to improve understanding of complex diseases of multifactorial origin. In this review, we propose that DD is a disease of several networks rather than of a single gene, and show that this accounts for the experimental observations obtained to date from a variety of sources. We outline how DD may be investigated more effectively by employing a systems biology approach that considers the disease network as a whole rather than focusing on any specific single molecule. PMID:21943049
Emerging infectious diseases in southeast Asia: regional challenges to control.
Coker, Richard J; Hunter, Benjamin M; Rudge, James W; Liverani, Marco; Hanvoravongchai, Piya
2011-02-12
Southeast Asia is a hotspot for emerging infectious diseases, including those with pandemic potential. Emerging infectious diseases have exacted heavy public health and economic tolls. Severe acute respiratory syndrome rapidly decimated the region's tourist industry. Influenza A H5N1 has had a profound effect on the poultry industry. The reasons why southeast Asia is at risk from emerging infectious diseases are complex. The region is home to dynamic systems in which biological, social, ecological, and technological processes interconnect in ways that enable microbes to exploit new ecological niches. These processes include population growth and movement, urbanisation, changes in food production, agriculture and land use, water and sanitation, and the effect of health systems through generation of drug resistance. Southeast Asia is home to about 600 million people residing in countries as diverse as Singapore, a city state with a gross domestic product (GDP) of US$37,500 per head, and Laos, until recently an overwhelmingly rural economy, with a GDP of US$890 per head. The regional challenges in control of emerging infectious diseases are formidable and range from influencing the factors that drive disease emergence, to making surveillance systems fit for purpose, and ensuring that regional governance mechanisms work effectively to improve control interventions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Proteomic Analysis of the Human Olfactory Bulb.
Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava
2017-08-01
The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.
Protonation free energy levels in complex molecular systems.
Antosiewicz, Jan M
2008-04-01
All proteins, nucleic acids, and other biomolecules contain residues capable of exchanging protons with their environment. These proton transfer phenomena lead to pH sensitivity of many molecular processes underlying biological phenomena. In the course of biological evolution, Nature has invented some mechanisms to use pH gradients to regulate biomolecular processes inside cells or in interstitial fluids. Therefore, an ability to model protonation equilibria in molecular systems accurately would be of enormous value for our understanding of biological processes and for possible rational influence on them, like in developing pH dependent drugs to treat particular diseases. This work presents a derivation, by thermodynamic and statistical mechanical methods, of an expression for the free energy of a complex molecular system at arbitrary ionization state of its titratable residues. This constitutes one of the elements of modeling protonation equilibria. Starting from a consideration of a simple acid-base equilibrium of a model compound with a single tritratable group, we arrive at an expression which is of general validity for complex systems. The only approximation used in this derivation is the postulating that the interaction energy between any pair of titratable sites does not depend on the protonation states of all the remaining ionizable groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Jason E.; Wang, Jing; Mitchell, Hugh D.
2013-01-01
The advent of high throughput technologies capable of comprehensive analysis of genes, transcripts, proteins and other significant biological molecules has provided an unprecedented opportunity for the identification of molecular markers of disease processes. However, it has simultaneously complicated the problem of extracting meaningful signatures of biological processes from these complex datasets. The process of biomarker discovery and characterization provides opportunities both for purely statistical and expert knowledge-based approaches and would benefit from improved integration of the two. Areas covered In this review we will present examples of current practices for biomarker discovery from complex omic datasets and the challenges thatmore » have been encountered. We will then present a high-level review of data-driven (statistical) and knowledge-based methods applied to biomarker discovery, highlighting some current efforts to combine the two distinct approaches. Expert opinion Effective, reproducible and objective tools for combining data-driven and knowledge-based approaches to biomarker discovery and characterization are key to future success in the biomarker field. We will describe our recommendations of possible approaches to this problem including metrics for the evaluation of biomarkers.« less
Dunlop, R; Arbona, A; Rajasekaran, H; Lo Iacono, L; Fingberg, J; Summers, P; Benkner, S; Engelbrecht, G; Chiarini, A; Friedrich, C M; Moore, B; Bijlenga, P; Iavindrasana, J; Hose, R D; Frangi, A F
2008-01-01
This paper presents an overview of computerised decision support for clinical practice. The concept of computer-interpretable guidelines is introduced in the context of the @neurIST project, which aims at supporting the research and treatment of asymptomatic unruptured cerebral aneurysms by bringing together heterogeneous data, computing and complex processing services. The architecture is generic enough to adapt it to the treatment of other diseases beyond cerebral aneurysms. The paper reviews the generic requirements of the @neurIST system and presents the innovative work in distributing executable clinical guidelines.
Advances in assessment, diagnosis, and treatment of hyperthyroidism in children.
Amer, Kim Siarkowski
2005-04-01
The thyroid gland is responsible for regulating multiple complex metabolic processes that affect most organs. Physical growth and cognitive development are dependent on proper levels of thyroid hormone. This article will review common challenges in the diagnosis of hyperthyroidism in children, the approaches to treatment, and the nursing interventions guided toward child and family responses to thyroid disease. A comparison of signs and symptoms of hypothyroidism and hyperthyroidism is also included. The nursing interventions addressed in the article integrate the biological, psychological, social, and environmental stresses and adaptations necessary to cope with hyperthyroid disease.
Change in nomenclature for the immunologic synapse from Troxis Necrosis to trogocytosis.
French, Samuel W
2017-10-01
The immunologic synapse mechanism of liver necrosis was termed Troxis Necrosis meaning "nibbling". (Wang MX et al. and French SW. Exp Mol Pathol 2001, 71: 137-146). This mechanism of liver injury was first named "Piecemeal Necrosis" by Hans Popper. It is involved in autoimmune hepatitis, HCV, HBV, primary biliary cirrhosis and steatohepatitis. This process involves the T cell receptor (TCR) which binds to the hepatocyte antigen presenting major histocompatibility complex (MHC) on the hepatocytic plasma membrane which quickly leads to the removal of the complex from the liver and uptake by the CD4 lymphocyte. This process is performed by the immunologic synapse now called trogocytosis meaning "gnaw" (Martinez-Martin N et al., Immunity 2011, 35: 208-222 and Dustin ML, Cancer Immunol Res 2014, 2: 1023-1033). The repeated episodes of uptake of the hepatocyte bite by bite causes the hepatocyte to slowly disappear like the Cheshire cat. This immunological synapse process is also involved in drug hepatitis, Hashimoto's thyroiditis, type I diabetes, autoimmune adrenalitis, autoimmune gastritis and cancer therapy. Treatment of Alzheimer's disease is also now being studied with PD-L1 antibody as used in the treatment of cancer allowing recruitment of disease modifying leukocytes to the sites of brain pathology (Schwartz M. Science 2017, 357: 254-255). Acknowledgement: Supported by a Grant from NIAAAUO1-021898. Copyright © 2017. Published by Elsevier Inc.
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions
Lawley, Mark A.; Siscovick, David S.; Zhang, Donglan; Pagán, José A.
2016-01-01
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions. PMID:27236380
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions.
Li, Yan; Lawley, Mark A; Siscovick, David S; Zhang, Donglan; Pagán, José A
2016-05-26
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions.
Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases.
Nishimura, Yuhei; Hara, Hideaki
2016-01-01
Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases.
Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases
Hara, Hideaki
2016-01-01
Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases. PMID:28053689
Model of epidemic control based on quarantine and message delivery
NASA Astrophysics Data System (ADS)
Wang, Xingyuan; Zhao, Tianfang; Qin, Xiaomeng
2016-09-01
The model provides two novel strategies for the preventive control of epidemic diseases. One approach is related to the different isolating rates in latent period and invasion period. Experiments show that the increasing of isolating rates in invasion period, as long as over 0.5, contributes little to the preventing of epidemic; the improvement of isolation rate in latent period is key to control the disease spreading. Another is a specific mechanism of message delivering and forwarding. Information quality and information accumulating process are also considered there. Macroscopically, diseases are easy to control as long as the immune messages reach a certain quality. Individually, the accumulating messages bring people with certain immunity to the disease. Also, the model is performed on the classic complex networks like scale-free network and small-world network, and location-based social networks. Results show that the proposed measures demonstrate superior performance and significantly reduce the negative impact of epidemic disease.
Mammalian polycistronic mRNAs and disease
Karginov, Timofey A.; Hejazi Pastor, Daniel Parviz; Semler, Bert L.; Gomez, Christopher M.
2016-01-01
Our understanding of gene expression has come far since the “one-gene one-polypeptide” hypothesis proposed by Beadle and Tatum. This review addresses the gradual recognition that a growing number of polycistronic genes, originally discovered in viruses, are being identified within the mammalian genome, and that these may provide new insights into disease mechanisms and treatment. We have carried out a systematic literature review identifying 13 mammalian genes for which there is evidence for polycistronic expression via translation through an Internal Ribosome Entry Site (IRES). Although the canonical mechanism of translation initiation has been studied extensively, this review highlights a process of non-canonical translation, IRES-mediated translation, that is a growing source of understanding complex inheritance, elucidation of disease mechanisms, and discovery of novel therapeutic targets. Identification of additional polycistronic genes may provide new insights into disease therapy and allow for new discoveries of translational and disease mechanisms. PMID:28012572
Harvey, L; Gray, T; Beneton, M N; Douglas, D L; Kanis, J A; Russell, R G
1982-01-01
The ultrastructure of the osteocytes, osteoblasts, osteoclasts, haemopoietic and other connective tissue cells was examined in 27 biopsies from 22 patients with Paget's disease of bone. Electron microscopy showed characteristic nuclear and cytoplasmic inclusions in the osteoclasts of all of the 25 biopsies exhibiting histological evidence of Paget's disease. Such inclusions were absent from all the other types examined. The intranuclear inclusions consisted of stacked rows or complex whorls of tubular filaments with an individual filament diameter of 12-15 nm, often arranged in a paracrystalline array. The frequency of occurrence of inclusions in the osteoclasts and their individual nuclei measured quantitatively in 18 of the biopsies was related to the histological severity of the disease process. The similarity of the observed inclusions to those of paramyxovirus inclusion bodies (particularly measles) support the hypothesis that Paget's disease is a slow virus infection. Images PMID:7096600
Polybacterial human disease: the ills of social networking.
Short, Francesca L; Murdoch, Sarah L; Ryan, Robert P
2014-09-01
Polybacterial diseases involve multiple organisms that act collectively to facilitate disease progression. Although this phenomenon was highlighted early in the 20th century, recent technological advances in diagnostics have led to the appreciation that many infections are far more complex than originally believed. Furthermore, it is apparent that although most treatments focus on the dominant bacterial species in an infection, other microbes, including commensals, can have a profound impact on both the response to therapy and virulence. Very little is known about the molecular mechanisms that underpin interactions between bacteria during such infections. Here, we discuss recent studies identifying and characterizing mechanisms of bacterial interaction and the biological processes they govern during certain diseases. We also highlight how possible strategies for targeting these interbacterial interactions may afford a route towards development of new therapies, with consequences for disease control. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Determining the disease management process for epileptic patients: A qualitative study
Hosseini, Nazafarin; Sharif, Farkhondeh; Ahmadi, Fazlollah; Zare, Mohammad
2016-01-01
Background: Epilepsy exposes patients to many physical, social, and emotional challenges. Thus, it seems to portray a complex picture and needs holistic care. Medical treatment and psychosocial part of epilepsy remain central to managing and improving the patient's qualify of life through team efforts. Some studies have shown the dimensions of self-management, but its management process of epilepsy patients, especially in Iran, is not clear. This study aimed to determine the disease management process in patients with epilepsy in Iran. Materials and Methods: This qualitative approach and grounded theory study was conducted from January 2009 to February 2012 in Isfahan city (Iran). Thirty-two participants were recruited by the goal-oriented, and snowball sample selection and theoretical sampling methods. After conducting a total of 43 in-depth interviews with the participants, the researchers reached data saturation. Data were analyzed using Strauss and Corbin method. Results: With a focus on disease management process, researchers found three main themes and seven sub-themes as a psychosocial process (PSP). The main themes were: perception of threat to self-identity, effort to preserve self-identity, and burn out. The psychosocial aspect of the disease generated one main variable “the perception of identity loss” and one central variable “searching for self-identity.” Conclusions: Participants attributed threat to self-identity and burn out to the way their disease was managed requiring efforts to preserve their identity. Recommendations consist of support programs and strategies to improve the public perception of epilepsy in Iran, help patients accept their condition and preserve self-identity, and most importantly, enhance medical management of epilepsy. PMID:26985223
Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael
2016-01-01
Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector’s life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis’ life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector–based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector. PMID:27159134
Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael
2016-01-01
Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.
Barnett, Tony; Fournié, Guillaume; Gupta, Sunetra; Seeley, Janet
2015-01-01
Incorporation of 'social' variables into epidemiological models remains a challenge. Too much detail and models cease to be useful; too little and the very notion of infection - a highly social process in human populations - may be considered with little reference to the social. The French sociologist Émile Durkheim proposed that the scientific study of society required identification and study of 'social currents'. Such 'currents' are what we might today describe as 'emergent properties', specifiable variables appertaining to individuals and groups, which represent the perspectives of social actors as they experience the environment in which they live their lives. Here we review the ways in which one particular emergent property, hope, relevant to a range of epidemiological situations, might be used in epidemiological modelling of infectious diseases in human populations. We also indicate how such an approach might be extended to include a range of other potential emergent properties to represent complex social and economic processes bearing on infectious disease transmission.
Newton, Hannah
2015-01-01
The ‘golden saying’ in early modern medicine was ‘Nature is the healer of disease’. This article uncovers the meaning and significance of this forgotten axiom by investigating perceptions of the agents and physiological processes of recovery from illness in England, c.1580–1720. Drawing on sources such as medical texts and diaries, it shows that doctors and laypeople attributed recovery to three agents—God, Nature and the practitioner. While scholars are familiar with the roles of providence and medicine, the vital agency of Nature has been overlooked. In theory, the agents operated in a hierarchy: Nature was ‘God's instrument’, and the physician, ‘Nature's servant’; but in practice the power balance was more ambivalent. Nature was depicted both as a housewife who cooked and cleaned the humours, and as a warrior who defeated the disease. Through exploring these complex dynamics, the article sheds fresh light on concepts of gender, disease and bodies. PMID:26217069
Msh2-Msh3 Interferes with Okazaki Fragment Processing to Promote Trinucleotide Repeat Expansions
Kantartzis, Athena; Williams, Gregory M.; Balakrishnan, Lata; Roberts, Rick L.; Surtees, Jennifer A.; Bambara, Robert A.
2012-01-01
Summary Trinucleotide repeat (TNR) expansions are the underlying cause of more than forty neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington’s disease. Although genetic evidence has attributed the cause of these diseases to errors in DNA replication and/or repair, clear molecular mechanisms have not been described. We have focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. We further provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA Ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging strand DNA replication. PMID:22938864
Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions.
Kantartzis, Athena; Williams, Gregory M; Balakrishnan, Lata; Roberts, Rick L; Surtees, Jennifer A; Bambara, Robert A
2012-08-30
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. Furthermore, we provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging-strand DNA replication. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.
Shimano, Hitoshi; Sato, Ryuichiro
2017-12-01
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Le, Duc-Hau
2015-01-01
Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with prostate cancer and selected the top 100 highly ranked candidate protein complexes. Interestingly, 69 of them were evidenced since at least one of their protein elements are known to be associated with prostate cancer. Our proposed method, including the framework to construct functional similarity protein complex networks and the neighborhood-based algorithm on these networks, could be used for identification of novel disease-protein complex associations.
Marwarha, Gurdeep; Ghribi, Othman
2017-01-01
NF-κB is a ubiquitous transcription factor that was discovered three decades ago. Since its discovery, this protein complex has been implicated in numerous physiological and pathophysiological processes such as synaptic plasticity, learning and memory, inflammation, insulin resistance, and oxidative stress among other factors that are intricately involved and dysregulated in Alzheimer's disease (AD). We embarked on a methodical and an objective review of contemporary literature to integrate the indispensable physiological functions of NF-κB in neuronal phsyiology with the undesirable pathophysiological attributes of NF-κB in the etiopathogenesis of Alzheimer's disease. In our approach, we first introduced Alzheimer's disease and subsequently highlighted the multifaceted roles of NF-κB in the biological processes altered in the progression of Alzheimer's disease including synaptic transmission, synaptic plasticity, learning, and memory, neuronal survival and apoptosis, adult neurogenesis, regulation of neural processes and structural plasticity, inflammation, and Amyloid-β production and toxicity. Our comprehensive review highlights and dissects the physiological role of NF-κB from its pathological role in the brain and delineates both, its beneficial as well as deleterious, role in the etiopathogenesis of Alzheimer's disease. In light of our understanding of the duality of the role of NF-κB in the pathogenesis of Alzheimer's disease, further studies are warranted to dissect and understand the basis of the dichotomous effects of NF-κB, so that certain selective benevolent and benign attributes of NF-κB can be spared while targeting its deleterious attributes and facets that are integral in the pathogenesis of Alzheimer's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
...] Complex Issues in Developing Drug and Biological Products for Rare Diseases; Public Workshop; Request for... Issues in Developing Drug and Biological Products for Rare Diseases.'' The purpose of the public workshop is twofold: To discuss complex issues in clinical trials for developing drug and biological products...
Vogl, Thomas; Gharibyan, Anna L.; Morozova-Roche, Ludmilla A.
2012-01-01
S100A8 and S100A9 are EF-hand Ca2+ binding proteins belonging to the S100 family. They are abundant in cytosol of phagocytes and play critical roles in numerous cellular processes such as motility and danger signaling by interacting and modulating the activity of target proteins. S100A8 and S100A9 expression levels increased in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases and they are implicated in the numerous disease pathologies. The Ca2+ and Zn2+-binding properties of S100A8/A9 have a pivotal influence on their conformation and oligomerization state, including self-assembly into homo- and heterodimers, tetramers and larger oligomers. Here we review how the unique chemical and conformational properties of individual proteins and their structural plasticity at the quaternary level account for S100A8/A9 functional diversity. Additional functional diversification occurs via non-covalent assembly into oligomeric and fibrillar amyloid complexes discovered in the aging prostate and reproduced in vitro. This process is also regulated by Ca2+and Zn2+-binding and effectively competes with the formation of the native complexes. High intrinsic amyloid-forming capacity of S100A8/A9 proteins may lead to their amyloid depositions in numerous ailments characterized by their elevated expression patterns and have additional pathological significance requiring further thorough investigation. PMID:22489132
Multifunctional nanoparticles for drug/gene delivery in nanomedicine
NASA Astrophysics Data System (ADS)
Seale, Mary-Margaret; Zemlyanov, Dimitry; Cooper, Christy L.; Haglund, Emily; Prow, Tarl W.; Reece, Lisa M.; Leary, James F.
2007-02-01
Multifunctional nanoparticles hold great promise for drug/gene delivery. Multilayered nanoparticles can act as nanomedical systems with on-board "molecular programming" to accomplish complex multi-step tasks. For example, the targeting process has only begun when the nanosystem has found the correct diseased cell of interest. Then it must pass the cell membrane and avoid enzymatic destruction within the endosomes of the cell. Since the nanosystem is only about one millionth the volume of a human cell, for it to have therapeutic efficacy with its contained package, it must deliver that drug or gene to the appropriate site within the living cell. The successive de-layering of these nanosystems in a controlled fashion allows the system to accomplish operations that would be difficult or impossible to do with even complex single molecules. In addition, portions of the nanosystem may be protected from premature degradation or mistargeting to non-diseased cells. All of these problems remain major obstacles to successful drug delivery with a minimum of deleterious side effects to the patient. This paper describes some of the many components involved in the design of a general platform technology for nanomedical systems. The feasibility of most of these components has been demonstrated by our group and others. But the integration of these interacting sub-components remains a challenge. We highlight four components of this process as examples. Each subcomponent has its own sublevels of complexity. But good nanomedical systems have to be designed/engineered as a full nanomedical system, recognizing the need for the other components.
eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.
Li, Haiquan; Pouladi, Nima; Achour, Ikbel; Gardeux, Vincent; Li, Jianrong; Li, Qike; Zhang, Hao Helen; Martinez, Fernando D; 'Skip' Garcia, Joe G N; Lussier, Yves A
2015-12-01
The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large number of downstream proteins. Indeed, we verify that this property is independent of the hubness in protein networks for which these mRNAs are transcribed. Our findings provide novel insights into the pleiotropy of mRNAs targeted by complex disease polymorphisms and the architecture of the information flow between the genetic polymorphisms and transcriptomes of complex diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression
Lutz, Carol S.; Moreira, Alexandra
2010-01-01
Alternative RNA processing mechanisms, including alternative splicing and alternative polyadenylation, are increasingly recognized as important regulators of gene expression. This article will focus on what has recently been described about alternative polyadenylation in development, differentiation, and disease in higher eukaryotes. We will also describe how the evolving global methodologies for examining the cellular transcriptome, both experimental and bioinformatic, are revealing new details about the complex nature of alternative 3′ end formation, as well as interactions with other RNA-mediated and RNA processing mechanisms. PMID:21278855
Children with medical complexity in Canada
Dewan, Tammie; Cohen, Eyal
2013-01-01
The burden of chronic disease is placing pressure on the Canadian health care system. A small but important chronic disease population is children with medical complexity, defined as individuals with: high family-identified needs; complex chronic disease necessitating specialized care; functional disability; and high health care utilization. These patients present a challenge to community providers who are expected to provide holistic care and manage complex issues, often with a paucity of services and supports. Alternative models of care may address the complex needs of this population. In addition, strategies can be implemented in community practices that may assist with the care of children with medical complexity such as collaborative care, engagement of key workers, focus on goal-directed care and use of care plans. The paediatric community should engage in health care reform discussions focused on chronic disease to ensure that the complex needs of these children are met. PMID:24497777
Lai, Mengyu; Yao, Hao; Shah, Syed Zahid Ali; Wu, Wei; Wang, Di; Zhao, Ying; Wang, Lu; Zhou, Xiangmei; Zhao, Deming; Yang, Lifeng
2018-01-01
Prion diseases are neurodegenerative disorders characterized by the accumulation of misfolded prion protein, spongiform changes in the brain, and brain inflammation as a result of the wide-spread activation of microglia. Autophagy is a highly conserved catabolic process for the clearance of cytoplasmic components, including protein aggregates and damaged organelles; this process also eliminates pathological PrPSc as it accumulates during prion infection. The NALP3 inflammasome is a multiprotein complex that is a component of the innate immune system and is responsible for the release of pro-inflammatory cytokines. Our previous study showed that the neurotoxic prion peptide PrP106-126 induces NALP3 inflammasome activation and subsequent IL-1β release in microglia. Autophagy is involved in the regulation of the immune responses and inflammation in many diseases including neurodegenerative diseases. However, the relationship between autophagy and NALP3 inflammasome in prion diseases has not been investigated. In this study, we demonstrated that the processing and release of mature IL-1β is significantly enhanced by the inhibition of autophagy. Conversely, gene-silencing of the NALP3 inflammasome promotes autophagy. Suppression of TRIF or TLR4 by siRNA attenuated PrP106-126-induced autophagy, which is indicating that the TLR4-TRIF signaling pathway is involved in PrP106-26-induced autophagy. Caspase 1 directly cleaved TRIF to diminish TLR-4-TRIF mediated autophagy. Our findings suggest that the inhibition of autophagy by NALP3 inflammasome is probably mediated by activated Caspase-1-induced TRIF cleavage. This is the first study reporting that the NALP3 inflammasome complex negatively regulates autophagy in response to PrP106-126 stimulation in microglia, and partly explains the mechanism of autophagy inhibition by Caspase-1 in PrP106-126-induced BV2 cell activation. Our findings suggest that autophagy up-regulation and inhibition of Caspase-1 may protect against prion-induced neuroinflammation and accelerate misfolded protein degradation and are potential therapeutic approaches for prion diseases. PMID:29720937
Risk of thromboembolic complications in adult congenital heart disease: A literature review.
Karsenty, Clement; Zhao, Alexandre; Marijon, Eloi; Ladouceur, Magalie
2018-05-30
Adult congenital heart disease (ACHD) is a constantly expanding population with challenging issues. Initial medical and surgical treatments are seldom curative, and the majority of patients still experience late sequelae and complications, especially thromboembolic events. These common and potentially life-threating adverse events are probably dramatically underdiagnosed. Better identification and understanding of thromboembolic risk factors are essential to prevent long-term related morbidities. In addition to specific situations associated with a high risk of thromboembolic events (Fontan circulation, cyanotic congenital heart disease), atrial arrhythmia has been recognized as an important risk factor for thromboembolic events in ACHD. Unlike in patients without ACHD, thromboembolic risk stratification scores, such as the CHA 2 DS 2 -VASc score, may not be applicable in ACHD. Overall, after a review of the scientific data published so far, it is clear that the complexity of the underlying congenital heart disease represents a major risk factor for thromboembolic events. As a consequence, prophylactic anticoagulation is indicated in patients with complex congenital heart disease and atrial arrhythmia, regardless of the other risk factors, as opposed to simple heart defects. The landscape of ACHD is an ongoing evolving process, and specific thromboembolic risk scores are needed, especially in the setting of simple heart defects; these should be coupled with specific trials or long-term follow-up of multicentre cohorts. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
COMPLEXITY AND HETEROGENEITY: WHAT DRIVES THE EVER-CHANGING BRAIN IN HUNTINGTONS DISEASE?
Rosas, H. Diana; Salat, David H; Lee, Stephanie Y; Zaleta, Alexandra K; Hevelone, Nathanael; Hersch, Steven M.
2008-01-01
Significant advances are being made in our understanding of basic pathophyiological and biochemical mechanisms that cause HuntingtonÕs disease (HD). There is increasing reason to believe that pathologic alterations occur in the brain for years before symptoms manifest. The “classic” hallmark of neuropathology in HD is selective neurodegeneration in which vulnerable populations of neurons degenerate while less vulnerable populations are spared. While, the earliest and most striking neuropathologic changes have been found in the neostriatum, neuronal loss has been identified in many other regions of the brain. We report topologically selective, early, and progressive changes in the cortex, striatum, extra-striatal brain structures and white matter throughout the spectrum of disease. Our growing understanding of HD underscores the reality that points to the complexity of HD. A single, well-defined genetic mutation causes a cascade of events whose final result is an aggregate insult of the homeostatic process. We explore possible explanations for the selective vulnerability of the brain in HD. The ultimate goal in HD is to develop disease-modifying therapies that will prevent the onset of clinical symptoms in those individuals who are at risk and slow the progression of symptoms in those individuals already affected with symptoms. Understanding changes in brain morphometry and their relationship to clinical symptoms may provide important new and important insights into basic pathophysiological mechanisms at play in the disease. PMID:19076442
Mycobacterium avium complex--the role of potable water in disease transmission.
Whiley, H; Keegan, A; Giglio, S; Bentham, R
2012-08-01
Mycobacterium avium complex (MAC) is a group of opportunistic pathogens of major public health concern. It is responsible for a wide spectrum of disease dependent on subspecies, route of infection and patients pre-existing conditions. Presently, there is limited research on the incidence of MAC infection that considers both pulmonary and other clinical manifestations. MAC has been isolated from various terrestrial and aquatic environments including natural waters, engineered water systems and soils. Identifying the specific environmental sources responsible for human infection is essential in minimizing disease prevalence. This paper reviews current literature and case studies regarding the wide spectrum of disease caused by MAC and the role of potable water in disease transmission. Potable water was recognized as a putative pathway for MAC infection. Contaminated potable water sources associated with human infection included warm water distribution systems, showers, faucets, household drinking water, swimming pools and hot tub spas. MAC can maintain long-term contamination of potable water sources through its high resistance to disinfectants, association with biofilms and intracellular parasitism of free-living protozoa. Further research is required to investigate the efficiency of water treatment processes against MAC and into construction and maintenance of warm water distribution systems and the role they play in MAC proliferation. No claim to Australian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Leveraging data to systematically improve care: coronary artery disease management at Geisinger.
Graf, Thomas; Erskine, Alistair; Steele, Glenn D
2014-01-01
Coronary artery disease is complex chronic disease best managed by a team empowered by actionable data and a comprehensive approach, the ability to improve intermediate outcomes was dramatically enhanced after Geisinger created a system of care to do so. Continuous measurement of critical data elements of process and intermediate outcome measures allows the delivery of actionable information to the most appropriate team member, including the patients and family as team members. Continuous monitoring of the overall program looking for trends and opportunities across sites and regions allows for program enhancements. The comprehensive "all-or-none" bundled approach to care, which has already realized a 300% improvement, will be further enhanced by incorporating additional "Big Data" flows.
The discovery and early understanding of leukemia.
Kampen, Kim R
2012-01-01
The early history of leukemia reaches back 200 years. In 1811, Peter Cullen defined a case of splenitis acutus with unexplainable milky blood. Alfred Velpeau defined the leukemia associated symptoms, and observed pus in the blood vessels (1825). Alfred Donné detected a maturation arrest of the white blood cells (1844). John Bennett named the disease leucocythemia, based on the microscopic accumulation of purulent leucocytes (1845). That same year, Rudolf Virchow defined a reversed white and red blood cell balance. He introduced the disease as leukämie in 1847. Henry Fuller performed the first microscopic diagnose of a leukemic patient during life (1846). This gradual process brought us towards our current understanding of this complex disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mancini, Andrea; Tantucci, Michela; Mazzocchetti, Petra; de Iure, Antonio; Durante, Valentina; Macchioni, Lara; Giampà, Carmela; Alvino, Alessandra; Gaetani, Lorenzo; Costa, Cinzia; Tozzi, Alessandro; Calabresi, Paolo; Di Filippo, Massimiliano
2018-05-01
During multiple sclerosis (MS), a close link has been demonstrated to occur between inflammation and neuro-axonal degeneration, leading to the hypothesis that immune mechanisms may promote neurodegeneration, leading to irreversible disease progression. Energy deficits and inflammation-driven mitochondrial dysfunction seem to be involved in this process. In this work we investigated, by the use of striatal electrophysiological field-potential recordings, if the inflammatory process associated with experimental autoimmune encephalomyelitis (EAE) is able to influence neuronal vulnerability to the blockade of mitochondrial complex IV, a crucial component for mitochondrial activity responsible of about 90% of total cellular oxygen consumption. We showed that during the acute relapsing phase of EAE, neuronal susceptibility to mitochondrial complex IV inhibition is markedly enhanced. This detrimental effect was counteracted by the pharmacological inhibition of microglia, of nitric oxide (NO) synthesis and its intracellular pathway (involving soluble guanylyl cyclase, sGC, and protein kinase G, PKG). The obtained results suggest that mitochondrial complex IV exerts an important role in maintaining neuronal energetic homeostasis during EAE. The pathological processes associated with experimental MS, and in particular the activation of microglia and of the NO pathway, lead to an increased neuronal vulnerability to mitochondrial complex IV inhibition, representing promising pharmacological targets. Copyright © 2018 Elsevier Inc. All rights reserved.
Fluorescence-enhanced europium complexes for the assessment of renal function
NASA Astrophysics Data System (ADS)
Chinen, Lori K.; Galen, Karen P.; Kuan, K. T.; Dyszlewski, Mary E.; Ozaki, Hiroaki; Sawai, Hiroaki; Pandurangi, Raghootama S.; Jacobs, Frederick G.; Dorshow, Richard B.; Rajagopalan, Raghavan
2008-02-01
Real-time, non-invasive assessment of glomerular filtration rate (GFR) is essential not only for monitoring critically ill patients at the bedside, but also for staging and monitoring patients with chronic kidney disease. In our pursuit to develop exogenous luminescent probes for dynamic optical monitoring of GFR, we have prepared and evaluated Eu 3+ complexes of several diethylenetriamine pentaacetate (DTPA)-monoamide ligands bearing molecular "antennae" to enhance metal fluorescence via the intramolecular ligand-metal fluorescence resonance energy transfer (FRET) process. The results show that Eu-DTPA-monoamide complex 13a, which contains a quinoxanlinyl antenna, exhibits large (c.a. 2700-fold) Eu 3+ fluorescence enhancement over Eu-DTPA (4c). Indeed, complex 13a exhibits the highest fluorescent enhancement observed thus far in the DTPA-type metal complexes. The renal clearance profile of the corresponding radioactive 111In complex 13c is similar to that of 111In-DTPA, albeit 13c clears slower than 111In-DTPA. The biodistribution data indicates that 13c, and, by inference, 13a clear via a complex mechanism that includes glomerular filtration.
Fibrocalcific aortic valve disease: Opportunity to understand disease mechanisms using mouse models
Weiss, Robert M.; Miller, Jordan D.; Heistad, Donald D.
2013-01-01
Studies in vitro and in vivo continue to identify complex regulated mechanisms leading to overt fibrocalcific aortic valve disease (FCAVD). Assessment of the functional impact of those processes requires careful studies of models of FCAVD in vivo. Although the genetic basis for FCVAD is unknown for most patients with FCAVD, several disease-associated genes have been identified in humans and mice. Some gene products which regulate valve development in utero also protect against fibro-calcific disease during postnatal aging. Valve calcification can occur via processes that resemble bone formation. But valve calcification can also occur by non-osteogenic mechanisms, such as formation of calcific apoptotic nodules. Anti-calcific interventions might preferentially target either osteogenic or non-osteogenic calcification. Although FCAVD and atherosclerosis share several risk factors and mechanisms, there are fundamental differences between arteries and the aortic valve, with respect to disease mechanisms and responses to therapeutic interventions. Both innate and acquired immunity are likely to contribute to FCAVD. Angiogenesis is a feature of inflammation, but may also contribute independently to progression of FCAVD, possibly by actions of pericytes that are associated with new blood vessels. Several therapeutic interventions appear to be effective in attenuating development of FCAVD in mice. Therapies which are effective early in the course of FCAVD, however, are not necessarily effective in established disease. PMID:23833295
Advanced magnetic resonance imaging of neurodegenerative diseases.
Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo
2017-01-01
Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.
The role of iron in brain ageing and neurodegenerative disorders
Ward, Roberta J; Zucca, Fabio A; Duyn, Jeff H; Crichton, Robert R; Zecca, Luigi
2017-01-01
In the CNS, iron in several proteins is involved in many important processes such as oxygen transportation, oxidative phosphorylation, myelin production, and the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation and modification of lipids, proteins, carbohydrates, and DNA. During ageing, different iron complexes accumulate in brain regions associated with motor and cognitive impairment. In various neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, changes in iron homoeostasis result in altered cellular iron distribution and accumulation. MRI can often identify these changes, thus providing a potential diagnostic biomarker of neurodegenerative diseases. An important avenue to reduce iron accumulation is the use of iron chelators that are able to cross the blood–brain barrier, penetrate cells, and reduce excessive iron accumulation, thereby affording neuroprotection. PMID:25231526
A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification
Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; ...
2013-01-01
Background . The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective . To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods . The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expertmore » knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results . The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions . Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.« less
A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification
Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Varnum, Susan M.; Brown, Joseph N.; Riensche, Roderick M.; Adkins, Joshua N.; Jacobs, Jon M.; Hoidal, John R.; Scholand, Mary Beth; Pounds, Joel G.; Blackburn, Michael R.; Rodland, Karin D.; McDermott, Jason E.
2013-01-01
Background. The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective. To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods. The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expert knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results. The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions. Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification. PMID:24223463
A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.
2013-10-01
Background. The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective. To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods. The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expert knowledge was integratedmore » into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results. The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions. Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.« less
PINK1/Parkin-Dependent Mitochondrial Surveillance: From Pleiotropy to Parkinson's Disease
Mouton-Liger, Francois; Jacoupy, Maxime; Corvol, Jean-Christophe; Corti, Olga
2017-01-01
Parkinson's disease (PD) is one of the most frequent neurodegenerative disease caused by the preferential, progressive degeneration of the dopaminergic (DA) neurons of the substantia nigra (SN) pars compacta. PD is characterized by a multifaceted pathological process involving protein misfolding, mitochondrial dysfunction, neuroinflammation and metabolism deregulation. The molecular mechanisms governing the complex interplay between the different facets of this process are still unknown. PARK2/Parkin and PARK6/PINK1, two genes responsible for familial forms of PD, act as a ubiquitous core signaling pathway, coupling mitochondrial stress to mitochondrial surveillance, by regulating mitochondrial dynamics, the removal of damaged mitochondrial components by mitochondria-derived vesicles, mitophagy, and mitochondrial biogenesis. Over the last decade, PINK1/Parkin-dependent mitochondrial quality control emerged as a pleiotropic regulatory pathway. Loss of its function impinges on a number of physiological processes suspected to contribute to PD pathogenesis. Its role in the regulation of innate immunity and inflammatory processes stands out, providing compelling support to the contribution of non-cell-autonomous immune mechanisms in PD. In this review, we illustrate the central role of this multifunctional pathway at the crossroads between mitochondrial stress, neuroinflammation and metabolism. We discuss how its dysfunction may contribute to PD pathogenesis and pinpoint major unresolved questions in the field. PMID:28507507